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Sommario

L’aumento del numero di servizi offerti via Internet sta portando ad un in-
cremento esponenziale del traffico nelle Reti di Telecomunicazioni. Di con-
seguenza, gli operatori di Telecomunicazioni e i fornitori di servizi stanno ricer-
cando soluzioni innovative mirate ad una gestione efficiente e trasparente di
questo traffico al fine di garantire la corretta fruizione dei propri servizi. La
soluzione più percorribile è quella di modificare i paradigmi nel networking,
l’introduzione del Software Defined Networking porterà una maggiore dinam-
icità in tutti gli aspetti di gestione della rete. Contemporaneamente, la Net-
work Functions Virtualization giocherà un ruolo fondamentale consentendo
di virtualizzare i nodi intermedi che implementano le funzioni di rete su di
un hardware generico. L’ambiente più idoneo a sfruttare questi paradigmi
è il Cloud, dove le risorse (es. potenza computazionale, ecc.) sono fornite
all’utente come un servizio, su richiesta, pagando solo l’effettivo utilizzo.
In termini di requisiti però, le attuali Reti di Telecomunicazioni non sono co-
munque abbastanza performanti, nonostante i miglioramenti hardware: una
delle cause è da imputare all’assenza di una forte integrazione tra i sopra citati
paradigmi, al fine di interagire reattivamente alle necessità degli utenti. È per-
tanto necessario valutare soluzioni dove SDN e NFV cooperano attivamente
all’interno del Cloud per fornire interessanti prestazioni.
In questo documento, dopo una descrizione dello stato dell’arte, verrà af-
frontato lo studio della piattaforma cloud OpenStack e di come possa essere
configurata per incrementarne le prestazioni di rete. Verranno poi integrati
diversi framework SDN Open Source con la suddetta piattaforma. Infine, ver-
ranno mostrate alcune misure di performance che dimostrano come questo
approccio possa essere utile a gestire e migliorare la Qualità di Servizio degli
utenti.
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Abstract

As a result of the explosion in the number of services offered over the Inter-
net, network traffic has experienced a remarkable increment and is supposed
to increase even more in the few next years. Therefore, Telco operators are
investigating new solutions aiming at managing this traffic efficiently and trans-
parently to guarantee the users the needed Quality of Service.

The most viable solution is to have a paradigm shift in the networking
field: the old and legacy routing will be indeed replaced by something more
dynamic, through the use of Software Defined Networking. In addition to
it, Network Functions Virtualization will play a key role making possible to
virtualize the intermediate nodes implementing network functions, also called
middle-boxes, on general purpose hardware. The most suitable environment to
understand their potentiality is the Cloud, where resources, as computational
power, storage, development platforms, etc. are outsourced and provided to
the user as a service on a pay-per-use model. All of this is done in a complete
dynamic way, as a result of the presence of the implementation of the above
cited paradigms.

However, whenever it comes to strict requirements, Telecommunication
Networks are still underperforming: one of the cause is the weak integration
among these paradigms to reactively intervene to the users’ need. It is therefore
remarkably important to properly evaluate solutions where SDN and NFV are
cooperating actively inside the Cloud, leading to more adaptive systems.

In this document, after the description of the state of the art in networking,
the deployment of an OpenStack Cloud platform on an outperforming cluster
will be shown. In addition, its networking capabilities will be improved via a
careful cloud firewalling configuration; moreover, this cluster will be integrated
with Open Source SDN frameworks to enhance its services. Finally, some
measurements showing how much this approach could be interesting will be
provided.

xi
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Chapter 1

Introduction

In the last decade, the pervasiveness of services based on Information and Com-
munication Technologies (ICT) has completely reshaped people’s lifestyle, and
nowadays the whole human society heavily relies on the distribution and use
of information. Telecommunications, in particular, have evolved in different
directions. The state-of-the-art technologies are indeed able to exploit more
and more the physical resources in an efficient way to provide a better Quality
of Service (QoS) to the user. It is the case, for instance, of the Beamform-
ing technique, with which it is possible to experience constructive interference
achieving spatial selectivity. Furthermore, another technique which is show-
ing a noteworthy improvement in hardware performance is MIMO, able to
multiply the capacity of a radio link; this is achieved using multiple antennas
both in transmission and reception. Even though there are many more inter-
esting techniques for the radio sector, it is worth to mention also the use of
always more outperforming optical fibers that are able to provide very high
peak transfer rates.

All of the above will be included in the physical layer of one of the key topics
now under study: the 5G standard, that is going to become the fifth generation
of mobile networks [1]. This will not be just the next step after the 4G: it will
also present a more radical approach that is not including only radio. Indeed,
fronthaul and backhaul infrastructures will change in turn, as well as the way
to efficiently manage them. 5G will therefore be mainly designed taking into
consideration strict service requirements that are currently not coped properly
[2], e.g. the latency which is fundamental for the M2M paradigm.

On the other hand, a deep study on the architecture design must be kept

1



2 CHAPTER 1. INTRODUCTION

into account in order to satisfy them. Indeed, to be compliant with the re-
quirements, some additional studies have to be performed at the upper layers
of the protocol stack as a result of their actual inefficiency.

In fact, the radical change that Telecommunications are facing goes toward
even other aspects: the ever-increasing merging of Computing (or Information)
Technologies into the Communication Technologies provided many interesting
tools that are the enablers for innovative technologies. This is for instance the
case of the introduction of virtualization inside the Telco world, as proposed
by the NFV paradigm. This might be considered also in addition to the Cloud
computing paradigm, which states that the computing can be delivered as a
service, as it is already for water, electricity, etc. Indeed, cloud computing is
designed to provide a compute resource, e.g. a virtual machine, as a utility
rather than having to build and maintain computing ad-hoc infrastructures.
As a result, it will also implement some techniques to grant the implementation
of a Resources-as-a-Service approach in an elastic way. Cloud will then be at
the base of the 5G, for instance with the Cloud-RAN approach: a centralized,
cloud computing-based architecture for radio access networks that supports
the current and the future wireless communication standards. It is also note-
worthy that more and more everyday devices are equipped with very powerful
computing capabilities making possible to shift to new paradigms such as mo-
bile and edge computing. This, in addition to what has been stated above and
other paradigms like Internet of Things, is leading to the Fog computing.

Therefore, ICT provided some interesting tools to be used in enabling future
technologies; these are required to be compliant with the new strict require-
ments. It is important to remark that currently the physical layer improve-
ments are moving forward with very important results; however, the presence
of protocols that may be old and legacy ruling the other layers leads to an
outstanding overhead. This causes to not have a proper exploitation of the
cited improvements.

Everything that has been stated requires a paradigm shift in terms of
control and resource management (both computing and communication). In
particular, there is the need to have more elasticity and programmability of
the infrastructure, with the consequent need of orchestrating heterogeneous
resources, that by now are related to different worlds (cloud and network).
Accordingly, Software Defined Networking has been introduced by the Telco
operators to face this issue and make possible to reduce the overhead with
both proactive and reactive actions. Indeed, SDN moves the intelligence of
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the network from the devices to a logically centralized entity (then physically
replicated to avoid to have a single point of failure). This allows the network
to dynamically behave giving the administrators the possibility to rearrange
it easily and elastically. Moreover, it is possible to implement some novel re-
source management techniques at a minimal cost, like the intent approach [3].
Finally, the integration of SDN into different environments, including the cloud
computing one, leverages the possibility to scale out accurately.

Besides that, it is important to realize that Telco operators are no longer in
the lead situation in which they were a few years ago: they are now suffering
from the presence of new actors, called Over-the-Top (e.g. Facebook, Google,
Netflix), in the market they were leading. The last trends are showing how
much the influence of OTTs is conditioning the market; in particular, their ex-
plosion let the Telco operators be aware that their traditional business (voice
dominant) was now no longer valid due to the exponential increase of data
services. Under such scenario, the operators’ business has to be dramatically
transformed. On the one hand, the enormous amount of data generated by
these OTTs are causing the necessity of investments on networks, inducing an
exponential increase of operational costs: these are reflecting also the neces-
sity of resolving the users’ requests to be able to access the content providers
(OTTs) with a certain QoS. On the other hand, the Telco revenues are de-
creasing due to a substantial number of factors, for instance the competition
among the operators themselves. In particular, it is easy to see how much the
OTTs are pushing the operators to start designing and developing the future
infrastructures, even from the scratch, to grant an improved service to their
users (e.g. 5G). However, the operators are more careful in targeting smaller
improvements of already implemented technologies, that require lower infras-
tructural costs (e.g. 4.5G). To maintain a proper amount of revenues some
operators diversified their business: this is the case of British Telecom becom-
ing also a TV content provider. Nevertheless, the new requirements have still
to be addressed and, due to the cited financial situation, possibly at a low cost.

Thus, the introduction of Software Defined Networking strategies in a NFV
environment (as the cloud) at apparently no cost is a win-win for the opera-
tors, becoming a plus point for the future 5G deployment, as a result of the
introduction of the ability of dynamically scale out, by properly managing
and replicating resources. Furthermore, this is also becoming an enabler for
all those new applicative approaches introduced in the last few years: for in-
stance, the microservices are introducing a fine-grained architecture to define
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services in a lightweight way; SDN is able to take advantage of it.
However, Telcos are not the only actors interested in this joint SDN-NFV

approach: indeed, this can bring several benefits and open opportunities to
other players, such as infrastructure providers but also service providers and
enterprise networks. In particular, it is possible to see that these players could
take advantages of flexibility introduced by both SDN and NFV, someway gen-
erating new types of business and leverage well matured virtualization tech-
nologies already in use in data centers networks [4].

In order to have such dynamic integration and orchestration of all the
heterogeneous resources that are going to be present in the future networks,
SDN and NFV should be strongly coordinated. However, this is by now only
partially obtained but still not optimized, neither considered in a general envi-
ronment but just for some specific case studies. This document will therefore
cope with these open issues: in particular, the study will be mainly on the
use of SDN controllers, as ONOS and Ryu, integrated with the OpenStack
platform to provide an evaluation of the performance. In addition to that, the
performance evaluation will be also based on the different possible OpenStack
configuration, which will be analytically evaluated.

This document is structured as follows. In Chapter 2 a more detailed
description about SDN, NFV and Cloud is presented, as well as the refer-
ence architectural framework proposed by ETSI. Moreover, it also presents an
overview about the design of the Control Plane of SDN controllers to perform
Service Function Chaining.

Chapters 3 and 4 propose a complete description of the OpenStack plat-
form: the focus will be put on its networking mechanisms.

A wide overview of the existing SDN frameworks is presented in 5; this
will also present the different ways in which these can be integrated inside the
OpenStack platform. This is followed by Chapter 6, where the solution based
on ONOS, SONA, is deployed and some case studies are shown.

In Chapter 7 the deployment of the testbed of OpenStack and Ryu is
introduced, showing which are the criteria used to set up the different platforms
in the most efficient way. The results are then shown in Chapter 8.

Finally, Chapter 9 will provide some general conclusion and hints on where
and how to improve the followed approach to obtain even better performance,
in particular with a reference to the case study.



Chapter 2

SDN, NFV and Cloud overview

As shown in Chapter 1, there is the need to solve the open research problems
related to the noticeably strict service-related requirements that will be present
in future Telecommunications standards. This is noteworthy in particular for
Telco operators, as well as many other players, as the service providers, which
are more than interested in it.

Indeed, for a service provider this approach is important from a double
perspective:

1. to make sure that the network operators’ subscribers are able to consume
the provided service with the correct QoS;

2. to generate new business models, regarding the possibility to provide
services in a not-on-premises fashion.

One important step to achieve all of this could be through the introduction
of Software Defined Networking techniques and Network Functions Virtual-
ization; therefore, to be efficient the use of Distributed Cloud computing and
other approaches, like microservices, should be considered as well.

This Chapter therefore will provide a broad view of the new network
paradigms that might lead to a more complete and efficient on-demand service
provisioning, by respecting the users’ QoS, both proactively and reactively
whenever this is not compliant with their SLA.

5



6 CHAPTER 2. EMERGING NETWORK PARADIGMS

2.1 Computer Networks: today

2.1.1 Service-oriented approach

Since the beginning of the spread of the client-server approach, the concept of
service (i.e. what is offered from a certain provider to possibly many users) has
become essential in computer networks and, in general, in the Internet. Modern
distributed systems are deeply pervasive and massively used to support any
business aspect and strategy, making the service requirements a crucial topic.
For instance, a service requirement might be the scalability (i.e. the presence
of multiple users contemporarirly in the system does not have an impact on
the performance) or to have a short service time, maybe renouncing to deliver
a correct answer back.

In general, it is customary to refer to a “measure” of how the service is
provided, which is the Quality of Service. This does not have a standard way
to be specified, but in general in the Telecommunications environment some
service levels are defined, i.e. analytical indicators such as throughput, delay,
jitter, lost packets, etc. Moreover, it is important to consider that the QoS may
also be subjective and therefore dependent on the user: for instance, user Lucy
might complain about an online video with few Motion Vector displacements,
whereas user Johnny might not.

The relationship among different subjects requesting and providing services
is expressed by the Service Level Agreement (SLA). Neither the SLA has a
standard form, but it can be easily tailored by the use of service levels to be
defined.

Therefore, in this scenario services are extremely pervasive. As a conse-
quence, the enabling abstract infrastructure known as the Service Oriented
Architecture (SOA) [5] replaced the simple Client/Server by overcoming its
limitations. In SOA all the interactions among parties are considered in terms
of services. The base of the SOA is the use of the interface, which is the decou-
pling element that hides the internal technicalities of the service itself. Thus,
all the providers will register themselves to a third entity called the Discovery
Agency where the requestor can perform a lookup to choose dynamically the
wanted service. This is possibly done in a transparent way through the use of a
middleware, i.e. a software entity that stays in between the application and the
low-level support, suitable for deeply heterogeneous organizations which are
interested in providing very differentiated services. Therefore, as distributed
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systems are very heterogeneous, the SOA approach is noteworthy as it is able
to provides the strong abstraction that they require to properly provide their
services.

Figure 2.1: Service Oriented Architecture

Moving from a C/S approach to a less coupled one has also been considered:
this approach is mandatory whenever it comes to situations where Multicast
has to be implemented. In that case message exchange models have beens
introduced, which are nowadays widely used. In this way, it is possible to have
multiple producers of services and multiple consumers of the same services, by
still letting all of them to not be tied one to the others.

In addition to that, for many services it is important to mention the neces-
sity to isolate a community of nodes that might be in different locations and
networks. Thus, in order to build efficient and scalable networks the solution
is the Overlay Networks approach, where networks are built at the application
level rather than at the network level. An interesting characteristic is that
these networks can be re-organized reactively (e.g. a node has failed, start a
recovery procedure). This is convenient to grant that the QoS is always com-
pliant with the agreed SLA. This is the case of Peer-to-Peer applications, as
well as modern Distributed File Systems (e.g. Google FS - GFS [6] and Hadoop
FS - HDFS [7]) and even non-relational DataBases as Apache Cassandra [8].

In general, apart from some particular cases, the requirements for an Inter-
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net service are usually well defined: in particular, the service has to be highly
available, but it has also to provide the required answer in a short time. The
Brewer’s CAP theorem [9] states that it is possible to have just two of the
following three characteristic of a system together: strong consistency, high
availability and partition tolerance. Therefore, as long as the systems have
to scale well and be partition-tolerant while being highly available, the con-
sistency is sacrificed. Thus, for modern services it is better to be eventual
consistent and therefore to deliver a wrong answer (as an error) than to have
the user waiting for a long amount of time. However, this lack of consistency
means that in case of a failure, there is a certain probability for the system to
fall in a non-consistent state. On the other hand, these events are kept under
control by strongly reducing their happening and/or recovering easily through
the use of particular strategies.

Figure 2.2: Brewer’s CAP Theorem [9]

A practical example for this law is shown in non-relational databases (e.g.
MongoDB [10]) and cloud computing platforms. In particular, cloud comput-
ing platforms can be seen as composed by two tiers: an external one, that is
dedicated to the delivering of fast answers to the user, even though they might
be wrong, and an inner one where the important data is stored in a consistent
way.
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Finally, to have services which are more lightweight and easier to be mi-
grated, a new approach hit the market: the microservices approach. A mi-
croservice is a small fine-grained component capable of being hosted every-
where its containing environment (the container) is present and easy to be
managed. The container already provides all the basic functionalities for the
service, for instance the low-level communication details to exchange data with
the other entities. As a result of this approach, the service developer has just
to concentrate on its logic and not on the management, enlarging the lifecycle
of the service itself. Indeed, it is easy to migrate, clone, start, stop the services
as all the functions are taken by the container. A popular tool and language
for microservices is the well known Docker [11], but even other solutions are
present (e.g. Jolie [12]).

2.2 Software Defined-Networking

SDN was first standardized in 2011 by the Open Networking Foundation
(ONF), “a user-driven organization dedicated to the promotion and adoption
of SDN, and implementing SDN through open standards, necessary to move
the networking industry forward.” [13]. The ONF is the entity behind the
standardization of the OpenFlow protocol, one of the most used approaches
to perform SDN.

The scope of the SDN paradigm is to support a more dynamic and scal-
able telecommunication networks environment. This is achieved through the
decoupling of the control plane (i.e. the routing, which decides how to forward
packets) from the data plane (i.e. the forwarding, which receives, stores and
forwards the packets) [14].

Therefore, it is possible to say that SDN attempts to:

• make flow tables controllable from the outside via a common standard-
ized API (Application Programming Interface), not tied to any vendor
⇒ easier programmability of the network;

• deal with a programming model, imposed by the particular framework
used;

• concentrate the control (i.e. the network intelligence) in a logically cen-
tralized entity, eventually physically distributed to avoid to have a single
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Figure 2.3: Traditional vs. SDN networking [15]

point of failure; this makes possible to maintain a global view of the
network that will appear to applications as a single logical entity.

By separating the intelligence of the network from the datapath, it is possi-
ble to give to operators, developers, etc. the interface to program the network
itself. Therefore, through the a-priori installation of rules in the switches, it is
possible to implement a proactive way to implement decisions in the network;
however, if the switch is not able to decide over a certain packet (in general,
it is possible to say over a certain header), the centralized control entity (the
controller) can be reactively reached to determine what to do.

The flow is actually a very general consideration: indeed, a flow may just
include a certain application flow (e.g. all BitTorrent traffic), as well as all
the traffic related to a certain protocol (e.g. all ICMP traffic); in a more
fine-grained view, it is possible also to consider it as the traffic of a certain
user.

Then, to each flow there might be a certain action to be taken: for instance,
this might be the redirection of traffic over a certain node or even the tagging
of a packet within a certain VLAN to isolate it.

It is remarkable to say that the SDN is revolutionary up to a certain degree:
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in particular, it is possible to see similarities in terms of routing with Multi
Protocol Label Switching (MPLS), even though the real plus point that SDN
proposes is the standardized interface that allows an easier programmability.
On the other hand, due to similarities, many operators are choosing to deploy
MPLS over SDN to take the best out of the two.

Moreover, the centralized control is actually something that is not stated
to be necessarily part of SDN: however, its introduction fosters a more global
view of the network by the viewpoint of the network applications, which is
something innovative and useful.

Finally, SDN has not to be thought as limited just to specific networks, as
data centers, edge networks or cloud networks: although it is not assured that
SDN will be a guaranteed market success, the aim of operators is to put SDN
in production even in legacy networks.

2.2.1 The SDN controller

As previously stated, the SDN controller is a logically centralized, software-
based entity that manages network devices operating in the data plane; it takes
advantage of its global view over the network for running applications aimed
at management, security and optimization of the resources it controls.

As is shown in Figure 2.4, the SDN controller can be logically placed in the
Control Plane located between the Data Plane, where network devices operate
the actual packet forwarding, and the Application Plane, where SDN applica-
tions request specific services from the underlying infrastructure, based on the
network state or on specific events. However, in order to communicate with
the controller, proper interfaces must be defined. The interface between Ap-
plication and Control planes is usually referred to as the Northbound Interface
(NBI), while the one between Control and Data planes, called SDN Control-
Data-Plane Interface in Figure 2.4, can also be referred to as the Southbound
Interface (SBI). Both interfaces can be specified and designed to use any com-
patible communication protocol.

Software Defined Networking is just a paradigm. During the past years
many different solutions (proprietary or not) have come out, trying to acquire
a slice of market; one of the most widely-used protocol for Controller-Device
communication through the SBI is the OpenFlow protocol, but other interest-
ing solutions are also present.
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Figure 2.4: The role of the SDN controller in the SDN architecture [16]

2.2.2 NETCONF

The first approach to SDN came to something that was already present in the
literature since years, the Network Configuration Protocol (NETCONF). This
is a network management protocol developed and standardized by the IETF
in two RFCs, RFC 4741 (2006) [17] and RFC 6241 (2011) [18] and thought
as an incremental approach with respect to the simplicity of SNMP (Simple
Network Management Protocol). NETCONF provides mechanisms to install,
manipulate, and delete the configuration of network devices, by simply making
use of Remote Procedure Call (RPC) and an Extensible Markup Language
(XML) based data encoding for the configuration data as well as the protocol
messages. These message are exchanged on top of a secure transport protocol.

During the years, an IETF workgroup has defined the YANG language [19]
to let NETCONF be more human-friendly; furthermore, NETCONF has been
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modified to be compatible with SNMP.
Therefore NETCONF, being the first Software-Defined approach (even be-

fore Software-Defined was something) is found in all those areas that were at
the top of the research in that years: it is the case for instance of the Opti-
cal networking, where NETCONF is still massively used in optical switches.
All the most important SDN frameworks still maintain the NETCONF south-
bound interface, as this allows them to still have a market in the optical net-
working area.

2.2.3 P4

The P4 (Programming Protocol-Independent Packet Processors) [20] is a domain-
specific open-source network programming language that allows the program-
ming of packet forwarding planes, by making use of a number of constructs
optimized around network data forwarding. It is maintained by the P4 Lan-
guage Consortium, a non-profit organization.

Fundamental to P4 is the concept of match-action pipelines. Conceptually,
forwarding network packets or frames can be broken down into a series of table
lookups and corresponding header manipulations. In P4 these manipulations
are known as actions and generally consist of things such as copying byte fields
from one location to another based on the lookup results on learned forwarding
state. P4 addresses only the data plane of a packet forwarding device, it does
not specify the control plane nor any exact protocol for communicating state
between the control and data planes. Instead, P4 uses the concept of tables
to represent forwarding plane state. An interface between the control plane
and the various P4 tables must be provided to allow the control plane to
inject/modify state in the program. This interface is generally referred to as
the program API and fosters the use of a SDN approach.

Finally, the P4 language can be also mapped on top of the OpenFlow
language, however the most used SDN frameworks already have a dedicated
southbound interface for it.

2.2.4 OpenFlow

The most extensively adopted solution is the OpenFlow protocol. OpenFlow
standardizes the communication between the network switches and the con-
troller of the network: each time the former is not able to deal with an incoming
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flow, it queries the latter to take a decision through the use of a secure TCP
channel. OpenFlow is by now thought to become the standard-de-facto in
SDN. In the creators’ own words, OpenFlow is “a communications protocol
that provides an abstraction of the forwarding plane of a switch or router in
the network” [21].

Focusing on its main features, OpenFlow:

• takes network control functions out of switches and routers, while allow-
ing direct access to, and manipulation of, the forwarding plane of those
devices;

• specifies basic primitives that can be used by an external software appli-
cation to actually program the forwarding plane of network devices;

• works on a per-flow basis to identify network traffic;

• forwards flows according to pre-defined match rules statically or dynam-
ically programmed by the SDN control software.

OpenFlow can be used both in a reactive and in a proactive way.

Regarding the reactive way, whenever the OpenFlow-enabled device re-
ceives a data packet and does not know how to handle it, the packet is wrapped
in the payload of an OpenFlow PacketIn message, that is sent to the network
controller managing the device itself. The controller can then analyze the
packet and reply to the device with an OpenFlow FlowMod message, contain-
ing, along with the original data packet that generated the PacketIn event, a
set of matching rules and actions to be performed when a packet with sim-
ilar header is received. After the installation of the new flow rule into the
device’s flow table, whenever another data packet that matches that entry (or
another one already present) is received, a sequence of actions will be per-
formed directly, without needing to query the controller again. If the device
has to handle a sequence of similar packets, as in a ping sequence, the first
packet will take a longer time to be forwarded than the following packets in the
sequence. An example of this typical behavior is shown in Figure 2.5 where
we have the output of a ping session through an OpenFlow/SDN domain.
This is actually happening as a result of the forwarding to the controller of
the packet that the switch is unable to deal with. Depending on the switch
implementation, the packet might be kept waiting in a local queue or not.
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Figure 2.5: The OpenFlow table [22]

On the other hand, whenever it comes to a proactive approach, flow rules
are installed before actual traffic reaches the network devices. This approach
will obviously enhance data plane latency and reduces the cost of the commu-
nication to the controller, but this causes a reduced flexibility. In fact, it is
often impossible to install very selective (i.e., precise) and correct flow rules by
acting proactively, as in most scenarios many details regarding incoming traffic
(e.g., client-side TCP port number) are not known a priori. For this reason,
when acting in a proactive way, flows are defined with a coarser granularity
(i.e., a lower precision) than they would be with a reactive approach.

More details about the OpenFlow protocol and its versions are available in
the documents and standards produced by the ONF [23].
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Figure 2.6: ICMP message exchange through an OF switch

2.3 Network Functions Virtualization

In the current Internet, IP datagrams are not simply forwarded until they
reach their final destination. They are indeed processed by a set of interme-
diate nodes, each of them implementing an additional function (e.g. address
translation, packet inspection and filtering, QoS management, load balanc-
ing, etc). A network service can be defined as a sequence of one or more
of these middle-boxes, traversed in a certain order (e.g. first a NAT, then a
Load Balancer, etc.). It is therefore possible to define this sequence as the
Service Function Chain (SFC); this SFC can also be reconfigured to compose
a different service.

These middle-boxes, however, are typically proprietary highly-specialized
systems that run on dedicated hardware, and represent a significant fraction
of the network CAPEX (Capital Expenditure) and OPEX (Operational Ex-
penditure). This causes the so-called vendor lock-in: the dependency to the
vendor for an update or a new functionality in a middle-box. This is also one
of the causes of the so called ossification of the Internet, that makes it difficult
to innovate the network by deploying new functionalities, services, etc.

A possible solution to this issue is to virtualize the middle-boxes over a
general purpose off-the-shelf server by making use of a hypervisor, rather than
buying specialized hardware. This approach provides a higher degree of flexi-
bility and reconfigurability that is desired by operators, as it provides a low-cost
solution to the lock-in problem. In addition to it, a correct placement, moni-
toring, management and migration of these resources is necessary to be able to
reconfigure proactively or reactively the service to meet the QoS requirements.

The Network Function Virtualization (NFV) initiative goes in this direction
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by defining standard elementary building blocks to implement service chains
capable of adapting to the rapidly changing user requirements. Therefore,
the NFV is a network architecture paradigm that makes use of virtualization
technologies to move toward a new way of designing, deploying and managing
network services [24]. It is then possible to define the NFV as the idea to
restructure the code running inside a network, moving from monolithic pro-
prietary blocks to flexible and rearrangeable components.

Figure 2.7: Comparison between the traditional approach and the NFV ap-
proach, simplified

The NFV introduces some advantages with respect to the traditional sce-
nario:

• independence from (ad-hoc) hardware, allowing separate development
and maintenance of software and hardware;

• flexibility of the services offered by the network, by simply rearranging
the order of VNFs;
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• dynamic scaling of the capabilities of the whole service, according to the
actual load, allowing to reactively rearrange the SFC.

After having dealt with the problem of an efficient placement [25], it is
important to think about the possible ways to set up the paths among the
different virtual resources (e.g. Virtual Machines). As long as there is the need
for reconfigurability, the idea for an efficient communication and management
is the Software Defined Networking approach rather than a legacy solution.
Therefore, whenever the Key Performance Indicators (KPIs) are not compliant
with the SLA, there is the need for scaling, routing elsewhere the traffic, etc.
That is the reason why when considering NFV it is customary to refer to it
inside a cloud environment, where scaling techniques are considered and SDN
is employed.

The NFV reference architecture is described by ETSI in [26]. A diagram of
the NFV reference architectural framework is shown in Figure 2.8. The shown
functional blocks are the following ones:

• Virtualized Network Functions (VNF), which are the virtualized ver-
sions of the legacy network functions (middle-boxes) and may include
elements of the core network as well as elements of everyday networks
(e.g., firewalls);

• the Element Management System (EMS), which performs the manage-
ment functionality for one or multiple VNFs;

• NFV infrastructure, the set of all hardware and software components on
top of which VNFs are deployed, managed and executed, including:

– hardware resources, assumed to be commercial off-the-shelf physical
equipment, providing processing, storage and connectivity resources
to VNFs through the Virtualization Layer;

– Virtualization Layer, such as a hypervisor, which abstracts the phys-
ical resources, to let the VNFs to transparently make use of the
underlying infrastructure;

• Virtualized Infrastructure Manager(s) (VIM), which comprises the func-
tionalities that are used to control and manage the interaction of a VNF
with computing, storage and network resources under its authority, as
well as their virtualization;

• Orchestrator, in charge of the orchestration and management of NFV
infrastructure and software resources;

• VNF Manager(s), responsible for VNF life cycle management (e.g. in-
stantiation, update, query, scaling, termination);
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• Service, VNF and Infrastructure Description, which is a data set that
provides information regarding the VNF deployment template, VNF For-
warding Graph, service-related information, and NFV infrastructure in-
formation models;

• Operation and Business Support Systems (OSS/BSS), which are used by
an operator to support a broad range of telecommunication services.

Figure 2.8: NFV reference architectural framework [26]

In Figure 2.8, the main reference points (i.e., the logical interconnections)
that are in the scope of NFV are shown by solid lines. In the scope of this
document, the focus is mostly on the reference points labeled as Or-Vi and
Nf-Vi in the diagram. The former interconnection is used for carrying resource
reservation and/or allocation requests by the Orchestrator, virtualized hard-
ware resource configuration, and state information exchange (e.g. events). The
latter is used for the specific assignment of virtualized resources in response
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to resource allocation requests, forwarding of information regarding state of
the the virtualized resources, and hardware resource configuration and state
information exchange (e.g. events).

2.3.1 The NVF-MANO framework

Due to the decoupling of the Network Functions software from the NFV In-
frastructure (NFVI), a strong coordination between the resources requested by
the VNFs is needed. The Network Functions Virtualization Management and
Orchestration (NFV-MANO) architectural framework, described by ETSI in
[27], has the role of managing the NFVI while orchestrating the allocation of
resources needed by the VNFs. A functional-level representation of the MANO
framework is shown in Figure 2.9.

Figure 2.9: The NFV-MANO architectural framework with ref. points [27]

Moreover, it might be taken in a more general view whenever the consid-
eration is related to a SDN/NFV deployment. A hierarchical scheme of the
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architecture is shown in Figure 2.10, which highlights the role of SDN Con-
trollers in a multi-domain scenario. For instance, the generic deployment which
will be presented later as a reference architecture in Figure 2.16 is actually a
slightly differently characterized version of Figure 2.10.

Figure 2.10: Hierarchical view in SDN multi-domain scenario [27]

2.4 Cloud computing

2.4.1 Before cloud computing

In the computer networks world, it is easy to state at least four phases that
paved the road to cloud computing [28].

1. Grid computing: it allowed the sharing of heterogeneous resources as
computational power, memory, data, etc. to be provided for very limited
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and specific application areas.

2. Virtualization: as shown before, the need to virtualize resources has
increased and therefore virtualization has become massively used, with
the natural consequence of the creation of several server farms.

3. Web 2.0: it is possible to define it as the web after the introduction
of asynchronous protocols not visible to users, asking only the required
information instead of the whole web page (Asynchronous Javascript and
XML - AJAX). In this way, the use of web services without the need of
installing any software locally lead to a new business model (which will
result then to be the Software-as-a-Service).

4. Utility computing: through it, it has been possible to move to a pay-
per-use model for computing, networking, etc. organized as a public
utility with a simple interface to be used for the client.

2.4.2 The Cloud paradigm

Cloud Computing is a paradigm that aims at enabling ubiquitous, on-demand
access to a shared pool of configurable computing and infrastructure resources
[29]. It is possible to define the Private Cloud approach as the case in which
the servers are privately stored inside the company itself, as well as the Public
Cloud one, where the servers are shared among all the users in the service
provider data center. It is then possible to follow a hybrid Cloud approach.

As already mentioned in Chapter 1, this paradigm allows network service
providers to offer their services in the same way as utility services, such as
water, electric power and gas are nowadays distributed: the end users pay for
what they get. In order to do so, Cloud Computing takes advantage of both
hardware and software resources, which are distributed and virtualized in the
network [30], and it is supported in this by the high data rates made available
by broad-band connection.

End users expect the resources offered by the Cloud to be instantiated
and used in a transparent, seamless way. These resources, however, may be
geographically distributed all over the world, imposing high demands on the
interconnecting network, in terms of configuration delay, not to mention la-
tency and reliability in the data plane. This is where SDN comes into play,
allowing the resources to quickly be configured or re-configured in order to
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Figure 2.11: *-as-a-Service models [33]

match the user’s requests. Moreover, thanks to the centralized management
approach that the SDN paradigm offers, data flows can be dynamically steered
to the best path from the user to the server hosting the resources.

Depending on the service that the cloud provider is implementing, it is
possible to define, as shown in Figure 2.11:

• Software-as-a-Service (SaaS): the vendor manages everything, delivering
to the user the final application; this is the case for instance of Google
Docs, storage services like Amazon S3 or DropBox but also CRM software
like SalesForce [31];

• Platform-as-a-Service (PaaS): here the user is provided a ready environ-
ment to work on; this is the case of IBM Bluemix and Red Hat OpenShift
[32];

• Infrastructure-as-a-Service (IaaS): everything that is after the virtualiza-
tion is left to the user, who decides even the operating system over which
the resource should run.

