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Abstract

Quantum field theory represents the modern approach to describe three fun-
damental interactions: strong, weak and electromagnetic. It is not possible to
describe gravity as a quantum field theory because of its non-renormalizability.
Quantum field theory on curved space-times represents a modern approach
to describe interactions between quantum particles and gravitational fields.
The target of this paper is to illustrate a completely general mathematical
method to describe spinning particles in arbitrary gravitational fields, fo-
cusing on physical implications concerning the interaction between spin and
gravitational fields. This apparatus is then applied to particular cosmolo-
gies, Melvin cosmology and double Kasner cosmology. The results obtained
are analysed from a physical point of view showing effects emerging from
spin-gravity coupling.
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Sommario

La teoria dei campi quantistici rappresenta l’approccio moderno per descri-
vere tre interazioni fondamentali: la forte, la debole e l’elettromagnetica.
Non è possibile descrivere la gravità come teoria di campo quantistico per
via della sua non-rinormalizzabilità. La teoria dei campi quantistici su spazi-
tempi curvi rappresenta un approccio moderno per descrivere le interazioni
tra particelle quantistiche e campi gravitazionali. L’obiettivo di questo ela-
borato è di illustrare un metodo matematico completamente generale per
descrivere particelle con spin in campi gravitazionali arbitrari, concentrando
l’attenzione sulle implicazioni fisiche che riguardano l’interazione tra spin e
campi gravitazionali. Questo apparato viene poi applicato a specifiche co-
smologie, la cosmologia di Melvin e la cosmologia double Kasner. I risultati
ottenuti vengono analizzati da un punto di vista fisico mostrando gli effetti
che emergono dall’accoppiamento tra spin e gravità.
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Introduction.

Quantum field theory is the modern approach to describe strong, weak and
electromagnetic interactions. Gravity is excluded from this theory because
of the well known non-renormalizability of the theory[1]. Quantum field
theory on curved space-time represents a semiclassical approach to study the
interaction of quantum particles with gravitational fields.

After the notion of spin was introduced in physics, the study of spin dy-
namics was initiated. First efforts were concerned with the study of fermions
in weak gravitational fields, i.e. for the case when the geometry does not
deviate significantly from Minkowki manifold. Subsequently the attention
was devoted to the description of fermions in geometries risen as exact solu-
tions of Einstein field equations. It was only recently that the study of the
dynamics of spinning particles in general manifolds has been developed [2]
and this is the starting point of this paper.

In most applications of mathematical cosmology Friedmann cosmolog-
ical models are considered. However, in the early universe, the effects of
anisotropies could be essential. Some studies have already been devoted
mainly on simple homogeneous Bianchi universes [3], in particular it has
been studied the motion of Dirac particles in gravitational fields whose met-
ric is represented by Bianchi universes. The goal of this paper is to study a
couple of different anisotropic models, one emerging as a solution of Einstein-
Maxwell field equation, the other is a generalisation of Kasner universe.

In the first chapter I explain the mathematical method of tetrads[4]
used to describe spinors on arbitrary manifolds, until I define the ”spin
connection”, which is analogous to the affine connection, necessary to de-
scribe parallel transport for vectors. This is done by generalizing Clifford
algebra from the Minkowski metric to an arbitrary metric. Subsequently, I
generalize the Dirac equation in arbitrary space-times using tetrad formalism.

In the second chapter I study the Foldy-Wouthuysen transformation [5].
The F-W transformation is a unitary transformation of the Dirac Hamil-
tonian used to separate spinors into two components with positive energy
eigenvalues and two components with negative energy eigenvalues. This sep-
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aration is particularly useful when studying the classical limit of the Dirac
equation. This transformation is then generalized in arbitrary space-times
[6], [7], [2], obtaining the transformation of the Hamiltonian as a power ex-
pansion in terms of }. Then I study the Dirac equation in curved spaces and
the equations of motion of polarization operator of spinning particles.

In the third chapter I apply what I have proved in the previous ones
to particular anisotropic cosmologies: the Melvin cosmology and the double
Kasner cosmology.

Melvin metric [8] is obtained as a static solution of Einstein-Maxwell field
equations, having assumed that the universe is filled with a cylindrically sym-
metric magnetic field. I demonstrate that starting from a general diagonal
metric whose coefficients depend only on a radial variable, it is possible to ob-
tain the Melvin metric by imposing the condition that the scalar curvature R
is 0, coherently with the case of the electromagnetic energy-momentum ten-
sor whose trace is 0[9]. Subsequently I use the results obtained in chapters
1 and 2 to work out the angular velocity operators for the spinning particle
in Melvin space-time. I solve the geodesics equations to find an expression
for the velocities, necessary to find the angular velocity operators. I demon-
strate the coherence between the exact result, used to solve the equation of
motion of spin operators, and the approximated semiclassical result, used to
solve the equation of motion of average spin. By using these previous results,
I solve the equation of motion of spin operators and I show that spinning
particles precede in a regular way approaching the early universe t → ∞.
Finally I use the relations t → iR and r → iτ [10] to analytically continue
the Melvin metric to obtain the Melvin cosmology, where the coefficients of
the metric depend on a temporal coordinate instead of depending on a radial
coordinate. The results obtained for the Melvin metric are then transposed
to results for the Melvin cosmology.

Double Kasner cosmology [11] is a generalisation of the standard Kasner
metric [9]. Kasner metric describes an homogeneous but anisotropic space-
time and the coefficients of the diagonal metric are time-dependent only.
Double Kasner metric generalises the standard Kasner metric by introducing
the dependence on a spacial coordinate for the coefficients of the metric. I
demonstrate that, starting from a diagonal metric with coefficients depending
only on a temporal and on a spacial coordinate, the double Kasner metric
emerges as a solution of vacuum field equations. This is analogous to what
I show in an appendix, that is that Kasner solution can be found, starting
from the anisotropic metric Bianchi I, by solving vacuum field equations. I
work out the angular velocity operators in the semiclassical approximation
to describe the motion of average spin. I solve asymptotically, near t →
0, the geodesics equations for completely general values of the parameters
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appearing in the metric. This is necessary to find explicit expressions for
angular velocity operators in order to solve the equations of motion of average
spin. I solve then these equations and for the temporal trend I find complete
agreement with the results found for the standard Kasner metric near the
singularity t→ 0 [3].

The results obtained show the effects of the anisotropy on spinning par-
ticles and can be used to give an interpretation of some phenomena of the
early universe.
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Chapter 1

Mathematical tools.

1.1 Introduction.

In this chapter we introduce some useful mathematical instruments to study
spinor fields in curved space-time. It is not trivial indeed to deduce the
correct generalisation of spinor fields on Minkowski space, because the general
Riemann space has much less symmetries. One possible approach is the
covariant generalisation of flat space-time expressions; so, we start from the
locally flat frame, then we perform the ”covariantization” [4].

1.2 Tetrad formalism.

First of all, let us recall the definition of the metric tensor [12]

Def. 1.1 (Metric tensor): we define the Metric tensor, or simply the
Metric, as the tensor of rank (0, 2) that satisfies:

i) g(v, v) = 0⇔ v = 0 , that is, g is not degenerate;

ii) g(u, v) = g(v, u) , that is, g is symmetric;

where u and v are vectors of the tangent space TP of a point P of the manifold.

Expanding the expression of the metric to a general coordinate basis
{eµ}nµ=1 , where n is the dimension of the manifold, we obtain

g(u, v) = g (uµeµ, v
νeν) = g (eµ, eν)u

µvν = gµνu
µvν . (1.1)

The metric is also often defined starting from the line element

11



12 CHAPTER 1. MATHEMATICAL TOOLS.

ds2 = gµνe
µeν (1.2)

where eµ is the 1-form dual of the base vector eν , that is

eµ (eν) = eν (eµ) = δµν

or analogously

eµ = gµνeν with gµν the matrix inverse of gµν .

From (1.1) it is obvious that, for a general choice of vector basis, the
components of the metric tensor depend on the coordinates of the space-time.
In some applications it is very useful to use a particular vector basis {ea}na=1

where the metric coefficients are constants. In particular, it is possible to
choose such vectors so that the metric coefficients reproduce the Minkowskian
metric in n dimensions ηab = diag(+,−, · · · ,−︸ ︷︷ ︸

n−1 times

), so we have

ds2 = ηabe
aeb (1.3)

where the indexes are raised and lowered with the metric η.
It is possible to expand the new basis’ vectors to the old basis, so that

we obtain

ea = eµaeµ , ea = eaµe
µ and vice versa eµ = eaµea , eµ = eµae

a. (1.4)

The transition coefficients are called tetrads [4] or analogously vielbein
fields (from German viel = many, bein = legs), so a tetrad is just a change
of basis. Using (1.4) in (1.2) and confronting the result with (1.3) we obtain

ds2 = gµνe
µeν = gµνe

µ
ae
aeνbe

b ⇒ gµνe
µ
ae
ν
b = ηab . (1.5)

Defining g = detgµν from (1.5) we easily obtain

det ηab = g det (eµa)2 ⇒ det
(
eaµ
)

=
√
|g| . (1.6)

It is obvious that the choice of vectors ea is not unique, because you
can perform local transformations of the Lorentz group O(1, n− 1) on such
vectors and the metric will remain the same ηab. This way, we found a new
local symmetry:

eaµ → ẽaµ = Λa
be
b
µ where Λa

bΛ
c
dηac = ηbd

gµν → g̃µν = ẽaµẽ
b
νηab = ecµe

d
νΛ

a
cΛ

b
dηab = ecµe

d
νηcd = gµν .

We expanded the symmetry of the general relativity to general co-ordinate
transformations and local Lorentz transformations, often called local generalized
rotations. This is the reason why gµν has d(d+1)

2
free components while eaµ

has d2.
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1.2.1 Covariant derivative.

The covariant derivative is introduced in Riemannian geometry to define the
concept of ”parallel transport” of vectors, differential forms and so on. Let’s
recall the basic properties characterising this operator [12]:

i) let U and V be vectors and Ũ be a different parametrisation of U , so
that Ũ = gU where g is a scalar, the covariant derivative is invariant
under different parametrisations, so:

∇ŨV = ∇gUV = g∇UV ;

ii) the covariant derivative is a differential operator, therefore it obeys
Leibnitz rule; so, let U, V be vectors and f be a scalar, we have:

∇UfV = f∇UV + (∇Uf)V = f∇UV + (Uf)V ;

iii) the covariant derivative is a linear operator; so, let U, V,W be vectors
and f, g be scalars, we have:

∇fU+gVW = f∇UW + g∇VW .

The affine connection is the rule that defines the way tensors are paral-
lely transported and that implements the definition of the covariant deriva-
tive; let ei and ej be basis vectors, we have:

∇eµeν = Γλνµeλ . (1.7)

In the context of a torsion-free geometry, if {ei}ni=1 is a coordinate base
(so that the anholonomy coefficients are equal to 0), the affine connection is
called Christoffel symbols, and starting from the condition of accordance
of affine connection and metric it is easy to obtain the following relation:

Γλµν =
1

2
gλτ (∂µgτν + ∂νgτµ − ∂τgµν) . (1.8)

For a general vector, from (1.7) we obtain:

∇νV
µ = ∂νV

µ + ΓµλνV
λ . (1.9)

The generalisation to (p,q) tensors is trivial because of Leibnitz’s rule.
Now let’s show how to derive an analogous expression for the covariant

derivative of objects with local Lorentz indices. Starting from a point P of
the manifold, any movement from P means the shift from a tangent space
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to another. So, it is easy to understand that the covariant derivative of a
vector V b can not be trivially equal to ∂aV

b. If we assume that the covariant
derivative is a linear differential operator, we come to the expression:

∇aV
b = ∂aV

b + ω̃b·caV
c , (1.10)

where ω̃b·ca are unknown coefficients. From (1.4) and ∇νV
µ = eaνe

b
µ∇aV

b we
come to the following chain of equalities:

∇νV
µ = ∂νV

µ + ΓµτνV
τ = eaνe

µ
b∇aV

b = eaνe
µ
b

(
∂aV

b + ω̃b·caV
c
)

=

= δµτ ∂νV
τ + V τeaνe

µ
b ∂ae

b
τ + eaνe

µ
b e
c
τ ω̃

b
·caV

τ =

= ∂νV
µ + V τ

(
eµb ∂νe

b
τ + eµb e

c
τ ω̃

b
·cν
)
. (1.11)

So, we have obtained

Γµτν = eµb ∂νe
b
τ + eµb e

c
τ ω̃

b
·cν . (1.12)

By multiplying (1.12) by eaµe
τd, we obtain

ω̃ad·· ν = eaµe
τdΓµτν − eτd∂νeaτ . (1.13)

(1.13) allows us to calculate the covariant derivative using only vielbein
fields and the affine connection. It is easy to demonstrate the antisymmetry
of ω̃ad·· ν for a↔ d using (1.13), as shown below:

ω̃ad·· ν + ω̃da·· ν = eaµe
τdΓµτν + edµe

τaΓµτν − eτd∂νeaτ − eτa∂νedτ =

=
1

2
gµλ (∂τgλν + ∂νgλτ − ∂λgτν)

(
eaµe

τd + edµe
τa
)
− eτd∂νeaτ − eτa∂νedτ =

=
1

2
(∂τgλν + ∂νgλτ − ∂λgτν)

(
eaλeτd + edλeτa

)
− eτd∂νeaτ − eτa∂νedτ =

= eaλeτdecλ∂νecτ + eaλeτdecτ∂νe
c
λ − eτd∂νeaτ − eτa∂νedτ = 0 ,

where the third equality is allowed by the symmetry, under λ ↔ τ , of the
tetrad term in brackets, and by the antisymmetry of the first and third metric
terms in brackets, and the last equality is consequential to the contraction
of indices.

Another useful formula follows from (1.5):

0 = ∇τgµν = ∇τ

(
eaµe

b
νηab

)
= 2ηabe

a
µ∇τe

b
ν = 0 ⇔ ∇τe

b
ν = 0 . (1.14)
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1.2.2 Covariant derivative of fermions and spin con-
nection.

Now let’s study the application of the previous section to define the covariant
derivative for Dirac fermions and then to describe spinor fields on general
manifolds. Spinor fields are described in a flat four-dimensional metric by
the Dirac action

S =

∫
dx4ψ̄ (iγa∂a −m)ψ . (1.15)

The generalisation to curved manifolds is trivially given by

S =

∫
dx4
√
|g|ψ̄ (iγµ∇µ −m)ψ , (1.16)

but the definition of covariant derivative is not trivial. The necessity of using
tetrads to formulate a consistent spinor field theory emerges because there
is no covering group for the group of general coordinate transformations.
So, we start from a flat metric and then use tetrads to generalize to curved
metrics.

On a flat metric, gamma matrices satisfy the Clifford algebra [1], that
is {

γa, γb
}

= γaγb + γbγa = 2ηab . (1.17)

Moving to a general curved space-time, we can use tetrads to obtain the
following result:

γa = eaµγ
µ ⇒

{
eaµγ

µ, ebνγ
ν
}

= 2ηab ⇒ {γµ, γν} = 2gµν , (1.18)

that is the curved-space version of the Clifford algebra.
Let’s define

∇µψ = ∂µψ +
i

2
ω ab
µ σabψ , where σab =

i

2
[γa, γb] . (1.19)

The coefficients ω ab
µ are called spinor (or simply spin) connection. The

conjugate of (1.19) is

∇µψ̄ = ∂µψ −
i

2
ω ab
µ ψ̄σab . (1.20)

By using (1.19), (1.20) and Leibniz’s rule, we can get these simple results:

∇µ(ψ̄ψ) =
(
∇µψ̄

)
ψ + ψ̄ (∇µψ) =
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=

(
∂µψ̄ −

i

2
ω ab
µ ψ̄σab

)
ψ + ψ̄

(
∂µψ +

i

2
ω ab
µ σabψ

)
=

=
(
∂µψ̄

)
ψ + ψ̄ (∂µψ) = ∂µ

(
ψ̄ψ
)
, (1.21)

which is the result we expected for the scalar ψ̄ψ;

∇µγ
ν = ∇µ (eνaγ

a) = γa∇µe
ν
a = 0 , (1.22)

having used (1.14).
Now we can find a way to calculate the spin connection through a sys-

tematic use of Leibniz’s rule, starting from the covariant derivative of the
vector ψ̄γαψ:

∇µ

(
ψ̄γαψ

)
= ∂µ

(
ψ̄γαψ

)
+ Γανµψ̄γ

νψ =

=
(
∂µψ̄

)
γαψ + ψ̄ (∂µe

α
c ) γcψ + ψ̄γα (∂µψ) + Γανµψ̄γ

νψ . (1.23)

This result is to be compared with the following result:

∇µ

(
ψ̄γαψ

)
=
(
∇µψ̄

)
γαψ + ψ̄ (∇µγ

α)ψ + ψ̄γα (∇µψ) =

=
(
∂µψ̄

)
γαψ − i

2
ω ab
µ ψ̄σabγ

αψ + ψ̄γα (∂µψ) +
i

2
ψ̄γαω ab

µ σabψ , (1.24)

having used (1.22). Since the equality must be valid for any field ψ, by
comparing (1.23) and (1.24) we obtain:

−1

4
ω ab
µ eαc (γc (γaγb − γbγa)− (γaγb − γbγa) γc) = γc

(
eνcΓ

α
νµ + ∂µe

α
c

)
. (1.25)

By making use of the Clifford algebra relation

γcγaγb = 2δcaγb − γaγcγb

we get
ω ab
µ (eαb γa − eαaγb) = γc

(
eνcΓ

α
νµ + ∂µe

α
c

)
. (1.26)

We can solve this equation by taking advantage of the antisymmetry of ω,
and we obtain

ω ab
µ =

1

2
ω̃abµ =

1

2

(
ebτe

λaΓτλµ − eλa∂µebλ
)
, (1.27)

having defined
eλa = ηabeλb . (1.28)

We have here established the relation between (1.13) and the spin con-
nection, and this gives us an explicit way to calculate the covariant derivative
of fermions.
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1.3 Foldy-Wouthuysen transformation.

The Foldy-Wouthuysen transformation [5] is a unitary transformation of the
Dirac equation, and has the advantage of separating the spinor into four
components, of which two have positive energy eigenvalues, and two have
negative energy eigenvalues. This is particularly useful for the interpretation
of the non-relativistic limit, that is the Pauli equation. This type of trans-
formation had already been studied previously by Newton and Wigner while
they were studying properties of the position operator; they found that states
localized in position cannot be formed solely from positive energy states or
solely from negative energy states in Dirac-Pauli representation. Starting
from reasonable invariance requirements, they discovered that states split
into pure positive-energy and pure negative-energy states could be found,
and that they are unique. The studies of Foldy and Wouthuysen generalized
those of Newton and Wigner to the case of particles in electromagnetic fields
[13].

Here we analyse their work, and consider the case of gravitational fields
as well.

Starting from the Dirac equation in Hamiltonian form, we have

i}
∂

∂t
ψ = Hψ , where ψ =

(
φ

χ

)
. (1.29)

We can now perform a unitary transformation by setting ψ′ = Uψ = eiSψ ,
where U is a unitary operator; this transformation implies:

i}
∂

∂t

(
U−1ψ′

)
= U−1i}

∂ψ′

∂t
+ i}

(
∂

∂t
U−1

)
ψ′ = HU−1ψ′

and, rearranging it into Hamiltonian form,

i}
∂

∂t
ψ′ =

(
UHU−1 − i}U ∂U

−1

∂t

)
ψ′ = H′ψ′ . (1.30)

The Hamiltonian can be split into operators that commute (”even oper-
ators”) and anticommute (”odd operators”) with the operator β:

H = βM+ EI +O , [β,M] = 0 , [β, EI] = 0 , {β,O} = 0 , (1.31)

where H is hermitian and we assume M, E and O to be hermitian as well.
From now on, we will use the common notation for the β and αi matrices
[14], so we have
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β = γ0 , αi = γ0γi , i = 1, 2, 3 ,

where {γa}3
a=0 are the Dirac matrices. Therefore,

γ0 =

(
0 I
I 0

)
, γα =

(
0 σα

−σα 0

)
,

where σα are the Pauli matrices.

1.3.1 Free Dirac particle.

In the case of free Dirac particles, we have

E = 0 , O = α · p ⇒ H = βm+ α · p , (1.32)

where m is the particle mass; we can set

S = − i

2m
βα · pθ(p) (1.33)

so that θ becomes a function to be determined in order for H′ to be free from
odd operators. S commutes with the Hamiltonian because it is not explicitly
time-dependent,therefore the operator eiS does as well, because it is defined
by its power expansion as

eiS =
∞∑
n=0

in

n!
Sn ,

since each term of the sum commutes with the Hamiltonian because S does.
The transformation of the Hamiltonian is

H′ = eiSHe−iS = ei2SH (1.34)

and, by performing the power expansion of ei2S, and using (1.33) and trivial
identities of α and β matrices, we can easily obtain

ei2S = cos

(
pθ

m

)
+

(
βα · p
p

)
sin

(
pθ

m

)
. (1.35)

By using this result in (1.34) we obtain

H′ =
[
cos

(
pθ

m

)
+

(
βα · p
p

)
sin

(
pθ

m

)]
(βm+ α · p) =

= β

[
m cos

(
pθ

m

)
+ p sin

(
pθ

m

)]
+

α · p
p

[
p cos

(
pθ

m

)
−m sin

(
pθ

m

)]
.

(1.36)
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From this equation, by putting the second parenthesis equal to 0, we easily
obtain

θ(p) =
m

p
arctan

( p
m

)
. (1.37)

With this θ we obtained the odd operators-free Hamiltonian

H′ = β
√
m2 + p2 = βEp . (1.38)

The solutions of (1.30) are such that upper components represent positive
energies and lower components represent negative energies. We can split ψ′

as follows:

ψ′ = φ′ + χ′ , where , φ′ =
1 + β

2
ψ′ , χ′ =

1− β
2

ψ′ . (1.39)

Now (1.30) can be split explicitly into

βEpφ
′ =

i∂

∂t
φ′ , (1.40)

−βEpχ′ =
i∂

∂t
χ′ . (1.41)

Thus, we separated the positive energy and the negative energy terms.

1.3.2 Exact Foldy-Wouthuysen transformation.

First of all, we can notice that the operator O2 is even because of (1.31),
therefore we have

βO2 = −OβO = O2β . (1.42)

We now define the operator S in a similar way to (1.31) as

S = −iβO
C
θ , (1.43)

where C and θ are function of O2, and C is defined unambiguously by the
relations

C2 = O2 , [β, C] = 0 ,
√
I = I . (1.44)

(1.44) defines exactly the square root of the operator O2:

C =
√
O2 . (1.45)

We observe that the operator S, and therefore the operator U , are not ex-
plicitly time-dependent, so we can use the relation H′ = UHU−1.

For example, to understand what the square root of an operator is we
consider the free particle case:
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O = α · p , O2 = Ip2 , C = I
√

p2 = I|p| .

