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Introduction and motivations

This thesis focuses on a broad, possibly degenerate class of stochastic partial differential

equations (SPDEs). Such equations, combining elements of PDEs and Itô’s stochastic calculus,

are well suitable to describe systems with distributed parameters in the presence of random

perturbations. In probability theory, interest in equations of this type arose by the problem of

filtering diffusion processes.

The filtering problem

Suppose that T ≥ 0 is given and let us fix a probability space (Ω,F , {Ft}t∈[0,T ], P ). Let

Wt be a standard Rd+d′ -valued Wiener process and consider a diffusion process Zt, which is a

solution of a system of Itô equations

dZt = b(t, Zt)dt+ σ(t, Zt)dWt, t ∈ [0, T ]

Suppose that one part of the components of the diffusion Zt is observable, call it Yt, and the other

is not, call it Xt. Assume (without loss of generality) that Xt consists of the first d coordinates

of Zt and d′ of the remaining d coordinates.

Let FYt be the completion of σ(Ys, s ≤ t), which defines the filtration of the observations on

Y and let T1, T2 ∈ [0, T ]. Then, for any bounded and measurable real valued function f on Rd, it

is well known that E
[
f(XT2)|FYT1

]
is the best, in the mean square, FYT1

-measurable estimate for

f(XT2
), that is, intuitively, the best estimate for f(XT2

) given the information extracted from

Y up until the time T1.

The problem of calculating E
[
f(XT2

)|FYT1

]
is called the problem of filtering if T1 = T2, the

problem of interpolation if T2 < T1 and that of extrapolation if T2 > T1.

Under natural assumptions one can find that

E
[
f(Xt) | FYt

]
=

∫
Rd
f(x)pt(x)dx

namely, there exists the conditional density of Xt given FYt and it turns out that pt satisfies a

SPDE of the form

dpt(x) = Ltpt(x)dt+Mtpt(x)dWt, (0.0.1)

where Lt is a second order elliptic operator and Mt is a first order operator. The coefficients of

Lt and Mt depend on t, x and Yt: therefore they are random and typically not smooth w.r.t. t.
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A very particular case is when Y ≡ 0: in this case Mt ≡ 0 and (0.0.1) reduces to the classical

backward Kolmogorov equation for the deterministic transition density pt of Xt.

In the general case of (0.0.1), pt is the stochastic fundamental solution of (0.0.1) and is the

conditional transition density of the process Xt.

It was recently discovered that one can derive filtering equations by means of a ‘direct’

PDE approach (see [24], or [14] where distribution valued processes are considered). To give an

elementary idea of this approach, consider the Itô’s stochastic equation

dxt = b(σt)dt+ σ(xt)dWt,

say in one dimension with nonrandom coefficients satisfying appropriate conditions. Let xt(x) be

a solution of this equation starting at x. Take a smooth and bounded function ϕ(x) and define

v(t, x) = E [ϕ(xt(x))]. Then under appropriate conditions v satisfies Kolmogorov’s equation∂tu = 1
2σ

2uxx + bux, t ≥ 0, x ∈ R,

u(0, x) = ϕ(x).
(0.0.2)

One can derive this fact in two ways. Historically, the first one is based on proving probabilis-

tically that v is smooth enough and then using the Markov property (see, for instance, [9]).

This way Kolmogorov’s equation is derived even if the diffusion can degenerate. However, if the

process is nondegenerate, one can use a ‘direct’ approach consisting of taking the solution u of

(0.0.2), the existence of which is garanteed by the theory of PDEs, and applying Itô’s formula

to u(t− T, xt(x)). Then one gets

u(0, xT (x)) = u(T, x0(x)) +

∫ T

0

σ(xs(x))ux(xs(x))dWs. (0.0.3)

By taking the expectations on (0.0.3), and noting that u(0, xT ) = ϕ(xT ) and x0(x) = x, it is

easily proved that u = v and hence v satisfies (0.0.2).

The general case can be treated following the same approach. Take the filtering equation, take

its solutions, whose existence needs to be previoulsy investigated, and then apply Itô’s formula

to appropriately chooses functions.

This way of arguing strongly motivates the study of equations of the type (0.0.1).

The aim of this thesis is to prove existence, regularity and estimates of a solution pt to (0.0.1)

when Lt is a Kolmogorov type operator satisfying the weak Hörmander condition.

Our approach is based on the parametrix method for which the natural functional setting is

that of stochastic Hölder spaces. We recall that [4] considers classical solutions in Hölder spaces

to uniformly parabolic SPDEs with coefficients that are functions of t only, independent of x.

For other old references on SPDEs in Hilbert spaces (i.e. with infinite dimensional noise), see [4]:

different notions of weak solution (integrating in (t, x) against a test function), strong solution

(integral in t and pointwise a.e. in x) and classical solution (integral in t and pointwise in x).

The parametrix method has been recently revisited in [5] and [1] under the perspective of

probabilistic and financial applications.
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The following example well describes the basic ideas behind the arguments brought up in the

thesis.

Constant coefficient SPDEs

Let û = ût(x) be a solution of the heat equation

dût(x) =
a2

2
∂2
xxût(x)dt, t > τ, x ∈ R. (0.0.4)

By the Îto formula we have that

ut(x) := ût (x+ α (Wt −Wτ )) , t > τ,

solves the one-dimensional SPDE

dut(x) =
σ2

2
∂xxut(x)dt+ α∂xut(x)dWt, σ2 := a2 + α2. (0.0.5)

The other way round, starting from a solution ut(x) of the SPDE (0.0.5), the Itô-Wentzell change

of variable Xt(x) = x− αWt transforms ut(x) into a solution of (0.0.4).

Now, let Γ denote the Gaussian fundamental solution of (0.0.4)

Γ (t, x; τ, ξ) =
1√

2πa2(t− τ)
exp

(
− (x− ξ)2

2a2(t− τ)

)
, t > τ, x, ξ ∈ R. (0.0.6)

Then

p (t, x; τ, ξ) := Γ (t, x+ α(Wt −Wτ ); τ, ξ) (0.0.7)

=
1√

2πa2(t− τ)
exp

(
− (x+ α(Wt −Wτ )− ξ)2

2a2(t− τ)

)
, t > τ ≥ 0, x, ξ ∈ R,

is the stochastic fundamental solution of (0.0.5): more precisely, for any ϕ ∈ Cb(R), we have that

ut(x) :=

∫
R
p (t, x; τ, ξ)ϕ(ξ)dξ,

solves the stochastic Cauchy problemdut(x) = σ2

2 ∂xxut(x)dt+ α∂xut(x)dWt, t > τ, x ∈ R,

uτ (x) = ϕ(x), x ∈ R.

Indeed, by the stochastic Fubini’s theorem we have

dut(x) =

∫
R
dp (t, x; τ, ξ)ϕ(ξ)dξ

(by the Îto formula)

=

∫
R

(
σ2

2
∂xxp (t, x; τ, ξ)ϕ(ξ)dt+ α∂xp (t, x; τ, ξ)ϕ(ξ)dWt

)
dξ
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(again by the standard and stochastic Fubini’s theorems)

=
σ2

2
∂xxut(x)dt+ α∂xut(x)dWt.

Moreover, we have

|ut(x)− ϕ(x0)| ≤
∫
R
p (t, x; τ, ξ) |ϕ(ξ)− ϕ(x0)| dξ

(by the change of variable η = ξ−x−α(Wt−Wτ )√
2πa2(t−τ)

)

=

∫
R
e−η

2
∣∣∣ϕ(η√2πa2(t− τ) + x+ α(Wt −Wτ )

)
− ϕ(x0)

∣∣∣ dξ
which converges to zero as (t, x) → (τ, x0) by the dominated convergence theorem, because the

integrand converges pointwisely and is dominated by the integrable function 2‖ϕ‖∞e−η
2

. This

means that ut(x) is a continuous function up to t = τ .

Remark 0.0.1. The stochastic fundamental solution p in (0.0.7) has distinctive properties com-

pared to the Gaussian deterministic fundamental solution (0.0.6). In particular, the asymptotic

behaviour near the pole of p is affected by the presence of the Brownian motion: this was studied

in [21] in the more general framework of Riemannian manifolds.

In this dissertation we are only going to consider the forward problem. This is due to some

adaptability problems that arise when trying to solve stochastic backward equations. To better

exemplify what we have stated here we briefly consider a possible backward problem based on

the framework of the previous example.

Backward or forward?

As in the case of ordinary differential equations (ODEs and SDEs), moving forward or back-

ward in time makes the difference. The forward SPDE (with constant coefficients) (0.0.5) has

fundamental solution

p (t, x; τ, ξ) = Γ (t, x+ α(Wt −Wτ ); τ, ξ) , t > τ.

Notice that t 7→ p (t, x; τ, ξ) is an adapted process. Notice also the damping effect of the stochastic

component on the diffusion coefficient: σ2 in the SPDE (0.0.5) corresponds to σ2 − α2 in the

related PDE; this causes some concern about the ellipticity condition and forces to impose

assumptions like

σ2 − α2 > 0.

Analogously, the backward SPDE

dut(x) = −σ
2

2
∂xxut(x)dt+ α∂xut(x)dWt, t < T, (0.0.8)
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can be converted in the backward PDE

dut(x) = −σ
2 + α2

2
∂xxut(x)dt, t < T.

By analogy, the fundamental solution of (0.0.8) should be

pB (t, x;T, y) =
1√

2π (σ2 + α2) (T − t)
exp

(
− (x+ α(Wt −WT )− y)2

2 (σ2 + α2) (T − t)

)
, t < T.

However, t 7→ pB (t, x;T, y) is NOT an adapted process. Thus it seems that an ad-hoc notion of

solution and, more generally, a theory for backward SPDEs (analogous to that of BSDEs) has

to be developed: in this regard see [18] where only the case of x-independent coefficients has

been considered. Moreover, in this case, the stochastic component has a reinforcing effect on the

diffusion coefficient: σ2 in the SPDE (0.0.5) corresponds to σ2 + α2 in the related PDE and no

additional ellipticity conditions have to be imposed as soon as σ > 0.

We will consider the forward case as in the stream of literature initiated by Kunita, Chow,

Krylov, Rozovskii among others (cf. [7], [2], [19], [20], [13], [15], [3]).





Chapter 1

General setting and main results

Let (Ω,F , P ) be a complete probability space with an increasing filtration (Ft)t≥0 of complete

with respect to (F , P ) σ-fields Ft ⊂ F . Let d1 ∈ N and W 1, . . . ,W d1 be independent one-

dimensional Wiener processes with respect to (Ft).
Notations: d ∈ N, (t, x) ∈ R × Rd and D = (∂x1 , . . . , ∂xd). Moreover m0 ≤ d is fixed (cf.

Assumptions 1.1.2 and 1.1.1).

We consider the differential operator

Ltut(x) =
1

2

m0∑
i,j=1

aijt (x)Dijut(x) +

m0∑
i=1

ait(x)Diut(x) + ct(x)ut(x)

with coefficients:

aijt (x) = aijt (x, ω), ait(x) = ait(x, ω), ct(x) = ct(x, ω), x ∈ Rd, ω ∈ Ω.

Let σt = σt(x, ω) be a random vector field

σt =
(
σ1
t , . . . , σ

d
t

)
.

Notice that we will often omit the dependence on ω: so, for instance, we write σt(x) rather than

σt(x, ω). We define the differential operator Lσt acting as

Lσtut(x) :=

d∑
i=1

σit(x)Diut(x).

We consider the vector field

σ0
t (x, ω) = Bx+ bt(ω),

with coefficients linearly dependent on x, and set

Yt = ∂t − Lσ0
t
.

We say that

Kt := Lt − Yt (1.0.1)

13
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is a Kolmogorov-type operator.

Next we consider the vector fields Lσ1
t
, . . . , L

σ
d1
t

with coefficients σkit = σkit (ω), independent

of x, and such that σkit ≡ 0 for i = m0 + 1, . . . , d. Let ft = ft(x, ω) be a bounded and continuous

function in (t, x). We are interested in the following Kolmogorov-type SPDE

dY ut = (Ltut + ft)dt+ Lσkt utdW
k
t , (1.0.2)

where and below the summation convention over repeated indices is enforced regardless of

whether they stand at the same level or at different ones.

The actual meaning of (1.0.2) needs to be specified. Given an open subset D ⊆ Rd, denote

by B(D) the Borel σ-field of D and denote by ST the predictable σ-field in [0, T ]× Ω.

Definition 1.0.1. A real valued function u on [0, T ]×Ω×D, ST⊗B(D)-measurable, is a solution

to the equation 1.0.2 if u, ∂xiu, ∂xixju are continuous in (t,x), for i, j = 1, · · · ,m0 for almost

any ω and it holds that

ut (γt(x)) = u0(x) +

∫ t

0

(Lsus + fs) (γs(x))ds+

∫ t

0

(
Lσks us

)
(γs(x))dW k

s , (1.0.3)

where t 7→ γt(x) denotes the integral curve, starting from x at time 0, of −Lσ0
t
: more precisely,

γt(x) ≡ γ0,t(x) where

γτ,t(x) := e−(t−τ)B

(
x−

∫ t

τ

e(s−τ)Bbsds

)
(1.0.4)

is absolutely continuous as a function of the variable t and solves d
dtγτ,t(x) = −Bγτ,t(x)− bt a.e.

γτ,τ (x) = x.

Example 1.0.2 (Langevin). Let d = 2, m0 = d1 = 1 and

B =

(
0 0

1 0

)
.

Then

Y = ∂t − x∂y, (x, y) ∈ R2,

and we have the following SPDE

dY ut(x, y) =
at(x, y)

2
∂xxut(x, y)dt+ σt∂xut(x, y)dWt. (1.0.5)

If (1.0.5) has a smooth (in the spatial variables) solution u, then (1.0.5) can be rewritten in the

more familiar Ito sense

dut(x, y) =

(
at(x, y)

2
∂xxut(x, y) + x∂yut(x, y)

)
dt+ σt∂xut(x, y)dWt.

In the deterministic case σt ≡ 0 and at(x, y) ≡ 1, (1.0.5) reduces to the following degenerate

Kolmogorov PDE, known as Langeving equation:

∂tu =
1

2
∂xxu+ x∂yu.
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The main goal is to construct and estimate the stochastic fundamental solution of the Kolmogorov-

type SPDE (1.0.2). The dissertation follows two steps:

i) we consider the case when Lσkt ≡ 0, that is we have a deterministic PDE with coefficients

that are measurable functions of t, Hölder continuous with respect to x: the treatise is

developed by an extension of the parametrix method. The arguments and results are

reported with details in Chapter 3;

ii) as in [12], we use the Ito-Wentzell formula to reduce the SPDE to a PDE to which the

results of Step i) apply. This is discussed in Chapter 2.