It is necessary to say that cloud computing is currently implemented and
delivered by different providers and, as already said, at different levels: it is
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significant the case of Amazon Web Services (AWS) [34], providing a platform
where the internal low level details are not provided to the final user, which
will transparently use its resources. Some other remarkable business solutions
are Microsoft Azure [33] and IBM Bluemix [35], addressing the cited paradigm
at distinct levels. On the other hand, a broad range of vendors’ solution (HP,
Huawei, Rackspace, etc.) are based on an Open Source project called Open-
Stack [36]: this is a well-known implementation that provides all the needed
components and features for running and managing a cloud platform. One of
its goals is to achieve interoperability to avoid the users’ lock-in into a single
solution: for instance, it is easy to export an OpenStack instance into AWS
without the risk of incurring in an incompatibility issue. Unlike the previously
mentioned closed solutions, one of the plus points of OpenStack is the fact
that, being open source, it can then be studied deeply to understand its bene-
fits and its bottlenecks. Its performance can be accurately evaluated in terms
of internals and software and will be presented in Chapter 4. The final extent
of this document it the evaluation and improvement of these performance by
making an extensive use of SDN controllers and networking improvements to
the platform.

However, as stated before, cloud computing is actually the follow-up of
already present technologies. It is therefore possible to say that it is not a
revolution, but a different, not on premises, user-friendly way to outsource
resources, instead of the usual fixed data centers subscription. It enlarges
the possibility to reach the scale economies and to build new services, as on-
demand video or audio provisioning. For instance, Netflix is a video content
provider [37] that mostly has its servers in the Cloud (specifically, it uses
Amazon Web Services) and makes use of Content Delivery Networks to push
the content as near as possible to the user. Similarly, also the music content
provider Spotify [38] just owns few servers for the authentication phase, but all
the contents are outsorced through the use of external cloud platforms (first,
it used AWS [39], then it started to move over Google Cloud Platform [40]).
Indeed, cloud providers grant to these companies a (possibly HA) service at a
cost that is lower than what it would be whenever considering inside-company
servers, including all the maintenance and workforce.

In Figure 2.12, it is possible to see the NIST view regarding the Cloud;
in particular it is shown which are the deployment models cited before, the
service models as well as the characteristics the Cloud should have.

As shown in Chapter 1, network operators and service providers are the
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entities that mostly rely on the development and deployment of these tech-
nologies: indeed, their high-demanding requisites triggered the necessities for
software tools able to easily deploy, control and rearrange new services. This
is something that cloud computing is able to achieve, as a result of its virtu-
alization capabilities as well as the software defined networking mechanisms
employed. However, the performance of these components have to be con-
sidered both when in a standalone configuration, but especially when there
is integration among them. This integration should be properly evaluated,
configured and tuned in order to be efficient in the provisioning of the service.

Figure 2.12: National Institute of Standards and Technology Standard Cloud
definition

2.5 SDN in NFV architectures

2.5.1 SDN usage in NFV architectural framework

In December 2015, ETSI proposed the ETSI NFV-EVE [41], a report on SDN
usage in NFV architectural framework. This massively complete work deals
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on how and where to implement SDN in the Cloud and inherits the NFV
architectural framework shown before.

What is proposed is that the SDN applications, SDN controllers and SDN
resources have fixed positions in the NFV architectural framework.

Referring to Figure 2.13, for SDN resources the scenario that might be
envisaged is to have a:

(a) physical switch or router;

(b) virtual switch or router;

(c) e-switch, software based SDN enabled switch in a server NIC;

(d) switch or router as a VNF.

Moreover, in case (d), the resource might be logically part of the NFVI or
belong to an independent tenant’s domain.

Figure 2.13: Position of SDN resources in an NFV architectural framework
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Regarding the SDN controller position (Figure 2.14), the possible scenarios
for the SDN controller are when it is:

1. merged with the Virtualised Infrastructure Manager functionality;

2. Virtualised as a VNF;

3. part of the NFVI and is not a VNF;

4. part of the OSS/BSS;

5. a PNF.

In Case 2), the VNF might be logically part of the NFVI and therefore
belong to a special infrastructure tenant or belong to an independent tenant.

Figure 2.14: Position of SDN controllers in an NFV architectural framework

As the SDN applications may interface with multiple SDN controllers, this
case study has to be properly considered in relation on where the latter are
(Figure 2.15). Therefore SDN application might be:
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(i) part of a PNF;

(ii) part of the VIM;

(iii) Virtualised as a VNF;

(iv) part of an EM;

(v) part of the OSS/BSS.

In Case i), the network hardware might be a physical appliance talking to
an SDN controller, or a complete solution including multiple SDN components,
such as SDN controller + SDN application for instance. For Case ii), the VIM
might be an application interfacing with an SDN controller in the NFVI -
for instance OpenStack Neutron as a VIM interfacing with an SDN controller
in the NFVI. The Case iv) considers a SDN application that might be an
element manager interfacing with an SDN controller to collect some metrics or
configure some parameters. Finally, in Case v), the SDN application might be
an application interfacing with an SDN controller for instance in the OSS-BSS
for tenant SDN service definitions.
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Figure 2.15: Position of SDN applications in an NFV architectural framework
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2.5.2 SDN for dynamic Service Function Chaining

During the last few years, the University of Bologna research group in New
Emerging Technologies for Networking (Net2Lab) has deeply studied the SFC
problematics. In particular, the focus has been on the design of the control
plane of the SDN controllers capable of performing traffic steering to achieve a
fully dynamic service chaining. To show the results related to these studies, it
is necessary to present the Reference NFV architecture, shown in Figure 2.16.
This reference architecture considers also the possibility that SDN domains
are interconnected through non-SDN domains. This assumption stems from
the fact that it appears reasonable that, at least by now, a network operator
will deploy SDN technologies mainly within data center infrastructures where
the VNF resources will be located e.g., in the operators points of presence or
central offices rather than in backbone networks. In this case, traffic flows that
must traverse a number of SDN domains can be properly routed by adopting
some form of tunneling or overlay network technology across the non-SDN
domains, such as Generic Routing Encapsulation (GRE), Virtual eXtensible
Local Area Network (VXLAN), or Network Service Header (NSH).

Figure 2.16: Reference multi-domain SDN/NFV architecture, in general

In [42] it is presented a proof of concept (PoC) implementation of a vendor-
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independent, technology- agnostic, intent-based NBI for controlling dynamic
service function chaining on top of a SDN infrastructure. The intent-based
approach focuses on what should be done and not on how it should be done,
and aims at decoupling the abstracted service descriptions issued by applica-
tions and orchestrators from the technology-specific control and management
directives that each VIM/controller must send to its respective devices through
the southbound interface (SBI). It is noteworthy to remark that this NBI is
compliant with the ONF description of the intent-based NBI.

The decision has been to take advantage of SDN controller-dependent intent
interfaces by choosing the Open Network Operating System (ONOS) platform
for the PoC. However, the use of ONOS standalone interface does not pro-
vide the required abstraction levels for a general and technology-independent
NBI. While the ONOS Intent Framework does allow users to directly specify
a high-level policy, it also requires some knowledge of low- level details, such
as IP addresses and switch port numbers. On the other hand, this NBI imple-
mentation used in the PoC allows the user to specify high-level service policies
without the need to know any network detail: these details are grabbed and
handled by our domain-specific solution, and the high-level policies are re-
solved and mapped into suitable ONOS intents, which will then be compiled
and translated into proper flow rules.

By testing it on an emulated multi-domain SDN infrastructure, the results
have shown that it was possible to successfully create, update, delete and flush
the forwarding paths according to the intent specified via the NBI. The mea-
surements of the responsiveness of the VIM implementation under increasing
load proved the correct functionality of the NBI and the scalability potentials
of the proposed approach.
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Figure 2.17: Average NBI response time and 95% confidence interval when
SFC add and update actions are performed, as a function of the number of
SFCs
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Figure 2.18: Average NBI response time and 95% confidence interval when
SFC delete and flush actions are performed, as a function of the number of
SFCs
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Another study in the same direction is presented in [43]. Here it is pre-
sented a reference architecture inspired by the ETSI MANO framework (Figure
2.19) and an intent-based NBI for end-to-end service management and orches-
tration across multiple technological domains. In particular, the use case that
has been considered is the one of an Internet of Things (IoT) infrastructure
deployment connected, by means of an OpenFlow-based SDN domain, to the
corresponding cloud-based data collection, processing, and publishing services
with quality of service (QoS) differentiation. This has been validated over a
heterogeneous OpenFlow/IoT SDN testbed, shown in Figure 2.20 demonstrat-
ing the feasibility of the approach and the potentials of the NBI.

Figure 2.19: Reference multi-domain SDN/NFV architecture, specialized for
the use case of IoT data collection and related cloud-based consumption.

Scalability tests on the ONOS-based VIM also gave promising results [44].
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Figure 2.20: The NFV/SDN test bed setup developed to demonstrate multi-
domain SDN/NFV management and orchestration

Figure 2.21: Average NBI response time and 95% confidence interval at the
SDN/cloud VIM with increasing number of service chain requests.
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Finally, the last work presented here describes a proof-of-concept implemen-
tation of the Service Function Chaining Control Plane, exploiting the IETF
Network Service Header approach. The proposed implementation combines
the OpenFlow protocol to control and configure the network nodes and the
NSH method to adapt the service requirements to the transport technology.
The manuscript shows that the result of this combination is a very general ar-
chitecture that may be used to implement any sort of Service Function Chain
with great flexibility [45].

Figure 2.22: Reference NSH experiment scenario
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Figure 2.23: WEST-to-EAST throughput measured at the OF-S within Node
(2) while applying dynamic SFC



Chapter 3

The OpenStack platform

OpenStack is a set of open source software tools (known as projects) for build-
ing and managing cloud computing platforms for public and private clouds.

OpenStack has been founded by NASA and Rackspace in 2010 and is now
backed by more than 500 companies, among whom there are some of the biggest
companies in software development and hosting, as well as vendors, Telcos
and even service providers. Moreover, OpenStack is backed by thousands of
individual community members and managed by the OpenStack Foundation,
a “non-profit that oversees both development and community-building around
the project” [46]. OpenStack has a six-month time-based release cycle. Being
OpenStack an open source platform, there are copious implementations based
on its software; some of them are closed versions (as Huawei FusionSphere, HP
Helion, etc.). It is possible to see some of them in Figure 3.1.

As in virtualization resources such as storage, CPU, and RAM are ab-
stracted from a variety of vendor-specific programs and split by a hypervisor
before being distributed as needed, OpenStack uses a consistent set of APIs
to abstract those virtual resources one step further into discrete pools used to
power standard cloud computing tools that administrators and users interact
with directly [48].

In order to go into the details of the main functionalities a Cloud should
provide, it is possible to refer to Figure 3.2 where these details are presented
in relation to the different users. First of all, it is important to state there are
API to access the platform: in general, in the Cloud it is customary to isolate
components by having a different API for each of it.

37
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Figure 3.1: Some known deployments of OpenStack [47]

Figure 3.2: Main functions of a Cloud [49]
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It is also possible to see that the Application Developers, which job is
to develop applications and managing the virtual resources (a sort of System
Administrator of resources) mainly interact with the Compute and Image API.
On the other hand, the DevOps are also interested in the User Dashboard.
Moreover, it is noticeable that there is a Management function where only the
Cloud Ops (which are the cloud platform managers) may access through the
Admin API.

3.1 OpenStack logical overview

Figure 3.3: High level view of OpenStack [36]

As previously stated, OpenStack is actually a set of interrelated software
components: each of these components is responsible for a certain function
and exposes some REST API. Therefore, in order to provide a correct and
complete service to the user, these components should cooperate together, as
shown in Figure 3.4.

All the OpenStack services share the same internal architecture organiza-
tion, that follows a clear design and implementation guidelines.
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Figure 3.4: OpenStack logic overview [47]

• Scalability and elasticity: this is gained through horizontal scalability⇒
the whole system is designed to add new physical hosts easily.

• Reliability: this is possible as different services have minimal dependen-
cies among each other; moreover, core components might be replicated
for robustness.

• Internal component storage: each service stores all needed information
internally, which is something unusual; there is indeed a database table
for each service.

• Loosely coupled asynchronous interactions: some internal interactions
among components follow a complete decoupled PUB/SUB approach.
This is done to decouple the requests from the responses and make it
possible to use Remote Procedure Call-like operations.

Therefore, every service consists of the following core components:

• PUB/SUB messagging service, as Advanced Message Queueing Protocol
(AMQP);
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• one or more internal core components, realizing the service application
logic;

• an API component, that acts as the service front-end to export service
functionalities via interoperable RESTful APIs;

• a local database component, where to store the internal service state; it
is important to mention that the service will then have its own state,
stored in its own DataBase, e.g. MySQL, MongoDB, etc.

It is worth to mention that APIs are also used internally to communi-
cate among components: this of course generates an overhead, but makes the
communications more decoupled.

3.1.1 OpenStack deployments

In general, an OpenStack deployment may be of two types: a production
environment or a development environment.

The development environment is very easy to setup, adaptive to the user’s
need and it is thought for an evaluation of the platform or for the testing of
the functionalities. Some well known solutions are DevStack and PackStack.
However, this deployment is very unstable and it is not thought for running
complex experiments or to be given to a customer.

Instead, the production environment is more complex to setup, but also
finer-grained. Indeed, its installation requires a, sometimes long, planning
phase where it is decided on which nodes the components have to be deployed
and with which configuration. Then, the actual deployment might take place
in terms of writing configurations by-hand after installing the components, as
the official OpenStack guide recommends for relative small environments, or
by the use of automation tools as Red Hat TripleO, Ansible, Chef, Puppet,
Fuel, Autopilot, etc. In both cases, the learning curve is very steep, therefore
it is up to the Cloud administrator to decide which tools to use, considering
also the size of the cluster to be built.

3.1.2 OpenStack nodes

In general, in OpenStack it is customary to say that there are different type of
nodes. The actual intelligence of OpenStack is the Controller node, which is the
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node that contains all the components’ endpoints; therefore, whenever there is
a request from the outside, this request is processed inside the controller node.
This node might also be replicated for the sake of reliability, requiring then to
manage the High Availability through the use of an additional node that acts
as a Front End for the cluster (for instance, a HAproxy or a load balancer).

Of course, as one of the strength of the OpenStack platform is the comput-
ing, there is the necessity to have one or more Compute nodes. These are the
nodes in which the hypervisor is running and are therefore configured to ease
its communication with the OpenStack components.

Another important node is the one that gives the possibility to the instances
to access the external networks: this node is called Network node.

In addition to them, many other nodes can be deployed, as a Block Storage
node, where to store images, which is useful whenever the deployment is very
wide.

However, it is noteworthy to say that depending on the network configura-
tion of the cluster, and depending on the physical nodes in which the different
components are installed, as well as how they are configured, the solution pro-
posed by the cluster may change. In practice, it is possible to have a Controller
node that is also a Network node or a Controller node that is also a Compute
node, just by properly configuring the OpenStack components. A particular
case is the “All-in-One” deployment, mainly proposed as the default solution
by Development environments: this environment contains all the services in a
unique node, which a good option only when it comes to testing.

Finally, a small remark on the networks interconnecting the nodes. In
general, it is customary to have a management network, to which each node
is connected: this is used by the admin to access the different nodes and for
inter-service communications. Instead, the data network is that one regarding
the inter-virtual instances communications; depending on the chosen tenant
network virtualization mechanisms, the packets exchanged over this network
might be VLAN tagged or encapsulated in a VXLAN or GRE packet. Another
network is the external one, that allows the virtual instances to access the
network and viceversa.
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3.2 OpenStack components

Before entering in the details, it is important to state that some projects (e.g.
Nova, Neutron) are also composed by plug-ins and agents.

On one hand, an agent is a process that runs on different hosts and commu-
nicates through RPC calls with other processes. On the other hand, a plug-in
is just composed by static software files (thus, it is not a process) and im-
plements all the APIs that are required to communicate to the corresponding
agent; moreover, they usually run in the context of a process. For example,
a Layer 2 plug-in runs in the context of a component (e.g. neutron-server) to
communicate with the Layer 2 agent.

The concept of plug-ins and agents introduces flexibility in the system:
whenever a developer wants to add some extra functionality, this makes it
possible without changing the existing system source code. Indeed, it is only
needed to add the plug-in to the existing system by which it is possible to talk
to the agent.

3.2.1 Identity service: Keystone

Keystone is a framework for the authentication and authorization for all the
other OpenStack services. It is in charge of the creation and management of
users and groups (also called tenants) and it defines the permissions for cloud
resources using a role-based access control features approach. In Figure 3.5, it
is possible to see what happens when a request from a client (who might be a
user or another component) is received.

The OpenStack Identity service provides a single point of integration for
managing authentication, authorization, and a catalog of services. In general,
the Identity service is the first service a user interacts with. After the authen-
tication phase, it is possible for the user to access to other OpenStack services.
Moreover, other OpenStack services make use of the Identity service to ensure
users’ identity and to discover where the other services are within the deploy-
ment through the use of the service catalog. The service catalog is a collection
of available services in an OpenStack deployment.

Typically, each service might have one or many endpoints; each endpoint
can be one of three types: admin, internal, or public. In addition to it, Open-
Stack supports multiple regions for scalability. Together, regions, services, and
endpoints created within the Identity service comprise the service catalog for
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a deployment. It is important to state that in a production environment, dif-
ferent endpoint types might reside on separate networks exposed to different
types of users for security reasons. For instance, the public API network might
be visible from the Internet so customers can manage their clouds. The admin
API network might be restricted to operators within the organization that
manages cloud infrastructure. The internal API network might be restricted
to the hosts that contain OpenStack services. Each OpenStack service in the
deployment needs a service entry with corresponding endpoints stored in the
Identity service [50].

It is therefore possible to say that the authentication service uses a combi-
nation of domains, projects, users, and roles. A domain represents a collection
of projects, groups and users that defines administrative boundaries for man-
aging OpenStack Identity entities, whereas a project can be defined as the
base unit of ownership in OpenStack; all the resources in OpenStack should
be owned by a specific project. Moreover, in OpenStack Identity the users
represent the individual API consumers, owned by a specific domain and as-
sociated with roles and/or projects. Finally, the role is the personality that a
user assumes to perform a specific set of operations; the role includes a set of
rights and privileges [51].

The Identity service contains these components:

• Server, to provide authentication and authorization services using a
RESTful interface;

• Drivers, used for accessing identity information in repositories external
to OpenStack (e.g. SQL databases);

• Modules, middleware modules to intercept service requests, extract user
credentials, and send them to the centralized server for authorization.

Keystone provides four primary services implemented as backends, that is
possible to see in Figure 3.6:

• Identity, for user authentication;

• Token, to replace the password authentication after the log-in;

• Catalog, to maintain the endpoint registry used to discover OpenStack
services endpoints;
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Figure 3.5: Keystone work flow [47]

• Policy, to provide a rule-based authorization engine.

Figure 3.6: Keystone logical architecture [52]

3.2.2 Computing service: Nova

Nova is the service dedicated to the computing. It interacts with several hyper-
visors (i.e. KVM, Docker, LXC, etc.) to provide on-demand virtual servers.
In the old releases of OpenStack, before Neutron and Cinder projects were
designed, Nova was also in charge of networking and of persistent volumes.
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Nova is designed to be modularly structured, in order to horizontally scale
whenever a new node is inserted in the OpenStack cluster.

As it possible to see from Figure 3.7, Nova has multiple components. How-
ever, only some of them will be discussed in this document.

• nova-API: RESTful API web service.

• nova-compute: interacts with the hypervisor to manage the virtual
instances, acting as a sort of stub; for each compute node, there is a
nova-compute component related to the hypervisor of that specific node.

• nova-scheduler: coordinates all services and determines the placement
of new requested resources; the scheduler itself decides for the node that
has more available resources at the moment of the request.

• nova database: stores the runtime states of the infrastructure (instance
types, active instances, available networks projects) in a coarse-grained
way.

• queue: it is a middleware for inter-service communications, acting as
a central hub for message passing between daemons (by default, it is
RabbitMQ, but it can also be ZeroMQ or others).

• nova-console, nova-novncproxy, nova consoleauth: they provide
user access to the consoles of virtual instances via a proxy.
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Figure 3.7: Nova logical architecture [52]

In Figure 3.8 it is possible to see what happens inside Nova when nova-API
receives a request for the instantiation of a new virtual instance. Whenever
a reliable installation of OpenStack (by replicating the main components) is
requested, the queue, the database and the nova-scheduler are going to be
replicated.

3.2.3 Object Storage service: Swift

Swift allows to store and recover files. It provides a completely distributed
storage platform that can be accessed by APIs and integrated inside appli-
cations or used to store and backup data. It is not a traditional filesystem,
but rather a distributed storage system for static data such as virtual machine
images, photo storage, email storage, backups and archives. It does not have a
central point of control, thus providing properties like scalability, redundancy
and durability.
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Figure 3.8: Nova work flow when a request for a new virtual resource arrives
[47]

• Proxy server: it handles incoming requests such as files to upload,
modifications to metadata or container creation.

• Accounts server: it manages accounts defined through the object stor-
age service.

• Container server: it maps containers inside the object storage service.

• Object server: it manages files that are stored on various storage nodes.

• Memcached: it is an in-memory key-value store for small chunks of
arbitrary data (e.g. strings, objects) from results of database calls, API
calls, or page rendering [53].
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Figure 3.9: Swift logical architecture [52]

3.2.4 Image service: Glance

Glance handles the discovery, registration, and delivery of disk and virtual
server images. It allows to store images on different storage systems, i.e.,
Swift, and supports several disk formats (i.e. Raw, qcow2, VMDK, etc.).

• glance-API: RESTful API web service to handle requests to discover,
store and deliver images.

• glance-registry: stores, processes and retrieves image metadata, as
image dimension, format, etc.

• glance database: database containing image metadata.

• external repository: stores the images. Glance supports repositories
as legacy file systems, Swift, Amazon S3, and HTTP.

• Metadata definition service: a common API for vendors, admins,
services and users to define their custom metadata.
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Figure 3.10: Glance logical architecture [52]

3.2.5 Block Storage service: Cinder

Cinder handles storage devices that can be attached to VM instances. It is
indeed the handler for the creation, attachment and detachment of volumes
to/from instances. It supports iSCSI, NFS, FC, RBD, GlusterFS protocols as
well as several storage platforms like Ceph, NetApp, Nexenta, SolidFire, and
Zadara.

It allows to create snapshots to backup data stored in volumes. Snapshots
can then be restored or used to create a new volume.

• cinder-API: RESTful API web service that accepts user requests and
redirects them to cinder-volume to be processed.

• cinder-volume: it handles the requests by reading and writing from
and to the cinder database, to maintain the system in a consistent state.
The interaction among cinder-volume and other components is performed
through a message queue.

• cinder-scheduler: it selects the best storage device where to create the
volume.

• glance database: it maintains the volumes’ state.
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Figure 3.11: Cinder logical architecture [52]

3.2.6 Networking service: Neutron

In OpenStack the networking is managed by Neutron. For the purpose of
this document, Neutron is extremely significant as all the measurements, the
different deployments and the open research activities that will come out are
related to its configuration. Therefore, it is strongly vital to know its details,
as its complexity in the OpenStack environment is equal only to its influence
to the measurements.

Neutron is a pluggable, scalable and API-driven support to manage net-
works and IP addresses. It provides Network as a Service (NaaS), as the Open-
Stack users are able to create their own networks where to plug the Virtual
Network Interface (vif ) of their virtual instances.

Neutron provides multi-tenancy: it is indeed possible for an user to run
its private resources in some physical node that is shared with other users
in a completely isolated and abstracted way. This is the result of the use of
particular technologies (which will be shown in Chapter 4). The full control
over virtual networks is provided to the user, that is limited on its own projects
and cannot see the resources of the others.
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Neutron is technology-agnostic: its APIs specify the service, while the dif-
ferent vendors provide their own implementation. It is therefore possible to
have extensions related to vendor-specific features, without the need to modify
the core source code.

Neutron is loosely coupled: it is indeed a standalone service, not exclusive
to the only OpenStack project.

The Neutron components are:

• neutron-server: it accepts request sent through APIs and forwards
them to the specific plug-in.

• message queue: it accepts and routes RPC requests between the neutron-
server and the various neutron agents that run on each hypervisor; more-
over, it acts as a DB to store the networking state for particular plug-ins.

• neutron database: it maintains the network state for some plug-ins.

• plug-ins & agents: they execute real actions, such as the connections
and disconnections of the ports, the creations of networks, subnets and
routers, etc. Some of these are:

– dhcp agent: it provides DHCP functionalities to virtual networks.

– L3 agent: it provides L3/NAT forwarding to provide an external
network access for the VMs.

– “plug-in” agent: it runs on each hypervisor to perform local vir-
tual switch configuration. The agent depends on the plug-in that
has been used (e.g. Linux Bridge, OpenVSwitch, Cisco, etc.).

Finally, it is important to remark the presence of the Modular Layer 2
(ML2) plug-in: this is a framework allowing OpenStack Networking to si-
multaneously utilize the variety of layer 2 networking technologies found in
complex real-world data centers. It currently works with the existing open-
vswitch, linuxbridge, and hyperv L2 agents, and is intended to replace and
deprecate the monolithic plug-ins associated with those L2 agents [54].
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Figure 3.12: Neutron logical architecture [52]

3.2.7 Other OpenStack services

Other remarkable OpenStack projects are Horizon, which is a web dashboard to
access the user-view of the platform, Heat, the orchestration component which
will be shown in Chapter 6, Ceilometer and Monasca for telemetry service,
Sahara as a way to provision data-intensive application cluster (Hadoop, Spark,
etc.) as well as many others.

A complete list for the Ocata version of OpenStack can be found in [55].

Therefore, whenever an instance is requested, the OpenStack components
start working together in order to allocate the needed resources to make it
possible. A representation of this is shown in Figure 3.13, related to an older
version of OpenStack. Even though some components have changed during
the years, the handouts of this Figure is that in OpenStack there is a huge
complexity behind even a simple action. All this complexity with its overhead
is the other side of the coin due to the OpenStack structure developed to
provide its services with a higher degree of flexibility.

Figure 3.14 shows a high-level interaction among OpenStack components.
Figure 3.15 shows how OpenStack through its components is fulfilling the cloud
functions shown in Figure 3.2.
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Figure 3.13: OpenStack instance provisioning workflow [56]

Figure 3.14: OpenStack basic services [57]
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Figure 3.15: OpenStack fulfilled cloud functions [58]

Finally 3.16 shows a complete scheme of all the interactions among Open-
Stack components.
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Chapter 4

Neutron networking: details
and improvements

As previously stated, the networking in OpenStack is in charge of Neutron.
In its entirety, Neutron is an extremely complex project and it is the one
granting to have multiple tenants that can share physical resources in a way
that is transparent to the users, still maintaining the isolation. In order to do
so, Neutron implies deeply complicated techniques and software.

4.1 Neutron abstractions

Neutron decouples the logical view of the network from the actual physical
view, providing APIs to define, manage and connect virtual networks. In
Figure 4.1 it is possible to observe that an user has some virtual machines
connected to different networks as part of its tenant. Although these machines
might be physically on different nodes, maybe with different hypervisors, ab-
straction mechanisms are provided by Neutron such that there is complete
transparency for instances. Indeed, what the instance will see about the net-
work is just an abstraction of a legacy network, as a result of the network
abstractions that Neutron applies.

Indeed, Neutron defines some network abstractions:

• Network: it represents an isolated L2 virtual network segment;

• Subnet: it represents an IP(v4/v6) address block on a certain network,
which can be assigned to VMs, routers or given networks;

57
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Figure 4.1: Neutron logical view vs. physical view

• Router: it represents a gateway between subnets.

• Fixed IP: it represents an IP on a tenant network.

• Floating IP: it represents a mapping between IP of external networks
and a private fixed IP (requiring therefore a DNAT operation);

• Port: it represents an attachment point to a network; in pratice, it
represents a logical switch port on a given network that is then attached
to the interface of a VM. The logical port also defines the MAC address
and the IP addresses that will be assigned to the plugged interface; as
long as the IP address is associated to a port, the latter will be associated
to the subnet corresponding to the IP.
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4.2 Networks and multi-tenancy

Apart from the physical networks connecting the different nodes, in OpenStack
there are two types of networks: the tenant network and the provider network.

A provider network is a network that is external to the cluster and allows
to have outside connectivity, by passing through the network node. A virtual
instance can also allocate (and then deallocate, when it is no longer needed) a
floating IP on this network to gain external visibility. Provider networks are
created only by the OpenStack administrator.

Instead, the tenant network (also known as self-service network) is created
by the cloud user for connectivity within projects. However, it lacks of con-
nectivity to external networks such as the Internet, unless it is using a virtual
router that has a gateway on a provider network. By default, tenant networks
are fully isolated and are not shared with other projects. In the creation phase
of a virtual instance, a fixed IP is taken from this network (which will not
be modifiable after the creation, as a consequence of a Neutron abstraction
regarding the port). Moreover, it is important to remark that the instance
receives the IP from a DHCP server (which actually is a dnsmasq process
generated by the DHCP agent) that is configured to provide to that instance
always the same fixed IP.

Neutron supports different types of tenant networks.

• Flat tenant network: here there is no tenant support; every instance
resides on the same network, which can also be shared with the hosts.

• Local tenant network: here the instances reside on the local compute
host and are effectively isolated from any external networks.

• VLAN tenant network: here 802.1Q tags (VLAN IDs) are used, which
are corresponding to the VLANs used in the physical network. This
allows instances to communicate with each other across the environment.

• VXLAN or GRE tunneling tenant network: network overlays are
employed to support private communication between instances.

Inside a node, tenant flows are always separated by internally assigned
VLAN IDs. Then, to perform communications among physical nodes, tenant
flows are separated, for instance, by user defined VLAN IDs, VXLAN IDs or
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GRE IDs, depending on the chosen tenant isolation technique. It is important
to remark that whichever it is the tenant isolation mechanism used, inside
a node OpenStack will always make use of automatically internally assigned
VLAN IDs. Indeed, even though a tunneling technique is used for the tenant
networks, the VLAN IDs are still used to isolate the tenants’ traffic inside the
node.

However, although by means of this techniques (VLAN, VXLAN, GRE,
etc.) the multi-tenancy is achieved, additional mechanisms are needed to let
different users have overlapping networks. To do that, the virtual routers for
the tenant networks, as well as the processes acting as a DHCP server, are
implemented inside several network namespaces.

The network namespace is a technology of the Linux kernel that allows to
isolate multiple network domains inside a single host, by replicating the net-
work software stack [59]. Therefore, a process executed in a namespace sees
only specific network interfaces (e.g. those of the router), their own routing
and ARP tables, their own firewall and NAT rules. Namespaces are able to
guarantee L3 isolation, making possible for the different users to have overlap-
ping IP addresses.

Therefore, multi-tenancy is achieved by the use of techniques as VLAN tag-
ging and/or tunneling (VXLAN, GRE), whereas the L3 isolation is granted by
the use of several Linux kernel network namespaces. However, it is important
to know that Neutron provides multiple network abstractions to let the user be
transparent to all these low-level details needed to deliver and enhance multi-
tenancy in this distributed system. More details about this will be provided
later.

4.3 The journey of a packet: the OpenStack

VNI

Without any loss of generality, it is possible to explain the VNI by supposing
an environment composed by a controller node, a compute node and a network
node.

In general, the controller node does not contribute to the VNI, unless it
provides also other functionalities (e.g. a controller node with computing fa-
cilities). On the other hand, in compute and network node Neutron will (by
means of agents and plug-ins) run and create, manage and destroy software
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Figure 4.2: OpenVSwitch overview [61]

entities to implement its functions.
First of all, it is important to state the two possible Neutron deployments

for the network hypervisor. The simplest solution implies an old component
that virtualizes a bridge, called Linux Bridge [60]; the complexity increases
with the OpenVSwitch [61] based solution. The OvS is an OpenFlow-enabled
multilayer virtual switch, supporting standard management interfaces and pro-
tocols, as NetFlow, sFlow, etc.

For its completeness and its capacity to perform SDN mechanisms, as well
as other reasons which will be stated later, here only the OvS deployment will
be considered [62]. However, for any reader interested in the LB deployment,
the concept will be similar but the presence of LBs instead of OvSs and, of
course, related mechanisms to maintain the multi-tenancy [63].

First of all, as long as the OvS is considered as the network hypervisor, it is
possible to state that for each node (compute and network) there is a Neutron
agent running on it. This will initialize the node by creating, on behalf of
neutron-server:

• an integration bridge br-int, which will act as a hub of the star network
composed by the virtual instances;

• a bridge for each physical network connected to the node itself. This
bridge might therefore be:
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Figure 4.3: Compute node internals

– br-ex whenever it is related to the external network;

– br-data, br-vlan or br-tun whenever it is related to the data network,
depending on the chosen tenant network solution.

To ease the explanation about the other internal components, two figures
representing an example of default OvS-based compute node internals and an
example of network node internals are shown respectively in Figure 4.3 and
Figure 4.4. Moreover, the internals will be shown by starting from the compute
node to reach the outside, as if the reader was following the flow of a packet
from the virtual instance to the outside.
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Figure 4.4: Network node internals

4.3.1 Compute node

In general, whenever virtualization techniques are considered, the virtual in-
stance (e.g. the VM) has as many TAP interfaces as the number of virtual
interfaces the instance has. The TAP interface indeed simulates a link layer
device and operates with layer 2 packets like Ethernet frames and is the coun-
terpart at host side of the guest’s virtual interface. Ideally, the TAP should
be attached directly to the integration bridge; however, this was not feasible
because of how OpenStack security groups are implemented. The Security
Groups are a set of rules that allow administrators and users to specify the
type of traffic and direction (ingress/egress) that is allowed with respect to
their instances; it is therefore a sort of firewall for instances. Indeed, Open-
Stack uses iptables rules on the TAP devices to implement security groups and
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OvS was at the time of development not compatible with iptables rules ap-
plied directly on those TAP devices which are attached to an OvS port. This
modality is called “iptables hybrid”; in general, also ebtables might be used if
configured.

