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Abstract

Obiettivo di questa tesi è lo studio e lo sviluppo di soluzioni innovative di
navigazione inerziale per applicazioni ferroviarie. Questo strumento risul-
ta infatti utile per il tracciamento del moto durante l’assenza prolungata di
sistemi di localizzazione esterni, tipo GPS, come può avvenire in lunghe gal-
lerie. Una volta definite le equazioni fondamentali di meccanizzazione e gli
strumenti per la rappresentazione dell’assetto e la costruzione di osservatori
di stato, è stata eseguita un’analisi dello stato dell’arte e dei dispositivi di-
sponibili sul mercato, al fine di mettere in evidenza le tecniche attuali per
risolvere questo genere di problemi, nonchè le prestazioni dei sistemi già esi-
stenti, in particolare per ciò che concerne le loro prestazioni durante periodi
di assenza del GPS. Sono inoltre presentati e caratterizzati i sensori e le mi-
sure disponibili su questi veicoli: accelerometri e giroscopi MEMS, GPS e
odometria.

Partendo da queste informazioni, sono state proposte varie soluzioni al
problema di stima di posizione, velocità e assetto del veicolo con l’obiettivo
di valutare quali prestazioni si possono ottenere durante fasi di totale assenza
di segnale GPS, con l’ausilio o meno delle mappe del tracciato da percorrere
e/o in presenza di non idealità dei sensori come bias o rumore di misura.

Dopo una prima versione basata su un singolo EKF standard, si è scelto
di sviluppare una seconda serie di soluzioni separando il problema di stima
in ricostruzione di assetto (AHRS) e stima di posizione/velocità, risolti me-
diante due algoritmi distinti, in modo da sfruttare le informazioni dei sensori
in maniera più strutturale e ridurre la complessità. È stato implementato un
AHRS basato su filtro di Kalman esteso e uno mediante un osservatore non
lineare sul gruppo SO(3), adattato per riceve le misure disponibili a intervalli
discreti; inoltre, sono stati sviluppati un EKF di ordine completo e uno ridot-
to per le dinamiche di traslazione. Successivamente alla loro formulazione, è
stata sviluppata una soluzione per l’integrazione dei dati delle mappe negli
algoritmi, in modo da fornire correzioni anche in mancanza di GPS e ridurne
cos̀ı la deriva, mantenendo al contempo un ridotto carico computazionale e
facilità di integrazione con tutti gli algoritmi sviluppati.

Si è infine proceduto implementando e simulando la soluzione a singo-
lo stadio e le varie combinazioni di INS a due stadi in ambiente Matlab-
Simulink, per un confronto e per la verifica delle loro prestazioni in presenza
o meno delle correzioni da GPS e/o mappe, nonchè con misure ideali e rumo-
rose e incertezze sulla traiettoria riportata nella mappa, la cui introduzione



ha introdotto sensibili miglioramenti nelle fasi di assenza del GPS. Gli algo-
ritmi a due stadi hanno mostrato prestazioni migliori rispetto alla struttura
a EKF singolo la quale presenta, a livello di prestazioni negli scenari di ri-
ferimento considerati, un dominio di convergenza troppo limitato per fini
pratici.

A conclusione del lavoro, il quale è stato svolto avvalendosi anche della
collaborazione di Sadel, sono state gettate delle basi per una successiva ana-
lisi rigorosa dell’interconnessione negli INS a due stadi, il cui obiettivo sarà
verificare o meno se tale struttura consente la convergenza anche dei bias di
accelerometro al fine di ottenere la migliore inizializzazione possibile dei filtri
per la fase di dead reckoning.
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Introduction

Development of inertial navigation algorithms is nowadays favoured by the
technology progress on the manufacturing of Micro Electro-Mechanical Sys-
tems (MEMS) devices, which allows building miniaturised systems for a wide
range of applications, including human motion capture. The integration of
data coming from proprioceptive sensors of different nature (accelerometers,
magnetometers, gyroscopes and so on) allows for attitude, speed and position
reconstruction starting from a known initial condition.

Drift-related errors are inevitable especially in noisy environments and
increase with time, therefore periodic updates should be performed from
an external source, such as the Global Positioning System (GPS), which is
possibly not always available, inaccurate and provide data at a limited rate.
Inertial navigation systems must then perform the best possible accuracy in
order to limit positioning, velocity and orientation error between updates.

The purpose of this work is to apply the techniques of inertial and satellite-
aided navigation to the trains sector by adapting them to the unique features
of this class of vehicles in order to develop an innovative solution. In partic-
ular, it is of interest to evaluate their dead reckoning performance. Another
objective is to integrate map knowledge into standard navigation algorithm
and to understand how it can help in limiting the intrinsic problem of esti-
mation drift. The thesis has been developed in collaboration with Sadel, an
italian company working in the field of train systems for infotainment.