1.1 Assumptions and results

We assume the following structural hypothesis on Lt to hold:

Assumption 1.1.1. The matrix B := (bij)1≤i,j≤d has constant real entries and takes the block-

form

B =



∗ ∗ · · · ∗ ∗
B1 ∗ · · · ∗ ∗
0 B2 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · Bν ∗

 (1.1.1)

where each Bi is a (mi ×mi−1)-matrix of rank mi with

m0 ≥ m1 ≥ · · · ≥ mν ≥ 1,

ν∑
i=0

mi = d,

and the blocks denoted by “∗” are arbitrary.

Assumption 1.1.2. The coefficients aijt = ajit , a
i
t, ct, bt, for 1 ≤ i, j ≤ m0, are bounded and

measurable in t functions such that

µ−1|ξ|2 <
m0∑
i,j=1

(
aijt (x)− αijt

)
ξiξj < µ|ξ|2, ξ ∈ Rm0 , t ∈ [0, T ], x ∈ Rd,

for some positive constant µ, with αijt as in (2.0.7).

Assumption 1.1.3. The second order coefficients take the form:

aijt (x) = Aijt (qij(t, x))

where Aijt = Aijt (q, ω) are measurable in t and Hölder continuous in q in the Euclidean sense1,

while qij = qij(t, x, ω) ∈ CαB(Rd+1) (see Definition 3.1.5). We also set Aijt ≡ 0 for i, j ≥ m0 +1.
1The main example is that of linear functions

At(q, ω) = at(ω)q + bt(ω), q ∈ R.
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Notation 1.1.4. We will denote with A0
t the (positive definite) restriction (aijt )i,j=1,··· ,m0 of the

second order coefficients matrix.

Now we can state the main result of the thesis.

Theorem 1.1.5. (i) Under Assumptions 1.1.1, 1.1.2 and 1.1.3 there exists a fundamental

solution pt = pt(x, ω; ζ) to (1.0.2).

(ii) Let pεt be the fundamental solution to the constant coefficient Kolmogorov-type SPDE

dY ut = Lεtutdt+ Lσkt utdW
k
t ,

with

Lεtut(x) :=
1

2
(µ+ ε)

m0∑
j=1

D2
jut(x)

Then the following estimates hold: for every positive ε and T , there exists a positive con-

stant C, only dependent on ε, T , µ and B such that

pt(x; ζ) ≤ Cpεt (x; ζ),

∂xipt(x; ζ) ≤ C√
t− τ p

ε
t (x; ζ),

∂xixjpt(x; ζ) ≤ C

t− τ p
ε
t (x; ζ).

for any i, j = 1, · · · ,m0 and z = (t, x), ζ = (τ, ξ) ∈ Rd+1 with 0 < t− τ < T .



Chapter 2

Random mappings and

Itô-Wentzell formula

We begin this Chapter with a technical result concerning stochastic integration depending

on a parameter.

Let (Ω,F , P ) be a complete probability space with an increasing filtration (Ft)t≥0 of complete

with respect to (F , P ) σ-fields Ft ⊂ F , satisfying the usual hypotesis. Hereafter we will use the

classic notations:

L2: the family of real measurable processes ψ = {ψ(t, ω)}t≥0 on Ω adapted to Ft such that,

for every T > 0,

‖ψ‖2L2(Ω×[0,T ]) = E

[∫ T

0

ψ2
sds

]
<∞.

L2
loc: the family of real measurable processes ψ = {ψ(t, ω)}t≥0 on Ω adapted to Ft such that,

for every T > 0,

‖ψ‖2L2([0,T ]) =

∫ T

0

ψ2
sds <∞ a.s.

M2
c : the complete metric space of continuous square integrable martingaleM = {M(t, ω)}t∈[0,T ]

such that M0 = 0 a.s. equipped with the seminorm

[|M |]T :=

(
E

[
sup

0≤t≤T
|Mt|2

]) 1
2

or equivalently ‖MT ‖L(Ω).

We recall that the stochastic integral of a process in L2 with respect to a Brownian motion

is well defined as an element of M2
c .

This is a slight variation to the stochastic Fubini’s theorem in [8].

Lemma 2.0.1 (A Fubini’s type theorem for stochastic integrals). Let W be a one dimensional

Wiener process with respect to (Ft) and let {ϕ(t, x, ω)}, t ∈ [0,∞), x ∈ Rd a family of real

random variables such that:

17
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(i) ((t, ω), x) ∈ ([0,∞)× Ω)× Rd → ϕ(t, x, ω) is S⊗B(Rd)-measurable;

(ii) There exists a non-negative Borel-measurable function f(x) such that 1

|ϕ(t, x, ω)| ≤ f(x) ∀ x, t, w and

∫
Rd
f(x)dx <∞.

By (i) and (ii), Iϕ(t, x) :=
∫ t

0
ϕs(x)dWs ∈Mc

2 is well defined. We assume further that

(iii) (x,w)→
∫ t

0
ϕs(x)dWs is B(Rd)⊗F-measurable for each t ≥ 0. Then

t→
∫
Rd
ϕs(x)dx ∈ L2

and we have ∫ t

0

(∫
Rd
ϕs(x)dx

)
dWs =

∫
Rd

(∫ t

0

ϕs(x)dWs

)
dx (2.0.1)

Proof. It is clear that
∫
Rd ϕ(s, x, ω)dx is predictable and bounded. Hence it is obvious that

E

[∫ t

0

(∫
Rd
ϕ(s, x, ω)dx

)2

dt

]
<∞.

Thus the left hand side of (2.0.1) is well defined as an element in Mc
2. On the other hand, the

map x→
∫ t

0
ϕs(x)dWs is B(Rd)-measurable by assumption (iii) and for every T > 0

E

[∫
Rd

max
0≤t≤T

∣∣∣∣∫ t

0

ϕs(x)dWs

∣∣∣∣ dx]

≤
∫
Rd

(
E

[
max

0≤t≤T

∣∣∣∣∫ t

0

ϕs(x)dWs

∣∣∣∣2
])1/2

dx

≤ 2

∫
Rd

E
∣∣∣∣∣
∫ T

0

ϕs(x)dWs

∣∣∣∣∣
2
1/2

dx

(by Doob’s inequality)

= 2

∫
Rd

(
E

[∫ T

0

|ϕs(x)|2ds
])1/2

dx

(by Itô’s isometry)

= 2
√
T

∫
Rd
f(x)dx <∞

1The result can still be proved under the weaker assumption (see e.g. Lemma 2.6 in [10] or [22])∫
X

(∫ T

0
|ϕ(x, t)|2dt

)1/2

dµX <∞
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Hence ∫
Rd

max
0≤t≤T

∣∣∣∣∫ t

0

ϕs(x)dWs

∣∣∣∣ dx <∞ a.s.

and this implies that

t→
∫
Rd

∫ t

0

ϕs(x)dWsdx

is continuous a.s. Thus the right-hand side of (2.0.1) is well defined and defines an (Ft)-adapted

process. It is also square-integrable because

E

[(∫
Rd

(

∫ t

0

ϕs(x)dWs)dx

)2
]

=

∫
Rd
dx1

∫
Rd
dx2E

[∫ t

0

ϕs(x1)dWs

∫ t

0

ϕs(x2)dWs

]
=

∫
Rd
dx1

∫
Rd
dx2E

[∫ t

0

ϕs(x1)ϕs(x2)ds

]
≤ t
(∫

Rd
f(x)dx

)2

<∞

It is an (Ft) martingale because if t > s > 0 and A ∈ Fs then

E

[
IA

∫
Rd

∫ t

s

ϕs(x)dWsdx

]
∫
Rd
E

[
IA

∫ t

s

ϕs(x)dWs

]
dx = 0.

Similarly, if N ∈M2, then

E

[
IA

(∫
Rd

∫ t

s

ϕu(x)dWudx

)
(Nt −Ns)

]
=

∫
Rd
E

[
IA

∫ t

s

ϕu(x)dWu(Nt −Ns)
]
dx

=

∫
Rd
E

[
IA

∫ t

0

ϕu(x)d < W,N >u

]
dx

= E

[
IA

∫ t

s

(∫
Rd
ϕu(x)dx

)
d < W,N >u

]
Thus t→

∫
Rd
∫ t

0
ϕs(x)dWsdx = Lt is an element in Mc

2 such that, for every N ∈M2,

< N,L >t=

∫ t

0

(∫
Rd
ϕs(x)dx

)
d < W,N >s

Then necessarly Lt =
∫ t

0
(
∫
Rd ϕs(x)dx)dWs. This completes the proof.

Now let d1 ∈ N and W 1, . . . ,W d1 be independent one-dimensional Wiener processes with

respect to (Ft). We introduce the mapping

Xt(x) = x−
∫ t

0

σksdW
k
s
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where σkt , for k = 1, . . . , d1, are as in Section 1, and define the operation “hat” which transforms

any function ut(x) into

ût(x) = ut(Xt(x)).

We have

Diût(x) = D̂iut(x), i = 1, . . . , d, (2.0.2)

and

L̂σ0
t
ut(x) = Lσ̂0

t
ût(x), (2.0.3)

where

σ̂0
t (x) = Bx+ b̂t, b̂t := bt −

∫ t

0

BσksdW
k
s .

Now we are in the position to state the version of the Itô-Wentzell formula we need. The

Itô-Wentzell formula, going back to A. Wentzell [23], allowes to construct the differential of a

composition of two random processes, while the classical Itô formula and its generalizations only

allows to determine the differential of a deterministic function of a random process. This can

be used to make random change of coordinates for stochastic equations in such a way that the

stochastic terms in such equations would disappear.

We point out the very recent and relevant contributions by Krylov in [12] and [11] where the

Hörmander’s theorem for SPDEs is proved under the strong Hörmander condition. This is done

by using a generalized Itô-Wentzell formula for distribution valued precesses [10], and studying

the reduced analytical equation with coefficients measurable in time.

Our version of the Itô-Wentzell formula concerns more familiar real valued processes. Never-

theless, it has to deal with the more uncommon version of the ‘differential’ that involves all the

field Y , i.e it somehow includes some spatial derivatives to non-deterministic quantities.

Theorem 2.0.2 (Itô-Wentzell formula). Let f, u, gk, for k = 1, . . . ,m0 be some real valued

functions on Ω× [0, T ]× Rd such that

(i) u, f, gk, k = 1, · · ·m0 are S⊗B(Rd)-measurable;

(ii) For any ω the functions u, Dju and Diju, for i, j = 1, · · ·m0 are continuous functions of

(t,x). For almost any (ω, t) the functions ft, g
k
t , ut, Djg

k
t , for k = 1, · · · d′, j = 1, · · ·m0

are continuous functions of x;

(iii) For k = 1, · · · d′, x ∈ Rd, gk(x), f(x) ∈ L2
loc.

Assume that

dY ut(x) = ft(x)dt+ gkt (x)dW k
t . (2.0.4)

(in the sense of (1.0.3)). Then we have

dŶ ût(x) =

(
f̂t(x) +

1

2
αijt Dij ût(x)− Lσkt ĝ

k
t (x)

)
dt+

(
ĝkt (x)− Lσkt ût(x)

)
dW k

t (2.0.5)
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where

Ŷt = ∂t − Lσ̂0
t

(2.0.6)

and

αijt =

d1∑
k=1

σkit σ
kj
t . (2.0.7)

Proof. We consider the case in which ut is differentiable with respect to xk for k = 1, · · · , d.

Under this assumption we may rewrite (2.0.4) in the more familiar Itô sense

dut(x) =
(
ft(x) + Lσ0

t
ut(x)

)
dt+

(
gkt (x) + Lσ0

t
ut

)
dW k

t .

Also note that by (2.0.3) it suffices to prove the statement for Lσ0
t
ut ≡ 0.

Take Φ ∈ C∞0 , which is non negative, radially symmetric, with unit integral and support in

Bγ . Then, for all x, y ∈ Rd, un application of the standard Itô formula shows that

ut(x)ϕ(Xt(y)− x) = u0(x)Φ(y − x) +

∫ t

0

Fs(x)ds +

d′∑
k=1

∫ t

0

Gks(x)dW k
s

where

Fs(x) =Φ(Xs(y)− x)fs(x) +
1

2
us(x)αijs [DijΦ] (Xs(y)− x) +

d′∑
k=1

gks (x)
[
LσksΦ

]
(Xs(y)− x),

Gks(x) =Φ(Xs(y)− x)gs(x) + us(x)
[
LσksΦ

]
(Xs(y)− x).

with αijt as defined in (2.0.7), for all t ∈ [0, T ]. Now we integrate on Rd with respect to x. Note

that ∫
Rd

(∫ t

0

|Gks(x)|2ds
) 1

2

dx <∞

Indeed, we have

|Φ(Xs(x)− x)gks (x)| ≤ IBγ+M‖Φ‖∞|gks (x)|

where M = {Xs(x), s ∈ [0, t]} is a compact set and IK denotes the identity function on the set

K. Then, by assumption (iii) and the continuity of gks with respect to the spatial variables we

have ∫
Rd

(∫ t

0

|Φ(Xs(x)− x)gks (x)|2ds
) 1

2

dx

≤ c
∫
Bγ+M

(∫ t

0

|gks (x)|2ds
) 1

2

≤ c
∫
Bγ+M

√
H(x)dx <∞

The same argument still works for Lkσus, since Diju are continuous functions of (t, x) and σk are

bounded and measurable functions independent of x.
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Then, we may apply the stochastic Fubini’s Theorem 2.0.1 as well as the standard one, and

get

∫
Rd
ut(x)ϕ(Xt(y)−x)dx =

∫
Rd
u0(x)Φ(y−x)dx+

∫ t

0

∫
Rd
Fs(x)dxds+

d′∑
k=1

∫ t

0

∫
Rd
Gks(x)dxdW k

s

We fix t ∈ [0, T ] and use this formula with Φε := ε−dΦ(xε ), ε > 0, in place of Φ and integrate by

parts the integrals of F and G with respect to x. Then, using the notation h(ε) = h ∗Φε we find

u
(ε)
t (Xt(y)) = u

(ε)
0 (y) +

d′∑
k=1

∫ t

0

(
gks

(ε)
(Xs(y))−

[
Lσks u

(ε)
s

]
(Xs(y))

)
dW k

s (2.0.8)

+

∫ t

0

f (ε)
s (Xs(y)) +

1

2
αijs

[
Diju

(ε)
s

]
(Xs(y))−

d′∑
k=1

[
Lσks g

k
s

(ε)
]

(Xs(y))

 ds

Now we let ε→ 0. By the continuity assumptions we have u
(ε)
t (Xt(y))→ ut(Xt(y)) for every

ω ∈ Ω. Analogously, for almost any ω ∈ Ω, s ∈ [0, t] we have f
(ε)
s (x) → fs(x), Diju

(ε)
s (x) →

Dijus(x) and Lσks (gks )(ε)(x) → Lσks g
k
s (x) uniformly in compact sets in Rd. Thus, given the

coefficients σk, αij are bounded functions of t and by (2.0.2) we may infer that the Lebesgue

integral in (2.0.8) converges (a.s) to the one in (2.0.5).