It is possible to list the firewall rules of the compute node related to a
specific tap (the 11 characters after the word “tap” are the firts 11 characters
of the neutron port ID related to that interface):

[ root@compute6 ˜ ]# i p t a b l e s −S | grep tapcb13fae5−5b
−A neutron−openvswi−FORWARD −m physdev −−physdev−out tapcb13fae5−5

b −−physdev−i s−br idged −m comment −−comment ‘ ‘ D i rec t t r a f f i c
from the VM i n t e r f a c e to the s e c u r i t y group chain . ” −j neutron−
openvswi−sg−chain

−A neutron−openvswi−FORWARD −m physdev −−physdev−in tapcb13fae5−5b
−−physdev−i s−br idged −m comment −−comment ‘ ‘ D i r ec t t r a f f i c
from the VM i n t e r f a c e to the s e c u r i t y group chain . ” −j neutron−
openvswi−sg−chain

−A neutron−openvswi−INPUT −m physdev −−physdev−in tapcb13fae5−5b
−−physdev−i s−br idged −m comment −−comment ‘ ‘ D i rec t incoming
t r a f f i c from VM to the s e c u r i t y group chain . ” −j neutron−
openvswi−ocb13fae5−5

−A neutron−openvswi−sg−chain −m physdev −−physdev−out tapcb13fae5
−5b −−physdev−i s−br idged −m comment −−comment ‘ ‘Jump to the VM
s p e c i f i c chain . ” −j neutron−openvswi−i cb13 fae5−5

−A neutron−openvswi−sg−chain −m physdev −−physdev−in tapcb13fae5−5
b −−physdev−i s−br idged −m comment −−comment ‘ ‘Jump to the VM
s p e c i f i c chain . ” −j neutron−openvswi−ocb13fae5−5

As it is possible to see from this listing and from Figure 4.5, there are sev-
eral chains and rules associated to a tap. The actual iptables chain where the
neutron-managed security groups are realized is the neutron-openvswitch-sg-
chain. Instead, the chains neutron-openvswi-ocb13fae5-5 and neutron-openvswi-
icb13fae5-5 are those controlling the traffic exiting from the instance (neutron-
openvswi-o*, where o stays for output, intending the instance output) or di-
rected to it (neutron-openvswi-o*, instance input).

The neutron-openvswi-ocb13fae5-5 will be:

[ root@compute6 ˜ ]# i p t a b l e s −S neutron−openvswi−ocb13fae5−5
−N neutron−openvswi−ocb13fae5−5
−A neutron−openvswi−ocb13fae5−5 −s 0 . 0 . 0 . 0 / 3 2 −d

255 .255 .255 .255/32 −p udp −m udp −−spor t 68 −−dport 67 −m
comment −−comment ‘ ‘ Allow DHCP c l i e n t t r a f f i c . ” −j RETURN

−A neutron−openvswi−ocb13fae5−5 −j neutron−openvswi−scb13fae5−5
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Figure 4.5: Iptables graphical representation

−A neutron−openvswi−ocb13fae5−5 −p udp −m udp −−spor t 68 −−dport
67 −m comment −−comment ‘ ‘ Allow DHCP c l i e n t t r a f f i c . ” −j RETURN

−A neutron−openvswi−ocb13fae5−5 −p udp −m udp −−spor t 67 −m udp −−
dport 68 −m comment −−comment ‘ ‘ Prevent DHCP Spoof ing by VM. ” −
j DROP

−A neutron−openvswi−ocb13fae5−5 −m sta t e −−s t a t e RELATED,
ESTABLISHED −m comment −−comment ‘ ‘ D i rec t packets a s s o c i a t ed
with a known s e s s i o n to the RETURN chain . ” −j RETURN

−A neutron−openvswi−ocb13fae5−5 −j RETURN
−A neutron−openvswi−ocb13fae5−5 −m sta t e −−s t a t e INVALID −m

comment −−comment ‘ ‘ Drop packets that appear r e l a t e d to an
e x i s t i n g connect ion ( e . g . TCP ACK/FIN) but do not have an entry
in conntrack . ” −j DROP



66 CHAPTER 4. NEUTRON NETWORKING

−A neutron−openvswi−ocb13fae5−5 −m comment −−comment ‘ ‘ Send
unmatched t r a f f i c to the f a l l b a c k chain . ” −j neutron−openvswi−
sg−f a l l b a c k

whereas the neutron-openvswi-icb13fae5-5 will be:

[ root@compute6 ˜ ]# i p t a b l e s −S neutron−openvswi−i cb13 fae5−5
−N neutron−openvswi−i cb13 fae5−5
−A neutron−openvswi−i cb13 fae5−5 −m sta t e −−s t a t e RELATED,

ESTABLISHED −m comment −−comment ‘ ‘ D i rec t packets a s s o c i a t ed
with a known s e s s i o n to the RETURN chain . ” −j RETURN

−A neutron−openvswi−i cb13 fae5−5 −s 192 . 168 . 10 . 1/32 −p udp −m udp
−−spor t 67 −m udp −−dport 68 −j RETURN

−A neutron−openvswi−i cb13 fae5−5 −p icmp −j RETURN
−A neutron−openvswi−i cb13 fae5−5 −p tcp −m tcp −−dport 22 −j RETURN
−A neutron−openvswi−i cb13 fae5−5 −p tcp −m tcp −m mult iport −−

dports 1 :65535 −j RETURN
−A neutron−openvswi−i cb13 fae5−5 −m se t −−match−s e t NIPv49fbb4027

−302 f−40b2−8e4e− s r c −j RETURN
−A neutron−openvswi−i cb13 fae5−5 −p udp −m udp −m mult iport −−

dports 1 :65535 −j RETURN
−A neutron−openvswi−i cb13 fae5−5 −m sta t e −−s t a t e INVALID −m

comment −−comment ‘ ‘ Drop packets that appear r e l a t e d to an
e x i s t i n g connect ion ( e . g . TCP ACK/FIN) but do not have an entry
in conntrack . ” −j DROP

−A neutron−openvswi−i cb13 fae5−5 −m comment −−comment ‘ ‘ Send
unmatched t r a f f i c to the f a l l b a c k chain . ” −j neutron−openvswi−
sg−f a l l b a c k

where it is possible to see the presence of the user-managed decision to
open all the TCP and UDP ports, as well as the SSH and ICMP. If the traffic
is not matched by these rules (on the ingress or egress direction, depending on
the type of traffic), it will be sent to the neutron-openvswi-sg-fallback, which
is a single DROP rule.

It is remarkable to say that a new way to perform firewalling is now present
in OpenStack and will be shown later in this document, as it is one of the main
points on which the measurements will focus.

Therefore, it is possible to see in Figure 4.6 that the traffic exiting from a
virtual instance reaches first the TAP interface and then a Linux Bridge device.
This device connects the tap to the integration bridge through a veth pair. This
is a virtual Ethernet cable where the two interfaces seen by the kernel level are
representing the two extremities of the cable itself: what enters on one side,
exits on the other one. Therefore, the Linux Bridge is present to make possible
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Figure 4.6: Egress instance flow in an OpenStack compute

to implement the security groups rules on the tap, whereas the role of the veth
pair is just to connect the Linux Bridge to the OvS.

The port of the OvS connected to any instance’s veth pair is in access mode
for a certain VLAN ID, which is related to the tenant network the VM belongs
to and internally decided by Neutron, in particular by the L2 agent. This is
one of those actions performed by Neutron to maintain the multi-tenancy in
OpenStack, as previously stated.

Therefore, the bridge br-int will receive VLAN tagged packets from the
instances; this helps it to recognize to which network they belong. When the
instance is created, the neutron-openvswitch-agent installs OpenFlow rules to
make possible to forward traffic the traffic coming from and going to it. In-
deed, the br-int performs VLAN tagging and un-tagging for traffic coming
from and to the instances. It is possible to demonstrate that two virtual in-
stances belonging to different tenant networks are not able to interact directly
simply through L2 OVS switching, even though they reside in the same com-
pute node. On the other hand, if they were on the same tenant network the
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interaction would have been possible directly through the br-int, in a complete
L2 switching mechanism.

[ root@compute6 ˜ ]# ovs−v s c t l show
892 c5743−ebab−4f0a−8459−0a927 f f e6863

Manager ‘ ‘ ptcp : 6 6 4 0 : 1 2 7 . 0 . 0 . 1 ”
i s c onne c t ed : t rue

Bridge br−tun
Cont r o l l e r ‘ ‘ tcp : 1 2 7 . 0 . 0 . 1 : 6 6 3 3 ”

i s c onne c t ed : true
f a i l mode : s e cure
Port ‘ ‘ vxlan−0a7d0005”

I n t e r f a c e ‘ ‘ vxlan−0a7d0005”
type : vxlan
opt ions : { d f d e f a u l t = ‘ ‘ true” , in key=flow ,

l o c a l i p = ‘ ‘ 10 . 125 . 0 . 6 ” , out key=flow , remote ip
= ‘ ‘ 10 . 125 . 0 . 5 ”}

Port br−tun
I n t e r f a c e br−tun

type : i n t e r n a l
Port patch−i n t

I n t e r f a c e patch−i n t
type : patch
opt ions : {peer=patch−tun}

Port ‘ ‘ vxlan−0a7d0007”
I n t e r f a c e ‘ ‘ vxlan−0a7d0007”

type : vxlan
opt ions : { d f d e f a u l t = ‘ ‘ t rue ” , in key=flow ,

l o c a l i p = ‘ ‘ 10 . 125 . 0 . 6 ” , out key=flow , remote ip
= ‘ ‘ 10 . 125 . 0 . 7 ”}

Bridge br−i n t
Con t r o l l e r ‘ ‘ tcp : 1 2 7 . 0 . 0 . 1 : 6 6 3 3 ”

i s c onne c t ed : t rue
f a i l mode : s e cure
Port ‘ ‘ qvocb13fae5−5b”

tag : 1
I n t e r f a c e ‘ ‘ qvocb13fae5−5b”

Port ‘ ‘ qvo39215413−ba”
tag : 2
I n t e r f a c e ‘ ‘ qvo39215413−ba”

Port br−i n t
I n t e r f a c e br−i n t

type : i n t e r n a l
Port patch−tun

I n t e r f a c e patch−tun
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type : patch
opt ions : {peer=patch−i n t }

ov s v e r s i on : ‘ ‘ 2 . 5 . 0 ”

# Example o f a br−in t ’ s r u l e s
[ root@compute6 ˜ ]# ovs−o f c t l dump−f l ow s br−i n t
NXSTFLOW rep ly ( xid=0x4 ) :
cook i e=0xa7cbf fe5e9447996 , durat ion =22970.593 s , t ab l e =0,

n packets=0, n bytes=0, i d l e a g e =65534 , p r i o r i t y =10, icmp6 ,
i n po r t =45, icmp type=136 ac t i on s=resubmit ( , 24 )

cook i e=0xa7cbf fe5e9447996 , durat ion =22970.584 s , t ab l e =0,
n packets=0, n bytes=0, i d l e a g e =65534 , p r i o r i t y =10, icmp6 ,
i n po r t =44, icmp type=136 ac t i on s=resubmit ( , 24 )

cook i e=0xa7cbf fe5e9447996 , durat ion =22970.591 s , t ab l e =0,
n packets =773 , n bytes =32466 , i d l e a g e =3017 , p r i o r i t y =10,arp ,
i n po r t=45 ac t i on s=resubmit ( , 24 )

cook i e=0xa7cbf fe5e9447996 , durat ion =22970.582 s , t ab l e =0,
n packets =1759 , n bytes =73878 , i d l e a g e =964 , p r i o r i t y =10,arp ,
i n po r t=44 ac t i on s=resubmit ( , 24 )

cook i e=0xa7cbf fe5e9447996 , durat ion =22970.595 s , t ab l e =0,
n packets =2093585249 , n bytes =31746710699846 , i d l e a g e =3022 ,
p r i o r i t y =9, i n po r t=45 ac t i on s=resubmit ( , 25 )

cook i e=0xa7cbf fe5e9447996 , durat ion =455046.537 s , t ab l e =0,
n packets =989591080 , n bytes =697284235563 , i d l e a g e =756 ,
hard age=65534 , p r i o r i t y=0 ac t i on s=NORMAL

cook i e=0xa7cbf fe5e9447996 , durat ion =455046.539 s , t ab l e =23,
n packets=0, n bytes=0, i d l e a g e =65534 , hard age=65534 ,
p r i o r i t y=0 ac t i on s=drop

cook i e=0xa7cbf fe5e9447996 , durat ion =247405.544 s , t ab l e =24,
n packets=0, n bytes=0, i d l e a g e =65534 , hard age=65534 ,
p r i o r i t y =2,icmp6 , i n po r t =45, icmp type=136 , nd ta rge t=fe80 : : f816
: 3 e f f : f e9b :552b ac t i on s=NORMAL

cook i e=0xa7cbf fe5e9447996 , durat ion =22970.585 s , t ab l e =24,
n packets=0, n bytes=0, i d l e a g e =22970 , p r i o r i t y =2,icmp6 ,
i n po r t =44, icmp type=136 , nd ta rge t=fe80 : : f816 : 3 e f f : f e03 :92 fa
a c t i on s=NORMAL

cook i e=0xa7cbf fe5e9447996 , durat ion =22970.592 s , t ab l e =24,
n packets=6, n bytes =252 , i d l e a g e =3017 , p r i o r i t y =2,arp ,
i n po r t =45, arp spa =192 .168 .10 .5 a c t i on s=resubmit ( , 25 )

cook i e=0xa7cbf fe5e9447996 , durat ion =22970.583 s , t ab l e =24,
n packets =28, n bytes =1176 , i d l e a g e =964 , p r i o r i t y =2,arp ,
i n po r t =44, arp spa =192.168 .100 .12 a c t i on s=resubmit ( , 25 )

cook i e=0xa7cbf fe5e9447996 , durat ion =455046.536 s , t ab l e =24,
n packets=0, n bytes=0, i d l e a g e =65534 , hard age=65534 ,
p r i o r i t y=0 ac t i on s=drop
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cook i e=0xa7cbf fe5e9447996 , durat ion =22970.599 s , t ab l e =25,
n packets =2093586020 , n bytes =31746710732172 , i d l e a g e =3017 ,
p r i o r i t y =2, i n po r t =45, d l s r c=fa : 1 6 : 3 e : 9 b : 5 5 : 2 b a c t i on s=NORMAL

cook i e=0xa7cbf fe5e9447996 , durat ion =22970.590 s , t ab l e =25,
n packets =4031440 , n bytes =6296979873 , i d l e a g e =964 , p r i o r i t y
=2, i n po r t =44, d l s r c=fa : 1 6 : 3 e : 0 3 : 9 2 : f a a c t i on s=NORMAL

As it is possible to see from the above listing, br-int has two qvo interfaces
attached, related to virtual interfaces belonging to different tenant networks,
as shown in the tag (⇒ VLAN tag) field. Therefore untagged outbound traffic
related to the qvocb13fae5-5b interface will be assigned VLAN ID 1, and in-
bound traffic with VLAN ID 1 will be stripped of its VLAN tag and sent out
from this port.

Table 0 of the br-int considers all the ICMP6 and ARP traffic by resub-
mitting it to Table 24. Moreover, the traffic coming from the veth pair that
connects br-int with br-tun is resubmitted to Table 25, whereas all the remain-
ing traffic will be treated with a NORMAL action. Table 23 is also called the
“canary rule table”, as it contains a DROP rule that is used only in absence
of instances. Moreover, this rule is continuously checked by Neutron and, if at
a certain moment it is not found, Neutron will restore all the previous rules
as a matter of security. Finally Table 24 and Table 25 are related to the ARP
and ICMP6 management.

As long as the instance traffic considered here is directed to the outside (e.g.
the Internet), the traffic will be switched by the OvS to go through another
veth pair that connects the br-int to the br-tun (or br-data, or br-vlan, when
a non-tunneling tenant networks environment is deployed). On br-tun, other
OpenFlow rules are implemented to translate the tagged instance egress traffic
into VXLAN or GRE tunnels and viceversa: indeed, br-tun is attached to N-
1 VXLAN/GRE interfaces (which is also the number of tunnels and where
N is the number of nodes connected to the data tunnel network) that will
encapsulate the packet. For instance, with one network node and two compute
nodes, each node will have two interfaces, each one related to a tunnel shared
with another node.

As it is possible to see from the next listing, br-tun makes use of multiple
OvS tables. It is also shown that, in addition to the rule matching a VLAN
ID and setting the tunnel it before sending to the tunnel, there are rules to
match multicast traffic with a certain tunnel id to redirect to the veth pair:
these are those rules related to the ingress traffic.
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[ root@compute6 ˜ ]# ovs−o f c t l dump−f l ow s br−tun
NXSTFLOW rep ly ( xid=0x4 ) :
cook i e=0xb8aefdd94951cae5 , durat ion =32025.359 s , t ab l e =0,

n packets =1065110 , n bytes =5539393619 , i d l e a g e =3, p r i o r i t y =1,
i n po r t=2 ac t i on s=resubmit ( , 2 )

cook i e=0xb8aefdd94951cae5 , durat ion =31976.629 s , t ab l e =0,
n packets =51299 , n bytes =56395081 , i d l e a g e =3, p r i o r i t y =1,
i n po r t=3 ac t i on s=resubmit ( , 4 )

cook i e=0xb8aefdd94951cae5 , durat ion =32025.358 s , t ab l e =0,
n packets =1955 , n bytes =151833 , i d l e a g e =800 , p r i o r i t y=0
ac t i on s=drop

cook i e=0xb8aefdd94951cae5 , durat ion =32025.357 s , t ab l e =2,
n packets =1064154 , n bytes =5539287179 , i d l e a g e =3, p r i o r i t y =0,
d l d s t =00 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 / 0 1 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 a c t i on s=resubmit
( , 20 )

cook i e=0xb8aefdd94951cae5 , durat ion =32025.355 s , t ab l e =2,
n packets =956 , n bytes =106440 , i d l e a g e =14819 , p r i o r i t y =0,
d l d s t =01 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 / 0 1 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 a c t i on s=resubmit
( , 22 )

cook i e=0xb8aefdd94951cae5 , durat ion =32025.354 s , t ab l e =3,
n packets=0, n bytes=0, i d l e a g e =65534 , p r i o r i t y=0 ac t i on s=
drop

cook i e=0xb8aefdd94951cae5 , durat ion =31978.079 s , t ab l e =4,
n packets =1740 , n bytes =173266 , i d l e a g e =1078 , p r i o r i t y =1,
tun id=0x10 ac t i on s=mod vlan vid : 1 , resubmit ( , 10 )

cook i e=0xb8aefdd94951cae5 , durat ion =31977.962 s , t ab l e =4,
n packets =49559 , n bytes =56221815 , i d l e a g e =3, p r i o r i t y =1,
tun id=0x2b ac t i on s=mod vlan vid : 2 , resubmit ( , 10 )

cook i e=0xb8aefdd94951cae5 , durat ion =32025.353 s , t ab l e =4,
n packets =12, n bytes =768 , i d l e a g e =38108 , p r i o r i t y=0 ac t i on s=
drop

cook i e=0xb8aefdd94951cae5 , durat ion =32025.352 s , t ab l e =6,
n packets=0, n bytes=0, i d l e a g e =65534 , p r i o r i t y=0 ac t i on s=
drop

cook i e=0xb8aefdd94951cae5 , durat ion =32025.350 s , t ab l e =10,
n packets =1755299 , n bytes =5723071599 , i d l e a g e =3, p r i o r i t y=1
ac t i on s=l ea rn ( t ab l e =20, hard t imeout=300 , p r i o r i t y =1, cook i e=0
xb8aefdd94951cae5 ,NXM OF VLAN TCI [ 0 . . 1 1 ] ,NXM OF ETH DST[ ]=
NXM OF ETH SRC [ ] , load :0−>NXM OF VLAN TCI [ ] , load :NXM NX TUN ID
[]−>NXM NX TUN ID [ ] , output :OXM OF IN PORT [ ] ) , output : 2

cook i e=0xb8aefdd94951cae5 , durat ion =31894.451 s , t ab l e =20,
n packets =1629 , n bytes =148718 , i d l e a g e =1078 , p r i o r i t y =2,
d l v l an =1, d l d s t=fa : 1 6 : 3 e : e6 : 2 f : c5 a c t i on s=s t r i p v l an , load : 0
x10−>NXM NX TUN ID [ ] , output : 3

cook i e=0xb8aefdd94951cae5 , durat ion =31892.379 s , t ab l e =20,
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n packets =49415 , n bytes =8829803 , i d l e a g e =3, p r i o r i t y =2,
d l v l an =2, d l d s t=fa : 1 6 : 3 e : 6 c : 5 a : 6 c a c t i on s=s t r i p v l an , load : 0
x2b−>NXM NX TUN ID [ ] , output : 3

cook i e=0xb8aefdd94951cae5 , durat ion =31892.377 s , t ab l e =20,
n packets=6, n bytes =252 , i d l e a g e =31368 , p r i o r i t y =2, d l v l an
=2, d l d s t=fa : 1 6 : 3 e : 8 5 : 8 3 : e1 a c t i on s=s t r i p v l an , load : 0 x2b−>
NXM NX TUN ID [ ] , output : 3

cook i e=0xb8aefdd94951cae5 , durat ion =1212.720 s , t ab l e =20,
n packets=0, n bytes=0, hard t imeout=300 , i d l e a g e =1212 ,
hard age=3, p r i o r i t y =1, v l a n t c i=0x0002/0 x0 f f f , d l d s t=fa : 1 6 : 3 e
: 6 c : 5 a : 6 c a c t i on s=load :0−>NXM OF VLAN TCI [ ] , load : 0 x2b−>
NXM NX TUN ID [ ] , output : 3

cook i e=0xb8aefdd94951cae5 , durat ion =32025.349 s , t ab l e =20,
n packets=4, n bytes =296 , i d l e a g e =800 , p r i o r i t y=0 ac t i on s=
resubmit ( , 22 )

cook i e=0xb8aefdd94951cae5 , durat ion =31894.453 s , t ab l e =22,
n packets =135 , n bytes =16646 , i d l e a g e =800 , p r i o r i t y =1, d l v l an
=1 ac t i on s=s t r i p v l an , load : 0 x10−>NXM NX TUN ID [ ] , output : 3

cook i e=0xb8aefdd94951cae5 , durat ion =31892.381 s , t ab l e =22,
n packets =75, n bytes =9054 , i d l e a g e =31353 , p r i o r i t y =1, d l v l an
=2 ac t i on s=s t r i p v l an , load : 0 x2b−>NXM NX TUN ID [ ] , output : 3

cook i e=0xb8aefdd94951cae5 , durat ion =32025.348 s , t ab l e =22,
n packets =131 , n bytes =10578 , i d l e a g e =31426 , p r i o r i t y=0
ac t i on s=drop

Thus, the encapsulated packet will be sent on the tunnel data network
that connects the compute node to the network node; however, if the instance
traffic was directed to an instance in an another compute node, the tunnel over
which send the packet would have been the one connecting the two compute
nodes.

4.3.2 Network node

The traffic is therefore reaching the end of the tunnel by the corresponding
VXLAN/GRE interface and getting at the br-tun where, in a very similar
way to the compute node’s br-tun, performs the VXLAN/GRE translation to
VLAN and sends the traffic over the veth pair. The br-int as well will make use
of OpenFlow to redirect this traffic to the network namespace of the virtual
router (qr-* interface inside the qrouter-*) or of the dhcp (tap* inside the
qdhcp*-). From the next listing it is important to note that the MAC address
of the tap-* interface inside the dhcp namespace is the one that is present in
some rules of the compute node’s br-tun. Moreover, it is also possible to see
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Figure 4.7: Egress instance flow in an OpenStack network node

the dnsmasq process.

[ root@ ˜ ]# ip netns l i s t
qdhcp−b1fde838−71ce−40ef−abc0−46b231055fb1
qrouter−bd7895d0−4dc4−4301−92c5−42 f a e8569 f e c

[ root@network01 ˜ ]# ip netns exec qdhcp−b1fde838−71ce−40ef−abc0−46
b231055fb1 i f c o n f i g

l o : f l a g s=73<UP,LOOPBACK,RUNNING> mtu 65536
i n e t 1 2 7 . 0 . 0 . 1 netmask 2 5 5 . 0 . 0 . 0
i n e t 6 : : 1 p r e f i x l e n 128 scope id 0x10<host>
loop txqueue len 1 ( Local Loopback )
RX packets 154 bytes 45112 (44 . 0 KiB)
RX e r r o r s 0 dropped 0 overruns 0 frame 0
TX packets 154 bytes 45112 (44 . 0 KiB)
TX e r r o r s 0 dropped 0 overruns 0 c a r r i e r 0 c o l l i s i o n s 0

tap2134f8be −10: f l a g s=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu
1450
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i n e t 1 92 . 1 68 . 1 0 . 1 netmask 255 . 255 . 255 . 0 broadcast
192 . 168 . 10 . 255

in e t 6 f e80 : : f816 : 3 e f f : f e e 6 : 2 f c 5 p r e f i x l e n 64 scope id 0
x20<l i nk>

e the r f a : 1 6 : 3 e : e6 : 2 f : c5 txqueue len 1000 ( Ethernet )
RX packets 30408 bytes 201865016 (192 . 5 MiB)
RX e r r o r s 0 dropped 4 overruns 0 frame 0
TX packets 16815 bytes 1474904 ( 1 . 4 MiB)
TX e r r o r s 0 dropped 0 overruns 0 c a r r i e r 0 c o l l i s i o n s 0

[ root@network01 ˜ ]# ps −f e | grep b1fde838−71ce−40ef−abc0−46
b231055fb1

neutron 3076 1 0 11 :05 ? 00 : 00 : 01 / usr / bin /python2 /
bin /neutron−ns−metadata−proxy −−p i d f i l e=/var / l i b /neutron/
ex t e rna l / p ids /b1fde838−71ce−40ef−abc0−46b231055fb1 . pid −−
metadata proxy socket=/var / l i b /neutron/metadata proxy −−
network id=b1fde838−71ce−40ef−abc0−46b231055fb1 −−s t a t e pa th=/
var / l i b /neutron −−metadata port=80 −−metadata proxy user=989 −−
metadata proxy group=986 −−log− f i l e=neutron−ns−metadata−proxy−
b1fde838−71ce−40ef−abc0−46b231055fb1 . l og −−log−d i r=/var / log /
neutron

nobody 22320 1 0 13 :43 ? 00 : 00 : 00 dnsmasq −−no−host s
−−no−r e s o l v −−s t r i c t −order −−except−i n t e r f a c e=lo −−pid− f i l e =/
var / l i b /neutron/dhcp/b1fde838−71ce−40ef−abc0−46b231055fb1/pid
−−dhcp−h o s t s f i l e=/var / l i b /neutron/dhcp/b1fde838−71ce−40ef−abc0
−46b231055fb1/ host −−addn−hos t s=/var / l i b /neutron/dhcp/b1fde838
−71ce−40ef−abc0−46b231055fb1/ addn hosts −−dhcp−o p t s f i l e=/var /
l i b /neutron/dhcp/b1fde838−71ce−40ef−abc0−46b231055fb1/ opts −−
dhcp− l e a s e f i l e =/var / l i b /neutron/dhcp/b1fde838−71ce−40ef−abc0−46
b231055fb1 / l e a s e s −−dhcp−match=set : ipxe ,175 −−bind−i n t e r f a c e s
−− i n t e r f a c e=tap2134f8be−10 −−dhcp−range=set : tag0 , 1 9 2 . 1 6 8 . 1 0 . 0 ,
s t a t i c ,86400 s −−dhcp−option−f o r c e=opt ion :mtu ,1450 −−dhcp−l e a s e−
max=256 −−conf− f i l e= −−domain=open s t a ck l o ca l

root 25487 24428 0 22 :40 pts /16 00 : 00 : 00 grep −−c o l o r=auto
b1fde838−71ce−40ef−abc0−46b231055fb1

The router namespace is organized in a similar way. The qg-* interface
connects the router to the external gateway, where as the qr-* connects the
router to the integration-bridge. The routing tables are showing that the
default gateway is the gateway on the external network that has been set
during the network creation. Moreover, the netfilter nat table is responsible
for the floating IP addresses associated to the instances as well as for the
general NAT functionalities, by performing a SNAT operation.

Therefore, the traffic from br-int will enter into the network namespace
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of the router, will go through the qr*- and qg-* and NAT actions will be
performed on it, to be then sent again to the br-int. This bridge will now
recognize that the incoming traffic is related to the external network and will
forward it to the br-ex via another patch port.

Finally, the br-ex will perform other OpenFlow rules (simple switching) to
let this traffic go out of the cluster. Similarly, the inverse process applies for
an ingress flow.

[ root@network01 ˜ ]# ip netns exec qrouter−bd7895d0−4dc4−4301−92c5
−42 fae8569 f ec i f c o n f i g

l o : f l a g s=73<UP,LOOPBACK,RUNNING> mtu 65536
i n e t 1 2 7 . 0 . 0 . 1 netmask 2 5 5 . 0 . 0 . 0
i n e t 6 : : 1 p r e f i x l e n 128 scope id 0x10<host>
loop txqueue len 1 ( Local Loopback )
RX packets 210 bytes 21696 (21 . 1 KiB)
RX e r r o r s 0 dropped 0 overruns 0 frame 0
TX packets 210 bytes 21696 (21 . 1 KiB)
TX e r r o r s 0 dropped 0 overruns 0 c a r r i e r 0 c o l l i s i o n s 0

qg−bc9626ae−d2 : f l a g s=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu
1500

i n e t 10 . 2 50 . 0 . 1 17 netmask 255 . 255 . 255 . 0 broadcast
1 0 . 2 50 . 0 . 2 55

in e t 6 f e80 : : f816 : 3 e f f : f e e 9 : fb20 p r e f i x l e n 64 scope id 0
x20<l i nk>

e the r f a : 1 6 : 3 e : e9 : fb : 20 txqueue len 1000 ( Ethernet )
RX packets 369371 bytes 433274239 (413 . 2 MiB)
RX e r r o r s 0 dropped 0 overruns 0 frame 0
TX packets 337010 bytes 58322351 (55 . 6 MiB)
TX e r r o r s 0 dropped 0 overruns 0 c a r r i e r 0 c o l l i s i o n s 0

qr−c f f634eb−5c : f l a g s=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu
1450

i n e t 192 . 168 . 110 . 254 netmask 255 . 255 . 255 . 0 broadcast
192 . 168 . 110 . 255

in e t 6 f e80 : : f816 : 3 e f f : f ed4 : fad2 p r e f i x l e n 64 scope id 0
x20<l i nk>

e the r f a : 1 6 : 3 e : d4 : f a : d2 txqueue len 1000 ( Ethernet )
RX packets 2280719 bytes 71059154 (67 . 7 MiB)
RX e r r o r s 0 dropped 0 overruns 0 frame 0
TX packets 2279503 bytes 103108021 (98 . 3 MiB)
TX e r r o r s 0 dropped 0 overruns 0 c a r r i e r 0 c o l l i s i o n s 0

[ root@network01 ˜ ]# ip netns exec qrouter−bd7895d0−4dc4−4301−92c5
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−42 fae8569 f ec route −n
Kernel IP rout ing tab l e
Des t ina t i on Gateway Genmask Flags Metric Ref

Use I f a c e
0 . 0 . 0 . 0 10 . 2 50 . 0 . 2 52 0 . 0 . 0 . 0 UG 0 0

0 qg−bc9626ae−d2
10 . 2 5 0 . 0 . 0 0 . 0 . 0 . 0 255 . 255 . 255 . 0 U 0 0

0 qg−bc9626ae−d2
192 . 168 . 110 . 0 0 . 0 . 0 . 0 255 . 255 . 255 . 0 U 0 0

0 qr−c f f634eb−5c

[ root@network01 ˜ ]# ip netns exec qrouter−bd7895d0−4dc4−4301−92c5
−42 fae8569 f ec i p t a b l e s −t nat −S

−P PREROUTING ACCEPT
−P INPUT ACCEPT
−P OUTPUT ACCEPT
−P POSTROUTING ACCEPT
−N neutron−l3−agent−OUTPUT
−N neutron−l3−agent−POSTROUTING
−N neutron−l3−agent−PREROUTING
−N neutron−l3−agent−f l o a t−snat
−N neutron−l3−agent−snat
−N neutron−post rout ing−bottom
−A PREROUTING −j neutron−l3−agent−PREROUTING
−A OUTPUT −j neutron−l3−agent−OUTPUT
−A POSTROUTING −j neutron−l3−agent−POSTROUTING
−A POSTROUTING −j neutron−post rout ing−bottom
−A neutron−l3−agent−OUTPUT −d 10 . 250 . 0 . 107/32 −j DNAT −−to−

de s t i n a t i on 192 . 168 . 110 . 12
−A neutron−l3−agent−POSTROUTING ! − i qg−bc9626ae−d2 ! −o qg−

bc9626ae−d2 −m conntrack ! −−c t s t a t e DNAT −j ACCEPT
−A neutron−l3−agent−PREROUTING −d 169 .254 .169 .254/32 − i qr−+ −p

tcp −m tcp −−dport 80 −j REDIRECT −−to−por t s 9697
−A neutron−l3−agent−PREROUTING −d 10 . 250 . 0 . 107/32 −j DNAT −−to−

de s t i n a t i on 192 . 168 . 110 . 12
−A neutron−l3−agent−f l o a t−snat −s 192 .168 .110 .12/32 −j SNAT −−to−

source 10 . 2 50 . 0 . 1 07
−A neutron−l3−agent−snat −j neutron−l3−agent−f l o a t−snat
−A neutron−l3−agent−snat −o qg−bc9626ae−d2 −j SNAT −−to−source

10 . 2 50 . 0 . 1 17
−A neutron−l3−agent−snat −m mark ! −−mark 0x2/0 x f f f f −m conntrack
−−c t s t a t e DNAT −j SNAT −−to−source 10 . 2 50 . 0 . 1 17

−A neutron−post rout ing−bottom −m comment −−comment ‘ ‘ Perform
source NAT on outgoing t r a f f i c . ” −j neutron−l3−agent−snat
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4.4 Remarks

First of all, it is also possible to have a much more simpler deployment, where
Linux Bridges are used instead of OvS; however, it lacks of SDN mechanisms
and is not suitable for production environments.

In general, each time a new network is created, neutron-server will contact
the neutron-dhcp-agent to create a new network namespace (the qdhcp-*);
then, inside the namespace a virtual interface is created and a dnsmasq process
is spawned by using that vif. In addition to it, whenever a router is added to
the network topology, the neutron-l3-agent creates a network namespace for
it, as well as a vif inside it, configures its routing tables and NAT rules. It is
remarkable to say that only the network node will be the location for all the
network namespaces, both routers and DHCP servers.

Instead, in the case of a new instance creation, nova-api is in charge (af-
ter having contacted the database, nova-scheduler, etc.) of contacting the
nova-compute agent running on the chosen node to instruct it. Also neutron-
server will be contacted by asking for a port allocation (and a fixed IP for
the instance); the neutron-openvswitch-agent on the target node will therefore
configure the virtual bridges via the OpenFlow protocol. In the meanwhile, in
the network node neutron-dhcp will spawn the IP address decided.

