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Abstract

In questa tesi si affronta il problema di determinare la scala di

tempo di rilassamento alla distribuzione stazionaria di un random

walk sui nodi di un random network. A tale scopo si utilizza il teo-

rema di Wigner sulla distribuzione degli autovalori di una matrice

random per stimare il secondo autovalore della matrice stocastica

che definisce il random walk nel limite termodinamico. In partico-

lare nel primo capitolo si affrontano alcuni teoremi di teoria delle

matrici random per determinare come si distribuiscano gli autovalori

di matrici stocastiche i cui elementi opposti abbiano una correlazione

o meno. Nel secondo capitolo si ripercorre la teoria generale delle

catene di Markov e si collegano i risultati teorici alla determinazione

del tempo di rilassamento di un random walk su un network. Infine

si presentano alcuni risultati numerici a supporto delle tesi espresse

in precedenza.





Introduction

The aim of this thesis is to provide a framework in which Ran-

dom Matrix Theory can deliver appropriate results to the study of

random walk on a network.

From the theory of Markov chains applied to random walks on

graphs [3], [9], [12] we glean that main dynamical features may be

derived from the spectral properties of the stochastic matrix defined

by the network connectivity. Namely, the relaxation time scale to

stationary state is defined by the second largest eigenvalue of the

transition matrix, derived from the adjacencies of the network and

the node degrees. This result is relevant in applications since a great

variety of biological, economic and social systems can be represented

with a random walk, and thus the study about the relaxation pro-

cess towards the stationary state can be relevant to understand the

behaviour of the considered system out of equilibrium. The Wigner

theorem about spectral distribution of random symmetric matrices

turns out to be a powerful tool to cope with this problem [16] [17].

This theorem is the act of birth of Random Matrix Theory, stating

the limiting empirical spectral distribution of a symmetric matrices

whose entries are randomly chosen with unitary variance converges

weakly to a semicircle, and it is the analogue of the Central Limit

theorem in the space of random matrices. A generalization of such

theorem may be performed focusing on two main paths. The first
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one tries to introduce non-unitary variance, which means as a phys-

ical consequence that we are relating the distribution support with

the network features. We find that, reproducing Wigner arguments

in the original proof and introducing a new parameter to measure

the variance of the matrix elements, the relation between relaxation

time and eigenvalues is brought to be a relation between the matrix

elements’ variance, or alternatively the connectivity of the graph.

A numerical computation of the eigenvalues of a random graph has

been done, and the results support the thesis of an inverse corre-

lation between spectral gap and mean connectivity. The second

path involves breaking the symmetry of the matrix, which physi-

cally means violating the Detailed Balance Condition (DBC) which

ensures stationary equilibrium of the system to exist. In this case

the result is to be obtained from a theorem, the Circle law [1], [14],

about totally non-symmetric random matrices. This result is fur-

ther generalized to obtain a theorem describing the measure of the

eigenvalues of matrices whose elements show only partial correla-

tion, called the elliptic law [10], [11], [13]. This theoretical study

predicts that Non-Equilibrium Stationary States may show shorter

relaxation time than equilibrium ones, according to previous results

[7]. Running an analogue numerical simulation on matrices ran-

domly perturbed out of DBC we find support for our hypothesis, as

the distribution of eigenvalues stretches into an ellipsis. However,

further analysis about the pertinence of such law may be needed to

assert such results hold in general.
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Chapter 1

Spectral Distribution of

Random Matrices

Random Matrix Theory (RMT) dates back to the early devel-

opment of nuclear physics in the 1950s. In an attempt to ex-

plain the energetic structure of nuclei of heavy elements, E. P.

Wigner suggested that the energy levels should not be computed

from Schrödingers’ equation. Instead, the nucleus should be de-

scribed by n × n Hamiltonian matrices with elements drawn from

a probability distribution with only weak constraints dictated by

symmetry considerations. Under these assumptions and a mild con-

dition imposed on the probability measure in the space of matrices,

one finds the joint probability density of the n eigenvalues. Based

on this consideration, Wigner established the well-known semicircu-

lar law. Since then, RMT has been developed into a big research

area in mathematical physics and probability. We will review some

of the historic results and some of the most recent developments in

a field that, since its birth, have found a extremely wide range of

applications, spanning from nuclear physics to telecommunications

engineering.
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1.1 The Wigner Law

The cornerstone and historic origin of RMT is the Semicircu-

lar Law theorem, proved by Eugene P. Wigner in 1955 while try-

ing to establish an approximated solution for large atomic nuclei.

The model, although being somewhat accurate, was soon outdated.

Nonetheless its core, i.e. the fact that the limiting distribution of

large symmetric random matrices’ eigenvalues tends to a semicircle

function, soon laid the ground to a new field of research on random

matrices which has been producing suitable results in many other

fields of knowledge.

1.1.1 Preliminary definitions

In order to study the probability distribution of eigenvalues we

need to introduce the Empirical Spectral Distribution of a random

matrix.

Definition 1.1. Let An be a n x n symmetrical square matrix and

λj its eigenvalues. We define the Empirical Spectral Distribution

(ESD) of A, µA as

µA(x) =
1

n
#{j < n : λj ≤ x} (1.1)

If the matrix is not symmetrical the eigenvalues may be not real,

so the above definition should be changed as follows:

µA(x, y) =
1

n
#{j < n : R(λj) ≤ x, I(λj) ≤ y} (1.2)

where x, y are respectively the real and imaginary parts of the

eigenvalues.

In order to prove the Wigner Law the first formula shall suffice,

as the statement involves symmetric matrices. Nonetheless we will
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make use of the latter definition in the following theorems.

A Wigner matrix is a Hermitian matrix whose entries:

• on the diagonal are independent and identically distributed

(iid) real random variables with finite variance.

• above the diagonal are iid real random variables having mean

zero and unitary variance.

1.1.2 The Semicircle Law

We state the result that gave birth to random matrix theory, due

to Wigner [16], [17]. The proof can be shown by using two different

approaches: one involving Stieltjes transform and another, the one

used historically by Wigner, that is more ’physical and is based on

explicitly counting the moments of the distributions. We shall use

the latter, but Stieltjes transform will be used later on, as it is a

really powerful tool in random matrix theory.