The work is structured as follows. A general overview of the problem
of inertial navigation, its basic principles and issues is found in Chapter 1;
then, the mathematical fundamentals are given in Chapter 2 and the prob-
lem is formulated for the non-inertial framework. Several relevant attitude
representations are also presented. Chapter 3 outlines the sensor models con-
sidered in this work and their uncertainties, in particular for what concerns
MEMS accelerometers and gyroscopes, GPS and odometry.

Chapter 4 presents the Kalman Filter, which is the standard tool to
address such problems. Nevertheless, its most popular variations have been
outlined, such as Extended Kalman Filter (EKF), Unscented Kalman Filter
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(UKF) and Invariant EKF (IEKF). Their main properties and limitations
have been described. Chapter 5 points out the state of the art concerning
inertial navigation algorithms, as well as the currently-available commercial
devices,their generic field of application and overall performance. Moreover,
the general approach followed for the design of an innovative algorithm is
outlined.

Starting from the solutions found in literature, several models were stud-
ied in order to exploit the kinematic constraints of the train and all the avail-
able measurements in order to get the best possible estimate by separating
the problem of attitude estimation and the navigation algorithm itself and
compensate for sensors biases, which are an additional sources of uncertainty.

A single-EKF algorithm is presented in Chapter 6, while several two-
stage solutions have been developed in Chapter 7 in order to separate the
problem of attitude estimation from position and velocity and to overcome
some limitations of the single-stage algorithm.

Moreover, the topic of map-aided navigation was addressed to improve
navigation accuracy during GNSS outages. An algorithm was developed in
order to exploit the additional information. Chapter 8 describes the proposed
solution for map integration.

All the algorithms have been implemented in Matlab-Simulink according
to the functional schemes presented in Chapter 9. Simulation results from
the different model are depicted in Chapter 10. Ideal and uncertain maps
have been used in the simulations as well as ideal and noisy readings to test
different working conditions. An overview of the problem of accelerometer
bias estimation is depicted in the same chapter and an insight is given about
analysis techniques to understand if convergence is possible within a two-
stage INS framework. Eventually, conclusions are presented in Chapter 11.
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Chapter 1

Inertial Navigation: an
overview

The problem of navigation has gained great importance nowadays as in-
creased precision of movements is required in transports and many other
engineering fields. This increase is also fed by the small-size MEMS technol-
ogy and the increased computing performance achieved by embedded devices.
Inertial navigation can be regarded as a class of sub-problems in which some
important constraints are introduced.

First of all, inertial navigation may be defined as “a self-contained nav-
igation technique”[25]. This means that it does not rely on external aiding
signal sources to work unlike GPS or instrumental navigation systems for air-
craft. Instead, proprioceptive sensors are used to sense motion and angular
rates and determine velocity, position and heading. This technique is widely
used in aircraft, maritime and land vehicle applications.

Inertial navigation solutions can improve motion estimation accuracy and
generally provides information at a higher rate with respect to some external
positioning systems. As a matter of fact, these systems may experience some
periods of outage during operation, be inaccurate or provide information at
an insufficient rate. It is then critical to perform the best possible estimation
and track the motion throughout the whole time span in order to continu-
ously provide data. When inertial navigation devices use external signals to
periodically correct their estimates they are also said to be performing aided
inertial navigation[10].
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1.1 Working principle

The main principle of inertial navigation is the well-known Newton’s Second
Law of motion: from the knowledge of the linear accelerations and the rota-
tion rates of the body as well as of its initial kinematic state, it is possible to
reconstruct the translational and rotational speed, and therefore the position
at a given time. It is essential to determine the orientation of the body in
order to integrate the measured accelerations on the right direction, since
the sensing equipments are usually solidal to the vehicle in modern applica-
tions. Moreover, knowing the attitude is essential in order to discriminate
between the true acceleration and the gravity term. As a matter of fact,
any accelerometer measures the so-called specific force, that is the difference
between true and gravity acceleration [10].

Therefore, the main tasks of an Inertial Navigation System (INS) are the
following [25]:

� Measure angular motion and specific forces and compensate for sensor
errors

� Properly integrate the angular rates to get the relative orientation of
the body frame with respect to a given reference frame

� Resolve force into the navigation frame and compensate for the gravity
term

� Integrate the so-obtained true accelerations to get body speed and po-
sition

Almost all inertial navigation systems can be divided among two main
categories [10, Chapter 11]. The main difference between the two is the
reference frame in which measurements are taken1:

Stable Platform Systems (also known as mechanised INS or SPS) were
the first to be manufactured and present a rotating sensors platform which is
kept in a constant orientation coincident to a frame of reference throughout
manoeuvring (from which the attribute stable comes out). This is made pos-
sible by a set of gyroscopes and torque motors that compensate the rotation;
high rotational precision is required in order to minimize errors. Hence, ac-
celerometer measurements are always in the reference frame and position can
be estimated by simple double integration of data, while attitude is inferred
by the rotation angles between vehicle and platform. In order to keep the

1Further details about the different reference frames are presented in Chapter 2
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right orientation, accurate calibration of the gyroscopes is required in order
to compensate their non-idealities, biases and axes non-orthogonality being
the most important ones.