An example of a VNI with VLAN tenant networks is shown in Figure 4.8.
As it is possible to see, nova-compute is in charge of configuring the interaction
among the hypervisor that created the virtual instances, in this case VMs, and
the networking-related part, which is in turn taken into account by the Neutron
L2 agent (neutron-openvswitch-agent). VM01 and VM02 have an interface on
one tenant network, which the L2 agent internally assigned on the VLAN ID 1,
whereas VM02 and VM03 are on another tenant network, that is assigned to
VLAN ID 2. When the traffic has to exit the node, the br-int first forwards it
to the port attached to the veth pair related to the br-eth (a different name for
br-data or br-vlan); this switch will then perform a VLAN ID conversion with
the VLAN IDs that the user decided among those defined in the ML2 plugin
configuration. On the contrary, when traffic flows are entering the compute
node, it is duty of the br-int to perform the conversion. Finally, in the case
in which a tunneling technique is employed for the tenant network, the br-tun
egress conversion (as well as the br-int ingress one) will be between a VLAN
ID and a VXLAN/GRE segmentation identifier.
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Figure 4.8: Example of a VNI with VLAN tenant network [64]

4.5 Performance and improvements

As shown in different works, as [65], a Cloud-based architecture poses some
limitations to the network performance. In particular, this depends on the
hosting hardware maximum capacity, but also to the complex components
inside the VNI. For instance, it is possible to see that in OpenStack the bot-
tleneck is represented by the Linux Bridge. In general, additional components
between instances and physical network infrastructure cause scalability and
performance problems.

Therefore, it is extremely vital to reconfigure the OpenStack virtual net-
work architecture: the Linux Bridge should be deleted or at least replaced with
something more performant. It is important to remark that OpenStack uses
iptables rules on the TAP devices to implement security groups and the LB
comes into play as OvS, historically, was not compatible with iptables rules
applied directly on TAP devices connected to a latter’s port. Some of the
solutions to this problem are shown later [66].
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4.5.1 Open vSwitch native firewall

To alleviate these scalability and performance problems, the OvS agent intro-
duced an optional firewall driver that natively implements security groups as
flows in OVS rather than the iptables Linux bridge solution. This is intended
to increase scalability and performance, which is one of the topics that this
document is intended to state [67]. The OvS driver has the same APIs as
the current iptables firewall driver, keeping the state of security groups and
ports inside the firewall. All the firewall APIs is controlled by security group
RPC methods, which means that the firewall driver does not have any logic
of which the port should be updated based on the provided changes: it only
accomplishes actions when called from the controller.

First of all, every connection is split into ingress and egress processes, based
respectively on the input or output port. Each port contains the initial hard-
coded flows for ARP, DHCP and established connections, which are accepted
by default. To detect established connections, a flow must by marked by
the Linux conntrack module first with an action=ct() rule. An accepted flow
means that ingress packets for the connection are directly sent to the port,
and egress packets are left to be normally switched by the integration bridge.
Connections that are not matched by the above rules are sent to either the
ingress or egress filtering table, depending on their direction. In this modality,
the OvS will make use of separate tables to store the security group rules, for
an easier rule detection during removal.

Security group rules are treated differently regarding the absence or the
presence of a remote group ID. A security group rule without a remote group
ID is expanded into several OpenFlow rules (this is done by the method cre-
ate flows from rule and port), whereas a security group rule with a remote
group ID is expressed by three sets of flows. The first two sets are conjunctive
flows which will be described in the next paragraph. The third set matches on
the conjunction IDs and does accept actions.

Whenever a security group rule with a remote group ID is considered, flows
that match on nw src for remote group id addresses and match on dl dst for
port MAC addresses are needed (for ingress rules as well as for egress rules).
Without conjunction, this results in O(n*m) flows where n and m are respec-
tively number of ports in the remote group ID and the port security group.
A conj id is therefore allocated for each (remote group id, security group id,
direction, ethertype) tuple. The same conj id is shared between security group
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rules if multiple rules belong to the same tuple above. Conjunctive flows con-
sist of 2 dimensions. Flows that belong to the dimension 1 of 2 are generated by
the method create flows for ip address and are in charge of IP address based
filtering specified by their remote group IDs. Flows that belong to the dimen-
sion 2 of 2 are generated by the method create flows from rule and port and
modified by the method substitute conjunction actions, which represents the
portion of the rule other than its remote group ID [68].

Rule explanation with an example

The following example presents two ports on the same host. They have differ-
ent security groups and there is ICMP traffic allowed from first security group
to the second security group. Ports have following attributes:

• Port 1

– plugged to the port 1 in OVS bridge

– ip address: 192.168.0.1

– mac address: fa:16:3e:a4:22:10

– security group 1: can send icmp packets out

– allowed address pair: 10.0.0.1/32, fa:16:3e:8c:84:13

• Port 2

– plugged to the port 2 in OVS bridge

– ip address: 192.168.0.2

– mac address: fa:16:3e:24:57:c7

– security group 2: can receive icmp packets from security group 1

– allowed address pair: 10.1.0.0/24, fa:16:3e:8c:84:14

The table 0 contains a low priority rule to continue packet processing in
table 60, which is called the TRANSIENT table. The table 0 is left for use
to other features that take precedence over firewall. The only requirement is
that after the feature has finished with its processing, it passes the packets for
processing to the TRANSIENT table. This TRANSIENT table distinguishes
the traffic as ingress or egress and loads to register 5 values identifying port
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traffic. Egress flow is then determined by switch port number and ingress flow
is determined by destination MAC address. The register 6 instead contains
port tag to isolate connections into separate conntrack zones.

t ab l e =60, p r i o r i t y =100 , i n po r t=1 ac t i on s=load : 0 x1−>NXMNX REG5[ ] ,
load : 0 x284−>NXMNX REG6[ ] , resubmit ( , 71 )

t ab l e =60, p r i o r i t y =100 , i n po r t=2 ac t i on s=load : 0 x2−>NXMNX REG5[ ] ,
load : 0 x284−>NXMNX REG6[ ] , resubmit ( , 71 )

t ab l e =60, p r i o r i t y =90, d l v l an=0x284 , d l d s t=fa : 1 6 : 3 e : a4 : 2 2 : 1 0
a c t i on s=load : 0 x1−>NXMNX REG5[ ] , load : 0 x284−>NXMNX REG6[ ] ,
resubmit ( , 81 )

t ab l e =60, p r i o r i t y =90, d l v l an=0x284 , d l d s t=fa : 1 6 : 3 e : 8 c : 8 4 : 1 3
a c t i on s=load : 0 x1−>NXMNX REG5[ ] , load : 0 x284−>NXMNX REG6[ ] ,
resubmit ( , 81 )

t ab l e =60, p r i o r i t y =90, d l v l an=0x284 , d l d s t=fa : 1 6 : 3 e : 2 4 : 5 7 : c7
a c t i on s=load : 0 x2−>NXMNX REG5[ ] , load : 0 x284−>NXMNX REG6[ ] ,
resubmit ( , 81 )

t ab l e =60, p r i o r i t y =90, d l v l an=0x284 , d l d s t=fa : 1 6 : 3 e : 8 c : 8 4 : 1 4
a c t i on s=load : 0 x2−>NXMNX REG5[ ] , load : 0 x284−>NXMNX REG6[ ] ,
resubmit ( , 81 )

t ab l e =60, p r i o r i t y=0 ac t i on s=NORMAL

The following table 71 implements ARP and IP spoofing protection; more-
over, it allows traffic for obtaining IP addresses (this is valid for dhcp, dhcpv6,
slaac, ndp) for egress traffic and allows ARP replies. It also identifies un-
tracked connections which are processed later with information obtained from
conntrack. It is important to remark the zone=NXM NX REG6[0..15] in the
action field when obtaining information from conntrack. This shows that ev-
ery port has its own conntrack zone defined by value in register 6. It is there
to avoid to accept established traffic that belongs to different port with same
conntrack parameters.

# al l ow ICMPv6 t r a f f i c f o r mu l t i c a s t l i s t e n e r s , ne ighbour
s o l i c i t a t i o n and neighbour adver t i sement

t ab l e =71, p r i o r i t y =95, icmp6 , reg5=0x1 , i n po r t =1, icmp type=130
ac t i on s=NORMAL

tab l e =71, p r i o r i t y =95, icmp6 , reg5=0x1 , i n po r t =1, icmp type=131
ac t i on s=NORMAL

tab l e =71, p r i o r i t y =95, icmp6 , reg5=0x1 , i n po r t =1, icmp type=132
ac t i on s=NORMAL

tab l e =71, p r i o r i t y =95, icmp6 , reg5=0x1 , i n po r t =1, icmp type=135
ac t i on s=NORMAL

tab l e =71, p r i o r i t y =95, icmp6 , reg5=0x1 , i n po r t =1, icmp type=136
ac t i on s=NORMAL
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t ab l e =71, p r i o r i t y =95, icmp6 , reg5=0x2 , i n po r t =2, icmp type=130
ac t i on s=NORMAL

tab l e =71, p r i o r i t y =95, icmp6 , reg5=0x2 , i n po r t =2, icmp type=131
ac t i on s=NORMAL

tab l e =71, p r i o r i t y =95, icmp6 , reg5=0x2 , i n po r t =2, icmp type=132
ac t i on s=NORMAL

tab l e =71, p r i o r i t y =95, icmp6 , reg5=0x2 , i n po r t =2, icmp type=135
ac t i on s=NORMAL

tab l e =71, p r i o r i t y =95, icmp6 , reg5=0x2 , i n po r t =2, icmp type=136
ac t i on s=NORMAL

# implement arp spoo f ing p ro t e c t i on
t ab l e =71, p r i o r i t y =95,arp , reg5=0x1 , i n po r t =1, d l s r c=fa : 1 6 : 3 e : a4

: 2 2 : 1 0 , arp spa =192 .168 .0 .1 a c t i on s=NORMAL
tab l e =71, p r i o r i t y =95,arp , reg5=0x1 , i n po r t =1, d l s r c=fa : 1 6 : 3 e : 8 c

: 8 4 : 1 3 , arp spa =10 .0 .0 .1 a c t i on s=NORMAL
tab l e =71, p r i o r i t y =95,arp , reg5=0x2 , i n po r t =2, d l s r c=fa : 1 6 : 3 e

: 2 4 : 5 7 : c7 , arp spa =192 .168 .0 .2 a c t i on s=NORMAL
tab l e =71, p r i o r i t y =95,arp , reg5=0x2 , i n po r t =2, d l s r c=fa : 1 6 : 3 e : 8 c

: 8 4 : 1 4 , arp spa =10 .1 .0 .0/24 a c t i on s=NORMAL

# DHCP and DHCPv6 t r a f f i c i s a l l owed to in s tance but DHCP se r v e r s
are b l o cked on in s t ance s .

t ab l e =71, p r i o r i t y =80,udp , reg5=0x1 , i n po r t =1, t p s r c =68, tp d s t=67
ac t i on s=resubmit ( , 73 )

t ab l e =71, p r i o r i t y =80,udp6 , reg5=0x1 , i n po r t =1, t p s r c =546 , tp d s t
=547 a c t i on s=resubmit ( , 73 )

t ab l e =71, p r i o r i t y =70,udp , reg5=0x1 , i n po r t =1, t p s r c =67, tp d s t=68
ac t i on s=drop

tab l e =71, p r i o r i t y =70,udp6 , reg5=0x1 , i n po r t =1, t p s r c =547 , tp d s t
=546 a c t i on s=drop

tab l e =71, p r i o r i t y =80,udp , reg5=0x2 , i n po r t =2, t p s r c =68, tp d s t=67
ac t i on s=resubmit ( , 73 )

t ab l e =71, p r i o r i t y =80,udp6 , reg5=0x2 , i n po r t =2, t p s r c =546 , tp d s t
=547 a c t i on s=resubmit ( , 73 )

t ab l e =71, p r i o r i t y =70,udp , reg5=0x2 , i n po r t =2, t p s r c =67, tp d s t=68
ac t i on s=drop

tab l e =71, p r i o r i t y =70,udp6 , reg5=0x2 , i n po r t =2, t p s r c =547 , tp d s t
=546 a c t i on s=drop

# Flowing r u l e s ob ta in conntrack in format ion f o r v a l i d ip and mac
address combinat ions . A l l o ther packe t s are dropped .

t ab l e =71, p r i o r i t y =65, c t s t a t e=−trk , ip , reg5=0x1 , i n po r t =1, d l s r c=
fa : 1 6 : 3 e : a4 : 2 2 : 1 0 , nw src =192 .168 .0 .1 a c t i on s=ct ( t ab l e =72, zone=
NXM NX REG6 [ 0 . . 1 5 ] )
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t ab l e =71, p r i o r i t y =65, c t s t a t e=−trk , ip , reg5=0x1 , i n po r t =1, d l s r c=
fa : 1 6 : 3 e : 8 c : 8 4 : 1 3 , nw src =10 .0 .0 . 1 a c t i on s=ct ( t ab l e =72, zone=
NXM NX REG6 [ 0 . . 1 5 ] )

t ab l e =71, p r i o r i t y =65, c t s t a t e=−trk , ip , reg5=0x2 , i n po r t =2, d l s r c=
fa : 1 6 : 3 e : 2 4 : 5 7 : c7 , nw src =192 .168 .0 .2 a c t i on s=ct ( t ab l e =72, zone=
NXM NX REG6 [ 0 . . 1 5 ] )

t ab l e =71, p r i o r i t y =65, c t s t a t e=−trk , ip , reg5=0x2 , i n po r t =2, d l s r c=
fa : 1 6 : 3 e : 8 c : 8 4 : 1 4 , nw src =10 .1 .0 .0/24 a c t i on s=ct ( t ab l e =72, zone=
NXM NX REG6 [ 0 . . 1 5 ] )

t ab l e =71, p r i o r i t y =65, c t s t a t e=−trk , ipv6 , reg5=0x1 , i n po r t =1, d l s r c
=fa : 1 6 : 3 e : a4 : 2 2 : 1 0 , i p v 6 s r c=fe80 : : f816 : 3 e f f : f ea4 :2210 a c t i on s=
ct ( t ab l e =72, zone=NXM NX REG6 [ 0 . . 1 5 ] )

t ab l e =71, p r i o r i t y =65, c t s t a t e=−trk , ipv6 , reg5=0x2 , i n po r t =2, d l s r c
=fa : 1 6 : 3 e : 2 4 : 5 7 : c7 , i p v 6 s r c=fe80 : : f816 : 3 e f f : f e24 :57 c7 a c t i on s=
ct ( t ab l e =72, zone=NXM NX REG6 [ 0 . . 1 5 ] )

t ab l e =71, p r i o r i t y =10, c t s t a t e=−trk , reg5=0x1 , i n po r t=1 ac t i on s=
drop

tab l e =71, p r i o r i t y =10, c t s t a t e=−trk , reg5=0x2 , i n po r t=2 ac t i on s=
drop

tab l e =71, p r i o r i t y=0 ac t i on s=drop

The table 72 accepts only established or related connections, and imple-
ments rules defined by the security group. As this egress connection might also
be an ingress connection for some other port, it has not switched yet but even-
tually processed by the ingress pipeline. All the established or new connections
defined by security group rule are accepted, which will be explained later; all
the invalid packets are dropped. It is important to notice that on some flows
there is a ct mark=0x1. Such value is related to flows that were marked as not
existing anymore by an introduced later rule. Those are typically connections
that were allowed by some security group rule and then the rule was removed.

# al l ow a l l icmp eg r e s s t r a f f i c
t ab l e =72, p r i o r i t y =70, c t s t a t e=+est−r e l−rp l , icmp , reg5=0x1 , a c t i on s

=resubmit ( , 73 )
t ab l e =72, p r i o r i t y =70, c t s t a t e=+new−est , icmp , reg5=0x1 , a c t i on s=

resubmit ( , 73 )
t ab l e =72, p r i o r i t y =50, c t s t a t e=+inv+trk a c t i on s=drop
tab l e =72, p r i o r i t y =50, ct mark=0x1 , reg5=0x1 ac t i on s=drop
tab l e =72, p r i o r i t y =50, ct mark=0x1 , reg5=0x2 ac t i on s=drop

# Al l o ther connec t ions t ha t are not marked and are e s t a b l i s h e d or
r e l a t e d are a l l owed .

t ab l e =72, p r i o r i t y =50, c t s t a t e=+est−r e l+rpl , c t zone =644 , ct mark=0,
reg5=0x1 ac t i on s=NORMAL
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t ab l e =72, p r i o r i t y =50, c t s t a t e=+est−r e l+rpl , c t zone =644 , ct mark=0,
reg5=0x2 ac t i on s=NORMAL

tab l e =72, p r i o r i t y =50, c t s t a t e=−new−e s t+re l−inv , c t zone =644 ,
ct mark=0, reg5=0x1 ac t i on s=NORMAL

tab l e =72, p r i o r i t y =50, c t s t a t e=−new−e s t+re l−inv , c t zone =644 ,
ct mark=0, reg5=0x2 ac t i on s=NORMAL

# marked e s t a b l i s h e d connec t ions not matched in the prev ious f lows
, they do not have accep t ing s e c u r i t y group ru l e anymore

t ab l e =72, p r i o r i t y =40, c t s t a t e=−est , reg5=0x1 ac t i on s=drop
tab l e =72, p r i o r i t y =40, c t s t a t e=+est , reg5=0x1 ac t i on s=ct ( commit ,

zone=NXM NX REG6[ 0 . . 1 5 ] , exec ( load : 0 x1−>NXMNXCTMARK[ ] ) )
t ab l e =72, p r i o r i t y =40, c t s t a t e=−est , reg5=0x2 ac t i on s=drop
tab l e =72, p r i o r i t y =40, c t s t a t e=+est , reg5=0x2 ac t i on s=ct ( commit ,

zone=NXM NX REG6[ 0 . . 1 5 ] , exec ( load : 0 x1−>NXMNXCTMARK[ ] ) )
t ab l e =72, p r i o r i t y=0 ac t i on s=drop

In table 73 all detected ingress connections are sent to ingress pipeline.
Since the connection was already accepted by egress pipeline, all remaining
egress connections are sent to normal switching.

t ab l e =73, p r i o r i t y =100 , reg6=0x284 , d l d s t=fa : 1 6 : 3 e : a4 : 2 2 : 1 0 a c t i on s
=load : 0 x1−>NXMNX REG5[ ] , resubmit ( , 81 )

t ab l e =73, p r i o r i t y =100 , reg6=0x284 , d l d s t=fa : 1 6 : 3 e : 8 c : 8 4 : 1 3 a c t i on s
=load : 0 x1−>NXMNX REG5[ ] , resubmit ( , 81 )

t ab l e =73, p r i o r i t y =100 , reg6=0x284 , d l d s t=fa : 1 6 : 3 e : 2 4 : 5 7 : c7 a c t i on s
=load : 0 x2−>NXMNX REG5[ ] , resubmit ( , 81 )

t ab l e =73, p r i o r i t y =100 , reg6=0x284 , d l d s t=fa : 1 6 : 3 e : 8 c : 8 4 : 1 4 a c t i on s
=load : 0 x2−>NXMNX REG5[ ] , resubmit ( , 81 )

t ab l e =73, p r i o r i t y =90, c t s t a t e=+new−est , reg5=0x1 ac t i on s=ct ( commit
, zone=NXM NX REG6 [ 0 . . 1 5 ] ) ,NORMAL

tab l e =73, p r i o r i t y =90, c t s t a t e=+new−est , reg5=0x2 ac t i on s=ct ( commit
, zone=NXM NX REG6 [ 0 . . 1 5 ] ) ,NORMAL

tab l e =73, p r i o r i t y =80, reg5=0x1 ac t i on s=NORMAL
tab l e =73, p r i o r i t y =80, reg5=0x2 ac t i on s=NORMAL
tab l e =73, p r i o r i t y=0 ac t i on s=drop

The table 81 is similar to the table 71, allowing basic ingress traffic for
obtaining IP address and ARP queries. It is important to notice that VLAN
tag must be removed by adding strip vlan to actions list, prior to injecting
packet directly to port. All the not tracked packets are sent to obtain conntrack
information.

t ab l e =81, p r i o r i t y =100 ,arp , reg5=0x1 ac t i on s=s t r i p v l an , output : 1
t ab l e =81, p r i o r i t y =100 ,arp , reg5=0x2 ac t i on s=s t r i p v l an , output : 2
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t ab l e =81, p r i o r i t y =100 , icmp6 , reg5=0x1 , icmp type=130 a c t i on s=
s t r i p v l an , output : 1

t ab l e =81, p r i o r i t y =100 , icmp6 , reg5=0x1 , icmp type=131 a c t i on s=
s t r i p v l an , output : 1

t ab l e =81, p r i o r i t y =100 , icmp6 , reg5=0x1 , icmp type=132 a c t i on s=
s t r i p v l an , output : 1

t ab l e =81, p r i o r i t y =100 , icmp6 , reg5=0x1 , icmp type=135 a c t i on s=
s t r i p v l an , output : 1

t ab l e =81, p r i o r i t y =100 , icmp6 , reg5=0x1 , icmp type=136 a c t i on s=
s t r i p v l an , output : 1

t ab l e =81, p r i o r i t y =100 , icmp6 , reg5=0x2 , icmp type=130 a c t i on s=
s t r i p v l an , output : 2

t ab l e =81, p r i o r i t y =100 , icmp6 , reg5=0x2 , icmp type=131 a c t i on s=
s t r i p v l an , output : 2

t ab l e =81, p r i o r i t y =100 , icmp6 , reg5=0x2 , icmp type=132 a c t i on s=
s t r i p v l an , output : 2

t ab l e =81, p r i o r i t y =100 , icmp6 , reg5=0x2 , icmp type=135 a c t i on s=
s t r i p v l an , output : 2

t ab l e =81, p r i o r i t y =100 , icmp6 , reg5=0x2 , icmp type=136 a c t i on s=
s t r i p v l an , output : 2

t ab l e =81, p r i o r i t y =95,udp , reg5=0x1 , t p s r c =67, tp d s t=68 ac t i on s=
s t r i p v l an , output : 1

t ab l e =81, p r i o r i t y =95,udp6 , reg5=0x1 , t p s r c =547 , tp d s t=546 ac t i on s=
s t r i p v l an , output : 1

t ab l e =81, p r i o r i t y =95,udp , reg5=0x2 , t p s r c =67, tp d s t=68 ac t i on s=
s t r i p v l an , output : 2

t ab l e =81, p r i o r i t y =95,udp6 , reg5=0x2 , t p s r c =547 , tp d s t=546 ac t i on s=
s t r i p v l an , output : 2

t ab l e =81, p r i o r i t y =90, c t s t a t e=−trk , ip , reg5=0x1 ac t i on s=ct ( t ab l e
=82, zone=NXM NX REG6 [ 0 . . 1 5 ] )

t ab l e =81, p r i o r i t y =90, c t s t a t e=−trk , ipv6 , reg5=0x1 ac t i on s=ct ( t ab l e
=82, zone=NXM NX REG6 [ 0 . . 1 5 ] )

t ab l e =81, p r i o r i t y =90, c t s t a t e=−trk , ip , reg5=0x2 ac t i on s=ct ( t ab l e
=82, zone=NXM NX REG6 [ 0 . . 1 5 ] )

t ab l e =81, p r i o r i t y =90, c t s t a t e=−trk , ipv6 , reg5=0x2 ac t i on s=ct ( t ab l e
=82, zone=NXM NX REG6 [ 0 . . 1 5 ] )

t ab l e =81, p r i o r i t y =80, c t s t a t e=+trk , reg5=0x1 ac t i on s=resubmit ( , 82 )
t ab l e =81, p r i o r i t y =80, c t s t a t e=+trk , reg5=0x2 ac t i on s=resubmit ( , 82 )
t ab l e =81, p r i o r i t y=0 ac t i on s=drop

Similarly to table 72, table 82 accepts established and related connections.
In this case all ICMP traffic coming from security group 1 (in this case only
port 1) is allowed. The first two rules match on the IP packets, and the next
two rules match on the ICMP protocol. These four rules define conjunction
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flows.

t ab l e =82, p r i o r i t y =70, c t s t a t e=+est−r e l−rp l , ip , reg6=0x284 , nw src
=192 .168 .0 .1 a c t i on s=conjunct ion (2147352552 ,1/2)

t ab l e =82, p r i o r i t y =70, c t s t a t e=+est−r e l−rp l , ip , reg6=0x284 , nw src
=10 .0 .0 . 1 a c t i on s=con junct ion (2147352552 ,1/2)

t ab l e =82, p r i o r i t y =70, c t s t a t e=+new−est , ip , reg6=0x284 , nw src
=192 .168 .0 .1 a c t i on s=conjunct ion (2147352553 ,1/2)

t ab l e =82, p r i o r i t y =70, c t s t a t e=+new−est , ip , reg6=0x284 , nw src
=10 .0 .0 . 1 a c t i on s=con junct ion (2147352553 ,1/2)

t ab l e =82, p r i o r i t y =70, c t s t a t e=+est−r e l−rp l , icmp , reg5=0x2 ac t i on s=
conjunct ion (2147352552 ,2/2)

t ab l e =82, p r i o r i t y =70, c t s t a t e=+new−est , icmp , reg5=0x2 ac t i on s=
conjunct ion (2147352553 ,2/2)

t ab l e =82, p r i o r i t y =70, c on j i d =2147352552 , c t s t a t e=+est−r e l−rp l , ip ,
reg5=0x2 ac t i on s=s t r i p v l an , output : 2

t ab l e =82, p r i o r i t y =70, c on j i d =2147352553 , c t s t a t e=+new−est , ip , reg5
=0x2 ac t i on s=ct ( commit , zone=NXM NX REG6 [ 0 . . 1 5 ] ) , s t r i p v l an ,
output : 2

t ab l e =82, p r i o r i t y =50, c t s t a t e=+inv+trk a c t i on s=drop

# Same mechanism fo r dropping connec t ions not a l l owed anymore as
t ha t o f t a b l e 72

t ab l e =82, p r i o r i t y =50, ct mark=0x1 , reg5=0x1 ac t i on s=drop
tab l e =82, p r i o r i t y =50, ct mark=0x1 , reg5=0x2 ac t i on s=drop
tab l e =82, p r i o r i t y =50, c t s t a t e=+est−r e l+rpl , c t zone =644 , ct mark=0,

reg5=0x1 ac t i on s=s t r i p v l an , output : 1
t ab l e =82, p r i o r i t y =50, c t s t a t e=+est−r e l+rpl , c t zone =644 , ct mark=0,

reg5=0x2 ac t i on s=s t r i p v l an , output : 2
t ab l e =82, p r i o r i t y =50, c t s t a t e=−new−e s t+re l−inv , c t zone =644 ,

ct mark=0, reg5=0x1 ac t i on s=s t r i p v l an , output : 1
t ab l e =82, p r i o r i t y =50, c t s t a t e=−new−e s t+re l−inv , c t zone =644 ,

ct mark=0, reg5=0x2 ac t i on s=s t r i p v l an , output : 2
t ab l e =82, p r i o r i t y =40, c t s t a t e=−est , reg5=0x1 ac t i on s=drop
tab l e =82, p r i o r i t y =40, c t s t a t e=+est , reg5=0x1 ac t i on s=ct ( commit ,

zone=NXM NX REG6[ 0 . . 1 5 ] , exec ( load : 0 x1−>NXMNXCTMARK[ ] ) )
t ab l e =82, p r i o r i t y =40, c t s t a t e=−est , reg5=0x2 ac t i on s=drop
tab l e =82, p r i o r i t y =40, c t s t a t e=+est , reg5=0x2 ac t i on s=ct ( commit ,

zone=NXM NX REG6[ 0 . . 1 5 ] , exec ( load : 0 x1−>NXMNXCTMARK[ ] ) )
t ab l e =82, p r i o r i t y=0 ac t i on s=drop

Note: Conntrack zones on a single node are now based on network to which
port is plugged in. That makes a difference between traffic on hypervisor only
and east-west traffic. For example, if port has a virtual IP (vIP) that was
migrated to a port on different node, then new port will not contain conntrack
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information about previous traffic that happened with vIP.

4.5.2 Open vSwitch “learn action” firewall

As long as iptables is not a perfect complement for deployments using OvS,
requiring a lot of coding to perform iptables meshing with Open vSwitch, there
is the need fo something OvS-based. OvS already provides its own methods for
implementing internal rules (using the OpenFlow protocol) and this firewall
is thus based on the OpenFlow learn action, therefore based entirely on OVS
rules. Indeed, this firewall creates a pure OvS model that is not dependent
on functionality from the underlying platform. It uses the same public API to
talk to the Neutron agent as the existing Linux Bridge firewall implementation
[69].

Another OvS firewall solution is already present (Open vSwitch native fire-
wall driver, as previously shown) and it is based on the use of the “conntrack”
module from Linux. This module provides a way to implement a “stateful
firewall” through tracking of connection statuses. It is expected that using
conntrack will minimize the need to bring the traffic packets up to user space
to be processed and should therefore yield higher performance. This firewall
instead, on the other hand, is based on the concept of “learn action”. These
learn actions track the traffic in one direction and set up a new flow to allow
the same traffic flow in the reverse direction. This implementation is fully
based on the OpenFlow standard.

When a Security Group rule is added, a “manual” OpenFlow rule is added
to the OVS configuration. This new rule allows, for example, ingress TCP
traffic for a specific port. When a packet matches this rule, the “manual”
rule allows the packet to be delivered to its destination. However, and this
is a substantial aspect of the new firewall, a new “automatic” rule is to send
reverse traffic replies back to the source. Although this design could have an
adverse effect on performance, due to the fact that using learn actions forces
the processing of all packets in user space, the benchmark results from Intel
[69] show that this design performance is better than iptables. Even more
significantly, this firewall allows the usage of the DPDK [70] features of OVS,
yielding performance that is more than four times higher than the performance
of non-DPDK OVS without firewall.

Traffic flows can be grouped into traffic between two internal virtual ma-
chines (east-west traffic) or traffic between an internal machine and an exter-
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nal host (north-south traffic). As the previously shown solutions, the Security
Group rules only apply to machines controlled by Neutron and included in
one or several security groups, which means that only the virtual machines
inside a compute host will be affected by these rules. The firewall will only
manage the rules of the br-int bridge. Moreover, the firewall rules applied in
the integration bridge begin to process traffic as soon as a packet arrives on
this bridge.

Table 0, known as the input table, is the default table: all traffic injected
inside br-int is processed by this table. The ARP packets are processed with
the highest priority. Each machine inside a VLAN must be able to populate
its address among the other VLAN machines. The packets who are not ARP
are not matched by table 0 rules, thus are sent to the selection table, the Table
1.

Indeed, the selection table (⇒ table 1), checks if every packet is from or to
a virtual machine. The rules which are added ensure that only those packets
who are matching the stored port MAC address, VLAN tag and port number
are allowed to pass. If a packet is a DHCP packet, the IP must be 0.0.0.0.
Traffic not matching this rule is dropped.

The ingress table, which is table 2, has three kinds of rules, plus the fallback
one.

• “Learn” input rules, which are those created automatically when an out-
put rule is matched. As stated previously, creation of this output rule
also invokes the creation of a reverse input rule.

• Services input rules, which are always added by the firewall to allow
certain ICMP traffic and DHCP messages.

• Manual input rules, which are added by the user in the Security Group.

• All the traffic that does not match any of the former three is dropped.

Similarly, the egress table (⇒ table 3) has three kinds of rules, plus the
default one.

• “Learn” input rules are created automatically when an output rule is
matched. As stated previously, creation of this output rule also invokes
the creation of a reverse input rule.
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• Services output rules are always added by the firewall to allow certain
ICMP traffic and DHCP messages.

• Manual output rules are added by the user in the Security Group.

• If the traffic does not match one of the previous rules, it is sent to the
egress external traffic.

Finally, the egress external traffic table processes the north-south traffic.
If the traffic needs to leave the integration bridge, then it reaches this table:
only external egress traffic must be managed by this table. A final check is
then made: if any traffic in this table is to be sent to a virtual machine, then
this traffic is dropped. The traffic not filtered by these rules is sent using the
“normal” action. The packets are sent by OVS using the built-in ARP table.

By recalling [69], it seems that this approach in conjunction with the Intel
DPDK OvS is the best one in terms of performance. However, this solution
lacks of generality as long as it can be applied only on servers that can use the
above cited library.

4.5.3 Open vSwitch native interface driver

Prior to OpenStack Newton, the neutron-openvswitch-agent used “ovs-ofctl”
of interface driver by default to communicate with the Open vSwitch. From
Newton on instead, the default implementation for of interface has become the
novel “native”, that mostly eliminates spawning ovs-ofctl to slightly improve
the networking performance. This is an alternative OpenFlow implementation,
implemented using Ryu SDN controller ofproto python library from Ryu SDN
Framework. This solution indeed uses Ryu to inject OpenFlow rules when
requested (e.g. a new virtual instance is being created or an old one is deleted)
instead of building a “ovs-ofctl add/del-flow”.

The consequences are:

• The implemented OpenFlow rules are switched to OpenFlow 1.3, rather
than OpenFlow 1.0;

• The OvS-agent acts as an OpenFlow controller perfectly inte-
grated with the OpenStack platform;

• The OvS of the node is configured to connect to the controller.
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Among the benefits, it is also possible to state:

• Reduction of the overhead related to the invocation of the ovs-ofctl com-
mand (and its associated rootwrap);

• Easier dealing with a future use of OpenFlow asynchronous messages
(e.g. Packet-In, Port-Status, etc.) ⇒ Introduction of a SDN controller
inside the OpenStack platform, integration among the platform and the
framework ⇒ Possibility to directly manage the OpenStack networking
by managing Ryu;

• Simpler XenAPI integration.

More details about this approach will be presented in Chapter 7.



Chapter 5

SDN controllers overview

As already seen in Chapter 2 and by recalling Figure 2.4, SDN controllers are
the entities managing the network, as a result of the decoupling between the
control plane and the data plane. Indeed, it is possible to state that the SDN
controllers are actually the “intelligence” of the network. An SDN Controller
platform typically contains a collection of pluggable modules that can perform
different network tasks (e.g. reactive L2 forwarding, traffic redirection, etc.)
and that can be added or removed in a more or less easy way.

It is vital to underline that, in general, SDN controllers are provided to
the user as ready-to-use and the user can therefore write applications that use
their API to manage the network as he or she prefers. Indeed, the application
instructs the SDN controller about how the network should behave, by leaving
the low-level implementation details to the controller itself (e.g. contact the
switch, install the flow, etc.).

On the other hand, the user might also want to extend or create ex-novo
the core of the SDN controller (for instance, by creating a new module) to
improve the controller intelligence.

5.1 Ryu framework

Ryu [71] is a component-based open source (freely available under Apache 2.0
license) SDN framework, entirely written in Python language. Ryu is the
Japanese word for “flow” as well as “Dragon God (that rules the water world,
the flows)”.