Theorem 1.1.1 (Semicircle Law). Let Xn be a n x nWigner matrix,

and let Wn = 1√
n
Xn , then, as n→∞, µWn(x) converges weakly to

µsc(x), where

µsc(x) =


1

2π

√
4− x2, if x ∈ [−2, 2]

0, otherwise
(1.3)

Before the proof, it is worth discussing that the theorem derives

the weak convergence of the measure, that is the convergence under

the law of the Large Numbers. This classic result in probability

theory will be implicitly applied for all the theorems we will discuss.

Proof. The key concept of the proof is to show that the expected

moments of Wn and those of the semicircular distribution coincide
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in probability. Therefore the first task to comply with is to calculate

the moments of the semicircular distribution, that is
∫∞
−∞ x

kµsc(x)dx.

As we notice that µsc(x) is an even function on a symmetrical in-

terval, all its odd moments are zero, therefore only the computation

of even ones is required. Let m2k be those moments, then

m2k =
1

2π

∫ 2

−2

x2k
√

4− x2dx =
1

π

∫ 2

0

x2k
√

4− x2dx.

By substituting x = 2
√
y

m2k =
1

π

∫ 1

0

22k+1yk−
1
2

√
1− ydy =

=
22k+1

π

Γ(k + 1
2
)Γ(3

2
)

Γ(k + 2)
=

1

k + 1

(
2k

k

)
= Ck

These moments are then equivalent to the so-called Catalan

numbers Ck.

The second step of the proof is the calculation of the expected

moments of the ESD. At first we get a nicer expression:

mk(Wn) = mk(µWn) =

∫
xkµWndx =

1

n

n∑
i=1

λki =

=
1

n
tr(W k

n ) =
1

n1+ k
2

tr(Xk
n) =

1

n1+ k
2

∑
i

X(i).

where λi are the eigenvalues of Wn and X(i) = xi1i2xi2i3 · · ·xiki1 ,
i representing the multi-index (i1, i2, i3, · · · ik).

Now we need to calculate the expected value of these mk(Wn),

that is

E(mk(Wn)) =
1

n1+ k
2

∑
i

E(X(i))
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where E(x) means the expected value in probability of x. We

shall make use of some results in combinatorics to do so.

For each i = (i1, i2, i3, · · · ik), each ij taking values from (1, · · · , n),

build a graph G as follows: Draw a horizontal line and plot the

i1, i2, · · · ik of i on it. The distinct numbers are the vertices, then

draw k directed edges ej from ij to ij+1 , j = 1, · · · , k, where

ik+1 = i1 to close the graph. We will mark the number of each

distinct ij by t. Such a graph is called a Γ(k,t)-graph, and is defined

by a triple (V,E, F ), where V is the set of vertices, E is the set of

edges and F (e) = (v1, v2), that is the function which, given an edge,

gives its terminals.

We say two Γ-graphs are isomorphic if they can be turned one

into another by a permutation of (1, · · · , n), this defines classes of

isomorphism, each containing n(n − 1) · · · (n − t + 1) graphs. We

define a Γ-graph as canonical if the following properties hold:

• The vertex set is V = {1, · · · , t} and the edge set is E =

{e1, · · · ek}

• There is a function g from (1, 2, · · · , k) (1, 2, · · · , t) satysfing

g(1) = 1 and g(i) ≤ max{g(1), · · · , g(i−1)}+1 when 1 < i ≤
k

• Its function F (e) = (g(i), g(i + 1)), with the condition g(k +

1) = g(1) = 1 to keep it consistent with ik+1 = i1.

These canonical graphs can be regrouped in three main cate-

gories:

• Γ1(k) graphs: every edge coincides with another edge of op-

posite direction, and the graph of non-coincident edges forms

a tree.
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• Γ2(k, t) graphs: there is at least one non coincident edge.

• Γ3(k.t) graphs: all the remaining canonical graphs.

Now it is time to count them. The number of Γ1(k) graphs when

k = 2p is in fact 1
p+1

(
2p
p

)
. To show that let us proceed by defining

H : E → {−1, 1}, which takes the value 1 if the edge (called an

innovation) links (iα, iα+1) and iα+1 /∈ {i1, · · · , iα}, and −1 other-

wise. We call "characteristic sequence" of the graph the sequence

(H(e1), H(e2), · · ·H(ek) = −1) = (a1 = 1, a2, · · · , a2p−1, a2p = −1).

There is a one-to-one relation between characteristic sequences and

Γ1(2p) graphs, so it is equivalent to count the number of graphs or

their characteristic sequences.

The number of possibilities to arrange arbitrarily p ones and

p minus ones is of course
(

2p
p

)
. The number of non-characteristic

sequences must be subtracted. In order to count them we shall

notice at first that the characteristic sequences partial sums are

always non-negative, though ending always to be zero. That is

Sl =
l∑

i=1

ai = a1 + a2 + · · · al ≥ 0

If an S is negative (non-characteristic), that means there is an

index h for which Sh = −1. We define a new sequence of bj, taking

values bj = aj if j ≥ i, and bj = −aj if j > i. This sequence contains

a −1 more than the previous one, and its number is
(

2p
p−1

)
.

Hence the number of characteristic sequences is

(
2p

p

)
−
(

2p

p− 1

)
=

1

p+ 1

(
2p

p

)
.

For what concerns the number of Γ3 graphs, we notice that those

graph either contains a cycle of non-coincident edges or it contains

coincidence class of at least three edges. That is t ≤ k+1
2
.



1.1 The Wigner Law 7

With this results, we can proceed to the evaluation of the sum.

We regroup the summation
∑

iE(X(i)) by the categories Γ1,Γ2,Γ3,

so that E(mk(Wn)) = S1+S2+S3

n1+ k2
.

Each Sj is the sum of all the canonical graph in the category j

of the sum of all the isomorphic graph, that is

Sj =
∑

Γ(k,t)∈Γj

∑
G(i)∈Γ(k,t)

E(X(G(i))).

For the assumptions on the randomness of the matrix, S2 = 0.

We know that the number of Γ3 canonical graphs is t ≤ k+1
2
,

therefore

|S3| =
O(nt)

n1+ k
2

= o(1)

.

