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Introduction and motivations

This thesis focuses on a broad, possibly degenerate class of stochastic partial differential
equations (SPDEs). Such equations, combining elements of PDEs and Itd’s stochastic calculus,
are well suitable to describe systems with distributed parameters in the presence of random
perturbations. In probability theory, interest in equations of this type arose by the problem of

filtering diffusion processes.

The filtering problem

Suppose that T > 0 is given and let us fix a probability space (0, F, {F;}icp0,1, P). Let
W, be a standard R%+? -valued Wiener process and consider a diffusion process Z;, which is a

solution of a system of It6 equations
dZt = b(t, Zt)dt + O'(t, Zt)th, t e [O, T]

Suppose that one part of the components of the diffusion Z; is observable, call it Y;, and the other
is not, call it X;. Assume (without loss of generality) that X; consists of the first d coordinates
of Z; and d’ of the remaining d coordinates.

Let FY be the completion of (Y, s < t), which defines the filtration of the observations on
Y and let Ty, T, € [0, T]. Then, for any bounded and measurable real valued function f on R%, it
is well known that E [f(X7,)|F}, ] is the best, in the mean square, 7, -measurable estimate for
f(Xr,), that is, intuitively, the best estimate for f(Xr,) given the information extracted from
Y up until the time T7.

The problem of calculating [f(XT2)|]:7¥1] is called the problem of filtering if Ty = Ty, the
problem of interpolation if To < T7 and that of extrapolation if Ty > Ti.

Under natural assumptions one can find that
B[00 7] = [ fem(e)ds
R

namely, there exists the conditional density of X; given FY and it turns out that p; satisfies a
SPDE of the form
dpi(z) = Lip(x)dt + Myp(x)dWr, (0.0.1)

where L; is a second order elliptic operator and M; is a first order operator. The coefficients of

L; and M; depend on ¢,z and Y;: therefore they are random and typically not smooth w.r.t. t.

7
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A very particular case is when Y = 0: in this case M; = 0 and reduces to the classical
backward Kolmogorov equation for the deterministic transition density p; of X;.

In the general case of , pe is the stochastic fundamental solution of and is the
conditional transition density of the process X;.

It was recently discovered that one can derive filtering equations by means of a ‘direct’
PDE approach (see |24], or [14] where distribution valued processes are considered). To give an

elementary idea of this approach, consider the It6’s stochastic equation
dxt = b(O’f)dt + U(ZEt)th,
say in one dimension with nonrandom coefficients satisfying appropriate conditions. Let x;(z) be

a solution of this equation starting at z. Take a smooth and bounded function ¢(z) and define

v(t,z) = E [p(x¢(x))]. Then under appropriate conditions v satisfies Kolmogorov’s equation

atu = %O-QUJ;J; + bua;’ t Z Oa S R)
u(0,7) = p(2).

One can derive this fact in two ways. Historically, the first one is based on proving probabilis-

(0.0.2)

tically that v is smooth enough and then using the Markov property (see, for instance, |9]).
This way Kolmogorov’s equation is derived even if the diffusion can degenerate. However, if the
process is nondegenerate, one can use a ‘direct’ approach consisting of taking the solution u of
, the existence of which is garanteed by the theory of PDEs, and applying It6’s formula
to u(t — T, xi(x)). Then one gets

u(0, zp(z)) = u(T, xo(x)) —1—/0 o(zs(z))ug(zs(z))dWs. (0.0.3)

By taking the expectations on (0.0.3)), and noting that u(0,z7) = ¢(zr) and zo(z) = =, it is
easily proved that © = v and hence v satisfies .

The general case can be treated following the same approach. Take the filtering equation, take
its solutions, whose existence needs to be previoulsy investigated, and then apply It6’s formula
to appropriately chooses functions.

This way of arguing strongly motivates the study of equations of the type (0.0.1)).

The aim of this thesis is to prove existence, regularity and estimates of a solution p; to
when L; is a Kolmogorov type operator satisfying the weak Hormander condition.

Our approach is based on the parametrix method for which the natural functional setting is
that of stochastic Holder spaces. We recall that [4] considers classical solutions in Hélder spaces
to uniformly parabolic SPDEs with coefficients that are functions of ¢ only, independent of z.
For other old references on SPDEs in Hilbert spaces (i.e. with infinite dimensional noise), see |4]:
different notions of weak solution (integrating in (¢,z) against a test function), strong solution
(integral in ¢ and pointwise a.e. in z) and classical solution (integral in ¢ and pointwise in x).

The parametrix method has been recently revisited in [|5] and [1] under the perspective of

probabilistic and financial applications.
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The following example well describes the basic ideas behind the arguments brought up in the

thesis.

Constant coefficient SPDEs

Let 4 = 4;(x) be a solution of the heat equation

2
diy(z) = %aiwﬁt(x)dt, t>71, zeR. (0.0.4)

By the Ito formula we have that
ug(x) ==y (x + a (We = W,)), t> T,

solves the one-dimensional SPDE
2

dug(z) = %&mut(x)dt + adpus(x)dWy, o :=a’+ > (0.0.5)

The other way round, starting from a solution u;(x) of the SPDE (0.0.5)), the It6-Wentzell change
of variable Xy () = x — aW; transforms u(z) into a solution of (0.0.4)).
Now, let I denote the Gaussian fundamental solution of (0.0.4)

) = (z —¢)?
T (t,l‘,T, {) = WGXP (_2a2(t—7')) y t > T, 1'7£ e R. (006)
Then
ptz;7,8) =Ttz + (W, = Wr);7,8) (0.0.7)
_ 1 (z +a(Wy = Wr) — §)?
= 27m2(t_7_)exp<— 2021 = 1) ), t>172>0, x,£ €R,

is the stochastic fundamental solution of (0.0.5)): more precisely, for any ¢ € Cp(R), we have that

Ut(l') :/Rp(tv‘ra’rag)so(g)dgv

solves the stochastic Cauchy problem
dug(z) = %zamut(m)dt + adpur(x)dWy, t>71, x €R,
ur(x) = p(x), z €R.

Indeed, by the stochastic Fubini’s theorem we have
dui(e) = [ dp(t.i7.) p(€)de
R

(by the Ito formula)

02

= [ (% 0uap 7. €) e+ adup t.2:7.8) () )
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(again by the standard and stochastic Fubini’s theorems)

2
= %&mut(x)dt + adyug(x)dWy.

Moreover, we have

ug(z) — (o) < / p(t,2:7,€) |9(€) — (o) de

: = fmr—a(W W)
(by the change of variable n = J2rar(t—r) )

— /Re_”2 ‘90 (77 2ra(t — 1)+ x + (W — WT)) — 90(530)’ dg

which converges to zero as (t,z) — (7,20) by the dominated convergence theorem, because the
integrand converges pointwisely and is dominated by the integrable function 2Hap||ooe_"2. This

means that u(x) is a continuous function up to ¢t = 7.

Remark 0.0.1. The stochastic fundamental solution p in (0.0.7) has distinctive properties com-
pared to the Gaussian deterministic fundamental solution . In particular, the asymptotic
behaviour near the pole of p is affected by the presence of the Brownian motion: this was studied

in [21] in the more general framework of Riemannian manifolds.

In this dissertation we are only going to consider the forward problem. This is due to some
adaptability problems that arise when trying to solve stochastic backward equations. To better
exemplify what we have stated here we briefly consider a possible backward problem based on

the framework of the previous example.

Backward or forward?

As in the case of ordinary differential equations (ODEs and SDEs), moving forward or back-
ward in time makes the difference. The forward SPDE (with constant coefficients) (0.0.5) has

fundamental solution
p(t,z;1,8) =T (t,x + (W, — W,);7,€), t>T.

Notice that t — p (¢, z; 7, &) is an adapted process. Notice also the damping effect of the stochastic
component on the diffusion coefficient: o2 in the SPDE (0.0.5]) corresponds to 02 — o2 in the
related PDE; this causes some concern about the ellipticity condition and forces to impose
assumptions like

a2 —a?>0.

Analogously, the backward SPDE

o2

dug(z) = —?&mut(x)dt + adyue(x)dWy, t<T, (0.0.8)
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can be converted in the backward PDE

02+a2

dug(x) = — Ozt (x)dt, t<T.

By analogy, the fundamental solution of (0.0.8)) should be

1 (@ +a(W, = Wr) —y)?
\/27r(02+a2)(T—t)eXp( 2(0*+0?) (T —1) ) <t

PB (tam;Tv y) =

However, t — pp (t,2;T,y) is NOT an adapted process. Thus it seems that an ad-hoc notion of
solution and, more generally, a theory for backward SPDEs (analogous to that of BSDEs) has
to be developed: in this regard see [18] where only the case of z-independent coefficients has
been considered. Moreover, in this case, the stochastic component has a reinforcing effect on the
diffusion coefficient: ¢? in the SPDE corresponds to o2 + a2 in the related PDE and no
additional ellipticity conditions have to be imposed as soon as o > 0.

We will consider the forward case as in the stream of literature initiated by Kunita, Chow,
Krylov, Rozovskii among others (cf. |7], [2], |19], [20], [13], [15], [3])-






Chapter 1
General setting and main results

Let (22, F, P) be a complete probability space with an increasing filtration (F;),~ of complete
with respect to (F,P) o-fields 7y C F. Let d; € N and W',..., W% be indgpendent one-
dimensional Wiener processes with respect to (F3).

Notations: d € N, (t,z) € R x R and D = (0y,,...,0s,). Moreover my < d is fixed (cf

Assumptions [1.1.2) m and [1.1.]] -

We consider the differential operator

mo

1
Ltut(x) = 5 “Zl ( Dl]ut Zat D ut + Ct( ) (1')
i,
with coefficients:
aij( ) = a?(x,w), ai(:v) = ai(x,w), c(z) = ¢z, w), zeRY we.

Let 01 = o¢(2z,w) be a random vector field
g = (O'tl,...,O'g) .

Notice that we will often omit the dependence on w: so, for instance, we write o;(x) rather than

ot(x,w). We define the differential operator L,, acting as

Lo, ut(x Z O't x)Djuy(x

We consider the vector field
ol (x,w) = Br + by (w),

with coefficients linearly dependent on x, and set
Y, =0, —

We say that
Ky:=L-Y, (1.0.1)

13
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is a Kolmogorov-type operator.

Next we consider the vector fields Loi,...iL with coefficients 0¥ = oFi(w), independent
t

of z, and such that of? =0 for i = mo+1,...,d. Let f; = f;(x,w) be a bounded and continuous

function in (¢, x). We are interested in the following Kolmogorov-type SPDE
dyu, = (Lywg + fr)dt + LyrudWFE, (1.0.2)

where and below the summation convention over repeated indices is enforced regardless of
whether they stand at the same level or at different ones.