91
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It provides software components with well defined APIs that make it easy
for developers to create new network management and control applications.
Ryu supports various protocols for managing network devices, such as Open-
Flow, Netconf, OF-config, etc. About OpenFlow, Ryu supports fully 1.0, 1.2,
1.3, 1.4, 1.5 and Nicira Extensions.

With respect to other SDN controller solutions, Ryu is very easy to setup
and provides a clean and transparent experience with OpenFlow. One of the
plus points is the use of a high-level programming language like Python. It is
possible to state that Ryu is stable, as it is not intended to be always cutting-
edge in terms of module and features, even though it is always up to date with
OpenFlow support.

A Ryu application is just a Python script: in order to make it runnable,
it is important to import the Ryu app manager, which is the central manager
of Ryu applications. It is in charge of load Ryu applications, provide them
the contexts and route messages among them. Indeed, when writing a Ryu
application, a new subclass of RyuApp to run the Python script as a Ryu
application is needed. A simple example is shown below, but more complex
ones are easy to be found in the Ryu Documentation [72] [73].

from ryu . base import app manager

c l a s s L2Switch ( app manager .RyuApp) :
de f i n i t ( s e l f , ∗ args , ∗∗kwargs ) :

super ( L2Switch , s e l f ) . i n i t (∗ args , ∗∗kwargs )

Many other components are present in Ryu. One of the most impor-
tant is the ryu.controller.controller, which is the entity that handles the con-
nections coming from the switches and then generates and routes events to
Ryu applications. Always regarding the OpenFlow controller, Ryu provides
ryu.controller.dpset to manage the switches, ryu.controller.ofp event to deal
with event definitions and ryu.controller.ofp handler for handling the OF pro-
tocol.

5.1.1 OpenStack networking with Ryu

In the past, Ryu used to integrate to OpenStack Neutron via the OFAgent [75].
This agent was a neutron core-plugin, implemented as ML2 mechanism driver
that used Ryu ofproto library. It has been removed from OpenStack since
Mitaka, in favor of the OpenVSwitch mechanism driver using the “native”
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Figure 5.1: Ryu architecture [74]

of interface, as shown in Chapter 3.

Ryu is now therefore integrated inside OpenStack whenever the node (com-
pute or network) is using an OvS agent with the “native” setting for the Open-
Flow interface. From Newton on, by default Neutron uses the native interface
of OVSDB and OpenFlow. The use of this interface allows Neutron to call
ryu.base.app manager during operation, and by default the native interface
will have the Ryu controller listen on 127.0.0.1:6633 which can be however
modified to point to another address.

The integration among Ryu and OpenStack is very basic: however, it is
possible to load applications through the app manager that is loaded by Neu-
tron: therefore, the possible scenarios that can take place are infinite, because
it simply needs the administrator to run the SDN application that he or she
wants in order to manage the cloud platform in addition to or in a different
way with respect to the default Neutron mechanisms.

Moreover, it is important to remark that the OpenStack community has
chosen Ryu as its default solution to manage the OvSs in Neutron. Therefore,
it is possible to say that this solution is officially supported by OpenStack
itself, without the risk to have a non-compliant Ryu version with respect to
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the Neutron one.

5.2 OpenDaylight

The OpenDaylight Project (ODL) [76] is an open source SDN project hosted
by the Linux Foundation. Its aim is to offer a software-defined networking
controller to an industrial environment. Indeed, the OpenDaylight controller
(renamed then in OpenDaylight platform) is a community-led and industry-
supported framework for the SDN, to which many IT companies (HP, Cisco,
Huawei, etc.) as well as Telcos are contributing. The OpenDaylight Controller
is kept within its own Java Virtual Machine (JVM) and provides a CLI and a
GUI.

The OpenDaylight Controller is able to deploy in a variety of production
network environments. It can support a modular controller framework, where
it is possible to add or remove functionalities at runtime through the use of
Apache Karaf [77]. It exposes open northbound APIs, which can be used by
applications. These applications are the “users” of the Controller to collect
information about the network, run some algorithms to conduct analytics, and
finally to make use of the OpenDaylight Controller to create new rules to be
installed in the network according to some policy.

Finally, ODL can take advantage of replication to improve its resiliency and
therefore run in a cluster of three or more instances that will be coordinated
and eventually consistent [78].

5.2.1 OpenStack networking with ODL

Before 2016, OpenDaylight provided a very basic ML2 mechanism to be run
within the Neutron server. However, it was not suitable at all to be deployed
in a production environment, being just a PoC of the potentialities the con-
troller could achieve. Therefore, a second version of this integration has been
completely thought from scratch, but with the “constraint” to take advantage
of the already present ODL modules (for instance, the VTN one, to manage
Virtual Tenant Networks of every type).

By now, the component that is installed at the OpenStack side is the Open-
Stack networking-odl, a library of drivers and plug-ins that integrates Open-
Stack Neutron API with OpenDaylight Backend. It provides the ML2 driver
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Figure 5.2: OpenDaylight Carbon modules [76]

and the L3 plug-in to enable the communication between OpenStack Neutron
L2 as well as L3 resources API and the OpenDayLight Backend. However,
the installation process of the whole production environment does not come
simple as Ryu with Neutron packaging. Moreover, OpenStack networking-odl
needs to be installed separately, either via Pip or via source.

ODL can however be installed in three different scenarios, depending on the
functionalities that this SDN controller should add to the OpenStack environ-
ment in which it is intended to run. Each scenario adds some functionality that
might be interesting for some companies (indeed, in ODL most components
are developed by a single company that is interested in it).

• Group Based Policy: ODL GBP allows users to express network con-
figuration in a declarative rather than imperative way. It is often de-
scribed as asking to ODL for what you want, rather than how you can
do it, Group Based Policy achieves this by implementing an Intent Sys-
tem. The Intent System is a process around an intent driven data model
and contains no domain specifics but is capable of addressing multiple
semantic definitions of intent.

• OVSDB: ODL OVSDB allows users to take advantage of Network Vir-
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tualization using OpenDaylight SDN capabilities whilst utilizing Open-
vSwitch. The stack includes a Neutron Northbound, a Network Virtual-
ization layer, an OVSDB southbound plug-in, and an OpenFlow south-
bound plug-in.

• Virtual Tenant Network: ODL VTN is an application that provides
multi-tenant virtual network on an SDN controller. VTN Manager is
implemented as a plug-in to the OpenDaylight controller and provides
a REST interface to create/update/delete VTN components whilst pro-
viding an implementation of Openstack L2 Network Functions API.

Therefore, networking-odl will act as a proxy by redirecting each request
that arrives to the Neutron server to the ODL instance, where some of the
above cited modules have been deployed to act as the OpenStack network
intelligence. ODL will then perform each step needed for the networking (se-
curity groups management, network creation, etc.) [79].

5.3 Open Networking Operating System: ONOS

ONOS (Open Networking Operating System) is a widely used emerging SDN
controller provided by ONLab (now Open Networking Foundation) and backed
by a remarkable range of networking actors, as Cisco, Huawei, Google, Intel,
Nokia, AT&T, China Unicomm, etc. ONOS mission is “to produce the Open
Source Network Operating System that will enable service providers to build
real Software Defined Networks” [80].

ONOS is able to provide the control plane for a software-defined network,
managing network components, such as switches and links, and running soft-
ware to provide communication services to end hosts and neighboring networks
[81]. It has a modular implementation: its core is composed by many modules
that provide network functionalities. It is be possible for the developer to de-
ploy modules to extend its core and for the client to develop applications that
are going to use the Northbound APIs that ONOS exposes.

The ONOS kernel and core services, as well as ONOS applications, are
written in Java as bundles that are loaded into the Karaf OSGi container.
OSGi is a component system for Java that allows modules to be installed and
run dynamically in a single Java VM (JVM). The bundles can be activated
and deactived at runtime, through the use of Apache Karaf.
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With respect to the southbound instead, ONOS provides various adapters,
e.g. OpenFlow, NetConf, P4...

ONOS works in a distributed way: it is deployed in multiple copies following
an optimistic replication technique completed by a background gossip-based
protocol to ensure (eventual) consistency.

Figure 5.3: ONOS architecture

Recently, the Open Networking Foundation announced its merging with
OnLab and therefore with this project [82]: this means that the entity that
provides the guidelines of the SDN approach is backing a single SDN controller
and this controller is ONOS. This will probably lead to have ONOS as the
standard de-facto for SDN.

A chart showing the ONOS internal architecture, along with some examples
of external agents towards both the Application plane and the Data plane are
shown in Figure 5.4. In this Figure, there is also the UniBo contribution to
extend the REST API, related to the works presented in Chapter 2.

5.3.1 OpenStack networking with ONOS: SONA

ONOS provides SONA, a series of modules that are able to integrate the
SDN controller itself with the cloud platform. SONA is composed by a set of
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Figure 5.4: ONOS modules

modules thought for replacing completely Neutron. Each submodule will deal
with a specific task: security groups, switching, routing, etc.

Figure 5.5: Example of implementation of ONOS in OpenStack

SONA aims are to provide:

• Optimized and distributed logical switching: SONA implements
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multicast free VXLAN implementation where each OvS in the compute
node acts as a part of a global big switch;

• Optimized and distributed logical routing: each OvS in the com-
pute node takes care of all East-West routed traffic for its VMs;

• Broadcast free experience: SONA proxies ARP and DHCP request
from a virtual instance;

• Agent-less deployment: there are no Neutron agents running on com-
pute node or gateway node, everything is taken into account by SONA;

• Scalable deployment: SONA provides horizontal scalability of gate-
way nodes to connect virtual software-defined networks to the outside of
the world.

The Neutron server is replaced by networking-onos: this is a simple en-
tity exposing the Neutron REST APIs. The REST calls to Neutron will be
therefore sent to this component, translated into the ONOS (SONA) REST
APIs syntax and sent to the controller itself. In this way, OpenStack is trans-
parent to the implementation of Neutron that ONOS provides as long all the
requests are taken into account by the SDN controller. Being this controller
open, any cloud administrator could extend even more the provided integration
with the cloud platform by means of SDN and take advantage out of it: this
was much more difficult by simply modifying the legacy OpenStack sources,
apart from using the native OpenFlow interface with the Ryu controller.

SONA is composed of three ONOS applications: openstackNode, openstack-
Networking, and vRouter. Currently, openstackNode and openstackNetwork-
ing run on a central instance of ONOS, whilst vRouter runs on a separate
(lighter) ONOS instance at each gateway node. This is a limitation of the
vRouter component, which does not support multiple switches. However, it is
planned that all the applications could run on a single ONOS cluster whenever
the developers will be able to improve the vRouter.

ONOS will usually provide the networking functions through SONA in a
separated node. This is recommended to have a good experience: indeed,
ONOS is Java-based and the hardware requirements are sufficiently high to
suggest to reserve some dedicated hardware, although a generic machine is
still fine with it. The OpenStackNode application is in charge of all the man-
agement and bootstrap of the nodes where the OpenVSwitch will run, therefore
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computes and gateways. Its roles include all the OpenVSwitch life cycle man-
agement as well as the VxLAN support and configuration for the data network.
It is possible to say that it will perform part of the actions that were delegated
to the neutron-openvswitch-agent, as adding VXLAN ports to the integration
bridge.

With respect to OpenStackNetworking module instead, this will in-
clude the needed proxies for ARP and DHCP to reply to the hosts (even by
using pre-defined fake MAC address, if needed), as well as the ML2 driver and
the L3 plugin backend. It will provide all the flows management to provide
instances’ connectivity by installing OpenFlow rules into the OVS; it also ex-
poses the REST API that is called by networking-onos. Thus, whenever there
is a Neutron request, this is post-commited to openstackNetworking via the
networking-onos driver. Finally, through OpenStackNetworking all kind of
East-West traffic is handled at compute nodes and only North-South traffic is
forwarded to gateway nodes and NATed there to public IP before leaving the
virtual world.

Finally, to provide connectivity between Software Defined Networks and
legacy external IP networks, an instance of ONOS called vRouter is deployed
in every gateway node. As a gateway node does not keep any states locally,
packets for a same session does not have to be handled in a same node. This
allows this horizontal scalable deployment to remove the single point of failure,
to offload the traffic and to let the gateways to be independent among each
other. The vRouter will use SDN-IP techniques, involving one or more quagga
instances: these are providing the BGP functionalities, to let the internal SD
networks to be visible from the outside. This is something that OpenStack
does not provide by default. In particular, 1:1 NAT rule for floating IP is
installed proactively to all gateway nodes when a floating IP is associated to a
fixed IP. 1:n NAT rules are instead installed reactively when a gateway node
receives unknown external packets. Gateway nodes are realized by OpenFlow
select group at each compute node and all outbound packets are sent to this
gateway node group. Whenever there is an outage of one gateway node, the
node is automatically excluded from the group. Each gateway node establishes
a peering with external router and the external router enables multi-path so
that inbound traffic is distributed as well.
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5.3.2 Security groups in SONA

As already stated, the SONA approach tends to softwarize even more all the
needed networking functionalities. One of the most important ones is the
implementation of security groups, a named collection of network access rules
that are used to limit the types of traffic that have access to instances, i.e.
the firewalling of the instances. It is interesting to see how they work in this
context and how to properly integrate them within OpenStack.

SONA Pipeline

The security groups in SONA are mapped into OpenFlow rules written into
the OVS: these rules are managed by OpenStackNetworking.

Figure 5.6: High level table design

These are the actual tables:

• VNI (table=0): forwards ARP and DHCP to controller and tags the
source Virtual Network Instance to packets based on the in-port of a
packet.

• ACL (table=1): it is actually composed by two tables:

– Security group: forwards only allowed packets to the next table
based on security group configurations;

– Connection tracking: maintains the state of the established con-
nections.

• Jump (table=2): forwards a routing packet, identified by the desti-
nation MAC address of the gateway node, to the routing table, and a
switching packet to the switching table.

• Routing (table=3): forwards East-West routing packets to the switch-
ing table and North-South packets to a gateway group.
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• Switching (table=4): forwards packets to final destination; if the des-
tination is not in the local machine, the packet is sent it to the vxlan
port; if the destination is a subnet gateway, it is sent to the gateway
node group.

• Group: maintains information on the gateway node group.

Examples of security groups tables:

# VNI Table ( t a b l e =0)
p r i o r i t y =40000 , arp a c t i on s=CONTROLLER:65535 , c l e a r a c t i o n s
p r i o r i t y =40000 ,udp , t p s r c =68, tp d s t=67 ac t i on s=CONTROLLER:65535 ,

c l e a r a c t i o n s
p r i o r i t y =30000 , ip , i n po r t=7 ac t i on s=s e t f i e l d : 0 x1e−>tun id ,

g o t o t ab l e : 1
p r i o r i t y=0 ac t i on s=go t o t ab l e : 1

# ACL Table ( t a b l e =1)
p r i o r i t y =30000 , ip , nw src =192 .168 .100 .3 , nw dst =192 .168 .101 .3

a c t i on s=go t o t ab l e : 2
p r i o r i t y =30000 , ip , nw src =192 .168 .101 .3 , nw dst =192 .168 .100 .3

a c t i on s=go t o t ab l e : 2
p r i o r i t y=0 ac t i on s=drop

# Jump Table ( t a b l e =2)
p r i o r i t y =30000 , d l d s t=f e : 0 0 : 0 0 : 0 0 : 0 0 : 0 2 a c t i on s=go t o t ab l e : 3
p r i o r i t y=0 ac t i on s=go t o t ab l e : 4

# Routing Table ( t a b l e =3)
p r i o r i t y =28000 , ip , tun id=0x1e , nw src =192 .168 .100 .0/24 , nw dst

=192.168 .100 .0/24 a c t i on s=s e t f i e l d : 0 x1e−>tun id , g o t o t ab l e : 4
p r i o r i t y =28000 , ip , tun id=0x22 , nw src =192 .168 .101 .0/24 , nw dst

=192.168 .101 .0/24 a c t i on s=s e t f i e l d : 0 x22−>tun id , g o t o t ab l e : 4
p r i o r i t y =28000 , ip , tun id=0x1e , nw src =192 .168 .100 .0/24 , nw dst

=192.168 .101 .0/24 a c t i on s=s e t f i e l d : 0 x22−>tun id , g o t o t ab l e : 4
p r i o r i t y =28000 , ip , tun id=0x22 , nw src =192 .168 .100 .0/24 , nw dst

=192.168 .101 .0/24 a c t i on s=s e t f i e l d : 0 x22−>tun id , g o t o t ab l e : 4
p r i o r i t y =28000 , ip , tun id=0x22 , nw src =192 .168 .101 .0/24 , nw dst

=192.168 .100 .0/24 a c t i on s=s e t f i e l d : 0 x1e−>tun id , g o t o t ab l e : 4
p r i o r i t y =28000 , ip , tun id=0x1e , nw src =192 .168 .101 .0/24 , nw dst

=192.168 .100 .0/24 a c t i on s=s e t f i e l d : 0 x1e−>tun id , g o t o t ab l e : 4
p r i o r i t y =25000 , ip , tun id=0x22 , d l d s t=f e : 0 0 : 0 0 : 0 0 : 0 0 : 0 2 , nw src

=192.168 .101 .0/24 a c t i on s=group :2901605683
p r i o r i t y =25000 , ip , tun id=0x1e , d l d s t=f e : 0 0 : 0 0 : 0 0 : 0 0 : 0 2 , nw src

=192.168 .100 .0/24 a c t i on s=group :2901605683
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# Swi tch ing Table ( t a b l e =4)
p r i o r i t y =30000 , ip , tun id=0x1e , nw dst =192 .168 .100 .3 a c t i on s=

s e t f i e l d : f a : 1 6 : 3 e : 2 a :85:30−> eth dst , output : 3
p r i o r i t y =30000 , ip , tun id=0x22 , nw dst =192 .168 .101 .3 a c t i on s=

s e t f i e l d :10.1.1.163−> tun dst , output : 1
p r i o r i t y =30000 , ip , tun id=0x1e , nw dst =192 .168 .100 .1 a c t i on s=group

:2901605683
p r i o r i t y =30000 , ip , tun id=0x22 , nw dst =192 .168 .101 .1 a c t i on s=group

:2901605683

# Group t a b l e
OFPST GROUP DESC rep ly (OF1. 3 ) ( xid=0x2 ) :
group id =2901605683 , type=select , bucket=ac t i on s=s e t f i e l d

:10.1.1.165−> tun dst , output : 1

By now, the current testing versions are not using some of these tables:
therefore, there might be some issues for OpenStack to be able to deal with
the security groups of ONOS unless using a stable version of ONOS for it.
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Chapter 6

SONA implementation and tests

This testbed has been deployed over a single server running CentOS 7: all the
nodes shown in Figure 6.1 are virtualized. This could have been achieved also
by using other Linux server distros like Ubuntu server, etc. where the virtu-
alization tools are installed and configured. In this case, KVM has been used
as the hypervisor in addition to nested KVM virtualization: this of course will
result in a bottleneck in the computing performance whenever it will come
to the OpenStack instances. However, being this a testbed implemented to
understand SONA and its integration with OpenStack, the performance eval-
uation is not the focus point. The version of ONOS here analyzed is 1.8 (Ibis)
and the version of OpenStack is Mitaka, to have a stable environment.

Figure 6.1: Deployed SONA-OpenStack topology

105
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It would be possible to scale horizontally the topology by having multiple
compute nodes and/or gateway nodes, to overcome the single point of failure.
In addition, ONOS itself provides HA by default when there are multiple
instances in the cluster: it could be then possible to add a proxy server beyond
an ONOS cluster (e.g. HAproxy), and let Neutron use it as a single access point
of the cluster.

6.1 ONOS deployment

In order to deploy ONOS and in particular SONA one development node and
one deployment node are needed. It is however possible to use just one node
with some tricks: here the choice went on having the two machines as there
was the need to manage also other ONOS projects in parallel, thus by sharing
the development node. Both the nodes are Ubuntu 14.04 machines: Karaf
and Maven have been installed and configured as well as Java 8. It is then
possible to install IntelliJ as an IDE on the development node as it is already
configured to deal with the ONOS code.

The onos project has been then cloned with git: it comes directly with the
SONA modules, that might be enabled during the deployment phase by need.

g i t c l one https : // g e r r i t . ono sp ro j e c t . org /onos

SSH is configured between the two nodes and the “sdn” user is created
with superuser privileges and no password. Indeed, the deployment will be
performed through the use of an SSH session: the login will be indeed related
to the sdn user. To perform the deployment, some steps are needed in the
development node:

• create the network configuration onos/tools/package/config/network-cfg.json,
where important parameters of the OpenStack deployment are inserted
(refer to Appendix A.1.1);

• create the cell file onos/tools/test/cells/sona, filled with data related to
the deployment, as modules to deploy, location of the deployment node,
user, etc.;

• load the cell file (Appendix A.1.1), compile ONOS through Buck (it is
also possible to compile by using Maven even though it is deprecated),
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create a package and deploy it; by entering into ONOS through Karaf,
it is possible to see the deployed modules (Figure 6.2).

c e l l sona
onos−buck bu i ld onos
onos−package
s t c setup

Figure 6.2: ONOS active modules

6.2 OpenStack development infrastructure de-

ployment

As long as there are no longer neutron-openvswitch agents running in compute
and gateway nodes, a prerequisite is to have in all these nodes an OvS already
up and running. To do so, I preferred to add the OpenStack repository related
to Mitaka, perform an update and then install all the openvswitch packages
with their dependencies. In addition to it, the OVSDB has to be put in
listening mode: a restart of the service is required.

Configuration 1: /usr/share/openvswitch/scripts/ovs-ctl

. . .
set ovsdb−s e r v e r ‘ ‘$DB FILE ’ ’

set ‘ ‘$@’ ’ −−remote=ptcp :6640
. . .

The first step is to install the networking-onos component in the controller
node. After the fulfillment of the dependencies, the component is cloned and
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python is launched to perform the setup. It has then to be configured through
its file /opt/stack/networking-onos/etc/conf onos.ini, as shown in Appendix
A.1.3.

sudo wget https : // boots t rap . pypa . i o / e z s e tup . py −O − | python
g i t c l one https : // github . com/openstack /networking−onos . g i t
cd networking−onos/
sudo python setup . py i n s t a l l

Then it is needed to install OpenStack: in this case, for the sake of sim-
plicity, DevStack has been used to deploy the cluster. This of course goes in
the direction of having something less stable with respect to a manual pack-
age installation, but allows a faster and easier implementation of the tools.
Therefore, it is completely worth the cost in this case where the focus is on the
evaluation of the integration and some related case studies. Of course, if per-
formance were considered, a stable production environment would have been
requested. The definition of the local.conf configuration file of the controller
node is presented in Appendix A.1.4.

g i t c l one −b s t ab l e /mitaka https : // g i t . openstack . org / openstack−dev
/ devstack

sudo devstack / t o o l s / create−stack−user . sh ; su s tack
. . . # Generate the l o c a l . conf f i l e i n s i d e dev s tack /
. / s tack . sh

After having run the stack.sh script, the controller will be up: however, the
installation is far from being complete.

Similarly, in the compute node the clone of the Mitaka branch of DevStack
will be performed and the local.conf defined. Finally, the stack operation will
provide the computing functionalities in the compute node.

6.3 L3 integration

Although the ML2 compatible module is already able to be deployed, there is
the need to configure also the L3 functionalities. As shown, SONA modules
will also be present in the Gateway node, with the presence of a vRouter entity,
which might be nothing more than a Docker instance of ONOS running with
the L3 functionalities (called onos-router from the OpenStack perspective).

Moreover, there will be the need for a Docker quagga instance implement-
ing the BGP functionalities as the ONOS vRouter uses this protocol to let
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the software defined networks talk with the outside legacy world. Finally, in
absence of physical external gateway, another Docker container will reproduce
its functionalities.

6.3.1 Gateway node, vRouter and BGP

From the ONOS deployment machine, a POST REST call has to be performed:
this call takes as a parameter the network configuration defined before and will
try to initialise the nodes. It will be possible to see, as in Figure 6.3, that the
Compute node is already ok for SONA, whereas the gateway node is seen to
have been just created.

cu r l −−user onos : rocks −X POST −H ‘ ‘ Content−Type : app l i c a t i o n / json
’ ’ http : / /10 . 1 34 . 2 31 . 2 9 : 8 181/ onos/v1/network/ c on f i gu r a t i on / −d
@network−c f g . j son

Figure 6.3: Intermediate configuration phase

It is therefore important to implement the other needed entities in order
to implement the L3 functionalities: the vRouter, the quagga instance. In
addition to them, as no external router is present in the physical topology,
an external-router properly configured to deal with NAT and BGP is present.
After installing Docker simply via the use of a bash script, it is possible to
download a repository that already contains some useful scripts for the setup
of the vRouter. A JSON configuration file has to be provided in order to be
compliant with the cluster and it is shown in Appendix A.1.5.

wget −qO− https : // get . docker . com/ | sudo sh
g i t c l one https : // github . com/hyunsun/sona−setup . g i t

This will therefore create the Docker container with an instance of ONOS
inside, implementing the vRouter functionalities.

. / vrouter . sh

It is then needed to modify the zebra configuration placed in volumes/gate-
way/zebra.conf and the bgpd one in volumes/gateway/bgpd.conf (Appendix
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A.1.6): in this way a simple BGP configuration is created and the script re-
lated to quagga can be started.

. / quagga . sh −−name=gateway−01 −−ip =172.18 .0 .254/24 −−mac=f e
: 0 0 : 0 0 : 0 0 : 0 0 : 0 1

In a similar way, volumes/router/bgpd.conf and volumes/router/zebra.conf
have to be modified (Appendix A.1.6) and then it is possible to start the
quagga script again, but related to the external-router.

. / quagga . sh −−name=router −01 −−ip =172 .18 .0 .1/24
−−mac=fa : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 −−exte rna l−route r

It is then important to perform an SSH to the vRouter, through Karaf:
after a quick check on the presence of the correct ports related to the interfaces
of the previously deployed components (Figure 6.4), it is necessary to add the
static routes in order to have connectivity to the outside as in Figure 6.5.

Figure 6.4: vRouter ports

Finally, it is necessary to perform again the POST curl in the ONOS de-
ployment machine: now the result will be “COMPLETE“ for both nodes, as
in Figure 6.6.
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Figure 6.5: Internal configuration of the vRouter

Figure 6.6: Completion of configuration
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6.4 Testing SONA: walkthrough

This chapter is related to some tests to try the main basic functionalities of
Neutron and Nova.

A possible help in performing these operation from the CLI is the cloud-init
script that gives the possibility to set password of “ubuntu” user to “ubuntu”
by passing it to Nova with “–user-data” option in the creation of a new VM.

Configuration 2: cloud-config

#cloud−con f i g
password : ubuntu
chpasswd : { exp i r e : Fa l se }
ssh pwauth : True

6.4.1 L2 Switching functionalities

Here, I created two tenant networks and the relative subnets. On the first one
I created 2 VMs (net-A-01 and net-A-02), whereas on the second one 1 VM
(net-B-01).

It is possible to see that net-A-01 and net-A-02 have connectivity one to
the each other, but not with net-B-01: the isolation among tenant is therefore
maintained.

neutron net−c r e a t e net−A
neutron subnet−c r e a t e net−A 192 . 168 . 0 . 0/24
neutron net−c r e a t e net−B
neutron subnet−c r e a t e net−B 192 . 168 . 1 . 0/24

nova boot −−f l a v o r 2 −−image ubuntu−14.04− s e rver−cloudimg−amd64 −−
user−data passwd . data −−n i c net−id=[net−A−UUID] net−A−01

nova boot −−f l a v o r 2 −−image ubuntu−14.04− s e rver−cloudimg−amd64 −−
user−data passwd . data −−n i c net−id=[net−A−UUID] net−A−02

nova boot −−f l a v o r 2 −−image ubuntu−14.04− s e rver−cloudimg−amd64 −−
user−data passwd . data −−n i c net−id=[net−B−UUID] net−B−01
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6.4.2 L3 Routing functionalities

Here, first of all I created the external network, compliant with the vRouter
range. Then, I created the virtual router of OpenStack and attached to both
net1 and net2.

After having created the security groups to manage external traffic and up-
dated the related ports, it is possible to see that the inter-connectivity among
VMs of different networks is fulfilled. These machines are now also able to go
on the Internet.

Figure 6.7: L3 topology

neutron net−c r e a t e net−public −−route r : e x t e rna l True −−prov ide r :
phys i ca l ne twork ex t e rna l −−prov ide r : network type f l a t

neutron subnet−c r e a t e net−public 172 . 27 . 0 . 0 /24
neutron router−c r e a t e router −01
neutron router−gateway−s e t router −01 net−public
neutron router−interface−add rotuer −01 [ net−A−subnet UUID]
neutron router−interface−add router −01 [ net−B−subnet UUID]

neutron s e cu r i t y−group−c r e a t e al low−ex t e rna l
neutron s e cu r i t y−group−ru le−c r e a t e −−d i r e c t i o n i n g r e s s −−remote−ip
−p r e f i x 0 . 0 . 0 . 0 / 0 al low−ex t e rna l
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neutron port−update [ net−A−01 port UUID] −−s e cu r i t y−group [ default
−s e cu r i t y−group UUID] −−s e cu r i t y−group al low−ex t e rna l

neutron port−update [ net−B−01 port UUID] −−s e cu r i t y−group [ default
−s e cu r i t y−group UUID] −−s e cu r i t y−group al low−ex t e rna l

neutron f l o a t i n g i p−c r e a t e net−public
neutron f l o a t i n g i p−a s s o c i a t e [ f l o a t i n g−ip−id ] [ net−A−01 port UUID]

6.5 Case study: Orchestration

By going on and on into the cloud and the on-demand computing needs, a
problem comes into consideration in deployment: the orchestration. It is in-
deed easy to see that whenever an instance is required, there is also the need to
add it on a network, install some software, provisioning a public IP, etc. These
tasks are of course very repetitive and it is therefore important to orchestrate
properly the resources in order to automate the deployment and configuration
of infrastructure.

6.5.1 Orchestration in OpenStack

Even though there are some tools already providing the orchestration func-
tions, these are not widespread. However, Amazon Web Services provided a
widely used solution by developing cloud formation templates for their users,
with just a declarative script needed. OpenStack provides a module called
Heat for orchestration, which is retrocompatible by need with AWS Cloud
Formation template.

In OpenStack it is indeed possible to create a template that Heat under-
stands in two ways: CloudFormation, usually written in JSON and used also in
AWS or HOT (Heat Orchestration Template) [83], often written in YAML (Yet
Another Markup Language) format. YAML is very easy to read and under-
stand by non-programmers, making the HOT templates accessible to system
administrators, architects, and other non-coders.

6.5.2 Glossary of OpenStack orchestration

• Stack: what it is intended to be created, a collection of VMs and their
associated configuration. In Heat it also refers to a collection of resources,
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which can be in turn instances, networks, security groups, and auto-
scaling rules.

• Template: definition of the resources that will make up the stack. A
template is made up of four different sections:

– Resources : the objects that will be created or modified when the
template runs. They could be Instances, Volumes, Security Groups,
Floating IPs, or any number of objects in OpenStack.

– Properties : specifics of the template.

– Parameters : Properties values that must be passed when running
the Heat template.

– Output : what is passed back to the user.

6.5.3 SONA approach with Heat

The interest is in understanding what happens when an OpenStack deployment
running SONA tries to perform a stack operation; after that, it is interesting
to understand whether all the provided and needed features for orchestration
are well managed by SONA.

The results of the below case study are showing what was expected: being
SONA transparently called by OpenStack by means of networking-onos each
time Neutron is required, the stack operation will not experience any problem
as if the deployment was provided by Neutron itself.

6.5.4 Orchestration case study: Telegram bot template

The idea has been to create a Telegram bot. Telegram is a free and open
source messaging app where users can exchange messages through the Tele-
gram servers via HTTPS [84]. It is also possible to develop Bots via provided
APIs.

Therefore, after the creation of a simple Python code dealing with the Tele-
gram APIs to answer to the incoming messages, a template has been written
in order to test the providing of all the basic network resources. The stack is
composed of multiple resources: an instance, its private net and subnet, the
router and a floating IP on the public net. It is coded into a Yang Model
template (yaml) following the HOT reference.
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Once the instance boots, it will download the bot source code, the needed
dependencies and run it automatically. Moreover, I included a condition for
which Heat is notified of the complete deployment only after all operations
have been performed, thus only when the bot is actually up and running.

Moreover, I had to change the MTU to 1400 as a result of the overhead
due to the presence of the VxLAN tunnel.

Figure 6.8: Bot working after the deployment
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6.6 Case study: Gathering information

6.6.1 Using ONOS to monitor OpenStack

After the introduction of ONOS inside the OpenStack environment, all the
requests which are destinated to Neutron will be post-committed to SONA
through the networking-onos component, which will also change the format of
the request. Indeed, SONA and Neutron expose different REST APIs: the
interest may therefore be to understand which are the ONOS API and which
data they gather.

In particular, as ONOS has to provide the Neutron functionalities, it has
to collect some data related to networks, hosts, flows, etc. In general, all these
statistics may be used to produce a very coarse-grained monitor and manager.

6.6.2 Case study: the sonaMonitor script

The focus has been put on the monitoring phase rather than the management
one, but the idea behind is to have the possibility to gather data on hosts,
flows and statistics. I have written a simple Python script to make possible
to ask continuosly information about the OpenStack platform. This script is
fully extensible and ready to add other modules related to different collected
data.

The workflow is:

1. the user interacts via the CLI asking for a specific information;

2. the script performs the REST call;

3. a JSON is received back;

4. the JSON is parsed;

5. the user receives the information required;

6. repeat from 1)

These are just some of the GET calls that the script uses to fetch the data:

cu r l −u kara f : ka ra f −X GET −−header ‘ Accept : app l i c a t i o n / json ’ ‘
http : / /10 . 1 34 . 2 31 . 2 9 : 8 181/ onos/v1/ f lows ’
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cu r l −u kara f : ka ra f −X GET −−header ‘ Accept : app l i c a t i o n / json ’ ‘
http : / /10 . 1 34 . 2 31 . 2 9 : 8 181/ onos/v1/ hosts ’

c u r l −u kara f : ka ra f −X GET −−header ‘ Accept : app l i c a t i o n / json ’ ‘
http : / /10 . 1 34 . 2 31 . 2 9 : 8 181/ onos/v1/network/ con f i gu ra t i on ’

c u r l −u kara f : ka ra f −X GET −−header ‘ Accept : app l i c a t i o n / json ’ ‘
http : / /10 . 1 34 . 2 31 . 2 9 : 8 181/ onos/v1/ s t a t i s t i c s / ports ’

c u r l −u kara f : ka ra f −X GET −−header ‘ Accept : app l i c a t i o n / json ’ ‘
http : / /10 . 1 34 . 2 31 . 2 9 : 8 181/ onos/v1/ tenants ’

c u r l −u kara f : ka ra f −X GET −−header ‘ Accept : app l i c a t i o n / json ’ ‘
http : / /10 . 1 34 . 2 31 . 2 9 : 8 181/ onos/v1/ topology ’

Figure 6.9: Simple example of a sonaMonitor execution
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6.7 Limitations and future works

The SONA approach poses some limitations:

• A tenant cannot create more than one subnet with same IP address
range even in different virtual networks; however, the same subnet can
be defined across tenants. Therefore multi-tenancy is respected, whereas
the isolation is maintained only up to a certain degree.