The operator U can be broken down via a series expansion into

U = cos θ +
βO
C

sin θ . (1.46)

A sufficient, but not necessary, condition to have an exact transformation
is [6]

[E ,O] = 0 (1.47)

(we have omitted the identity symbol multiplied by E ), and this implies

[E , βO] = [E , β]O + β[E ,O] = 0 , (1.48)

having used (1.31) and (1.47). Using (1.46) and (1.48) we can derive the
transformed Hamiltonian:

H′ = UHU−1 =

(
cos θ +

βO
C

sin θ

)
H
(

cos θ − βO
C

sin θ

)
=

= (βm+O)

(
cos θ − βO

C
sin θ

)2

+ E =

= (βm+O)

(
cos 2θ − βO

C
sin 2θ

)
+ E =

= β (m cos 2θ + C sin 2θ) +O
(

cos 2θ − m

C
sin 2θ

)
+ E . (1.49)

From this result we can put the parenthesis multiplied by O to be equal to
0 in order to obtain an even Hamiltonian:

tan 2θ =
C

m
, (1.50)

and using trivial goniometric relations

tan θ± = ± C

ε±m
where ε =

√
m2 + C2 =

√
m2 +O2 . (1.51)

Therefore, we found two values of θ that make the Hamiltonian even, θ+

realises the F-W transformation, and by substituting in (1.49) we obtain

H′ = βε+ E , ε =
√
m2 +O2 . (1.52)

Through a substitution of the values of θ in (1.46) we find

U± =
ε+m± βO√

2ε (ε+m)
, (1.53)

that fully agrees with what can be found in the free particle case. We also
notice (this will be useful a bit later) that U− = U−1.
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1.3.3 General case.

In the general case, the operator U is time-dependent [6], so it is not possible
to remove odd operators to all orders. So, we will perform a power expansion.
To do this, first we need to calculate some commutators that appear during
calculations:

U

(
E − i ∂

∂t

)
U−1 = E − i ∂

∂t
+

[
U, E − i ∂

∂t

]
U−1 . (1.54)

To calculate the commutators we will use these formulas:

i)
[
A−1, B

]
= A−1 [B,A]A−1 , (1.55)

where the proof is

A−1 [B,A]A−1 = A−1 (BA− AB)A−1 = A−1B −BA−1 =
[
A−1, B

]
;

ii)ABA =
1

2

({
A2, B

}
− [A, [A,B]]

)
, (1.56)

where the proof is

1

2

({
A2, B

}
− [A, [A,B]]

)
=

1

2

(
A2B +BA2 − [A,AB −BA]

)
=

=
1

2

(
A2B +BA2 − A2B + ABA+ ABA−BA2

)
= ABA ;

iii) [A,B] =
1

4

{
A−1,

[
A2, B

]}
− 1

4

[
[A, [A,B]] , A−1

]
, (1.57)

where the proof is

1

4

{
A−1,

[
A2, B

]}
− 1

4

[
[A, [A,B]] , A−1

]
=

=
1

4

{
A−1, A2B −BA2

}
− 1

4

[
[A,AB −BA] , A−1

]
=

=
1

4

(
AB − A−1BA2 + A2BA−1 −BA

)
−

−1

4

[
A2B − ABA− ABA+BA2, A−1

]
=

=
1

4
(AB − A−1BA2 + A2BA−1 −BA− A2BA−1 + AB + AB −BA+

+AB −BA−BA+ A−1BA2) = [A,B] .

If the commutator of two operators is small compared to their product,
i.e.

|[A,B]| � |AB| , (1.58)
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we can use (1.55) and (1.56) to evaluate [A,B] with any accuracy by per-
forming successive approximations.

Now we perform a transformation using (1.53), and through a substitution
in (1.30) we obtain

H′ = βε+ E ′ +O′ , (1.59)

where the operators E ′ and O′ are simply given by

E ′ = i
∂

∂t
+

ε+m√
2ε (ε+m)

(
E − i ∂

∂t

)
ε+m√

2ε (ε+m)
−

− βO√
2ε (ε+m)

(
E − i ∂

∂t

)
βO√

2ε (ε+m)
(1.60)

and

O′ = βO√
2ε (ε+m)

(
E − i ∂

∂t

)
ε+m√

2ε (ε+m)
−

− ε+m√
2ε (ε+m)

(
E − i ∂

∂t

)
βO√

2ε (ε+m)
. (1.61)

Using (1.56) in (1.60), the two anticommutators and the time derivative
cancel each other out, therefore we have

A =
ε+m√

2ε (ε+m)
, A2 =

ε+m

2ε
, B = E − i ∂

∂t
⇒

⇒
{
A2, B

}
=

(
ε+m

2ε

)(
E − i ∂

∂t

)
+

(
E − i ∂

∂t

)(
ε+m

2ε

)
for the first term and

A =
βO√

2ε (ε+m)
, A2 =

βOβO
2ε (ε+m)

=
−O2

2ε (ε+m)
, B = E − i ∂

∂t
⇒

⇒
{
A2, B

}
=

(
−O2

2ε (ε+m)

)(
E − ∂

∂t

)
+

(
E − i ∂

∂t

)(
−O2

2ε (ε+m)

)
for the second term. By combining together the terms with the temporal
derivative we obtain

ε+m

2ε
+

O2

2ε (ε+m)
=
ε2 +m2 + 2mε+O2

2ε (ε+m)
= I .

As explicitly shown in the previous manipulations, the terms with time
derivatives are cancelled, and (1.60) becomes

E ′ = E − 1

4

[
ε+m√

2ε (ε+m)
,

[
ε+m√

2ε (ε+m)
,

(
E − i ∂

∂t

)]]
+
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+
1

4

[
βO√

2ε (ε+m)
,

[
βO√

2ε (ε+m)
,

(
E − i ∂

∂t

)]]
. (1.62)

At this point we perform a second transformation using the following oper-
ator:

U ′ = exp (iS ′) , S ′ = − i
4
β

{
O′, 1

ε

}
= − i

4

[
β

ε
,O′
]
, (1.63)

and we want to perform a power expansion from this. To this end, we use
the relation [14]

eiSHe−iS = H + i [S,H] +
i2

2!
[S, [S,H]] + . . .+

+
in

n!
[S, [S, . . . [S,H]] . . .] + . . . . (1.64)

This relation is verified as follows: by considering

F (λ) = eiλSHe−iλS (1.65)

and expanding it to a Taylor series at λ = 0, we obtain

F (λ) =
∞∑
i=0

λn

n!

(
∂nF

∂λn

)
λ=0

, (1.66)

and by direct calculation we have

∂F

∂λ
= ieiλSSHe−iλS − ieiλSHSe−iλS = ieiλS [S,H] e−iλS

∂2F

∂λ2
= i2eiλSS [S,H] e−iλS − i2eiλS [S,H]Se−iλS = i2eiλS [S, [S,H]] e−iλS

up until

∂nF

∂λn
= ineiλS [S, [S, . . . [S,H]] . . .] e−iλS

and so on. By putting these results in (1.66) and calculating F (1), we ob-
tain (1.64). If we use H ≡ H′ and (1.63), and limiting ourselves to major
corrections, we obtain

H′′ ≈ βε+ E ′ + 1

4
β

{
O′2, 1

ε

}
. (1.67)

If you want to achieve higher accuracy, you should repeat the transformation
using (1.63) several times.

Thanks to this procedure, we obtained the Hamiltonian in F-W represen-
tation in the general case to any order of accuracy.
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1.3.4 Strong external fields.

In the case of strong external fields, we need to generalize the method devel-
oped in the previous section [7]. The natural generalization of (1.53) is

U =
βε+ βM−O√
(βε+ βM−O)2

β , U−1 = β
βε+ βM−O√
(βε+ βM−O)2

ε =
√
M2 +O2 . (1.68)

This operator is used to perform the F-W transformation in the general case.
The calculations are analogous to those in the previous section, so if we define

T =

√
(βε+ βM−O)2 and F = E − i} ∂

∂t
, (1.69)

then the transformed Hamiltonian is

H′ = βε+ E +
1

2T
([T, [T, (βε+ F)]] + β [O, [O,M]]−

− [O, [O,F ]]− [(ε+M) , [(ε+M) ,F ]]− [(ε+M) , [M,O]]−

−β {O, [(ε+M) ,F ]}+ β {(ε+M) , [O,F ]}) 1

T
(1.70)

and it can be presented as usual in the form of

H′ = βε+ E ′ +O′ , [E ′, β] = 0 , {β,O′} = 0 , (1.71)

having explicitly separated even and odd terms. The even and the odd terms
are defined by

E ′ = 1

2
(H′ + βH′β)− βε , O′ = 1

2
(H′ − βH′β) ,

therefore we have

1

2
(H′ + βH′β)− βε =

1

2
(βε+ E ′ +O′ + β (βε+ E ′ +O′) β)− βε =

=
1

2
(βε+ E ′ +O′ + εβ + βE ′β + βO′β)− βε =

= βε+ E ′ + 1

2
(O′ −O′)− βε = E ′

and

1

2
(H′ − βH′β) =

1

2
(βε+ E ′ +O′ − β (βε+ E ′ +O′) β) =

1

2
(βε+ E ′ +O′ − εβ − βE ′β − βO′β) =

1

2
(O′ +O′) = O′ ,
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having used the relations in (1.71).
The second transformation is performed according to the previous section

and the result, approximated to first terms, is

HFW = βε+ E ′ + 1

4

{
O′2, 1

ε

}
. (1.72)

The formula obtained is very similar to (1.67) and, in an analogous way,
further corrections can be calculated by repeating the transformation as ex-
plained in the previous section.

(1.72) describes the transformation in the general case. In special cases it
can be strongly simplified [7]: for example, if [M,O] = 0 , then (1.70) takes
a simpler form and again we obtain results derived in previous sections.
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Chapter 2

Spin and Gravitational Field.

In this chapter we apply the techniques developed in the previous one in order
to describe particles with spin 1/2 in a general gravitational field. First, we
use the tetrad formalism to describe a general metric, then we derive the
Dirac Hamiltonian in a curved manifold [2] [15]. Then, we use the F-W
transformation to obtain the precession operators equations of motion. We
use the same notation as in chapter 1, where space-time indices are Greek
letters from the middle of the alphabet (µ, ν . . .), tetrad indices (which are
the same as Minkowski indices) are Latin letters from the first half of the
alphabet (a, b, c . . .), spatial indices are Greek letters from the first half of the
alphabet (α, β, γ . . .), and finally we mark particular values of tetrad indices,
being them spacial or zero, with top hats (â, b̂ . . .).

2.1 Dirac equation.

Let xµ(τ) describe the position of the particle in space-time, where τ is the
proper time and Sab = −Sba the spin tensor. The 4-velocity of the particle is

Uµ(τ) =
dxµ(τ)

dτ
and it is normalized as usual, that is gµνU

µUν = c2. Using

the tetrad eµa and its inverse eaµ we have Ua(τ) = eaµ
dxµ(τ)

dτ
and ηabU

aU b = c2,

where ηab = diag(c2,−1,−1,−1).
There are several different ways to describe a general metric; we use the

following parametrisation for the line element [16]

ds2 = V 2c2dt2 − δα̂β̂W
α̂
γW

β̂
δ (dxγ −Kγcdt)

(
dxδ −Kδcdt

)
. (2.1)

Parametrisation (2.1) involves functions V,Kα and W α̂
β , so 1 + 3 + 9 = 13

functions in total, more than the 10 free functions in a general metric in 4

27



28 CHAPTER 2. SPIN AND GRAVITATIONAL FIELD.

dimensions. We notice that this choice of parametrisation is not the most
general, because, as we stated in the previous chapter, a general choice of
tetrads involves 16 parameters. The line element (2.1) is invariant for ar-
bitrary local rotations, that is W α̂

β → Lα̂γ̂W
γ̂
β , where Lα̂

β̂
∈ SO(3), indeed

Lα̂
β̂
Lγ̂
δ̂
δα̂γ̂ = δβ̂δ̂. We can eliminate this freedom by choosing a gauge. A

useful choice of gauge is the Schwinger gauge, that is e0̂
α = 0 , α = 1, 2, 3.

Confronting (2.1) with (1.5) and using the gauge fixing, we recognize the
tetrad

e0̂
µ = V δ0̂

µ , e
α̂
µ = W α̂

β

(
δβµ − cKβδ0

µ

)
, α = 1, 2, 3 , (2.2)

and its inverse, which satisfies eµae
a
ν = δµν , is

eµ
0̂

=
1

V

(
δµ

0̂
+ δµαcK

α
)
, eµα̂ = δµβW

β
α̂ . (2.3)

These inverses satisfy an analogous condition of gauge, that is e0
α̂ = 0. We

also introduced the inverse of W α̂
β , that is W β

α̂ and satisfies W α̂
βW

γ
α̂ = δγβ .

The velocity of a particle in the orthonormal frame is Ua = eaµU
µ, but it

will be convenient to describe the 4-velocity using the spacial components vα̂,

therefore Ua =
(
γ, γvα̂

)
, where γ =

1√
1− v2/c2

. By using (2.3), we obtain

U0 =
dt

dτ
= e0

aU
a = e0

0̂
U 0̂ + e0

α̂U
α̂ =

γ

V
, (2.4)

Uα =
dxα

dτ
= eαaU

a = eα
0̂
U 0̂ + eα

β̂
U β̂ =

1

V
δαγ cK

γγ + δαγW
γ

β̂
γvβ̂ =

=
γ

V

(
cKα + VWα

β̂
vβ̂
)
. (2.5)

If we define
Fα
β̂

= VWα
β̂

(2.6)

and combine (2.4) with (2.5), we obtain

dxα

dt
= Fα

β̂
vβ̂ + cKα . (2.7)

The Dirac equation in curved space-time that we obtained in chapter 1
reads

(i}γa∇a −mc) Ψ = 0 , (2.8)

where

∇a = eµa∇µ , ∇µ = ∂µ +
iq

}
Aµ +

i

4
σabω̃µab . (2.9)
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For completeness, we included the coupling of the electric charge q to the
4-potential Aµ of the electromagnetic field.

Now we have to calculate the components of the spin connection using
(2.2) and (2.3), but first we have to extrapolate a formula that gives the
coefficients of the spin connection as a function of tetrads. To do this, we
begin calculating Christoffel symbols as functions of tetrads:

Γντµ =
1

2
gνσ (gσµ,τ +gστ ,µ−gτµ,σ ) =

1

2
eνae

σ
b η

ab
((
ecσe

d
µηcd

)
,τ +

+
(
ecσe

d
τηcd

)
,µ−

(
ecτe

d
µηcd

)
,σ
)

=
1

2
ηabηcde

ν
ae
σ
b

(
ecσ,τ e

d
µ + ecσe

d
µ,τ +

+ecσ,µ e
d
τ + ecσe

d
τ ,µ−ecτ ,σ edµ − ecτedµ,σ

)
=

1

2
ηabηcd

(
eνaδ

c
be
d
µ,τ +eνaδ

c
be
d
τ ,µ +

+eνae
σ
b e
d
µe
c
σ,τ +eνae

σ
b e
d
τe
c
σ,µ−eνaeσb edµecτ ,σ−eνaeσb ecτedµ,σ

)
=

1

2

(
eνae

a
µ,τ +

+eνae
a
τ ,µ +eνae

σaeµce
c
σ,τ +eνae

σaeτce
c
σ,µ−eνaeσaeµcecτ ,σ−eνaeσaeτcecµ,σ

)
=

=
1

2
eνa
(
eaµ,τ +eaτ ,µ

)
+

1

2
eνae

σaeµc (ecσ,τ −ecτ ,σ ) +
1

2
eνae

σaeτc
(
ecσ,µ−ecµ,σ

)
.

(2.10)
Now we use (2.10) in (1.13):

ω̃µab = eνae
τ
bΓ

ν
τµ − eτbeτa,µ =

1

2
eνae

τ
be
ν
c

(
ecµ,τ +ecτ ,µ

)
+

1

2
eνae

τ
be
ν
ce
σceµd

(
edσ,τ −

−edτ ,σ
)

+
1

2
eνae

τ
be
ν
ce
σceτd

(
edσ,µ−edµ,σ

)
− eτbeτa,µ =

1

2
ηace

τ
b

(
ecµ,τ +ecτ ,µ

)
+

+
1

2
ηace

τ
be
σceµd

(
edσ,τ −edτ ,σ

)
+

1

2
ηace

τ
be
σceτd

(
edσ,µ−edµ,σ

)
− eτbeτa,µ =

=
1

2
eτb (eµa,τ −eτa,µ ) +

1

2
eτbe

σ
aeµd

(
edσ,τ −edτ ,σ

)
+

1

2
eτa (eτb,µ−eµb,τ ) . (2.11)

(2.11) [17] gives us an explicit formula to calculate spin connection as
functions of the vierbein field. We now use (2.2) and (2.3) and, after lengthy
algebra, we obtain

ω̃µα̂0̂ =
c2

V
W β
α̂∂βV e

0̂
µ −

c

V
Q(α̂β̂)e

β̂
µ (2.12)

and

ω̃µα̂β̂ =
c

V
Q[α̂β̂]e

0̂
µ +

(
Cα̂β̂γ̂ + Cα̂γ̂β̂ + Cγ̂β̂α̂

)
eγ̂µ , (2.13)
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where we introduced the following objects:

Qα̂β̂ = ηα̂γ̂W
δ
β̂

(
1

c
Ẇ γ̂
δ +Kε∂εW

γ̂
δ +W γ̂

ε ∂δK
ε

)
, (2.14)

C γ̂

α̂β̂
= W δ

α̂W
ε
β̂
∂[δW

γ̂
ε] , Cα̂β̂γ̂ = ηγ̂δ̂C

δ̂
α̂β̂
. (2.15)

In this context, the dot ”·” means, as usual, the derivative with respect to
the coordinate time t. We also recognise in C γ̂

α̂β̂
= −C γ̂

β̂α̂
the anholonomity

coefficients for the spacial triad W .

2.1.1 Hermiticity of the Hamiltonian.

The Dirac equation can be obtained, as usual, from an action principle using
the action integral

I =

∫
d4x
√
−gL , L =

i}
2

(
Ψ̄γaDaΨ−DaΨ̄γ

aΨ
)
−mcΨ̄Ψ , (2.16)

but the Schrödinger form of the derived Dirac equation involves a non-
hermitian Hamiltonian [18]. We can demonstrate this starting from the Dirac
equation and its hermitian conjugate:

(i}γµ∇µ −mc) Ψ = 0 , Ψ̄
(
i}γµ
←−
∇µ +mc

)
= 0 .

By multiplying the first equation by Ψ̄ from the left, the second equation by
Ψ from the right, and using (2.9) and the related hermitian conjugate, we
obtain

0 = Ψ̄i}γµ (∂µΨ)− qAµΨ̄γµΨ− }
4

Ψ̄γµσabω̃µabΨ−mcΨ̄Ψ+

+
(
∂µΨ̄

)
i}γµΨ + qAµΨ̄γµΨ +

}
4

Ψ̄γµσabω̃µabΨ +mcΨ̄Ψ⇒
⇒ ∂µ

(
eΨ̄γµΨ

)
= 0 ,

where e = det eµa =
√
|g| (the constants have been omitted).

Now, we can integrate this relation over space and, omitting boundary
terms (emerging by an application of Gauss’s theorem), we obtain

0 =
d

dt

∫ √
|g|dx3Ψ̄γtΨ =

d

dt

∫ √
|g|dx3Ψ†γ0γtΨ = 0 . (2.17)

This relation defines an inner product for spinor fields:

(Ψ1,Ψ2) =

∫ √
|g|dx3Ψ†1γ

0γtΨ2 . (2.18)
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We observe that, for spinor fields in flat spaces, (2.18) becomes the usual inner
product, where γt = γ0 [1]. To verify the hermiticity of the Hamiltonian H
we have to know if (Ψ,HΨ) = (HΨ,Ψ) or not.

By using (2.17), the Dirac equations i∂tΨ = HΨ , −i∂tΨ† = Ψ†H† and
γt,t = eta,tγ

a, we obtain

0 =

∫ [√
|g|
((
∂tΨ

†) γ0γtΨ + Ψ†γ0γt (∂tΨ)
)

+
((
∂t
√
|g|
)

Ψ†γ0γtΨ+

+
√
|g|Ψ†γ0

(
∂tγ

t
)

Ψ
)]
dx3 ⇒ 0 = i [(HΨ,Ψ)− (Ψ,HΨ)] +

+
(

Ψ,
[
∂t

(
ln
(√
|g|gtt

))
Ψ
])

,

and this explicitly proves that, in general, the Hamiltonian is not hermitian.
We have used γtγt = gtt, taken from (1.18).

To solve this problem, we introduce a rescaled wave function

ψ =
(√
|g|e0

0̂

) 1
2

Ψ , (2.19)

and we observe that by substituting (2.19) in (2.18) we recover the Minkowskian
inner product for spinor fields. From this non-unitary transformation, the
Dirac equation that emerges in the Schrödinger form involves an hermitian
Hamiltonian:

i}
∂ψ

∂t
= Hψ , H = βmc2V + qΦ +

c

2

(
πβFβα̂α

α̂ + αα̂Fβα̂πβ
)

+

+
c

2
(K · π + π ·K) +

}c
4

(Ξ ·Σ−Υγ5) . (2.20)

Here we used K = {Kα} and the momentum operator π = {πα} , where πα =
−i}∂α + qAα = pα + qAα takes account of the interaction with the electro-
magnetic field described by the 4-potential Aµ = (Φ, Aα). We also have, as

usual, β = γ 0̂ , α =
{
αα̂
}

, Σ =
{

Σα̂
}

with αα̂ = γ 0̂γα̂ , Σ1̂ = iγ 2̂γ 3̂ ,

Σ2̂ = iγ 3̂γ 1̂ and Σ3̂ = iγ 1̂γ 2̂. Finally, we introduced Υ = −V εα̂β̂γ̂Cα̂β̂γ̂ and

Ξ = {Ξα̂} , Ξα̂ = εα̂β̂γ̂Q
β̂γ̂.