The actual meaning of needs to be specified. Given an open subset D C R%, denote
by B(D) the Borel o-field of D and denote by St the predictable o-field in [0, 7] x .

Definition 1.0.1. A real valued function u on [0,T]xQx D, 87 @B (D)-measurable, is a solution
to the equation if w, Op, U, Op,z;u are continuous in (tx), fori,j = 1,--- ,mqg for almost
any w and it holds that

t

ug (ve(x)) = uo(x) + /0 (Lsus + fs) (vs(x))ds + /O (Lorus) (vs(x))dWE,  (1.0.3)

where t — v (x) denotes the integral curve, starting from x at time 0, of —Lgo: more precisely,

Y (x) = vo..(x) where
t
Yri(x) = e ("B (I —/ e(ST)Bbsds) (1.0.4)

is absolutely continuous as a function of the variable t and solves
Ara(@) = =Bryra(z) b ae
Vrr(@) = .

Example 1.0.2 (Langevin). Let d =2, mg=d; =1 and
B= 00 .
10

Y =0, —20,, (z,y) € R?,
and we have the following SPDE

Then

dyu(z,y) = w&wut(z, y)dt + o1 0pus(x, y)dW;. (1.0.5)

If (1.0.5) has a smooth (in the spatial variables) solution w, then (1.0.5) can be rewritten in the

more familiar Ito sense

dug(z,y) = (at(;’y)amut(x, y) + xoyu(x, y)> dt + 010y ue(z, y)dWy.

In the deterministic case oy = 0 and ai(z,y) = 1, (1.0.5)) reduces to the following degenerate

Kolmogorov PDE, known as Langeving equation:

1
Ou = iamu + z0yu.
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The main goal is to construct and estimate the stochastic fundamental solution of the Kolmogorov-
type SPDE ((1.0.2). The dissertation follows two steps:

i) we consider the case when Ly =0, that is we have a deterministic PDE with coefficients
that are measurable functions of ¢, Holder continuous with respect to x: the treatise is
developed by an extension of the parametrix method. The arguments and results are
reported with details in Chapter [3}

ii) as in [12], we use the Ito-Wentzell formula to reduce the SPDE to a PDE to which the
results of Step i) apply. This is discussed in Chapter

1.1 Assumptions and results

We assume the following structural hypothesis on L; to hold:

Assumption 1.1.1. The matriz B := (b;;) has constant real entries and takes the block-

1<i,j<d
form
* % * ok
By * %
B=|0 By -+ x % (1.1.1)
o 0 --- B, x

where each B; is a (m; X m;_1)-matriz of rank m; with

v
mo = my = 2my 21, Zmz:d,
=0

and the blocks denoted by “x” are arbitrary.

Assumption 1.1.2. The coefficients aij = a{i,ai,ct,bt, for 1 < i,7 < mg, are bounded and

measurable in t functions such that

mo
iR <Y (af (@) - o) & < mle?, €ER™, te[0,T], v RS,
i,j=1

for some positive constant p, with o as in (2.0.7).

Assumption 1.1.3. The second order coefficients take the form:
a (z) = A (¢ (t,x))
where Aij = Aij (q,w) are measurable in t and Holder continuous in q in the Fuclidean sens

while ¢ = ¢ (t,z,w) € CZ(RITY) (see Deﬁnition. We also set A =0 fori, j > mo+1.

IThe main example is that of linear functions

Ai(q,w) = at(w)q + be(w), q € R.
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Notation 1.1.4. We will denote with A? the (positive definite) restriction (a )i j=1.... mo of the

second order coefficients matriz.

Now we can state the main result of the thesis.

Theorem 1.1.5. (i) Under Assumptions |1.1.1], |1.1.2 and |1.1.5 there exists a fundamental

solution py = py(z,w; () to (1.0.2).

(i) Let p5 be the fundamental solution to the constant coefficient Kolmogorov-type SPDE

dYut = qutdt =+ La’f’ utthk’

with
5 1 -
Liug(x) :== i(u +e) Z Djz-ut(:z:)
j=1

Then the following estimates hold: for every positive € and T, there exists a positive con-

stant C, only dependent on e, T, u and B such that

pe(z;¢) < Cpi(x;Q),

C
&vipt(a:; O < \/ﬁpf(ﬂc; C)v

C
— T

foranyi,j=1,--- ,mg and z = (t,x), = (1,§) E R with0O <t —7 < T.



Chapter 2

Random mappings and

Ito-Wentzell formula

We begin this Chapter with a technical result concerning stochastic integration depending
on a parameter.

Let (92, F, P) be a complete probability space with an increasing filtration (F;),~ of complete
with respect to (F, P) o-fields F; C F, satisfying the usual hypotesis. Hereafter we will use the
classic notations:

IL2: the family of real measurable processes 1) = {¢(t,w)}+>0 on Q adapted to F; such that,

/OT @bgds] < 00.

L7 : the family of real measurable processes 1) = {1 (¢,w)}+>0 on Q adapted to F; such that,

for every T > 0,

16122 @x o,y = B

for every T > 0,
T
Hd)”%ﬁ([O’T]) = A ¢§ds <X  a.s.

M?2: the complete metric space of continuous square integrable martingale M = { M (¢, W) feefo,m)
such that My = 0 a.s. equipped with the seminorm

= (£ su 'MtQDé

0<t<T

or equivalently [|Mr|| 1)

We recall that the stochastic integral of a process in L.? with respect to a Brownian motion
is well defined as an element of M?2.

This is a slight variation to the stochastic Fubini’s theorem in [§].

Lemma 2.0.1 (A Fubini’s type theorem for stochastic integrals). Let W be a one dimensional
Wiener process with respect to (F;) and let {¢(t,z,w)}, t € [0,00), 2 € R? a family of real

random variables such that:

17



18 CHAPTER 2. RANDOM MAPPINGS AND ITO-WENTZELL FORMULA

(i) ((t,w),z) € ([0,00) x Q) x RY — p(t, 2, w) is § @ B(R?)-measurable;
(ii) There exists a non-negative Borel-measurable function f(x) such thatlﬂ
lo(t, z,w)| < f(x)Va,t,w and fz)dr < 0.
Rd

By (i) and (i), 1,(t,x) := fot ws(x)dWs € M§ is well defined. We assume further that

(i1i) (z,w) — fot os(2)dWy is B(RY) ® F-measurable for each t > 0. Then

t— ws(r)dr € Ly
Rd

/Ot </Rd sos(x)dx) dWs = y (/Ot %(:c)dWS) da (2.0.1)

Proof. Tt is clear that [, ¢(s,z,w)dz is predictable and bounded. Hence it is obvious that

/Ot (/Rd ‘P(‘%ﬂcaw)clazr)2 dt] < .

Thus the left hand side of (2.0.1]) is well defined as an element in M$. On the other hand, the
map T — fg ©s(x)dW, is B(R?)-measurable by assumption (iii) and for every 7' > 0

and we have

E

t
E{ y Or;aSXT /0 ws(x)dWy dl’:|
" 27\ 1/2
< :
_/Rd (E OgaSXT /0 ws(x)dWy ]) dz
. 97\ 1/2
< 2/ E / ps(x)dWy dz
Rd 0

(by Doob’s inequality)

1/2

:2/Rd (E /()T|¢s(x)2d$]> dx

(by Itd’s isometry)

=2VT | flz)de < o
R4

IThe result can still be proved under the weaker assumption (see e.g. Lemma 2.6 in [10] or [22])

T 1/2
J ([ teteorar) s <o
X 0
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Hence

max dr < oo a.s.

Ra 0<E<T

t

/gos(x)dT/VS

0

t—>/ /gos VAW dx
R4

is continuous a.s. Thus the right-hand side of (2 - is well defined and defines an (F;)-adapted
process. It is also square-integrable because

and this implies that

E

It is an (F;) martingale because if t > s > 0 and A € Fs then

B {IA /R d / t ws(m)dWSdm]

t
/ E [IA/ nps(x)dWs] dz = 0.
R4 s
Similarly, if N € Ms, then

E{g(/w/t% dex>(Nt—NS)}
/Rd [IA/ oo ()W (N, — Ns)}dx
]

oulz d<WN>u}dx

I
&

Iy
R4 0

ol (o))

Thus t =[5 fo s(r)dWydx = Ly is an element in M$ such that, for every N € Mo,

t
<N,L>t=/ </ gps(x)dx>d<VV,N>s
0 \JRd

Then necessarly L; = fot (Jga s(x)dx)dW;. This completes the proof. O

Now let di € N and W', ...,W% be independent one-dimensional Wiener processes with
respect to (F;). We introduce the mapping

t
Xi(z) =2 —/ okawk
0



20 CHAPTER 2. RANDOM MAPPINGS AND ITO-WENTZELL FORMULA

where oF, for k =1,...,d;, are as in Section and define the operation “hat” which transforms

any function u:(x) into
() = uy(Xi()).

We have
Dyiy(z) = Diug(z),  i=1,....d, (2.0.2)
and
Lopuy(v) = Lyyin(x), (2.0.3)
where

t
6{(x) = Bz + by, b :=1b —/0 Bokdwk.

Now we are in the position to state the version of the It6-Wentzell formula we need. The
It6-Wentzell formula, going back to A. Wentzell [23], allowes to construct the differential of a
composition of two random processes, while the classical It6 formula and its generalizations only
allows to determine the differential of a deterministic function of a random process. This can
be used to make random change of coordinates for stochastic equations in such a way that the
stochastic terms in such equations would disappear.

We point out the very recent and relevant contributions by Krylov in [12] and [11] where the
Hormander’s theorem for SPDEs is proved under the strong Hormander condition. This is done
by using a generalized 1t6-Wentzell formula for distribution valued precesses [10], and studying
the reduced analytical equation with coefficients measurable in time.

Our version of the It6-Wentzell formula concerns more familiar real valued processes. Never-
theless, it has to deal with the more uncommon version of the ‘differential’ that involves all the

field Y, i.e it somehow includes some spatial derivatives to non-deterministic quantities.