• It is not possible to change an existing security group at runtime; it is
however possible to create a new security group and update the port
of the instance through the neutron API to get an almost runtime-like
change.

• The connection tracking feature is available only in some recent versions
of OVS.

• It does not allow ingress traffic via a connected session by default, due
to an OpenFlow mapping rule issue: there is the need to add an allowing
rule for ingress direction with remote address “0.0.0.0/0” explicitly for
the VM to be able to access the Internet.

Although the community is completely refactoring SONA to make it com-
patible with the newer versions of OpenStack, its development is, at the mo-
ment of writing, discontinued [85]. Therefore, it is possible to define this
project as an interesting solution that, however, might just provide a PoC of
its functionalities. Indeed, it was not possible to deploy SONA either on a
Mitaka, Newton or Ocata production cluster, for incompatibility issues. As a
consequence of this, it was not possible to take a more consistent and interest-
ing performance evaluation of this approach.



120 CHAPTER 6. SONA IMPLEMENTATION



Chapter 7

Testbed implementation

7.1 OpenStack production environment deploy-

ment

In order to proceed with some performance evaluation, a testbed has been
properly setup. The aim has been to have a clean OpenStack production envi-
ronment for a performance evaluation of different firewalls in different compute
nodes. To manage the networking of the different nodes, the Ryu SDN frame-
work has been chosen. This choice has been leaded by its complete support
from the Neutron community; moreover, Ryu introduces a minimal overhead
in the platform (no additional dedicated nodes, no complete backend replace-
ment, etc.) with respect to the other solutions. Therefore, by using Ryu, the
evaluation is related to an almost-out-of-the-box OpenStack approach, even-
tually finely tuned.

7.1.1 Topology

The topology that has been setup is presented in the Figure 7.1. The Open-
Stack nodes are powerful servers (each compute has 40 vCPUs, 64 GB RAM)
and the choice has been to not deploy an additional node for the L3 network
functions (network node), as long as the tests are more related to internal
OpenStack components. Another reason for it has been that the controller
node is able to achieve high performance and therefore is able to keep up with
the networking functions in addition to the controller ones.
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Figure 7.1: OpenStack topology

Each node is connected to both the management network and the data
network, whereas the controller node, as long as it provides also network func-
tionalities, is connected to the external network. All the nodes are running on
CentOS 7 and the version of OpenStack is Newton, released in October 2016.
The installed hypervisor for both nodes is KVM/QEMU.

During the next subsections, some configuration files are cited. Their final
version is shown in Appendix A.4, where password have been modified for
security reasons.

7.1.2 Prerequisites

The first needed thing to avoid problems while working with CentOS has been
to disable the firewall: of course, this solution is employable only as long as
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the whole cluster is behind a real firewall protecting the machines from the
outside. Otherwise, a proper configuration of the CentOS firewall would be
needed.

After the configuration of interfaces of the different nodes in the cluster,
a NTP client/server mechanism has been deployed to bound all the nodes to
the same time. The controller node acts as a client for an outside server to get
the correct time; in the meanwhile, it is a also a server for the other nodes.
Indeed, the controller node is referencing more accurate lower stratum servers
and other nodes are referencing the controller node. The chosen solution is
called chrony, easily available in most Linux distros.

This NTP solution is employable as long as the topology remains a three-
level topology, which is still affordable for an OpenStack cluster. The more
levels will be present in this topology indeed, the less accuracy in the time
synchronization will be present as a result of how the NTP protocol references.

Therefore, chrony is installed in controller and compute nodes, with differ-
ent configurations (always refer to Appendix A.4).

After that, it is possible to add the OpenStack repositories to all nodes, to
update to the latest available ones and install the python client which is the
main API from the CLI that OpenStack provides. Moreover, it is recommended
to install the package related to the management of SELinux to manage the
policies for OpenStack services.

In order to provide a DataBase to the services, it is important to install a
stable relational DB on the controller node, as MySQL. The choice has been to
install MariaDB. An important thing to be performed is the deletion of all the
configurations that come preinstalled with it, as the /etc/my.cnf, otherwise
the DB will not work as it loads those as the default ones.

OpenStack supports several message queue services including RabbitMQ,
Qpid, and ZeroMQ. One of the most supported ones is RabbitMQ and it is the
one used as a middleware for the deployment of this cluster in the controller
node. It is important to create an openstack user that can access to the queues
and to properly set its permissions.

The Identity service authentication mechanism for services uses Memcached
to cache tokens. A combination of firewalling, authentication, and encryption
to secure it would be needed in a production environment, but as long as here
the deployment is running behind a real firewall, this is not needed.



124 CHAPTER 7. TESTBED IMPLEMENTATION

7.1.3 Identity service: Keystone

To implement Keystone on the controller node it is important to deploy a
token mechanism and a HTTP server to handle the requests. Here, Fernet
tokens and Apache HTTP server are used for scalability purposes.

First of all, a database (keystone) has been created, and the access permis-
sions have been granted to it. After installing the keystone component, the
HTTP server and the mod wsgi, a proper configuration has been addressed (it
is possible to see it in Appendix A.4). It is important to state that by proceed-
ing in this way with the Apache HTTP server and mod wsgi, the result will
be to handle Identity service requests on ports 5000 and 35357 through the
Apache HTTP server, by disabling therefore the Keystone service to directly
listen on them.

The Identity service DB is populated and the Fernet key repositories are
initialized. Finally Keystone is bootstrapped with an admin user and the
HTTP server is configured.

To deal with the authentication, OpenStack needs to be configured to deal
with a combination of domains, projects, users and roles as shown in Chapter
3. Therefore, it is vital to define a service project that will contain a single user
for each service to be added to the environment. It is then possible to create
an unprivileged project and user, with the corresponding role to be added.

7.1.4 Image service: Glance

Glance requires as well its database and user creation, by then adding the
admin role to the Glance user and service project. Therefore, it is needed to
create the Glance service entity and its API endpoints (public, internal and
admin). All these API endpoints are residing in the controller node, which is
running behind a firewall/NAT easily managed to only forward to the controller
the requests that are compliant with a security policy.

Finally, it is possible to install the Glance component on the controller, to
configure it and to populate its service database.

7.1.5 Computing service: Nova

Before Nova installation and configuration, there is the need on the controller
node to create the databases (one for nova and one for nova api), the service
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credentials and the API endpoints. In particular, a nova user is created and
the admin role is given to it; to Nova there will be 3 associated API endpoints.

Nova has been then installed and configured on the controller node. Among
all the settings, there has been the need to enable the support for the Neutron
networking service: this has to be done because in the past Nova provided also
some network functionalities, now old and legacy.

Nova has also been installed and configured in a slightly different way on
all the compute nodes.

Figure 7.2: Nova hypervisors

7.1.6 Networking service: Neutron

As for the previous components, on the controller node a DB has been created,
as well as the service credentials and the API endpoints.

It has been then chosen to deploy the “self-service networks” option, where
it is possible to have more functions than the “provider networks” one. Indeed,
with self-service networks, the user is able to create and manage (private) net-
works, routers, or floating IP addresses. Basically, a self-service network is a
tenant network, therefore provided with all the Neutron abstractions shown
in Chapter 4. Therefore, some additional steps were considered in the config-
uration of the Neutron service, in particular of the ML2 plug-in. Indeed, the
chosen tenant network type has been the VXLAN and the OpenVSwitch has
been chosen and configured as the ML2 mechanism driver. Finally the meta-
data and DHCP agent, as well as the compute service have been configured.

With respect to the compute node instead, the common network compo-
nent, the OvS agent and the compute service have been configured. In general,
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L2 agents can be configured to use differing firewall drivers as there is no re-
quirement that they have to be all the same. If an agent lacks a firewall
driver configuration, it will default to what is configured on its server. There-
fore, to deploy a suitable case study for the evaluation of performance related
to different firewall approaches, compute6 has been deployed with a hybrid
iptables-openvswitch mechanism, whereas compute7 has been configured to
run with an OvS native firewall driver. The native OVS firewall implementa-
tion requires kernel and user space support for the conntrack, thus requiring
minimum versions of the Linux kernel (4.3 or newer, otherwise between 3.3
and 4.3 there is the need to build it) and Open vSwitch (2.5 or newer). For
instance, on CentOS 7 the conntrack module was already present and loaded
at the time of the deployment, even though the Kernel version was 3.10.

All the nodes are running with the default Ryu native OpenFlow interface.
In addition to it, it has been considered the way in which Neutron calls the
Ryu app manager. As a result on this, it has been possible to make Ryu one of
its modules, the REST interface (actually, to make Neutron load Ryu loading
its REST interface). This opens a huge number of possibilities as, by doing
so, it is possible to write simple applications that instruct Ryu in order to
manage the network, according to a policy, in a smart way. For example, an
application might consider to retrieve from Ryu some information about the
network and decide that a certain node is congested and therefore to install
in the same bridge a rule with a higher priority to perform some congestion
control recovery by redirecting the traffic to another node. Another example
might be an application that performs service function chaining to maintain
the QoS related to the accorded SLA of the user. In particular, a possible
case study is the use of the REST API in each compute node and to deploy
an orchestrator on top of the cluster that has a complete knowledge of the
network (through the communication with OpenStack APIs) and is able to
insert flow rules inside the different integration bridges, to perform SFC by
taking advantage of the SDN integration.

It would be however easy to deploy the topology with a separate network
node. Indeed, the controller node will only manage the common Neutron
component, whereas all the other network functions that are now deployed in
the controller will be placed in the network node.
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Figure 7.3: Neutron agents

7.1.7 Dashboard service: Horizon

In a very easy way, also the dashboard has been installed and configured. This
lets the end user to easily manage his/her tenants, by making use of a website
that is able to perform REST calls to other components, as the command was
launched by the CLI. Moreover, it is possible to connect to virtual instances
via noVNC.

7.1.8 Orchestration service: Heat

To add orchestration capabilities to the cluster, Heat has been deployed and
configured as well. Its installation has consisted in the creation of its DB and
its user, the creation of the orchestration services and of the endpoints. In
particular, the services are two as there is the usual OpenStack orchestration
but also the cloudformation one, which is compatible with other cloud solutions
as Amazon EC2. Finally, a stack owner is created among the roles as well as
a stack user.

7.1.9 Telemetry service: Ceilometer

In general, when a cloud service is offered the provider have consider a way to
calculate bills to its users. This usually leads to three steps: metering, rating



128 CHAPTER 7. TESTBED IMPLEMENTATION

Figure 7.4: Dashboard

and billing. In OpenStack, in order to meter the infrastructure, a component
called Ceilometer is used: Ceilometer creates messages every time something is
measured. These messages are collected and stored. There are then two ways
to collect the data that is created by Ceilometer: using a notification agent
that listens on the notification bus or a polling agent that periodically contacts
for the data via the related API. The data gets collected and normalized to
be stored in a database. Since there are lots of pieces of information being
captured and needed to be stored, the requirements for database performance
are high.

To deploy the Telemetry service therefore, unlike other services, a non-
relation DB is needed. In particular, a NoSQL DB has been used for this de-
ployment: MongoDB. However, it is possible to run other DBs as the Ceilome-
ter backend, like Gnocchi which is considered to become the default solution
in the future of Ceilometer.
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Figure 7.5: Ceilometer statistics
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Chapter 8

Performance evaluation

In Chapter 7 the physical testbed has been presented. In this chapter, some
measurements performed on a logical topology implemented on it will be shown
and commented. To do that, a topology has been therefore deployed, with
resources on the inside (virtual instances) and on the outside (physical servers)
of the OpenStack domain.

This topology involves 5 virtual machines per compute node, which can be
considered as 4 clients and 1 server for the sake of the measurements. Each
virtual instance is deployed with 4 vCPUs, 4 GB RAM and the same 20 GB
disk to let the tests show some appreciable range changes. To obtain a correct
CPU and memory evaluation, only the needed clients are turned on or off for
each test (i.e. if the test is thought for having only measurements among two
clients and the server, just client1 and client2 will be turned on). It is important
to remark that the two compute nodes have been configured precisely in the
same way (apart from the Neutron firewall, as explained in Chapter 7); it
is therefore possible to properly evaluate the differences between the “hybrid
iptables” firewall (from now on, Linux Bridge FW) and “Open VSwitch native
firewall” (OvS FW) in terms of performance.

The real implemented testbed is shown in Figure 8.2, whereas in Figure
8.1 it is possible to see the dashboard (user) view, which is totally transparent
with respect to the implementation. As it is possible to see, to perform some
measurements, an additional physical node is placed in the External network,
where it is able to reach the virtual instances via all the Neutron mechanisms
shown in Chapter 4. It is also possible to remark the presence of two VXLAN
interfaces, as the number of nodes with networking functions is 3 (therefore,

131



132 CHAPTER 8. PERFORMANCE EVALUATION

each node must be able to reach the other two). Moreover, there are two
network namespaces related to routers and four ones for DHCP, as there are
four private networks of which only two are connected to the external network.

Figure 8.1: User view of the testbed
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8.1 In-node process throughput

To have a rough idea of what could be an upper bound of the achievable
throughput on a node, iperf3 has been used. Indeed, with every VM off, on
each compute node an iperf3 server has been bounded to the loopback interface,
and an iperf3 client has been started for 60 seconds. The measurement has
then been repeated 30 times, for each compute node. Thus, in total there has
been 30 TCP measurements on compute node 6 (LB FW) as well as 30 on
compute node 7 (OvS FW). UDP measurements have not been performed as,
for the single client iperf limits the sending rate to the maximum achievable
while filling the socket. The results are shown in Table 8.1.

Firewall mechanism Mean throughput [Gbps] Standard deviation [Gbps]

Linux Bridge FW 40.457 2.265
Open vSwitch native FW 49.860 4.503

Table 8.1: In-node process throughput

As it is possible to state from the above Table, the node employing the
OvS native firewall performs better in terms of throughput. The node with
the LB FW underperforms as a result of the presence of multiple iptables rules
in the INPUT chain, which are created by Neutron (as shown in Chapter 4).
Therefore in this compute node, each flow coming from the client has to go
through all the INPUT chain until the firewall decides that it is admitted.
Thus, in this case the LB firewall is adding a penalty in terms of performance.

However, it is important to remark that the measurement has been just
performed to show how much the LB approach (with the iptables rules) is
influencing the node performance.

8.2 Latency

By considering each compute node with only two virtual instances active, some
evaluations on latency can be performed. In order to do that, the netperf tool
[86] (released by HP as Open Source) has been used and the Request/Response
mechanism has been used. Generally speaking, netperf request/response per-
formance is quoted as “transactions/s” for a given request and response size.
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A transaction is defined as the exchange of a single request and a single re-
sponse. From a transaction rate, one can infer one way and round-trip average
latency.

In the single compute node, a VM acted therefore as the “netserver”, while
the other one as the client. The client therefore contacts the server with a
“Request” and gets back a “Response”, evaluating the time elapsing between
the starting of the Request and the reception of the Response. These measure-
ments have been performed both for TCP and UDP 30 times, for 30 seconds
each, separately on each compute node. Therefore there has been 60 runs of
it for the LB FW (30 TCP, 30 UDP) and 60 runs for the OvS FW (again, 30
TCP and 30 UDP).

Firewall mechanism Protocol Mean latency [µs] Standard deviation [µs] Maximum latency [ms]

Linux Bridge FW TCP 56.035 3.011 9.678
Open vSwitch native FW TCP 51.19 2.066 5.851

Linux Bridge FW UDP 51.335 2.594 8.337
Open vSwitch native FW UDP 44.715 3.251 6.609

Table 8.2: Latency evaluation

It is remarkable to show that the OvS FW approach performs better than
the LB one, as a result of the absence of internal components in between
the VM and the Open vSwitch, apart from the tap device. Moreover, also
the maximum latency is shown here. Although these are casual peaks, this
additional evaluation has been performed to provide to the reader a rough idea
of the complexity to be compliant with the 10 ms latency requirement requested
by the 5G standard. This happens as a result of a lack of integration among
the Communication Technologies world with these novel IT tools. However, it
is shown that the OvS FW causes lower peak values with respect to the LB
FW.

8.3 Co-located instances measurements

In order to understand the pros and the cons of the different firewall ap-
proaches, some measurements among the instances on the same compute node
have been performed.
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8.3.1 TCP throughput evaluation

This test has been performed through the use of the TCP STREAM mode in
netperf. For this test, 30 runs of 60 seconds each have been evaluated and then
computed.
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Figure 8.3: TCP throughput - 1 client 1 server

In Figure 8.3 it is shown that the use of an OvS FW approach provides
a higher TCP throughput with respect to the LB FW one. This shows how
much the presence of the Linux Bridge in between the virtual instance and the
OvS is causing a decrease in the performance.

In Figure 8.4 it is shown a test performed by two clients and one server
per node, where the first client starts sending data at t = 0 s and the second
one at t = 30 s. This Figure shows the TCP contention phase among the 2
clients per node and it is interesting to notice that the node with the OvS
FW reaches higher throughput values with respect to the LB FW one. As
expected, in the long run the two clients will achieve a similar throughput.
However, it is remarkable that the sum of these two flows, for instance at time
t = 60 s in the node with the LB FW, is larger than the throughput that the
one achieved by the single TCP flow at t = 0 s (and even when only 1 client
was employed in the previous experiment).

Totalthr = 7.36 + 7.28[Gbps] = 14.64[Gbps] < 13.57[Gbps]
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Figure 8.4: TCP throughput - 2 clients 1 server

This applies also to the other node.
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Figure 8.5: TCP throughput - 4 clients 1 server

Similarly, another proof can be seen in Figure 8.5 where 4 clients are con-
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sidered. In particular, client1 starts at t = 0 s, whereas the other 3 ones are
generating traffic from t = 10 s. The results are similar to those achieved in
the case with 2 clients. Therefore, it is possible to say that this platform is
able to deal in an optimized way with aggregate flows.

8.3.2 CPU evaluation

This performance has been tested through the use of the System Activity
Report (sar) Unix tool [87], properly tuned to gather verbose information from
the compute node about the memory and the CPU utilization (here plotted in
user, system, software, guest and used -total-).
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Figure 8.6: CPU usage during the TCP test with 1 client and 1 server

From Figure 8.6 it is possible to state that, on the average, the used CPU
whenever a OvS FW approach is employed is slightly higher than the LB one.
The total (or used) line shows that the OvS approach is more proactive than
the LB one, as it is mostly constant, even at the beginning of the measurement.
Instead, the LB approach has a peak between t = 0 s and t = 1 s, coming from
the system activity and probably it is a result of the increase of communication
among the user space and the kernel space, even though its average system
value is still lower than the OvS one. On the other hand, it is interesting to
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note a small but remarkable difference in the software activity: the OvS FW
has a lower consumption with respect to the LB FW.
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Figure 8.7: CPU usage during the TCP test with 2 clients and 1 server

In Figure 8.7 it is possible to appreciate the entire dynamic, taking into
consideration the arrival of a second client at t = 30 s. At that point the
CPU consumption of the LB FW approach is mostly equal to the one of the
OvS. Moreover, it is possible to see more in detail that the part related to the
system activity increases. This however is compensated by the increment of
the guest and software activities in the OvS FW-based node.
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Figure 8.8: CPU usage during the TCP test with 4 clients and 1 server

Finally, in Figure 8.8 it is shown that the CPU utilization for the two dif-
ferent nodes is similar even when 3 clients are starting to exchange information
at t = 10s, in addition to the already present client.

Therefore it is possible to say that whenever few virtual instance activities
are considered, a LB FW has a lower CPU consumption, whereas the OvS
FW has in general a more proactive approach and therefore might be more
stable whenever multiple instances are exchanging traffic. A LB FW approach
is thus more suitable for a low-traffic node in terms of CPU utilization, even
though in data centers it is customary to not have idle nodes in order to
increase its efficiency. In general, however, it is possible to see that whenever
there is scaling among the number of instances in the physical node, the CPU
consumption is mostly the same for the two approaches.
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8.3.3 Memory evaluation
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Figure 8.9: Memory usage during the TCP test with 1 client and 1 server
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Figure 8.10: Memory usage during the TCP test with 2 clients and 1 server



142 CHAPTER 8. PERFORMANCE EVALUATION

0 5 10 15 20 25 30 35 40 45 50 55 60
Time [s]

14

16

18

20

22

24

26

28

Pe
rc

en
ta

ge
 o

f u
se

d 
M

em
or

y 
[%

]
RAM usage evaluation, 4 clients - 1 server

Linux Bridge FW
Open vSwitch FW

Figure 8.11: Memory usage during the TCP test with 4 clients and 1 server

With respect to the memory, it is possible to see that the results are usually
stable and do not change at runtime. It is however interesting to notice in
Figures 8.9, 8.10 and 8.11 that the OvS approach is consuming the double of
the memory with respect to the LB one: this is probably related to the usage
of multiple tables by the OvS FW with respect to the LB one. On the other
hand, it is important to notice that the increase in the memory usage whenever
the number of clients is larger for nodes running with a LB FW mechanism.
Therefore, it is expected that in the case of a large number of instances, the
OvS approach is still reasonable in terms of memory, as it will not introduce
such an overhead as the LB mechanism does.

8.3.4 UDP Packet rate sustainability

Another interesting test that has been performed is the one related to the
packet rate sustainability. This test employs the use of the RUDE & CRUDE
[88] tool and therefore of UDP packets. The size of the packet has been chosen
as 64 B or 1500 B at the network layer, which are the minimum and maximum
size for UDP packets (actually, the UDP generated packet is 1472 B, that
has to be added to 8 B for the UDP header and 20 B for the IP header).
These tests are performed by considering a server where the crude processes
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are started and a number of rude clients (or in general, of flows) on the same
node, running in the clients virtual instances. This number is different for each
test and will lead to a complete comprehension of the networking limitations
the cloud platform as well as the chosen firewall have.

Figures 8.12, 8.13, 8.14, 8.15 represent the cases with 1 flow and 2 flows
for 64B and 1500B. As it is possible to see, for all the generated traffic there
corresponds an equal traffic received. Therefore it is possible to say that the
system behaves properly.
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Figure 8.12: Packet rate sustainability, 1 internal flow - 64 B UDP packets
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Figure 8.13: Packet rate sustainability, 1 internal flow - 1500 B UDP packets
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Figure 8.14: Packet rate sustainability, 2 internal flows - 64 B UDP packets
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Figure 8.15: Packet rate sustainability, 2 internal flows - 1500 B UDP packets

Similarly, Figure 8.16 represents the case of 4 contemporaneously flows and
is still not showing anything remarkable, whereas in Figure 8.17 it is possible
to see some performance degradation, even though is not possible to state
anything as it regards just a point. However, in Figure 8.18 it is shown that 8
flows are able to saturate, in both systems, the capacity to handle a quantity
of traffic higher than 400000 packets/s.
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Figure 8.16: Packet rate sustainability, 4 internal flows - 64 B UDP packets
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Figure 8.17: Packet rate sustainability, 4 internal flows - 1500 B UDP packets

Finally, in Figure 8.19 it is remarkable the difference of behavior among
the two different FW mechanisms. In particular, it is important to see that
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the LB-based node is able to handle at maximum 375000 packets/s before
reaching a saturation phase, whereas the OvS-based one is able to achieve up
to 460000 packets/s. In general, these results are higher than those achieved
in [65] as a result of software improvements of the OpenStack platform and
its internals, and of the use of the new integrated SDN approach. It is still
important to outline that the used servers are still off-the-shelf and thought
for general purpose.

However, this result shows that the performance of an OvS-based FW is
remarkably higher with respect to the one of a LB-based one.
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Figure 8.18: Packet rate sustainability, 8 internal flows - 64 B UDP packets
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Figure 8.19: Packet rate sustainability, 8 internal flow - 1500 B UDP packets

8.4 Externally located instances measurements

Other tests have also been performed, by using a remote externally located
client. This client resides in the physical node which is directly connected to the
OpenStack cluster via the external network. Therefore, this analysis involves
also the traversing of the network node, which in this testbed corresponds also
to the controller node.

8.4.1 UDP Packet rate sustainability

Similarly to the previous case, the evaluation has been performed by consid-
ering a server instance in each compute node. However, here the client is
remotely placed on the external network.

As it is possible to see from Figure 8.20 the system mostly behaves properly.
On the other hand, Figure 8.21 and 8.22 are showing that a limit is reached
at approximately 100000 packets/s.

Moreover, Figure 8.23, 8.24 and 8.25 are showing that the system is not
able to handle traffic greater than 65000 packets/s. This means that network
throughputs higher than 65000 pps∗(1500∗8) b = 780 Mbps are not handled by
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the platform. This is probably caused by the presence of an additional node
and its constraints (even the network node indeed has some firewall rules),
therefore the theoretical limit of 1 Gbps is not reached. Moreover, the behavior
of the system when the traffic generated is increased is interesting as it is
not stable to the same saturation value, but it decreases down to another
value. This however would need further studies as it is out of the scope of this
document. In both cases, there is not such a difference among the different
FW approaches, probably due to the same reason here considered.
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Figure 8.20: Packet rate sustainability, 1 external flow - 64 B UDP packets
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Figure 8.21: Packet rate sustainability, 2 external flows - 64 B UDP packets
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Figure 8.22: Packet rate sustainability, 4 external flows - 64 B UDP packets
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Figure 8.23: Packet rate sustainability, 1 external flow - 1500 B UDP packets
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Figure 8.24: Packet rate sustainability, 2 external flows - 1500 B UDP packets



152 CHAPTER 8. PERFORMANCE EVALUATION

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Traffic generated [Kpps]

0

10

20

30

40

50

60

Tr
af

fic
 re

ce
iv

ed
 [K

pp
s]

1500 B packets - 4 clients 1 server

Linux Bridge FW
Open vSwitch native FW

Figure 8.25: Packet rate sustainability, 4 external flows - 1500 B UDP packets

8.5 Final remarks

It is therefore remarkable that the trade-off when using the two FW approaches
(LB and OvS) is mostly, at the moment of writing, between Telecommunica-
tions KPIs (Throughput, latency, etc.) and Computer Science KPIs (CPU,
memory, etc.). When choosing an OvS FW it is possible to state that the
CPU and the memory are more used than what a LB FW would. However,
this results in an improved performance whenever it comes to throughput and
latency. Therefore, this approach is very interesting and, by an optimization
of software, in particular of the OvS component itself, it would be possible to
achieve even more interesting results.



Chapter 9

Conclusions

This document has considered the state of the art in terms of networking, where
new paradigms as Software Defined Networking, Network Functions Virtual-
ization and Cloud Computing are entering the market. These paradigms are
interesting for multiple actors, from the service providers themselves, as well
as the infrastructure providers as they are considered the possible enablers to
deploy innovative services.

An overview of a well-known Open Source cloud platform, named Open-
Stack, has been provided. In particular, its networking aspects have been
shown. The main focus has been the integration among this platform and
Open Source SDN frameworks, as ONOS (SONA) and the native Ryu frame-
work solution. In addition to it, different firewalling mechanisms have been
configured for the OpenStack cluster, as previous studies remarked that they
were the main bottleneck of the cloud platform.

The experimental results have shown that the integration among SDN and
Cloud is leading to interesting results, both from a qualitative point of view
(delivering the possibility to introduce more network intelligence, e.g. per-
forming Service Function Chaining, orchestration of resources, etc.) and a
quantitative point of view. Indeed, by properly configuring the cluster and
by following an integrated approach with a SDN controller, some performance
evaluations are provided. These have shown that the Open vSwitch native
Firewall achieves a better performance, as a result of its disruptive way of
considering the firewalling with respect to the Linux Bridge Firewall. This is
achieved at the cost of a higher CPU and memory utilization that, however,
is remarkable only when few instances are employed.
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Therefore, it is possible to state that the SDN-cloud integration approach,
followed by an outstanding network tuning of the cloud platform, is leading to
significant results. However, this document is also intended to underline that
additional work is requested, especially on the cloud internals, to improve even
more the performance and be compliant with the strict requirements that the
future standards will demand.



Appendix A

Additional remarks

A.1 SONA configuration files

A.1.1 SONA network configuration

{
‘ ‘ apps ’ ’ : {

‘ ‘ org . ono sp ro j e c t . open s ta ck in t e r f a c e ’ ’ : {
‘ ‘ open s ta ck in t e r f a c e ’ ’ : {

‘ ‘ neutronServer ’ ’ : ‘ ‘ http : / /10 . 1 34 . 2 31 . 2 8 : 9 696/
v2 . 0 / ’ ’

‘ ‘ keystoneServer ’ ’ : ‘ ‘ http : / /10 . 1 34 . 2 31 . 2 8 : 5 000/
v2 . 0 / ’ ’

‘ ‘ userName ’ ’ : ‘ ‘ admin ’ ’
‘ ‘ password ’ ’ : ‘ ‘ nova ’ ’

}
} ,
‘ ‘ org . ono sp ro j e c t . openstacknode ’ ’ : {

‘ ‘ openstacknode ’ ’ : {
‘ ‘ nodes ’ ’ : [

{
‘ ‘ hostname ’ ’ : ‘ ‘ compute−01 ’ ’ ,
‘ ‘ type ’ ’ : ‘ ‘COMPUTE’ ’ ,
‘ ‘ managementIp ’ ’ :

‘ ‘ 1 0 . 1 3 4 . 2 3 1 . 3 0 ’ ’ ,
‘ ‘ dataIp ’ ’ : ‘ ‘ 1 0 . 1 3 4 . 3 4 . 2 2 2 ’ ’ ,
‘ ‘ i n t eg ra t i onBr idge ’ ’ : ‘ ‘ o f

:00000000000000 a1 ’ ’
} ,
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{
‘ ‘ hostname ’ ’ : ‘ ‘ gateway −01 ’ ’ ,
‘ ‘ type ’ ’ : ‘ ‘GATEWAY’ ’ ,
‘ ‘ managementIp ’ ’ :

‘ ‘ 1 0 . 1 3 4 . 2 3 1 . 3 2 ’ ’ ,
‘ ‘ dataIp ’ ’ : ‘ ‘ 1 0 . 1 3 4 . 3 4 . 2 2 4 ’ ’ ,
‘ ‘ i n t eg ra t i onBr idge ’ ’ : ‘ ‘ o f

:00000000000000 a2 ’ ’ ,
‘ ‘ routerBr idge ’ ’ : ‘ ‘ o f

:00000000000000b1 ’ ’ ,
‘ ‘ upl inkPort ’ ’ : ‘ ‘ quagga−router

’ ’ ,
‘ ‘ r ou t e rCont ro l l e r ’ ’ :

‘ ‘ 1 7 2 . 1 7 . 0 . 2 ’ ’
}

]
}

}
} ,
‘ ‘ dev i ce s ’ ’ : {

‘ ‘ o f :00000000000000 a1 ’ ’ : {
‘ ‘ bas ic ’ ’ : {

‘ ‘ d r ive r ’ ’ : ‘ ‘ sona ’ ’
}

} ,
‘ ‘ o f :00000000000000 a2 ’ ’ : {

‘ ‘ bas ic ’ ’ : {
‘ ‘ d r ive r ’ ’ : ‘ ‘ ovs ’ ’

}
}

}
}

A.1.2 SONA cell file

export OCI=10.134 .231 .29
export OC1=10.134 .231 .29
export ONOS APPS=dr ive r s , openflow−base , openstackswitch ing ,

openstackrout ing
export ONOSGROUP=sdn
export ONOS SCENARIOS=/home/ deve loper /onos/ t o o l s /test/ s c ena r i o s
export ONOSTOPO=de f au l t
export ONOS USER=sdn
export ONOS WEB PASS=rocks
export ONOSWEB USER=onos
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A.1.3 ONOS ML2 configuration

# Conf igura t ion op t i ons f o r ONOS ML2 Mechanism dr i v e r
[ onos ]
# ( StrOpt ) ONOS ReST i n t e r f a c e URL. This i s a mandatory f i e l d .
ur l pa th = http : / /10 . 1 34 . 2 31 . 2 9 : 8 181/ onos/ openstacknetworking
# ( StrOpt ) Username fo r au t h en t i c a t i on . This i s a mandatory f i e l d .
username = onos
# ( StrOpt ) Password f o r au t h en t i c a t i on . This i s a mandatory f i e l d .
password = rocks

A.1.4 DevStack configuration for the testbed

Controller node

[ [ local | l o c a l r c ] ]
HOST IP=10.134 .231 .28
SERVICE HOST=10.134 .231 .28
RABBIT HOST=10.134 .231 .28
DATABASEHOST=10.134 .231 .28
Q HOST=10.134 .231 .28

ADMINPASSWORD=HiddenOpenStackPassword
DATABASEPASSWORD=$ADMIN PASSWORD
RABBIT PASSWORD=$ADMIN PASSWORD
SERVICE PASSWORD=$ADMIN PASSWORD
SERVICE TOKEN=$ADMIN PASSWORD

DATABASETYPE=mysql

# Log
SCREEN LOGDIR=/opt/ s tack / l o g s / s c r e en

# Images
IMAGE URLS= ‘ ‘ http :// cloud−images . ubuntu . com/ r e l e a s e s /14.04/ r e l e a s e

/ubuntu−14.04− s e rver−cloudimg−amd64 . ta r . gz , http ://www. planet−
l ab . org / cord / trusty−s e rver−multi−n i c . img ’ ’

FORCE CONFIG DRIVE=True

# Networks
QML2 TENANTNETWORKTYPE=vxlan
Q ML2 PLUGIN MECHANISM DRIVERS=onos ml2
Q PLUGIN EXTRA CONF PATH=/opt/ stack /networking−onos/ e t c
Q PLUGIN EXTRA CONF FILES=(con f onos . i n i )
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ML2 L3 PLUGIN=networking onos . p lug in s . l 3 . d r i v e r . ONOSL3Plugin
NEUTRON CREATE INITIAL NETWORKS=False