On the other hand, again by the continuity assumptions, gks
(ε)

and Lσks u
(ε)
s converge in L2

loc

to gks and Lσks us respectively. This implies that the stochastic integral in (2.0.8) converges to

the one in (2.0.5) in probability.

Corollary 2.0.3. Assume that u satisfies (1.0.2). Then

dŶ ût(x) = L̂tût(x)dt (2.0.9)

with Ŷt defined in (2.0.6) and

L̂tût(x) =
1

2

m0∑
i,j=1

(
âijt (x)− αijt

)
Dij ût(x) +

m0∑
i=1

âit(x)Diût(x) + ĉt(x)ût(x) + f̂t(x).

Proof. By Definition 1.0.1 we may apply the Itô-Wentzell formula (2.0.5) with ft = Ltut and

gkt = Lσkt ut in (2.0.4). Since the coefficients σkt are independent of x we get

dŶ ût(x) =

(
L̂tut(x)− 1

2
αijt Dij ût(x)

)
dt

from which (2.0.9) easily follows.

Relying on the Itô-Wentzell formula and the results for the deterministic case with time-

measurable coefficients we can now easily prove the main statement 1.1.5.
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Proof of theorem 1.1.5. By the results in Chapter 3 (see Theorem 3.0.1) there exists a funda-

mental solution Γ to the Kolmogorov equation 2.0.9. Thus by Corollary 2.0.3 it suffices to make

the reverse random change of variables (t, x) → (t,X−1
t (x)) to get the stochastic fundamental

solution to the (1.0.2) for t ≥ 0.

Also note that the estimates 1.1.5, 1.1.5 and 1.1.5 are a direct transposition of the analogous

ones ((3.0.6), 3.0.7, 3.0.1) found in the deterministic case.





Chapter 3

The deterministic problem

In this chapter we construct the fundamental solution for the Kolmogorov equation

dY ut = Ltutdt (3.0.1)

under Assumptions 1.1.1, 1.1.2 and 1.1.3. This is done by adapting the classical parametrix

method, which goes back to Levi [17]. It consists on the approximation of the fundamental

solution of a differential equation through an iterative process.

We remark that the only results available in the literature based on the parametrix method,

are proved under the assumption of Hölder regularity of the coefficients in the time-variable t.

Thus these results may be of independent interest also in the determistic case.

Here we state the main result of the chapter.

Theorem 3.0.1. Assume that Lt in (3.0.1) verifies hypotheses 1.1.1, 1.1.2 and 1.1.3. Then

there exists a fundamental solution Γ with the following properties:

(i) Γ(·; ζ) ∈ L1
loc(Rd+1) ∩ C(Rd+1 \ {ζ}) ∀ζ ∈ Rd+1;

(ii) Γ(·; ζ) is a solution to (3.0.1) in Rd+1 \ {ζ} ∀ζ ∈ Rd+1 (in the sense of Definition 1.0.1)

(iii) Let g ∈ C(Rd) such that

|g(x)| ≤ C0e
C0|x|2 , ∀x ∈ Rd, (3.0.2)

for some positive constant C0, then there exists

lim
(t,x)→(τ,y)

t>τ

∫
Rd

Γ(t, x; τ, ξ)g(ξ)dξ = g(y), ∀y ∈ Rd, τ ∈ R

(iv) Let g ∈ C(Rd) verifying (3.0.2) and let f be a continuous function in the strip ST0,T1
=

]T0, T1[×Rd, such that

|f(t, x)| ≤ C1e
C1|x|2 ∀x ∈ ST0,T1

(3.0.3)

25
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and for any compact set M ⊂ Rd there exists a positive constant C such that

|f(t, x)− f(t, y)| ≤ C|x− y|βB , ∀x, y ∈M, t ∈]T0, T1[,

for some β ∈]0, 1[; then there exists T ∈]T0, T1] such that the function

u(t, x) =

∫
Rd

Γ(t, x; τ, ξ)g(ξ)dξ +

∫ t

T0

∫
Rd

Γ(t, x; τ, ξ)f(τ, ξ)dξdτ (3.0.4)

is a solution to the Cauchy problemdY ut = (Ltut + ft)dt in ST0,T

u(·, T0) = g in Rd
(3.0.5)

(v) Let Γε be the fundamental solution to the constant coefficients Kolmogorov equation

dY ut = Lεtutdt

with

Lεtut(x) :=
1

2
(µ+ ε)

m0∑
j=1

D2
jut(x)

where ε > 0 and µ is as in 1.1.2: then for every positive ε and T , there exists a constant

C, only dependent on µ, B, ε and T such that

Γ(z; ζ) ≤ CΓε(z; ζ), (3.0.6)

∂xiΓ(z; ζ) ≤ C√
t− τ Γε(z; ζ), (3.0.7)

∂xixjΓ(z; ζ) ≤ C

t− τ Γε(z; ζ).

for any i, j = 1, · · · ,m0 and z, ζ ∈ Rd+1 with 0 < t− τ < T .

The chapter is organized as follows: in the next Section we give the fundamental solution

for the case where the coefficients are only time dependent and give some Gaussian estimates.

In Section 3.2 we define the candidate solution for the general equation through an adaptation

of the parametrix method. In Section 3.3 we provide some potential estimates whose complete

proofs will be given in Section A. Finally, we will be able to prove the main Theorems 3.0.1 and

1.1.5 in the Appendix 3.4.

3.1 Estimates of the fundamental solution of Kolmogorov

PDEs with time dependent coefficients

We start by introducing some general notation. For any symmetric and positive definite

matrix C =
(
Cij
)

1≤i,j≤d, we denote by

Γheat(C, x) =
1√

(2π)d det C
exp

(
−1

2
〈C−1x, x〉

)
, x ∈ Rd, (3.1.1)
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the fundamental solution of the d-dimensional heat equation: Γheat is a smooth function and

satisfies

∂tΓ
heat(t C, x) =

1

2

d∑
i,j=1

CijDijΓ
heat(t C, x), t > 0, x ∈ Rd.

Next we consider the Kolmogorov operator with coefficients dependent only on the time

variable t (not on the space variable x):

K̄ :=
1

2

m0∑
i,j=1

Āijt Dij − Y. (3.1.2)

In case of constant coefficients, Assumptions 1.1.2 and 1.1.1 are equivalent to the hypoellipticity

of K̄: in fact, they are equivalent to the Hörmander’s condition, which in our setting reads:

rank Lie
(
∂x1

, . . . , ∂xm0
, Y
)

(t, x) = d+ 1, for all (t, x) ∈ Rd+1,

where Lie
(
∂x1 , . . . , ∂xm0

, Y
)

denotes the Lie algebra generated by the vector fields ∂x1 , . . . , ∂xm0

and Y (see Proposition 2.1 in [16]). In general we have the explicit expression of the fundamental

solution.

Lemma 3.1.1. Under Assumptions 1.1.2 and 1.1.1, the fundamental solution of K̄ in (3.1.2) is

Γ̄(t, x; τ, ξ) = e−(t−τ)TrBΓheat(Cτ,t, x− γτ,t(ξ)), t > τ, x, ξ ∈ Rd, (3.1.3)

with Γheat as in (3.1.1) and

γτ,t(ξ) = e−(t−τ)B

(
ξ −

∫ t

τ

e(s−τ)Bbsds

)
, (as in (1.0.4))

Cτ,t =

∫ t

τ

e(t−s)BĀse
(t−s)B∗ds.

Proof. Assumption 1.1.1 implies that Cτ,t is positive definite for t > τ . Indeed, Cτ,t is positive

semi-definite and non-decreasing in t − τ ≥ 0 because Ās ≥ 0. By contradiction, suppose there

exist t > τ and ξ ∈ Rd \ {0} such that 〈Cτ,tξ, ξ〉 = 0: then we have

〈Āse(t−s)B∗ξ, e(t−s)B∗ξ〉 = 0 for a.e. s ∈ [τ, t].

This implies that Āse
(t−s)B∗ξ = 0 for a.e. s ∈ [τ, t], that is

∞∑
k=0

(t− s)k
k!

Ās(B
∗)kξ = 0,

and we deduce that

Ās(B
∗)kξ = 0 k ≥ 0, for a.e. s ∈ [τ, t]. (3.1.4)

Identity (3.1.4) with k = 0 implies ξ1, . . . , ξm0
= 0. On the other hand, by Assumption 1.1.1, for

1 ≤ k ≤ ν we have

Ās(B
∗)k =

(
∗ Ck,s 0m0×(...)

0(d−m0)×(...) 0(d−m0)×mk 0(d−m0)×(...)

)
(3.1.5)
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where Ck,s = A0
sB
∗
1 · · ·B∗k is a m0×mk matrix of rank mk, 0i×j denotes a i× j null matrix and

∗ denotes a generic block. Then (3.1.5) and (3.1.4) for k = 1 imply that ξm0+1, . . . , ξm0+m1 = 0.

Repeating the argument for k = 2, . . . , ν we get ξ = 0.

Thus Γ̄(t, x; τ, ξ) in (3.1.3) is well defined. Moreover, since Γheat is a smooth function and Āt,

bt are bounded and measurable in t by assumption, then Γ̄(t, x; τ, ξ) is absolutely continuous in

t, smooth in x and a direct computation shows that

K̄Γ̄(t, x; τ, ξ) = 0, x, ξ ∈ Rd, a.e. t > τ.

The previous differential equation has to be interpreted in the integral sense

Γ̄(t, γs,t(x); τ, ξ) = Γ̄(s, x; τ, ξ) +
1

2

m0∑
i,j=1

∫ t

s

Āijς ·
(
∂ijΓ̄

)
(ς, γς(x); τ, ξ)dς, x, ξ ∈ Rd, t > s > τ,

where ∂ijΓ̄(ς, y; τ, ξ) ≡ ∂yiyj Γ̄(ς, y; τ, ξ); equivalently, we can write it with the differential notation

as in (1.0.2):

dY Γ̄(t, x; τ, ξ) =
1

2

m0∑
i,j=1

Āijt ·
(
∂ijΓ̄

)
(t, x; τ, ξ)dt.

Moreover, let us set

u(t, x) :=

∫
Rd

Γ̄(t, x; τ, ξ)ϕ(ξ)dξ, x ∈ Rd, t > τ.

An application of the dominated convergence theorem shows that

lim
(t,x)→(τ,ξ)

t>τ

u(t, x) = ϕ(ξ), ξ ∈ Rd,

for any bounded and continuous function ϕ. Thus u(t, x) solves the Cauchy problemK̄u(t, x) = 0, x ∈ Rd, a.e. t > τ,

u(τ, x) = ϕ(x) x ∈ Rd,

that is, Γ̄ is the fundamental solution of K̄.

Remark 3.1.2. Lemma 3.1.15 states that (t, x) 7→ Γ̄(t, x; τ, ξ) is the fundamental solution of K̄;

on the other hand, it is well known that (τ, ξ) 7→ Γ̄(t, x; τ, ξ) is the fundamental solution of the

adjoint operator

K̄∗u(τ, ξ) =
1

2

m0∑
i,j=1

Āijτ Diju(τ, ξ) + Y u(τ, ξ) + (TrB)u(τ, ξ).

In general, adjoint operators are more natural from a probabilistic perspective because they are

linked with the theory of stochastic differential equations (SDEs). Precisely

1

2

m0∑
i,j=1

Āijt Diju+ Y
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is the infinitesimal generator of the d-dimensional linear SDE

dX̄t = −
(
BX̄t + bt

)
dt+ σtdWt,

where W is a standard m0-dimensional Brownian motion, σ is a (d × m0)-matrix such that

σijt ≡ 0 for i = m0 + 1, . . . , d and Āt := σtσ
∗
t satisfies Assumption 1.1.2.

3.1.1 Geometric framework

When the coefficients are constant and bt ≡ 0, operator K̄ has remarkable invariance proper-

ties that are crucial in the analysis of existence and regularity issues: these properties were first

studied in [16]. In our more general setting, these properties do not hold anymore but there is

still a Lie group structure that provides the natural geometric and functional framework for the

study of K̄.

Lemma 3.1.3. For any (τ, ξ) ∈ Rd+1, we denote by `Y(τ,ξ) the left-translation in Rd+1 defined as

`Y(τ,ξ)(t, x) := (τ, ξ) ◦Y (t, x) :=

(
t+ τ, x+ e−tB

(
ξ +

∫ t

0

esBbsds

))
.

Then we have

Γ̄(t, x; τ, ξ) = e−(t−τ)TrBΓheat
(
Cτ,t, πd

(
(τ, ξ)−1 ◦Y (t, x)

))
, t > τ, x, ξ ∈ Rd. (3.1.6)

Proof. It suffices to check that

(τ, ξ)−1 =

(
−τ,−eτB

(
ξ −

∫ 0

τ

e(s−τ)Bbsds

))
and

y − γτ,t(x) = πd
(
(τ, ξ)−1 ◦Y (t, x)

)
,

where we denoted by πd(t, x) := x the projection on Rd.

Next we introduce a family of dilations in Rd+1 that are natural for the study of K̄. Let

z = (t, x) ∈ Rd+1, define

D(r)z :=
(
r2t,D0(r)x

)
, r > 0,

where

D0(r) := diag(rIm0
, r3Im1

, . . . , r2ν+1Imν ), r > 0,

and Imi denotes the (mi ×mi)-identity matrix. The natural number

Q := m0 + 3m1 + · · ·+ (2ν + 1)mν

is usually called the homogeneous dimension of Rd with respect to (D0(r))r>0, since that the

Jacobian JD0(r) equals rQ.
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Remark 3.1.4. Let us consider the Kolmogorov operator

K̄0 :=
1

2

m0∑
i=1

∂xixi − Y0, Y0 = ∂t − 〈Bx,D〉,

with Āijt ≡ 1 and bt ≡ 0. It is proved in [16], Proposition 2.2, that K̄0 is D(r)-homogeneous of

degree two if and only if all the ∗-blocks of B in (1.1.1) are null: in that case, we have

K̄0 (u(D(r)z)) = r2
(
K̄0u

)
(D(r)z), r > 0.