The only contribution left is S1, we already know that the num-

ber of canonical graphs is 1
k+1

(
2k
k

)
. As we can notice, there are no

such graphs if k is odd, so we set k = 2m. The formula to compute

S1 is then

S1 =
1

n1+m

∑
Γ(k,t)∈Γj

n(n− 1) · · · (n−m) =

=
1

k + 1

(
2k

k

)
(1− 1

m
) · · · (1− m

n
)→ 1

k + 1

(
2k

k

)
So as the size n of the matrix approaches infinity, we have

E(mk(Wn)) =
1

k + 1

(
2k

k

)
= Ck

As the expected moments of the ESD and those of the semi-circle

law coincide, the two distributions also do.
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1.1.3 Generalizing the semicircular law

The previous result is an evergreen in Random Matrix Theory,

and it has been used in a multitude of fields ranging from nuclear

physics to telecommunications and finance. Thus we will try to gen-

eralize it. Indeed we may wonder what happens when the variance

in the hypotheses is not unitary. While the physical motivation for

this case shall be more clear in the second chapter, nonetheless it

is a question worth asking per se. The answer to this question at

its core relies on the fact that if we re-scale the variance we simply

deform the support on which the distribution lies, then as the area

must not vary, the circle is stretched into an ellipsis. However the

following approach has some interest as we see that the Wigner law

is recovered as we consider fluctuations.

Theorem 1.1.2. Let Xn be a symmetric matrix whose elements

follow a PDF with E(xij) = 0 and finite variance V 2 then, as n →
∞, µXn(x) converges weakly to σ(x), where

σ(x) =


1

2πV 2

√
4V 2 − x2, if x ∈ [−2V, 2V ]

0, otherwise

Proof. Let us imagine to add small symmetric matrix δXn to Xn.

δxij are the matrix element, being the mean value E(δxij) = 0 and

the variance E(δx2
ij) = v2. We make use of perturbation theory to

calculate the variation of the eigenvalues in an interval dλ around

λi

Z(λi) = δxij +
∑
i 6=j

|δxij|2

λi − λj
+ · · ·

We can make considerations about those two terms. On the ac-

count of the former, the average contribution of the term δxij is to



1.1 The Wigner Law 9

be neglected, as its mean is zero. While the latter does contribute,

and we can estimate the term |δxij|2 with the variance of the per-

turbation v2. Then the continuum limit for the variation becomes

Z(λ) =

∫
v2σ(λ′)dλ′

λ− λ′

To be precise we mean the principal part of this integral, as we

are not interested in null eigenvalues to appear. Then we call the

total variance E(x2
ij) = V 2 and we calculate the variation of the

number of eigenvalues in the interval (λ, λ+ dλ), that is

σ(λ+ dλ, V 2)Z(λ+ dλ, V 2)− σ(λ, V 2)Z(λ, V 2) =

=
∂(σZ)

∂λ
dλ = −v2 ∂σ

∂V 2
dV 2

If we re-scale all the matrix by a factor c, the eigenvalues scales

as well by the same factor, while the variance scales as c2, so

σ(cλ, c2V 2)cdλ = σ(λ, V 2)dλ.

Putting cV = 1, we have

σ(λ, V 2) =
1

V
σ

(
λ

V
, 1

)
=

1

V
σ1

(
φ =

λ

V

)
this yield

Z(λ, V 2) =
v2

V
Z1(φ) σ(λ, V 2) =

v2

V
σ1(φ)

If we insert those relations in the estimate for the series we get

Z1(φ) = P

∫
σ1(ζ)dζ

φ− ζ
while if we insert them in the variation relation we have
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∂(Z1σ1)

∂φ
=

1

2

∂(φσ1)

∂φ

then, since for symmetry requirements when φ = 0 also Z1 = 0, we

get to the equation

Z1(φ) =
1

2
φ = P

∫ +∞

−∞

σ1(ζ)dζ

φ− ζ
.

The generalized semicircular distribution σ(φ) = C
√
A2 − φ2

where |φ| < A and 0 if |φ| > A satisfy this condition, as we integrate∫ √
A2 − ζ2

φ− ζ
dζ =

=
1√

A2 − φ2
(−
√
A2 − ζ2

√
A2 − φ2+

+ A2ln
(√

A2 − ζ2
√
A2 − φ2 + A− φζ

)
−

− φ2 ln
(√

A2 − ζ2
√
A2 − φ2 + A2 − φζ

)
+

+ φ
√
A2 − φ2arctan

(
ζ√

A2 − ζ2

)
+ φ2−

− A2 ln (φ− ζ))

Taking the principal part under the limit of ζ going from −A to A

the previous equation yields π as a totally unexpected result.

Therefore we have the conditions

C =
1

2π

and ∫
σ(φ)dφ = 1

Thanks to these constraints on the constants we can write the solu-

tion that is the generalized circular law for the variance V 2

σ(x, V 2) =
1

2πV 2

√
4V 2 − x2
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1.2 The Circle Law

Wigner Semicircular law gave birth to modern random matrix

theory, and its generalization, also known as the circular law con-

jecture, challenged scholars since the Fifties. A seminal result was

given by Girko [5] that, despite he provided rather rough proof, in-

troduced several tools and concepts that Tao and Vu and Bai used

in their most recent proof [14], [1]. This result generalizes the semi-

circle law to the case of non symmetric random matrices. We shall

review the concepts behind the proof, and later see the further gen-

eralization called the elliptic law.

1.2.1 The Stieltjes transform

A fundamental tool in Random matrix theory is the Stieltjes

transform, whose definition and properties shall be stated in this

section.

Definition 1.2. Let µ be a measure, then its Stieltjes transform is

defined as:

sµ(z) =

∫
1

x− z
µ(x)dx (1.4)

The Stieltjes transform has the following properties:

Theorem 1.2.1 (Inversion Formula). Let a, b be two continuity

points for F , with a < b, then

F ([a, b]) = lim
ε→0+

1

π

∫ b

a

IsF (x+ iε)dx

Theorem 1.2.2. Let {Fn} be a sequence of Lipshitz functions, and

limx→∞ Fn(x) = 0 ∀n, and Fn(x)→ F (x) as n→∞, then

lim
n→∞

sFn(z) = sF (z)
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Hence, as the criteria for uniqueness of the limiting function are

met only by the boundedness of {Fn} and to our purposes we will

deal with bounded ESD, we shall assume this limiting property to

always hold true.

Being µ the ESD of the matrix A, then its Stieltjes transform,

which will now on be written as sµ, is

sµ(z) =

∫
1

x+ iy − z
µ(x, y)dxdy =

1

n

n∑
k=1

1

λk − z
(1.5)

Moreover, if we have that µ is analytic everywhere (except in its

poles) then its real part already determines the eigenvalues, and it

is:

R(sµ) =
1

n

n∑
k=1

R(λk)− x
|λk − z|2

=

= − 1

2n

n∑
k=1

∂

∂x
ln
(
|λk − z|2

)
= −1

2

∂

∂x

∫ ∞
0

ln (w) ν(z, w)dw

where by ν we intend the ESD of the matrix H = (A− zI)∗(A−
zI)

The previous property is one of the key concept behind the cir-

cular law. As a matter of facts it gives a relation between the ESD

of a non-Hermitian matrix A and its Hermitian counterpart H. In

the following section we will use this result in order to compute the

characteristic function of the ESD of a non-Hermitian matrix, thus

establishing the circular law.