Figure 1.1: Stable-platform IMU of a Concorde aircraft

Strap-down Systems are rigidly attached to the vehicle, in opposition to
SPS devices. Therefore, accelerations are measured in the vehicle frame and
must be transformed to the proper reference frame prior double integration.
Gyroscopes are again used to measure the angular rate and therefore recon-
struct the orientation via proper integration. This type of INS is generally
cheaper and smaller than stable platform systems and is the most used one
nowadays. They have no mechanical complexity at the cost of more compu-
tational effort which is on the other hand much more affordable nowadays
than at the dawn of navigation era.

AHRS

An Attitude and Heading Reference System, or AHRS, is an algorithm esti-
mating the relative orientation of the body with respect to some fixed frame
during manoeuvring. In some sense, AHRS algorithm solve a sub-problem of
inertial navigation: in fact, once the rotation has been reconstructed, inte-
gration of measured accelerations can be performed to determine the vehicle
position.

AHRS algorithms can be decoupled from the speed/position estimation
problem. This “separation” approach can be useful to reduce complexity
of the overall scheme with respect to a single-stage sensor fusion algorithm.
Gyroscopes are used to determine body rotation and detect high-frequency
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attitude changes, while accelerometers and magnetometers can be used as
measures of the local gravity vector and the magnetic North as seen by the
vehicle, thus becoming more important during slow changes of the orien-
tation. Since their direction is a priori known in the navigation frame of
reference, it is possible to periodically correct the estimated orientation.

1.2 Fields of application

Inertial navigation techniques were first developed for rocket guidance, the
first experiments being carried out during the period of World War II. In-
ertial guidance was further developed also for human space flight and then
extended also to land, air and sea navigation as an aid to pilots also during
failure of conventional pre-GPS systems (such as VORs/NDBs for air naviga-
tion). Nowadays, IMUs are found also on unmanned, autonomous vehicles.
Nevertheless, robotics is another important field to apply these techniques.
In general, INS can be used to increase the positioning accuracy whenever
external systems (such as GPS, infra-red camera devices and so on) output
data at a insufficient rate or accuracy. Human and animal motion can be
captured thanks to sensors’ miniaturization thanks to MEMS technology and
smaller-scale computing units. This allows athletes to collect statistics about
their performance. Animal motion can be captured with the same techniques,
too, in order to track their movements and for other applications.

1.3 Issues of Inertial Navigation

Several issues afflict both types inertial navigation algorithms, the main being
estimation drift. Small errors in acceleration bring progressively increasing
errors in the estimated speed, and therefore even larger position errors. As a
matter of fact, integrators (as well as cascaded integrators) are simply stable
systems; moreover, the estimation error is unbounded and grows with time.
Similarly, small rates in the angular rate are integrated and eventually lead to
large errors in the attitude estimation and thus in the speed and position be-
cause the measurements do not undergo the right coordinate transformation
[10].

Sensors are the main cause of drifting because of their non idealities. The
magnitude of noise varies a lot according to their technology and is related to
white noise, thermal noise, measurement bias, external disturbances and so
on. Other sources of inaccuracies are model and numerical approximations.

Another disadvantage of stable-platform systems is the mechanical com-
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plexity of the moving frame, while strap-down systems generally require more
computations to resolve all estimates.

In order to reduce drift and improve accuracy, periodic updates of the
algorithm estimated state are performed. A possibility is to use external
sources to periodically correct the estimation done by the algorithm. GNSS
or other localisation technologies (also based on ground infrastructures or
computer vision) can be used. The rate of updates should be sufficiently
high to keep the estimation error bounded to acceptable levels.
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Chapter 2

Rigid Body kinematics

In this chapter the fundamental kinematic equations to describe rigid body
motion are presented in a general fashion and then adapted to the specific
framework of Earth-based inertial navigation. Moreover, some relevant ref-
erence frames for the current application are described.

2.1 Attitude representation and rotation dy-

namics

In this section some common and convenient ways to represent rotations are
presented, together with the formulation of their derivative, which is useful
for implementation on an algorithm.

Rotation matrices

Rotation matrices are the standard tool used to change frame of represen-
tation of vector quantities. Given any two reference frames a and b and a
generic vector v, it is possible to switch from one to another via the equations

vb = Rbav
a (2.1)

va = Rabv
b = RT

bav
b (2.2)

where the notation Rba is referred to the rotation matrix defining the
relative orientation of frame b with respect to frame a. All rotation matrices
belong to the special orthogonal group of dimension 3 SO(3), which contains
all 3-by-3 orthogonal matrices with positive unitary determinant.