2.1.2 F-W transformation.

As we explained in the previous chapter, the physical content of the theory
emerges in the Foldy-Wouthuysen representation. In the previous chapter we
have reported this apparatus and derived the formulas to obtain the Dirac
Hamiltonian in the F-W representation in an arbitrary gravitational field.
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Now we apply these formulas to the current case [2] and, confronting (2.20)
with (1.31), we deduce

M = mc2V , (2.21)

E = qΦ +
c

2
(K · π + π ·K) +

}c
4

Ξ ·Σ , (2.22)

O =
c

2

(
πβFβα̂α

α̂ + αα̂Fβα̂πβ
)
− }c

4
Υγ5 . (2.23)

We refer to (1.72) to find the F-W Hamiltonian, and to previous formulas
to calculate the various terms. After lengthy algebra we obtain

HFW = H(1)
FW +H(2)

FW , (2.24)

where the two terms are

H(1)
FW = βε′ +

}c2

16

{
1

ε′
,
(

2εγ̂α̂ε̂Πε̂

{
πβ,F δγ̂∂δF

β
α̂

}
+ Πα̂

{
πβ,Fβα̂Υ

})}
+

+
}mc4

4
εγ̂α̂ε̂Πε̂

{
1

T
,
{
πδ,F δγ̂F

β
α̂∂βV

}}
, (2.25)

H(2)
FW =

c

2
(Kαπα + παK

α) +
}c
4

ΣαΞα +
}c2

16

{
1

T
,
{

Σα

{
πε,F εβ

}
,
{
πζ ,
[
εαβγ(

1

c
Ḟ ζγ −F δγ∂δKζ +Kδ∂δF ζγ

)
− 1

2
F ζδ
(
δδβΞα − δδαΞβ

)]}}}
, (2.26)

where

ε′ =

√
m2c4V 2 +

c2

4
δαγ
{
πβ,Fβα

}{
πδ,F δγ

}
, T = 2ε′2 +

{
ε′,mc2V

}
. (2.27)

Now we can derive the equation of motion of spin. After introducing the
polarization operator Π = βΣ, its equation of motion can be obtained by
calculating the commutator with the Hamiltonian, that is

dΠ

dt
=
i

}
[HFW ,Π] = Ω(1) ×Σ + Ω(2) ×Π , (2.28)

where Ω(1) and Ω(2) are the operators of the angular velocity of spin precess-
ing in the exterior gravitational field, and they are calculated as follows:

Ωα̂
(1) =

mc4

2

{
1

T
,
{
πε, ε

α̂β̂γ̂F ε
β̂
F δγ̂∂δV

}}
+

+
c2

8

{
1

ε′
,
{
πε,
(

2εα̂β̂γ̂F δ
β̂
∂δF εγ̂ + δα̂β̂F ε

β̂
Υ
)}}

, (2.29)
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Ωα̂
(2) =

}c2

8

{
1

T
,

{{
πε,F εβ̂

}
,

{
πζ ,

(
εα̂β̂γ̂

(
1

c
Ḟ ζγ̂ −F

δ
γ̂∂δK

ζ +Kδ∂δF ζγ̂
)
−

− 1

2
F ζδ
(
δδ̂β̂Ξα̂ − δδ̂α̂Ξβ̂

))}}}
+
c

2
Ξα̂ . (2.30)

We can now use these general results to derive the semiclassical expres-
sions obtained by neglecting powers of } higher than 1; equations (2.28),
(2.29) and (2.30) lead to the following equations, which describe the motion
of the average spin s:

ds

dt
=
(
Ω(1) + Ω(2)

)
× s , (2.31)

Ωα̂
(1) =

c2

ε′
F δγ̂πδ

(
1

2
Υδα̂γ̂ − εα̂ε̂χ̂V C γ̂ε̂χ̂ +

ε′

ε′ +mc2V
εα̂β̂γ̂W ε

β̂
∂εV

)
, (2.32)

Ωα̂
(2) =

c

2
Ξα̂ − c3

ε′ (ε′ +mc2V )
εα̂β̂γ̂Q(β̂δ̂)δ

δ̂η̂Fκη̂ πκF
ξ
γ̂πξ . (2.33)

In the semiclassical limit we have

ε′ =
√
m2c4V 2 + c2δγ̂δ̂Fαγ̂ F

β

δ̂
παπβ . (2.34)

We can now use these results in (2.24) to obtain the F-W Hamiltonian in
terms of precession angular velocities:

HFW = βε′ +
c

2
(K · p + p ·K) +

}
2
Π ·Ω(1) +

}
2
Σ ·Ω(2) . (2.35)

By using this Hamiltonian, we can derive the velocity operators:

dxα

dt
=
i

}
[HFW , x

α] = β
∂ε′

∂πα
+ cKα = β

c2

ε′
Fα
β̂
δβ̂γ̂F δγ̂πδ + cKα . (2.36)

By comparing (2.36) with (2.7), we directly obtain:

β
c2

ε′
Fβα̂πβ = vα̂ . (2.37)

From (2.37) we trivially obtain δγ̂δ̂Fαγ̂ F
β

δ̂
παπβ = (ε′)

2 v
2

c2
, and by substituting

this identity in (2.34) we obtain

(ε′)
2

= m2c4V 2 + (ε′)
2 v

2

c2
⇒ ε′ = γmc2V , (2.38)
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where γ is the Lorentz factor γ =
1√

1− v2

c2

. By using (2.38), we can do

some manipulation to obtain useful results so as to simplify the expressions;
in particular, we can use

ε′

ε′ +mc2V
=

γ

1 + γ
and

c3

ε′ (ε′ +mc2V )
Fβα̂πβF

δ
γ̂πδ =

γ

1 + γ

vα̂vβ̂
c

. (2.39)



Chapter 3

Cosmological applications.

In this chapter, our purpose is to consider specific cosmologies and to apply
the methods developed in the previous chapters. We will then study the
physical implications that emerge from the interaction between gravitational
field and spin particles.

3.1 Melvin space-time.

The Melvin space-time is a solution of the Einstein-Maxwell equations that
describes a universe filled with a cylindrical magnetic field [8] [19] [20]. Let’s
consider a static magnetic field the lines of which are perpendicular to a

certain radial direction; this magnetic field falls as fast as
1

r
far away from

the symmetry axis. This magnetic field can be obtained by considering a four-

potential Aµ, whose only non-vanishing component is Aφ = − B0r
2

2f(r)
, where

f(r) is a polynomial quadratic in r. In this section we describe this metric,
we solve the geodesics equations and we solve the equation of motion of spin
operators. Finally we describe the transition to the Melvin Cosmology [10],
where the metric coefficients depend on a temporal coordinate, and describe
the motion of polarisation operators.

Let’s consider the Melvin space-time described by the line element

ds2 = f 2(r)dt2 − f 2(r)dr2 − r2

f 2(r)
dφ2 − f 2(r)dz2 , (3.1)

where

f(r) = 1 +
1

4
B2

0r
2 , (3.2)

35
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and B0 is a constant. Here we have set c = 1 for notation simplicity. For the
sake of clarity, we will use 1, 2, 3, 4 or t, r, φ, z interchangeably to represent
indices. By using

gµν =


f 2(r) 0 0 0

0 −f 2(r) 0 0

0 0 − r2

f2(r)
0

0 0 0 −f 2(r)

 and

ηab =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (3.3)

in (1.5), it is easy to obtain e0̂
0 = f(r), e1̂

0 = f(r), e2̂
2 =

r

f(r)
, e3̂

3 = f(r) ,

therefore

eaµ =


f(r) 0 0 0

0 f(r) 0 0
0 0 r

f(r)
0

0 0 0 f(r)

 (3.4)

and its inverse

eµa =


1

f(r)
0 0 0

0 1
f(r)

0 0

0 0 f(r)
r

0
0 0 0 1

f(r)

 . (3.5)

Now we compare these expressions with the parametrisation (2.2) in the
Schwinger gauge in order to obtain the metric coefficients expressed with the
parametrisation used in the previous chapter:

e0̂
0 = f(r) = V ;

e1̂
1 = f(r) = W 1̂

β

(
δβ1 −Kβδ0

1

)
= W 1̂

1 ⇒ W 1̂
1 = f(r) = V ;

e2̂
2 =

r

f(r)
= W 2̂

β

(
δβ2 −Kβδ0

2

)
= W 2̂

2 ⇒ W 2̂
2 =

r

f(r)
=

r

V
;

e3̂
3 = f(r) = W 3̂

β

(
δβ3 −Kβδ0

3

)
= W 3̂

3 ⇒ W 3̂
3 = f(r) = V ;

e1̂
2 = 0 = W 1̂

β

(
δβ2 −Kβδ0

2

)
= W 1̂

2 ⇒ W 1̂
2 = 0 ;

e1̂
3 = 0 = W 1̂

β

(
δβ3 −Kβδ0

3

)
= W 1̂

3 ⇒ W 1̂
3 = 0 ;

e1̂
0 = 0 = W 1̂

β

(
δβ0 −Kβδ0

0

)
= −W 1̂

1K
1 −W 1̂

2K
2 −W 1̂

3K
3 = 0 ⇒ K1 = 0 ;

e2̂
1 = 0 = W 2̂

β

(
δβ1 −Kβδ0

1

)
= W 2̂

1 ⇒ W 2̂
1 = 0 ;
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e2̂
3 = 0 = W 2̂

β

(
δβ3 −Kβδ0

3

)
= W 2̂

3 ⇒ W 2̂
3 = 0 ;

e2̂
0 = 0 = W 2̂

β

(
δβ0 −Kβδ0

0

)
= −W 2̂

1K
1 −W 2̂

2K
2 −W 2̂

3K
3 = 0 ⇒ K2 = 0 ;

e3̂
1 = 0 = W 3̂

β

(
δβ1 −Kβδ0

1

)
= W 3̂

1 ⇒ W 3̂
1 = 0 ;

e3̂
2 = 0 = W 3̂

β

(
δβ2 −Kβδ0

2

)
= W 3̂

2 ⇒ W 3̂
2 = 0 ;

e3̂
0 = 0 = W 3̂

β

(
δβ0 −Kβδ0

0

)
= −W 3̂

1K
1 −W 3̂

2K
2 −W 3̂

3K
3 = 0 ⇒ K3 = 0 .

So we have obtained

W α̂
β =

f(r) 0 0
0 r

f(r)
0

0 0 f(r)

 =

V 0 0
0 r

V
0

0 0 V

 (3.6)

and
Kα = 0 , α = 1, 2, 3 . (3.7)

3.1.1 Calculation of angular velocity operators.

In order to continue our calculations let’s refer to formulas (2.12) ÷ (2.15).
We first calculate Qα̂β̂:

Qα̂β̂ = ηα̂γ̂W
δ
β̂

(
Ẇ γ̂
δ +Kε∂εW

γ̂
δ +W γ̂

ε ∂δK
ε
)

= 0 . (3.8)

Really, the first term between brackets vanishes because W γ̂
δ is not dependant

on t, and the second and the third terms vanish because Kε = 0,∀ε = 1, 2, 3.
Now it is easy to calculate the components of the spin connection. From
(3.8) we can directly obtain:

ω̃µα̂0̂ =
1

V
W β
α̂∂βV e

0̂
µ −

1

V
Q(α̂β̂)e

β̂
µ =

1

V

(
W r
α̂∂rV e

0̂
µ +W φ

α̂∂φV e
0̂
µ+

+W z
α̂∂zV e

0̂
µ

)
=

1

V
W r
α̂∂rV e

0̂
µ , (3.9)

which, explicitly, is

for µ = 0 ⇒ ω̃0α̂0̂ =
1

V
W r
α̂ (∂rV )V = W r

α̂ (∂rV ) ⇒

⇒ ω̃0α̂0̂ =

{
W r
r (∂rV ) = 1

V
∂rV = ∂r ln (V ) , if α̂ = r ,

0 , if α̂ = φ, z ;
(3.10)

for µ = β ⇒ ω̃βα̂0̂ = 0 , β = 1, 2, 3. (3.11)
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In order to proceed, we calculate the anholonimity coefficients:

C γ̂
α̂β̂

= W δ
α̂W

ε
β̂
∂[δW

γ̂
ε] =

1

2
W δ
α̂W

ε
β̂

(
∂δW

γ̂
ε − ∂εW

γ̂
δ

)
=

=
1

2

[
W r
α̂W

ε
β̂

(
∂rW

γ̂
ε − ∂εW γ̂

r

)
−W φ

α̂W
ε
β̂

(
∂εW

γ̂
φ

)
−W z

α̂W
ε
β̂

(
∂εW

γ̂
z

)]
=

=
1

2

[
W r
α̂W

r
β̂

(
∂rW

γ̂
r − ∂rW γ̂

r

)
+W r

α̂W
φ

β̂

(
∂rW

γ̂
φ

)
+W r

α̂W
z
β̂

(
∂rW

γ̂
z

)
−

−W φ
α̂W

r
β̂

(
∂rW

γ̂
φ

)
−W z

α̂W
r
β̂

(
∂rW

γ̂
z

)]
=

= W r
[α̂W

φ

β̂]

(
∂rW

γ̂
φ

)
+W r

[α̂W
z
β̂]

(
∂rW

γ̂
z

)
, (3.12)

which, explicitly, is:
for γ̂ = r̂ ⇒ C r̂

α̂β̂
= 0 (3.13)

because W α̂
β is diagonal;

for γ̂ = φ̂ ⇒ Cφ̂
α̂β̂

= W r
[α̂W

φ

β̂]

(
∂rW

φ̂
φ

)
= W r

[α̂W
φ

β̂]
V − rV ′

V 2
=

=

 0 V−rV ′

2rV 2 0

−V−rV ′

2rV 2 0 0
0 0 0

 ; (3.14)

for γ̂ = ẑ ⇒ C ẑ
α̂β̂

= W r
[α̂W

z
β̂]

(
∂rW

ẑ
z

)
= W r

[α̂W
z
β̂]V

′ =

=

 0 0 V ′

2V 2

0 0 0

− V ′

2V 2 0 0

 . (3.15)

Here we used ′ to indicate the derivative with respect to r. By using ηγ̂δ̂ =
−δγ̂δ̂, we lower the γ̂ index and obtain

Cα̂β̂r̂ = 0 , Cα̂β̂φ̂ = −Cφ̂
α̂β̂
, Cα̂β̂ẑ = −C ẑ

α̂β̂
. (3.16)

Now we use (3.15) and (3.16) to calculate (2.13):

ω̃µα̂β̂ =
(
Cα̂β̂γ̂ + Cα̂γ̂β̂ + Cγ̂β̂α̂

)
eγ̂µ (3.17)

which, explicitly, is
for µ = 0 ⇒ ω̃0α̂β̂ = 0 ; (3.18)
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for µ = r ⇒ ω̃rα̂β̂ =
(
Cα̂β̂r̂ + Cα̂r̂β̂ + Cr̂β̂α̂

)
V =

=

0 0 0
0 0 0
0 0 0

 ; (3.19)

for µ = φ ⇒ ω̃φα̂β̂ =
(
Cα̂β̂φ̂ + Cα̂φ̂β̂ + Cφ̂β̂α̂

) r

V
=

=

 0 −V−rV ′

V 3 0
V−rV ′

V 3 0 0
0 0 0

 ; (3.20)

for µ = z ⇒ ω̃zα̂β̂ =
(
Cα̂β̂ẑ + Cα̂ẑβ̂ + Cẑβ̂α̂

)
V =

=

 0 0 −V ′

V

0 0 0
V ′

V
0 0

 . (3.21)

Starting from what we obtained, we want to calculate all the terms of the
Hamiltonian (2.20), therefore we have:

Fβα̂ = VW β
α̂ =

1 0 0

0 V 2

r
0

0 0 1

 , (3.22)

Ξα̂ = 0 , (3.23)

Υ = −V εα̂β̂γ̂Cα̂β̂γ̂ = −V
(
εr̂φ̂ẑCr̂φ̂ẑ + εr̂ẑφ̂Cr̂ẑφ̂ + εφ̂r̂ẑCφ̂r̂ẑ+

+εφ̂ẑr̂Cφ̂ẑr̂ + εẑr̂φ̂Cẑr̂φ̂ + εẑφ̂r̂Cẑφ̂r̂
)

= 0 . (3.24)

By using these results as a replacement in (2.21) ÷ (2.23), we obtain:

M = mV , (3.25)

E = qφ , (3.26)

O =
1

2

(
πrα

r +
V 2

r
πφα

φ + πzα
z + αrπr +

V 2

r
αφπφ + αzπz

)
=

= αrπr +
V 2

r
αφπφ + αzπz . (3.27)
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Now we want to calculate the equation of motion of spin, so we have to
calculate the operators of the angular velocity of spin precession (2.29) and
(2.30); we have:

Ωα̂
(1) =

m

2

{
1

T
,
{
πε, ε

α̂β̂γ̂F ε
β̂
F δγ̂∂δV

}}
+

+
1

8

{
1

ε′
,
{
πε,
(

2εα̂β̂γ̂F δ
β̂
∂δF εγ̂ + δα̂β̂F ε

β̂
Υ
)}}

=

=
m

2

{
1

T
,
{
πε, ε

α̂β̂r̂F ε
β̂
∂rV

}}
+

1

8

{
1

ε′
,
{
πε, 2ε

α̂r̂γ̂∂rF εγ̂
}}

, (3.28)

Ωα̂
(2) = 0 , (3.29)

having relied on the fact that the only derivatives different from 0 are those
with respect to r, and on the equations (3.23) and (3.24). To proceed with
the calculations for (3.28) we separately work out the two internal anticom-
mutators:{

πε, ε
α̂β̂r̂F ε

β̂
∂rV

}
=
{
πr, ε

α̂β̂r̂F r
β̂
∂rV

}
+
{
πφ, ε

α̂β̂r̂Fφ
β̂
∂rV

}
+

+
{
πz, ε

α̂β̂r̂F z
β̂
∂rV

}
=

{
πφ, ε

α̂φ̂r̂V
2

r
∂rV

}
+
{
πz, ε

α̂ẑr̂∂rV
}
, (3.30)

{
πε, 2ε

α̂r̂γ̂∂rF εγ̂
}

=

{
πφ, 2ε

α̂r̂φ̂∂r
V 2

r

}
. (3.31)

Now we can calculate the three components of the operator Ω(1):

Ωr̂
(1) = 0 , (3.32)

Ωφ̂
(1) =

m

2

{
1

T
, {πz, V ′}

}
, (3.33)

Ωẑ
(1) =

m

2

{
1

T
,

{
πφ,−

V 2

r
V ′
}}

+
1

8

{
1

ε′
,

{
πφ, 2

2V V ′r − V 2

r2

}}
. (3.34)

We observe that the energy ε′ assumes the same form as in (2.34), since
we have {

πβ,Fβα̂
}

= 2Fβα̂πβ ,

because Fφ
φ̂

is the only non constant element, but in this case it is associated

with πφ and they do commute. So we have



3.1. MELVIN SPACE-TIME. 41

ε′ =
√
m2V 2 + δγ̂δ̂Fαγ̂ F

β

δ̂
παπβ

and in particular (2.37) holds. Now we work out each term to determine the
angular velocity operators:

T = 2ε′2 + {ε′,mV } = 2ε′2 + 2ε′mV = 2ε′2
(

1 +
1

γ

)
= 2ε′2

1 + γ

γ
,{

1

T
, {πz, V ′}

}
=

{
1

T
, 2V ′πz

}
= 4

V ′πz
T

= 2V ′
γ

1 + γ

πz
ε′2

⇒

⇒ Ωφ̂
(1) = mV ′

γ

1 + γ

πz
ε′2

=
V ′

V

1

1 + γ

πz
ε′

; (3.35){
1

T
,

{
πφ,−

V ′V 2

r

}}
=

{
1

T
,−2

V ′V 2

r
πφ

}
= −4

V ′V 2

r

πφ
T

=

= −2
V ′V 2

r

γ

1 + γ

πφ
ε′2

,{
1

ε′
,

{
πφ, 2

2V V ′r − V 2

r2

}}
=

{
1

ε′
, 4

2V V ′r − V 2

r2
πφ

}
= 8

2V V ′r − V 2

r2

πφ
ε′
,

⇒ Ωẑ
(1) = −mV ′V 2

r

γ

1 + γ

πφ
ε′2

+
2V V ′r − V 2

r2

πφ
ε′

=

= −V
′V

r

1

1 + γ

πφ
ε′

+
2V V ′r − V 2

r2

πφ
ε′

=

=
V V ′r − V 2 + 2γV V ′r − γV 2

r2

1

1 + γ

πφ
ε′
. (3.36)

Now we can use (2.37) to replace the momenta πα with the velocities vα, and
we obtain:

vr̂ = βFβr̂
πβ
ε′

= β
πr̂
ε′
,

vφ̂ = βFβ
φ̂

πβ
ε′

= β
V 2

r

πφ̂
ε′
,

vẑ = βFβẑ
πβ
ε′

= β
πẑ
ε′
,

and by substituting in (3.35) and (3.36), we obtain:

Ωφ̂
(1) = β

V ′

V

1

1 + γ
vẑ , (3.37)

Ωẑ
(1) = β

V ′r − V + 2γV ′r − γV
rV

1

1 + γ
vφ̂ . (3.38)

So (3.37) and (3.38) are the only angular velocity operators different from 0,
and we will use this to solve the equation of motion of spin operators.
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3.1.2 Semiclassical approximation.

It is interesting to observe that if we were to use the semiclassical formulas
introduced in the previous chapter, we would obtain the same result. In this
section we will prove this correspondence to be true: starting from (2.32)
and (2.33) we can work out the angular velocity operators, and from (2.34)
we obtain the energy, that can be expressed using the γ factor as shown in
(2.38). In this semiclassical limit we have:

Ωα̂
(2) = 0 , (3.39)

for the same reason as in the exact case, and

Ωα̂
(1) =

1

ε′
F δγ̂πδ

(
−εα̂ε̂χ̂V C γ̂ε̂χ +

γ

1 + γ
εα̂β̂γ̂W ε

β̂
∂εV

)
=

= − 1

ε′

(
F rγ̂πr + Fφγ̂ πφ + F zγ̂πz

)
εα̂ε̂χ̂V C γ̂ε̂χ +

1

ε′
(
F rγ̂πr+

+Fφγ̂ πφ + F zγ̂πz
) γ

1 + γ
εα̂r̂γ̂

V ′

V
. (3.40)

Now we separately work out the two terms appearing in (3.40):

1) − 1

ε′
πrε

α̂ε̂χ̂V C r̂ε̂χ̂ −
1

ε′
V 2

r
πφε

α̂ε̂χ̂V Cφ̂ε̂χ̂ −
1

ε′
πzε

α̂ε̂χ̂V C ẑε̂χ̂ =

= −1

ε

V 2

r
πφ

(
εα̂r̂φ̂V

V − rV ′

2rV 2
− εα̂φ̂r̂V V − rV

′

2rV 2

)
−

− 1

ε′
πz

(
εα̂r̂ẑV

V ′

2V
− εα̂ẑr̂V V ′

2V

)
; (3.41)

2)
1

ε′
πr

γ

1 + γ
εα̂r̂r̂

V ′

V
+

1

ε′
V 2

r
πφ

γ

1 + γ
εα̂r̂φ̂

V ′

V
+

1

ε′
πz

γ

1 + γ
εα̂r̂ẑ

V ′

V
=

=
1

ε′
V 2

r
πφ

γ

1 + γ
εα̂r̂φ̂

V ′

V
+

1

ε′
πz

γ

1 + γ
εα̂r̂ẑ

V ′

V
. (3.42)

By putting these results together, and keeping in mind the definition of the
Levi-Civita symbols, we obtain:

Ωr̂
(1) = 0 , (3.43)

Ωφ̂
(1) = − 1

ε′
πz

(
− V

′

2V
− V ′

2V

)
− 1

ε′
πz

γ

1 + γ

V ′

V
=
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=
1

ε′
πz

(
V ′

V
− γV ′

(1 + γ)V

)
=

1

ε′
πz

V ′

(1 + γ)V
, (3.44)

Ωẑ
(1) = − 1

ε′
V 2

r
πφ

(
V − rV ′

2rV
+
V − rV ′

2rV

)
+

1

ε′
V 2

r
πφ

γ

1 + γ

V ′

V
=

= − 1

ε′
V 2

r
πφ
V − rV ′ + γV − 2γrV ′

(1 + γ) rV
. (3.45)

(3.43) is equal to the corresponding exact term (3.32), and if we rewrite (3.44)
and (3.45) in terms of the velocities we obtain

Ωφ̂
(1) = vẑ

V ′

V

1

1 + γ
, (3.46)

Ωẑ
(1) = −vφ̂

V − rV ′ + γV − 2γrV ′

(1 + γ) rV
. (3.47)

So, the angular velocities calculated in the semiclassical approximation re-
produce the exact operators as anticipated, the only difference being the β
matrix that appears only in the operators (3.37) and (3.38).