1.2.2 The Circle Law

Since the 1950s, right after Wigner’s proof of the semicircular

law, it has been conjectured the universality of this result, that is,
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in some sense, the analogue of central limit theorem with respect

to random matrix eigenvalues. The central limit approach to the

problem is in fact quite troubled, therefore the proof will be carried

on in a different fashion.

Theorem 1.2.3. Let Xn be a random matrix whose elements follow

a bounded PDF with finite 2 + η moments, (η > 0) mean zero and

unitary variance, then its ESD tends to the circular law, i.e. its

eigenvalues are uniformly distributed over the complex disc of radius

one.

Proof. For the sake of synthesis the proof we provide will not be

complete as it would require and only the main features will be

fully shown. The reader can anyway find more details about this

result in [14] and [1].

We need to show that in the limit of large n the measure µn
associated with the ESD of Xn converges to µ that determines the

circular law. This shall be done by calculating the characteristic

function cn of the ESD µn (i.e. its Fourier transform) and then

showing its limit converges to c that determines µ.

It is useful to recall that the characteristic polynomial can be

expressed in terms of ESD as

exp

{
n

∫ ∞
0

ln (x) µ(x)dx

}
= det(A)

therefore we can exploit this formula to change the matrix whose

ESD we will actually analyze, in this way:

ln
(
det
(√

(X − zI)(X − zI)∗
))

= n

∫ ∞
0

ln (x) ν(x)dx

where ν will be the ESD of the Hermitian matrix (X−zI)(x−zI)∗.
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Then we compute the characteristic function of the real part of

the Stieltjes transform of µ, that, as seen before, already determines

the eigenvalues:

∫∫
R2

R(sµ)eius+ivtdsdt =

= − 1

n

n∑
k=1

∫∫
s−R(λk)

(R(λk)− s)2 + (I(λk)− t)2
eius+ivtdtds =

= − 1

n

n∑
k=1

∫∫
s

s2 + t2
eius+ivt+iuR(λk)+ivI(λk)dtds

It is to be remarked that the previous integration is not inter-

changeable, as Fubini theorem cannot be applied since s
s2+t2

is not

integrable over the whole R2. We have then to iterate the integra-

tion:

∫∫
x

x2 + y2
eiux+ivydydx = π

∫
sgn(x)eiux−|vx|dx

= 2πi

∫ ∞
0

sin(xu)e|v|xdx

=
2πiu

u2 + v2

Inserting this result in the previous one, we get the fundamental

Girko’s identity:

c(u, v) =

∫∫
R2

eiux+ivyµn(x, y)dxdy =

=
u2 + v2

4πiu

∫∫ (
∂

∂x

∫ ∞
0

ln (w) νn(z, w)dw

)
eiux+ivydxdy

The core problem at this point is that the logarithm is not

bounded neither at 0 nor at ∞, so the convergence of νn to a limit

does not imply the convergence of the whole expression. This could
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lead to some serious problems while exchanging limits or derivatives.

For this reason, we shall use the result that under the conditions of

the finiteness of 2 + η moments, the logarithm is uniformly inte-

grable, as stated in [10], Theorem 5.2.

Then, assuming that the limit of the νn exists and is limn→∞ νn =

ν, we calculate the limiting expression

∂

∂x

∫ ∞
0

ln (w) ν(z, w)dw =
1

π

∫∫
x2+y2≤1

2(s− x)

(s− x)2 + (t− y)2
dxdy

= R

(
2

π

∫∫
x2+y2≤1

1

(s− x) + i(t− y)
dxdy

)
= R

(
2

π

∫ 1

0

(∫ 2π

0

ρdθ

z − ρeiθ

)
dρ

)
= R

(
2

πi

∫ 1

0

(∫
|ξ|=ρ

dξ

ξ(z − ξ)

)
dρ

)
= R

(
2

πi

∫ |z|∧1

0

2πi

z
ρdρ

)

= 2R

(
|z| ∧ 1

z

)

=


2s

s2+t2
if s2 + t2 > 1

2s otherwise

For the sake of notation, we used the wedge symbol ∧ to indicate

the lesser of the two integration extremes.

As we insert this result into Girko’s identity, we get an expression

of the characteristic function that coincides with the Circle law one,

therefore also the measures coincide.



16 1. Spectral Distribution of Random Matrices

1.3 The Elliptic Law

The long-debated Circular law has, in its hypotheses, the con-

dition that the matrix should be random. We need to refine this

statement by making clear what we really mean by random entries.

Next theorem provides a clearer framework in which such statements

can be asserted. Indeed the previous theorems have to deal respec-

tively with symmetric and totally non-symmetric matrices, and we

will try to infer such results by introducing a way to measure the

symmetry of a random matrix. Let E(xijxji) be the expected value

of the product of the elements xij, xji of the matrix X, that is its

weighted average value. We immediately notice that, in order for a

matrix to be asymmetric, such expected value must be zero, and, if

we want it to be symmetric, its value must be unitary. These results

appears to be some kind of limiting cases to a wider distribution law,

which we will try to assert by making use of this new parameter of

symmetry of random matrices.

A useful approach to this problem is one that recalls electrostat-

ics. Let sµ(z) be the Stieltjes transform of the ESD µ of the matrix

Iz − A, let us write it as

sµ(z) =

∫
µ(w)

z − w
dw

the analogy begins to appear as we integrate sµ(z) along the border

∂R of an arbitrary region R

∫
∂R

sµ(z)
dz

2πi
=

1

n

n∑
k=1

∫
∂R

1

z − w
dz

2πi

=
1

n

n∑
k=1

1 =

∫
R

µ(w)d2w

Then we recall the Divergence theorem:
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∫
R

(
∂

∂x
sµ(z) + i

∂

∂y
sµ(z)

)
d2z

2π
=

∫
∂R

sµ(z)
dz

2πi
=

∫
R

µ(z)d2z

The analogy is then settled, as sµ is the fundamental solution

of a potential Uµ defined by 2R(sµ) = −∂Uµ
∂x
, 2I(sµ) = −∂Uµ

∂y
and

which obeys to the analogue of Poisson equation

∇2Uµ = −4πµ. (1.6)

An useful reference to expand this analogy can be found in [8].