A D(r)-homogeneous norm is defined as follows:

‖(t, x)‖B = |t|1/2 + |x|B , |x|B =

d∑
j=1

|xj |1/qj ,

where (qj)1≤j≤d are the integers such that

D0(r) = diag (rq1 , · · · , rqd) .

Based on the previous definitions of intrinsic translations and dilations, the following functional

spaces turn out to provide the natural framework for the study of Kolmogorov operators.

Definition 3.1.5. Let α ∈ ]0, 1[ and O be a domain of Rd+1. We denote by CαY (O) the Hölder

space of functions on O such that

|u(t, x)− u(s, y)| ≤ C‖(s, y)−1 ◦Y (t, x)‖αB , (t, x), (s, y) ∈ O,

for some positive constant C.

By Assumption 1.1.3, Aijt ∈ Cγ(CαB(Rd+1),R). Thus, given t ≥ 0, z, ζ ∈ Rd+1 we have

|Aijt (qij(z))−Aijt (qij(z))| ≤ C‖ζ−1 ◦Y z‖γαB
Hereafter, the exponent product will be more conveniently noted as α.

Example 3.1.6. The function f(t, x) = |x| is Lipschitz continuous in R3. Now, consider the

Langevin operator in Example 1.0.2, then, for (t, x), (τ, ξ) ∈ R3∥∥(τ, ξ)−1 ◦Y (t, x)
∥∥
B

=
∥∥∥(t− τ, x− e−(t−τ)Bξ

)∥∥∥
B

=

= |t− τ | 12 + |x1 − ξ1|+ |x2 + (t− τ)ξ1 − ξ2|
1
3

so that, for fixed z = (t, x) = 0 and, for example ζ = (τ, ξ) along the lineξ1 = 1

ξ2 = −τ

we have

|f(z)− f(ζ)|
‖ζ−1 ◦Y z‖αB

=
|ξ|(

|τ | 12 + 1
)α =

√
1 + τ2(

|τ | 12 + 1
)α −→∞

when τ tends to infinity along the line, for every α ∈]0, 2[.
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Example 3.1.7. As in the previous example, in R3∥∥(τ, ξ)−1 ◦Y (t, x)
∥∥
B

= |t− τ | 12 + |x1 − ξ1|+ |x2 + (t− τ)ξ1 − ξ2|
1
3 .

Let

z =

(
t,−x2 − ξ2

t− τ , x2

)
, ζ =

(
τ,−x2 − ξ2

t− τ , ξ2

)
(3.1.7)

with x2, ξ2 ∈ R and t 6= τ . We notice that

ζ−1 ◦Y z = (t− τ, 0, 0) .

and therefore ∥∥(τ, ξ)−1 ◦Y (t, x)
∥∥
B

= |t− τ | 12

for any x2, ξ2 ∈ R and t 6= τ : in other terms, points that are very distant in the Euclidean sense,

can be very close in the intrinsic sense. It follows that, if a function f(t, x1, x2) = f(x2) depends

only on x2 and belongs to CαY , then it must be constant: indeed, for z, ζ as in (3.1.7), we have

|f(x2)− f(ξ2)| = |f(z)− f(ζ)| ≤ C|t− τ | 12

for any x2, ξ2 ∈ R and t 6= τ .

3.1.2 Gaussian estimates

Given the Kolmogorov operator K̄ in (1.0.1), for any fixed w ∈ Rd+1 we denote by Γw(t, x; τ, ξ)

the fundamental solution of the Kolmogorov operator with time-dependent coefficients Āijt (w) =

Aijt (q(w)).

Kw :=
1

2

m0∑
i,j=1

Āijt (w)∂xixj − Y

=
1

2

m0∑
i,j=1

Āijt (w)∂xixj + 〈Bx+ bt, D〉 − ∂t.

The explicit expression of Γw(t, x; τ, ξ) is given in (3.1.3).

Notation 3.1.8. Given B in the form (1.1.1), we denote by B̂ the matrix obtained by substituting

the ∗-blocks with null blocks. We also set

I :=

(
Im0

0

0 0

)
, Ŷ = ∂t − 〈B̂x,D〉,

and, for w ∈ Rd+1 and 0 ≤ τ < t ≤ T ,

Cτ,t,w =

∫ t

τ

e(t−s)BĀs(w)e(t−s)B∗ds, Ct =

∫ t

0

e(t−s)BIe(t−s)B∗ds

Ĉτ,t,w =

∫ t

τ

e(t−s)B̂Ās(w)e(t−s)B̂∗ds, Ĉt =

∫ t

0

e(t−s)B̂Ie(t−s)B̂∗ds.
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Remark 3.1.9. Assumption 1.1.2 yields the following comparison between the quadratic forms

associated to Cτ,t,w and Ct−τ
µ−1Ct−τ ≤ Cτ,t,w ≤ µ Ct−τ

for w ∈ Rd+1 and 0 ≤ t − τ ≤ T . Since Ct−τ is symmetric and positive definite for t > τ ,

analogous estimates hold for C−1
τ,t,w, Ĉτ,t,w and Ĉ−1

τ,t,w in terms of C−1
t−τ , Ĉτ,t and Ĉ−1

t−τ respectively.

Proposition 3.1.10. For every z, ζ, w ∈ Rd+1, with 0 < t− τ ≤ T it holds that

1

µd
Γ−(t, x; τ, ξ) ≤ Γw(t, x; τ, ξ) ≤ µdΓ+(t, x; τ, ξ),

where µ is the constant in Assumption 1.1.2 and Γ−,Γ+ are the fundamental solutions of the

Kolmogorov operators

K̄− =
1

2µ

m0∑
i=1

∂xixi − Y, K̄+ =
µ

2

m0∑
i=1

∂xixi − Y,

respectively.

Proof. By Remark 0.0.1, we have

det Cτ,t,w ≥ µ−d det Ct−τ , exp

(
−1

2
〈C−1
τ,t,wη, η〉

)
≤ exp

(
−1

2
〈C−1
t−τη, η〉

)
for any t > τ and η ∈ Rd. Given (t, x), (τ, ξ) ∈ Rd+1, for convenience, we set η = πd((τ, ξ)

−1 ◦Y
(t, x)) and cd = (2π)−d/2. Then we have:

Γw(t, x; τ, ξ) =
cde
−(t−τ)TrB√
det Cτ,t,w

exp

(
−1

2
〈C−1
τ,t,wη, η〉

)
≤ µd/2 cde

−(t−τ)TrB√
det Ct−τ

exp

(
− 1

2µ
〈C−1
t−τη, η〉

)
= µdΓ+(t, x; τ, ξ).

The other inequality is analogous.

Lemma 3.1.11. We have

Ĉt = D0(
√
t)Ĉ1D0(

√
t), Ĉ−1

t = D0

(
1√
t

)
Ĉ−1

1 D0

(
1√
t

)
Proof. See Proposition 2.3 in [16].

The next lemma is proved following the argumets in [16].

Lemma 3.1.12. There exists a positive constant C, only dependent on the general constants (µ,

B, ‖Ā‖∞) and T , such that

(1− C(t− τ))Ĉτ,t,w ≤ Cτ,t,w ≤ (1 + C(t− τ))Ĉτ,t,w (3.1.8)

for any w ∈ Rd+1 and 0 < t− τ ≤ T .
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Proof. Let t > 0 and s ∈]0, t[.

e(t−s)B =

ν∑
k=0

(t− s)kBk
k!

+O((t− s)ν+1) as (t− s)→ 0.

Then we have

e(t−s)BAs(w)e(t−s)B∗ =

∞∑
k1,k2=0

(t− s)k1+k2

k1!k2!
Bk1As(w)(B∗)k2

=

∞∑
n=0

(t− s)n
n∑
k=0

1

k!(n− k)!
BkAs(w)(B∗)n−k

=

2ν∑
n=0

(t− s)n
n!

Fn +O((t− s)2ν+1) as (t− s)→ 0.

where

Fn =

n∑
k=0

(
n

k

)
BkAs(w)(B∗)n−k

Let us study the block decomposition of Fn. We have

BjAs(y) =



∗(1)A0
s(w) 0 · · · 0
...

...
. . .

...

∗(1)A0
s(w) 0 · · · 0

Cj0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


where Cj0 = Bj · · ·B1A

0
s(w) lies in the (j + 1)-th row and has maximum rank.

The ∗(1)-blocks are obtained by multiplying j blocks of B whose at least one is a ∗-block. Note

that when Kt = K0
t all the ∗(1)-blocks are null.

BjAs(w)(B∗)i =



∗(2) · · · ∗(2) ∗(2) 0 · · · 0
...

. . .
...

...
...

. . .
...

∗(2) · · · ∗(2) ∗(2) 0 · · · 0

∗(2) · · · ∗(2) Cji 0 · · · 0

0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0


(3.1.9)

where Cji = Bj · · ·B1A
0
s(w)B∗1 · · ·B∗i lies in the (j, i) block of the partition, and each ∗(2)-block

is obtained this way:

∗(2) = (

j∑
l=1

∗(1)kl)A
0
s(w)(

i∑
h=1

∗(1)kh)
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As the ∗(1) ones they are null when Kt = K0
t . Note also that the dependence on s and y lies

only in the factor A0
s(w).

By (3.1.9) we can deduce that the block partition (Fn)ji, i, j = 0; · · ·m0 of the matrix Fn has

the following properties:

i) if j + i > n then the block (j, i) is null;

ii) if j + i = n then (Fn)ji = Bj · · ·B1A
0
s(w)B∗1 · · ·B∗i has maximum rank;

iii) if j + i < n then (Fn)ji is a sum of ∗(2) blocks (then is null for the operator K0
t ).

Hence, for every 0 ≤ i, j ≤ ν,(
e(t−s)BAs(w)e(t−s)B∗

)
ji

=

(
k

j

)
Bj · · ·BiA0

s(w)B1 · · ·Bi
(t− s)k
k!

· (3.1.10)

· (1 + ∗(3)
1 (t− s) + · · ·+ ∗(3)

2ν−k(t− s)2ν−k) +O((t− s)2ν−k)

where k = i + j and the ∗(3)
l blocks are sum of ∗(2) blocks and they have the same properties.

Therefore, when Kt = K0
t , (3.1.10) holds with every ∗(3) block equal to zero and without the

remainder O((t− s)2ν+1), being B̂ nilpotent. Thus we may eventually infer that

〈(Cτ,t,w − Ĉτ,t,w)x, x〉
〈Ĉτ,t,wx, x〉

= O(1)(t− τ) for (t− τ)→ 0

which is equivalent to the statement we wanted to prove.

Remark 3.1.13. As a consequence of Lemma 3.1.8 and Proposition 3.1.10, there is δ > 0 only

dependent on the general constants such that

1

2µ
Ĉt−τ ≤

1

2
Ĉτ,t,w ≤ Cτ,t,w ≤ 2Ĉτ,t,w ≤ 2µ Ĉt−τ

for any w ∈ Rd+1 and 0 < t− τ < δ. Analogous estimates also hold for C−1
τ,t,w.

Remark 3.1.14. For 0 < t− τ ≤ T there exist two positive constants C1, C2 only dependent on

the general constants and T such that

C1(t− τ)Q ≤ det Cτ,t,ζ ≤ C2(t− τ)Q (3.1.11)

Indeed, for s = t− τ < δ as in Remark 3.1.13 we have

(2µ)−dsQ det Ĉ1 ≤ det Ĉτ,t,ζ ≤ (2µ)dsQ det Ĉ1

On the other hand, for δ ≤ s ≤ T we can write

0 <
µ−d

TQ

(
min
s∈[δ,T ]

det Cs
)
≤ µ−d det Cs

TQ
≤ det Cτ,t,ζ

sQ
≤ µ−d det Cs

δQ
≤ µd

δQ

(
max
s∈[δ,T ]

det Cs
)
< +∞

Then (3.1.11) directly follows.
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Lemma 3.1.15. For every T > 0, there exists a positive constant C, only dependent on µ, B

and T , such that ∣∣∣(C−1
τ,t,wy

)
i

∣∣∣ ≤ C√
t− τ

∣∣∣∣D0

(
1√
t− τ

)
y

∣∣∣∣ , (3.1.12)∣∣∣(C−1
τ,t,w

)
ij

∣∣∣ ≤ C

t− τ (3.1.13)

for every i, j = 1, · · · ,m0, t ∈]τ, T ], y ∈ Rd.

Proof. Let δ as in Remark 3.1.13 and let t ∈]τ, δ]. Recall that (D0(λ)y)i = λyi for i = 1, · · ·m0.