Theorem 2.0.2 (Ité6-Wentzell formula). Let f,u,g*, for k = 1,...,mq be some real valued
functions on Q x [0,T] x R? such that

(i) u, f,g*, k=1,---mgy are 8§ ® B(R?)-measurable;

(i) For any w the functions u, Dju and D;ju, for i,j =1,---mqg are continuous functions of
,x). For almost any (w, e functions fi, g7, u, Digy, fork=1,---d', j=1,---myg
t,z). For almost t) th ti X Djgr k=1,---d,j=1

are continuous functions of x;

(iii) Fork=1,---d', z € R, gF(x), f(x) € L2

loc*

Assume that
dyui(x) = fi(x)dt + g (x)dWE. (2.0.4)

(in the sense of (1.0.3) ). Then we have

dyiuta) = () + ¥ Dygaa) = Loyib(@) ) dt+ (3h(o) ~ Lyiu(o)) awd - (20
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where
Y, =0 — Lyo (2.0.6)
and
1
ol = Z oFigh, (2.0.7)
Proof. We consider the case in which u; is differentiable with respect to zj for k = 1,--- ,d.

Under this assumption we may rewrite (2.0.4) in the more familiar 1t6 sense
duy(z) = (ft(x) + Lyouy(x )) dt + ( () + L, out> AW,

Also note that by ([2.0.3)) it suffices to prove the statement for Lgout = 0.
Take ® € C§°, which is non negative, radially symmetric, with unit integral and support in

B,. Then, for all z,y € R?, un application of the standard It6 formula shows that

t d t
(@) p(Xo(y) — ) = uo(2)®(y — ) + / F()ds + Y / G* ()"
0 =170

where

Fiy(z) :‘I’(Xs(y)*fv)fs(ﬂf)Jr%us( Ja [Di;®] (Xs(y) — @ +Zgg [Lor @] (Xs(y) — 2),

Gf(l’) :(b(Xs(y) - x)gs(aj) + us(x) [Lakq)} (Xs(y) - LE)

s

with o’ as defined in (2.0.7), for all ¢ € [0, T]. Now we integrate on R% with respect to x. Note
that

1

/Rd (/Ot |G’§<w>l2ds) Cdr < 0o

|2(Xs(2) — 2)g8 ()] < In, 41|l o] g2 (2)]

Indeed, we have

where M = {X,(z),s € [0,¢]} is a compact set and I denotes the identity function on the set

K. Then, by assumption (iii) and the continuity of g* with respect to the spatial variables we

/Rd (/ [(Xs(@) = x>g§<x>|2ds) e

1
¢ 3
§c/ (/ gf(x)|2ds> <c VH(z)dx < 0o
By+M \Jo By+M

The same argument still works for L¥us, since D;;u are continuous functions of (¢, z) and o* are

have

bounded and measurable functions independent of z.
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Then, we may apply the stochastic Fubini’s Theorem [2.0.1] as well as the standard one, and
get

Adut(x>w<xt<y>—x>dx: /R o(2)®(y—)da -+ / /R dmmz / o)V

We fix ¢ € [0, 7] and use this formula with ®. := e~9®(Z), £ > 0, in place of ® and integrate by
parts the integrals of F' and G with respect to 2. Then, using the notation h(¥) = h* &, we find

a9 (X)) = u(y +Z / X)) — [Lar®] (X)) d (2.03)

d’

«/ X + 0 [Dsul?)] (a0 = 3 [Eorat ) (et | s

k=1

Now we let ¢ — 0. By the continuity assumptions we have u§€) (Xt(y)) = ue(Xi(y)) for every
w € Q. Analogously, for almost any w € Q, s € [0,t] we have fss) () = fs(x), Djug )( ) —
Djjus(z) and Lok (g")E(z) — La§g§(x) uniformly in compact sets in R%. Thus, given the
coeflicients ak aij are bounded functions of ¢ and by we may infer that the Lebesgue

integral in converges (a.s) to the one in (2.0.5).

On the other hand, again by the continuity assumptions, gk( )

and L« ug ) converge in L7,

to g¥ and L;rus respectively. This implies that the stochastic integral in converges to

the one in (2.0.5)) in probability. O

Corollary 2.0.3. Assume that u satisfies (1.0.2)). Then

dy () = Lyt (x)dt (2.0.9)
with Y; defined in (2.0.6) and
L I X/ i A .
Ltut(x) = 5 .Zl (atj (1‘) — Ogt]) DUut + Z D Ut + Ct( ) t(x) + ff(m)
1,]=

Proof. By Definition we may apply the It6-Wentzell formula (2.0.5) with f; = Lyu; and
g = Lyrug in (2.0.4). Since the coefficients of are independent of = we get

. — Loiin o
dy iy (z) = (Ltut(x) - 2atjDijut(m)> dt

from which (2.0.9)) easily follows. O

Relying on the Ito-Wentzell formula and the results for the deterministic case with time-

measurable coefficients we can now easily prove the main statement
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Proof of theorem[I.1.5. By the results in Chapter [3| (see Theorem there exists a funda-
mental solution I' to the Kolmogorov equation [2.0.9] Thus by Corollary it suffices to make
the reverse random change of variables (t,z) — (t, X; *(z)) to get the stochastic fundamental
solution to the for t > 0.

Also note that the estimates[T.1.5] [[.1.5| and [T.1.5] are a direct transposition of the analogous
ones (([3.0.6)), [3.0.7, [3.0.1)) found in the deterministic case.







Chapter 3

The deterministic problem

In this chapter we construct the fundamental solution for the Kolmogorov equation
dY’lLt = Ltutdt (301)

under Assumptions [[.1.1] [[.1.2] and [[.1.3] This is done by adapting the classical parametrix
method, which goes back to Levi [17]. It consists on the approximation of the fundamental

solution of a differential equation through an iterative process.

We remark that the only results available in the literature based on the parametrix method,
are proved under the assumption of Holder regularity of the coefficients in the time-variable ¢.
Thus these results may be of independent interest also in the determistic case.

Here we state the main result of the chapter.

Theorem 3.0.1. Assume that L; in (3.0.1) verifies hypotheses |1.1.1], |1.1.2 and |1.1.5 Then

there exists a fundamental solution I' with the following properties:

(i) T(50) € Ligo (R N C(RTN\{(}) V¢ € R

(i3) T(-;¢) is a solution to (3.0.1)) in R4FT\ {¢} V¢ € R (in the sense of Deﬁm’tz’onm

(i4i) Let g € C(R?) such that
l9(z)] < Coe®l | v e RY, (3.0.2)

for some positive constant Cy, then there exists

lim /Rd D(t,z;7,6)g(€)dé = g(y), VyeRY 7R

(t,@)=>(7,y)
t>7

(iv) Let g € C(R?) verifying (3.0.2) and let f be a continuous function in the strip S, 1, =
Ty, T1[xR?, such that
If(t,2)| < CLe@F Va e Spop (3.0.3)

25
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and for any compact set M C R? there exists a positive constant C' such that

|f(t,x)—f(t,y)| §C|x_y|ﬁ37 VIE,yEM, te]T()aTl[a

for some B €]0,1[; then there exists T €Ty, T1] such that the function

uta) = [ Mmoo+ [ [ remnosrodar o)

s a solution to the Cauchy problem

dyuy = (Lyug + fr)dt in S
yur = (Lyug + fi) To, T (3.0.5)
U(',TO) =g in Rd
(v) Let T¢ be the fundamental solution to the constant coefficients Kolmogorov equation
dy’l.tt = L?Utdt
with
1 <X
Liuy(z) := 5(# +¢) Z Diu()
j=1

where ¢ > 0 and p is as in[I.1.9: then for every positive € and T, there exists a constant
C, only dependent on p, B, € and T such that

[(z;¢) < CT*(2;¢), (3.0.6)
0,1 (5:0) < —T*(::0), (3.0.7)

C
Op,2,; T (2; < —T¢° 3C).
T 0) € 7 7T(350)
foranyi,j=1,--- ,mg and z,{ € R with0 <t —7<T.

The chapter is organized as follows: in the next Section we give the fundamental solution
for the case where the coefficients are only time dependent and give some Gaussian estimates.
In Section [3:2) we define the candidate solution for the general equation through an adaptation
of the parametrix method. In Section we provide some potential estimates whose complete

proofs will be given in Section [A] Finally, we will be able to prove the main Theorems [3.0.1] and

in the Appendix

3.1 Estimates of the fundamental solution of Kolmogorov

PDEs with time dependent coefficients

We start by introducing some general notation. For any symmetric and positive definite

matrix C = (Cij)Ki j<ar W denote by

1
rheat(c ) = C‘%,x)) , z € R, (3.1.1)

@n)ddetc T (_2<
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the fundamental solution of the d-dimensional heat equation: I'’*?* is a smooth function and
satisfies .
heat 1 ij heat d
oL (tC,x) = o > CUD; T (tC,x),  t>0, z € R
ij=1

Next we consider the Kolmogorov operator with coefficients dependent only on the time

variable t (not on the space variable x):
_ 1 &0 _..
K:=2Y A'D;;-Y. (3.1.2)

2 &
i,j=1

In case of constant coefficients, Assumptions and are equivalent to the hypoellipticity

of K: in fact, they are equivalent to the Hérmander’s condition, which in our setting reads:
rank Lie (9y,,...,0,,, ,Y) (t,2) =d+1, for all (t,z) € R,

) l‘mo )

where Lie(@m1 yeeuy O Y) denotes the Lie algebra generated by the vector fields 0,,,...,0

) CEmO ? I me
and Y (see Proposition 2.1 in [16]). In general we have the explicit expression of the fundamental

solution.

Lemma 3.1.1. Under Assumptions and the fundamental solution of K in (3.1.2) is

D(t,wir,6) = e EITBLheat(C o —y (), t>7 2,6 ERY, (3.1.3)
with Thea g5 in and
Yrt(€) = e~ (=B <5 - /te(ST)Bbsds> , (as in )
Cri= /t et=9)B 4 _e(t=5)B" g

Proof. Assumption implies that C,; is positive definite for ¢ > 7. Indeed, C,; is positive
semi-definite and non-decreasing in t — 7 > 0 because A, > 0. By contradiction, suppose there
exist t > 7 and & € R?\ {0} such that (C, +£,€) = 0: then we have

(Agelt=)B7¢ (t=5)B7¢y — for a.e. s € [7,t].

This implies that A,e(*=)B"¢ =0 for a.e. s € [r,1], that is

oo _s kE
> A mye=o,

k=0

and we deduce that
A (B¢ =0 k>0, for ae. s€ 7t (3.1.4)

Identity (3.1.4) with k£ = 0 implies &1, ..., &n, = 0. On the other hand, by Assumption for
1 <k < v we have

_ « k Ck,s Om
A (B = (0 0 o 0x(--) ) (3.1.5)
(d—mo)x(...) (d—mo)xXmy (d—mo)x(...)
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where C, s = AVB;y - Bj is a mg x my, matrix of rank my, 0;x; denotes a % x j null matrix and
* denotes a generic block. Then (3.1.5) and (3.1.4) for £ = 1 imply that £, 41, - -, Emg+m, = 0.
Repeating the argument for £ =2,...,v we get £ = 0.