Keeping this in mind, it is time to state the main result of this

section.

Theorem 1.3.1. Let Xn be a matrix whose elements xij are inde-

pendent and follow a random PDF, with E(xij) = 0, E(x2
ij) = 1 and

E(xijxji) = ρ. Then, as n approaches ∞, the ESD µn of Xn tends

to the limit

µ(x, y) =


1

π(1−ρ2)
if x2

(1+ρ)2
+ y2

(1−ρ)2
≤ 1

0 otherwise

Proof. This proof will be similar to that of [13], however some of

the steps taken there were not completely legitimate (namely the

commutativity and integrability of ln).

As we have done before, we need to calculate the potential

Uµ(x, y) = − 1

n
ln (det ((X − zI)(x− zI)∗))

and as previously, and is stated in [10], we assume the logarithm

is uniformly integrable and commutes with the expected value op-

erator.

Then the integral becomes
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Uµ(z) =
1

n
ln

(
E

(∫ ∏
i

d2wi
π
× exp

{
−ε
∑
i

|wi|2 −
∑
i,j,k

w∗(z∗δik − ATik)(zδkj − Akj)

}))

where we have added a small parameter ε to avoid zero eigenval-

ues to appear, as in [15]. Then we introduce r = 1
n

∑
i ziz

∗
i

enUµ =

∫ ∏
i

d2wi
π

exp

{
−n
(
εr + ln (1 + r) +

rx2

1 + r(1 + ρ)
+

ry2

1 + r(1− ρ)

)}
and by substituting σ = 1

r
we get

enUµ =
nn

Γ(n)

∫ ∞
0

dσ

σ
exp

{
−n
(
ε

σ
+ ln

(
1 +

1

σ

)
+

x2

σ + 1 + ρ
+

y2

σ + 1− ρ

)}
.

As we are interested in the limit of large n, this integral can be

estimated by the saddle point method, that is we approximate the

integral to be peaked over the point of maximum of σ. The equation

for its maximum point is

1

1 + σ2
− ε

σ2
− x2

(σ + 1 + ρ)2
− y2

(σ + 1− ρ)2
= 0

and the Green function/Stieltjes transform at that point is

sµ(x, y) =
x

(σ + 1 + ρ)
− i y

(σ + 1− ρ)
.

Now it is time to resolve the limit of ε, if we expand in powers of σ

we get

ε = σ2

(
1− x2

(1 + ρ)2
− y2

(1− ρ)2

)
+ o(σ3)

then, we have that inside the ellipse whose semiaxes are 1 + ρ and

1− ρ, σ ∼
√
ε→ 0 the Stieltjes transform is
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sµ(x, y) =
x

(1 + ρ)
− i y

(1− ρ)

On the other hand we have to evaluate sµ outside the ellipse.

This can be done by solving the saddle point equation and substi-

tuting the result for σ in the expression for sµ, yielding the following

result:

sµ(z) =


x

(1+ρ)
− i y

(1−ρ)
if x2

(1+ρ)2
+ y2

(1−ρ)2
≤ 1

z
2ρ

(1−
√

1− 4ρ
z2

) otherwise

As these expression for sµ are inserted in the previous relations

2R(sµ) = −∂Uµ
∂x

= Ex −2I(sµ) = −∂Uµ
∂y

= Ey

using the Poisson-like equation

∇2Uµ = −∇ · E = −4πµ

we get the thesis.

1.3.1 Consistency of the Elliptic Law

The Elliptic Law looks like the most powerful tool to tackle into

the analysis of spectrum of a random matrix, as it is a statement

about a really wide class of matrices. Nevertheless we must retrieve

the classical results as the semicircular law to verify its consistency

in the theory of random matrices. We immediately notice that the

Circle law is won back just by having ρ = 0. At a first glance the

limit as ρ → ±1 may look singular, as one of the terms, either

the real or the imaginary one diverges. Besides the fact that this

divergence can be naively explained noticing that either the real or
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the imaginary part of the eigenvalues have zero value, we proceed

in a more formal way.

We first integrate the Elliptic Law with respect to y and to x,

thus yielding respectively the distribution of the real and imaginary

parts.

µR(x) =

∫
+(1−ρ)

√
1− x2

(1+ρ)2

−(1−ρ)

√
1− x2

(1+ρ)2

1

π(1− ρ2)
dy =

2
√

(1 + ρ)2 − x2

π(1 + ρ)2

µI(y) =

∫
+(1+ρ)

√
1− y2

(1−ρ)2

−(1+ρ)

√
1− y2

(1−ρ)2

1

π(1− ρ2)
dx =

2
√

(1− ρ)2 − y2

π(1− ρ)2

Then we have two limiting cases. One is the symmetric one,

i.e. ρ = E(xijxji) = E(x2
ij) = 1. In this circumstance we know

that there are only real eigenvalues, and as a matter of fact the

imaginary part distribution tends to a Dirac Delta centered in zero.

We immediately recognize the Semicircular Law

lim
ρ→1

µR(x) = lim
ρ→1

2
√

(1 + ρ)2 − x2

π(1 + ρ)2
=

√
4− x2

2π
= µsc(x)

The same procedure can be applied to the case in which ρ =

E(xijxji) = −1, that is total anti-symmetry. As before

lim
ρ→−1

µI(y) = lim
ρ→−1

2
√

(1− ρ)2 − y2

π(1− ρ)2
=

√
4− y2

2π
= µsc(y)

we recognize the Semicircular Law for the imaginary part, while

the Delta distribution of the real part tells us it has null value. This

fact is consistent with the theorem of linear algebra that states skew-

symmetric matrices have only pure imaginary eigenvalues, and it is

to be remarked that we found an analogue to the semicircular law

that is not explicitly present in the literature.