Only 3 out of the 9 parameters of a rotation matrix are independent
Such conclusion comes trivially from the constraints on the Cartesian axes of
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the new reference system being orthogonal and of unitary norm. Therefore,
there are several, less redundant ways to express relative orientation between
frames. Each method comes with its advantages and limitations.

Concerning the derivative of Rba, let now ωaba the relative rotation of b
with respect to a as seen in a frame. Then it can be shown that

Ṙba = Rba(ω
a
ba)× = (ωbba)×Rba (2.3)

where (·)× denotes the skew operator used for computing the vector prod-
uct.

Euler Angles

Another common possibility is to use three consecutive rotations in order
to have a minimal representation of the relative orientation. Rotations are
performed about predefined axes which can belong to one or more different
frames. The choice of axes and their order influences the final form of the
resulting dynamic equations.

Let the transformation from frame a to b be defined by the following
rotations sequence:

1. Rotation of ψ about za which defines the reference frame a′

2. Rotation of θ about ya
′

defining the new reference frame a′′

3. Rotation of ϕ about xa
′′
, which eventually defines frame b

Such sequence of rotations is known as the Roll, Pitch and Yaw angles [10].
The corresponding rotation matrix is

Rba =

 CθCψ CθSψ −Sθ
−SψCϕ + CψSθSϕ CψCϕ + SψCθSϕ CθSϕ
SψSϕ + CψSθCϕ −CψSϕ + SψSθCϕ CθCϕ

 (2.4)

where Cθ = cos(θ) and Sθ = sin(θ). The derivative of the RPY angles
turns out to be 1 0 − sin(θ)

0 cos(ϕ) cos(θ) sin(ϕ)
0 − sin(ϕ) cos(θ) cos(ϕ)

ϕ̇θ̇
ψ̇

 = ωaba (2.5)

If θ 6= ±π
2
, the matrix is invertible and the equation can be rewritten asϕ̇θ̇

ψ̇

 =

1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) sec(θ) cos(ϕ) sec(θ)

ωaba = E(ϕ, θ)ωaba (2.6)
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It has to be noticed that E becomes very large when θ ≈ ±π
2
, thus leading to

numerical errors during integration. This representation should be avoided
if the body motion may become very close to this situation. As a matter of
fact, that value corresponds to the singularity of the representation, meaning
the problem of finding the three angles starting from the rotation matrix is
undetermined. There are infinite solutions to the problem because the first
and last rotation are performed about the same body axis.

Every type of Euler Angles representation has some singularities that
depend on the chosen axes and angles but are always present. This occurs
the “shape” of manifold SO(3) does not exactly match that of a sphere and
it turns out that it is not possible to define a global diffeomorphism with R3

because angles whose difference is multiple of 2π define the same rotation.
Hence only local diffeomorphisms between the two can be defined.

Another popular Euler Angles representation is the Z-Y-Z transformation,
consisting in three rotations about z0, y1 and z2, which therefore happen
about different axes of different reference systems. This latter representation
is indeed singular when θ = 0 or θ = π. In fact, is easy to figure out that the
two z axes are parallel in case of singularity, meaning that there are infinite
combinations of ϕ and ψ whose sum is the actual rotation in space.

Quaternions

Quaternions are mathematical objects defined as the union of a scalar and
a vector, they can be also regarded as a 4-dimension complex numbers [10,
Appendix D]. Sum of quaternions if trivially defined as

a+ b =


a1 + b1

a2 + b2

a3 + b3

a4 + b4

 (2.7)

while one possible definition of quaternion product is

a ◦ b =


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a2 a2 a1



b1

b2

b3

b4

 (2.8)

Given two generic frames a and b, it is always possible to describe the
transformation from a to b by means of a rotation of some θ degrees about
some vector w of unitary norm. Such results is known as the Euler’s theorem.
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The corresponding quaternion is defined as

qba(θ,w) =

(
cos
(
θ
2

)
w sin

(
θ
2

)) =


cos
(
θ
2

)
wx sin

(
θ
2

)
wy sin

(
θ
2

)
wz sin

(
θ
2

)
 (2.9)

It can be also easily noticed that qba(θ,w) and qba(−θ,−w) represent the
same rotation in space. Therefore, the mapping between the set of unitary
quaternions and SO(3) is two to one.