Thus T'(t, z; 7,€) in is well defined. Moreover, since '™t ig a smooth function and A,

b; are bounded and measurable in ¢ by assumption, then I'(¢,z;7, &) is absolutely continuous in

t, smooth in z and a direct computation shows that

KT(t,z;7,€) =0, z,§ eRY ae t>T.

The previous differential equation has to be interpreted in the integral sense

_ _ 1 2o gt _
F(tvvs,t(l');Tvg) = F(S,ZL’;’D g) + 5 Z / Aéj : (81JF) (§77<($);77£)d<, xvf € Rd? t>s> T,

i,j=17%
where 0;;T(s,y;7,€) = 8yiyjf(g, y; T, €); equivalently, we can write it with the differential notation

as in (1.0.2)):

dyf(t,!lﬁ;’]’, g) = % Z Ailfj ’ (al]F) (t7x;7,§)dt.

4,j=1

Moreover, let us set

u(t,x) := / C(t,x;7,&)p(&)dE, zeRY t >
Rd
An application of the dominated convergence theorem shows that

Jdim Cut o) =€), EERY,
t>7 '

for any bounded and continuous function ¢. Thus u(t, z) solves the Cauchy problem

Ku(t,x) =0, reRY, ae t>rT,
u(T,z) = p(z) z € R4,

that is, ' is the fundamental solution of K. O

Remark 3.1.2. Lemma states that (t,z) — T'(t,z;7,€) is the fundamental solution of K ;
on the other hand, it is well known that (1,&) — [(t,x;7,€) is the fundamental solution of the

adjoint operator

. 1 &0 iy
K*u(r, &) = 3 Z AP Diju(r, &) + Yu(r,§) + (TrB) u(r, ).
i,j=1
In general, adjoint operators are more natural from a probabilistic perspective because they are
linked with the theory of stochastic differential equations (SDEs). Precisely

1 20 ..

i,5=1
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is the infinitesimal generator of the d-dimensional linear SDE

dXt = — (BXt + bt) dt + Utth,

where W is a standard mg-dimensional Brownian motion, o is a (d X mg)-matriz such that
o =0 fori=mo+1,...,d and A; := o0} satisfies Assumption .
3.1.1 Geometric framework

When the coefficients are constant and b; = 0, operator K has remarkable invariance proper-
ties that are crucial in the analysis of existence and regularity issues: these properties were first
studied in [16]. In our more general setting, these properties do not hold anymore but there is
still a Lie group structure that provides the natural geometric and functional framework for the
study of K.

Lemma 3.1.3. For any (1,£) € R¥ we denote by Ez/r,é) the left-translation in R*! defined as

t
62/7)5)(75,96) = (1,8 oy (t,2) := <t +r,z4+e P <§ —|—/0 eSBbsds)> .
Then we have
L(t,z;7,6) = e~ (t=7)TrBheat (CT,t,Wd ((T, &) Loy (t,ac))) , t>r, x,6 R (3.1.6)

Proof. It suffices to check that

and
Y —Yrt(r) =74 ((T, 5)_1 oy (t»ff)) )

where we denoted by 74(t, z) := z the projection on R O

Next we introduce a family of dilations in R?*! that are natural for the study of K. Let
z = (t,z) € R4 define
D(r)z = (th,Do(T)x) , r >0,

where
Do(r) := diag(rin,, r3Im1, . ,7"2”+1[mu), r >0,

and I,,, denotes the (m; x m;)-identity matrix. The natural number
Q:=mo+3mi+--+2v+1)m,

is usually called the homogeneous dimension of R? with respect to (Do(r)),>0, since that the

Jacobian JDy(r) equals r<.
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Remark 3.1.4. Let us consider the Kolmogorov operator

_ 1 o

Ko 12523@@ — Yo, Yo = 0y — (Bx, D),
with flij =1 and by = 0. It is proved in [16], Proposition 2.2, that K is D(r)-homogeneous of
degree two if and only if all the x-blocks of B in (1.1.1)) are null: in that case, we have

Ko (u(D(r)2)) = r? (I_(Ou) (D(r)z), r > 0.

A D(r)-homogeneous norm is defined as follows:

d

It @) s = 112+ |2ls,  Jzls = |V,
j=1

where (gj)1<j<q are the integers such that
Do(r) = diag (r?*,- -+ ,rd).

Based on the previous definitions of intrinsic translations and dilations, the following functional

spaces turn out to provide the natural framework for the study of Kolmogorov operators.

Definition 3.1.5. Let a €]0,1[ and O be a domain of R4t We denote by CE(O) the Hélder

space of functions on O such that
u(t, ) —u(s,y)] < Cli(s,y) " oy (La)|E,  (ta), (s,y) €O,
for some positive constant C.
By Assumption AY € C7(CH(R1),R). Thus, given t > 0, z,¢ € R*! we have
A7 (47 (2)) = AY (a7 (2)| < CI¢ oy 2|15
Hereafter, the exponent product will be more conveniently noted as a.

Example 3.1.6. The function f(t,x) = |x| is Lipschitz continuous in R3. Now, consider the
Langevin operator in Ea:ample then, for (t,z), (1,€&) € R3

ol = (=507

=lt—7]2+ |1 — &+ e+ (E—7)& — &3

o

so that, for fized z = (t,x) = 0 and, for example ( = (1,€) along the line
&=1
§o=—T

we have

1f(z) = Ol _ €] vitr?

== — 0

1Yoy 2l (ITI% +1)a ) (|T|% +1>@

when T tends to infinity along the line, for every a €]0,2[.
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Example 3.1.7. As in the previous example, in R>

[(7,6) oy (t,z)|| 5 = =77 + |21 — &| + |w2 + (t = 7)&1 — & .

= (t,—w,m), ¢ = (r,—“_&,@) (3.1.7)

t—T1 t—T1

Let

with xo,& € R and t # 7. We notice that
Cloyz=(t—r1,0,0).

and therefore
&) oy (t,2)]| 5 = 1t — 72

for any x2,& € R and t # 7: in other terms, points that are very distant in the Fuclidean sense,
can be very close in the intrinsic sense. It follows that, if a function f(t,z1,x2) = f(z2) depends
only on xo and belongs to C¥, then it must be constant: indeed, for z,¢ as in (3.1.7)), we have

|f(z2) — f(&)] = |f(2) = FQ)| < CJt — 7|2

for any x2,&2 € R and t # 7.

3.1.2 (Gaussian estimates

Given the Kolmogorov operator K in (1.0.1)), for any fixed w € R%*! we denote by ', (¢, z; 7, )
the fundamental solution of the Kolmogorov operator with time-dependent coefficients Aij (w) =

A (q(w)).

1 2o .
=5 Z A (w)0p,0;, + (Bx + by, D) — 0.

i,j=1
The explicit expression of Ty, (¢, z;7,€) is given in (3.1.3)).

Notation 3.1.8. Given B in the form (1.1.1), we denote by B the matriz obtained by substituting
the x-blocks with null blocks. We also set

I, ) .
I:= o 0 , Y =0, — (Bx, D),
0 0

and, forw e R and 0 <7<t < T,
t t
Crituw = / e(t*S)BAs(w)e(t*S)B*dS’ C, = / p(t=9)B [ (t=5)B" g
T 0

t R R t A R
Cotw = / e(t_s)Ble(w)e(t—s)B*ds, C, = / et=8)B,(t=5)B" o
T 0
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Remark 3.1.9. Assumption[I.1.9 yields the following comparison between the quadratic forms
associated to Cr .y and Ce—r

,U/_lctfr S CT,t,w S Mctf‘r
for w € R and 0 < t —7 < T. Since Ci_, is symmetric and positive definite for t > T,
analogous estimates hold for C;g’w, C;T’t,w and é;tlw in terms of C;", CAT,t and C;L respectively.
Proposition 3.1.10. For every z,(,w € R, with 0 <t — 7 < T it holds that
1
ﬁri(ta ZiT, f) < F’LU(tv T;T, E) < :u‘dr+(t7 ZiT, 5)7

where 1 is the constant in Assumption and T=,T'T are the fundamental solutions of the
Kolmogorov operators
1 Mo P
1 3 B B

respectively.
Proof. By Remark we have
—d L L,
detCr 0 > p~“detCo—r, exp —§<CT7t,wn,n> < exp —§<Ct7Tn,r]>
for any ¢ > 7 and € R?. Given (¢,z), (1,£) € R4, for convenience, we set n = mq((7,£) ! oy

(t,x)) and cq = (2r)~%2. Then we have:

cqe” (t—7)TrB

iV, det C‘r,t,w

—(t—7)TxB 1
Cq€ —
< #d/Qi exp <— <Ct—17'777 "7>> = ,UJdFJr (t’ LT, f)

\/ det thT 2M

The other inequality is analogous. U

1,
Fw(t,fb;T, 5) = exXp <_2<C‘r,tl,w777n>>

Lemma 3.1.11. We have

G =Do(VDHED(VD), =Dy (\2) G Do (\}z)

Proof. See Proposition 2.3 in |16].

The next lemma is proved following the argumets in [16].

Lemma 3.1.12. There exists a positive constant C, only dependent on the general constants (u,
B, ||Allso) and T, such that

I=Clt—=7)Crpw <Crpw <A +Ct—7))Criw (3.1.8)

for any w e R and 0 <t —7 < T.
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Proof. Let t > 0 and s €]0, t[.

t=s)B _ - w +O((t —s)"™) as (t —s) — 0.

k=0

el

Then we have

=2 g el = 3 LI g g 0y
3 kqlko! 3

k1,ko=
[e.9] n 1

— t— )" BkAS B* n—~k
3093 g g B A ()
2v (t . S)n

= ——Fn +O((t — s)2 Y as (t—s) =0
n=0

where

Let us study the block decomposition of F,,. We have

#*(1)A%(w) 0 -+ 0

*(1)A%w) 0 0

B A(y) = Cjo 0o --- 0
0 0 0

0 0 --- 0

where Cjo = B; - B AY(w) lies in the (j + 1)-th row and has maximum rank.
The x(1)-blocks are obtained by multiplying j blocks of B whose at least one is a x-block. Note
that when K; = K all the x(1)-blocks are null.

x(2) -+ %(2) %(2) 0 --- 0
x(2) -+ %(2) %(2) 0 --- 0
BIA(w)(B*) = | *%(2) --- *(2) Cj 0 --- 0 (3.1.9)
o - 0 0 0 0
0 . 0 0 0 0

where Cj; = Bj -+ BiA%(w)B7 - - - B} lies in the (j,7) block of the partition, and each *(2)-block

is obtained this way: 4 4
#(2) = (D #(Dr)AAw) (D +(1k,)

=1 h=1
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As the (1) ones they are null when K; = K. Note also that the dependence on s and y lies
only in the factor A%(w).
By we can deduce that the block partition (F},);s, 4,j = 0;---mg of the matrix F), has
the following properties:

i) if j + 4 > n then the block (j,1) is null;
ii) if j +¢ =mn then (F,);; = B, - BiAY(w)Bj - - - Bf has maximum rank;
iii) if j +14 < n then (F),);; is a sum of *(2) blocks (then is null for the operator K}).