# Serv i c e s
e n ab l e s e r v i c e q−svc
e n ab l e s e r v i c e h−eng h−api h−api−c fn h−api−cw
d i s a b l e s e r v i c e n−net
d i s a b l e s e r v i c e n−cpu
d i s a b l e s e r v i c e tempest
d i s a b l e s e r v i c e c−sch
d i s a b l e s e r v i c e c−api
d i s a b l e s e r v i c e c−vo l

# Branches
GLANCEBRANCH=s t ab l e /mitaka
HORIZONBRANCH=s t ab l e /mitaka
KEYSTONEBRANCH=s t ab l e /mitaka
NEUTRONBRANCH=s t ab l e /mitaka
NOVABRANCH=s t ab l e /mitaka
HEATBRANCH=s t ab l e /mitaka

Compute node

[ [ local | l o c a l r c ] ]
HOST IP=10.134 .231 .30
SERVICE HOST=10.134 .231 .28
RABBIT HOST=10.134 .231 .28
DATABASEHOST=10.134 .231 .28

ADMINPASSWORD=HiddenOpenStackPassword
DATABASEPASSWORD=$ADMIN PASSWORD
RABBIT PASSWORD=$ADMIN PASSWORD
SERVICE PASSWORD=$ADMIN PASSWORD
SERVICE TOKEN=$ADMIN PASSWORD

DATABASETYPE=mysql

NOVAVNCENABLED=True
VNCSERVER PROXYCLIENT ADDRESS=$HOST IP
VNCSERVER LISTEN=$HOST IP

LIBVIRT TYPE=kvm
# Log
SCREEN LOGDIR=/opt/ s tack / l o g s / s c r e en
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# Serv i c e s
ENABLED SERVICES=n−cpu , neutron

# Branches
NOVABRANCH=s t ab l e /mitaka
KEYSTONEBRANCH=s t ab l e /mitaka
NEUTRONBRANCH=s t ab l e /mitaka

A.1.5 SONA vRouter configuration

{
‘ ‘ dev i ce s ’ ’ : {

‘ ‘ o f :00000000000000b1 ’ ’ : {
‘ ‘ bas ic ’ ’ : {

‘ ‘ d r ive r ’ ’ : ‘ ‘ s o f t r ou t e r ’ ’
}

}
} ,
‘ ‘ apps ’ ’ : {

‘ ‘ org . ono sp ro j e c t . router ’ ’ : {
‘ ‘ router ’ ’ : {

‘ ‘ controlPlaneConnectPoint ’ ’ : ‘ ‘ o f :00000000000000
b1 /2 ’ ’ ,

‘ ‘ ospfEnabled ’ ’ : ‘ ‘ true ’ ’ ,
‘ ‘ i n t e r f a c e s ’ ’ : [ ‘ ‘ b1−1 ’ ’ , ‘ ‘ b1−2 ’ ’ ]

}
}

} ,
‘ ‘ ports ’ ’ : {

‘ ‘ o f :00000000000000b1 /3 ’ ’ : {
‘ ‘ i n t e r f a c e s ’ ’ : [

{
‘ ‘ name ’ ’ : ‘ ‘ b1−1 ’ ’ ,
‘ ‘ ips ’ ’ : [ ‘ ‘ 1 7 2 . 1 8 . 0 . 2 54/24 ’ ’ ] ,
‘ ‘mac ’ ’ : ‘ ‘ f e : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 ’ ’

}
]

} ,
‘ ‘ o f :00000000000000b1 /1 ’ ’ : {

‘ ‘ i n t e r f a c e s ’ ’ : [
{

‘ ‘ name ’ ’ : ‘ ‘ b1−2 ’ ’ ,
‘ ‘ ips ’ ’ : [ ‘ ‘ 1 7 2 . 2 7 . 0 . 2 54/24 ’ ’ ] ,
‘ ‘mac ’ ’ : ‘ ‘ f e : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 ’ ’

}
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]
}

} ,
‘ ‘ hosts ’ ’ : {

‘ ‘ f e : 00 : 00 : 00 : 00 : 02/ −1 ’ ’ : {
‘ ‘ bas ic ’ ’ : {

‘ ‘ ips ’ ’ : [ ‘ ‘ 1 7 2 . 2 7 . 0 . 1 ’ ’ ] ,
‘ ‘ l o ca t i on ’ ’ : ‘ ‘ o f :00000000000000b1 /1 ’ ’

}
}

}
}

A.1.6 Docker BGP configuration

Configuration 3: volumes/gateway/bgpd.conf

! −∗− bgp −∗−
!
! BGPd sample c on f i gu r a t i on f i l e
!
!
hostname gateway−01
password zebra
!
r oute r bgp 65101

bgp router−id 1 72 . 1 8 . 0 . 2 54
t imers bgp 3 9
neighbor 1 7 2 . 1 8 . 0 . 1 remote−as 65100
neighbor 1 7 2 . 1 8 . 0 . 1 ebgp−multihop
neighbor 1 7 2 . 1 8 . 0 . 1 t imers connect 5
ne ighbor 1 7 2 . 1 8 . 0 . 1 advert isement−i n t e r v a l 5
network 172 . 27 . 0 . 0 /24

!
l og f i l e / var / log /quagga/bgpd . l og
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Configuration 4: volumes/router/bgpd.conf

! −∗− bgp −∗−
!
! BGPd sample c on f i gu r a t i on f i l e
!
!
hostname router −01
password zebra
!
r oute r bgp 65100

bgp router−id 1 7 2 . 1 8 . 0 . 1
t imers bgp 3 9
neighbor 172 . 1 8 . 0 . 2 54 remote−as 65101
neighbor 172 . 1 8 . 0 . 2 54 ebgp−multihop
neighbor 172 . 1 8 . 0 . 2 54 t imers connect 5
ne ighbor 172 . 1 8 . 0 . 2 54 advert isement−i n t e r v a l 5
ne ighbor 172 . 1 8 . 0 . 2 54 de fau l t−o r i g i n a t e

!
l og f i l e / var / log /quagga/bgpd . l og

Configuration 5: volumes/gateway/zebra.conf & volumes/router/ze-
bra.conf

!
hostname gateway−01
password zebra
!
fpm connect ion ip 1 7 2 . 1 7 . 0 . 2 port 2620

A.2 SONA monitor code

A.2.1 Monitor

import l ogg ing
import f l ows
import hos t s
import s t a t s
import ppr int
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l o gg ing . bas i cCon f i g ( l e v e l=logg ing .DEBUG)

de f ho s t s hand l e r ( ) :
ho s t l oop = True
p r in t ‘ ‘ I am the handler 1 ’ ’
while hos t l oop :

p r i n t ‘ ‘What are you i n t e r e s t e d to see ? ’ ’
i n t e r e s t = raw input ( ‘ ‘ 1 ) Show a l l the hos t s \n2 ) Show the

hos t s r e l a t e d to a p a r t i c u l a r dev i ce \n3 ) Show the ’ ’
‘ ‘ hos t s r e l a t e d to a p a r t i c u l a r

network \n4 ) Show the hos t s
r e l a t e d to a p a r t i c u l a r ’ ’

‘ ‘ tenant \n ’ ’ )

if i n t e r e s t == ‘ ‘ 1 ’ ’ :
hos t s . s h ow a l l h o s t s ( )

elif i n t e r e s t == ‘ ‘ 2 ’ ’ :
l i s t d e v = host s . show dev ( )
pp = ppr int . Pre t tyPr in t e r ( indent=2)
p r in t ‘ ‘Which one ? ’ ’
dev loop = True
while dev loop :

pp . ppr int ( l i s t d e v )
dev i c e = raw input ( ‘ ‘ ( P lease copy and paste to

avoid e r r o r s ) \n ’ ’ )
if dev i c e not in l i s t d e v :

p r i n t ‘ ‘ Not found , t ry again ’ ’
else :

dev loop = False
hos t s . ho s t s pe r dev ( dev i ce )

elif i n t e r e s t == ‘ ‘ 3 ’ ’ :
l i s t n e t = host s . show net ( )
pp = ppr int . Pre t tyPr in t e r ( indent=2)
p r in t ‘ ‘Which one ? ’ ’
n e t l oop = True
while ( ne t l oop ) :

pp . ppr int ( l i s t n e t )
net = raw input ( ‘ ‘ ( P lease copy and paste to avoid

e r r o r s ) \n ’ ’ )
if net not in l i s t n e t :
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pr in t ‘ ‘ Not found , t ry again ’ ’
else :

n e t l oop = False
hos t s . h o s t s p e r n e t ( net )

elif i n t e r e s t == ‘ ‘ 4 ’ ’ :
l i s t t e n a n t = host s . show tenant ( )
pp = ppr int . Pre t tyPr in t e r ( indent=2)
p r in t ‘ ‘Which one ? ’ ’
t enant l oop = True
while ( t enant l oop ) :

pp . ppr int ( l i s t t e n a n t )
tenant = raw input ( ‘ ‘ ( P lease copy and paste to

avoid e r r o r s ) \n ’ ’ )
if tenant not in l i s t t e n a n t :

p r i n t ‘ ‘ Not found , t ry again ’ ’
else :

t enant l oop = False
hos t s . ho s t s p e r t enan t ( tenant )

else :
p r i n t ‘ ‘Come on , you are not funny ’ ’

ho s t l oop = False

de f f l ows hand l e r ( ) :
p r i n t ‘ ‘ I am the handler 2 ’ ’
f l ow l oop = True
while ( f l ow l oop ) :

p r i n t ‘ ‘What are you i n t e r e s t e d to see ? ’ ’
i n t e r e s t = raw input ( ‘ ‘ 1 ) Show a l l the f l ows \n2 ) Show the

f l ows r e l a t e d to a p a r t i c u l a r dev i ce \n3 ) Show the ’ ’
‘ ‘ f l ows r e l a t e d to a p a r t i c u l a r app \

n ’ ’ )

if i n t e r e s t == ‘ ‘ 1 ’ ’ :
f l ows . p r i n t a l l f l o w s ( )

elif i n t e r e s t == ‘ ‘ 2 ’ ’ :
l i s t d e v = f l ows . dev f l ows ( )
pp = ppr int . Pre t tyPr in t e r ( indent=2)
p r in t ‘ ‘Which one ? ’ ’
dev loop = True
while ( dev loop ) :
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pp . ppr int ( l i s t d e v )
dev i c e = raw input ( ‘ ‘ ( P lease copy and paste to

avoid e r r o r s ) \n ’ ’ )
if dev i c e not in l i s t d e v :

p r i n t ‘ ‘ Not found , t ry again ’ ’
else :

dev loop = False
f l ows . f l ows pe r dev ( dev i ce )

elif i n t e r e s t == ‘ ‘ 3 ’ ’ :
l i s t a p p = f l ows . which f lows ( )
pp = ppr int . Pre t tyPr in t e r ( indent=2)
p r in t ‘ ‘Which one ? ’ ’
app loop = True
while app loop :

pp . ppr int ( l i s t a p p )
app = raw input ( ‘ ‘ ( P lease copy and paste to avoid

e r r o r s ) \n ’ ’ )
if app not in l i s t a p p :

p r i n t ‘ ‘ Not found , t ry again ’ ’
else :

app loop = False
f l ows . f l ows pe r app ( app )

else :
p r i n t ‘ ‘Come on , you are not funny ’ ’

f l ow l oop = False

de f s t a t s h and l e r ( ) :
g l oba l port
p r i n t ‘ ‘ I am the handler 3 ’ ’
s t a t s l o o p = True
while s t a t s l o o p :

p r i n t ‘ ‘What are you i n t e r e s t e d to see ? ’ ’
i n t e r e s t = raw input ( ‘ ‘ 1 ) Show a l l the s t a t i s t i c s \n2 )

Show the por t s r e l a t e d to a p a r t i c u l a r dev i ce \n ’ ’
‘ ‘ 3 ) Show the s t a t i s t i c s r e l a t e d to a

p a r t i c u l a r port o f a dev i ce \n ’ ’ )

if i n t e r e s t == ‘ ‘ 1 ’ ’ :
s t a t s . s h ow a l l s t a t s ( )
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elif i n t e r e s t == ‘ ‘ 2 ’ ’ :
l i s t d e v = s t a t s . show dev ices ( )
pp = ppr int . Pre t tyPr in t e r ( indent=2)
p r in t ‘ ‘Which one ? ’ ’
s t a t s i n l o o p = True
while s t a t s i n l o o p :

pp . ppr int ( l i s t d e v )
dev i c e = raw input ( ‘ ‘ ( P lease copy and paste to

avoid e r r o r s ) \n ’ ’ )
if dev i c e not in l i s t d e v :

p r i n t ‘ ‘ Not found , t ry again ’ ’
else :

s t a t s i n l o o p = False
s t a t s . p o r t s p e r d e v i c e ( dev i c e )

elif i n t e r e s t == ‘ ‘ 3 ’ ’ :
l i s t d e v = s t a t s . show dev ices ( )
pp = ppr int . Pre t tyPr in t e r ( indent=2)
p r in t ‘ ‘Which one ? ’ ’
s t a t s i n l o o p = True
while s t a t s i n l o o p :

pp . ppr int ( l i s t d e v )
dev i c e = raw input ( ‘ ‘ ( P lease copy and paste to

avoid e r r o r s ) \n ’ ’ )
if dev i c e not in l i s t d e v :

p r i n t ‘ ‘ Not found , t ry again ’ ’
else :

p r i n t ‘ ‘Which port ? ’ ’
po r t l oop = True
l i s t p o r t = s t a t s . p o r t s p e r d e v i c e ( dev i c e )
while por t l oop :

pp . ppr int ( l i s t p o r t )
port = raw input ( )
port = in t ( port )
if port not in l i s t p o r t :

p r i n t ‘ ‘ Not found , t ry again ’ ’
else :

po r t l oop = False
s t a t s i n l o o p = False

s t a t s . s t a t s p e r p o r t ( device , port )

else :
p r i n t ‘ ‘Come on , you are not funny ’ ’
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s t a t s l o o p = False

p r i n t ‘ ‘ Hi and welcome ! This i s a s imple s c r i p t showing you the
p o s s i b i l i t y to e xp l o i t ONOS API to monitor OpenStack ’ ’

p r i n t ‘ ‘ F i r s t o f a l l : what would you l i k e to monitor ? ’ ’

loop = True

while loop :

cho i c e = raw input ( ‘ ‘ Hosts , f l ows or s t a t s ?\n ’ ’ )
i n c h o i c e = s t r ( cho i c e ) . lower ( )
p r i n t ‘ ‘ Your cho i c e i s : ’ ’ + s t r ( i n c h o i c e )
# lo g g i n g . debug ( i n cho i c e )
# l o g g i n g . debug ( type ( cho ice ) )
# l o g g i n g . debug ( type ( i n cho i c e ) )

if i n c h o i c e == ‘ ‘ hosts ’ ’ :
ho s t s hand l e r ( )

elif i n c h o i c e == ‘ ‘ f lows ’ ’ :
f l ows hand l e r ( )

elif i n c h o i c e == ‘ ‘ s ta t s ’ ’ :
s t a t s h and l e r ( )

else :
p r i n t ‘ ‘ I n c o r r e c t cho ice ’ ’

i n t e r e s t = raw input ( ‘ ‘ Are you i n t e r e s t e d in to l ook ing to
something else ? [ y/n ] ’ ’ )

i n t e r e s t . lower ( )
if i n t e r e s t == ‘ ‘ n ’ ’ or i n t e r e s t == ‘ ‘ no ’ ’ :

loop = False
elif i n t e r e s t == ‘ ‘ y ’ ’ or i n t e r e s t == ‘ ‘ yes ’ ’ :

p r i n t ‘ ‘Ok, about what ? ’ ’
else :

p r i n t ‘ ‘ Very funny , I am c l o s i n g . . . ’ ’
loop = False

A.2.2 Statistics subclass

import l ogg ing
import j son
import ppr int
import os
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l o gg ing . bas i cCon f i g ( l e v e l=logg ing .DEBUG)

de f s e nd th e cu r l ( ) :

os . system ( ‘ ‘ mkdir −p /tmp/ json ’ ’ )
os . system ( ‘ ‘ c u r l −u kara f : ka ra f −X GET −−header ‘ Accept :

app l i c a t i o n / json ’ ‘ http : / /10 . 1 34 . 2 31 . 2 9 : 8 181/ onos/v1/
s t a t i s t i c s / por t s > /tmp/ j son / s t a t i s t i c s p o r t . json ’ ’ )

with open ( ‘ ‘ / tmp/ j son / s t a t i s t i c s p o r t . json ’ ’ , ‘ ‘ r ’ ’ ) as
s t a t s f i l e :
s t a t s = j son . load ( s t a t s f i l e )

return s t a t s

de f show dev ices ( ) :

s t a t s = s end th e cu r l ( )

l i s t d e v = [ ]
for j in s t a t s [ ‘ ‘ s t a t i s t i c s ’ ’ ] :

if j [ ‘ ‘ dev ice ’ ’ ] not in l i s t d e v :
l i s t d e v . append ( j [ ‘ ‘ device ’ ’ ] )

l o gg ing . debug ( ‘ ‘ There are ’ ’ + s t r ( l en ( l i s t d e v ) ) + ’ ’ d ev i c e s
: ’ ’ + s t r ( l i s t d e v ) )

return l i s t d e v

de f p o r t s p e r d e v i c e ( dev i c e ) :

s t a t s = s end th e cu r l ( )

l i s t d e v = show dev ices ( )

if dev i c e not in l i s t d e v :
p r i n t ‘ ‘The dev i ce you have reques ted i s not present ’ ’
p r i n t ‘ ‘The a v a i l a b l e dev i c e s are : ’ ’ + l i s t d e v

else :
for j in s t a t s [ ‘ ‘ s t a t i s t i c s ’ ’ ] :

if j [ ‘ ‘ dev ice ’ ’ ] == dev i ce :
por t s = [ ]
for k in j [ ‘ ‘ ports ’ ’ ] :

po r t s . append (k [ ‘ ‘ port ’ ’ ] )



168 APPENDIX A. ADDITIONAL REMARKS

pr in t ‘ ‘The por t s o f dev i c e ’ ’ + dev i c e + ’ ’ are
’ ’ + s t r ( l en ( por t s ) ) + ’ ’ : ’ ’ + s t r ( por t s )

return por t s

de f s t a t s p e r p o r t ( device , port ) :

s t a t s = s end th e cu r l ( )

por t s = po r t s p e r d e v i c e ( dev i c e )

if port not in por t s :
p r i n t ‘ ‘The asked port i s not present , t ry again ’ ’

else :
for j in s t a t s [ ‘ ‘ s t a t i s t i c s ’ ’ ] :

if j [ ‘ ‘ dev ice ’ ’ ] == dev i ce :
for k in j [ ‘ ‘ ports ’ ’ ] :

if k [ ‘ ‘ port ’ ’ ] == port :
by t e s r e c e i v ed = k [ ‘ ‘ bytesReceived ’ ’ ]
break

pr in t ‘ ‘The r e c e i v ed bytes on the port ’ ’ + s t r ( port ) + ’ ’
are : ’ ’ + s t r ( by t e s r e c e i v ed )

de f s h ow a l l s t a t s ( ) :

s t a t s = s end th e cu r l ( )

pp = ppr int . Pre t tyPr in t e r ( indent=2)
pp . ppr int ( s t a t s [ ‘ ‘ s t a t i s t i c s ’ ’ ] )

A.2.3 Hosts subclass

import l ogg ing
import j son
import ppr int
import os

l ogg ing . bas i cCon f i g ( l e v e l=logg ing .DEBUG)

de f s e nd th e cu r l ( ) :

os . system ( ‘ ‘ mkdir −p /tmp/ json ’ ’ )
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os . system ( ‘ ‘ c u r l −u kara f : ka ra f −X GET −−header ‘ Accept :
app l i c a t i o n / json ’ ‘ http : / /10 . 1 34 . 2 31 . 2 9 : 8 181/ onos/v1/ hosts ’
> /tmp/ j son / hos t s . json ’ ’ )

with open ( ‘ ‘ / tmp/ j son / hos t s . j son ’ ’ , ‘ ‘ r ’ ’ ) as h o s t f i l e :
hos t s = j son . load ( h o s t f i l e )

return hos t s

de f num hosts ( ) :

hos t s = s end th e cu r l ( )

p r i n t ‘ ‘ There are ’ ’ + s t r ( l en ( hos t s [ ‘ ‘ hosts ’ ’ ] ) ) + ’ ’ hosts ’ ’

de f show net ( ) :

hos t s = s end th e cu r l ( )

l i s t n e t = [ ]
for i in host s [ ‘ ‘ hosts ’ ’ ] :

if i [ ‘ ‘ annotat ions ’ ’ ] [ ‘ ‘ networkId ’ ’ ] not in l i s t n e t :
l i s t n e t . append ( i [ ‘ ‘ annotat ions ’ ’ ] [ ‘ ‘ networkId ’ ’ ] )

return l i s t n e t

de f h o s t s p e r n e t ( n e t i d ) :

hos t s = s end th e cu r l ( )

machines = [ ]
for i in host s [ ‘ ‘ hosts ’ ’ ] :

if i [ ‘ ‘ annotat ions ’ ’ ] [ ‘ ‘ networkId ’ ’ ] == ne t i d :
machines . append ( i )

if not machines :
p r i n t ‘ ‘ There i s no host r e l a t e d to network id ’ ’ + s t r (

n e t i d )
l i s t n e t = show net ( )
p r i n t ‘ ‘The a v a i l a b l e network i d s are : ’ ’ + s t r ( l i s t n e t )

else :
p r i n t ‘ ‘ There are ’ ’ + s t r ( l en ( machines ) ) + ’ ’ hos t s

r e l a t e d to network id ’ ’ + ne t i d
p r i n t machines
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de f ho s t s p e r t enan t ( t enant id ) :

hos t s = s end th e cu r l ( )

machines = [ ]
for i in host s [ ‘ ‘ hosts ’ ’ ] :

if i [ ‘ ‘ annotat ions ’ ’ ] [ ‘ ‘ tenantId ’ ’ ] == tenant id :
machines . append ( i )

if not machines :
p r i n t ‘ ‘ There i s no host r e l a t e d to tenant id ’ ’ + s t r (

t enan t id )
l i s t t e n a n t s = show tenant ( )
p r i n t ‘ ‘ This i s a l i s t o f a v a i l a b l e tenants : ’ ’ + s t r (

l i s t t e n a n t s )
else :

p r i n t ‘ ‘ There are ’ ’ + s t r ( l en ( machines ) ) + ’ ’ hos t s
r e l a t e d to tenant id ’ ’ + tenan t id

p r i n t machines

de f show dev ( ) :

hos t s = s end th e cu r l ( )

l i s t d e v = [ ]
for i in host s [ ‘ ‘ hosts ’ ’ ] :

if i [ ‘ ‘ l o ca t i on ’ ’ ] [ ‘ ‘ e lementId ’ ’ ] not in l i s t d e v :
l i s t d e v . append ( i [ ‘ ‘ l o ca t i on ’ ’ ] [ ‘ ‘ e lementId ’ ’ ] )

l o gg ing . debug ( ‘ ‘ The l i s t o f d ev i c e s : ’ ’ + s t r ( l i s t d e v ) )
return l i s t d e v

de f show tenant ( ) :

hos t s = s end th e cu r l ( )

l i s t t e n a n t = [ ]
for i in host s [ ‘ ‘ hosts ’ ’ ] :

if i [ ‘ ‘ annotat ions ’ ’ ] [ ‘ ‘ tenantId ’ ’ ] not in l i s t t e n a n t :
l i s t t e n a n t . append ( i [ ‘ ‘ annotat ions ’ ’ ] [ ‘ ‘ tenantId ’ ’ ] )

l o gg ing . debug ( ‘ ‘ The l i s t o f tenants : ’ ’ + s t r ( l i s t t e n a n t ) )
return l i s t t e n a n t
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de f ho s t s pe r dev ( dev i ce ) :

hos t s = s end th e cu r l ( )

l i s t d e v = show dev ( )

if dev i c e not in l i s t d e v :
p r i n t ‘ ‘The reques ted dev i ce ’ ’ + dev i c e + ’ ’ i s not

present ’ ’
p r i n t ‘ ‘ This i s a l i s t o f a v a i l a b l e dev i c e s : ’ ’ + s t r (

l i s t d e v )
else :

machines = [ ]
for i in host s [ ‘ ‘ hosts ’ ’ ] :

if i [ ‘ ‘ l o ca t i on ’ ’ ] [ ‘ ‘ e lementId ’ ’ ] == dev i ce :
machines . append ( i )

p r i n t ‘ ‘The hos t s attached to dev i c e ’ ’ + dev i ce + ’ ’ are :
’ ’ + s t r ( machines )

de f s h ow a l l h o s t s ( ) :

hos t s = s end th e cu r l ( )

pp = ppr int . Pre t tyPr in t e r ( indent=2)
pp . ppr int ( hos t s [ ‘ ‘ hosts ’ ’ ] )

A.2.4 Flows subclass

import l ogg ing
import j son
import ppr int
import os

l ogg ing . bas i cCon f i g ( l e v e l=logg ing .DEBUG)

de f s e nd th e cu r l ( ) :

os . system ( ‘ ‘ mkdir −p /tmp/ json ’ ’ )
os . system ( ‘ ‘ c u r l −u kara f : ka ra f −X GET −−header ‘ Accept :

app l i c a t i o n / json ’ ‘ http : / /10 . 1 34 . 2 31 . 2 9 : 8 181/ onos/v1/ f lows ’
> /tmp/ j son / f l ows . json ’ ’ )
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with open ( ‘ ‘ j s on / f l ows . json ’ ’ , ‘ ‘ r ’ ’ ) as f l o w f i l e :
f l ows = json . load ( f l o w f i l e )

return f l ows

de f flow num ( ) :

f l ows = s end th e cu r l ( )

elem = len ( f l ows [ ‘ ‘ f lows ’ ’ ] )
l o gg ing . debug ( ‘ ‘ There are ’ ’ + s t r ( elem ) + ’ ’ f l ows in the

OpenStack c l u s t e r ’ ’ )
return elem

def which f lows ( ) :

f l ows = s end th e cu r l ( )
elem = flow num ( )

# check the app name
l i s t a p p = [ ]
for i in range (0 , elem , 1) :

if f l ows [ ‘ ‘ f lows ’ ’ ] [ i ] [ ‘ ‘ appId ’ ’ ] not in l i s t a p p :
l i s t a p p . append ( f l ows [ ‘ ‘ f lows ’ ’ ] [ i ] [ ‘ ‘ appId ’ ’ ] )

return l i s t a p p

de f f l ows pe r app ( name app ) :

count = 0

f l ows = s end th e cu r l ( )
elem = flow num ( )
l i s t a p p = which f lows ( )

if name app not in l i s t a p p :
p r i n t ‘ ‘The app you reques ted ( ’ ’ + name app + ’ ’ ) i s not

pre sent . ’ ’
p r i n t ‘ ‘ This i s the l i s t o f a v a i l a b l e apps : ’ ’ + s t r (

l i s t a p p )
return 1

for i in range (0 , elem , 1) :
if f l ows [ ‘ ‘ f lows ’ ’ ] [ i ] [ ‘ ‘ appId ’ ’ ] == name app :
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count += 1
pr in t ‘ ‘The app ’ ’ + name app + ’ ’ has generated ’ ’ + s t r (

count ) + ’ ’ f lows ’ ’

de f dev f l ows ( ) :

f l ows = s end th e cu r l ( )

l i s t d e v = [ ]
for j in f l ows [ ‘ ‘ f lows ’ ’ ] :

if j [ ‘ ‘ dev ice Id ’ ’ ] not in l i s t d e v :
l i s t d e v . append ( j [ ‘ ‘ dev ice Id ’ ’ ] )

l o gg ing . debug ( ‘ ‘ There are ’ ’ + s t r ( l en ( l i s t d e v ) ) + ’ ’ d ev i c e s
on which f l ows are cu r r en t l y s to r ed : ’ ’ + s t r ( l i s t d e v ) )

return l i s t d e v

de f f l ows pe r dev ( dev i ce ) :

f l ows = s end th e cu r l ( )
l i s t d e v = dev f l ows ( )

if dev i c e not in l i s t d e v :
p r i n t ‘ ‘The dev i ce you have reques ted i s not present ’ ’
p r i n t ‘ ‘The a v a i l a b l e dev i c e s are : ’ ’ + l i s t d e v

else :
l i s t f l o w s d e v = [ ]
for i in f l ows [ ‘ ‘ f lows ’ ’ ] :

if i [ ‘ ‘ dev ice Id ’ ’ ] == dev i ce :
l i s t f l o w s d e v . append ( i )

p r i n t ‘ ‘ There are ’ ’ + s t r ( l en ( l i s t f l o w s d e v ) ) + ’ ’ f l ows
in the dev i c e ’ ’ + s t r ( dev i c e )

p r i n t l i s t f l o w s d e v

de f p r i n t a l l f l o w s ( ) :

f l ows = s end th e cu r l ( )

pp = ppr int . Pre t tyPr in t e r ( indent=2)
pp . ppr int ( f l ows [ ‘ ‘ f lows ’ ’ ] )
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A.3 YAML template for a Telegram bot

hea t t emp la t e v e r s i on : 2013−05−23

d e s c r i p t i o n : This template deploys a s i n g l e Telegram bot .

parameters :
image :

type : s t r i n g
l a b e l : Image name or ID
de s c r i p t i o n : Image to be used for the s e r v e r . P lease use an

Ubuntu based image .
d e f au l t : t rusty−s e rver−multi−n i c

f l a v o r :
type : s t r i n g
l a b e l : Flavor
d e s c r i p t i o n : Type o f i n s t anc e ( f l a v o r ) to be used on the

compute in s t ance .
d e f au l t : m1. smal l

key :
type : s t r i n g
l a b e l : Key name
d e s c r i p t i o n : Name o f key−pa i r to be i n s t a l l e d on the compute

in s t anc e .
d e f au l t : mykey heat

publ i c network :
type : s t r i n g
l a b e l : Publ ic network name or ID
de s c r i p t i o n : Publ ic network with f l o a t i n g IP addre s s e s .
d e f au l t : net−pub l i c

s e cu r i t y g r oup :
type : s t r i n g
l a b e l : S e cu r i ty groups
d e s c r i p t i o n : Chosen s e c u r i t y group
de f au l t : al low−ex t e rna l

root pw :
type : s t r i n g
l a b e l : Root PW
de s c r i p t i o n : Root password
de f au l t : ubuntu

r e s ou r c e s :

pr ivate network :
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type : OS : : Neutron : : Net

p r i va t e subne t :
type : OS : : Neutron : : Subnet
p r op e r t i e s :

network id : { g e t r e s ou r c e : pr ivate network }
c i d r : 1 0 . 10 . 10 . 0 /24
dns nameservers :
− 137 . 2 04 . 5 7 . 1
− 137 . 204 . 58 . 1 0
− 8 . 8 . 8 . 8

route r :
type : OS : : Neutron : : Router
p r op e r t i e s :

e x t e rna l g a t eway in f o :
network : { get param : publ i c network }

router−i n t e r f a c e :
type : OS : : Neutron : : Route r In t e r f a c e
p r op e r t i e s :

r o u t e r i d : { g e t r e s ou r c e : r oute r }
subnet : { g e t r e s ou r c e : p r i va t e subne t }

bot por t :
type : OS : : Neutron : : Port
p r op e r t i e s :

network : { g e t r e s ou r c e : pr ivate network }
s e cu r i t y g r oup s :
− { get param : s e cu r i t y g r oup }

wa i t c ond i t i on :
type : OS : : Heat : : WaitCondition
p r op e r t i e s :

handle : { g e t r e s ou r c e : wa i t handle }
count : 1
timeout : 4000

wai t handle :
type : OS : : Heat : : WaitConditionHandle

bo t i n s t anc e :
type : OS : : Nova : : Server
p r op e r t i e s :

image : { get param : image }
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f l a v o r : { get param : f l a v o r }
key name : { get param : key }
networks :
− port : { g e t r e s ou r c e : bot por t }

use r data fo rmat : RAW
user data :

s t r r e p l a c e :
params :

‘ ‘@ROOTPW@’ ’ : {get param : root pw}
wc not i f y : { g e t a t t r : [ ‘ wait handle ’ , ‘ c u r l c l i ’ ] }

template : |
#!/ bin / sh −ex
echo ‘ ‘ Hel lo , World ! ’ ’

ip l i n k set eth0 mtu 1400

ping −c 10 8 . 8 . 8 . 8
ping −c 10 www. goog l e . com

ROOTPW=‘ ‘@ROOTPW@’ ’
echo ‘ ‘ ubuntu :$ROOTPW’ ’ | chpasswd

wget https : // d l . dropboxusercontent . com/ s /
HIDDENCONTENT/bot . txt # r e p o s i t o r i e s

mv / etc /apt/ sourc e s . l i s t / e t c /apt/ sour c e s . l i s t . o ld
mv s . txt / e t c /apt/ sour c e s . l i s t

apt−get update −y
apt−get i n s t a l l so f tware−prope r t i e s−common −y
apt−get i n s t a l l python−pip −y

pip i n s t a l l t e l e p o t
wget https : // d l . dropboxusercontent . com/ s /

HIDDENCONTENT/bot . py # bot code

wc not i f y −−data−binary ‘{ ‘ ‘ s tatus ’ ’ : ‘ ‘SUCCESS’ ’ } ’

python bot . py &

f l o a t i n g i p :
type : OS : : Neutron : : F loat ingIP
p r op e r t i e s :

f l o a t i ng ne two rk : { get param : publ i c network }
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f l o a t i n g i p a s s o c :
type : OS : : Neutron : : F l oa t ing IPAssoc i a t i on
p r op e r t i e s :

f l o a t i n g i p i d : { g e t r e s ou r c e : f l o a t i n g i p }
po r t i d : { g e t r e s ou r c e : bot por t }

outputs :
instance name :

d e s c r i p t i o n : Name o f the in s t anc e
value : { g e t a t t r : [ bo t in s tance , name ] }

i n s t a n c e i p :
d e s c r i p t i o n : The IP address o f the deployed in s t anc e
value : { g e t a t t r : [ f l o a t i n g i p , f l o a t i n g i p a d d r e s s ] }