Given qba =
(
q1 q2 q3 q4

)T
, the corresponding rotation matrix is ex-

pressed as

Rba =

q2
1 + q2

2 − q2
3 − q2

4 2(q2q3 − q1q4) 2(q1q3 + q2q4)
2(q2q3 + q1q4) q2

1 − q2
2 + q2

3 − q2
4 2(q3q4 − q1q2)

2(q2q4 − q1q3) 2(q1q2 + q3q4) q2
1 − q2

2 − q2
3 + q2

4

 (2.10)

Given the angular rate ωbba = ω, the expression of the quaternion deriva-
tive for the implementation turns out to be [10, Appendix D]

q̇ba =
1

2

(
0
ω

)
◦ qba =

1

2


0 −ωx −ωy −ωz
ωx 0 −ωz ωy
ωy ωz 0 −ωx
ωz −ωx ωx 0

 qba (2.11)

=
1

2

(
0 −ωT
ω ω×

)
qba (2.12)

The main advantage of using quaternions is the absence of singularities
during the computations for any possible θ and w. Moreover, quaternions
do not require any trigonometric function to compute the dynamics. Since
it is always possible to switch from quaternions to any other representation
and vice versa via proper transformations, they can be used as the actual
function to be integrated, while other attitude visualisations can be used in
other stages of the algorithm e.g. to perform updates.

The exact discretization of the quaternion derivative can be computed
without using the matrix exponential, under the assumption that the angular
rate is kept constant between samples, which is reasonable is the sampling
time of the device is high enough or there are no sudden rotations.

The continuous-time quaternion dynamics in Equation (2.11) can be
rewritten as

˙qba = W qba
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whose corresponding discrete-time dynamics are known to be

qba(k + 1) = eWTsqba(k)

where Ts is the chosen sampling time. Since W is a skew-symmetric matrix,
it can be shown that the above equation can be rewritten as

qba(k + 1) =

(
sin(||ω||)
||ω||

W + cos(||ω||)I
)
qba(k) (2.13)

where ω is defined as

ω = ω
Ts
2

2.2 Reference frames

Inertial navigation makes use of several reference frames to represent speed
and position. Each one has its own advantages and drawbacks and can be
more convenient than another one in some situations.

2.2.1 Inertial reference frame

A reference frame is termed inertial if Newton laws apply. In particular, it
must hold that a body is steady or in linear uniform motion with respect to
such reference if and only if the sum of all forces acting on it is zero. The
inertial frame origin may be arbitrary as well as its orientation and can be
still or moving with constant linear motion, but may not accelerate or rotate.
In addition, a second frame is inertial if and only if it is in a fixed position
or in linear uniform motion with respect to an inertial one.

Assuming the navigation frame to be inertial can be reasonable in our
context as long as the movements happen in a limited space, e.g. in case of
indoor navigation or localization.

2.2.2 ECEF frame

The Earth-Centred, Earth-Fixed frame (ECEF) is solidal to the Earth and
centred at its centre of mass. Axes are defined as follows [10, 25]:

� the x axis is directed towards the intersection between the Prime Merid-
ian and the Equator

� the z axis goes through the true North Pole, that is the Earth rotation
axis

12



Figure 2.1: ECEF reference frame

� the y axis completes the right-handed coordinate system

The Earth rotation rate with respect to an inertial frame can be computed
considering the daily rotation and the revolution about the Sun and turns
out to be

ωie =
2π (365.25 + 1) rad

365 · 24 · 3600s
u 7.292 · 10−5rad/s (2.14)

Since the ECEF frame is in rotation, it is not an inertial one. However,
this may be neglected in some applications and therefore the Earth-Centred,
inertial (ECI) frame is obtained, whose axes are defined for some epoch.

2.2.3 NED frame

The North-East-Down frame (NED), or Local Tangent Plane (LTP) is de-
fined locally with its center at the vehicle’s position [10, Chapter 2]. As
it can be seen in Figure 2.2, x and y axes point northwards and eastwards
respectively, while the z axis is directed inwards along the normal to the
sphere (or ellipsoid). In this way the x − y plane is always tangent to the
Earth’s surface. The NED can be particularly convenient to easily represent
the speed of a vehicle. This frame is not inertial because of its rotation.

13



Figure 2.2: ECEF and NED reference frames

Moreover, it is possible to switch from a vector representation in ECEF
frame to NED by means of the following rotation matrix [10, 25]:

Rne =

− sin(φ) cos(λ) − sin(φ) sin(λ) cos(φ)
− sin(λ) cos(λ) 0

− cos(φ) cos(λ) − cos(φ) sin(λ) − sin(φ)

 (2.15)

where φ and λ are latitude and longitude of the NED frame origin. As it can
be seen from Figure 2.3, the ECEF frame is first rotated by λ radians about z
axis, and then of φ+ π

2
radians about axis y′, whose direction is defined by the

Cartesian reference frame obtained after the first transformation. Further
details on rotation matrices and attitude representations are contained in
Section 2.1

Similarly, the NEU (North-East-Up) frame can be defined by simply re-
verting the direction of the z axis.

2.2.4 Body frame

A body-fixed reference frame is the one that arises naturally from the char-
acteristics of the body shape and motion and is rigidly attached to it. The
x axis usually points towards the direction of the vehicle, the z one to the
bottom of the object while the y is oriented so to complete the right-handed
coordinate system.
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Figure 2.3: From ECEF to NED

The body frame is not inertial in general because of vehicle rotation.
Sensors often have their axes aligned with the body frame, otherwise they
are usually mounted in a fixed orientation with respect to the vehicle, so this
additional transformation is precisely known or can be compensated during
the design phase.