Then we have∣∣∣(C−1
τ,t,wy

)
i

∣∣∣ ≤ ∣∣∣((C−1
τ,t,w − Ĉ−1

τ,t,w

)
y
)
i

∣∣∣+
∣∣∣(Ĉ−1

τ,t,wy
)
i

∣∣∣ =

=
1√
t− τ

∣∣∣∣(D0

(√
t− τ

) (
C−1
τ,t,w − Ĉ−1

τ,t,w

)
D0

(√
t− τ

)
D0

(
1√
t− τ

)
y

)
i

∣∣∣∣+
+

1√
t− τ

∣∣∣∣(D0

(√
t− τ

)
Ĉ−1
τ,t,wD0

(√
t− τ

)
D0

(
1√
t− τ

)
y

)
i

∣∣∣∣ =

= I1 + I2

We note that ∥∥∥D0

(√
t− τ

)
Ĉ−1
τ,t,wD0

(√
t− τ

)∥∥∥
= sup
|ξ|=1

∣∣∣〈Ĉ−1
τ,t,wD0

(√
t− τ

)
ξ,D0

(√
t− τ

)
ξ〉
∣∣∣

≤ µ sup
|ξ|=1

∣∣∣〈Ĉ−1
t−τD0

(√
t− τ

)
ξ,D0

(√
t− τ

)
ξ〉
∣∣∣

= µ sup
|ξ|=1

∣∣∣〈Ĉ−1
1 ξ, ξ〉

∣∣∣ = µ
∥∥∥Ĉ−1

1

∥∥∥
by Lemma 3.1.11. Therefore:

I2 ≤
1√
t− τ

∥∥∥D0

(√
t− τ

)
Ĉ−1
τ,t,wD0

(√
t− τ

)∥∥∥ ∣∣∣∣D0

(
1√
t− τ

)
y

∣∣∣∣
≤ µ√

t− τ
∥∥∥Ĉ−1

1

∥∥∥ ∣∣∣∣D0

(
1√
t− τ

)
y

∣∣∣∣
On the other hand we have∥∥∥D0

(√
t− τ

) (
C−1
τ,t,w − Ĉ−1

τ,t,w

)
D0

(√
t− τ

)∥∥∥ ≤ ∥∥∥D0

(√
t− τ

)
Ĉ−1
τ,t,wD0

(√
t− τ

)∥∥∥
by Remark 3.1.13 since t ∈]τ, δ]. Then we also get:

I1 ≤
µ√
t− τ

∥∥∥Ĉ−1
1

∥∥∥ ∣∣∣∣D0

(
1√
t− τ

)
y

∣∣∣∣
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Assume now that t ∈ [δ, T ]:∣∣∣(C−1
τ,t,wz

)
i

∣∣∣ ≤ 1√
t− τ

∣∣∣∣(D0

(√
t− τ

)
C−1
τ,t,wD0

(√
t− τ

)
D0

(
1√
t− τ

)
y

)
i

∣∣∣∣
≤ µ√

t− τ sup
δ≤t≤T

∥∥D0

(√
t− τ

)
C−1
t−τD0

(√
t− τ

)∥∥ ∣∣∣∣D0

(
1√
t− τ

)
y

∣∣∣∣
This completes the proof for (3.1.12). (3.1.13) follows as a consequence. Indeed∣∣∣(C−1

τ,t,w

)
ij

∣∣∣ =
∣∣∣(C−1

τ,t,wej
)
i

∣∣∣ ≤ C√
t− τ

∣∣∣∣D0

(
1√
t− τ

)
ej

∣∣∣∣ =
C

t− τ

Proposition 3.1.16. Given ε > 0 and a polynomial function p, there exists a constant C, only

dependent on ε, µ,B and p such that, if we set (s, ω) = (τ, ξ)−1 ◦Y (t, x) and η = D0( 1√
s
)(ω) then

we have

|p(|η|)|Γw(t, x; τ, ξ) ≤ CΓε(t, x; τ, ξ) (3.1.14)

for any z, ζ, w ∈ Rd+1, where Γε denotes the fundamental solution of the Kolmogorov operator:

K̄ε =
µ+ ε

2

m0∑
i=1

∂xixi − Y.

Proof. By Lemma 3.1.12 we may consider t0 > 0 such that (3.1.8) holds and

(1− C0t0)2 ≥ µ+ ε
2

µ+ ε

were C0 is the constant in (3.1.8). We first prove (3.1.14) for s ∈ [0, t0].

By Remark 3.1.9 we have

|p(|η|)|Γw(t, x; τ, ξ) ≤ |p(|η|)|cdµ
d
2 e−sTrB

√
det Cs

exp

(
− 1

2µ
〈C−1
s ω, ω〉

)
≤ |p(|η|)|cdµ

d
2 e−sTrB

√
det Cs

exp

(
− (1− C0t0)

2µ
〈Ĉ−1

1 η, η〉
)
≤

(applying Lemmas 3.1.12 and 3.1.11)

≤ Ce−sTrB

√
det Cs

exp

(
− (1− C0t0)

2
(
µ+ ε

2

) 〈Ĉ−1
1 η, η〉

)

≤ Ce−sTrB√
det Ct−τ

exp

(
− (1− C0t0)2

2
(
µ+ ε

2

) 〈C−1
s ω, ω〉

)
≤

(applying Lemmas 3.1.12 and 3.1.11 again)

≤ Ce−sTrB

√
det Cs

exp

(
− 1

2 (µ+ ε)
〈C−1
s ω, ω〉

)
≤
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(noting that (µ+ ε)Ct−τ is the covariance matrix for the operator K̄ε)

≤ C1Γε(s, ω; 0, 0) = C1Γε(t, x; τ, ξ).

Now consider the case s ≥ t0. This yields |η| ≤ c|ω|, then by Proposition 3.1.10:

|p(|η|)|Γw(t, x; τ, ξ) ≤ C |p(|ω|)|Γ+(t, x; τ, ξ)

where C is only dependent of µ, B and ε. Then

|p(|η|)|Γw(t, x; τ, ξ) ≤ C |p(|ω|)| cdµ
d
2√

det Ĉs
exp

(
1

2µ
〈Ĉ−1
s ω, ω〉

)
≤ C1

cdµ
d
2√

det Ĉs
exp

(
1

2(µ+ ε)
〈Ĉ−1
s ω, ω〉

)
with C1 also dependent of p

= C2Γε(s, ω; 0, 0) = C2Γε(t, x; τ, ξ).

Proposition 3.1.17. For every ε > 0 and T > 0, there exists a positive constant C, only

dependent on µ, B, ε and T , such that

|∂xiΓθ(t, x; τ, ξ)| ≤ C√
t− τ Γε(t, x; τ, ξ),∣∣∂xixjΓθ(t, x; τ, ξ)

∣∣ ≤ C

t− τ Γε(t, x; τ, ξ),

for every x, ξ,∈ Rd, 0 < t− τ < T , θ ∈ Rd+1, and for every i, j = 1, · · · ,m0.

Proof. Let (s, ω) = (τ, ξ)−1 ◦Y (t, x), then by (3.1.6) we have

∂xiΓθ(t, x; τ, ξ) = ∂xiΓ
heat (Cτ,t,θ, ω) e−sTrB

= −1

2

(
C−1
τ,t,θω

)
i
Γheat (Cτ,t,θ, ω) e−sTrB

Finally, by Propositions 3.1.16 and 3.1.17:

|∂xiΓθ(t, x; τ, ξ)| = 1

2

∣∣∣(C−1
τ,t,θω

)
i

∣∣∣Γθ(t, x; τ, ξ)

≤ C√
s

∣∣∣∣(D( 1√
s

)
ω

)∣∣∣∣Γθ(t, x; τ, ξ)

≤ c√
t− τ Γε(t, x; τ, ξ)

The other estimate uses (3.1.13) and is analogous.
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3.2 Introduction to the parametrix

In this section we construct a fundamental solution Γ for the operator K̄ in (1.0.1) using

the so-called parametrix method, under Assumptions 1.1.1, 1.1.2 and 1.1.3. The parametrix

method goes back to Levi [17] for elliptic equations and was first used by Dressel [6] to construct

the fundamental solution of uniformly parabolic equations. The idea is that we start with a

parametrix (principal part or leading term of the approximation)

Z(z; ζ) := Γζ(z; ζ)

where for convenience we set z = (t, x) and ζ = (τ, ξ). According to Levi’s method, we look for

the fundamental solution Γ in the form

Γ(z; ζ) = Z(z; ζ) +

∫
Sτ,t

Z(z;w)ϕ(w; ζ)dw, Sτ,t = Rd×]τ, t[.

Then we put K̄Γ(z; ζ) = 0 and we are left with an integral equation to determine ϕ(z; ζ). By

the method of successive approximations, we find

ϕ(z; ζ) =

+∞∑
k=1

(K̄Z)k(z; ζ), (3.2.1)

with

(K̄Z)1(z; ζ) = K̄Z(z; ζ),

(K̄Z)k+1(z; ζ) =

∫
Sτ,t

K̄Z(z;w)(K̄Z)k(w; ζ)dw, k ∈ N.

N.B. As already seen for the time-dependent coefficients case (see Lemma 3.1.1), the equal-

ities written above are not to be intended pointwise (indeed, generally, Z is not differentiable in

t, nor in xj , for j = m0 + 1, · · · ,m0). However we can still write K̄Z meaning:

K̄Z = L̄Z − Y Z where Y Z indicates the Lie derivative

Y Z(t, x) :=
d

ds
Z(γ(s))|s=0

where γ is the integral curve of Y starting from (t, x), wich is defined a.e.

The rest of the Section is devoted the the proof of the following.

Proposition 3.2.1. There exists k0 ∈ N such that,

(i) The function (KZ)k(·; ζ) is L∞(Sτ,T ) for k ≥ k0, T > τ .

(ii) The series
∞∑

k=k0

(KZ)k(·; ζ)

converges in L∞(Sτ,T ).
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(iii) The function ϕ, as defined in (3.2.1) solves the integral equation

ϕ(z, ζ) = (KZ)(z; ζ) +

∫ t

τ

∫
Rd

(KZ)(z; s, y)ϕ(s, y; ζ)dyds (3.2.2)

a.e. in Sτ,T .

Lemma 3.2.2. Let ε > 0 and T > 0. It holds that∣∣(K̄Z)k(t, x; τ, ξ)
∣∣ ≤ Mk

(t− τ)1−αk/2 Γε(t, x; τ, ξ) (3.2.3)

a.e. in Sτ,τ+T for every k ∈ N, ζ ∈ Rd+1 where

Mk = Ck
ΓkE
(
α
2

)
ΓE
(
αk
2

) ,
ΓE is the Euler Gamma function and C is a positive constant only dependent on ε, T, µ,B and

the L∞-norm of the coefficients.

Proof. As usual, we set z = (t, x) and ζ = (τ, ξ). The estimate is proved by an inductive

argument. For k = 1 and z 6= ζ, we have∣∣K̄Z(z; ζ)
∣∣ =

∣∣(K̄ −Kζ)Z(z; ζ)
∣∣ ≤ I1 + I2 + I3

where

I1 =
1

2

m0∑
i,j=1

∣∣∣Āijt (z)− Āijt (ζ)
∣∣∣ ∣∣∂xixjZ(z; ζ)

∣∣ , I2 =

m0∑
i=1

∣∣ait(x)
∣∣ |∂xiZ(z; ζ)| , I3 = |ct(x)Z(z; ζ)| .

We study I1 first: by Assumption 1.1.3 we have

|Āijt (z)− Āijt (ζ)| ≤ C‖(τ, ξ) ◦Y (t, x)‖α = C(t− τ)
α
2 ‖(1, η)‖α

where η = D0

(
1√
t−τ

)
(x− γτ,t(ξ)).

Hence, by Proposition 3.1.17 we infer

I1 ≤ c1‖(1, η)‖α Γε/2(z; ζ)

(t− τ)1−α/2 ≤ C1
Γε(z; ζ)

(t− τ)1−α/2

Since the coefficients are bounded function and by Proposition 3.1.17 we also have

I2 ≤ m0‖Ā‖∞c2
Γε(z; ζ)√
t− τ ≤ C2T

1−(α+1)/2 Γε(z; ζ)

(t− τ)1−α/2

I3 ≤ ‖c‖∞c3Γε(z; ζ) ≤ C3T
1−α/2 Γε(z; ζ)

(t− τ)1−α/2

This concludes the proof for k = 1.
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We now assume that (3.2.3) holds for k and prove it for k + 1. We have

∣∣(K̄Z)k+1(z; ζ)
∣∣ =

∣∣∣∣∫ t

τ

∫
Rd
K̄Z(t, x; s, y)(K̄Z)k(s, y; τ, ξ)dyds

∣∣∣∣
≤
∫ t

τ

M1

(t− s)1−α/2
Mk

(s− τ)1−αk/2

∫
Rd

Γε(t, x; s, y)Γε(s, y; τ, ξ)dyds

(by the inductive hypothesis)

≤ Γε(x, t; τ, ξ)

∫ t

τ

M1

(t− s)1−α/2
Mk

(s− τ)1−αk/2 ds

(by the reproduction property for Γε)

=
M1Mk

(t− τ)1−(k+1)α/2
Γε(z; ζ)

∫ 1

0

dr

(1− r)1−α/2r1−αk/2

by the change of variable s = τ + r(t− τ).

Note that the integral above is the Beta function B(αk2 ,
α
2 ) which is related to the Euler Gamma

by the equality: ΓE(x+ y)B(x, y) = ΓE(x)ΓE(y). Then∫ 1

0

dr

(1− r)1−α/2r1−αk/2 =
ΓE(kα2 )ΓE(α2 )

ΓE( (k+1)α
2 )

and this concludes the proof.

Proof of Proposition 3.2.1. (i) By Lemma 3.2.2 and Remark 3.1.14 we have∣∣(K̄Z)k(z; ζ)
∣∣ ≤ C Mk

(t− τ)1−αk2
√

det Ct−τ
exp

(
− 1

2(µ+ ε)
〈Ct−τω, ω〉

)
≤ C ′Mk(t− τ)

αk
2 −1−Q2

for a.e. t ∈]τ, T [, x, ξ ∈ Rd, for some constant C ′. Then it suffices k0 ≥ Q+2
α .

(ii) By the previous result, noting that the power series∑
k≥1

Mk0+ks
k

has radius of convergence equal to infinity.

(iii) By construction, for a.e. t ∈]τ, T [, x, ξ ∈ Rd we have∫ t

τ

∫
Rd

(K̄Z)(z; s, y)ϕ(s, y; ζ)dyds

=
∑
k≥1

∫ t

τ

∫
Rd

(K̄Z)(z; s, y)(K̄Z)k(z; s, y)dyds

=
∑
k≥1

(K̄Z)k+1(z; ζ) = ϕ(z, ζ)− (K̄Z)(z; ζ)
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A straightforward consequence of the Lemma 3.2.2 is the following

Corollary 3.2.3. For every ζ ∈ Rd+1 and T > τ there exists a positive constant C such that

|ϕ(z; ζ)| ≤ C Γε(z; ζ)

(t− τ)1−α2
a.e. in Sτ,T (3.2.4)

Corollary 3.2.4. Let us denote

J(z; ζ) :=

∫
Sτ,t

Z(z;w)ϕ(w; ζ)dw

the approssimation term in Levi’s method. For every ε > 0 and T > τ there exists a positive

constant C such that

|J(z; ζ)| ≤ C(t− τ)
α
2 Γε(z; ζ) (3.2.5)

in Sτ,T and the fundamental solution Γ verifies:

Γ(z; ζ) ≤ CΓε(z; ζ) (3.2.6)

for any ζ ∈ Rd+1 in Sτ,T .

Proof. By (3.2.3) and by the reproduction property of Γε we have

|J(z; ζ)| ≤ C
∫
Sτ,t

Γε(t, x; s, y)
Γε(s, y; τ, ξ)

(s− τ)1−α2
dyds

= CΓε(z; ζ)

∫ t

τ

ds

(s− τ)1−α2

from wich (3.2.5) follows. Together with the estimate of Z in Proposition 3.1.10 this implies

(3.2.6).

3.3 Potential estimates

We consider the potential

Vf (z) =

∫
ST0,t

Z(z, ζ)f(ζ)dζ, ST0,t =]T0, t[×Rd, (3.3.1)

where f ∈ C(ST0,T1
) satisfies the growth condition:

|f(t, x)| ≤ CeC|x|2 , ∀(t, x) ∈ ST0,T1

and Z denotes the parametrix of (1.0.1).