Hence, for every 0 <14,j < v,

_ )k
(e(t_s)BAs(w)e(t_s)B*)ji = (k> Bj s BlAO(w)Bl ce Bi (t S) . (3110)

j s k!
A4t =)+ D (=) Ot — 5>

where k = ¢ + j and the *l(?’) blocks are sum of %(2) blocks and they have the same properties.
Therefore, when K; = K?, (3.1.10) holds with every +3) block equal to zero and without the
remainder O((t — s)?*1), being B nilpotent. Thus we may eventually infer that

(Crbn = Coaw)®:2) _ 1)~ 1) for (=) > 0

<CT,t,wxa Z‘)

which is equivalent to the statement we wanted to prove. O

Remark 3.1.13. As a consequence of Lemma[3.1.8 and Proposition[3.1.10, there is § > 0 only
dependent on the general constants such that

S

- 1. A a
thr S 7C'r,t w S C‘rt w S 2CTt w S 2/Jcitf‘r
2# 2 s i3 2

—1
T,tw*

for any w € R and 0 <t — 7 < 6. Analogous estimates also hold for C

Remark 3.1.14. For 0 < t—71 < T there exist two positive constants Cy, Cs only dependent on
the general constants and T such that

C1(t —7)9 < detCr ¢ < Coft —7)9 (3.1.11)
Indeed, for s =t—7 < § as in Remark[3.1.13 we have
(2p)*d5Q det C; < det CAT,N < (2,u)dsQ det C;

On the other hand, for § < s <T we can write

—d
o<t _ ( min detCs> <

w4 det Cy < detCrig ptdetCy _ pt
TR \sels,1] -

TQ -Q < 50 < 5Q max detCS> < 400

s€[8,T)

Then (3.1.11)) directly follows.
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Lemma 3.1.15. For every T > 0, there exists a positive constant C, only dependent on p, B
and T, such that

C 1
Corioy).| < Do | —— | y|, 3.1.12
()] < =P (=) ] 3.112)
C
-1 < 1.1
(elu) | < 7 (3.1.13)
for every i, j =1,--- ,myg, t €]7,T], y € R<.

Proof. Let § as in Remark and let t €]7,6]. Recall that (Do(N)y), = Ay; for i = 1,---my.

Then we have
< ‘((C‘;tl,w - A‘rit{w) y) )

‘ (C;tlwy)z

We note that

|Po (V=) 2o (VE=T7)|
= E}l:p1 ’(CAT_,;U)DO (\/ﬁ) £&,Do (Vt—T) 5>’
< [(€24 P (V=) €0 (VI 7))

= sup (¢8| = e
j61=1

by Lemma |3.1.11] Therefore:
1

Vt—T1
e o (=)
< ——||C Do | ——
=Vio sl \vi=:)?
On the other hand we have

[P0 (VE=7) (Critw =€) Po (VE=T)|| < [P0 (VE=7) 51D (VE=T)]|

I, <

20 =) et ()| [0 (= )

t—T1

by Remark [3.1.13]since ¢ €]7,d]. Then we also get:

5 1
s 2o (=)
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Assume now that ¢ € [§,T):

_ 1 _ 1
(€t | = = (po (VI—7) €=t Do (VE—T) Do ( m) y)i
H —1 1
< Vit — Vi — -
= i—7 6;1271 HDO ( t T) Ci—+Do ( t T)H ‘,Do (\/ﬁ) y’
This completes the proof for . follows as a consequence. Indeed
4 /1 C 1 _C
‘(CT’t’w)ij - ‘(CT’t’wej)i = t—T Do (m) € t—T

O

Proposition 3.1.16. Given € > 0 and a polynomial function p, there exists a constant C, only
dependent on e, i, B and p such that, if we set (s,w) = (1,£) Loy (t,x) and n = DO(%)(W) then

S

we have

p(In)Tw(t, 257, §) < CTE(t, x;7,€) (3.1.14)

for any z,C,w € R4 where IS denotes the fundamental solution of the Kolmogorov operator:

f(e_/“Lgmoa Y.
T~ 9 Z Timi e
i=1

Proof. By Lemma |3.1.12| we may consider ¢ty > 0 such that (3.1.8) holds and

Bt 3
n+e

(1 - Coto)® >

were Cy is the constant in (3.1.8]). We first prove (3.1.14)) for s € [0, to].
By Remark we have

Cd’uge—sTrB 1 .
Ip(In) T (t, 257, €) < |P(|77D|W p —ﬂws w,w)
4 _sTrB
cqpze 1— Cotg) , 4_
< |p(|77\)|ddﬁ exp <_(2M00)<01 177,77>) <

(applying Lemmas [3.1.12] and [3.1.11))

—sTrB 1— R
<€ e (—(COtO)Wfln,m)

Vdet C, 2(p+%)

Ce—sTrB (1 _ Coto)Q .
< — ———(C , <
> /7detct,,,- exp ( 9 (,u+ %) < s W w>

(applying Lemmas [3.1.12] and [3.1.11| again)

CefsTrB 1
< ———=exp (—(Clw,w>> <
~ VdetC, 2(p+e)° -




3.1. KOLMOGOROV PDES WITH TIME-DEPENDENT COEFFICIENTS 37

(noting that (u + €)C;_, is the covariance matrix for the operator K¢)
< C1T(s,w;0,0) = C1 T4 (¢, 57, €).
Now consider the case s > ty. This yields |n| < ¢|w]|, then by Proposition
p([n) T (8, 257, €) < C'lp(Jw])| T (¢, 237, 6)

where C' is only dependent of y, B and . Then

(DI Tt 237, €) < C[p([w])] —2— exp (1<éslw,w>)

da
C 2
< di

1 iy )
S — eXp s w,w
VdetC, (2(u +¢) )

with C; also dependent of p
= (09T (s,w; 0,0) = CoT'° (¢, ;5 7, &).

O

Proposition 3.1.17. For every € > 0 and T > 0, there exists a positive constant C, only
dependent on u, B, € and T, such that

c
-7
C

t—T

|0z, Lo (t, 25 7,)| < I(t, ;7,),

7

|am’irj1—‘0(tax;7—7£)’ S Fa(t71';7',§),

for every x, £,eRY, 0 <t —7 < T, 0cRL and for everyi, j=1,--- ,mq.

Proof. Let (s,w) = (1,&)" oy (¢, ), then by (3.1.6) we have

0, Lo(t,257,6) = 0p, T (Crp . w) e 17
1

_ _5 (C;tl,ew) ‘ Pheat (Cr,tﬁ,w) e—sTrB
K3

Finally, by Propositions [3.1.16] and B.1.17

102, Do (t, 237, €)| = (c;t{gw)i‘ To(t,z;7,€)

() v

Lo (t,@;7,€)

DO =

< ¢
T Vs

c
<

-7

]

The other estimate uses (3.1.13]) and is analogous. O
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3.2 Introduction to the parametrix

In this section we construct a fundamental solution I' for the operator K in (1.0.1)) using
the so-called parametriz method, under Assumptions [1.1.1] [1.1.2] and [1.1.3] The parametrix

method goes back to Levi [17] for elliptic equations and was first used by Dressel [6] to construct
the fundamental solution of uniformly parabolic equations. The idea is that we start with a

parametrix (principal part or leading term of the approximation)

where for convenience we set z = (¢,2) and ¢ = (7,£). According to Levi’s method, we look for

the fundamental solution I' in the form

T'(2:0) = Z(:0) + / Z(z;w)p(w; Odw, Sy = RIx]rf].

Srt

Then we put KT'(2;¢) = 0 and we are left with an integral equation to determine ¢(2;¢). By

the method of successive approximations, we find

“+oo

0(2:0) = Y (K 2)k(), (3:2.1)
k=1
with
(K2)1(2:¢) = KZ(%0),
(KZ)py1(z / KZ(z;w)(KZ)p(w;)dw, k€ N.

N.B. As already seen for the time-dependent coefficients case (see Lemma , the equal-
ities written above are not to be intended pointwise (indeed, generally, Z is not differentiable in

t, nor in x;, for j =mg +1,--- ,mp). However we can still write K Z meaning:
KZ =LZ —YZ where YZ indicates the Lie derivative
YZ(ta) = L Z(3(s))
T) = s=
’ ds |s=0

where v is the integral curve of Y starting from (¢, x), wich is defined a.e.
The rest of the Section is devoted the the proof of the following.

Proposition 3.2.1. There exists kg € N such that,
(i) The function (KZ)k(-;C) is L°(S- 1) fork > ko, T > 7.

(i) The series

converges in L*(S: ).
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(1ii) The function ¢, as defined in (3.2.1) solves the integral equation

©(2,¢) = (KZ)(2() +/ /Rd(KZ)(z;s,y)g&(&y;g)dyds (3.2.2)
a.e. in Sy .

Lemma 3.2.2. Lete >0 and T > 0. It holds that

M,

(KZ)(t,z;7,6)| < t=7)i-ak2

re(t,x;7,8) (3.2.3)

a.e. in Sy .41 for every k € N, ¢ € R where

I'g is the FEuler Gamma function and C is a positive constant only dependent on ,T, u, B and

the L°°-norm of the coefficients.

Proof. As usual, we set z = (¢,z) and ¢ = (7,£). The estimate is proved by an inductive

argument. For k =1 and z # (, we have

|KZ(20)| = (K = K)Z(2Q)| < L+ I + I3

where
1o | i 7ij S
Il = 52]221 At](z)iAtj(g)‘ |am1m7Z(Za<)|7 12:;|at(x)| |817Z(Za<)|7 I3: |Ct(x)Z(Z’C)|

We study I first: by Assumption [I.1.3] we have

47 (2) = A7 QI < Cll(r, &) oy (1, 2)|* = C(t =) E|I(L, )]

where n = D (\/tl_—T) (= 7rt(8))-
Hence, by Proposition we infer

I'(2;()
(t—7)l-a/2

D220 c

L < c|(1,n)]* (t—r)i—a/z =

Since the coefficients are bounded function and by Proposition we also have

- FE(Z C) 1— FE(Z C)
I, < All ) < o pli—lat)/2 A= 5)
2> mOH || C2 \/ﬁ = V2 (t _ 7—)1—&/2

—ay2 I(%9)
. 1—a/2 )
Iy < lelloocsl® (%) < G/ (Y

This concludes the proof for £ = 1.
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We now assume that (3.2.3]) holds for & and prove it for k£ + 1. We have

(KZ)ks1(2¢)| =

/ KZ(t,fv; s, Y)(KZ)i(s,y; 7, €)dyds

t
M, M,

< I . Te .