2.3 Translation dynamics

In this section the fundamental equations to describe the translational dy-
namics of a rigid body are obtained and specialised for inertial navigation.

2.3.1 Fundamentals

Given a vector p and two reference frames a and b whose origins are related
by vector ρ = Oa−Ob, then it is possible to switch the frame of representation
of p by means of

pb = ρb +Rbap
a (2.16)
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and its derivative is given as

ṗb = vb = ρ̇b + ˙Rbapa (2.17)

= ρ̇b + Ṙbap
a +Rbaṗa (2.18)

= ρ̇b +Rba ((ωaba)×p
a + va) (2.19)

By taking another derivative on vb it is possible to obtain a very important
equation of all inertial navigation systems. It is an exact derivation and can
be specialised for different cases and any two reference frames. We have that

p̈b = v̇b = ρ̈b + Ṙba ((ωaba)×p
a + va) +Rba

(
(ωaba)×v

a + ( ˙ωaba)×p
a + p̈a

)
(2.20)

= ρ̈b +Rba

(
2(ωaba)×v

a + (ωaba)×(ωaba)×pa + ˙ωaba)×p
a + p̈a

)
(2.21)

2.3.2 Translational navigation equations

As outlined in Chapter 1, the fundamental equation of inertial navigation is
Newton’s Second Law of motion, whose most generic formulation is

mp̈ =
∑

Fi = FI

where m is the (constant) body mass and the FI term corresponds to the
sum of all forces that are physically applied to the body, including gravity.
The relation may be rewritten in a more convenient form in terms of force
per units of mass in order to take out m and by introducing the specific
force f = 1

m
FI , which is the quantity actually read by accelerometers, thus

obtaining the fundamental equation of inertial navigation1

p̈i = f i +Gi (2.22)

where Gi is the gravity acceleration vector. By combining it with 2.20 and
assuming b as the inertial reference frame and sharing the origin with a, we
have that [10]

f i +Gi = Ria

(
2(ωaia)×v

a +
(
(ωaia)×(ωaia)× + (ω̇aia)×

)
pa + p̈a

)
that is

p̈a = Rai

(
f i +Gi

)
− 2(ωaia)×v

a −
(
(ωaia)×(ωaia)× + (ω̇aia)×

)
pa (2.23)

1In the inertial reference frame
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If a is chosen to be the ECEF frame (subscript e) then ωie is constant and
the following equations are obtained:

ṗe = ve (2.24)

v̇e = f e −Ge − 2(ωeie)×v
e − ((ωeie)×(ωeie)×) pe (2.25)

= Rebf
b −Ge − 2(ωeie)×v

e − ((ωeie)×(ωeie)×) pe (2.26)

where ve is the body speed in the ECEF frame as seen from the ECEF
frame. Moreover, it can be noticed the presence of the centrifugal effect
term ((ωeie)×(ωeie)×) pe. However, its contribution can be neglected in most
practical cases, in particular when MEMS sensors are used, due to their
relatively high noise levels [12].

The dynamic equation of ve will be specialised for the representation in
NED and body frames in Equations (6.2) and (7.6), when the related INS
mechanisation equations are obtained.

Moreover, if frame a is chosen to be inertial, the above equations simply
boil down to

ṗa = va (2.27)

v̇a = Rabf
b −Ga (2.28)

2.4 Geographical coordinates

A convenient way to represent an object’s position on Earth is by geographic
coordinates: latitude ϕ, longitude λ and height h. Moreover, it is of interest
to use the ECEF body speed represented with respect to the Local Tan-
gent Plane vne , since it is a more “natural” choice from everyday experience.
Hence, a transformation between ECEF and geographical coordinates must
be performed. If Earth is assumed to be perfectly spherical2 with radius
Rm u 6.3781 · 106m, from the definition of the ECEF frame in Subsection
2.2.2 we have that

xe = (Rm + h) cos(ϕ) cos(λ) (2.29)

ye = (Rm + h) cos(ϕ) sin(λ) (2.30)

ze = (Rm + h) sin(ϕ) (2.31)

2Additional details about Earth’s models (including the WGS84 ellipsoid) can be found
in [10] as well
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Moreover, it is also true that

ve =
∂pe

∂t
=
(
∂pe

∂φ
∂pe

∂λ
∂pe

∂h

)φ̇λ̇
ḣ


Therefore, after some computations [10, Section 2.5.3] one obtains

ve =

− sinφ cosλ − cosφ sinλ cosφ cosλ
− sinφ sinλ cosφ cosλ cosφ sinλ

cosφ 0 sinφ

φ̇λ̇
ḣ


By remembering ve = RT

nev
n
e and from Equation (2.15), the final expres-

sion of the geographical coordinates’ derivative eventually turns out to beφ̇λ̇
ḣ