In this section we are going to show some regularity properties of Vf , briefly discussing the

main arguments and ideas used to prove them. Complete proofs for the following results are

postponed at the end of the chapter as they can be skipped at a first reading.
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We first note that the integral (3.3.1) is well posed, i.e. is convergent in the strip ST0,T for

some T ∈]T0, T1]. Indeed, by the growth estimate for f and Proposition 3.1.10 we have

|Vf (t, x)| ≤ C1

∫ t

T0

∫
Rd

Γ+(t, x, τ, ξ)eC|ξ|
2

dξdτ

≤ C2

∫ t

T0

∫
Rd

1√
detCτ,t

exp

(
− 1

2µ
〈C−1
τ,tω, ω〉+ C|ξ|2

)
dξdτ

(with the usual notation (s, ω) = ζ−1 ◦Y z = (t− τ, x− γτ,t(ξ)))

≤ C3

∫ t

T0

∫
Rd

exp

(
−|η|

2

2µ
+ C

∣∣∣∣e(t−τ)B

(
x− C

1
2
τ,tη −

∫ t

τ

e(s−τ)Bbsds

)∣∣∣∣2
)
dηdτ

(by the change of variable η = C−
1
2

τ,t ω)

≤ C4(t− T0)eC4|x|2

for some positive constant C4, assuming t ∈]T0, T ] with T − T0 suitably small.

The first result we need is the following.

Proposition 3.3.1. There exists ∂xiVf ∈ C(ST0,T ) for i = 1, . . . ,m0 and it holds that

∂xiVf (t, x) =

∫ t

T0

∫
Rd
∂xiZ(t, x, τ, ξ)f(τ, ξ)dξdτ (3.3.2)

By Proposition 3.1.17 we can prove the absolutely convergence of the integral in (3.3.2) using

the above arguments. We can then prove (3.3.2) for

Vf,δ(t, x) =

∫ t−δ

T0

∫
Rd
Z(t, x, τ, ξ)f(τ, ξ)dξdτ, 0 < δ < t− T0, (3.3.3)

using Lebesque’s dominated convergence and let δ → 0.

The next result concerns existence and continuity of the second order derivatives.

Proposition 3.3.2. Let f a continuous function in the strip ST0,T1
verifying the growth condition

3.3 and the regularity condition

|f(t, x)− f(t, y)| ≤ C |x− y|βB (3.3.4)

for all x, y ∈ M , t ∈]T0, T1[ for any compact subset M of Rd. Then there exists ∂xixjVf ∈
C(ST0,T ) for i, j = 1, . . . ,m0 and it holds that

∂xixjVf (t, x) =

∫ t

T0

∫
Rd
∂xixjZ(t, x, τ, ξ)f(τ, ξ)dξdτ (3.3.5)
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To prove the existence of the integral in (3.3.4) we rely on the regularity properties of f and

Z, so the main idea is to split the integral in the spatial variable as follows:∫
Rd
∂xixjZ(t, x, τ, ξ)f(τ, ξ)dξ

=

∫
Rd
∂xixjZ(t, x, τ, ξ) (f(τ, ξ)− f(τ, y)) dξ

+ f(τ, y)

∫
Rd
∂xixj (Z(t, x, τ, ξ)− Γw(t, x, τ, ξ))|w=y dξ

+ f(τ, y)

∫
Rd
∂xixjΓy(t, x, τ, ξ)|w=ydξ

= I1 + I2 + I3

where τ is fixed in ]T0, t[, choosing y = γt,τ (ξ). This way, by Proposition 3.1.16 we could make

up the singularity in τ = t in I1 by

|f(t, x)− f(t, y)| ≤ C |x− y|βB ≤ C1(t− τ)β/2|η|β/2B

with the usual notation for η. Similarly, we can handle the singularity in I2 by the regularity

properties of Z. Thus a more in depth study of these properties is required (see Lemma A.0.2).

On the other hand, if we limit ourselves to integrate on a ball BR centered in the origin, we

can reduce I3 to

−f(τ, y)

d∑
k=1

∫
∂BR

∂xiΓw(t, x; τ, ξ)|w=y

(
e−(t−τ)B

)
kj
νkdσ(ξ)

where ν is the outher normal to ∂BR, by an integration by parts. The integral above can be

treated as in Proposition 3.3.1. The convergence of the remaining integral on Rd \ BR for a

suitable R > 0 relies on the asymptotic behaviour of the Gaussian for |x| → ∞.

Then, the actual proof of (3.3.4) will proceed similarly to the previous Proposition.

Now we state the last Proposition of this section.

Proposition 3.3.3. Under the hypotheses of Proposition 3.3.2 there exists the derivative Y Vf

for a.e. t ∈]T0, T [, x ∈ Rd and it holds that

Y V (z) =

∫
ST0,t

Y Z(z; ζ)f(ζ)dζ + f(z)

As for Proposition 3.3.1, we first consider the integral function (3.3.3), and by definition (see

3.2) we write the incremental ratio

Vδ(γ̃(s); τ, ξ)− Vδ(t, x; τ, ξ)

s
=

∫ t−δ

τ

∫
Rd

Z(γ̃(s); τ, ξ)− Z(t, x; τ, ξ)

s
f(τ, ξ)dξdτ

+
1

s

∫ t+s−δ

t−δ

∫
Rd
Z(γ̃(s); τ, ξ)f(τ, ξ)dξdτ = I1 + I2
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where γ̃ is the integral curve of Y , starting from (t, x). Taking the limit for s → 0 it turns out

that the following equality holds.

Y Vδ,f =

∫ t−δ

τ

∫
Rd
Y Z(t, x; τ, ξ)f(τ, ξ)dξdτ +

∫
Rd
Z(t, x; t− δ, ξ)f(t− δ, ξ)dξ

From there we get to the thesis by taking δ → 0, using the fact that Z(z; ζ) = Γζ(z; ζ) with Γζ

being the fundamental solution of the operator Kζ .

3.4 Proof of the main Theorem

One more preliminary result is needed.

Lemma 3.4.1. For every ε > 0 and T > 0 there exists a positive constant C such that

|ϕ(t, x; τ, ξ)− ϕ(t, y; τ, ξ)| ≤ C |x− y|
α
2

B

(t− τ)1−α4
(Γε(t, x; τ, ξ) + Γε(t, y; τ, ξ)) (3.4.1)

for any (τ, ξ) ∈ Rd+1, x, y ∈ Rd, a.e t ∈]τ, τ + T ].

Proof. Set w = (t, y). By (3.2.4) we have∣∣K̄Z(z; ζ)− K̄Z(w; ζ)
∣∣ ≤ C

(t− τ)1−α2
(Γε(z; ζ) + Γε(w; ζ)) (a.e.)

Thus, for |x− y|B ≥
√
t− τ we get

∣∣K̄Z(z; ζ)− K̄Z(w; ζ)
∣∣ ≤ C |x− y|

α
2

B

(t− τ)1−α4
(Γε(z; ζ) + Γε(w; ζ)) (a.e.), (3.4.2)

In the case |x− y|B <
√
t− τ we first prove the following preliminary estimates:

|Z(z; ζ)− Z(w; ζ)| ≤ C√
t− τ Γε/2(z; ζ),

|∂xiZ(z; ζ)− ∂xiZ(w; ζ)| ≤ C |x− y|B
t− τ Γε/2(z; ζ), (3.4.3)∣∣∂xixjZ(z; ζ)− ∂xixjZ(w; ζ)

∣∣ |x− y|B
(t− τ)

3
2

Γε/2(z; ζ).

Consider the third estimate in 3.4.3. By the mean value theorem, we have

|∂xixjZ(z, ζ)− ∂xixjZ(w, ζ)| ≤ max
ρ∈[0,1]

d∑
i,j=1

∣∣∂xhxixjZ (t, x+ ρ(x− y); τ, ξ) (x− y)h
∣∣

Denoting (s, ω) = (τ, ξ)−1 ◦Y (t, x) and C = Cτ,t,ζ ,

∂xhxixjZ(z; ζ) = Z(z; ζ)
(
C−1
ih (C−1ω)j − (C−1ω)iC−1

hj − C−1
ij (C−1ω)h

+ (C−1ω)h(C−1ω)i(C−1ω)j
)

= Z(z; ζ) (ah(ω) + bh(ω) + ch(ω) + dh(ω)) .
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Put ν = x− y, ω̃ = ω + ρν. Then, by Lemma 3.1.15 we get∣∣∣∣∣∣
d∑

i,j=1

ah(ω̃)νh

∣∣∣∣∣∣ =

∣∣∣∣∣∣
d∑

i,j=1

C−1
ih νh(C−1ω̃)j

∣∣∣∣∣∣ =
∣∣(C−1ν)i

∣∣ ∣∣(C−1ω̃)j
∣∣

≤
∣∣∣∣D0

(
1√
s

)
ν

∣∣∣∣ ∣∣∣∣D0

(
1√
s

)
ω̃

∣∣∣∣
Since ν ≤ √s, we have |D0(1/

√
s)ν| ≤ C|D0(1/

√
s)ν|B = C|ν|B/

√
s, therefore∣∣∣∣∣∣

d∑
i,j=1

νhah(ω̃)

∣∣∣∣∣∣ ≤ C |ν|B |η̃|s3/2
,

where η̃ = D0(1/
√
s)ω̃. The same estimate holds for bh and ch. By the same arguments we also

have ∣∣∣∣∣∣
d∑

i,j=1

νhdh(ω̃)

∣∣∣∣∣∣ ≤ C |ν|B |η̃|
3

s3/2
,

Collecting all the terms and using Proposition 3.1.17 we obtain

|∂xixjZ(z, ζ)−∂xixjZ(w, ζ)| ≤ C |ν|B(|η̃|+ |η̃|3)

s3/2
Z(t, x+ ρ̄ν; τ, ξ)

≤ C |x− y|B
s3/2

Γε/3(t, x+ ρ̄ν; τ, ξ) ≤ C |x− y|B
s3/2

Γε/2(t, x; τ, ξ) (3.4.4)

This concludes the proof of the third inequality in (3.4.3) for |x − y|B ≤
√
t− τ . The first two

can be proved similarly. Next we are going to deduce from (3.4.4) a similar estimate to (3.4.2).

|K̄Z(z; ζ)− K̄Z(w; ζ)|

=
∣∣ m0∑
i,j=1

aijt (x)∂xixjZ(z; ζ) +

m0∑
i=1

ait(x)∂xiZ(z; ζ)

−
m0∑
i,j=1

aijt (y)∂xixjZ(w; ζ) +

m0∑
i=1

ait(y)∂xiZ(w; ζ)

+ Y Z(z; ζ)− Y Z(w; ζ) + ct(x)Z(w; ζ)− ct(y)Z(z; ζ)

+ K̄ζZ(z; ζ)− K̄ζZ(w; ζ)
∣∣

≤
m0∑
i,j=1

∣∣∣aijt (x)− aijt (y)
∣∣∣ ∣∣∂xixjZ(z; ζ)

∣∣
+

m0∑
i,j=1

∣∣∣aijt (x)− Āijt (ζ)
∣∣∣ ∣∣∂xixjZ(z, ζ)− ∂xixjZ(w, ζ)

∣∣
+

m0∑
i=1

∣∣ait(x)− ait(w)
∣∣ |∂xiZ(w; ζ)|

+

m0∑
i=1

∣∣ait(w)
∣∣ |∂xiZ(z, ζ)− ∂xiZ(w, ζ)|

+ |ct(x)− ct(y)||Z(z; ζ)|+ |ct(x)||Z(z; ζ)− Z(w; ζ)|
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Note that we have w−1 ◦Y x = (0, x − y). Then, by Proposition 3.1.17, by (3.4.3) and the

regularity properties of the coefficients we get

|K̄Z(z; ζ)− K̄Z(w; ζ)|

≤ C
( |x− y|αB

t− τ Γε/2(w; ζ) + ‖ζ ◦Y z‖αB
|x− y|B

(t− τ)3/2
Γε/2(z; ζ)

+
|x− y|αB√
t− τ Γε/2(w; ζ) +

|x− y|B
(t− τ)3/2

Γε/2(z; ζ)

+ |x− y|αBΓε/2(w; ζ) +
|x− y|B√
t− τ Γε/2(z; ζ)

)
Since

‖ζ−1 ◦Y z‖αB ≤ (t− τ)
α
2

(
1 +

∣∣∣∣D0

(
1√
t− τ

)
(x− γτ,t(ξ))

∣∣∣∣
B

)α
we may adapt Proposition 3.1.16 to deduce

|K̄Z(z; ζ)− K̄Z(w; ζ)| ≤ C
( |x− y|B

(t− τ)3/2
+
|x− y|αB
t− τ

)
(Γε(z; ζ) + Γε(w; ζ)) (3.4.5)

On the other hand, if |x− y|B ≤
√
t− τ , it holds that

|x− y|B
(t− τ)(3−α)/2

+
|x− y|αB
t− τ ≤ (3.4.6)

≤ |x− y|B
(t− τ)(3−α)/2

( |x− y|B√
t− τ

)−1+α
2

+
|x− y|αB
t− τ

( |x− y|B√
t− τ

)−α2
= 2

|x− y|α/2B

(t− τ)1−α/2

Combining (3.4.2), (3.4.5) and (3.4.6), we finally get

∣∣K̄Z(z; ζ)− K̄Z(w; ζ)
∣∣ ≤ C |x− y|

α
2

B

(t− τ)1−α4
(Γε(z; ζ) + Γε(w; ζ)) (a.e) (3.4.7)

Let M1 be the constant in (3.2.3) such that

∣∣(K̄Z)(t, x; τ, ξ)
∣∣ ≤ M1

(t− τ)1−α/2 Γε(t, x; τ, ξ) (a.e)

Then, by (3.4.7) we can prove by induction (similarly to Lemma 3.2.2) that

∣∣(K̄Z)k(z; ζ)− (K̄Z)k(w; ζ)
∣∣ ≤ M̃k

|x− y|
α
2

B

(t− τ)1−α4
(Γε(z; ζ) + Γε(w; ζ))Mk

1 (t− τ)k ’a.e’

where

M̃k = C0ΓkE

(α
2

) ΓkE
(
α
4

)
ΓkE
(
α
2

(
k + 1

2

))
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for some positive constant C0. Therefore, by Remark 3.1.14 we get

∣∣(K̄Z)k(z; ζ)− (K̄Z)k(w; ζ)
∣∣ ≤ CM̃k

|x− y|
α
2

B

(t− τ)1−α4−k−
Q
2

(a.e)

arguing as for Proposition 3.2.1, items (i).