3.1.3 Geodesics equations: direct approach.

The equations of motion of the polarization operator (2.28) are

dΠ

dt
= Ω(1) ×Σ + Ω(2) ×Π = Ω(1) ×Σ , (3.48)

because Ω(2) = 0. By rewriting (3.39) using the component notation, we
have

dΠα̂

dt
= εα̂β̂γ̂Ω(1)β̂Σγ̂ = εα̂β̂r̂Ω(1)β̂Σr̂ + εα̂β̂φ̂Ω(1)β̂Σφ̂ + εα̂β̂ẑΩ(1)β̂Σẑ =

= εα̂φ̂r̂Ω(1)φ̂Σr̂ + εα̂ẑr̂Ω(1)ẑΣr̂ + εα̂r̂φ̂Ω(1)r̂Σφ̂ + εα̂ẑφ̂Ω(1)ẑΣφ̂ + εα̂r̂ẑΩ(1)r̂Σẑ+

+εα̂φ̂ẑΩ(1)φ̂Σẑ = εα̂φ̂r̂Ω(1)φ̂Σr̂+ε
α̂ẑr̂Ω(1)ẑΣr̂+ε

α̂ẑφ̂Ω(1)ẑΣφ̂+εα̂φ̂ẑΩ(1)φ̂Σẑ , (3.49)

having used (3.32). By making (4.39) explicit:

dΠr̂

dt
= Ω(1)φ̂Σẑ − Ω(1)ẑΣφ̂ , (3.50)

dΠφ̂

dt
= Ω(1)ẑΣr̂ , (3.51)
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dΠẑ

dt
= −Ω(1)φ̂Σr̂ , (3.52)

having used the antisymmetry property of ε and (3.32) again. In operators
(3.37) and (3.38) the velocities of a particle appear explicitly, so we need to
find an expression for the velocities of a particle moving in a Melvin universe
by solving the geodesics equations [9]:

d2xµ

dτ 2
+ Γµνσ

dxν

dτ

dxσ

dτ
= 0 . (3.53)

First of all, we work out the Christoffel symbols:

Γµνσ =
1

2
gµρ (gρν ,σ +gρσ,ν −gνσ,ρ ) ,

which, explicitly, are

Γ0
νσ =

1

2
g0ρ (gρν ,σ +gρσ,ν −gνσ,ρ ) =

1

2
g00 (g0ν ,σ +g0σ,ν −gνσ,0 ) =

=
1

2V 2
(g0ν ,σ +g0σ,ν ) =

1

2V 2


0 2V V ′ 0 0

2V V ′ 0 0 0
0 0 0 0
0 0 0 0

 , (3.54)

Γ1
νσ =

1

2
g1ρ (gρν ,σ +gρσ,ν −gνσ,ρ ) =

1

2
g11 (g1ν ,σ +g1σ,ν −gνσ,1 ) =

= − 1

2V 2
(g1ν ,σ +g1σ,ν −gνσ,1 ) =

= − 1

2V 2


−2V V ′ 0 0 0

0 −2V V ′ 0 0

0 0 2rV 2−2r2V V ′

V 4 0
0 0 0 2V V ′

 , (3.55)

Γ2
νσ =

1

2
g2ρ (gρν ,σ +gρσ,ν −gνσ,ρ ) =

1

2
g22 (g2ν ,σ +g2σ,ν −gνσ,2 ) =

= − V
2

2r2
(g2ν ,σ +g2σ,ν ) = − V

2

2r2


0 0 0 0

0 0 −2rV 2−2r2V V ′

V 4 0

0 −2rV 2−2r2V V ′

V 4 0 0
0 0 0 0

 ,

(3.56)

Γ3
νσ =

1

2
g3ρ (gρν ,σ +gρσ,ν −gνσ,ρ ) =

1

2
g33 (g3ν ,σ +g3σ,ν −gνσ,3 ) =
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= − 1

2V 2
(g3ν ,σ +g3σ,ν ) = − 1

2V 2


0 0 0 0
0 0 0 −2V V ′

0 0 0 0
0 −2V V ′ 0 0

 . (3.57)

Thus, the geodesics equations are:

for µ = 0 ⇒ 0 =
d2t

dτ 2
+ Γ0

νσ

dxν

dτ

dxσ

dτ
=
d2t

dτ 2
+ Γ0

0σ

dx0

dτ

dxσ

dτ
+

+Γ0
1σ

dx1

dτ

dxσ

dτ
+ Γ0

2σ

dx2

dτ

dxσ

dτ
+ Γ0

3σ

dx3

dτ

dxσ

dτ
=
d2t

dτ 2
+ 2

V ′

V

dt

dτ

dr

dτ
⇒

⇒ d2t

dτ 2
+ 2

V ′

V

dt

dτ

dr

dτ
= 0 , (3.58)

for µ = 1 ⇒ 0 =
d2r

dτ 2
+ Γ1

νσ

dxν

dτ

dxσ

dτ
=
d2r

dτ 2
+ Γ1

0σ

dx0

dτ

dxσ

dτ
+ Γ1

1σ

dx1

dτ

dxσ

dτ
+

+Γ1
2σ

dx2

dτ

dxσ

dτ
+ Γ1

3σ

dx3

dτ

dxσ

dτ
=
d2r

dτ 2
+
V ′

V

(
dt

dτ

)2

+
V ′

V

(
dr

dτ

)2

+

+
r2V ′ − rV

V 5

(
dφ

dτ

)2

− V ′

V

(
dz

dτ

)2

⇒

⇒ d2r

dτ 2
+
V ′

V

(
dt

dτ

)2

+
V ′

V

(
dr

dτ

)2

+
r2V ′ − rV

V 5

(
dφ

dτ

)2

− V ′

V

(
dz

dτ

)2

= 0 ,

(3.59)

for µ = 2 ⇒ 0 =
d2φ

dτ 2
+ Γ2

νσ

dxν

dτ

dxσ

dτ
=
d2φ

dτ 2
+ Γ2

0σ

dx0

dτ

dxσ

dτ
+ Γ2

1σ

dx1

dτ

dxσ

dτ
+

+Γ2
2σ

dx2

dτ

dxσ

dτ
+ Γ2

3σ

dx3

dτ

dxσ

dτ
=
d2φ

dτ 2
+ 2

V − rV ′

rV

dr

dτ

dφ

dτ
⇒

⇒ d2φ

dτ 2
+ 2

V − rV ′

rV

dr

dτ

dφ

dτ
= 0 , (3.60)

for µ = 3 ⇒ 0 =
d2z

dτ 2
+ Γ3

νσ

dxν

dτ

dxσ

dτ
=
d2z

dτ 2
+ Γ3

0σ

dx0

dτ

dxσ

dτ
+ Γ3

1σ

dx1

dτ

dxσ

dτ
+

+Γ3
2σ

dx2

dτ

dxσ

dτ
+ Γ3

3σ

dx3

dτ

dxσ

dτ
=
d2z

dτ 2
+ 2

V ′

V

dz

dτ

dr

dτ
⇒

⇒ d2z

dτ 2
+ 2

V ′

V

dz

dτ

dr

dτ
= 0 . (3.61)

In order to solve these equations, we first solve (3.58), (3.60) and (3.61),
then we use the results obtained to solve (3.59). From (3.58) we have:

V ′

V
=
d (lnV )

dr
⇒ d (lnV )

dr

dr

dτ
=
d (lnV )

dτ
⇒
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⇒ d2t

dτ 2
= −2

d (lnV )

dτ

dt

dτ
⇒ dt

dτ
= C0 exp [−2 lnV ] =

C0

V 2
, (3.62)

so

U0 =
dt

dτ
=
C0

V 2
. (3.63)

Analogously, for (3.61) we have

U3 =
dz

dτ
=
C3

V 2
. (3.64)

From (3.60) we have

2
V − rV ′

rV
= 2

( r
V

)′ V
r

= 2
d
(
ln r

V

)
dr

=
d
(

ln r2

V 2

)
dr

⇒

⇒
d
(

ln r2

V 2

)
dr

dr

dτ
=
d
(

ln r2

V 2

)
dτ

⇒

⇒ d2φ

dτ 2
= −

d
(

ln r2

V 2

)
dτ

dφ

dτ
⇒ dφ

dτ
= C2 exp

[
− ln

r2

V 2

]
=
C2V

2

r2
, (3.65)

so

U2 =
dφ

dτ
=
C2V

2

r2
. (3.66)

Substituting (3.63), (3.64) and (3.66) in (3.59) we obtain:

d2r

dτ 2
+
C2

0V
′

V 5
+
V ′

V

(
dr

dτ

)2

+ C2
2

rV ′ − V
r3V

− C2
3V
′

V 5
= 0 ⇒

⇒ d2r

dτ 2
+
d lnV

dr

(
dr

dτ

)2

+
d

dr

[
−C

2
0

4

1

V 4
+ C2

2

∫ r

0

V ′

r̃2V
dr̃+

+
C2

2

2

1

r2
+
C2

3

4

1

V 4

]
= 0 ⇒ d2r

dτ 2
+
d lnV

dr

(
dr

dτ

)2

+
dA

dr
= 0 , (3.67)

where A = −C
2
0

4

1

V 4
+ C2

2

∫ r

0

V ′

r̃2V
dr̃ +

C2
2

2

1

r2
+
C2

3

4

1

V 4
.

By using

d lnV

dr

(
dr

dτ

)2

=
d lnV

dτ

dr

dτ
and

dA

dr
=
dA

dτ

dτ

dr
,
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in (3.67), we obtain

d2r

dτ 2
+
d lnV

dτ

dr

dτ
+
dA

dτ

(
dr

dτ

)−1

= 0 ⇒

⇒ d

dτ

[(
dr

dτ

)2
]

+ 2
d lnV

dτ

(
dr

dτ

)2

+ 2
dA

dτ
= 0 ⇒

⇒
(
dr

dτ

)2

= C1e
−2 lnV − 2A =

C1

V 2
− 2A , (3.68)

therefore

U1 =
dr

dτ
=

√
C1

V 2
+
C2

0

2

1

V 4
− C2

2

2

∫ r

0

V ′

r̃2V
dr̃ − C2

2

1

r2
− C2

3

2

1

V 4
. (3.69)

The velocities can be obtained using the chain rule, and therefore are

v1 =
dx

dt
=
V 2

C0

U1 , v2 =
dy

dt
=
V 2

C0

U2 , v3 =
dz

dt
=
V 2

C0

U3 . (3.70)

By using the tetrads (3.4), we can obtain the tetrad velocities:

v1̂ = vr̂ = V v1 , v2̂ = vφ̂ =
r

V
v2 , v3̂ = vẑ = V v3 . (3.71)

These are the velocities to be substituted in (3.46) and (3.47).

3.1.4 Geodesics equations: Killing approach.

In this section we will solve the geodesics equations in a more elegant way.
We make use of Killing vector fields. As we demonstrated in appendix B,
if the metric is independent of one coordinate, then a trivial Killing vector
field is the generator of translations along that coordinate. In the case of the
line element (3.2), the metric is independent of the coordinates t, φ and z,
so three Killing vector fields are

ξµt = (1, 0, 0, 0) , ξµφ = (0, 0, 1, 0) , ξµz = (0, 0, 0, 1) . (3.72)

As we have shown in appendix B, we can build constants of motion from
these Killing vector fields; in particular we have

ξµt Uµ = D0 , ξ
µ
φUµ = D2 , ξ

µ
zUµ = D3 ,
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and from these relations we obtain

U0 = D0 ⇒ U0 =
D0

V 2
, (3.73)

U2 = D2 ⇒ U2 = −V
2D2

r2
, (3.74)

U3 = D3 ⇒ U3 = −D3

V 2
. (3.75)

We observe that these three components have exactly the same structure as
in (3.63), (3.64) and (3.66). The component U1 can be found by imposing a
normalization condition, that is

UµU
µ = 1 ⇒ D2

0

V 2
− V 2

(
U1
)2 − V 2D2

2

r2
− D2

3

V 2
= 1 . (3.76)

By solving (3.76), we find that U1 has the same structure as in (3.69), the
only difference being that in (3.69) four integration constants appear but
only three are really independent, because no condition of normalization was
imposed.

3.1.5 Ricci tensor in Melvin space-time.

Now that we have calculated the components of the affine connection, it
is interesting to verify the coherence of the emerging geometry with the
assumption (3.2) of the metric. Here we will calculate the Ricci tensor and
show that, by imposing the scalar curvature to be 0, we will rediscover the
structure of the Melvin solution. To work out the Ricci tensor we have:

Rµν = Γρµν,ρ − Γρµρ,ν + ΓρµνΓ
λ
λρ − ΓλµρΓ

ρ
νλ , (3.77)

and by using (3.54) ÷ (3.57) we can work out each component of the tensor:

R00 = Γρ00,ρ − Γρ0ρ,0 + Γρ00Γλλρ − Γλ0ρΓ
ρ
0λ =

= ∂r

(
V ′

V

)
+
V ′

V

(
Γ0

10 + Γ1
11 + Γ2

12 + Γ3
13

)
−
(
Γ0

0ρΓ
ρ
00 + Γ1

0ρΓ
ρ
01+

+Γ2
0ρΓ

ρ
02 + Γ3

0ρΓ
ρ
03

)
= ∂r

(
V ′

V

)
+

(
V ′

V

)2

+

(
V ′

V

)2

+

(
V ′

V

)
V − rV ′

rV
+

+

(
V ′

V

)2

−

[(
V ′

V

)2

+

(
V ′

V

)2
]

= ∂r

(
V ′

V

)
+
V ′

rV
; (3.78)
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R11 = Γρ11,ρ − Γρ1ρ,1 + Γρ11Γλλρ − Γλ1ρΓ
ρ
1λ =

= ∂r

(
V ′

V

)
−
[
Γ0

10,1 + Γ1
11,1 + Γ2

12,1 + Γ3
13,1

]
+ Γ1

11

[
Γ0

10 + Γ1
11 + Γ2

12 + Γ3
13

]
−

−
[
Γ0

1ρΓ
ρ
10 + Γ1

1ρΓ
ρ
11 + Γ2

1ρΓ
ρ
12 + Γ3

1ρΓ
ρ
13

]
= ∂r

(
V ′

V

)
−
[
∂r

(
V ′

V

)
+

∂r

(
V ′

V

)
+ ∂r

(
V − rV ′

rV

)
+ ∂r

(
V ′

V

)]
+
V ′

V

[
V ′

V
+
V ′

V
+
V − rV ′

rV
+
V ′

V

]
−

−

[(
V ′

V

)2

+

(
V ′

V

)2

+

(
V − rV ′

rV

)2

+

(
V ′

V

)2
]

= −∂r
(

1

r

)
− ∂r

(
V ′

V

)
+

+3

(
V ′

V

)2

+
V ′

rV
−
(
V ′

V

)2

− 3

(
V ′

V

)2

− 1

r2
−
(
V ′

V

)2

+
2V ′

rV
=

= −∂r
(
V ′

V

)
+

3V ′

rV
− 2

(
V ′

V

)2

; (3.79)

R22 = Γρ22,ρ − Γρ2ρ,2 + Γρ22Γλλρ − Γλ2ρΓ
ρ
2λ =

= ∂r

(
−rV + r2V ′

V 5

)
+ Γ1

22

[
Γ0

10 + Γ1
11 + Γ2

12 + Γ3
13

]
−

−
[
Γλ20Γ0

2λ + Γλ21Γ1
2λ + Γλ22Γ2

2λ + Γλ23Γ3
2λ

]
=

= ∂r

(
−rV + r2V ′

V 5

)
+
−rV + r2V ′

V 5

[
V ′

V
+
V ′

V
+
V − rV ′

rV
+
V ′

V

]
−

−
[
V − rV ′

rV

−rV + r2V ′

V 5
+
−rV + r2V ′

V 5

V − rV ′

rV

]
=

= ∂r

(
−rV + r2V ′

V 5

)
+ 3

V ′

V

−rV + r2V ′

V 5
+
−rV + r2V ′

V 5

V − rV ′

rV
−

−2
−rV + r2V ′

V 5
− 2
−rV + r2V ′

V 5

V − rV ′

rV
=

= ∂r

(
−rV + r2V ′

V 5

)
+ 4

V ′

V

−rV + r2V ′

V 5
− −V + rV ′

V 5
; (3.80)

R33 = Γρ33,ρ − Γρ3ρ,3 + Γρ33Γλλρ − Γλ3ρΓ
ρ
3λ =

= −∂r
(
V ′

V

)
+ Γ1

33

[
Γ0

10 + Γ1
11 + Γ2

12 + Γ3
13

]
−

−
[
Γ0

3ρΓ
ρ
30 + Γ1

3ρΓ
ρ
31 + Γ2

3ρΓ
ρ
32 + Γ3

3ρΓ
ρ
33

]
=
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= −∂r
(
V ′

V

)
− V ′

V

[
V ′

V
+
V ′

V
+
V − rV ′

rV
+
V ′

V

]
−

[
−
(
V ′

V

)2

−
(
V ′

V

)2
]

=

= −∂r
(
V ′

V

)
− 2

(
V ′

V

)2

− V ′

rV
+ 2

(
V ′

V

)2

= −∂r
(
V ′

V

)
− V ′

rV
= −R00 ;

(3.81)
R01 = Γρ10,ρ − Γρ0ρ,1 + Γρ01Γλλρ − Γλ0ρΓ

ρ
1λ =

= −
[
Γ0

1λΓ
λ
00 + Γ1

1λΓ
λ
01 + Γ2

1λΓ
λ
02 + Γ3

1λΓ
λ
03

]
= 0 ; (3.82)

R02 = Γρ20,ρ − Γρ0ρ,2 + Γρ02Γλλρ − Γλ0ρΓ
ρ
2λ =

= −
[
Γ0

2λΓ
λ
00 + Γ1

2λΓ
λ
01 + Γ2

2λΓ
λ
02 + Γ3

2λΓ
λ
03

]
= 0 ; (3.83)

R03 = Γρ30,ρ − Γρ0ρ,3 + Γρ03Γλλρ − Γλ0ρΓ
ρ
3λ =

= −
[
Γ0

3λΓ
λ
00 + Γ1

3λΓ
λ
01 + Γ2

3λΓ
λ
02 + Γ3

3λΓ
λ
03

]
= 0 ; (3.84)

R12 = Γρ12,ρ − Γρ1ρ,2 + Γρ12Γλλρ − Γλ1ρΓ
ρ
2λ =

= Γ2
12

[
Γ0

02 + Γ1
12 + Γ2

22 + Γ3
32

]
−

−
[
Γλ10Γ0

2λ + Γλ11Γ1
2λ + Γλ12Γ2

2λ + Γλ13Γ3
2λ

]
= 0 ; (3.85)

R13 = Γρ13,ρ − Γρ1ρ,3 + Γρ13Γλλρ − Γλ1ρΓ
ρ
3λ =

= Γ3
13

[
Γ0

03 + Γ1
13 + Γ2

23 + Γ3
33

]
−

−
[
Γλ10Γ0

3λ + Γλ11Γ1
3λ + Γλ12Γ2

3λ + Γλ13Γ3
3λ

]
= 0 ; (3.86)

R23 = Γρ23,ρ − Γρ2ρ,3 + Γρ23Γλλρ − Γλ2ρΓ
ρ
3λ =

= −
[
Γλ20Γ0

3λ + Γλ21Γ1
3λ + Γλ22Γ2

3λ + Γλ23Γ3
3λ

]
= 0 . (3.87)

We observe that the Ricci tensor is diagonal, as expected. In order to work
out the scalar curvature, we need to raise one of the indices:

Rµ
ν = gµρRρν ,

so each component different from 0 becomes:

R0
0 = g0ρRρ0 = g00R00 =

1

V 2

(
V ′′

V
− V ′2

V 2
+
V ′

rV

)
=

=
V ′′

V 3
− V ′2

V 4
+

V ′

rV 3
, (3.88)

R1
1 = g1ρRρ1 = g11R11 = − 1

V 2

(
−V

′′

V
+

3V ′

rV
− V ′2

V 2

)
=
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=
V ′′

V 3
− 3V ′

rV 3
+
V ′2

V 4
, (3.89)

R2
2 = g2ρRρ2 = g22R22 = −V

2

r2

(
r2V ′′

V 5
+
rV ′

V 5
− r2V ′2

V 6

)
=

= −V
′′

V 3
− V ′

rV 3
+
V ′2

V 4
, (3.90)

R3
3 = g3ρRρ3 = g33R33 = − 1

V 2

(
−V

′′

V
+
V ′2

V 2
− V ′

rV

)
=

=
V ′′

V 3
− V ′2

V 4
+

V ′

rV 3
. (3.91)

The scalar curvature is then

R = Rµ
µ =

V ′′

V 3
− V ′2

V 4
+

V ′

rV 3
+
V ′′

V 3
− 3V ′

rV 3
+
V ′2

V 4
− V ′′

V 3
−

− V ′

rV 3
+
V ′2

V 4
+
V ′′

V 3
− V ′2

V 4
+

V ′

rV 3
=

2V ′′

V 3
− 2V ′

rV 3
. (3.92)

The trace of the energy-momentum tensor of the electromagnetic field is 0
[9]. Coherently with this constraint we impose R = 0 , so we have

V ′′ − V ′

r
= 0 , (3.93)

and by solving this equation we obtain:

V ′ = Ar ⇒ V =
A

2
r2 +B , (3.94)

where A and B are integration constants. (3.94) is in perfect agreement with
(3.2), as expected.