 =

 1
Rm+h

0 0

0 1
(Rm+h) cos(φ)

0

0 0 −1

 vne (2.32)

It is also possible to use more accurate Earth models by considering the
WGS84 ellipsoid, for example. The resulting equations present the same
structure enriched with parameters taking into account eccentricity, flatness
and so on.[10, Section 2.3.2]
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Chapter 3

Sensors

As will be better outlined in Section 5.1, sensor sets are very similar across
different inertial navigation units. Their components have to be properly
characterised in order to design a suitable and enough accurate model to
develop an algorithm on. The sensors typologies that are considered in this
work are the following:

� Accelerometers

� Gyroscopes

� GNSS

� Odometry

All of them are affected by several types of errors depending on their working
principle and manufacturing technology. Magnetometers are not considered
because electric power groups of trains may heavily interfere with the mea-
surements, thus making impossible to detect the Earth’s weak magnetic field,
whose strength is about 0.45 Gauss on average. Barometers are not consid-
ered in this work as they are not suitable for train applications, too, because
of the pressure difference that can arise inside tunnels.

MEMS technology is very popular today for sensors manufacturing. It
consists of using miniaturised electro-mechanical elements. Their main ad-
vantages are reduced size, power consumption and production cost, yet on
the other hand they usually present less accuracy with respect to other con-
structive techniques. In addition, they require very low maintenance and are
suitable forr use in harsh environments [31].

MEMS technology is used to manufacture a wide range of detectors such
as accelerometers, gyroscopes, compasses, humidity sensors, microphones
and so on. They also find applications in the biomedical and optics field.
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Moreover, also miniaturised actuators and structures can be built for some
precision applications.

3.1 Accelerometers and gyroscopes

As mentioned in Chapter 1, accelerometers measure not only body accelera-
tion but the so-called specific force [10], that is the true acceleration minus
the gravity term. On the other hand, gyroscopes measure the angular rate
of the vehicle. They both take measurements with respect to an inertial
reference frame. They can be based on different technologies; for example,
the first devices were based on mechanical solutions and some gyroscopes use
optical phenomena to detect rotation [21]. MEMS devices will be considered
in this work as they are very popular in integrated INS solutions.

MEMS accelerometers typically exploit either some piezoelectric or ca-
pacitive effect, depending on the manufacturer choice. The latter may be
used also to build micro-actuators [5] on the same principle and requires less
processing in general. They are typically built as movable proof masses held
into place via springs and mechanical suspensions1. A number of micro-plates
on the moving part and the frame act as capacitors.

Figure 3.1: Working principle of accelerometers (left) and CAD representa-
tion of a capacitive effect accelerometer (right)

1This helps to motivate the specific force measurement: the detected acceleration is
the reaction term holding the mass in place
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On the other hand, gyroscopes usually consist of micro-masses put into
vibration by capacitive actuation and proper circuitry to keep them in move-
ment along a defined axes. If the overall system is put into rotation about
an axis orthogonal to motion’s, then a second vibration mode is triggered
along the third direction induced by the Coriolis acceleration. This motion
can be sensed by additional, properly placed capacitive micro-devices. The
amplitude of the phenomenon is function of the angular rate and allows to
detect rotation thanks to a properly-designed sensing system.

Some MEMS gyroscopes can also detect the angle of rotation instead of
just the speed [21]; such devices are called whole-angle mode gyroscopes or
hemispherical resonator gyroscope and the resonating element can have the
shape of a wineglass.

Figure 3.2: Working principle of gyroscopes (left) and CAD representation
of a Tuning Fork Gyroscope, or TFG (right)
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3.1.1 Model

Ideal sensor readings are always affected by several sources of errors. Some of
the most common non-idealities that can be present[25, Chapter 8] include

� Scale factors and cross-coupling between the axes. Gyroscopes may
also be affected by some components depending on body acceleration,
too.

� Measurement offset, also known as bias, which is a slowly time-varying
additive disturbance. Its ratio of change is referred as bias stability
and commonly measured in terms of the Allan Variance computed over
long-term measurements in rest conditions [23]

� Measurement noise. This disturbance can be reasonably modelled as a
zero-mean white noise, its power density depending on the quality of
the sensors. This effect is particularly relevant when MEMS technology
is used. On the other hand, the advantages of such sensors are reduced
cost and very small size, allowing miniaturized solutions

The amplitude and relevance of such effects depends a lot also on their tech-
nology. In this work sensors white noise and bias will be considered. Scale
factors and other effect are not covered since they are often corrected via fac-
tory calibration and their coefficients do not vary a lot in time with respect
to sensor biases, which change a lot during operation and also between device
switch-ons[4]. In a stochastic framework, bias behave as random walks, that
is the integral of some white noise, but can be also regarded as a constant
when building a functional model. Therefore, accelerometer and gyroscope
readings are modelled as

u = ab − gb + bu + νu (3.1)

ω = ωbib + bω + νω (3.2)

where u and ω are the actual accelerometer and gyroscope readings, ab

the true acceleration, gb the gravity vector, ωbib the true angular rate with
respect to an inertial frame of reference, bu and bω the sensor biases and νu,νω
the white noise.