Since 1 − α
4 − k −

Q
2 < 0 for k ≥ 1, the thesis follows since the power series

∑
k≥1 M̃ks

k has

radius of convergence equal to infinity.

Proof of Theorem 3.0.1. Let Γ be the function defined in Section 3.2:

Γ(z; ζ) = Z(z; ζ) +

∫
Sτ,t

Z(z;w)ϕ(w; ζ)dw (3.4.8)

(i) By Corollary 3.2.4 and Proposition 3.2.1 we may infer that Γ(·; ζ) ∈ L1
loc(Rd+1)∩C(Rd+1\

{ζ}) ∀ζ ∈ Rd+1;

(ii) Thanks to estimate (3.2.4) and Lemma 3.4.1 we can apply Propositions 3.3.1, 3.3.2 to

conclude that the following derivatives exist and are continuous functions for z 6= ζ:

∂xiΓ(z; ζ) = ∂xiZ(z; ζ) +

∫
Sτ,t

∂xiZ(z;w)ϕ(w, ζ)dw,

∂xixjΓ(z; ζ) = ∂xixjZ(z; ζ) +

∫
Sτ,t

∂xixjZ(z;w)ϕ(w, ζ)dw

for every i, j = 1, . . . ,m0. Morover, by Proposition 3.3.3 the following derivative is well defined

a.e.

Y Γ(z; ζ) = ∂xiZ(z; ζ) +

∫
Sτ,t

Y Z(z;w)ϕ(w, ζ)dw + ϕ(z; ζ)

Then we can directly obtain

K̄Γ(z; ζ) = ∂xiZ(z; ζ) +

∫
Sτ,t

K̄Z(z;w)ϕ(w, ζ)dw − ϕ(z; ζ) = 0

a.e. for z 6= ζ, since ϕ satisfies the integral equation (3.2.2). This implies

dY Γ(z, ζ) = LΓ(z, ζ)dt

in the integral sense (1.0.3).

(iii) We write

Γ(z; ζ) = Z(z; ζ) + J(z; ζ)

and evaluate the two limits separately: we have∫
Rd
Z(t, x; τ, ξ)g(ξ)dξ

=

∫
Rd

[
Γ(τ,ξ)(t, x; τ, ξ)− Γ(τ,x)(t, x; τ, ξ)

]
g(ξ)dξ +

∫
Rd

Γ(τ,x)(t, x; τ, ξ)g(ξ)dξ
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Since Γ(τ,x) is the fundamental solution of L(τ,x)

lim
(t,x)→(τ,y)

t>τ

∫
Rd

Γ(τ,x)(t, x; τ, ξ)g(ξ)dξ = g(y), ∀y ∈ Rd, τ ∈ R

Now let γ : [0, 1] → Rd+1 a continuous path in Rd+1 such that γ(0) = (τ, y). We need to prove

that

lim
σ→0

∫
Rd

[
Γ(τ,ξ)(γ(σ); τ, ξ)− Γ(τ,x(σ))(γ(σ); τ, ξ)

]
g(ξ)dξ = lim

σ→0
I = 0 (3.4.9)

By Lemma A.0.2 we have

|I| ≤ C
∫
Rd
|ξ − x(σ)|αBΓε(γ(σ); τ, ξ)ec|ξ|

2

dξ

Arguing as for (3.3.1) we can see that the last integral is well defined, thus we get (3.4.9) since

Γε is the fundamental solution of K̄ε. On the other hand, by (3.2.5) we know that

|J(z; ζ)| ≤ C(t− τ)
α
2 Γε(z; ζ) ’a.e’ in Sτ,T

therefore we can similarly prove that

lim
(t,x)→(τ,y)

t>τ

∫
Rd
J(t, x; τ, ξ)g(ξ)dξ = 0, ∀y ∈ Rd, τ ∈ R

(iv) By the results in section 3.2, the function u(t, x) in (3.0.4) is well defined in ST0,T for

T − T0 suitably small. We set

V (z) =

∫
ST0,T

Γ(z; ζ)f(ζ)dζ,

and prove that

dY V = (LV + f)dt in ST0,T

By (3.4.8) we can write V = Vf + Vf̂ where Vf is the potential in (3.3.1) and

f̂(z) =

∫
ST0,t

ϕ(z; ζ)f(ζ)dζ

We aim to apply Propositions 3.3.1, 3.3.2 and 3.3.2 to the potential Vf̂ . To do that we need to

check that f̂ verifies the growth estimate (3.0.3) and the regularity condition (3.0.3). By (3.2.4)

we have

|f̂(z)| ≤
∫
ST0,T

Γε(z; ζ)

(t− τ)1−α/2 |f(ζ)|dζ ≤ C(t− T0)
α
2 eC|x|

2

proceeding as in the proof of Proposition 3.3.2. On the other hand, by Lemma 3.4.1

|f̂(t, x)− f̂(t, y)|

≤
∫ t

T0

∫
Rd
|ϕ(t, x; τ, ξ)− ϕ(t, y; τ, ξ)||f(τ, ξ)|dξdτ

≤ C|x− y|
α
2

B

∫ t

T0

1

(t− τ)1−α/4

∫
Rd

(Γε(t, x; τ, ξ) + Γε(t, y; τ, ξ)) |f(τ, ξ)|dξdτ

≤ C(t− τ)
α
4 |x− y|

α
2

B e
C(|x|2+|y|2).
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Therefore we can apply Propositions 3.3.1, 3.3.2 and 3.3.2 and we get

K̄V (z) = K̄Vf (z) + K̄Vf̂ (z)

= −f(z)− f̂(z) +

∫
ST0,t

K̄Z(z; ζ)
(
f(ζ) + f̂(ζ)

)
dζ

= −f(z) +

∫
ST0,t

f(ζ)

(
−ϕ(z; ζ) + K̄Z(z; ζ) +

∫
Sτ,t

K̄Z(z;wϕ(w))dw

)
dζ

= −f(z)

by (3.2.2). Morover, by Corollary 3.2.4

|V (z)| ≤ C
∫
ST0,t

Γε(z; ζ)|f(ζ)|dζ ≤ C(t− T0)eC|x|
2

arguing as in the proof of Proposition 3.3.2. Therefore, by item (iii), u(t, x) ∈ C([T0, T [×Rd)
and u(T0, ·) = g(·). This provides (3.0.5).

(iv) Estimate (3.0.6) has been already given in Corollary 3.2.4. Now consider (3.0.7). By

Proposition 3.1.17 and the estimate (3.2.4) we have

∣∣∂xjΓ(z; ζ)
∣∣ ≤ C Γε(z; ζ)√

t− τ + C

∫ t

τ

∫
Rd

Γε(t, x;σ, y)

(t− s)1/2

Γε(s, y; τ, ξ)

(s− τ)1−α/2 dξds

≤ C Γε(z; ζ)√
t− τ + C

∫ t

τ

1

(t− s)1/2

1

(s− τ)1−α/2 dξds ≤ C
Γε(z; ζ)√
t− τ

for any j = 1, · · · ,m0 and z, ζ ∈ Rd+1 with 0 < t− τ < T . Finally, by Propositions 3.1.17, 3.3.2

we have

∣∣∂xixjΓ(z; ζ)
∣∣ ≤ C Γε(z; ζ)

t− τ +

∣∣∣∣∣
∫
Sτ,t

∂xixjZ(z;w)ϕ(w; ζ)dw

∣∣∣∣∣
≤ C Γε(z; ζ)

t− τ + C

∫ t

τ

1

(t− s)α/4
1

(s− τ)α/4
ds ≤ C Γε(z; ζ)

t− τ

This is done by repeating the argument in the proof of Proposition 3.3.2 to manage the singularity

in the integral, using estimates (3.2.4) and (3.4.1).





Appendix A

Proofs of Propositions 3.3.1, 3.3.2

and 3.3.3

Here we give the complete proofs of the Propositions stated in Section 3.3. The notation is

intended to be the same.

Proof of Proposition 3.3.1. We first note that the integral in (3.3.2) is absolutely convergent.

Indeed by Proposition 3.1.17 we have∫ t

T0

∫
Rd
|∂xiZ(t, x, τ, ξ)f(τ, ξ)| dξdτ

≤ C1

∫ t

T0

1√
t− τ

∫
Rd

Γ+(t, x, τ, ξ)eC|ξ|
2

dξdτ ≤ C2
1√
t− T0

eC3|x|2 . (A.0.1)

arguing as for the well posedness of (3.3.1) in section 3.3. Next we prove (3.3.2). Let

Vf,δ(t, x) =

∫ t−δ

T0

∫
Rd
Z(t, x, τ, ξ)f(τ, ξ)dξdτ, 0 < δ < t− T0,

By Lebesgue’s theorem we have

lim
δ→0+

Vf,δ(t, x) = Vf (t, x), (A.0.2)

∂xiVf,δ(t, x) =

∫ t−δ

T0

∂xiZ(t, x, τ, ξ)f(τ, ξ)dξdτ, i = 1, · · ·m0. (A.0.3)

Morover, by (A.0.1) and (A.0.3) we have

∂xiVf,δ(t, x)−
∫ t

T0

∂xiZ(t, x, τ, ξ)f(τ, ξ)dξdτ

=

∫ t

t−δ
∂xiZ(t, x, τ, ξ)f(τ, ξ)dξdτ ≤ C

√
δeC|x|

2
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so that

lim
δ→0+

∂xiVf,δ(t, x) =

∫ t

T0

∂xiZ(t, x, τ, ξ)f(τ, ξ)dξdτ, i = 1, · · ·m0.

uniformly in ]T0, T ]×BR. Together with (A.0.2) this proves (3.3.2)

Lemma A.0.1. There exists a positive constant C such that, for every z ∈ S[T0,T1]

‖z−1‖B ≤ C‖z‖B

Proof. Let z = (t, x), t > 0. We have

‖z−1‖B ≤ |t|
1
2 +

∣∣etBx∣∣
B

+

∣∣∣∣∫ 0

t

esBbsds

∣∣∣∣
B

Since t takes values in a bounded interval, the thesis directly follows by noting

∣∣etBx∣∣
B
≤ sup
|ξ|B=1

∣∣etBξ∣∣
B
|x|B ≤ c1|x|B∣∣∣∣∫ 0

t

esBbsds

∣∣∣∣
B

≤ 2

∫ √t
0

∣∣∣eτ2Bbτ2τ
∣∣∣
B
dτ ≤ c2

√
t

The proof for the case t < 0 is analogous.

Lemma A.0.2. For every positive ε and T there exists a positive constant C such that

|Γζ(z, ζ)− Γθ(z, ζ)| ≤ C‖θ−1 ◦Y ζ‖αΓε(z, ζ),

|∂xiΓζ(z, ζ)− ∂xiΓθ(z, ζ)| ≤ C ‖θ
−1 ◦Y ζ‖α√
t− τ Γε(z, ζ),

∣∣∂xixjΓζ(z, ζ)− ∂xixjΓθ(z, ζ)
∣∣ ≤ C ‖θ−1 ◦Y ζ‖α

t− τ Γε(z, ζ),

for i, j = 1, · · · ,m0 and z, ζ, θ ∈ Rd+1 with 0 < t− τ ≤ T .

Proof. We first note that

∂xjΓθ(z, ζ) = −(C−1
τ,t,θω)jΓθ(z, ζ)

∂xi,xjΓθ(z, ζ) =
(

(C−1
τ,t,θω)i(C−1

τ,t,θω)j − (C−1
τ,t,θ)ij

)
Γθ(z, ζ)
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where (s, ω) = (τ, ξ) ◦Y (t, x) as usual. Then the thesis follows from the following estimates∣∣∣∣∣ 1√
detCτ,t,ζ

− 1√
detCτ,t,θ

∣∣∣∣∣ ≤ C ‖θ−1 ◦Y ζ‖α√
detCτ,t,ζ

, (A.0.4)∣∣∣∣exp

(
−1

2
〈C−1
τ,t,ζω, ω〉

)
− exp

(
−1

2
〈C−1
τ,t,θω, ω〉

)∣∣∣∣ (A.0.5)

≤ C‖y−1 ◦Y ζ‖α exp

(
− 1

2(µ+ ε)
〈C−1
s ω, ω〉

)
∣∣∣(C−1

τ,t,ζω)j − (C−1
τ,t,θω)j

∣∣∣ ≤ C√
s
‖θ−1 ◦Y ζ‖α|η| (A.0.6)∣∣∣(C−1

τ,t,ζ)ij − (C−1
τ,t,θ)ij

∣∣∣ ≤ C

s
‖θ−1 ◦Y ζ‖α (A.0.7)∣∣∣(C−1

τ,t,ζω)i(C−1
τ,t,ζω)j − (C−1

τ,t,θω)i(C−1
τ,t,θω)j

∣∣∣ ≤ C

s
‖θ−1 ◦Y ζ‖α|η|2, (A.0.8)

Consider (A.0.4): by Remark 3.1.14 we can write∣∣∣∣∣ 1√
detCτ,t,ζ

− 1√
detCτ,t,θ

∣∣∣∣∣ ≤ C√
detCt,τ,ζ

∣∣∣∣detCτ,t,ζ − detCτ,t,θ
sQ

∣∣∣∣
=

C√
detCt,τ,ζ

∣∣∣∣det

(
D0

(
1√
s

)
Cτ,t,ζD0

(
1√
s

))
− det

(
D0

(
1√
s

)
Cτ,t,θD0

(
1√
s

))∣∣∣∣
≤ C√

detCt,τ,ζ

∥∥∥∥D0

(
1√
s

)
(Cτ,t,ζ − Cτ,t,θ)D0

(
1√
s

)∥∥∥∥
Note that

sup
|y|=1

∣∣∣∣〈(Cτ,t,ζ − Cτ,t,θ)D0

(
1√
s

)
y,D0

(
1√
s

)
y〉
∣∣∣∣

≤ C‖θ−1 ◦Y ζ‖α
∥∥∥∥D0

(
1√
s

)
CsD0

(
1√
s

)∥∥∥∥ ≤ C ′‖θ−1 ◦Y ζ‖α (A.0.9)

Indeed, if we take again s < δ as in Remark 3.1.13∥∥∥∥D0

(
1√
s

)
CsD0

(
1√
s

)∥∥∥∥ ≤ 2

∥∥∥∥D0

(
1√
s

)
ĈsD0

(
1√
s

)∥∥∥∥ ≤ 2‖Ĉ1‖

On the other hand, for δ ≤ s ≤ T we can take the Maximum of the norm, that is limited.