3.1.6 Equations of spin operators.

Now we have all the ingredients necessary to solve equations (3.50) ÷ (3.52);
first we observe that both Ω(1)φ̂ and Ω(1)ẑ contain a β matrix, and that if
we multiply this matrix by Σr̂,Σφ̂ or Σẑ we obtain Πr̂,Πφ̂ or Πẑ respectively.
By renaming the angular velocities with the same notations without β, the
set of differential equations can be written as

d

dt

Πr̂

Πφ̂

Πẑ

 =

 0 −Ω(1)ẑ Ω(1)φ̂

Ω(1)ẑ 0 0
−Ω(1)φ̂ 0 0

Πr̂

Πφ̂

Πẑ

 . (3.95)
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Using the spacial Minkowski metric diag (−1,−1,−1) to raise the hatted
indices, system (3.95) becomes

d

dt

Πr̂

Πφ̂

Πẑ

 =

 0 −Ωẑ
(1) Ωφ̂

(1)

Ωẑ
(1) 0 0

−Ωφ̂
(1) 0 0


Πr̂

Πφ̂

Πẑ

 . (3.96)

(3.96) is a linear system of differential equations with coefficients constant
in time t, so we can solve it easily with common methods of mathematical
analysis; we first evaluate the eigenvalues of the matrix of coefficients by
solving the secular equation det (A− λI) = 0:

0 = det

 −λ −Ωẑ
(1) Ωφ̂

(1)

Ωẑ
(1) −λ 0

−Ωφ̂
(1) 0 −λ

 = −λ3 −
(
λΩφ̂2

(1) + λΩẑ2
(1)

)
= 0 ⇒

⇒ λ = 0 , λ± = ±i
√

Ωφ̂2
(1) + Ωẑ2

(1) . (3.97)

Now we work out the corresponding eigenvectors:

for λ = 0 ⇒

 0 −Ωẑ
(1) Ωφ̂

(1)

Ωẑ
(1) 0 0

−Ωφ̂
(1) 0 0


Πr̂

Πφ̂

Πẑ

 = 0 ⇒

⇒


−Ωẑ

(1)Π
φ̂ + Ωφ̂

(1)Π
ẑ = 0

Ωẑ
(1)Π

r̂ = 0

−Ωφ̂
(1)Π

r̂ = 0

, an eigenvector is


0

Ωφ̂
(1)

Ωẑ
(1)

1

 = u . (3.98)

The other two eigenvalues are complex conjugates, so we need to find an
eigenvector corresponding to λ+ and then split it into its real and imaginary
parts:

for λ+ = i

√
Ωφ̂2

(1) + Ωẑ2
(1) ⇒

⇒


i
√

Ωφ̂2
(1) + Ωẑ2

(1) −Ωẑ
(1) Ωφ̂

(1)

Ωẑ
(1) i

√
Ωφ̂2

(1) + Ωẑ2
(1) 0

−Ωφ̂
(1) 0 i

√
Ωφ̂2

(1) + Ωẑ2
(1)


Πr̂

Πφ̂

Πẑ

 = 0 ⇒

⇒


i
√

Ωφ̂2
(1) + Ωẑ2

(1)Π
r̂ − Ωẑ

(1)Π
φ̂ + Ωφ̂

(1)Π
ẑ = 0

Ωẑ
(1)Π

r̂ + i
√

Ωφ̂2
(1) + Ωẑ2

(1)Π
φ̂ = 0

−Ωφ̂
(1)Π

r̂ + i
√

Ωφ̂2
(1) + Ωẑ2

(1)Π
ẑ = 0

, an eigenvector is
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1

−
Ωẑ

(1)

i

√
Ωφ̂2

(1)
+Ωẑ2

(1)

Ωφ̂
(1)

i

√
Ωφ̂2

(1)
+Ωẑ2

(1)

 =

1
0
0

+ i


0

Ωẑ
(1)√

Ωφ̂2
(1)

+Ωẑ2
(1)

−
Ωφ̂

(1)√
Ωφ̂2

(1)
+Ωẑ2

(1)

 = v + iw . (3.99)

The solution to the system is thereforeΠr̂

Πφ̂

Πẑ

 = s1 exp [0t] u + s2 (v cos [ωt]−w sin [ωt]) + s3 (v sin [ωt] +

+w cos [ωt]) =


s2 cos [ωt] + s3 sin [ωt]

s1

Ωφ̂
(1)

Ωẑ
(1)

− s2

Ωẑ
(1)

ω
sin [ωt] + s3

Ωẑ
(1)

ω
cos [ωt]

s1 + s2

Ωφ̂
(1)

ω
sin [ωt]− s3

Ωφ̂
(1)

ω
cos [ωt]

 , (3.100)

where s1, s2 and s3 are integration constants; by rewriting (3.100) using s2 cos [ωt]+
s3 sin [ωt] = s cos [ωt+ φ0] and analogously s3 cos [ωt]−s2 sin [ωt] = s sin [ωt+ φ0],
we obtain Πr̂

Πφ̂

Πẑ

 =


s cos [ωt+ φ0]

s1

Ωφ̂
(1)

Ωẑ
(1)

+ s
Ωẑ

(1)

ω
sin [ωt+ φ0]

s1 − s
Ωφ̂

(1)

ω
sin [ωt+ φ0]

 , (3.101)

where ω =

√
Ωφ̂2

(1) + Ωẑ2
(1), s and φ0 are integration constants derived from s2

and s3. We should keep in mind that multiplication for the identity matrix
I has been omitted.

3.1.7 Melvin cosmology.

(3.1) describes what is called the ”Melvin fluxtube”, which is a region of
space with cylindrical symmetry where a magnetic field is parallel to the walls
of the cylinder. Through analytic continuation, (3.1) describes the domain
wall for the anisotropic Melvin cosmology [10]. Here we show how to perform
this analytic continuation. Let’s rescale the angular coordinate φ ∈ [0; 2π]
using φ = B0y, where we assume y ∈ (−∞; +∞). The Melvin solution takes
on the form of

ds2 = f 2(r)dt2 − f 2(r)dr2 − f 2(r)dz2 − B2
0r

2

f 2(r)
dy2 . (3.102)
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The wall is spatially homogeneous and time-translations invariant; we also
notice that it is invariant for boosts in the tz planes. The anisotropy is due
to the inequality gyy 6= gzz. Now, in order to obtain the Melvin cosmology we
perform the substitutions r = iT , t = ix and, in order to keep the 4-potential
real, B0 = −iE0. So, (3.101) becomes

ds2 = f 2(T )dT 2 − f 2(T )dx2 − f 2(T )dz2 − E2
0T

2

f 2(T )
dy2 , (3.103)

where

Ay =
E2

0T
2

2f(T )
, f(T ) = 1 +

E2T 2

4
. (3.104)

Melvin cosmology (3.103) has homogeneous but anisotropic flat spatial slices
and a spatially uniform electric field pointing to the y direction. We also
notice that the boost in tz planes has become a rotational symmetry on yz
planes.

After this introduction we study the spin precession in the case of the
Melvin cosmology, then we confront the results with those obtained for the
standard Melvin metric.

By using metric (3.103) we can easily obtain

eaµ =


f(T ) 0 0 0

0 f(T ) 0 0
0 0 E0T

f(T )
0

0 0 0 f(T )

 , (3.105)

and its inverse

eaµ =


1

f(T )
0 0 0

0 1
f(T )

0 0

0 0 f(T )
E0T

0

0 0 0 1
f(T )

 . (3.106)

Through lengthy calculations, analogous to those performed for the Melvin
metric, it is easy to obtain

W α̂
β =

f(T ) 0 0
0 E0T

f(T )
0

0 0 f(T )

 , its inverse W β
α̂ =


1

f(T )
0 0

0 f(T )
E0T

0

0 0 1
f(T )

 ,

(3.107)

K α̂ = 0 , α̂ = 1, 2, 3 and f(T ) = V . (3.108)

Starting from definition (2.14) we obtain
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Qα̂β̂ = ηα̂γ̂W
δ
β̂

(
Ẇ γ̂
δ +Kε∂εW

γ̂
δ +W γ̂

ε ∂δK
ε
)

= ηα̂γ̂W
δ
β̂
Ẇ γ̂
δ ,

knowing that the K α̂’s all vanish as shown in (3.108). So we explicitly eval-
uate

Qα̂β̂ = ηα̂1̂W
δ
β̂
Ẇ 1̂
δ + ηα̂2̂W

δ
β̂
Ẇ 2̂
δ + ηα̂3̂W

δ
β̂
Ẇ 3̂
δ = ηα̂1̂W

1
β̂
Ẇ 1̂

1 + ηα̂2̂W
2
β̂
Ẇ 2̂

2 +

+ηα̂3̂W
2
β̂
Ẇ 3̂

2 =

− V̇
V

0 0

0 −V
T

˙( T
V

)
0

0 0 − V̇
V

 . (3.109)

Now we can evaluate each term appearing in the expressions of angular ve-
locity operators separately. In particular, we have

Fα
β̂

= VWα
β̂

=

1 0 0

0 V 2

E0T
0

0 0 1

 ; (3.110)

Ξα̂ = εα̂β̂γ̂Q
β̂γ̂ = 0 , (3.111)

because Q is symmetric and the Levi Civita symbol is antisymmetric;

C γ̂
α̂β̂

= W δ
α̂W

ε
β∂[δW

γ̂
ε] = 0 ⇒ Cα̂β̂γ̂ = ηγ̂δ̂C

δ̂
α̂β̂

= 0 , (3.112)

because W depends only on the temporal variable T , while in the defini-
tion of the anholonimity coefficients only derivatives with respect to spacial
coordinates appear;

Υ = −V εα̂β̂γ̂Cα̂β̂γ̂ = 0 , (3.113)

as a consequence of (3.112).
Now we can use these results to explicitly evaluate the angular velocity

operators. By substituting the previous results into (2.29) we directly obtain

Ωα̂
(1) = 0 , (3.114)

because of (3.113) and because the functions involved in these calculations
only depend on T , while in (2.29) only spacial derivatives are considered.

Now we want to work out (2.30) for the Melvin cosmology:

Ωα̂
(2) =

1

8

{
1

T
,
{{

πε,F εβ̂
}
,
{
πζ , ε

α̂β̂γ̂Ḟ ζγ̂
}}}

, (3.115)

because of (3.108) and (3.111). The anticommutators are trivial to evaluate
because πε is a differential operator involving only spacial derivatives, while
all the functions in the expression for Ω(2) are time-dependent only.
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It is useful to observe that because of the trivial anticommutators, anal-
ogously to what happens in the Melvin space-time, the energy takes on the
same form as in (2.34). In particular, (2.37) holds. After these considera-
tions, (3.115) becomes

Ωα̂
(2) =

2

T
εα̂β̂γ̂F ε

β̂
πεḞ ζγ̂πζ , (3.116)

where

T = 2ε′2 + {ε′,mV } = 2ε′ (ε′ +mV ) = 2ε′2
1 + γ

γ
,

because of (2.38). From (2.37) we obtain an expression for the momenta giv-
ing them in terms of the velocities. So, using the velocities, (3.116) becomes

Ωα̂
(2) =

γ

1 + γ
εα̂β̂γ̂F ε

β̂
vδ̂F

δ̂
ε Ḟ

ζ
γ̂vη̂F

η̂
ζ =

γ

1 + γ
εα̂β̂γ̂vβ̂vη̂F

η̂
ζ Ḟ

ζ
γ̂ =

=
γ

1 + γ

(
εα̂1̂γ̂v1̂vη̂F

η̂
ζ Ḟ

ζ
γ̂ + εα̂2̂γ̂v2̂vη̂F

η̂
ζ Ḟ

ζ
γ̂ + εα̂3̂γ̂v3̂vη̂F

η̂
ζ Ḟ

ζ
γ̂

)
=

=
γ

1 + γ

(
εα̂1̂2̂v1̂v2̂F 2̂

2 Ḟ2
2̂

+ εα̂1̂3̂v1̂v3̂F 3̂
3 Ḟ3

3̂
+ εα̂2̂1̂v2̂v1̂F 1̂

1 Ḟ1
1̂
+

+εα̂2̂3̂v2̂v3̂F 3̂
3 Ḟ3

3̂
+ εα̂3̂1̂v3̂v1̂F 1̂

1 Ḟ1
1̂

+ εα̂3̂2̂v3̂v2̂F 2̂
2 Ḟ2

2̂

)
=

=
γ

1 + γ

(
εα̂1̂2̂v1̂v2̂F 2̂

2 Ḟ2
2̂

+ εα̂3̂2̂v3̂v2̂F 2̂
2 Ḟ2

2̂

)
. (3.117)

If we write the three components explicitly we have:

Ω1̂
(2) = − γ

1 + γ
v3̂v2̂F 2̂

2 Ḟ2
2̂

; (3.118)

Ω2̂
(2) = 0 ; (3.119)

Ω3̂
(2) =

γ

1 + γ
v1̂v2̂F 2̂

2 Ḟ2
2̂
. (3.120)

In order to find an expression for the velocities, we need to solve the geodesics
equations. We observe that metric (3.103) does not depend on the spacial
variables x, y and z, so, by using the results demonstrated in appendix B, we
immediately obtain

U1 = C1 , U2 = C2 , U3 = C3 , (3.121)

where C1, C2 and C3 are constants. Using metric (3.103) we immediately
obtain

U1 = −C1

V 2
, U2 = −C2V

2

E2
0T

2
, U3 = −C3

V 2
. (3.122)
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The velocity corresponding to the temporal coordinate can be easily obtained
by imposing a normalisation condition, that is

UµUµ = 1 ⇒ V 2
(
U0
)2

= 1 +
C2

1

V 2
+
C2

2V
2

E2
0T

2
+
C2

3

V 2
. (3.123)

From this condition we obtain that U0 =
dt

dτ
is nothing but the γ factor

divided by V . So, by using the chain rule we obtain

v1 =
dx

dt
= − C1

γV
, v2 =

dy

dt
= − C2V

3

γE2
0T

2
, v3 =

dz

dt
= − C3

γV
, (3.124)

using the tetrads (3.105) we obtain

v1̂ =
dx

dt
= −C1

γ
, v2̂ =

dy

dt
= − C2V

γE0T
, v3̂ =

dz

dt
= −C3

γ
,

and lowering the indices we finally obtain

v1̂ =
dx

dt
=
C1

γ
, v2̂ =

dy

dt
=
C2V

2

γE0T
, v3̂ =

dz

dt
=
C3

γ
. (3.125)

By using

F 2̂
2 Ḟ2

2̂
=

2V̇ T − V
V T

,

we finally obtain

Ω1̂
(2) = − C2C3

γ (1 + γ)

2V V ′T − V 2

E0T 2
(3.126)

and

Ω3̂
(2) =

C2C1

γ (1 + γ)

2V V ′T − V 2

E0T 2
. (3.127)

We are interested in solving the equations for spin operators near the early
universe T → 0, therefore we must find an asymptotic expression [21] for the
γ factor:

γ ∼
T→0

C2

E0T
⇒ γ (1 + γ) ∼

T→0
γ2 ∼

T→0

C2
2

E2
0T

2
.

By using these asymptotic expressions in (3.126) and (3.127) we obtain

Ω1̂
(2) ∼

T→0
−C3

C2

E0

(
2V V ′T − V 2

)
∼
T→0

C3

C2

E0 (3.128)



58 CHAPTER 3. COSMOLOGICAL APPLICATIONS.

and

Ω3̂
(2) ∼

T→0

C1

C2

E0

(
2V V ′T − V 2

)
∼
T→0
−C1

C2

E0 , (3.129)

as a consequence of V ∼
T→0

1. So we have obtained that the angular velocity

operators are constant in the early universe. This is interesting because it is
in complete agreement with what we found for the standard Melvin metric,
where the angular velocity operators did depend on the radial coordinate
only, so they were constant in time. So the solution

3.2 Double Kasner space-time.

The double Kasner space-time is a generalisation of the standard Kasner
solution of Einstein vacuum field equations [22] [11]. The standard Kasner
metric is described in some details in appendix A, and it is shown that it can
be found as a vacuum solution starting from a Bianchi I-type metric. The
double Kasner metric generalises the standard Kasner metric by introducing
a dependence from a spacial coordinate for the metric coefficients. It can
be shown [11] that if we perform a non-linear superposition of the space-like
Kasner metric and the time-like Kasner metric (both described in appendix
A) we obtain the double Kasner metric. In this section we study this metric
in depth, solve the geodesics equations asymptotically near the origin of
time t→ 0, and solve the equations of motion of average spin. We therefore
obtain an exhaustive description of spin motion in the early universe in this
space-time.

Let’s consider the double Kasner space-time described by the line element

ds2 = e2q0xdt2 − g2
1dx

2 − g2
2dy

2 − g2
3dz

2 , (3.130)

where

gi = eqixtpi , i = 1, 2, 3 . (3.131)

Here pi are constants satisfying

p1 + p2 + p3 = p2
1 + p2

2 + p2
3 = 1 , (3.132)

q0 + q2 + q3 = q1 , q
2
0 + q2

2 + q2
3 = q2

1 , (3.133)

q0 (p2 + p3) = q2 (p2 − p1) + q3 (p3 − p1) . (3.134)

Analogously to the study of the Melvin metric, here we will consider c = 1
and interchangeably use 1, 2, 3, 4 or t, x, y, z respectively to represent indices.
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Using the metric

gµν =


e2q0x 0 0 0

0 −e2q1xt2p1 0 0
0 0 −e2q2xt2p2 0
0 0 0 −e2q3xt2p3

 (3.135)

and the Schwinger gauge we obtain the tetrads

eaµ =


eq0x 0 0 0
0 eq1xtp1 0 0
0 0 eq2xtp2 0
0 0 0 eq3xtp3

 (3.136)

and their inverses

eµa =


e−q0x 0 0 0

0 e−q1xt−p1 0 0
0 0 e−q2xt−p2 0
0 0 0 e−q3xt−p3

 . (3.137)

Now we compare these expressions with (2.2) to obtain the coefficients of
parametrization (2.1) in the Schwinger gauge:

e0̂
0 = eq0x = V ;

e1̂
1 = eq1xtp1 = W 1̂

β

(
δβ1 −Kβδ0

1

)
= W 1̂

1 ⇒ W 1̂
1 = eq1xtp1 ;

e2̂
2 = eq2xtp2 = W 2̂

β

(
δβ2 −Kβδ0

2

)
= W 2̂

2 ⇒ W 2̂
2 = eq2xtp2 ;

e3̂
3 = eq3xtp3 = W 3̂

β

(
δβ3 −Kβδ0

3

)
= W 3̂

3 ⇒ W 3̂
3 = eq3xtp3 ;

e1̂
2 = 0 = W 1̂

β

(
δβ2 −Kβδ0

2

)
= W 1̂

2 ⇒ W 1̂
2 = 0 ;

e1̂
3 = 0 = W 1̂

β

(
δβ3 −Kβδ0

3

)
= W 1̂

3 ⇒ W 1̂
3 = 0 ;

e1̂
0 = 0 = W 1̂

β

(
δβ0 −Kβδ0

0

)
= −

(
K1W 1̂

1 +K2W 1̂
2 +K3W 1̂

3

)
⇒ K1 = 0 ;

e2̂
1 = 0 = W 2̂

β

(
δβ1 −Kβδ0

1

)
= W 2̂

1 ⇒ W 2̂
1 = 0 ;

e2̂
3 = 0 = W 2̂

β

(
δβ3 −Kβδ0

3

)
= W 2̂

3 ⇒ W 2̂
3 = 0 ;

e2̂
0 = 0 = W 2̂

β

(
δβ0 −Kβδ0

0

)
= −

(
K1W 2̂

1 +K2W 2̂
2 +K3W 2̂

3

)
⇒ K2 = 0 ;

e3̂
1 = 0 = W 3̂

β

(
δβ1 −Kβδ0

1

)
= W 3̂

1 ⇒ W 3̂
1 = 0 ;

e3̂
2 = 0 = W 3̂

β

(
δβ2 −Kβδ0

2

)
= W 3̂

2 ⇒ W 3̂
2 = 0 ;

e3̂
0 = 0 = W 3̂

β

(
δβ0 −Kβδ0

0

)
= −

(
K1W 3̂

1 +K2W 3̂
2 +K3W 3̂

3

)
⇒ K3 = 0 .
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So, we obtained

W α̂
β =

eq1xtp1 0 0
0 eq2xtp2 0
0 0 eq3xtp3

 , (3.138)

its inverse

W β
α̂ =

e−q1xt−p1 0 0
0 e−q2xt−p2 0
0 0 e−q3xt−p3

 (3.139)

and
Kα = 0 , α = 1, 2, 3 . (3.140)

3.2.1 Double Kasner solution as a vacuum solution.

Appendix A contains the derivation of the Kasner solution from the Einstein
equations in vacuum, and it is analysed both in timelike and spacelike forms.
We expect the double Kasner metric, as a superposition of these two forms,
to satisfy the vacuum equations as well, and this is what we demonstrate in
this section.