_/T ({572 (s )i-ahr? /Rd (t,z38,9)I° (s, y; 7, §)dyds

(by the inductive hypothesis)

t
M, M,
§Fs(x,t;7,§)/7 (t_s)l_a/z (S_T)l—ock/2

(by the reproduction property for I'?)

ds

_ My M, - ! dr
T - 7—)1—(k:+1)o¢/2r (Z’O/O (1 — r)i-a/21—ak/2

by the change of variable s = 7 4 r(t — 7).
Note that the integral above is the Beta function B(2k 5
by the equality: T'g(z + y)B(z,y) = T'g(z)'g(y). Then

/1 dr FE(%J“)FE(%)
o (1—7) a)

, 5 ) which is related to the Euler Gamma

1—a/2pl—ak/2 FE( (k+

and this concludes the proof. O

Proof of Proposition[3.2.1l (i) By Lemma and Remark [3.1.14] we have

K ; Mk ex —71 w,w
(E2u(e10)| £ € it o (g G

<CO'My(t—r1)%"1-%

for a.e. t €7, T[, z,& € R?, for some constant C’. Then it suffices ko > %
(ii) By the previous result, noting that the power series

E k
Mk0+/€3

E>1

has radius of convergence equal to infinity.
(iii) By construction, for a.e. t €]7,T[, z,£ € R? we have

//Rd ) (235, 9)p(s,y; ()dyds

/ / (238, Y) (K Z)1(2; 5,9)dyds
k>1/7 JRY
= SR (550) = (5 ) — (K 2)(5: Q)

k>1
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A straightforward consequence of the Lemma [3.2.2]is the following
Corollary 3.2.3. For every ¢ € R4 and T > 7 there exists a positive constant C such that

(2 ¢)

le(z; Q) < Cm

a.e. in Sy (3.2.4)

Corollary 3.2.4. Let us denote

J(2:0) = /S 2(2; w)p(w; ()duw

Tt

the approssimation term in Levi’s method. For every ¢ > 0 and T > 7 there exists a positive
constant C' such that

[J(2:¢)| < C(t —7)3T%(2;0) (3.2.5)
in S; 1 and the fundamental solution I' verifies:
['(2;¢) < CT*(2;¢) (3.2.6)
for any ¢ € R in S, 1.

Proof. By (3.2.3) and by the reproduction property of I'* we have

(50 < C/ L (1, 22 8, ) L )

St (5 - T)l_%

dyds

t
— CT*(2:0) / s

T (S - T)l_%

from wich (3.2.5)) follows. Together with the estimate of Z in Proposition [3.1.10| this implies
3.2.9). 0

3.3 Potential estimates

We consider the potential
Vit = [ 2GOSO. Sn0 To.txRY (33.1)
STy,

where f € C(St,,1,) satisfies the growth condition:

f(t,2)| < CeCl P V(b 2) € Spy oy

and Z denotes the parametrix of .

In this section we are going to show some regularity properties of Vy, briefly discussing the
main arguments and ideas used to prove them. Complete proofs for the following results are
postponed at the end of the chapter as they can be skipped at a first reading.
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We first note that the integral (3.3.1]) is well posed, i.e. is convergent in the strip St, r for
some T €]Ty, T1]. Indeed, by the growth estimate for f and Proposition [3.1.10| we have

t
Vi(t,2)] < Cy / / I (t, 2,7, ) dedr
Ty JRE

t 1 1
<C - o C—l , +C 2>dd
- /T/Wm( 3y (Criwrw) + CIE? ) dedr

(with the usual notation (s,w) = (¢ 'oy z = (t — 7,2 — 7,.4()))

t 2 t
< 03/ / exp _nl® +C ‘e(t‘”B (x —C2 - / e(‘“_T)Bbsds)
Ty JRE 2p ’ T

(by the change of variable n = C;éw)

2
> dndt

< Cy(t — Tp)eCul=l®

for some positive constant Cy, assuming ¢ €Ty, T| with T — T suitably small.

The first result we need is the following.

Proposition 3.3.1. There exists 0,,Vy € C(St,1) fori=1,...,mq and it holds that

t
0z, Vi(t,z) = /T /]Rd Oz, Z(t,x,1,&) f(1,8)dedT (3.3.2)

By Proposition [3.1.17|we can prove the absolutely convergence of the integral in (3.3.2)) using
the above arguments. We can then prove (3.3.2)) for

t—4
Vi s(t,a) = /T /R (b2, Of(r dedr, 0<5<t-Tp, (3.3.3)

using Lebesque’s dominated convergence and let 6 — 0.

The next result concerns existence and continuity of the second order derivatives.

Proposition 3.3.2. Let f a continuous function in the strip St, r, verifying the growth condition
and the reqularity condition

[f(t,z) — f(t,y)] < Cle —yl} (3.3.4)

for all x,y € M, t €Ty, Ty[ for any compact subset M of RY. Then there exists Oz, Vi €
C(St,r) fori,j=1,...,mq and it holds that

t
AT /T /R Duoa, 2(t,2,7,6) (7, € (3.3.5)
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To prove the existence of the integral in (3.3.4])) we rely on the regularity properties of f and
Z, so the main idea is to split the integral in the spatial variable as follows:

/R e, 21,7, €) (7, €)1
- / Dy, Z(4,3,7,8) (F(7,€) = £(7,0) de
+ f(7,9) /Rd 8zﬂj (Z(t,z,7,8) = Tu(t,z, T, g))‘w:y dg§

+ f(Ty y) /Rd aﬂfiﬁfj Fy(t7 €, T, §)|w:yd§

=L +1+ 13

where 7 is fixed in Ty, t[, choosing y = ~; ,(£). This way, by Proposition [3.1.16| we could make
up the singularity in 7 =t in I; by

f(t,2) = f(t,y)| < Clae—y[5 < Co(t — 7))/

with the usual notation for n. Similarly, we can handle the singularity in I by the regularity
properties of Z. Thus a more in depth study of these properties is required (see Lemma .

On the other hand, if we limit ourselves to integrate on a ball By centered in the origin, we
can reduce I3 to

d
_f(Tv y) ; /&)BR amirw(ta T, 5)\w=y (ei(tiT)B)kj dea(f)

where v is the outher normal to dBg, by an integration by parts. The integral above can be
treated as in Proposition The convergence of the remaining integral on R?\ By for a
suitable R > 0 relies on the asymptotic behaviour of the Gaussian for |z| — oo.

Then, the actual proof of will proceed similarly to the previous Proposition.

Now we state the last Proposition of this section.

Proposition 3.3.3. Under the hypotheses of Propositz'on there exists the derivative YV
for a.e. t €]To, T[, x € R and it holds that

YV (z) = YZ(z Q) f(Q)d¢ + f(2)

Stq,t

As for Proposition we first consider the integral function (3.3.3]), and by definition (see
3.2) we write the incremental ratio

(()Tf) Vs(t,x;7,€) /5/ Z(ta:;r,f)
aa

f(7,&)dgdr

/t+s J/Rd ) f(r,&)dédr =1 + I
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where 7 is the integral curve of Y, starting from (¢, ). Taking the limit for s — 0 it turns out

that the following equality holds.

t—6
YV s :/ YZ(t,m;T,f)f(ﬂf)ddeJr/ Z(t, z;t = 6,8) f(t —0,£)d€
T Rd R4

From there we get to the thesis by taking 6 — 0, using the fact that Z(z;() = T'¢(2;¢) with I'¢

being the fundamental solution of the operator K.

3.4 Proof of the main Theorem

One more preliminary result is needed.

Lemma 3.4.1. For every e >0 and T > 0 there exists a positive constant C' such that

wwmno—w@ww@nsc(j“?aﬂtzr@+way,@» (3.4.1)

for any (1,€) € Rz y e R, a.et €)1, 7+ T).

Proof. Set w = (t,y). By (3.2.4) we have

_ _ C
|KZ(2¢) = KZ(w; ()| < =% (I(z;¢) + (w3 () (ae.)
Thus, for | — y|p > vVt — T we get
|Kﬂao—szxM<cJ{§“?avzo+r%wo> (ae.), (3.4.2)
In the case |z — y|p < v/t — 7 we first prove the following preliminary estimates:
12(0) = 23] < Z=T"(=:0),
|%zmo—@zwm»sd51@v”mo, (3.43)
| iz (Z C) z 17 | | y|BF€/2( C)
(t—1)

Consider the third estimate in[3:4.3] By the mean value theorem, we have

‘axzx]Z(Z7<) _6961'% (w C | < max Z |637hx Tj t m+p(a: —y);T,é) (x_y)h’

pE[0 1]
Denoting (s,w) = (7,€) "t oy (t,z) and C = Cr4.c,

Ouyaia; Z(2:€) = Z(2:¢) (€ (CTHw)y — (C'w)iCyft — €5 (€ )
+ (€ w)n(Crw)i(C w); )
= Z(2;¢) (ap(w) + bp(w) + cp(w) + dp(w)) -
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Put v = a2 —y, W = w + pv. Then, by Lemma [3.1.15| we get

d

izlah( Up| = Zlcm v (CT'R),| = (€ )il (e @),
<o ()1 (5):

Since v < /s, we have |Dy(1/+/s)v| < C|Dy(1/v/s)v|g = Clv|g/+/s, therefore

d
~ v
Z vhap(@)| < C| |;3/|277\ ;
- s
i,j=1
where 77 = Dy(1/+/s)w. The same estimate holds for by, and ¢;,. By the same arguments we also
have

a |57
~ B
E vpdp(w)| < C 32

i,j=1
Collecting all the terms and using Proposition [3.1.17 we obtain

IVIB(IﬁI +111%)

Z(t,x + pv; 7,€)

/Z|Br€/3(t @+ T, €) < c‘ y' Brel2t oir,6)  (3.4.4)
S

This concludes the proof of the third inequality in (3.4.3]) for \sc — y|B < v/t — 7. The first two
can be proved similarly. Next we are going to deduce from (3.4.4)) a similar estimate to (3.4.2]).

|KZ(2¢) — KZ(w;¢)|

§C|

= | Z a (2)0y,0, 7 +Zat )0:, Z(2;C)
i,j=1
mo ..
=Y 4 )0s.0,2 Zat )02, Z (w3 )
i,j=1