Chapter 2

Random Walks on Networks

2.1 Markov Processes on Networks

Random walks on graphs are ubiquitous in applied physics; from

chemical reaction pathways to transportation systems, from finance

to gene networks, we always model the system as a random walk

on a network. It is indeed a quite simple idea: we formalize a

random walk by assuming that, having a graph, each node exchanges

particles with its neighbours, the proportion according to a certain

transition matrix, called stochastic matrix. Let us consider a process

that consists in a particle moving from a state j to a state i, being

the probability of doing so dependent only on such states. This kind

of processes, i.e. those processes in which transitions depend only

on the present system state, are called Markov processes (chains),

from Russian physicist Andrey Markov who first studied them. As

a matter of fact a Markov process can be regarded as a random walk

on a certain graph. The passage from state j at time t to state i at

time t + 1 will be performed on the network by a jump from node

j to node i. The probability of this event to occur is described by

the Kolmogorov continuity equation
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pi(t+ 1) =
∑
j

πijpj(t) (2.1)

where we need to introduce πij, that is the probability of passing

from node j to node i. Of course for πij there are the boundedness

constraints:

∑
j

πij = 1 and 0 ≤ πij ≤ 1 (2.2)

We arrange those coefficients in a matrix Π and we call it the

transition probability matrix, or stochastic matrix. Indeed, the

stochastic matrix wholly represents the process, as it describes every

possible shift from one state to another.

Then it is worthwhile introducing the connectivity (or adjacency)

matrix C, whose elements cij may assume only the values 0 if the

nodes i j are disconnected and 1 if there exists a link between the

two. This matrix gives us the possible transitions between states,

but not their weights. To recollect the stochastic matrix from the

connectivity matrix we need to introduce a graph metrics, that is

weights for each node. We shall call this metric matrix G, whose

entries are defined by

gij =
δij
d(j)

and the stochastic matrix is given the product CG = Π. Being

the product of two matrices which in general do not commute, Π is

not symmetric. Indeed it is symmetric with respect to the metrics

introduced by G, this fact being shown by taking into account the

scalar product < u,v >= u ·Gv

< u,Πv >= v ·GCGv = CGu ·Gv =< Πu,v >
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Such condition of symmetry is in fact more profound than just

a mere calculation. Indeed it is a consequence of the equilibrium

condition, as it will be shown in the followings that the nodes degrees

define the stable condition of the walk. As the matrix’s symmetry is

recovered, so does the orthogonality of the eigenvectors, with respect

to the new metrics. Moreover, we can claim all the eigenvalues are

real, indeed by making a similarity transformation

G
1
2 ΠG−

1
2 = G

1
2CG

1
2 = Σ

Since the second matrix is symmetric its eigenvalues are all real,

and as similarity transformations do not alter the spectrum of a

matrix, the eigenvalues of Π are real. The entries of Σ will have the

form σij =
cij√
d(i)d(j)

, and will have to satisfy the constraints:

∑
i

√
d(i)d(j)σij = 1

E(σij) =
d(i)d(j)

M
√
d(i)d(j)

=

√
d(i)d(j)

M

where M =
∑

i d(i). Moreover these entries shall fulfill the con-

dition

∑
i

√
d(i)

d(j)
σij =

∑
i

cij
d(j)

= 1

We now compute the variance of the elements of Σ. As we know

that cij is a variable taking only values of 0 and 1, the variance reads

V ar(σij) =
1

M

(
1− d(i)d(j)

M

)
And by taking the thermodynamic limit of large N we can esti-

mate M ' Nd̄, thus yielding the variance to be

V ar(σij) '
1

Nd̄
+O(N−2). (2.3)
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2.1.1 Stationary Distribution

We can derive some useful properties from the stochastic ma-

trix to analyze the process. For instance, we might get interested

in finding the stable solution of the random walk. A stationary

distribution can be defined as follows:

Definition 2.1. Let p∗ be the vector of probabilities, then p∗ is a

stationary distribution if

p∗ = Πp∗ (2.4)

That is p∗ is the eigenvector of Π with eigenvalue λ∗ = 1

Indeed we can recast the Kolmogorov equation as

p(t+ 1) = Πp(t) (2.5)

where we simply put the pis in a vector p. This recursive equation

yields

p(t) = Πtp(0) (2.6)

then, substituting p(t) = p(t + 1) = p∗ we get the previous

definition.

Obviously the stationary distribution is the eigenvector of the

stochastic matrix with unitary eigenvalue. If we recover the sym-

metrized matrix Σ we have by construction that an eigenvector with

eigenvalue one can be made by node degrees (
√
d(1), d(2), · · · , d(N)).

This sets the condition for an invariant linear space orthogonal to

the stationary state ∑
i

√
d(i)xi = 0 (2.7)

Then, re-normalizing the vector
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ê1 =
1√
M

(
√
d(1), d(2), · · · , d(N)) (2.8)

we complete to an orthonormal basis with an orthogonal basis

of the invariant subspace êi i = 2, · · · , N . Thanks to these basis

vectors we can define an orthogonal matrix

O =


ê1

ê2

· · ·
êN

 (2.9)

which allows us to decompose the stochastic matrix in the form

Σ′ = OTWO (2.10)

where W is the matrix

W =


1 0 0 · · · 0

0 w22 w23 · · · w2N

· · · · · · · · · · · · · · ·
0 wN2 wN3 · · · wNN

 (2.11)

and W is a symmetric matrix with mean zero and finite vari-

ance, as in the statement of the Wigner law. Let us return to the

calculation of the variance of the elements of the stochastic matrix.

We may decompose the entries as

σ′ij = e1ie1j +
∑
h,k≥2

ekiwkhehj =
√
d(i)d(j)M +

∑
h,k≥2

ekiwkhehj

and compute the variance
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V ar(σ′ij) = E

(∑
h,k≥2

ekiwkhehj
∑
h′,k′≥2

ek′iwk′h′eh′j

)
=

=
∑
h,k≥2

ekiE(w2
hk)ehjekiehj

Then, setting E(w2
hk) = ρ2 we recast

V ar(σ′ij) = ρ2 − ρ2

(
d(i)

M
+
d(j)

M

)
+ ρ2d(i)d(j)

M2
=

= ρ2

(
1− d(i)

M

)(
1− d(j)

M

)
' 1

Nd̄

where the last estimate comes from the fact we took the limit of

large N , that is we approximate M ' Nd̄ and we use the previous

result ρ2 = 1
Nd̄

+O(N−2).

2.1.2 Relaxation Time

As we have just seen, the matrix Σ is symmetric, thus we can

decompose it with orthogonal matrices O in the form

Σ = OTΛO =
∑
i

λiuiu
T
i (2.12)

where the uis are the eigenvectors of eigenvalue λi. In order

to evolve our process we now calculate the power of the stochastic

matrix.