First, we work out the coefficients of the affine connection

Γρµν =
1

2
gρλ (gµλ,ν +gνλ,µ−gµν ,λ ) ,

and by calculating each component explicitly we find:

Γ0
µν =

1

2
g0λ (gµλ,ν +gνλ,µ−gµν ,λ ) =

1

2
e−2q0x (gµ0,ν +gν0,µ−gµν ,0 ) =

=
e−2q0x

2


0 2q0e

2q0x 0 0
2q0e

2qox 2p1e
2q1xt2p1−1 0 0

0 0 2p2e
2q2xt2p2−1 0

0 0 0 2p3e
2q3xt2p3−1

 =

=


0 q0 0 0
q0 p1e

2(q1−q0)xt2p1−1 0 0
0 0 p2e

2(q2−q0)xt2p2−1 0
0 0 0 p3e

2(q3−q0)xt2p3−1

 ; (3.141)

Γ1
µν =

1

2
g1λ (gµλ,ν +gνλ,µ−gµν ,λ ) = −e

−2q1xt−2p1

2
(gµ1,ν +gν1,µ−gµν ,1 ) =

= −e
−2q1xt−2p1

2


−2q0e

2q0x −2p1e
2q1xt2p1−1 0 0

−2p1e
2q1xt2p1−1 −2q1e

2q1xt2p1−1 0 0
0 0 2q2e

2q2xt2p2 0
0 0 0 2q3e

2q3xt2p3

 =
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=


q0e

2(q0−q1)xt−2p1 p1
t

0 0
p1
t

q1 0 0
0 0 −q2e

2(q2−q1)xt2(p2−p1) 0
0 0 0 −q3e

2(q3−q1)xt2(p3−p1)

 ;

(3.142)

Γ2
µν =

1

2
g2λ (gµλ,ν +gνλ,µ−gµν ,λ ) = −e

−2q2xt−2p2

2
(gµ2,ν +gν2,µ ) =

= −e
−2q2xt−2p2

2


0 0 −2p2e

2q2xt2p2−1 0
0 0 −2q2e

2q2xt2p2 0
−2p2e

2q2xt2p2−1 −2q2e
2q2xt2p2 0 0

0 0 0 0

 =

=


0 0 p2

t
0

0 0 q2 0
p2
t

q2 0 0
0 0 0 0

 ; (3.143)

Γ3
µν =

1

2
g3λ (gµλ,ν +gνλ,µ−gµν ,λ ) = −e

−2q3xt−2p3

2
(gµ3,ν +gν3,µ ) =

= −e
−2q3xt−2p3

2


0 0 0 −2p3e

2q3xt2p3−1

0 0 0 −2q3e
2q3xt2p3

0 0 0 0
−2p3e

2q3xt2p3−1 −2q3e
2q3xt2p3 0 0

 =

=


0 0 0 p3

t

0 0 0 q3

0 0 0 0
p3
t

q3 0 0

 . (3.144)

To calculate the components of the Ricci tensor we use (3.77), so, by making
extensive use of (3.132) ÷ (3.134), each component reads explicitly:

R00 = Γρ00,ρ − Γρ0ρ,0 + Γρ00Γλλρ − Γλ0ρΓ
ρ
0λ =

= Γ0
00,0 + Γ1

00,1 − Γ0
00,0 − Γ1

01,0 − Γ2
02,0 − Γ3

03,0 + Γ1
00Γλ1λ − Γ0

0ρΓ
ρ
00 − Γ1

0ρΓ
ρ
01−

−Γ2
0ρΓ

ρ
02 − Γ3

0ρΓ
ρ
03 = 2q0 (q0 − q1) e2(q0−q1)xt−2p1 +

p1

r
+
p2

t
+
p3

t
+

+q0e
2(q0−q1)xt−2p1 (q0 + q1 + q2 + q3)− q2

0e
2(q0−q1)xt−2p1−

−
(
q2

0e
2(q0−q1)xt−2p1 +

p2
1

t2

)
− p2

2

t2
− p2

3

t2
= 0 ; (3.145)

R11 = Γρ11,ρ − Γρ1ρ,1 + Γρ11Γλλρ − Γλ1ρΓ
ρ
1λ =
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= Γ0
11,0+Γ1

11,1−Γ0
10,1−Γ1

11,1−Γ2
12,1−Γ3

13,1+Γ0
11Γλ0λ+Γ1

11Γλ1λ−Γ0
1ρΓ

ρ
10−Γ2

1ρΓ
ρ
12−

−Γ2
1ρΓ

ρ
12 − Γ3

1ρΓ
ρ
13 = (2p1 − 1) p1e

2(q1−q0)xt2p1−2 + p1e
2(q1−q0)xt2p1−1

(p1

t
+

+
p2

t
+
p3

t

)
+ q1 (q0 + q1 + q2 + q3)−

(
q2

0 + p2
1e

2(q1−q0)xt2p1−2
)
−

−
(
p2

1e
2(q1−q0)xt2p1−2 + q2

1

)
− q2

2 − q2
3 = 0 ; (3.146)

R22 = Γρ22,ρ − Γρ2ρ,2 + Γρ22Γλλρ − Γλ2ρΓ
ρ
2λ =

= Γ0
22,0 + Γ1

22,1 + Γ0
22Γλ0λ + Γ1

22Γλ1λ − Γ0
2ρΓ

ρ
20 − Γ1

2ρΓ
ρ
21 − Γ2

2ρΓ
ρ
22 − Γ3

2ρΓ
ρ
23 =

= (2p2 − 1) p2e
2(q2−q0)xt2p2−2 − 2q2

2e
2(q2−q1)xt2(p2−p1) + p2e

2(q2−q0)xt2p2−1
(p1

t
+

+
p2

t
+
p3

t

)
− q2e

2(q2−q1)xt2(p2−p1) (q0 + q1 + q2 + q3)− p2
2e

2(q2−q0)xt2p2−2+

+q2
2e

2(q2−q1)xt2(p2−p1)−
(
p2

2e
2(q2−q0)xt2p2−2 − q2

2e
2(q2−q1)xt2(p2−p1)

)
= 0 ; (3.147)

R33 = Γρ33,ρ − Γρ3ρ,3 + Γρ33Γλλρ − Γλ3ρΓ
ρ
3λ =

= Γ0
33,0 + Γ1

33,1 + Γ0
33Γλ0λ + Γ1

33Γλ1λ − Γ0
3ρΓ

ρ
30 − Γ1

3ρΓ
ρ
31 − Γ2

3ρΓ
ρ
32 − Γ3

3ρΓ
ρ
33 =

= (2p3 − 1) p3e
2(q3−q0)xt2p3−2 − 2q2

3e
2(q3−q1)xt2(p3−p1) + p3e

2(q3−q0)xt2p3−1
(p1

t
+

+
p2

t
+
p3

t

)
− q3e

2(q3−q1)xt2(p3−p1) (q0 + q1 + q2 + q3)− p2
3e

2(q3−q0)xt2p3−2+

+q2
3e

2(q3−q1)xt2(p3−p1)−
(
p2

3e
2(q3−q0)xt2p3−2 − q2

3e
2(q3−q1)xt2(p3−p1)

)
= 0 ; (3.148)

R01 = Γρ01,ρ − Γρ0ρ,1 + Γρ01Γλλρ − Γλ0ρΓ
ρ
1λ =

= Γ0
01Γλλ0 +Γ1

01Γλλ1−Γ0
0ρΓ

ρ
10−Γ1

0ρΓ
ρ
11−Γ2

0ρΓ
ρ
12−Γ3

0ρΓ
ρ
13 = q0

(p1

t
+
p2

t
+
p3

t

)
+

+
p1

t
(q0 + q1 + q2 + q3)− q0p1

t
−
(q0p1

t
+
p1q1

t

)
− q2p2

t
− p3q3

t
= 0 ; (3.149)

R02 = Γρ02,ρ − Γρ0ρ,2 + Γρ02Γλλρ − Γλ0ρΓ
ρ
2λ =

= Γ2
02Γλλ2 − Γ0

0ρΓ
ρ
20 − Γ1

0ρΓ
ρ
21 − Γ2

0ρΓ
ρ
22 − Γ3

0ρΓ
ρ
23 = 0 ; (3.150)

R03 = Γρ03,ρ − Γρ0ρ,3 + Γρ03Γλλρ − Γλ0ρΓ
ρ
3λ =

= Γ3
03Γλλ3 − Γ0

0ρΓ
ρ
30 − Γ1

0ρΓ
ρ
31 − Γ2

0ρΓ
ρ
32 − Γ3

0ρΓ
ρ
33 = 0 ; (3.151)

R12 = Γρ12,ρ − Γρ1ρ,2 + Γρ12Γλλρ − Γλ1ρΓ
ρ
2λ =

= Γ2
12Γλλ2 − Γ0

1ρΓ
ρ
20 − Γ1

1ρΓ
ρ
21 − Γ2

1ρΓ
ρ
22 − Γ3

1ρΓ
ρ
23 = 0 ; (3.152)

R13 = Γρ13,ρ − Γρ1ρ,3 + Γρ13Γλλρ − Γλ1ρΓ
ρ
3λ =
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= Γ3
13Γλλ3 − Γ0

1ρΓ
ρ
30 − Γ1

1ρΓ
ρ
31 − Γ2

1ρΓ
ρ
32 − Γ3

1ρΓ
ρ
33 = 0 ; (3.153)

R23 = Γρ23,ρ − Γρ2ρ,3 + Γρ23Γλλρ − Γλ2ρΓ
ρ
3λ =

= −Γ0
2ρΓ

ρ
30 − Γ1

2ρΓ
ρ
31 − Γ2

2ρΓ
ρ
32 − Γ3

2ρΓ
ρ
33 = 0 . (3.154)

We have thus obtained Rµν = 0, as expected, so we have demonstrated
explicitly that (3.130) is a solution of the vacuum Einstein field equations.

3.2.2 Calculation of angular velocity operators.

Now, our goal is to find an expression for the angular velocity operators, so
that we can study the equation of motion of spin operators in this particular
space-time. As we did in section 3.1.1, we have to work out the terms ap-
pearing in the Hamiltonian (2.20). First of all, we calculate the components
of spin connection

ω̃µα̂0̂ =
1

V
W β
α̂∂βV e

0̂
µ −

1

V
Q(α̂β̂)e

β̂
µ

and

ω̃µα̂β̂ =
1

V
Q[α̂β̂]e

0̂
µ +

(
Cα̂β̂γ̂ + Cα̂γ̂β̂ + Cγ̂β̂α̂

)
eγ̂µ .

In order to perform these calculations we have to work out Qα̂β̂ :

Qα̂β̂ = ηα̂γ̂W
δ
β̂

(
Ẇ γ̂
δ +Kε∂εW

γ̂
δ +W γ̂

ε ∂δK
ε
)

= ηα̂γ̂W
δ
β̂
Ẇ γ̂
δ =

= ηα̂γ̂W
1
β̂
Ẇ γ̂

1 + ηα̂γ̂W
2
β̂
Ẇ γ̂

2 + ηα̂γ̂W
3
β̂
Ẇ γ̂

3 = ηα̂1̂W
1
β̂
Ẇ 1̂

1 + ηα̂2̂W
2
β̂
Ẇ 2̂

2 +

+ηα̂3̂W
3
β̂
Ẇ 3̂

3 =

−p1
t

0 0
0 −p2

t
0

0 0 −p3
t

 . (3.155)

We observe that the matrix Qα̂β̂ is diagonal and therefore symmetric; this
will be useful later. The coefficients of the spin connection read explicitly:

for µ = 0 ⇒ ω̃0α̂0̂ = e−q0xW β
α̂∂β (eq0x) eq0x = W x

α̂∂xe
q0x = q0e

q0xW x
α̂ =

=

{
q0e

(q0−q1)xt−p1 , if α̂ = x ,

0 , if α̂ = y, z ;
(3.156)

for µ = 1 ⇒ ω̃1α̂0̂ = −e−q0xQ(α̂β̂)e
β̂
1 = −e−q0xQ(α̂1̂)e

1̂
1 = −e(q1−q0)xtp1Q(α̂1̂) =
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=

{
p1e

(q1−q0)xtp1−1 , if α̂ = x ,

0 , if α̂ = y, z ;
(3.157)

for µ = 2 ⇒ ω̃2α̂0̂ = −e−q0xQ(α̂β̂)e
β̂
2 = −e−q0xQ(α̂2̂)e

2̂
2 = −e(q2−q0)xtp2Q(α̂2̂) =

=

{
p2e

(q2−q0)xtp2−1 , if α̂ = y ,

0 , if α̂ = x, z ;
(3.158)

for µ = 3 ⇒ ω̃3α̂0̂ = −e−q0xQ(α̂β̂)e
β̂
3 = −e−q0xQ(α̂3̂)e

3̂
3 = −e(q3−q0)xtp3Q(α̂3̂) =

=

{
p3e

(q3−q0)xtp3−1 , if α̂ = z ,

0 , if α̂ = x, y .
(3.159)

To calculate the spacial set of spin connection coefficients we first calculate
the anholonimity coefficients:

C γ̂
α̂β̂

= W δ
α̂W

ε
β̂
∂[δW

γ̂
ε] =

1

2
W δ
α̂W

ε
β̂

(
∂δW

γ̂
ε − ∂εW

γ̂
δ

)
=

=
1

2

[
W x
α̂W

ε
β̂

(
∂xW

γ̂
ε − ∂εW γ̂

x

)
−W y

α̂W
ε
β̂
∂εW

γ̂
y −W z

α̂W
ε
β̂
∂εW

γ̂
z

]
=

=
1

2

[
W x
α̂W

x
β̂
∂xW

γ̂
x +W x

α̂W
y

β̂
∂xW

γ̂
y +W x

α̂W
z
β̂
∂xW

γ̂
z −

−W x
α̂W

x
β̂
∂xW

γ̂
x −W

y
α̂W

x
β̂
∂xW

γ̂
y −W z

α̂W
x
β̂
∂xW

γ̂
z

]
=

= W x
[α̂W

z
β̂]∂xW

γ̂
z +W x

[α̂W
y

β̂]
∂xW

γ̂
y , (3.160)

so explicitly we obtain:

if γ̂ = x̂ ⇒ Cx̂
α̂β̂

= 0 , because W is diagonal ; (3.161)

if γ̂ = ŷ ⇒ C ŷ
α̂β̂

= W x
[α̂W

y

β̂]
∂xW

ŷ
y = q2e

q2xtp2
1

2

(
W x
α̂W

y

β̂
−W x

β̂
W y
α̂

)
=

=
q2

2
eq2xtp2

 0 e−(q1+q2)xt−(p1+p2) 0
−e−(q1+q2)xt−(p1+p2) 0 0

0 0 0

 =

=

 0 q2
2
e−q1xt−p1 0

− q2
2
e−q1xt−p1 0 0

0 0 0

 ; (3.162)

if γ̂ = ẑ ⇒ C ẑ
α̂β̂

= W x
[α̂W

z
β̂]∂xW

ẑ
z = q3e

q3xtp3
1

2

(
W x
α̂W

z
β̂
−W x

β̂
W z
α̂

)
=
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=
q3

2
eq3xtp3

 0 0 e−(q1+q3)xt−(p1+p3)

0 0 0
−e−(q1+q3)xt−(p1+p3) 0 0

 =

=

 0 0 q3
2
e−q1xt−p1

0 0 0
− q2

2
e−q1xt−p1 0 0

 . (3.163)

As we did in (3.16), we lower the indices using the spacial Minkowski metric
diag (−1,−1,−1), so we have:

Cα̂β̂x̂ = 0 , Cα̂β̂ŷ = −C ŷ
α̂β̂
, Cα̂β̂ẑ = −C ẑ

α̂β̂
. (3.164)

Now we can calculate the spacial set of the spin connection; we use (2.13)
and, remembering that Q is symmetric, the skew-symmetric part of Q is 0,
so we have

ω̃µα̂β̂ =
(
Cα̂β̂γ̂ + Cα̂γ̂β̂ + Cγ̂β̂α̂

)
eγ̂µ , (3.165)

therefore explicitly we have

if µ = 0 ⇒ ω̃0α̂β̂ = 0 ; (3.166)

if µ = 1 ⇒ ω̃1α̂β̂ =
(
Cα̂β̂γ̂ + Cα̂γ̂β̂ + Cγ̂β̂α̂

)
eγ̂1 = eq1xtp1

(
Cα̂β̂1̂ + Cα̂1̂β̂+

+C1̂β̂α̂

)
= −eq1xtp1

(
C 1̂
α̂β̂

+ Cβ̂
α̂1̂

+ Cα̂
1̂β̂

)
=

=

0 0 0
0 0 0
0 0 0

 ; (3.167)

if µ = 2 ⇒ ω̃2α̂β̂ =
(
Cα̂β̂γ̂ + Cα̂γ̂β̂ + Cγ̂β̂α̂

)
eγ̂2 = eq2xtp2

(
Cα̂β̂2̂ + Cα̂2̂β̂+

+C2̂β̂α̂

)
= −eq2xtp2

(
C 2̂
α̂β̂

+ Cβ̂
α̂2̂

+ Cα̂
2̂β̂

)
=

=

 0 −q2e
(q2−q1)xtp2−p1 0

q2e
(q2−q1)xtp2−p1 0 0

0 0 0

 ; (3.168)

if µ = 3 ⇒ ω̃3α̂β̂ =
(
Cα̂β̂γ̂ + Cα̂γ̂β̂ + Cγ̂β̂α̂

)
eγ̂3 = eq3xtp3

(
Cα̂β̂3̂ + Cα̂3̂β̂+

+C3̂β̂α̂

)
= −eq3xtp3

(
C 3̂
α̂β̂

+ Cβ̂
α̂3̂

+ Cα̂
3̂β̂

)
=

=

 0 0 −q3e
(q3−q1)xtp3−p1

0 0 0
q3e

(q3−q1)xtp3−p1 0 0

 . (3.169)
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So we have worked out the coefficients of the spin connection.
Now, we want to calculate the terms appearing in the Hamiltonian in

order to work out the angular velocity operators in the F-W representation.
Starting from (2.20), we consider each term separately:

Ξα̂ = εα̂β̂γ̂Q
β̂γ̂ = 0 , (3.170)

because Q is symmetric and ε is skew-symmetric.

Fα
β̂

= VWα
β̂

=

e(q0−q1)xt−p1 0 0
0 e(q0−q2)xt−p2 0
0 0 e(q0−q3)xt−p3

 ; (3.171)

Υ = −V εα̂β̂γ̂Cα̂β̂γ̂ = −V εα̂β̂ŷCα̂β̂ŷ − V ε
α̂β̂ẑCα̂β̂ẑ = V

(
εα̂β̂ŷC ŷ

α̂β̂
+ εα̂β̂ẑC ẑ

α̂β̂

)
=

= V
(
εẑx̂ŷC ŷẑx̂ + εx̂ẑŷC ŷx̂ẑ + εŷx̂ẑC ẑŷx̂ + εx̂ŷẑC ẑx̂ŷ

)
= 0 . (3.172)

Then the even and odd terms of the Hamiltonian read

M = mV ; (3.173)

E = 0 ; (3.174)

O =
1

2

(
pβFβα̂α

α̂ + αα̂Fβα̂pβ
)

=
1

2

(
pxFxx̂αx̂ + αx̂Fxx̂px + pyFyŷα

ŷ + αŷFyŷ py+

+pzF zẑαẑ + αẑF zẑ pz
)

= e(q0−q1)xt−p1αx̂px + e(q0−q2)xt−p2αŷpy+

+e(q0−q3)xt−p3αẑpz +
(
pxe

(q0−q1)xt−p1
)
αx̂ . (3.175)

We observe that pα is a differential operator depending on ∂α, so in (3.175)
we move it from the left to the right of F using the well known Leibniz rule.

3.2.3 Semiclassical approach.

The dependence of the terms necessary to work out the angular velocity
operators on the coordinates t and x is rather involved, and this makes the
calculations quite complicated. To better understand the physical content
of this model, it is preferable to study the semiclassical approximation first.
The exact formulation will potentially be studied at a later date.

To proceed we refer to (2.32) and (2.33) together with (2.39), that in the
case of the double Kasner space-time are reduced to

Ωα̂
(1) =

1

ε′
F δγ̂pδ

(
−εα̂ε̂χ̂V C γ̂ε̂χ̂ +

γ

1 + γ
εα̂β̂γ̂W ε

β̂
∂εV

)
, (3.176)
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Ωα̂
(2) = − γ

1 + γ
vη̂vγ̂ε

α̂β̂γ̂Q(β̂δ̂)δ
δ̂η̂ . (3.177)

We calculate Ωα̂
(1) first; we evaluate the two terms between brackets sepa-

rately:

−εα̂ε̂χ̂V C γ̂ε̂χ̂ = −εα̂ε̂x̂V C γ̂ε̂x̂ − ε
α̂ε̂ŷV C γ̂ε̂ŷ − ε

α̂ε̂ẑV C γ̂ε̂ẑ =

= −εα̂ŷx̂V C γ̂ŷx̂ − ε
α̂ẑx̂V C γ̂ẑx̂ − ε

α̂x̂ŷV C γ̂x̂ŷ − ε
α̂ẑŷV C γ̂ẑŷ − ε

α̂x̂ẑV C γ̂x̂ẑ − ε
α̂ŷẑV C γ̂ŷẑ =

= −2εα̂x̂ŷV C γ̂x̂ŷ − 2εα̂ẑx̂V C γ̂ẑx̂ ;

γ

1 + γ
εα̂β̂γ̂W ε

β̂
∂εV =

γ

1 + γ
εα̂x̂γ̂e−q1xt−p1q0e

q0x = q0
γ

1 + γ
εα̂x̂γ̂e(q0−q1)xt−p1 .

By combining these two terms we obtain

Ωα̂
(1) =

1

ε′
F δγ̂pδ

(
−2εα̂x̂ŷeq0xC γ̂x̂ŷ − 2εα̂ẑx̂eq0xC γ̂ẑx̂ + q0

γ

1 + γ
εα̂x̂γ̂e(q0−q1)xt−p1

)
.

In particular, each component is

Ωx̂
(1) = 0 ; (3.178)

Ωŷ
(1) =

1

ε′
F δγ̂pδ

(
−2eq0xC γ̂ẑx̂ + q0

γ

1 + γ
εŷx̂γ̂e(q0−q1)xt−p1

)
=

=
1

ε′
F zẑ pzq2e

q0xe−q1xt−p1 − 1

ε′
F zẑ pz

γ

1 + γ
q0e

(q0−q1)xt−p1 =

=
1

ε′
e(2q0−q1−q3)xt−(p1+p3)pz

(
q2 − q0

γ

1 + γ

)
; (3.179)

Ωẑ
(1) =

1

ε′
F δγ̂pδ

(
−2eq0xC γ̂x̂ŷ + q0

γ

1 + γ
εẑx̂γ̂e(q0−q1)xt−p1

)
=

= − 1

ε′
Fyŷ pyq2e

q0xe−q1xt−p1 +
1

ε′
Fyŷ py

γ

1 + γ
q0e

(q0−q1)xt−p1 =

=
1

ε′
e(2q0−q1−q2)xt−(p1+p2)py

(
−q2 + q0

γ

1 + γ

)
. (3.180)

Starting from (2.37) we have

px
ε′

= F x̂xvx̂ = e(q1−q0)xtp1vx̂ ,

py
ε′

= F ŷy vŷ = e(q2−q0)xtp2vŷ ,
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pz
ε′

= F ẑz vẑ = e(q3−q0)xtp3vẑ .

By substituting these expressions in (3.154) and (3.155) we obtain

Ωx̂
(1) = 0 , (3.181)

Ωŷ
(1) = e(q0−q1)xt−p1vẑ

(
q2 − q0

γ

1 + γ

)
, (3.182)

Ωẑ
(1) = e(q0−q1)xt−p1vŷ

(
−q2 + q0

γ

1 + γ

)
. (3.183)

Now we evaluate Ωα̂
(2); starting from (3.152) we have

Ωα̂
(2) = − γ

1 + γ
vx̂vγ̂ε

α̂x̂γ̂Qx̂x̂ −
γ

1 + γ
vŷvγ̂ε

α̂ŷγ̂Qŷŷ −−
γ

1 + γ
vẑvγ̂ε

α̂ẑγ̂Qẑẑ .

In particular, each component is

Ωx̂
(2) = − γ

1 + γ
vŷvẑQŷŷ +

γ

1 + γ
vŷvẑQẑẑ =

γ

1 + γ
vŷvẑ

(p2

t
− p3

t

)
; (3.184)

Ωŷ
(2) = +

γ

1 + γ
vx̂vẑQx̂x̂ −

γ

1 + γ
vx̂vẑQẑẑ =

γ

1 + γ
vx̂vẑ

(p3

t
− p1

t

)
; (3.185)

Ωẑ
(2) = − γ

1 + γ
vŷvx̂Qx̂x̂ +

γ

1 + γ
vŷvx̂Qŷŷ =

γ

1 + γ
vŷvx̂

(p1

t
− p2

t

)
. (3.186)

So system (2.31) becomes

dsx̂

dt
= Ωŷsẑ − Ωẑsŷ

dsŷ

dt
= −Ωx̂sẑ + Ωẑsx̂

dsẑ

dt
= Ωx̂sŷ − Ωŷsx̂

, (3.187)

where we have raised the spacial indices using the spacial metric ηα̂β̂ =
= diag (−1,−1,−1). (3.187) represents the equations of motion of the av-
erage spin s. Now we have to solve the geodesics equations in order to find
expressions for the velocities, so that we can approach the solution of system
(3.162).
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3.2.4 Geodesics equation.