+YZ(2,¢) = YZ(w; ) + cr(2) Z(w; ¢) — ci(y) Z(2:¢)
+ KcZ(2;¢) — Kc Z(w; Q)|

0l (@) = af )| |0.r, Z(2:€)|

= A7(0)| 10012, 2(2, ) = Bua, Z(w,0)|

1,j=1

4 Z |ai(z) — ai(w)|10s, Z(w; Q)|

+ ) ai(w)] 102, 2(2,¢) — 0z, Z(w, 0]
=1

+ le(x) = a1 Z(z Ol + le(@)[1Z(2: C) = Z(w; Q)]
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Note that we have w™! oy 2 = (0,7 — y). Then, by Proposition [3.1.17, by (3.4.3) and the

regularity properties of the coefficients we get

|KZ(2¢) — KZ(w;¢)|

‘Jf—y|% e/2 a |x_y|B e/2
< = JIB . A JIB .
< O(FT2Er 2w ) I or 2l 57T/ (:0)

+ |'T — y|B F5/2(w;<) + |$C — y|B FE/2(Z;§)

Vier t—7)"
o=l (wi0) + AT )

Since

J

K260 - K20 < € (25 + B2 o0 e ro (i) (4

Do (= ) (@ = 2nel)

|K*oyA%<<v—ﬂ%(1+

we may adapt Proposition [3.1.16] to deduce

On the other hand, if |z — y|p < v/t — 7, it holds that

|z —ylB |z — yl%
(—neor T -, < (3.4.6)

142 _a
|z —ylB <Wy3> 2+JIM%(Myw> 2

S -0\ V-t t—r \Vi-r
=yl
(t _ 7.)1—@/2

Combining (3.4.2), (3.4.5)) and (3.4.6)), we finally get

[R2(:30) - R2(u30)| < O Mo (50 + 19 (wi0) () (347)

Let M; be the constant in (3.2.3) such that

M
(t —7)1-a/2

Then, by (3.4.7) we can prove by induction (similarly to Lemma [3.2.2)) that

|(KZ)(t,$;T7§)’ < Fe(t,l‘;ﬂg) (a.e)

(RZ)(2:0) — (R Z(w; )] < M A" YB (0201 0) 4 T ) MYt — )F ae’

(t—7)t—%
where
a I (1)
M. = C. Tk *N_ e\1)
<=t (G) Tty e 1)
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for some positive constant Cy. Therefore, by Remark we get

(R2u(e30) = (R 2)wi O] < CF AT 8o (0o

arguing as for Proposition [3.2.1] items (i).

Since 1 — % —k— % < 0 for k > 1, the thesis follows since the power series Zk21 Mksk has
radius of convergence equal to infinity. O

Proof of Theorem[3.0.1 Let I' be the function defined in Section [3.2}

I(2¢) = Z(2 <)+/ Z(z;w)p(w; )dw (3.4.8)

Sﬂ',t

(i) By Corollary and Proposition we may infer that I'(:;¢) € L (R NC(RITL
{Ch) V¢ e R
(7i) Thanks to estimate (3.2.4)) and Lemma we can apply Propositions to

conclude that the following derivatives exist and are continuous functions for z # (:

0. 1(:50) = 0, 2(:0) + | BuZ(z5w)plw, O,
St
St

for every i,7 = 1,...,mg. Morover, by Proposition [3.3.3] the following derivative is well defined

a.e.

YT(55C) = 00, Z(2:C) + /S Y Z(z; w)p(w, Odw + p(z;C)

Then we can directly obtain
RU(:50) = 0,2 Q)+ | RZ(w)p(w, Odu — p(z:¢) =0
ST t
a.e. for z # (, since @ satisfies the integral equation (3.2.2)). This implies
dyT(z,{) = LT'(z,¢)dt
in the integral sense (|1.0.3]).
(#ii) We write
I(z¢) = Z(2¢) + J (%)
and evaluate the two limits separately: we have

| 2w 1atie
= [ eotim8) = T (taim ] 9€de + [ Toratim. ate)de
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Since I'(; ;) is the fundamental solution of L, .

L[ Tt Og©ds = o), Wy e Rl TeR
tyx)—=>(7,y R
t>71

Now let v : [0,1] — R4*! a continuous path in R4+! such that v(0) = (7,y). We need to prove
that

hi% [F(T,ﬁ) (7(0—)7 T, g) - F(T,x(a)) (7(0)’ T, 5)] g(f)dﬁ - hl}}) I=0 (349)

o R o
By Lemma we have

H=c /R € = 2(@)F* (v(0); 7. el de

Arguing as for (3.3.1) we can see that the last integral is well defined, thus we get (3.4.9)) since
I'¢ is the fundamental solution of K. On the other hand, by (3.2.5) we know that

‘a.e’ in S, 1

J(Q)| < C(t—7)2T°(%()

therefore we can similarly prove that
lim J(t, z;7,£)g(§)ds =0,

t,x 51
( )t;:(_ v) JRrd

(iv) By the results in section the function u(t,z) in (3.0.4)) is well defined in St, o for

VyeRY reR

T — Ty suitably small. We set
Ve = [ rEos@d

and prove that
dyV = (LV + f)dt in STO,T

By (3.4.8) we can write V = V; + Vi where V7 is the potential in (3.3.1]) and
fer= [ om0
Sty .t

We aim to apply Propositions |3.3.1|, |3.3.2| and |3.3.2| to the potential Vf. To do that we need to
check that f verifies the growth estimate (3.0.3) and the regularity condition (3.0.3). By (3.2.4)

£=)] 5/5 mv(@“)ldc < Ot — Ty)3 Lot

proceeding as in the proof of Proposition On the other hand, by Lemma [3.4.1

we have

t
T, E) — T 7,&)|d&dT
< [ [ lettmne) et ol

o [t 1
<Clz—ylg /TO W;/Rd T, 25 7,8) + T2t y; 7,€)) | f(7,§)|dédr

<CO(t—71)5 | — y| 2l )
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Therefore we can apply Propositions [3.3.1}, [3.5.2 and [3.3.2] and we get

KV(z)=KV(z) + K'Vf(z)

——f(x) =)+ [ K2(:0 (1) + f(©) de

STy,

= —f(Z)+/ £(©) <—<P(Z;C) +KZ(Z;C)+/ KZ(Z;ww(w))dw> d¢
STyt St

—f(2)

by . Morover, by Corollary

VEI<C [ DOl < Ot = To)e T
Sty
arguing as in the proof of Proposition Therefore, by item (iii), u(t,z) € C([To, T[xR?)
and u(Tp, ) = g(-). This provides (3.0.5).
(iv) Estimate ( - ) has been already given in Corollary Now consider . By
Proposition and the estimate we have

02,75 0)] < +C/ [ rEne TS s

(t—s)1/? (S —7)l-a/2

I‘EzC I*(2¢)
+C/ t—51/2 )1 Q/dedsng

for any j =1, -+ ,mg and z,¢ € R with 0 < ¢t — 7 < T. Finally, by Propositions [3.1.17

we have

00,2, T (25 )| < L)

eia; 2 (25 w)0(w; C)dw

t—T

I*(z9) / 1 1 INCHY)
< <
_Ct—T JrCT(t—s)o‘/4(5—7)a/4ds_Ct—T

This is done by repeating the argument in the proof of Proposition to manage the singularity
in the integral, using estimates (3.2.4) and (3.4.1). O







Appendix A

Proofs of Propositions 3.3.1|, 3.3.2
and 3.3.3

Here we give the complete proofs of the Propositions stated in Section [3.3] The notation is
intended to be the same.

Proof of Proposition[3.3.1. We first note that the integral in (3.3.2)) is absolutely convergent.
Indeed by Proposition we have

t
/ 00, Z(t, 2,7, ) f(7.€) | dedr

Ty JR4

TH(t a7, &)el 1 agdr < Oy eSslel®(A0.1)

Lo 1
<Ci /
To \/t—T Rd \/t—TO
arguing as for the well posedness of (3.3.1)) in section Next we prove (3.3.2)). Let

t—4
Vi s(t ) = /T /R 2t 2,7 ) f(r, )dedr, 0<6<t—Tp,

By Lebesgue’s theorem we have

lim Vf’g(hl') = Vf(t, x), (A.0.2)
§—0t
t—0
O0r, Vis(t,x) = / O0p, Z(t,x,7,8) f(1,&)dEdT, i=1,---my. (A.0.3)
To

Morover, by (A.0.1) and (A.0.3) we have

t
D0, Vst ) — / O Z(t,,7,€) f (7, €)dedr
To

t
= [ 020075 et < CV5T
t—48

51
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so that
t
lim 0., Vys(t,x) = O0p, Z(t,x, 7,8) f(1,8)dédT, i=1,---my.
§—0t To
uniformly in |7y, T'] x Bgr. Together with (A.0.2]) this proves (3.3.2)) O

Lemma A.0.1. There exists a positive constant C' such that, for every z € S|z, 1
27" < Clizlls

Proof. Let z = (t,z), t > 0. We have

0
v1n3§uﬁ+|43ﬂ3+\/‘65m¢
t

B

Since t takes values in a bounded interval, the thesis directly follows by noting

‘eth‘B < sup !etB§|B |z|g < cilz|B
l€lp=1

0 Vit
/ e*Bbyds| < 2/
t B 0

The proof for the case ¢t < 0 is analogous. O

2
e” Bbar

dr < oVt
B

Lemma A.0.2. For every positive € and T there exists a positive constant C such that

T¢(2,0) = To(z, Q)| < Cll0™" oy ¢[I°T=(%, ),
10~ oy ¢]|

|8931FC(Z7<)_6I1F9(27<)| SC \/t—iT FE(ZaC)7
-1 o a
90, T2, 0) = B Tal, ) < 1 W g,

t—T

fori,j=1,--- ,mg and z,(,0 € R with0 <t —7 < T.