A.4 OpenStack configuration files

A.4.1 Chrony

Controller node

# / e t c /chrony . conf
s e r v e r time . i en . i t i bu r s t
s e r v e r ntp1 . i en . i t i bu r s t
s e r v e r ntp2 . i en . i t i bu r s t
stratumweight 0
d r i f t f i l e / var / l i b / chrony/ d r i f t
r t c sync
makestep 10 3
a l low 10 . 1 5 . 0 . 0 /24
bindcmdaddress 1 2 7 . 0 . 0 . 1
bindcmdaddress : : 1
k e y f i l e / e t c / chrony . keys
commandkey 1
generatecommandkey
n o c l i e n t l o g
logchange 0 .5
l o g d i r /var / log /chrony

Compute node

# / e t c /chrony . conf
s e r v e r contro l l e rNew ibu r s t
stratumweight 0
d r i f t f i l e / var / l i b / chrony/ d r i f t
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r t c sync
makestep 10 3
bindcmdaddress 1 2 7 . 0 . 0 . 1
bindcmdaddress : : 1
k e y f i l e / e t c / chrony . keys
commandkey 1
generatecommandkey
n o c l i e n t l o g
logchange 0 .5
l o g d i r /var / log /chrony

A.4.2 MariaDB configuration

/ e tc /my. cn f . d/ openstack . cn f
[ mysqld ]
bind−address = 10 . 1 5 . 0 . 5

de fau l t−s torage−eng ine = innodb
i n n o d b f i l e p e r t a b l e
max connect ions = 4096
c o l l a t i o n−s e r v e r = u t f 8 g e n e r a l c i
character−set−s e r v e r = ut f8

A.4.3 Memcached

# / e t c / s y s c on f i g /memcached
PORT= ‘ ‘11211 ’ ’
USER= ‘ ‘memcached ’ ’
MAXCONN= ‘ ‘1024 ’ ’
CACHESIZE= ‘ ‘64 ’ ’
OPTIONS=‘‘− l 1 0 . 1 5 . 0 . 5 ’ ’

A.4.4 Keystone

# / e t c / keys tone / keys tone . conf
[DEFAULT]
[ database ]
connect ion = mysql+pymysql : // keystone :

keystonepassword@control lerNew/ keystone
[ token ]
prov ide r = f e r n e t

A.4.5 HTTP server
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# / e t c / h t t pd / conf / h t t pd . conf
ServerRoot ‘ ‘ / e t c /httpd ’ ’
L i s t en 80
Inc lude conf . modules . d /∗ . conf
User apache
Group apache
ServerAdmin roo t@ loca lho s t
ServerName contro l l e rNew
<Direc tory />

AllowOverride none
Require a l l denied

</Directory>
DocumentRoot ‘ ‘ / var /www/html ’ ’
<Direc tory ‘ ‘/ var /www’ ’>

AllowOverride None
Require a l l granted

</Directory>
<Direc tory ‘ ‘/ var /www/html ’ ’>

Options Indexes FollowSymLinks
AllowOverride None
Require a l l granted

</Directory>
<IfModule dir module>

DirectoryIndex index . html
</IfModule>
<F i l e s ‘ ‘ . ht ∗ ’ ’>

Require a l l denied
</F i l e s>
ErrorLog ‘ ‘ l o g s / e r r o r l o g ’ ’
LogLevel warn
<IfModule l og con f i g modu le>

LogFormat ‘ ‘%h %l %u %t \ ‘ ‘% r \ ’ ’ %>s %b \ ‘ ‘%{Refe r e r } i \ ’ ’
\ ‘ ‘%{User−Agent} i \ ’ ’ ’ ’ combined

LogFormat ‘ ‘%h %l %u %t \ ‘ ‘% r \ ’ ’ %>s %b ’ ’ common
<IfModule log io module>

LogFormat ‘ ‘%h %l %u %t \ ‘ ‘% r \ ’ ’ %>s %b \ ‘ ‘%{Refe r e r } i \ ’ ’
\ ‘ ‘%{User−Agent} i \ ’ ’ %I %O’ ’ combinedio

</IfModule>
CustomLog ‘ ‘ l o g s / a c c e s s l o g ’ ’ combined

</IfModule>
<IfModule a l ia s module>

Sc r i p tA l i a s / cg i−bin / ‘ ‘/ var /www/ cgi−bin / ’ ’
</IfModule>
<Direc tory ‘ ‘/ var /www/ cgi−bin ’ ’>

AllowOverride None
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Options None
Require a l l granted

</Directory>
<IfModule mime module>

TypesConfig / e t c /mime . types
AddType app l i c a t i o n /x−compress . Z
AddType app l i c a t i o n /x−gz ip . gz . tgz
AddType text /html . shtml
AddOutputFilter INCLUDES . shtml

</IfModule>
AddDefaultCharset UTF−8
<IfModule mime magic module>

MIMEMagicFile conf /magic
</IfModule>
Enab l eSend f i l e on
Inc ludeOpt iona l conf . d /∗ . conf

A.4.6 Glance

Glance-API

# / e t c / g lance / g lance−api . conf
[DEFAULT]
rpc backend = rabb i t
[ database ]
connect ion = mysql+pymysql : // g lance : g lancepassword@control lerNew/

g lance
[ g l a n c e s t o r e ]
s t o r e s = f i l e , http
d e f a u l t s t o r e = f i l e
f i l e s y s t em s t o r e d a t a d i r = /var / l i b / g lance / images /
[ image format ]
[ keystone authtoken ]
au th ur i = http :// contro l l e rNew :5000
auth ur l = http :// contro l l e rNew :35357
memcached servers = contro l l e rNew :11211
auth type = password
project domain name = Defau l t
user domain name = Defau l t
project name = s e r v i c e
username = glance
password = glancepassword
[ o s l o me s s a g i n g n o t i f i c a t i o n s ]
d r i v e r = messagingv2
[ o s l o me s s ag i ng r abb i t ]
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r abb i t ho s t = contro l l e rNew
r abb i t u s e r i d = openstack
rabb i t password = rabbitpassword
[ pas t e dep loy ]
f l a v o r = keystone

# / e t c / g lance / g lance−r e g i s t r y . conf
[DEFAULT]
rpc backend = rabb i t
[ database ]
connect ion = mysql+pymysql : // g lance : g lancepassword@control lerNew/

g lance
[ keystone authtoken ]
au th ur i = http :// contro l l e rNew :5000
auth ur l = http :// contro l l e rNew :35357
memcached servers = contro l l e rNew :11211
auth type = password
project domain name = Defau l t
user domain name = Defau l t
project name = s e r v i c e
username = glance
password = glancepassword
[ o s l o me s s a g i n g n o t i f i c a t i o n s ]
d r i v e r = messagingv2
[ o s l o me s s ag i ng r abb i t ]
r abb i t ho s t = contro l l e rNew
r abb i t u s e r i d = openstack
rabb i t password = rabbitpassword
[ pas t e dep loy ]
f l a v o r = keystone

A.4.7 Nova

Controller node

# / e t c /nova/nova . conf
[DEFAULT]
enab l ed ap i s = osapi compute , metadata
t r a n s p o r t u r l = rabb i t : // openstack : rabbitpassword@contro l lerNew
auth s t r a t egy = keystone
my ip = 10 . 1 5 . 0 . 5
use neutron = True
f i r e w a l l d r i v e r = nova . v i r t . f i r e w a l l . NoopFirewal lDr iver
l i n u x n e t i n t e r f a c e d r i v e r = nova . network . l i nux ne t .

LinuxOVSInterfaceDriver
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v i f p l u g g i n g i s f a t a l=Fal se
v i f p l u gg i ng t imeou t=10
f i r e w a l l d r i v e r=nova . v i r t . f i r e w a l l . NoopFirewal lDr iver
[ ap i database ]
connect ion = mysql+pymysql : // nova : novapassword@controllerNew/

nova api
[ database ]
connect ion = mysql+pymysql : // nova : novapassword@controllerNew/nova
[ ephemera l s to rage enc rypt i on ]
[ g lance ]
a p i s e r v e r s = http :// contro l l e rNew :9292
[ keystone authtoken ]
au th ur i = http :// contro l l e rNew :5000
auth ur l = http :// contro l l e rNew :35357
memcached servers = contro l l e rNew :11211
auth type = password
project domain name = Defau l t
user domain name = Defau l t
project name = s e r v i c e
username = nova
password = novapassword
region name=RegionOne
[ neutron ]
u r l=http :// contro l l e rNew :9696
region name=RegionOne
se rv i ce metadata proxy=True
metadata proxy shared sec re t = sha r ed s e c r e t
auth type=password
auth ur l=http :// contro l l e rNew :35357
project name=s e r v i c e
project domain name=de f au l t
default domain name=de f au l t
username=neutron
user domain name=de f au l t
password=neutronpassword
[ o s l o concur r ency ]
l ock path = /var / l i b /nova/tmp
[ vnc ]
v n c s e r v e r l i s t e n = $my ip
vnc s e r v e r p r oxy c l i e n t add r e s s = $my ip

Compute node

# / e t c /nova/nova . conf
[DEFAULT]
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enab l ed ap i s = osapi compute , metadata
t r a n s p o r t u r l = rabb i t : // openstack : rabbitpassword@contro l lerNew
auth s t r a t egy = keystone
my ip = 10 . 1 5 . 0 . 6
use neutron = True
f i r e w a l l d r i v e r = nova . v i r t . f i r e w a l l . NoopFirewal lDr iver
i n s t an c e u s a g e aud i t p e r i o d=hour
i n s t an c e u s ag e aud i t=True
no t i f y on s t a t e chang e=vm and task state
[ g lance ]
a p i s e r v e r s = http :// contro l l e rNew :9292
[ keystone authtoken ]
au th ur i = http :// contro l l e rNew :5000
auth ur l = http :// contro l l e rNew :35357
memcached servers = contro l l e rNew :11211
auth type = password
project domain name = Defau l t
user domain name = Defau l t
project name = s e r v i c e
username = nova
password = novapassword
[ neutron ]
u r l=http :// contro l l e rNew :9696
region name=RegionOne
auth type=password
auth ur l=http :// contro l l e rNew :35357
project name=s e r v i c e
project domain name=de f au l t
default domain name=de f au l t
username=neutron
user domain name=de f au l t
password=neutronpassword
[ o s l o concur r ency ]
l ock path = /var / l i b /nova/tmp
[ o s l o me s s a g i n g n o t i f i c a t i o n s ]
d r i v e r = messagingv2
[ vnc ]
enabled = True
v n c s e r v e r l i s t e n = 0 . 0 . 0 . 0
vn c s e r v e r p r oxy c l i e n t add r e s s = $my ip
novncproxy base ur l = http :// f i r ew a l l n a t :6080/ vnc auto . html
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A.4.8 Neutron

Controller node

# / e t c /neutron/neutron . conf
[DEFAULT]
t r a n s p o r t u r l = rabb i t : // openstack : rabbitpassword@contro l lerNew
auth s t r a t egy = keystone
no t i f y nova on po r t s t a tu s chang e s = True
no t i f y nova on po r t da ta change s = True
co r e p l ug i n = ml2
s t a t e pa th = /var / l i b /neutron
s e r v i c e p l u g i n s = route r
dh cp ag en t no t i f i c a t i o n = true
a l l ow ov e r l a pp i n g i p s = True
no t i f y nova on po r t s t a tu s chang e s = true
no t i f y nova on po r t da ta change s = true
rpc backend = rabb i t
[ agent ]
r o o t h e l p e r = sudo / usr / bin /neutron−rootwrap / e tc /neutron/ rootwrap

. conf
[ database ]
connect ion = mysql+pymysql : // neutron : neutronpassword@control lerNew

/neutron
[ keystone authtoken ]
au th ur i = http :// contro l l e rNew :5000
auth ur l = http :// contro l l e rNew :35357
memcached servers = contro l l e rNew :11211
auth type = password
project domain name = Defau l t
user domain name = Defau l t
project name = s e r v i c e
username = neutron
password = neutronpassword
[ nova ]
au th ur l = http :// contro l l e rNew :35357
auth type = password
project domain name = Defau l t
user domain name = Defau l t
region name = RegionOne
project name = s e r v i c e
username = nova
password = novapassword
[ o s l o concur r ency ]
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l o ck path = /var / l i b /neutron/tmp
[ o s l o me s s a g i n g n o t i f i c a t i o n s ]
d r i v e r = messagingv2
[ o s l o me s s ag i ng r abb i t ]
r abb i t ho s t = contro l l e rNew
rabb i t po r t = 5672
r abb i t u s e r i d = openstack
rabb i t password = rabbitpassword

# / e t c /neutron/ p l u g i n s /ml2/ml2 conf . i n i
[DEFAULT]
[ ml2 ]
t yp e d r i v e r s = f l a t , vlan , vxlan
tenant network types = vxlan
mechanism drivers = openvswitch , l 2popu la t i on
e x t e n s i o n d r i v e r s = po r t s e c u r i t y
[ m l 2 t yp e f l a t ]
f l a t n e two rk s = pub l i c
[ ml2 type vxlan ]
vn i r ange s = 1:1000
[ s e cu r i tyg roup ]
e n ab l e i p s e t = True
f i r e w a l l d r i v e r = i p t ab l e s hyb r i d
enab l e s e cu r i t y g r oup = true

# / e t c /neutron/ p l u g i n s /ml2/ openvswi t ch agen t . i n i
[DEFAULT]
[ agent ]
tunne l type s = vxlan
l 2 popu l a t i on = True
[ ovs ]
i n t e g r a t i o n b r i d g e = br−i n t
tunne l b r i dg e = br−tun
l o c a l i p = 10 . 1 2 5 . 0 . 5
br idge mappings = pub l i c : br−ex
o f i n t e r f a c e = ovs−o f c t l
[ s e cu r i tyg roup ]
f i r e w a l l d r i v e r = i p t ab l e s hyb r i d
e n ab l e i p s e t = true

# / e t c /neutron/ l 3 a g en t . i n i
[DEFAULT]
i n t e r f a c e d r i v e r = neutron . agent . l i nux . i n t e r f a c e .

OVSInter faceDriver
ex t e rna l ne twork br idge =
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[AGENT]

# / e t c /neutron/ dhcp agent . i n i
[DEFAULT]
i n t e r f a c e d r i v e r = neutron . agent . l i nux . i n t e r f a c e .

OVSInter faceDriver
dhcp dr ive r = neutron . agent . l i nux . dhcp . Dnsmasq
enab l e i s o l a t ed metada ta = True
force metadata = True
[AGENT]

# / e t c /neutron/metadata agent . i n i
[DEFAULT]
nova metadata ip = contro l l e rNew
nova metadata port = 8775
metadata proxy shared sec re t = sha r ed s e c r e t
[AGENT]

Compute node 6

# / e t c /neutron/ p l u g i n s /ml2/ml2 conf . i n i
[DEFAULT]
auth s t r a t egy = keystone
t r a n s p o r t u r l = rabb i t : // openstack : rabbitpassword@contro l lerNew
[ agent ]
[ keystone authtoken ]
au th ur i = http :// contro l l e rNew :5000
auth ur l = http :// contro l l e rNew :35357
memcached servers = contro l l e rNew :11211
auth type = password
project domain name = Defau l t
user domain name = Defau l t
project name = s e r v i c e
username = neutron
password = neutronpassword
[ o s l o concur r ency ]
l ock path = /var / l i b /neutron/tmp

# / e t c /neutron/ p l u g i n s /ml2/ openvswi t ch agen t . i n i
[DEFAULT]
[ agent ]
tunne l type s = vxlan
l 2 popu l a t i on = True
[ ovs ]
i n t e g r a t i o n b r i d g e = br−i n t



A.4. OPENSTACK CONFIGURATION FILES 187

tunne l b r i dg e = br−tun
l o c a l i p = 10 . 1 2 5 . 0 . 6
[ s e cu r i tyg roup ]
f i r e w a l l d r i v e r = i p t ab l e s hyb r i d
enab l e s e cu r i t y g r oup = true
e n ab l e i p s e t = true

Compute node 7

# / e t c /neutron/ p l u g i n s /ml2/ml2 conf . i n i
[DEFAULT]
auth s t r a t egy = keystone
t r a n s p o r t u r l = rabb i t : // openstack : rabbitpassword@contro l lerNew
[ agent ]
[ keystone authtoken ]
au th ur i = http :// contro l l e rNew :5000
auth ur l = http :// contro l l e rNew :35357
memcached servers = contro l l e rNew :11211
auth type = password
project domain name = Defau l t
user domain name = Defau l t
project name = s e r v i c e
username = neutron
password = neutronpassword
[ o s l o concur r ency ]
l ock path = /var / l i b /neutron/tmp

# / e t c /neutron/ p l u g i n s /ml2/ openvswi t ch agen t . i n i
[DEFAULT]
[ agent ]
tunne l type s = vxlan
l 2 popu l a t i on = True
[ ovs ]
i n t e g r a t i o n b r i d g e = br−i n t
tunne l b r i dg e = br−tun
l o c a l i p = 10 . 1 2 5 . 0 . 6
[ s e cu r i tyg roup ]
f i r e w a l l d r i v e r = openvswitch
enab l e s e cu r i t y g r oup = true
e n ab l e i p s e t = true

A.4.9 Load Ryu applications from Neutron

# /usr / l i b /python2 .7/ s i t e−packages /neutron/ p l u g i n s /ml2/ d r i v e r s /
openvswi tch / agent / openf low/ na t i v e /main . py
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from o s l o c o n f i g import c f g
from ryu . base import app manager
from ryu import c f g as ryu c f g

c f g .CONF. import group (
’OVS’ ,
’ neutron . p lug in s . ml2 . d r i v e r s . openvswitch . agent . common . con f i g ’ )

de f i n i t c o n f i g ( ) :
r yu c f g .CONF( p r o j e c t =’ryu ’ , a rgs = [ ] )
r yu c f g .CONF. o f p l i s t e n h o s t = c fg .CONF.OVS. o f l i s t e n a d d r e s s
ryu c f g .CONF. o f p t c p l i s t e n p o r t = c f g .CONF.OVS. o f l i s t e n p o r t

de f main ( ) :
app manager . AppManager . run apps ( [

’ neutron . p lug in s . ml2 . d r i v e r s . openvswitch . agent . ’
’ openf low . nat ive . ovs ryuapp ’ ,
’ ryu . app . o f c t l r e s t ’ ,

A.4.10 Dashboard

# / e t c / openstack−dashboard/ l o c a l s e t t i n g s
import os
from django . u t i l s . t r a n s l a t i o n import ug e t t e x t l a z y as
from openstack dashboard import except i ons
from openstack dashboard . s e t t i n g s import HORIZON CONFIG
DEBUG = False
WEBROOT = ’/ dashboard / ’
ALLOWEDHOSTS = [ ’ ∗ ’ , ]
OPENSTACK API VERSIONS = {

‘ ‘ data−proce s s ing ’ ’ : 1 . 1 ,
‘ ‘ i d en t i t y ’ ’ : 3 ,
‘ ‘ image ’ ’ : 2 ,
‘ ‘ volume ’ ’ : 2 ,
‘ ‘ compute ’ ’ : 2 ,

}
OPENSTACKKEYSTONEMULTIDOMAIN SUPPORT = True
OPENSTACKKEYSTONEDEFAULTDOMAIN = ’ de fau l t ’
LOCAL PATH = ’/tmp ’
SECRET KEY=’cce32bc18cb36720a18e ’
CACHES = {



A.4. OPENSTACK CONFIGURATION FILES 189

’ d e fau l t ’ : {
’BACKEND’ : ’ django . core . cache . backends . memcached .

MemcachedCache ’ ,
’LOCATION’ : ’ contro l l e rNew :11211 ’ ,

} ,
}
EMAIL BACKEND = ’ django . core . mail . backends . con so l e . EmailBackend ’
OPENSTACKHOST = ‘ ‘ contro l lerNew ’ ’
OPENSTACKKEYSTONEURL = ‘ ‘ http ://% s :5000/ v3 ’ ’ % OPENSTACKHOST
OPENSTACKKEYSTONEDEFAULTROLE = ‘ ‘ user ’ ’
OPENSTACKKEYSTONEBACKEND = {

’name ’ : ’ nat ive ’ ,
’ c an ed i t u s e r ’ : True ,
’ can ed i t g roup ’ : True ,
’ c an ed i t p r o j e c t ’ : True ,
’ can edit domain ’ : True ,
’ c a n ed i t r o l e ’ : True ,

}
OPENSTACKHYPERVISOR FEATURES = {

’ can set mount po int ’ : False ,
’ can set password ’ : False ,
’ r e qu i r e s k eypa i r ’ : False ,
’ enab le quotas ’ : True

}
OPENSTACK CINDER FEATURES = {

’ enable backup ’ : False ,
}
OPENSTACKNEUTRONNETWORK = {

’ enab l e route r ’ : True ,
’ enab le quotas ’ : True ,
’ enab le ipv6 ’ : True ,
’ e n ab l e d i s t r i bu t ed r ou t e r ’ : False ,
’ enab l e ha route r ’ : False ,
’ enab l e lb ’ : True ,
’ e n ab l e f i r ewa l l ’ : True ,
’ enable vpn ’ : True ,
’ e nab l e f i p t opo l o gy che ck ’ : True ,
’ p r o f i l e s uppo r t ’ : None ,
’ suppor ted vn i c types ’ : [ ’ ∗ ’ ] ,

}
OPENSTACKHEAT STACK = {

’ enab l e u s e r pa s s ’ : True ,
}
IMAGE CUSTOM PROPERTY TITLES = {

‘ ‘ a r ch i t e c tu r e ’ ’ : ( ‘ ‘ Arch i tec ture ’ ’ ) ,
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‘ ‘ k e rn e l i d ’ ’ : ( ‘ ‘ Kernel ID ’ ’ ) ,
‘ ‘ ramdisk id ’ ’ : ( ‘ ‘ Ramdisk ID ’ ’ ) ,
‘ ‘ image state ’ ’ : ( ‘ ‘ Euca2ools s ta te ’ ’ ) ,
‘ ‘ p r o j e c t i d ’ ’ : ( ‘ ‘ Pro j e c t ID ’ ’ ) ,
‘ ‘ image type ’ ’ : ( ‘ ‘ Image Type ’ ’ ) ,

}
IMAGE RESERVED CUSTOM PROPERTIES = [ ]
API RESULT LIMIT = 1000
API RESULT PAGE SIZE = 20
SWIFT FILE TRANSFER CHUNK SIZE = 512 ∗ 1024
INSTANCE LOG LENGTH = 35
DROPDOWNMAXITEMS = 30
TIME ZONE = ‘ ‘ Europe/Rome’ ’
POLICY FILES PATH = ’/ e tc / openstack−dashboard ’
LOGGING = {

’ ve r s ion ’ : 1 ,
’ d i s a b l e e x i s t i n g l o g g e r s ’ : False ,
’ f o rmatter s ’ : {

’ operat ion ’ : {
’ format ’ : ’%( asct ime ) s %(message ) s ’

} ,
} ,
’ handlers ’ : {

’ nu l l ’ : {
’ l e v e l ’ : ’DEBUG’ ,
’ c l a s s ’ : ’ l o gg ing . NullHandler ’ ,

} ,
’ conso le ’ : {

’ l e v e l ’ : ’INFO’ ,
’ c l a s s ’ : ’ l o gg ing . StreamHandler ’ ,

} ,
’ operat ion ’ : {

’ l e v e l ’ : ’INFO’ ,
’ c l a s s ’ : ’ l o gg ing . StreamHandler ’ ,
’ formatter ’ : ’ operat ion ’ ,

} ,
} ,
’ l ogge r s ’ : {

’ django . db . backends ’ : {
’ handlers ’ : [ ’ nu l l ’ ] ,
’ propagate ’ : False ,

} ,
’ r eques t s ’ : {

’ handlers ’ : [ ’ nu l l ’ ] ,
’ propagate ’ : False ,
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} ,
’ hor izon ’ : {

’ handlers ’ : [ ’ conso le ’ ] ,
’ l e v e l ’ : ’DEBUG’ ,
’ propagate ’ : False ,

} ,
’ hor i zon . ope ra t i on l og ’ : {

’ handlers ’ : [ ’ operat ion ’ ] ,
’ l e v e l ’ : ’INFO’ ,
’ propagate ’ : False ,

} ,
’ openstack dashboard ’ : {

’ handlers ’ : [ ’ conso le ’ ] ,
’ l e v e l ’ : ’DEBUG’ ,
’ propagate ’ : False ,

} ,
’ novac l i ent ’ : {

’ handlers ’ : [ ’ conso le ’ ] ,
’ l e v e l ’ : ’DEBUG’ ,
’ propagate ’ : False ,

} ,
’ c i n d e r c l i e n t ’ : {

’ handlers ’ : [ ’ conso le ’ ] ,
’ l e v e l ’ : ’DEBUG’ ,
’ propagate ’ : False ,

} ,
’ k ey s t one c l i en t ’ : {

’ handlers ’ : [ ’ conso le ’ ] ,
’ l e v e l ’ : ’DEBUG’ ,
’ propagate ’ : False ,

} ,
’ g l a n c e c l i e n t ’ : {

’ handlers ’ : [ ’ conso le ’ ] ,
’ l e v e l ’ : ’DEBUG’ ,
’ propagate ’ : False ,

} ,
’ n eu t ronc l i en t ’ : {

’ handlers ’ : [ ’ conso le ’ ] ,
’ l e v e l ’ : ’DEBUG’ ,
’ propagate ’ : False ,

} ,
’ h e a t c l i e n t ’ : {

’ handlers ’ : [ ’ conso le ’ ] ,
’ l e v e l ’ : ’DEBUG’ ,
’ propagate ’ : False ,
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} ,
’ c e i l ome t e r c l i e n t ’ : {

’ handlers ’ : [ ’ conso le ’ ] ,
’ l e v e l ’ : ’DEBUG’ ,
’ propagate ’ : False ,

} ,
’ s w i f t c l i e n t ’ : {

’ handlers ’ : [ ’ conso le ’ ] ,
’ l e v e l ’ : ’DEBUG’ ,
’ propagate ’ : False ,

} ,
’ openstack auth ’ : {

’ handlers ’ : [ ’ conso le ’ ] ,
’ l e v e l ’ : ’DEBUG’ ,
’ propagate ’ : False ,

} ,
’ nose . p lug in s . manager ’ : {

’ handlers ’ : [ ’ conso le ’ ] ,
’ l e v e l ’ : ’DEBUG’ ,
’ propagate ’ : False ,

} ,
’ django ’ : {

’ handlers ’ : [ ’ conso le ’ ] ,
’ l e v e l ’ : ’DEBUG’ ,
’ propagate ’ : False ,

} ,
’ i so8601 ’ : {

’ handlers ’ : [ ’ nu l l ’ ] ,
’ propagate ’ : False ,

} ,
’ s c s s ’ : {

’ handlers ’ : [ ’ nu l l ’ ] ,
’ propagate ’ : False ,

} ,
} ,

}
SECURITY GROUP RULES = {

’ a l l t c p ’ : {
’name ’ : ( ’ A l l TCP’ ) ,
’ i p p r o t o co l ’ : ’ tcp ’ ,
’ f rom port ’ : ’ 1 ’ ,
’ to port ’ : ’ 65535 ’ ,

} ,
’ a l l udp ’ : {

’name ’ : ( ’ A l l UDP’ ) ,
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’ i p p r o t o co l ’ : ’ udp ’ ,
’ f rom port ’ : ’ 1 ’ ,
’ to port ’ : ’ 65535 ’ ,

} ,
’ a l l i cmp ’ : {

’name ’ : ( ’ A l l ICMP’ ) ,
’ i p p r o t o co l ’ : ’ icmp ’ ,
’ f rom port ’ : ’−1 ’ ,
’ to port ’ : ’−1 ’ ,

} ,
’ ssh ’ : {

’name ’ : ’SSH ’ ,
’ i p p r o t o co l ’ : ’ tcp ’ ,
’ f rom port ’ : ’ 22 ’ ,
’ to port ’ : ’ 22 ’ ,

} ,
’ smtp ’ : {

’name ’ : ’SMTP’ ,
’ i p p r o t o co l ’ : ’ tcp ’ ,
’ f rom port ’ : ’ 25 ’ ,
’ to port ’ : ’ 25 ’ ,

} ,
’ dns ’ : {

’name ’ : ’DNS’ ,
’ i p p r o t o co l ’ : ’ tcp ’ ,
’ f rom port ’ : ’ 53 ’ ,
’ to port ’ : ’ 53 ’ ,

} ,
’ http ’ : {

’name ’ : ’HTTP’ ,
’ i p p r o t o co l ’ : ’ tcp ’ ,
’ f rom port ’ : ’ 80 ’ ,
’ to port ’ : ’ 80 ’ ,

} ,
’ pop3 ’ : {

’name ’ : ’POP3’ ,
’ i p p r o t o co l ’ : ’ tcp ’ ,
’ f rom port ’ : ’ 110 ’ ,
’ to port ’ : ’ 110 ’ ,

} ,
’ imap ’ : {

’name ’ : ’IMAP’ ,
’ i p p r o t o co l ’ : ’ tcp ’ ,
’ f rom port ’ : ’ 143 ’ ,
’ to port ’ : ’ 143 ’ ,
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} ,
’ ldap ’ : {

’name ’ : ’LDAP’ ,
’ i p p r o t o co l ’ : ’ tcp ’ ,
’ f rom port ’ : ’ 389 ’ ,
’ to port ’ : ’ 389 ’ ,

} ,
’ https ’ : {

’name ’ : ’HTTPS’ ,
’ i p p r o t o co l ’ : ’ tcp ’ ,
’ f rom port ’ : ’ 443 ’ ,
’ to port ’ : ’ 443 ’ ,

} ,
’ smtps ’ : {

’name ’ : ’SMTPS’ ,
’ i p p r o t o co l ’ : ’ tcp ’ ,
’ f rom port ’ : ’ 465 ’ ,
’ to port ’ : ’ 465 ’ ,

} ,
’ imaps ’ : {

’name ’ : ’IMAPS’ ,
’ i p p r o t o co l ’ : ’ tcp ’ ,
’ f rom port ’ : ’ 993 ’ ,
’ to port ’ : ’ 993 ’ ,

} ,
’ pop3s ’ : {

’name ’ : ’POP3S’ ,
’ i p p r o t o co l ’ : ’ tcp ’ ,
’ f rom port ’ : ’ 995 ’ ,
’ to port ’ : ’ 995 ’ ,

} ,
’ ms sql ’ : {

’name ’ : ’MS SQL’ ,
’ i p p r o t o co l ’ : ’ tcp ’ ,
’ f rom port ’ : ’ 1433 ’ ,
’ to port ’ : ’ 1433 ’ ,

} ,
’ mysql ’ : {

’name ’ : ’MYSQL’ ,
’ i p p r o t o co l ’ : ’ tcp ’ ,
’ f rom port ’ : ’ 3306 ’ ,
’ to port ’ : ’ 3306 ’ ,

} ,
’ rdp ’ : {

’name ’ : ’RDP’ ,
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’ i p p r o t o co l ’ : ’ tcp ’ ,
’ f rom port ’ : ’ 3389 ’ ,
’ to port ’ : ’ 3389 ’ ,

} ,
}
REST API REQUIRED SETTINGS = [ ’OPENSTACK HYPERVISOR FEATURES’ ,

’LAUNCH INSTANCE DEFAULTS’ ,
’OPENSTACK IMAGEFORMATS’ ]

ALLOWED PRIVATE SUBNET CIDR = { ’ ipv4 ’ : [ ] , ’ ipv6 ’ : [ ] }

A.4.11 Heat

# / e t c / heat / heat . conf
[DEFAULT]
hea t me tada ta s e rv e r u r l = http :// contro l l e rNew :8000
h e a t wa i t c o nd i t i o n s e r v e r u r l = http :// contro l l e rNew :8000/ v1/

wa i t cond i t i on
stack user domain name = heat
stack domain admin = heat domain admin
stack domain admin password = heatpassword
rpc backend = rabb i t
[ c l i e n t s k e y s t o n e ]
au th ur i = http :// contro l l e rNew :35357
[ database ]
connect ion = mysql+pymysql : // heat : heatpassword@control lerNew/heat
[ ec2authtoken ]
au th ur i = http :// contro l l e rNew :5000
[ o s l o me s s a g i n g n o t i f i c a t i o n s ]
d r i v e r = messagingv2
[ o s l o me s s ag i ng r abb i t ]
r abb i t ho s t = contro l l e rNew
r abb i t u s e r i d = openstack
rabb i t password = rabbitpassword
[ t r u s t e e ]
auth type = password
auth ur l = http :// contro l l e rNew :35357
username = heat
user domain name = de f au l t
password = heatpassword
[ keystone authtoken ]
au th ur i = http :// contro l l e rNew :5000
auth ur l = http :// contro l l e rNew :35357
memcached servers = contro l l e rNew :11211
auth type = password
project domain name = de f au l t
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user domain name = de f au l t
project name = s e r v i c e
username = heat
password = heatpassword

A.4.12 Ceilometer

# / e t c / ce i l ome t e r / ce i l ome t e r . conf
[DEFAULT]
auth s t r a t egy = keystone
rpc backend = rabb i t
[ keystone authtoken ]
au th ur i = http :// contro l l e rNew :5000
auth ur l = http :// contro l l e rNew :35357
memcached servers = contro l l e rNew :11211
auth type = password
project domain name = de f au l t
user domain name = de f au l t
project name = s e r v i c e
username = ce i l ome t e r
password = ce i lometerpassword
[ o s l o me s s ag i ng r abb i t ]
r abb i t ho s t = contro l l e rNew
r abb i t u s e r i d = openstack
rabb i t password = rabbitpassword
[ s e r v i c e c r e d e n t i a l s ]
au th ur l = http :// c o n t r o l l e r :5000
pro j e c t doma in id = de f au l t
user domain id = de f au l t
auth type = password
username = ce i l ome t e r
project name = s e r v i c e
password = ce i lometerpassword
i n t e r f a c e = internalURL
region name = RegionOne

# / e t c / h t t pd /wsgi−ce i l ome t e r . conf
Li s t en 8777
<Virtua lHost ∗:8777>

WSGIDaemonProcess ce i l omete r−api p r o c e s s e s=2 threads=10 user=
ce i l ome t e r group=ce i l ome t e r d i sp lay−name=\%{GROUP}

WSGIProcessGroup ce i l omete r−api
WSGIScriptAlias / ‘ ‘ / var /www/ cgi−bin / c e i l ome t e r /app ’ ’
WSGIApplicationGroup \%{GLOBAL}
ErrorLog /var / log /httpd/ c e i l ome t e r e r r o r . l og
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CustomLog /var / log /httpd/ c e i l ome t e r a c c e s s . l og combined
</VirtualHost>

WSGISocketPrefix /var /run/httpd
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