Metric (3.135) is independent of the two coordinates y and z, so, as we
demonstrate in appendix B, it is easy to find the two corresponding velocities:

vy = C2 ⇒ −e2q2xt2p2vy = C2 ⇒ vy = −C2e
−2q2xt−2p2 , (3.188)

vz = C3 ⇒ −e2q3xt2p3vz = C3 ⇒ vz = −C3e
−2q3xt−2p3 . (3.189)

Normalisation condition vµvµ = 1 becomes

e2q0x

(
dt

dτ

)2

−e2q1xt2p1
(
dx

dτ

)2

= 1+C2
2e
−2q2xt−2p2 +C2

3e
−2q3xt−2p3 . (3.190)

By using (3.188) and (3.189), the geodesics equations (3.53) for t and x are
reduced to

for µ = 0 ⇒ 0 =
d2t

dτ 2
+ Γ0

νσ

dxν

dτ

dxσ

dτ
=
d2t

dτ 2
+ Γ0

0σ

dt

dτ

dxσ

dτ
+

+Γ0
1σ

dx

dτ

dxσ

dτ
+ Γ0

2σ

dy

dτ

dxσ

dτ
+ Γ0

3σ

dz

dτ

dxσ

dτ
=
d2t

dτ 2
+ 2q0

dt

dτ

dx

dτ
+

+p1e
2(q1−q0)xt2p1−1

(
dx

dτ

)2

+ p2C
2
2e
−2(q2+q0)xt−2p2−1+

+p3C
2
3e
−2(q3+q0)xt−2p3−1 = 0 , (3.191)

for µ = 1 ⇒ 0 =
d2x

dτ 2
+ Γ1

νσ

dxν

dτ

dxσ

dτ
=
d2x

dτ 2
+ Γ1

0σ

dxt

dτ

dxσ

dτ
+ Γ1

1σ

dx

dτ

dxσ

dτ
+

+Γ1
2σ

dy

dτ

dxσ

dτ
+ Γ1

3σ

dz

dτ

dxσ

dτ
=
d2x

dτ 2
+

2p1

t

dt

dτ

dx

dτ
+ q0e

2(q0−q1)xt−2p1

(
dt

dτ

)2

−

−q2C
2
2e
−2(q2+q0)xt−2(p2+p1) − q3C

2
3e
−2(q3+q0)xt−2(p3+p1) = 0 . (3.192)

Starting from (3.190) we can obtain an expression for
dt

dτ
that we substitute

in (3.192), producing

e2q1xt2p1

[
d2x

dτ 2
+

2p1

t

dt

dτ

dx

dτ
+ (q1 + q0)

(
dx

dτ

)2
]

=

=
[
−q0 + (q2 − q0)C2

2e
−2q2xt−2p2 + (q3 − q0)C2

3e
−2q3xt−2p3

]
. (3.193)

The system of differential equations for the geodesics is not solvable analyti-
cally, so we follow [11] to rewrite the left term of (3.193) parametrically; the
authors define function

F = t2p1e(q1+q0)xdx

dτ
, (3.194)
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therefore the system of differential equations for the geodesics becomes

dt

dτ
= e−q0x

[
1 + C2

2e
−2q2xt−2p2 + C2

3e
−2q3xt−2p3 + e−2q0xt−2p1F 2

] 1
2 , (3.195)

dx

dτ
= e−(q1+q0)xt−2p1F , (3.196)

dy

dτ
= C2e

−2q2xt−2p2 ,
dz

dτ
= C3e

−2q3xt−2p3 , (3.197)

dF

dτ
= e(q0−q1)x

[
−q0 + (q2 − q0)C2

2e
−2q2xt−2p2 + (q3 − q0)C2

3e
−2q3xt−2p3

]
.

(3.198)

The velocities are obtained using the chain rule:

vx =
dx

dt
=
dx

dτ

dτ

dt
, vy =

dy

dt
=
dy

dτ

dτ

dt
, vz =

dz

dt
=
dz

dτ

dτ

dt
. (3.199)

It is quite interesting to observe that if the qi’s all vanish, therefore F is a
constant and the system of differential equations is reduced to the system of
the standard Kasner universe. This will be the pivotal consideration for the
asymptotic analysis [21] of geodesics equations we will perform here: in the
standard Kasner geometry, as we show in appendix A, the universe undergoes
a contraction along one spacial direction and an expansion along the other
two. This is a consequence of the fact that one of the pi’s is negative, for
example p1 in appendix A, while the other two are positive. The consequence

of this consideration is that
dx

dτ
tends to 0 as t → 0, while

dy

dτ
and

dz

dτ
have

values different from 0 as t→ 0. So our ansatz is

dx

dτ
−−→
t→0

0 .

This results in an hypothesis for the trend of F as t→ 0, namely

e−(q1+q0)xt−2p1F −−→
t→0

0 ⇒ F ∼
t→0

e(q1+q0)xt2p1+ε , ε ≥ 0 . (3.200)

So, with the asymptotic trend of F we can solve asymptotically the set of
differential equations. By substituting the asymptotic representation of F in
(3.195) we obtain

dt

dτ
= e−q0x

[
1 + C2

2e
−2q2xt−2p2 + C2

3e
−2q3xt−2p3 + e2q1xt2p1+2ε

] 1
2 .
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In appendix A we show, by using the Lifshitz-Khalatnikov parametrization
[23], that |p1| , |p2| < |p3|. Therefore, within the four terms inside the bracket
the dominating one as t → 0 is C2

3e
−2q3xt−2p3 . So (3.195) asymptotically

becomes
dt

dτ
≈ C3e

−(q0+q3)xt−p3 . (3.201)

Now we can solve (3.198), which is necessary to solve (3.196); by multiplying

(3.198) by
dτ

dt
and using the chain rule, we obtain

dF

dt
≈ C3 (q3 − q0) e(2q0−q1−q3)xt−p3 ⇒

⇒ F ≈ C3 + (q3 − q0)

1− p3

e(2q0−q1−q3)xt1−p3 +D ∼
t→0

D , (3.202)

so that F is approximately constant for t → 0. We observe that this result
verifies the ansatz (3.200), and in particular we found that ε = −2p1 > 0.
Integration constant D may be fixed according to (3.200), therefore D =
e(q1+q0)x. By substituting (3.202) in (3.196) we find

dx

dτ
≈ t−2p1 ,

and the corresponding velocity is

vx ≈ 1

C3

e(q3+q0)xtp3−2p1 . (3.203)

The other two velocities read explicitly

vy =
dy

dt
=
C2

C3

e(q0+q3−2q2)xtp3−2p2 , vz =
dz

dt
= e(q0−q3)xt−p3 . (3.204)

Using tetrads (3.136) we obtain the tetrad velocities

vx̂ =
1

C3

e(q3+q1+q0)xtp3−p1 , vŷ =
C2

C3

e(q0+q3−q2)xtp3−p2 , vẑ = eq0x . (3.205)

So far we have obtained an asymptotic expression for the tetrad velocities in
the vicinity of the singularity t→ 0. Looking back at what we did in chapter
two, we also obtain an explicit expression for the γ factor

γ = U 0̂ = e0̂
0U

0 = eq0x
dt

dτ
= C3e

−q3xt−p3 . (3.206)

Finally, we observe that in obtaining (3.202) we have implicitly assumed
p3 6= 1; this is reasonable, because in the standard Kasner space-time p3 = 1
implies p1 = p2 = 0, and the Kasner metric would be a reformulation of the
flat space-time, as shown in appendix A.

Now we use (3.205) and (3.206) to study the equations of motion of
average spin in the proximity of the singularity.
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3.2.5 Equations of motion of spin.

In the previous section we have obtained asymptotic expressions for the ve-
locities of a particle moving in a double Kasner universe. In this section we
use these expressions to obtain asymptotic expressions near t → 0 for the
angular velocities of a spinning particle in this universe. We consider (3.181)
÷ (3.186) and substitute results (3.205) and (3.206) in them; first we observe
that

γ

1 + γ
−−→
t→0

1 ,

as a consequence of (3.206) and of the positivity of p3. The angular velocities
then read

Ωx̂
(1) = 0 ; (3.207)

Ωŷ
(1) ∼t→0

−e(q0−q1)xt−p1eq0x (q2 − q0) ∼
t→0

0 , (3.208)

because −p1 is positive;

Ωẑ
(1) ∼

t→0
e(q0−q1)xt−p1

C2

C3

e(q0+q3−q2)xtp3−p2 (q0 − q2) =

=
C2

C3

(q0 − q2) e(2q0+q3−q1−q2)xtp3−p2−p1 ,

and by evaluating explicitly the exponent we have

p3 − p2 − p1 =
u2 + u− u− 1 + u

u2 + u+ 1
=
u2 + u− 1

u2 + u+ 1
> 0 ,

and therefore
Ωẑ

(1) ∼
t→0

0 ; (3.209)

Ωx̂
(2) ∼

t→0

C2

C3

e(q0+q3−q2)xtp3−p2eq0x
(
p2 − p3

t

)
=

=
C2

C3

(p2 − p3) e(2q0+q3−q2)xtp3−p2−1 ,

and by evaluating explicitly the exponent we have

p3 − p2 − 1 =
u2 + u− u− 1− u2 − u− 1

u2 + u+ 1
=
−u− 2

u2 + u+ 1
< 0 ,

so Ωx̂
(2) survives in the vicinity of the singularity;

Ωŷ
(2) ∼t→0

1

C3

e(q3+q1+q0)xtp3−p1eq0x
(
p3 − p1

t

)
=
p3 − p1

C3

e(q3+q1+2q0)xtp3−p1−1 ,
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and by evaluating explicitly the exponent we have

p3 − p1 − 1 =
u2 + u+ u− u2 − u− 1

u2 + u+ 1
=

u− 1

u2 + u+ 1
> 0 ,

if we assume u 6= 1 for now, so that we have

Ωŷ
(2) ∼t→0

0 ; (3.210)

Ωẑ
(2) ∼

t→0

C2

C3

e(q0+q3−q2)xtp3−p2
1

C3

e(q3+q1+q0)xtp3−p1
(
p1 − p2

t

)
=

=
C2

C2
3

(p1 − p2) e(2q0+2q3+q1−q2)xt2p3−p2−p1−1 ,

and by evaluating explicitly the exponent we have

2p3 − p2 − p1 − 1 =
2u2 + 2u− u− 1 + u− u2 − u− 1

u2 + u+ 1
=
u2 + u− 2

u2 + u+ 1
> 0 ,

remembering that u 6= 1, coherently with the previous assumption, so that
we have

Ωẑ
(2) ∼

t→0
0 . (3.211)

We observe that the only component of angular velocity surviving in the
vicinity of singularity t→ 0 is Ωx̂

(2). System (3.162) is therefore simplified as

dsx̂

dt
∼
t→0

0

dsŷ

dt
∼
t→0
−C2

C3

(p2 − p3) e(2q0+q3−q1)xtp3−p2−1sẑ

dsẑ

dt
∼
t→0

C2

C3

(p2 − p3) e(2q0+q3−q1)xtp3−p2−1sŷ

. (3.212)

By setting A =
C2

C3

(p2 − p3) e(2q0+q3−q1)x, the asymptotic solution of the sys-

tem is straightforward:
sx̂ ∼

t→0
sx̂0

sŷ ∼
t→0

s0 cos

(
Atp3−p2

p3 − p2

+ φ

)
sẑ ∼

t→0
s0 sin

(
Atp3−p2

p3 − p2

+ φ

) , (3.213)

where s0 and φ are integration constants representing an amplitude and a
phase respectively. We observe that the exponent of t in (3.213) is explicitly
given by
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p3 − p2 =
u2 − 1

u2 + u+ 1
> 0 ,

in continuity with hypothesis u 6= 1 used before. This implies that the
singularity is integrable, because in limit t→ 0 the average spin s tends to a
fixed direction in a regular way, despite the angular velocity diverging near
t→ 0.

3.2.6 Equations of motion of spin: p = (-1/3,2/3,2/3).

Now let’s consider the case we excluded before, that is u = 1; this implies
that the pi’s assume the values

p1 = −1

3
, p2 =

2

3
, p3 =

2

3
.

We want to solve the equations of motion of spin in this particular case, so we
evaluate the components of the angular velocity; as in the previous general
case, the components of Ω(1) are asymptotically equal to 0, as easily seen
from their expressions evaluated previously. The components of Ω(1) read
explicitly

Ωx̂
(2) ∼

t→0

C2

C3

(p2 − p3) e(2q0+q3−q2)xtp3−p2−1 = 0 , (3.214)

because p2 and p3 are equal;

Ωŷ
(2) ∼t→0

p3 − p1

C3

e(q3+q1+2q0)xtp3−p1−1 =
1

C3

e(q3+q1+2q0)x ; (3.215)

Ωẑ
(2) ∼

t→0

C2

C2
3

(p1 − p2) e(2q0+2q3+q1−q2)xt2p3−p2−p1−1 = −C2

C2
3

e(2q0+2q3+q1−q2)x .

(3.216)
In this particular case we have obtained that the angular velocity is constant
(in time). System (3.162) then becomes

dsx̂

dt
=

1

C3

e(q3+q1+2q0)xsẑ +
C2

C2
3

e(2q0+2q3+q1−q2)xsŷ

dsŷ

dt
= −C2

C2
3

e(2q0+2q3+q1−q2)xsx̂

dsẑ

dt
= − 1

C3

e(q3+q1+2q0)xsx̂

, (3.217)

and can be written in matrix form as

d

dt

sx̂sŷ
sẑ

 =

 0 −Ωẑ
(2) Ωŷ

(2)

Ωẑ
(2) 0 0

−Ωŷ
(2) 0 0


sx̂sŷ
sẑ

 . (3.218)
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System (3.218) is analogous to (3.96), solved for the Melvin space-time, for

the substitutions Ωẑ
(1) ↔ Ωẑ

(2) and Ωφ̂
(1) ↔ Ωŷ

(2) for the matrix elements, and
the substitution Σ ↔ s for the functions of the differential equations. The
solution of (3.218) is then obtained formally in the same way we obtained
(3.101), so we can use (3.101) and apply the aforementioned substitutions:

sx̂sŷ
sẑ

 =


s1 cos [ωt+ φ]

s2

Ωŷ
(2)

Ωẑ
(2)

+ s1

Ωẑ
(2)

ω
sin [ωt+ φ]

s2 − s1

Ωŷ
(2)

ω
sin [ωt+ φ]

 , (3.219)

where ω =
√

Ωŷ2
(2) + Ωẑ2

(2) and s1, s2 and φ are integration constants. Even in

this case, the average spin vector tends in a regular way to a fixed direction,
but differently from the general case the precession velocity does not diverge.

3.2.7 Cosmic jets.

In [24] the authors study some examples of ”cosmic jets”, as in particles
accelerated to the speed of light by gravitational fields. In particular, they
study examples of ”Kasner-like” space-times, where one direction collapses
while the other two expand, the same thing that happens in the standard
Kasner universe. In [11] the authors take the double-Kasner space-time into
consideration, but in solving the geodesics equations they consider only par-
ticular cases for parameters pi’s. In section (3.2.4) we have generalized their
work, finding an asymptotic solution for geodesics equations leaving the Kas-
ner parameters free.

Our results are in complete agreement with the results reached by the
authors, and the asymptotic analysis could be easily extended in an analogous
way to the limit t→∞, which is of no interest to us. Moreover, our result is
also in agreement with the solution for the standard Kasner space-time [24]
, [3].

3.2.8 Double Kasner space-time from Einstein equa-
tions.

In a previous section we demonstrated that metric (3.135) satisfying (3.132)
÷ (3.134) is a solution of the Einstein equations in vacuum. In this section
we want to demonstrate that the double Kasner metric emerges naturally by
solving the Einstein equations in vacuum using as few assumptions as possi-
ble. This is analogous to what we did in appendix A, where we demonstrated
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that starting from a Bianchi-I universe we obtain the Kasner space-time by
solving the Einstein equations.

We start from a diagonal line element whose coefficients depend only on
the variables x and t:

ds2 = a2(t, x)dt2 −
[
b2(t, x)dx2 + c2(t, x)dy2 + d2(t, x)dz2

]
; (3.220)

we can perform a time rescaling so that the coefficient a of dt2 depends only
on the spacial coordinate x [9]. The new time coordinate t represents what
is called cosmological time. If we leave the name t unchanged, line element
(3.220) becomes

ds2 = a2(x)dt2 −
[
b2(t, x)dx2 + c2(t, x)dy2 + d2(t, x)dz2

]
. (3.221)

Now we want to solve the Einstein field equations in vacuum Rµν = 0, and
in order to do this we first calculate the coefficients of affine connection Γλµν .
Denoting the derivative with respect to time t with a dot ·, and the derivative
with respect to space x with an apostrophe ′, we have explicitly:

Γ0
µν =

1

2
g00 (gµ0,ν + gν0,µ − gµν,0) =

1

2a2


0 2aa′ 0 0

2aa′ 2bḃ 0 0
0 0 2cċ 0

0 0 0 2dḋ

 =

=


0 a′

a
0 0

a′

a
bḃ
a2

0 0
0 0 cċ

a2
0

0 0 0 dḋ
a2

 ; (3.222)

Γ1
µν =

1

2
g11 (gµ1,ν + gν1,µ − gµν,1) = − 1

2b2


−2aa′ −2bḃ 0 0

−2bḃ −2bb′ 0 0
0 0 2cc′ 0
0 0 0 2dd′

 =

=


aa′

b2
ḃ
b

0 0
ḃ
b

b′

b
0 0

0 0 − cc′

b2
0

0 0 0 −dd′

b2

 ; (3.223)

Γ2
µν =

1

2
g22 (gµ2,ν + gν2,µ) = − 1

2c2


0 0 −2cċ 0
0 0 −2cc′ 0
−2cċ −2cc′ 0 0

0 0 0 0

 =
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=


0 0 ċ

c
0

0 0 c′

c
0

ċ
c

c′

c
0 0

0 0 0 0

 ; (3.224)

Γ3
µν =

1

2
g33 (gµ3,ν + gν3,µ) = − 1

2d2


0 0 0 −2dḋ
0 0 0 −2dd′

0 0 0 0

−2dḋ −2dd′ 0 0

 =

=


0 0 0 ḋ

d

0 0 0 d′

d

0 0 0 0
ḋ
d

d
d

0 0

 . (3.225)

Now, using (3.222) ÷ (3.225), we can evaluate the components of the Ricci
tensor and explicitly obtain:

R00 = Γρ00,ρ−Γρ0ρ,0 +Γρ00Γλρλ−Γλ0ρΓ
ρ
0λ =

a′2

b2
+
aa′′

b2
− 2aa′b′

b3
− b̈
b

+
ḃ2

b2
− c̈

c2
+
ċ2

c2
−

− d̈
d

+
ḋ2

d2
+
a′2

b2
+
aa′b′

b3
+
aa′c′

cb2
+
aa′d′

db2
− a′2

b2
− a′2

b2
− ḃ2

b2
− ċ2

c2
− ḋ2

d2
=

=
aa′′

b2
− aa′b′

b3
− b̈

b
− c̈

c
− d̈

d
+
aa′c′

cb2
+
aa′d′

db2
;

R11 = Γρ11,ρ−Γρ1ρ,1+Γρ11Γλρλ−Γλ1ρΓ
ρ
1λ =

bb̈

a2
+
ḃ2

a2
− a

′′

a
+
a′2

a2
− c
′′

c
+
c′2

c2
− d

′′

d
+
d′2

d2
+

+
ḃ2

a2
+
bḃċ

ca2
+
bḃḋ

da2
+
b′a′

ba
+
b′2

b2
+
b′c′

bc
+
b′d

bd
− a′2

a2
− ḃ2

a2
− ḃ2

a2
− b′2

b2
− c′2

c2
− d′2

d2
=

=
bb̈

a2
− a′′

a
− c′′

c
− d′′

d
+
bḃċ

ca2
+
bḃḋ

da2
+
b′a′

ba
+
b′c′

bc
+
b′d′

bd
;

R22 = Γρ22,ρ+Γρ22Γλρλ−Γλ2ρΓ
ρ
2λ =

cc̈

a2
+
ċ2

a2
− cc

′′

b2
− c
′2

b2
+

2cc′b′

b3
+
cċḃ

ba2
+
ċ2

a2
+
cċḋ

da2
−

−cc
′a′

ab2
− cc′b′

b3
− c′2

b2
− cc′d′

db2
− ċ2

a2
+
c′2

b2
− c′2

a2
+
c′2

b2
=

=
cc̈

a2
− cc′′

b2
+
cc′b′

b3
+
cċḃ

ba2
+
cċḋ

da2
− cc′a′

ab2
− cc′d′

db2
;

R33 = Γρ33,ρ+Γρ33Γλρλ−Γλ3ρΓ
ρ
3λ =

dd̈

a2
+
ḋ2

a2
−dd

′′

b2
−d

′2

b2
+

2dd′b′

b3
+
dḋḃ

ba2
+
dḋċ

ca2
+
ḋ2

a2
−



78 CHAPTER 3. COSMOLOGICAL APPLICATIONS.

−dd
′a′

ab2
− dd′b′

b3
− dd′c′

cb2
− d′2

b2
− ḋ2

a2
+
d′2

b2
− ḋ2

a2
+
d′2

b2
=

=
dd̈

a2
− dd′′

b2
+
dd′b′

b3
+
dḋḃ

ba2
+
dḋċ

ca2
− dd′a′

ab2
− dd′c′

cb2
;

R01 = Γρ01,ρ−Γρ0ρ,1 +Γρ01Γλρλ−Γλ0ρΓ
ρ
1λ =

ḃ′

b
− ḃb

′

b2
− ḃ
′

b
+
ḃb′

b2
− ċ
′

c
+
ċc′

c2
− ḋ

′

d
+
ḋd′

d2
+

+
a′ḃ

ab
+
a′ċ

ac
+
a′ḋ

ad
+
a′ḃ

ab
+
ḃb′

b2
+
ḃc′

bc
+

˙˙d′b

bd
− a′ḃ

ab
− a′ḃ

ab
− b′ḃ

b2
− ċc′

c2
− ḋd′

d2
=

= − ċ
′

c
− ḋ′

d
+
a′ċ

ac
+
a′ḋ

ad
+
ḃc′

bc
+
ḃd′

bd
;

R02 = Γρ02,ρ + Γρ02Γλρλ − Γλ0ρΓ
ρ
2λ = 0 ;

R03 = Γρ03,ρ + Γρ03Γλρλ − Γλ0ρΓ
ρ
2λ = 0 ;

R12 = Γρ12,ρ + Γρ12Γλρλ − Γλ1ρΓ
ρ
2λ = 0 ;

R13 = Γρ13,ρ + Γρ13Γλρλ − Γλ1ρΓ
ρ
3λ = 0 ;

R23 = Γρ23,ρ + Γρ23Γλρλ − Γλ2ρΓ
ρ
3λ = 0 .