Πt = G
1
2 ΣtG−

1
2 = G−

1
2

∑
l

λtiuiu
T
i G

1
2 =

∑
l

λtiu
R
i u

L
i (2.13)

where for the sake of readability we introduced uRi = uTi G
1
2 and

uLi = G−
1
2ui, respectively the right and left re-normalized eigenvec-

tors of Π.
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The evolved probability is then

pi(t) =
∑
j

λtj < p(0),uRi > (uLj )i =
∑
j

λtjcj(0)(uLj )i (2.14)

This formula is called the spectral representation. We may won-

der then about the long run expression. In order to deal with it we

need to make the continuous limit of such Markov process. The con-

tinuous version is made by substituting the discrete time steps by a

distribution of steps, and it is natural to think of it as Poissonian.

Then, the spectral representation formula yields

pi(t) =
∑
j

cj(0)(uLj )i
∑
n

λnj
e−ttn

n!
=
∑
j

cj(0)(uLj )ie
−(1−λj)t (2.15)

The definition of relaxation time derives from this formula.

Definition 2.2. Let λ∗ be the second greatest eigenvalue of Π, let

γ∗ = 1− λ∗ be the spectral gap of the matrix. Then the relaxation

time of the chain is

τ∗ =
1

γ∗
=

1

1− λ∗
(2.16)

This relation between a dynamical property such as the relax-

ation time and a structural feature of the underlying graph would

provide an intriguing insight when applying RMT theorems to the

transition matrix.

2.2 Master Equation

We now take a wider look to the theory of random walk. The

need to introduce a equation for the whole dynamics arises as we
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increase the number of particles moving among the nodes. We in-

troduce N particles moving in the K nodes, and a function χα to

describe the network state, that is

χαi (t) =

1 if the particle α is in the node i at the time t

0 otherwise

The state of each node will be described as

ni(t) =
∑
α

χαi (t)

and the probability of finding the particle α in the node i will be

the mean value of χ over all the possible realization of the random

walk of α

pαi (t) = E(χαi (t))

The generalized Kolmogorov equation shall read

χαi (t+ ∆t) =
∑
j

ξαij(∆t, t)χjα(t)

where Ξα is a matrix that describes the transition probabilities

for each particle. As the average value is taken, we must recover the

stochastic matrix πij = E(ξαij) for each α.

The total number of particles in the node i will be then

ni(t) =
∑
α

χαi (t+ ∆t) =
∑
j

∑
α

ξαijχ
α
ij(t) =

∑
j

ξijnj(t)

whereas the variation of the particles shall be

ni(t+ ∆t)− ni(t) =
∑
j

ξij(t)nj(t)− ξij(t)ni(t)
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that is simply the quantification of the particles that are ap-

proaching the node minus those who leave it.

The mean dynamics for each particle will read

n̄i(t+ ∆t)− n̄i(t) =
∑
j

πij(∆t)nj(∆t)− πji(∆t)ni(∆t)

This, however is the most general case, that assumes the tran-

sition rates may varies over time. It is a reasonable condition to

impose that the transition rate should be constant or quasi-constant

πij = π̂ij∆t+ o(∆t)

πii = 1− π̂ii∆t = 1−∆t
∑
i 6=j

π̂ij

That allows the continuum limit to be taken yielding

dn̄i
dt

=
∑
i

π̂ijn̄j −
∑
j

π̂jin̄i

Then, we try to recast this expression in terms of probability

flow, that is we are more interested in studying the condition for

which the states are equivalent in probability. The Kolmogorov

equation is recast

p(n, t+ ∆t) =
∑
∆n

Π(n−∆n→ ∆n)p(n−∆n, t)

and, as before, for each node we get

∆ni =
∑
j

ξij(t)nj(t)− ξji(t)ni(t)

and the condition of regularity we impose becomes

πij(n−∆n→ n,∆t) =
1

N
π̂ij(nj + 1)∆t+ o(∆t)
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leading to a new form of the Kolmogorov equation

p(n, t+ ∆t) =
1

N

∑
ij

E+
j E

−
i πijnjpj(n, t)∆t+ o(∆t)

where we introduced a kind of creation (E+) and destruction

(E−) operator for the particle in the nodes (a jump from node j

to i is equivalent to a creation of a particle in the node i and a

destruction in the node j, weighted accordingly to the transition

matrix). We re-normalize the regularized πij as

1

N

∑
i,j

π̂ijnj∆t = 1 + o(∆t)

which yields

p(n, t+ ∆t)− p(n, t) =
1

N

∑
i,j

E+
j E

−
i π̂ijnjp(n, t)∆t−

− 1

N

∑
i,j

π̂ijnip(n, t)∆t+ o(∆t)

which, in the continuum limit for t gives the Master Equation

∂p

∂t
=

1

N

∑
i,j

E+
j E

−
i π̂ijnjp(n, t)−

1

N

∑
i,j

π̂jinip(n, t)

2.2.1 Stationary Solution of Master Equation

The master equation has a general solution in the form

p(n, t) = N !
∑
λ

e−(1−λ)tcλ

K∏
k

(vλk )nk

nk!

where the λs are the eigenvalues of the matrix Π̂ and vλ their

respective eigenvectors. If the eigenvalues are real, this solution

converges to a stationary probability state, that is
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ps(n) = N !
K∏
k

vnkk
nk!

A stationary solution means that the probability currents from

node j to node i are null. The condition that ensures the reality of

the eigenvalues is, as we know from algebra, the symmetry of the

stochastic matrix. However, it is not the symmetry with respect to

canonical metrics, but we have to introduce a more refined condition.

Let us write the probability density current

Jij =
∑
n

π̂ij
n

N
pj(n, t)−

∑
n

π̂ji
n

N
pi(n, t)

The stationary condition is equivalent to impose the flow of prob-

ability from one node to another to be zero when the equilibrium is

reached. That is, from the previous equation

πijpj = πjipi

This condition, called the detailed balance condition, is crucial to

achieve stationary equilibrium in a network. If the detailed balance

is not to be held, and therefore the generalized symmetry of the

transition matrix vanishes, the eigenvalues in the solution of the

master equation may be in general belonging to the complex field.

As such, stationary equilibrium is no more, but a new kind of balance

appears: Non-Equilibrium Steady States (NESS).