This conludes the proof for (A.0.4). Now consider (A.0.5). We have∣∣∣∣exp

(
−1

2
〈C−1
τ,t,ζω, ω〉

)
− exp

(
−1

2
〈C−1
τ,t,θω, ω〉

)∣∣∣∣
≤
∣∣∣〈(C−1

τ,t,ζ − C−1
τ,t,θ)ω, ω〉

∣∣∣ exp

(
− 1

2µ
〈C−1
s ω, ω〉

)
≤
∥∥∥D0(

√
s)(C−1

τ,t,ζ − C−1
τ,t,θ)D0(

√
s)
∥∥∥ |η|2 exp

(
− 1

2µ
〈C−1
s ω, ω〉

)
≤ C

∥∥∥D0(
√
s)(C−1

τ,t,ζ − C−1
τ,t,θ)D0(

√
s)
∥∥∥ exp

(
− 1

2(µ+ ε)
〈C−1
s ω, ω〉

)
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by Proposition 3.1.16. Moreover, by (A.0.9)∥∥∥D0(
√
s)(C−1

τ,t,ζ − C−1
τ,t,θ)D0(

√
s)
∥∥∥

≤
∥∥∥D0(

√
s)C−1

τ,t,ζD0(
√
s)
∥∥∥ ∥∥∥∥D0

(
1√
s

)
(Cτ,t,ζ − Cτ,t,θ)D0

(
1√
s

)∥∥∥∥∥∥∥D0(
√
s)C−1

τ,t,θD0(
√
s)
∥∥∥

≤ C‖ζ−1 ◦Y θ‖α (A.0.10)

Next we consider (A.0.6). By (A.0.10) we have∣∣∣(C−1
τ,t,ζω)j − (C−1

τ,t,θω)j

∣∣∣ =

=
∣∣∣〈(C−1

τ,t,ζ − C−1
τ,t,θ

)
ω, ej〉

∣∣∣ =

∣∣∣∣〈D0

(
1√
s

)(
C−1
τ,t,ζ − C−1

τ,t,θ

)
D0

(
1√
s

)
η,

ej√
s
〉
∣∣∣∣

≤
∥∥∥D0(

√
s)
(
C−1
τ,t,ζ − C−1

τ,t,θ

)
D0(
√
s)
∥∥∥ |η|√

s
≤ ‖ζ−1 ◦Y θ‖α

|η|√
s

By substituting w with ei we also get (A.0.7).

Finally, consider (A.0.8): we have∣∣∣(C−1
τ,t,ζω)i(C−1

τ,t,ζω)j − (C−1
τ,t,θω)i(C−1

τ,t,θω)j

∣∣∣ =

≤
∣∣∣〈(C−1

τ,t,ζ − C−1
τ,t,θ

)
ω, ei〉〈C−1

τ,t,θω, ej〉
∣∣∣+
∣∣∣〈C−1

τ,t,θω, ej〉〈
(
C−1
τ,t,ζ − C−1

τ,t,θ

)
ω, ei〉

∣∣∣
≤ C

s
‖θ−1 ◦Y ζ‖α|η|2

with the analogous arguments.

Proof of Proposition 3.3.2. We first show that the integral in (3.3.5) exists. Fixed R > 0 consider

x ∈ Rd such that |x| < R. For a suitable R1 > R to be determined later we set∫ t

T0

∫
Rd
∂xixjZ(t, x, τ, ξ)f(τ, ξ)dξdτ

=

∫ t

T0

∫
BR1

∂xixjZ(t, x, τ, ξ)f(τ, ξ)dξdτ +

∫ t

T0

∫
Rd\BR1

∂xixjZ(t, x, τ, ξ)f(τ, ξ)dξdτ

= K1 +K2.

where BR1
denotes the ball in Rd centered at the origin with radius R1 > 0.

Consider K1. For fixed τ ∈]T0, t[ and y ∈ Rd, denoting θ = (τ, y) we have∫
BR1

∂xixjZ(t, x, τ, ξ)f(τ, ξ)dξ (A.0.11)

=

∫
BR1

∂xixjZ(t, x, τ, ξ) (f(τ, ξ)− f(τ, y)) dξ

+ f(τ, y)

∫
BR1

∂xixj (Z(t, x, τ, ξ)− Γw(t, x, τ, ξ))|w=θ dξ

+ f(τ, y)

∫
BR1

∂xixjΓy(t, x, τ, ξ)|w=θdξ

= I1 + I2 + I3
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First consider I1. Let y = γt,τ (x): by Proposition 3.1.17 and the hypothesis on f we get

|I1| ≤ C
∫
Rd

Γ
ε
2 (t, x, τ, ξ)

t− τ |ξ − γt,τ (x)|βB dξ

By Lemma A.0.1 we have

|ξ − γt,τ (x)|B ≤ C |x− γτ,t(ξ)|B = C
√
t− τ |η|B

where η = D0

(
(t− τ)−

1
2

)
(x− γτ,t(ξ)) with the usual notation. Therefore, by Proposition 3.1.16

we deduce

|I1| ≤ C
∫
Rd

Γε(t, x, τ, ξ)

(t− τ)1− β2
dξ ≤ C1

(t− τ)1− β2

Consider now I2: by Lemma A.0.2 and the growth estimate for f we have

|I2| ≤ C1

∫
BR1

Γε(t, x, τ, ξ)

t− τ |ξ − γt,τ (x)|βB dξ

≤ C2e
C2|x|2

∫
Rd

Γε(t, x, τ, ξ)

(t− τ)1−α2
dξ ≤ C

(t− τ)1−α2

repeating the argument above.

Next consider I3. For w ∈ Rd we have

∂xjΓw(t, x, τ, ξ) = −
(
C−1
τ,t,w(x− γτ,t(ξ))

)
j

Γw(t, x, τ, ξ),

∂ξjΓw(t, x, τ, ξ) =

d∑
k=1

(
C−1
τ,t,w(x− γτ,t(ξ))

)
k

(
e−(t−τ)B

)
kj

=

d∑
k=1

−∂xkΓw(t, x, τ, ξ)
(
e−(t−τ)B

)
kj

Thus it holds that

∇xΓw(t, x, τ, ξ) = −∇ξΓw(t, x, τ, ξ)
(
e(t−τ)B

)
Therefore we have∫

BR1

∂xixjΓw(t, x, τ, ξ)|w=θdξ

= −
d∑

K=1

∫
BR1

∂xiξkΓw(t, x, τ, ξ)|w=θ

(
e−(t−τ)B

)
kj
dξ

= −
d∑

K=1

∫
∂BR1

∂xiΓw(t, x, τ, ξ)|w=θ

(
e−(t−τ)B

)
kj
νkdσ(ξ)

by the integration by parts formula and denoting by ν the outer normal to ∂BR1
. Thus, by

Proposition 3.1.17 we can conclude that

|I3| ≤
C√
t− τ
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Now we consider K2. With fixed x, there exists a positive constant C such that

|x− γτ,t(ξ)| ≥ R2 > 0

for |ξ| ≥ R1 with R1 suitably large. Then

|K2| ≤C
∫ t

T0

∫
Rd\BR1

Γε(t, x, τ, ξ)

t− τ eC1|ξ|2dξdτ

≤ Ce|x|2
∫ t

T0

∫
|ω|≥R1

1

(t− τ)
Q
2 +1

exp

(
−〈C

−1
t−τω, ω〉

2µ
+ C2|ω|2

)
dωdτ

by the change of variable ω = x−γτ,t(ξ) and (3.1.11). The last integral surely converges provided

that T − T0 is suitably small by Lemma 3.1.12.

This proved the existence of the integral. Next we prove (3.3.5). Set

Vf (z) = V
(1)
f (z) + V

(2)
f (z)

where

V
(1)
f (t, x) =

∫ t

T0

∫
BR1

Z(t, x, τ, ξ)f(τ, ξ)dξdτ,

V
(2)
f (t, x) =

∫ t

T0

∫
Rd\BR1

Z(t, x, τ, ξ)f(τ, ξ)dξdτ

We aim to prove that

∂xixjV
(1)
f (t, x) =

∫ t

T0

∫
BR1

∂xixjZ(t, x, τ, ξ)f(τ, ξ)dξdτ, (A.0.12)

∂xixjV
(2)
f (t, x) =

∫ t

T0

∫
Rd\BR1

∂xixjZ(t, x, τ, ξ)f(τ, ξ)dξdτ (A.0.13)

Equation (A.0.13) follows from Lebesgue’s theorem. To prove (A.0.12) we set

V
(1)
f,δ (t, x) =

∫ t−δ

T0

∫
BR1

Z(t, x, τ, ξ)f(τ, ξ)dξdτ, 0 < δ < t− T0.

By the dominated convergence theorem and Proposition 3.3.1

lim
δ→0+

∂xjV
(1)
f,δ (t, x) = lim

δ→0+

∫ t−δ

T0

∫
BR1

∂xjZ(t, x, τ, ξ)f(τ, ξ)dξdτ

=

∫ t

T0

∫
BR1

∂xjZ(t, x, τ, ξ)f(τ, ξ)dξdτ = ∂xjV
(1)
f (t, x).

Hence, to show (A.0.12) it suffices to prove that

lim
δ→0+

∂xixjV
(1)
f,δ (t, x) =

∫ t

T0

∫
BR1

∂xixjZ(t, x, τ, ξ)f(τ, ξ)dξdτ,



57

uniformly on ]T0, T ]×BR1 . We have

∂xixjV
(1)
f,δ (t, x)−

∫ t

T0

∫
BR1

∂xixjZ(t, x, τ, ξ)f(τ, ξ)dξdτ

=

∫ t

t−δ
(J1(τ) + J2(τ) + J3(τ)) dτ

where

J1(τ) =

∫
BR1

∂xixjZ(t, x, τ, ξ) (f(τ, ξ)− f(τ, y)) dξ

J2(τ) = f(τ, y)

∫
BR1

∂xixj
(
Z(t, x, τ, ξ)− Γw(t, x, τ, ξ)|w=y

)
dξ

J2(τ) = f(τ, y)

∫
BR1

∂xixjΓw(t, x, τ, )|w=ydξ

Proceding as for the estimates of I1, I2, I3 in (A.0.11), by choosing y = γt,τ (x) we get∫ t

t−δ
|J1(τ) + J2(τ) + J3(τ)| dτ

≤ C
∫ t

t−δ

(
1

(t− τ)1− β2
+

1

(t− τ)1−α2
+

1√
t− τ

)
dτ

≤ C
(
δ
β
2 + δ

α
2 + δ

1
2

)

Proof of Proposition 3.3.3. As in the proof of Proposition 3.3.2 we split the domain of the integral

in ]T0, t[×BR1
and ]T0, t[×(Rd \BR1

). We consider the former. Set

Vδ(t, x) =

∫ t−δ

τ

∫
BR1

Z(t, x; τ, ξ)f(τ, ξ)dξdτ

and consider the integral path of Y starting from z:

γ̃ : R→ Rd+1, γ̃(s) = (t(s), x(s)) = (t+ s, γt,t+s(x))

Clearly d
ds γ̃(s) = (1,−Bx(s)− bs) = Y (γ(s)) a.e and γ̃(0) = z.

Let |s| < δ
2 , then we have

Vδ(γ̃(s); τ, ξ)− Vδ(t, x; τ, ξ)

s
=

∫ t−δ

τ

∫
BR1

Z(γ̃(s); τ, ξ)− Z(t, x; τ, ξ)

s
f(τ, ξ)dξdτ

+
1

s

∫ t+s−δ

t−δ

∫
BR1

Z(γ̃(s); τ, ξ)f(τ, ξ)dξdτ = I1 + I2

We should put s to 0. Formally

lim
s→0

Z(γ̃(s); τ, ξ)− Z(t, x; τ, ξ)

s
=

d

ds
Z(γ̃(s); τ, ξ)|s=0 = Y Z(t, x; τ, ξ) ’t-a.e’
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Morover, since Z is the parametrix and by Proposition 3.1.17 we have

1

s
(Z(γ̃(s); τ, ξ)− Z(t, x; τ, ξ))

=
1

s

∫ t+s

t

m0∑
i,j=1

āijσ ∂xixjZ(γ̃(s); τ, ξ)dσ ≤ C

s

∫ t+s

t

Γε(γ̃(s); τ, ξ)

t+ σ − τ dσ

Then for |s| < δ
2 and T0 < τ < t − δ the integrand is a bounded function of ξ ∈]T0, t − δ[×Rd.

Thus we have

lim
s→0

∫ t−δ

τ

∫
BR1

Z(γ̃(s); τ, ξ)− Z(t, x; τ, ξ)

s
f(τ, ξ)dξdτ =

∫ t−δ

τ

∫
BR1

Y Z(t, x; τ, ξ)f(τ, ξ)dξdτ

On the other hand∫
BR1

Z(t, x; t− δ, ξ)f(t− δ, ξ)dξ − 1

s

∫ t+s−δ

t−δ

∫
BR

Z(γ̃(s); τ, ξ)f(τ, ξ)dξdτ

=

∫ 1

0

∫
BR1

(Z(t, x; t− δ, ξ)− Z(γ̃(s); %s+ t− δ, ξ)) f(ξ, t− δ)dξd%

+

∫ 1

0

∫
BR1

Z(γ̃(s); %s+ t− δ, ξ) (f(t− δ, ξ)− f(ξ, %s+ t− δ)) dξd%

(setting % = t+δ−τ
s )

= I(z, s) + J(z, s)

An application of the dominated convergence theorem shows that

lim
s→0

I(z, s) = 0, lim
s→0

J(z, s) = 0

So far we proved the following:

Y Vδ,f =

∫ t−δ

τ

∫
BR1

Y Z(t, x; τ, ξ)f(τ, ξ)dξdτ +

∫
BR1

Z(t, x; t− δ, ξ)f(t− δ, ξ)dξ

Now, since f is a continuous and bounded function on BR×]T0, T1[ we have

lim
δ→0+

∫
BR1

Z(t, x; t− δ, ξ)f(t− δ, ξ)dξ = f(t, x)

and morover ∣∣∣∣∫ t

t−δ

∫
BR

Y Z(t, x, τ, ξ)f(τ, ξ)

∣∣∣∣
≤

m0∑
ij=1

∫ t

t−δ

∫
BR

∣∣∣Āijt (τ, ξ)∂xixjZ(t, x; τ, ξ)f(τ, ξ)
∣∣∣ dξdτ

≤ C‖Ā‖∞(δβ/2 + δα/2 + δ1/2)
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proceeding as for Proposition 3.3.2, so that, for a.e t ∈]T0, T1[

lim
δ→0+

Y Vδ,f =

∫ t

τ

∫
BR1

Y Z(t, x; τ, ξ)f(τ, ξ)dξdτ + f(t, x).
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