Proof. We first note that

02,T(2,¢) = —(C;y gw);T0(2,C)
Oz, T0(2,C) = ((C;wsl,ew)i(crftl,ew)j = (C;,tl,é‘)ij) IVIENG)
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where (s,w) = (1,&) oy (t,z) as usual. Then the thesis follows from the following estimates

1 _ 1 0”9_1 oy CHQ (AO4)
\/detcryt,c \/detCT’t,g \/detCT’t’C ’ e
1 1
exp <2< ;tl’cw,w>> — exp (2<C;t179w,w>)‘ (A.0.5)
1
< —1 e} _ —1
< Clly o 1 oxp (~ 5 05 )
< @ .0.
(€7t ew)i = (€51 fne oy <[] (A.0.6)
(€t — €] < So ov (A.0.7)
(€50 (€70 ) = (5 )i Cr ) }<f||0 toy ¢l (A.0.8)
Consider (A.0.4): by Remark we can write
1 C dCtCT,t7( - dCtC7—7t79

5Q

\/detCT,t,C a \/detC-,—’t,g o \/detctmg

g e (2 ) () - 2 () o ()
< gt [P () e ()|
Note that
i |(€ene=om ()2 () )

< Cllo~" oy ¢

1 1
Dy |—=|CDo | —= ||| <C'[l67" * A.09
o(Z5)emn ()| < coteva (4.09)
Indeed, if we take again s < § as in Remark

(D)o ()]l (H)em () <o

On the other hand, for § < s < T we can take the Maximum of the norm, that is limited.

This conludes the proof for (A.0.4). Now consider (A.0.5). We have

1, - 1, _
exp (—2<C7’t1’<w,w>> — exp (—2<CT73’9w,w>> ’

_ 1 _
< ‘<(C‘r,g,( C‘rt10)w w>‘ exXp <_2ILL<CS 1w7w>>

HDO $)(Cric C;,tl,e)po(\/g)H In|? exp (21M<C51W,w>)

<C HDO (Cftlc C;t@)DO(\[)" exp (—2(;5)@31%@)



54 APPENDIX A. PROOFS OF PROPOSITIONS 3.3.1, 3.3.2 AND 3.3.3

by Proposition [3.1.16| Moreover, by (A.0.9)
HDO (CTtIC Cr_te DO H

< [Patvaic Pt | [P0 (75 ) Cnte = Coanrmn (7 )| [Potvorcs oot

< C|I¢ oy 0] (A.0.10)
Next we consider (| - By (A.0.10) we have
‘(C‘Ft(w ‘rtew ’_
1 1 e
_ -1 _ -1 N 1 1 e 1 e
B ‘<(CT¢7< CT’tv‘g) w,eﬁ’ ‘<D0 <\[> (Cr,t,c Cm,e) Do <\ﬁ) , \/§>
< [Putv) (€t = €aio) Potva)| < 1 v o

By substituting w with e; we also get (A.0.7] .
Finally, consider (A.0.8): we have

(€7 c)ilCrt w)s = (€5 i (€ gy =
-1 —1 -1 -1 —1 -1
< [{(Cric = Crta) wrea(Crtgw en)| + [(Crt g en{ (Crie = Crte) wrea)
C — «a
< 07 oy ¢ 2

with the analogous arguments. O

Proof of Proposition[3.3.9 We first show that the integral in (3.3.5) exists. Fixed R > 0 consider
x € R? such that |z| < R. For a suitable Ry > R to be determined later we set

/t/ Opyz; Z(t, 0, 7,8) f(7,€)dEdT
Ty JRe

t t

:/ 3miij(t,I,T,f)f(T,é)dde+/ / O, Z(t 2, 7,8) f(7,§)dEdT
T(] BRI TO ]Rd\BRl

=K + K.

where Bg, denotes the ball in R? centered at the origin with radius Ry > 0.
Consider K. For fixed 7 €]Ty,t[ and y € R, denoting 6 = (7, y) we have

: azﬂjZ(t,l’,T,f)f(T,f)df (A.0.11)
-/ | a2, (1(7,6) = T ) de
fe) [ O (20079 = Tt 7 )y
it [ O Tyl10.7. 6l

=hL+L+1Is
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First consider I. Let y = vy -(x): by Proposition [3.1.17| and the hypothesis on f we get

|h\<c/" t$75|f—%ﬁun§%

By Lemma we have
|£ _’Yt,T(‘r>|B < C|l‘ - 77,t(€)|3 =CvVt— 7-|77|B

where nn = Dy ((t - T)*%) (x — vr.+(€)) with the usual notation. Therefore, by Proposition|3.1.16

we deduce Tt o
|[1| SC ,x,T,E)dfg 1 .
rRe (t—71)72 (t—T)1_5

Consider now Io: by Lemma [A20.2) and the growth estimate for f we have

re(t, z,
mlse [ EREED o @) a
Br, -7

2 [ TE(ta,7,8) c
< Cale] / — 7(1 d¢ < o
S e S T

repeating the argument above.
Next consider Is. For w € R? we have

8:cjrw(ta z,T, f) = - (C'r_,g,w(m - ’YT,t(g))) -Fw(tv'raTa 6)7

J

(Crtula = 7ma(€),, (e777)

[
M=

85j1—‘w(t,37,7',€) ki

o
Il
MR

=0z, T (t, 2, 7,€) (e_(t_T)B)

[
M=

kj

=~
Il
MR

Thus it holds that
Valu(t,2,7,€) = = Vel (t, 7, 7,€) (-77)

Therefore we have

aac,-xj FUJ (t? x? T? €) \w:@dé.

BRl

S5 e 07)

Br, kj

_ Z /aB t T, T, §)|w 9 (e_(t_T)B)k‘deU(f)

J

by the integration by parts formula and denoting by v the outer normal to 0Bg,.

Proposition 3.1.17] we can conclude that

I3 <
|3|7 t—T

Thus, by
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Now we consider Ky. With fixed x, there exists a positive constant C' such that
|z = ¥r2(§)] = B2 >0

for |¢] > Ry with R; suitably large. Then
| K| <C/ / 2.8 cue® gear
To ]Rd\BR t—T1

2 (o
S Ce‘zl / / 7(2 exp _M + C2|w|2 dwdT
To Jw|>Ry (t—7)3 L 2p

by the change of variable w = x—,;(£) and (3.1.11)). The last integral surely converges provided
that T'— T} is suitably small by Lemma |3.1.12
This proved the existence of the integral. Next we prove (3.3.5). Set

Vi(z) = ViV (2) + V2 (2)

where

t
VO (t,2) = /T 0 /B . Z(t 2,7, &) f(r, €)dédr,

t
(2) —
vPwn=[ [ gy, DT OI s

We aim to prove that
t
Ou,a, ViV (t2) = / / O, Z(t, 2, 7,€) f (7, €)dEdT, (A.0.12)
To BRI
t
O VI (t,7) = / / Dor, Z(t,2,7,€)f (7, €)dedr (A.0.13)
To JR\Bg,
Equation (A.0.13)) follows from Lebesgue’s theorem. To prove (A.0.12f) we set
V(l) t,x) / / Z(t,x,7,8)f(r,§)dédr, 0< 6 <t—Tp.
By the dominated convergence theorem and Proposition
lim 9,,V,y(t,z) = lim / O, Z(t, 2,7, €) f (7, ) dedr
§—0+t ? ] Br,
1
= / / By, Z(t,x,7,6) f(1,€)dedr = 8,V (¢, 2).
To BRl
Hence, to show (|A.0.12)) it suffices to prove that

t
li LV :// AL déd
o O Vi G0 = o f Ome BT OFT e
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uniformly on |y, T| x Bgr,. We have
t
Ou,a, Vi3 (t. 1) — / O, Z(t, 2,7, ) f (7, €)dEdT
To BRI

= [ )+ )+ dar e
where

W)= [ O, 2t 7 (F() = Tl de
J2(T) = f(T7 y) 6a:mj (Z(ta T, T, 6) - Fw(tvx’T’ §)|w:y) dg§

BRI

Tor) = £ [ O Tl ey

Proceding as for the estimates of I1, I, I5 in (A.0.11)), by choosing y = v, - (z) we get

/t 2 () + Jo(r) + Ja(r)| dr

)

<C/t 1 =+ 1 =+ d

— o T
t—s \(t—7 1-3 (t_T)lij Vi—T

O

Proof of Proposition[3.3.3. As in the proof of Proposition we split the domain of the integral
in |Ty, t[x Bg, and |Tp,t[x(R?\ Bgr,). We consider the former. Set

t—48
Vs(t, ) = / / Z(t,x:m,€) (7. €)dédr
T Br,
and consider the integral path of Y starting from z:

7R R F(s) = (Hs), a(5)) = (t+ 5,70045())

Clearly %'ﬂ?(s) = (1,—Bxz(s) — bs) = Y (v(s)) a.e and 5(0) = z.
Let |s| < 2, then we have

V(8);7:8) — T t=9 y(s): T, &) — T
Vs(3(s); ,5)8 Vs(t,a;7,§) :/ /B Z(7(s); ,5)8 Z(t, z; 75)]0(775)6@7
1 t+s—0 N
+;/t_6 /BR1 Z(’Y(S)?Taf)f(T,f)dfdrzll+I2

We should put s to 0. Formally

ti ZORTE) 2 ZEBTE) _ 4 5 0o = v Z(ai7,6) e
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Morover, since Z is the parametrix and by Proposition [3.1.17] we have

~ (ZG()im8) — 2(t,77,8)

1 t+s ™Mo t+s 1“6 ~ .
L[S o 26 an < £ [ EOT g,
s Ji ] s Jy t+o—T1

Then for |s| < § and Ty < 7 < t — § the integrand is a bounded function of £ €]Tp, t — §[xR<.
Thus we have

t—5 ~/ . ) t—5
lim / ZOs)im8) — ZT8) b eygedr / Y Z(t,2:7,€) f(, €)dedr
Br, T Br,

s—0 . S

On the other hand
t4+s—48
/B Bl =091 - 0.6d¢ | / /B ) 7€) f(r.€)dédr
/ /B Z(t,xit — 5.6) — Z(3(s); 08+t — 5,6)) (6.t — 8)dedo

/ /B $)i 08+t —8.6) (F(t—6.€) — [(€, 05 +1— b)) dedg

t+677')

(setting o = “=%
=1(z,5)+ J(z,9)

An application of the dominated convergence theorem shows that

hm[(z s) =0, ig%J(z,s) =0

s—0

So far we proved the following:

t—8
YVs :/T /BR1 YZ(t,:z:;T,E)f(T,f)dde+/ Z(t,x;t —0,8) f(t —9,8)dE

BRl

Now, since f is a continuous and bounded function on BrXx]Ty, T;1[ we have

lim Z(t,a;t — 8,6)f(t — 8,€)de = f(t,z)

§—0t Br,

and morover

/5/3 YZ(t’f”vﬂf)f(T,ﬁ)‘

WA

ig=1

< O||A|| oo (672 4 5972 4 51/2)

A” (1,8)0mix; Z(t, x;7,8) f(7, )| dédr




proceeding as for Proposition so that, for a.e t €Ty, Ty |

t
51lr(r)1+ ngﬁf = ‘/T LRI YZ(t7x;7_7 g)f(Ta £)d§d7— + f(tV‘T)
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