2.2.2 Breaking the Symmetry

We previously discussed that the stochastic matrix Π is symmet-

ric with respect to the metrics induced by the node degrees G, as

we simply compute
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(GΠ)T = (GCG)T = GCG = GΠ

as both the connectivity matrix C and the metrics G are symmet-

ric. This property is equivalent to the generalized detailed balance

condition

πijg
−1
jk = πkjg

−1
ji

Which says, at its core, that node-weighted transition proba-

bilities from node j to i are the same. We proceed as before by

decomposing the stochastic matrix Π into

Π = G−
1
2 Σ′G

1
2 = G−

1
2 (OTWO)G

1
2

then a perturbation Ξ is added to W , yielding to a new non-

symmetric but still stochastic matrix Π′

Π′ = G−
1
2 (Σ′ +OTΞO)G

1
2 = G−

1
2 (Σ′′)G

1
2

The addition of such perturbation can be compared to a decor-

relation of the opposite matrix elements. As we have done before,

we compute the expected value

E(σ′′ijσ
′′
ji) = E

((
σ′ij +

∑
h,k≥2

ekiξkhehj

)(
σ′ji +

∑
h′,k′≥2

ek′jξk′h′eh′i

))
= V ar(σ′ij)

Then, the variance of σ′′ij will read

V ar(σ′′ij) = V ar(σ′ij) + V ar(ξij) = V ar(σ′ij) +
ε2

N

where if the perturbation is of order ε its variance shall be of

order ε2. Estimating as before
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V ar(σ′′ij) '
1

Nd̄

we have the relation

E(σ′′ijσ
′′
ji) =

1

Nd̄
− ε2

N

We notice that this result is similar to the one we previously

obtained, but we can no longer apply neither the Wigner law nor

its generalization for the variance, as the matrix is not symmetric.

Nonetheless we also notice that if we perturb Σ with a matrix whose

elements are of order ε = 1√
d̄
the expected value of the product van-

ishes as the opposite elements show no correlation at all. In this case

the spectrum shall be studied with a generalized circular law. Phys-

ically, that would mean that there would be no equilibrium at all, as

imaginary eigenvalues of the same magnitude of the real ones would

modulate the solution by oscillations. This violation of the Detailed

Balance Condition needs further theoretical and experimental stud-

ies. Still, when the order of the perturbation is small, we recognize

the condition under which an Elliptic law taking into account a non-

unitary variance may pertain, giving information about NESS. As

a matter of facts, it is shown by numerical simulations that as we

decorrelate the opposite elements by a perturbation the spectral gap

increases. Hence a theoretical explanation can be inferred to what

may seem be emerging from simulations [7].
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Chapter 3

Final Remarks

3.1 Random Networks Spectra

This last chapter is intended to introduce some results that sup-

port some of the theoretical predictions previously made. Namely, a

hint about the validity of our proposition about the relation between

spectral gap and connectivity is shown in the graphs we display be-

low. Before that, however, we may discuss some technicalities about

the creation of the networks.

3.1.1 The Erdös-Rényi Model

As we know by now, a graph G(N,Nl) is a set of N vertices, or

nodes, and Nl edges, or links, that connect the nodes. The number

of links that start from a node is said to be the degree (d) of the

node. Despite having a multitude of possibilities to make a graph to

test our statements, we shall restrict our attention to a specific class

of graphs, namely random graph. The most celebrated model for

building a random graph is surely that due to Paul Erdös and Alfréd

Rényi, in which two nodes (i, j) may be linked (or not) according to

a given probability p (or 1− p). Indeed, having N nodes, we expect
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to have pN(N−1)
2

links in the whole graph. The average link number

N̄l will be N̄l = p
(
N
2

)
, and its variance can be computed according

to a binomial distribution V ar(Nl) = p(1 − p)
(
N
2

)
. Moreover when

studying properties of random graphs, the limit of large N is per-

formed, as it provides a nice expression for the probability of having

a certain average degree:

p(d) =

(
N − 1

d

)
pd(1− p)N−1−d ' d̄de−d̄

Nl!

where d̄ = 2
N

(
N
2

)
= p(N − 1) is the average degree. According to

various values p, graphs may look rather different one to another.

As a matter of facts, if p < 1
N

the whole graph will not be con-

nected, but various detached components will be present, increasing

p to be of order ∼ 1
N

(d̄ = 1) a phase transition-like phenomenon oc-

curs, and a maximal connected component of order O(N) appears.

In the following computations the graph will be set up not to be

disconnected.

Figure 3.1 – A generated example of Erdös-Rényi Random graph, with

p = 0.01 and N = 500.
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3.1.2 Some Results

We now display some of the consequences of the considerations

we have made in the previous chapters. We established an approx-

imate relation V 2 ' 1
Nd

between the variance of the transition ma-

trix elements and the basic structural properties (number of nodes

N , average degree d) of the underlying graph. Moreover in the

first chapter we discussed how the semicircular law evolves as the

variance changes from the unit. The purpose of this section is to

show that those results can be merged. A simulation has been run,

building a random graph from Erdös-Rényi model (described in the

appendix), fixing the total number of nodes and varying the proba-

bility of connection among them. Then we composed the transition

from the connectivity one and the vertex degree one, and we ana-

lyzed its spectrum. What we expect from the theory is that as we

increase the average connectivity the spectral gap increases. The

results show indeed that as the probability of connection increase,

the variance, thus the second-greatest eigenvalue, decrease.

We must not be lead astray from the fact that the unitary eigen-

value may seem to void the semicircular law distribution. The exis-

tence of this eigenvalue is guaranteed by Perron-Frobenius theorem,

indeed we have shown that Wigner law is the limiting distribution

up to null set, as the singlet 1 is with respect to the interval upon

which the semicircular law is defined.
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(f) p = 0.1

Figure 3.2 – Spectral occurrences of transition matrices from Erdös-

Rényi graphs with 1000 nodes. Probability of connection p defines the

connectivity by d̄ = p(N − 1).
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A similar procedure has been carried to analyze the validity of

our proposition about the consistency of the elliptic law in case of

perturbation. 1000 nodes graphs have been built according to p,

and a small perturbation has been added to the stochastic matrix

of the network. We show the cases in which random perturbations

of order 10−2, 10−1 and of the same magnitude have been applied to

the matrix elements. The results seem to confirm what we expected,

as we perturb the matrix, the distribution over the complex plan is

deformed into an ellipsis from a dense line lying on the real axis

(that generates semicircular distribution in the case the perturba-

tion is removed). Moreover the spectral gap increases as we break

symmetry in such a manner, this fact being a qualitatively expla-

nation of what emerges from literature, i.e. that detailed balance

violation reduces relaxation time [7].
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Figure 3.3 – Perturbations. On the horizontal axis the real part,

whereas on the vertical axis the imaginary one. By we p define the con-

nectivity of the graph, W stands for perturbation order with respect to

the magnitude of the matrix elements.
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