The Einstein equations in vacuum Rµν = 0 therefore become

b̈

b
+
c̈

c
+
d̈

d
=

a

b2

(
a′′ − a′b′

b
+
a′c′

c
+
a′d′

d

)
; (3.226)

b

a2

(
b̈+

ḃċ

c
+
ḃḋ

d

)
=
a′′

a
+
c′′

c
+
d′′

d
− b′a′

ba
− b′c′

bc
− b′d′

bd
; (3.227)

c

a2

(
c̈+

ċḃ

b
+
ċḋ

d

)
=

c

b2

(
c′′ +

c′a′

a
+
c′d′

d
− c′b′

b

)
; (3.228)

d

a2

(
d̈+

ḋḃ

b
+
ḋċ

c

)
=

d

b2

(
d′′ +

d′a′

a
+
d′c′

c
− d′b′

b

)
; (3.229)

ċ′

c
+
ḋ′

d
− a′ċ

ac
− a′ḋ

ad
− ḃc′

bc
− ḃd′

bd
= 0 . (3.230)

In (3.226) ÷ (3.229) the parts involving derivatives with respect to t and
those involving derivatives with respect to x are explicitly separated, so it is
natural to look for solutions involving factorized functions. This means that
if we consider a function of x and t, f(t, x), it is true that

f(t, x) = ft(t) · fx(x) . (3.231)
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This implies

˙f(t, x)

f(t, x)
=

˙ft(t)fx(x)

ft(t)fx(x)
=

˙ft(t)

ft(t)
and

f ′(t, x)

f(t, x)
=
ft(t)f

′
x(x)

ft(t)fx(x)
=
f ′x(x)

fx(x)
. (3.232)

We can use (3.232) to factorise b(t, x), c(t, x) and d(t, x). It is easy to verify
that in (3.226) ÷ (3.229) the terms on the left depend only on coordinate t,
and the terms on the right depend only on coordinate x. This means that we
can consider the right and the left terms separately and put the equal to a
common constant. For the sake of simplicity, and without losing generality,
we can put this constant equal to 0. In appendix C we show that this choice
is sufficient and necessary in order to obtain double Kasner metric. To solve
the system we start considering the left terms of (3.227) ÷ (3.229), which
after the factorisation become

b̈t
bt

+
ḃtċt
btct

+
ḃtḋt
btdt

= 0 , (3.233)

c̈t
ct

+
ċtḃt
btct

+
ċtḋt
ctdt

= 0 , (3.234)

d̈t
dt

+
ḋtḃt
btdt

+
ḋtċt
ctdt

= 0 . (3.235)

This set of equations is analogous to set (A.6) ÷ (A.8) solved in appendix
A, so we omit the calculations that have already been shown there. The
solution is therefore

bt(t) = b0t
p1 , ct(t) = c0t

p2 , dt(t) = d0t
p3 ,

with p1 + p2 + p3 = p2
1 + p2

2 + p2
3 = 1 . (3.236)

For the temporal factor of functions b, c, and d, we have found exactly the
Kasner solution as we expected.

To find the remaining spacial factors, we start by considering the right
term of (3.226):

a′′x
ax
− a′xb

′
x

axbx
+
a′xc
′
x

axcx
+
a′xd

′
x

axdx
= 0 .

By adding and subtracting
a′2x
a2
x

, the equation becomes

a′′x
ax
− a′2x
a2
x

+
a′x
ax

(
a′x
ax
− b′x
bx

+
c′x
cx

+
d′x
dx

)
= 0 ,
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and by using Leibniz’s rule we obtain(
a′x
ax

)′
+
a′x
ax

(
a′x
ax
− b′x
bx

+
c′x
cx

+
d′x
dx

)
= 0 .

If we divide by
a′x
ax

and use the logarithmic derivative, we obtain

(
ln
a′x
ax

)′
=

(
ln

bx
axcxdx

)′
,

that is easily integrated to

a′x
ax

=
Abx
axcxdx

. (3.237)

In a completely analogous way, from the right terms of (3.228) and (3.229)
we obtain

c′x
cx

=
Cbx
axcxdx

(3.238)

and
d′x
dx

=
Dbx
axcxdx

. (3.239)

Now we want to show that
bx

axcxdx
is a constant, and in order to do this we

consider the right term of (3.227):

a′′x
ax

+
c′′x
cx

+
d′′x
dx
− b′xa

′
x

bxax
− b′xc

′
x

bxcx
− b′xd

′
x

bxdx
= 0 .

Thanks to Leibniz’s rule we have

a′′x
ax

=

(
a′x
ax

)′
+
a′2x
a2
x

.

Using the previous relation and (3.237) ÷ (3.239), we obtain(
Abx
axcxdx

)′
+

(
Cbx
axcxdx

)′
+

(
Dbx
axcxdx

)′
+

(A2 + C2 +D2) b2
x

a2
xc

2
xd

2
x

−

−b
′
x

bx

(
(A+ C +D) bx

axcxdx

)
= 0 ;
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finally, we obtain

b′x
bx

=
A2 + C2 +D2

A+ C +D

bx
axcxdx

+

(
bx

axcxdx

)′
bx

axcxdx

. (3.240)

It is obvious that metric (3.221) is invariant for permutations of the coordi-
nates x ↔ y ↔ z, so it is reasonable to assume that functions bx, cx and dx
all have the same functional form. This implies that the last term in (3.240)

must be equal to 0. This is true if and only if
bx

axcxdx
is constant. So, we

have demonstrated that
bx

axcxdx
is constant, and we also found the equation

for bx. By using these results in (3.237) ÷ (3.240), we obtain

a′x = q0ax ⇒ ax = Ãeq0x , (3.241)

b′x = q1bx ⇒ bx = B̃eq1x , (3.242)

c′x = q2cx ⇒ cx = C̃eq2x , (3.243)

d′x = q3dx ⇒ dx = D̃eq3x . (3.244)

It is easy to verify that the parameters q satisfy the relations of the double
Kasner metric; in fact, by substituting the explicit expressions for a, b, c and
d into the left term of (3.226), we obtain

q0 (q0 − q1 + q2 + q3) = 0 ⇒ q0 − q1 + q2 + q3 = 0 . (3.245)

We would have obtained the same result if we had used (3.228) or (3.229).
Starting from (3.227) we obtain

q2
0 + q2

2 + q2
3 − q1 (q0 + q2 + q3) = 0 ,

and by using (3.245) we obtain

q2
0 − q2

1 + q2
2 + q2

3 = 0 . (3.246)

Finally, starting from (3.230) we obtain a relation that links the parameters
pi and qj:

p2q2 + p3q3 − p2q0 − p3q0 − p1q2 − p1q3 = 0 ⇒
⇒ q0 (p2 + p3) = q2 (p2 − p1) + q3 (p3 − p1) . (3.247)

Putting all these results in (3.221) and reparametrizing the coordinates
so that we can absorb all the constants, we obtain

ds2 = e2q0xdt2 −
(
t2p1e2q1xdx2 + t2p2e2q2xdy2 + t2p3e2q3xdz2

)
, (3.248)

which is in complete accordance with (3.130). So, we have obtained the dou-
ble Kasner metric in a totally general way by solving the Einstein equations.
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Conclusions.

In the first chapter I have studied the mathematical tools necessary to de-
scribe fermions in a general manifold. First I have discussed the tetrads
[4], used to define an alternative formalism to describe general relativity, and
subsequently I have described the Foldy-Wouthuysen transformation and the
advantages that derive from in this representation [5].

In the second chapter I have applied the previous mathematical tools to
give an exhaustive description of fermions in a general gravitational field [2].
In particular I have described the way spin couples with the gravitational
field, reaching the equations of motion of the spin operator in a general
background.

In the third chapter I have applied the formalism developed in the pre-
vious chapters in order to analyse two particular anisotropic cosmological
models. First, I described in depth the Melvin space−time [8] and I showed
that it is possible to find the Melvin solution by solving the Einstein field
equations starting from simple assumptions. Then, I derived the expressions
for the angular velocity operators of fermions (3.32) , (3.37) and (3.38). To
obtain the final expressions for the operators, I had to evaluate the velocities
of a particle in the Melvin space-time and to do this I solved the geodesics
equations. I solved these equations both by direct calculation, and by using
Killing vector fields and I found results in complete agreement. With the
final expressions for angular velocity operators I solved the equation of mo-
tion of the polarisation operator and I found that the operator precedes in
a regular way near the early universe. Finally I described the transition to
the Melvin Cosmology [10] and evaluated the polarisation operator in this
cosmology finding complete agreement with Melvin space-time near the early
universe. It is quite interesting to observe that the results obtained are in
complete agreement with the semiclassical ones, derived in this chapter.

I have then applied the same mathematical apparatus to another cosmo-
logical model, the double Kasner space − time [11]. I have asymptotically
solved the geodesics equations near the early universe for general values of
the parameters involved in metric (3.130). I then asymptotically solved the
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semiclassical equations of average spin near the early universe and I have
found complete agreement with previous results [3] for the standard Kasner
model. I found that near the singularity t → 0 the average spin precedes
in a regular way despite the divergence of the angular velocity. Finally I
showed that the double Kasner space-time can be obtained as a vacuum so-
lution of the Einstein field equations by using a diagonal, anisotropic and
inhomogeneous metric.

The results obtained provide an exhaustive description of the spin-gravitational
field coupling in these cosmological models. The study of anisotropic models
might be important because the fundamental Friedmann–Lemâıtre–Robertson–Walker
describes the isotropic and homogeneous universe, but the effects of anisotropy
and inhomogeneity may be essential to describe some phenomena near the
early universe such as structure formations or baryon anti-baryon asymme-
tries. In particular a description of spin precession near the early universe
may be used to describe the helicity flip of massive Dirac neutrinos: neutri-
nos with left chirality may change their helicity because of the interaction
with the gravitational field, so right-handed neutrinos could be produced.
These are sterile particles that interact gravitationally only; this could be an
interesting characteristic to study, because these sterile neutrinos may be a
contribution to dark matter [3].



Appendix A

Kasner space-time.

In [22] and in previous articles, E. Kasner demonstrates some theorems about
the Cosmological equations, which are Einstein equations in vacuum. In
particular, he shows that a solution of the Einstein equations in vacuum
where potentials involve only one variable is

ds2 = t−2dt2 − x2
1

(
dx2

1 + dx2
2 + dx2

3

)
, (A.1)

and this can be further reduced to

ds2 = t2a1dt2 − t2a2dx2
1 − t2a3dx2

2 − t2a4dx2
3

where a2 + a3 + a4 = 1 + a1 , and a2
2 + a2

3 + a2
4 = (1 + a1)2 . (A.2)

In a reference frame that uses cosmological time a1 = 0, and the Kasner line
element becomes

ds2 = dt2 − t2p1dx2
1 − t2p2dx2

2 − t2p3dx2
3

where p1 + p2 + p3 = 1 = p2
1 + p2

2 + p2
3 . (A.3)

In many textbooks, such as in [9], the Kasner solution is introduced as
an assumption and it is then verified that it satisfies the Einstein equations.
Here we generalize this process by showing how to obtain the Kasner metric
starting from a Bianchi-I type cosmology [9]

ds2 = dt2 −
(
a(t)2dx2 + b(t)2dy2 + c(t)2dz2

)
. (A.4)

In other words, we demonstrate that the vacuum solution of the Einstein
field equations that represents a Bianchi-I cosmology is the Kasner metric.
It is easy to demonstrate that the Einstein equations in vacuum are

ä

a
+
b̈

b
+
c̈

c
= 0 , (A.5)
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ȧḃ

ab
+
ȧċ

ac
+
ä

a
= 0 , (A.6)

ȧḃ

ab
+
ḃċ

bc
+
b̈

b
= 0 , (A.7)

ȧċ

ac
+
ḃċ

bc
+
c̈

c
= 0 . (A.8)

(A.6) may be written as

ä

a
− ȧ2

a2
+
ȧ

a

(
ȧ

a
+
ḃ

b
+
ċ

c

)
= 0 ⇒ d

dt

(
ȧ

a

)
+
ȧ

a

d

dt
(ln abc) = 0 ⇒

⇒ d

dt

(
ln
ȧ

a

)
+
d

dt
(ln abc) = 0 ⇒ ȧ

a
=

A

abc
where A = const. . (A.9)

Analogously, we obtain

ḃ

b
=

B

abc
and

ċ

c
=

C

abc
where B,C = const. . (A.10)

Now we demonstrate that abc is linearly dependent on t:

d2

dt2
(abc) =

d

dt

(
ȧbc+ aḃc+ abċ

)
= äbc+ ab̈c+ abc̈+ 2ȧḃc+ 2ȧbċ+ 2aḃċ ,

and by dividing by abc we obtain (A.6) + (A.7) + (A.8). So,

d2

dt2
(abc) = 0 . (A.11)

Thanks to this linearity we can set abc = vt and, by using
A

v
= p1 ,

B

v
= p2

and
C

v
= p3 , we can obtain

ä

a
=
p2

1 − p1

t2
,
b̈

b
=
p2

2 − p2

t2
,
c̈

c
=
p2

3 − p3

t2
. (A.12)

By using (A.12) in (A.5) we obtain

p1 + p2 + p3 = p2
1 + p2

2 + p2
3 , (A.13)

and substituting (A.12) in (A.6) + (A.7) + (A.8) we obtain

(p1 + p2 + p3) (p1 + p2 + p3 − 1) = 0 .
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The first solution p1 + p2 + p3 = 0, that combined with (A.13) gives p1 =
p2 = p3 = 0, reproduces the Minkowski space-time; so, we keep the other
solution, p1 + p2 + p3 = 1. By putting all these results together we find the
Kasner solution:

a(t) = a0t
p1 , b(t) = b0t

p2 , c(t) = c0t
p3 ,

with p1 + p2 + p3 = p2
1 + p2

2 + p2
3 = 1 . (A.14)

In order to study the properties of the Kasner indices, it is often useful
to introduce the Lifshitz −Khalatnikov parametrization [23]:

p1 = − u

1 + u+ u2
, p2 =

u+ 1

1 + u+ u2
, p3 =

u (u+ 1)

1 + u+ u2
, u ∈ [1; +∞) ,

(A.15)
where we have assumed, without loss of generality, p1 < p2 < p3. It is easy
to obtain

−1

3
≤ p1 ≤ 0 , 0 ≤ p2 ≤

2

3
,

2

3
≤ p3 ≤ 1 , (A.16)

therefore two exponents are positive and one is negative. This means, in
physical terms, that the universe undergoes an expansion along two directions
and a contraction along the third.

(A.3) represents the standard Kasner solution in timelike form; it can be
written in spacelike form as

ds2 = x2p1
1 dt2 − dx2

1 − x
2p2
1 dx2

2 − x
2p3
1 dx2

3 . (A.17)

It follows that the double-Kasner metric studied in chapter 3 is a nonlinear
superposition of the timelike and the spacelike forms of the Kasner metric.

Now we will show that if one of the three parameters pi is equal to 1,
then metric (A.3) is nothing more than a different parametrization of the
Minkowski metric. If we consider the limit u→∞, we obtain

p1 = p2 = 0 , p3 = 1 ⇒ ds2 = dt2 − dx2 − dy2 − t2dz2 . (A.18)

Let’s consider the Minkowski line element with signature −2:

ds2 = dτ 2 − dx2 − dy2 − dξ2 ; (A.19)

now we change variables by setting

τ = t cosh z , ξ = t sinh z .

By differentiating the two expressions we obtain
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dτ = dt cosh z + t sinh zdz , dξ = dt sinh z + t cosh zdz ,

and substituting in (A.19) we obtain

ds2 = dt2 cosh2 z+t2 sinh2 zdz2+2t cosh z sinh zdtdz−dx2−dy2−dt2 sinh2 z−

−t2 cosh2 z − 2t cosh z sinh zdtdz = dt2
(
cosh2 z − sinh2 z

)
− dx2 − dy2−

−t2dz2
(
cosh2 z − sinh2 z

)
= dt2 − dx2 − dy2 − t2dz2 , (A.20)

that is exactly (A.18).



Appendix B

Killing vector fields.

First we have to remember a couple of definitions [12]:

Def. B.1 (Isometry) : let X and Y be two metric spaces with distances
respectively dX and dY , an application f : X → Y is called an isometry if it
preserves the distance, that is

dX (x1, x2) = dY (f (x1) , f (x2)) . (B.1)

Def. B.2 (Killing vector field) : a Killing vector field V is a field with
respect to which the metric is invariant, that is

LV g = 0 , (B.2)

where LV denotes the Lie derivative along V . (B.2) can be rewritten as

∇(ν Vµ) = V(µ;ν) = 0 , (B.3)

and (B.3) is the Killing equation.

Killing vector fields are the generators of infinitesimal isometries, and
here we will show how. Starting from condition (B.1) it follows that

gµν(x)→ g′µν(x
′) = gµν(x

′) ,

that is the isometry condition for the metric. We have

ds2 = gµν(x)dxµdxν = g′ρσ(x′)dx′ρdx′σ = g′ρσ(x′)
∂x′ρ

∂xµ
∂x′σ

∂xν
dxµdxν ,

and by using the isometry condition we obtain

gµν(x) = gρσ(x′)
∂x′ρ

∂xµ
∂x′σ

∂xν
. (B.4)
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If we consider the infinitesimal transformations

xµ → x′µ = xµ + εξµ +O
(
ε2
)

where |ε| � 1 , (B.5)

we can study (B.4) at the first order in ε. We have

∂x′ρ

∂xµ
= δρµ + ε

∂ξρ

∂xµ
(x) +O

(
ε2
)
,

gρσ(x′) = gρσ (x) + ε
∂gρσ(x)

∂xλ
ξλ +O

(
ε2
)
,

and by substituting the latter expressions into (B.4) we obtain at first order

gµν(x) =

(
δρµ + ε

∂ξρ

∂xµ
(x)

)(
δσν + ε

∂ξσ

∂xν
(x)

)(
gρσ (x) + ε

∂gρσ(x)

∂xλ
ξλ
)
⇒

⇒ ∂gµν(x)

∂xλ
ξλ(x) +

∂ξλ(x)

∂xµ
(x)gλν(x) +

∂ξλ(x)

∂xν
(x)gλµ(x) = 0 , (B.6)

that is (B.2) in a coordinate basis. We have demonstrated that Killing vector
fields are the generators of infinitesimal isometries; this is particularly useful
when the metric does not depend on one of the coordinates, in which case a
Killing vector field is simply the generator of translations for that coordinate.

Now we show that the scalar uµξµ is a constant of motion along the
geodesics:

d

dλ
(uµξµ) =

D

Dλ
(uµξµ) =

Duµ

Dλ
ξµ + uµ

Dξµ
Dλ

= uµ
Dξµ
Dλ

= ξµ;νu
µuν = 0 ,

(B.7)

where
D

Dλ
is the covariant derivative along the geodesic. In the first equality

of (B.7) we have used the fact that uµξµ is a scalar, in the third equality we
have used the geodesic definition and in the last equality we have used the
antisymmetry of ξµ;ν , which is a consequence of (B.3).

This consideration is particularly useful because it simplifies the solution
of the geodesic equations in the case of Killing vectors obtained from the
independence of the metric of some coordinates.



Appendix C

Observations upon the double
Kasner metric.

In section 3.2.8 we demonstrated that it is possible to obtain the double
Kasner metric by solving the Einstein field equations in vacuum assuming
metric (3.220) as a starting point. As we were solving system (3.226) ÷
(3.230) we obtained a solution for the metric coefficients factorised in a space-
dependent only term and a time-dependent only term. This factorisation
implied that each equation in the set (3.226) ÷ (3.229) was split in a pair
of equations, one with time derivatives only, one with space derivatives only.
Each equation of the pairs involves an arbitrary constant that we put equal
to 0 for the sake of simplicity. In this appendix we discuss the necessariness
of putting this constant equal to 0 in order to find a solution which is in
accordance with the Kasner metric.

Let’s start from (A.6), that is the temporal part of (3.227). We consider
the case of a non-zero constant K:

d

dt

(
ȧ

a

)
= − d

dt
(ln abc)

ȧ

a
+K . (C.1)

(C.1) is a linear differential equation with respect to the function
ȧ

a
, so

we can find a solution by using standard formulas of mathematical analysis:

ȧ

a
= e−

∫
d
du

(ln abc)du

[
A+

∫
Ke

∫
d
dτ

(ln abc)dτdu

]
, (C.2)

where A is an integration constant. (C.2) becomes then

ȧ

a
=

1

abc

[
A+K

∫
abc du

]
. (C.3)
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If we had started from (A.7) and (A.8) we would have obtained analogous
equations with different constants. The set of three equations analogous to
(C.3) is a set of integro-differential equations, and it is not easy to solve
it analytically. To proceed with calculations we use the hypothesis that
abc is a linear function of t, so we can put abc = vt. This hypothesis is
reasonable because it is verified in the standard Kasner case as shown in
(A.11). Therefore (C.3) becomes

ȧ

a
=

1

abc

[
A+K

∫
abc du

]
=
A

vt
+

1

vt

Kv

2
t2 =

A

vt
+
K

2
t , (C.4)

and the other two analogous equations are

ḃ

b
=

1

abc

[
B + L

∫
abc du

]
=
B

vt
+

1

vt

Lv

2
t2 =

B

vt
+
L

2
t , (C.5)

ċ

c
=

1

abc

[
C +M

∫
abc du

]
=
C

vt
+

1

vt

Mv

2
t2 =

C

vt
+
M

2
t , (C.6)

(C.4), (C.5) and (C.6) are differential equation that can be easily solved
through separation of variables, and they lead to

ln a =
A

v
ln t+

K

4
t2 ⇒ a = t

A
v e

K
4
t2 , (C.7)

and analogously

b = t
B
v e

L
4
t2 , (C.8)

c = t
C
v e

M
4
t2 . (C.9)

The power-like parts of a, b and c is analogous to what we derived in Ap-
pendix A, and in particular (A.14) holds. The exponential parts of a, b and
c are not in agreement with the hypothesis abc = vt unless the constants K,
L and M are all equal to 0. So we obtained that a necessary and sufficient
condition in order to reproduce a result in accordance with the Kasner metric
is that the constants emerging from the factorisation of (3.226) ÷ (3.229) are
all equal to 0.

Another formulation for these observations starts from considering (C.4)
÷ (C.6) without the assumption of abc = vt:

ȧbc = A+K

∫
abc du , (C.10)

aḃc = B + L

∫
abc du , (C.11)
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abċ = C +M

∫
abc du . (C.12)

If we consider (C.10) + (C.11) + (C.12) we obtain

˙(abc) = U + V

∫
abd du , (C.13)

where U = A+B + C and V = K + L+M . If V = 0 we obtain that abc is
a linear function of t and in particular it is necessary that K = L = M = 0
to obtain expressions reproducing the Kasner solution.
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