Because of their relatively high noise level, accelerometer and gyroscope
usually require some pre-elaboration on their readings prior being used inside
any navigation algorithm. Proper low-pass filters can already be enough to
achieve acceptable levels; alternatively, more complicated techniques may be
used.

22



3.2 Global Navigation Satellite System (GNSS)

The expression Global Navigation Satellite System (GNSS) denotes all the
navigation systems based on satellite constellations to provide accurate posi-
tioning of a vehicle or object. Each satellite transmits a specific radio signal
which is decoded by the receiver to determine its position on the Earth.
Currently active GNSS systems include GPS (USA) and GLONASS (Rus-
sia), while the Galileo positioning system (EU) is under development and its
constellation is expected to be completed and full functionality to be achieved
by 2020[9]. Many commercial receivers can even access several of these GNSS
systems.

The basic idea behind GNSS and the other systems is triangulation. If
the satellites’ position is known as well as their distance from the receiver
it is possible to reconstruct the position. Each satellites continuously trans-
mits information about its own position, clock accuracy and less accurate
information about the other satellites’ positions and the time the message
was transmitted2. To this purpose, very high-precision atomic clocks are
equipped on each satellite.

Figure 3.3: Working principle of GNSS systems

The vehicle’s GNSS receiver determines its distance from a specific satel-
lite by comparing the time of arrival of the signal with the transmission time
which is contained inside the message and multiplying by the speed of light.
However, this information is not accurate because of the amplitude of the
light speed being influenced by the means of propagation and disturbances
(e.g. clouds) as well as the relatively high clock inaccuracy mounted on the
GNSS device with respect to the atomic-grade ones mounted on the satel-
lites. The distances from each source computed by the receiver are also called
pseudo-ranges.

2Thus providing also a time information to the user
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At least three3 different radio signals are needed to reconstruct the vehi-
cle coordinates and height under ideal conditions. The unknown clock drift
can be recovered by measurements from a fourth satellite so that local time
estimation reaches the required precision;. Several possibilities exist to re-
solve the position, from least squares fitting to Newton-Gauss methods [25,
Appendix D]. The more satellites are visible to the receiver, the higher the
accuracy will be. Finally, control stations on Earth continuously monitor
the satellite segment of each GNSS system and correct for inaccuracies or
drifts, which have strong effects on systems precision due to the extremely
high speed of light.

GNSS receivers can also provide direct information on the vehicle speed
and direction on the local tangent plane to the Earth, without need to post-
elaborate position data. GNSS position accuracy is generally within few
meters, but depends on several factors; some of them are radio interferences,
satellite signal being blocked by buildings or trees, multipath (i.e. signal
reflection), atmospheric conditions and so on. Typical values for position ac-
curacy range from 2 to 5 meters and from 0.2 to 0.4 m/s for speed. Yet, these
values may vary according to the previously-mentioned operating conditions
and there is no true known value for the standard deviation, thus modelling
GNSS noise may be a complex task[1, Chapter 3].

Augmentation techniques can be used to achieve better precision, such
as Differential GPS or SBAS[10, Chapter 8]. Some receivers may mount two
antennas for enhanced heading and positioning resolution.

Moreover, Differential GPS (D-GPS) uses several ground antennas at
known fixed positions to provide more information to the receiver which can
then resolve its kinematic state with a much better position. This technique
employs ground infrastructures and requires a communication channel be-
tween them and the vehicle, so it can be used only in specific, limited-area
applications and with proper receivers, which is clearly not the case for trains
on normal passenger or freight lines.

3.2.1 Model

In this work, GNSS position and speed are modelled as the true values plus
some white noise to model the system’s inaccuracy according to the afore-
mentioned statistics, that is

pGNSS = ptrue + νGNSS

3Actually, a fourth satellite should be used to discriminate between the two points that
come from the intersection of three spheres in 3-D space
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with pGNSS being the actual measurement ptrue the true value and νGNSS
the white noise. Velocity information is assumed to be available in the three
dimensions and also in the form of ground speed plus heading. Such conver-
sion is usually carried out automatically by the receiver.

3.3 Odometry model

It is often possible to access the vehicle’s total travelled distance and/or
speed by means of on-board sensors, as in the case of trains and land vehi-
cles in general. Some details on its accuracy requirements are specified in
[26], in particular for what concerns admissible errors during wheel-slip or
skidding, that is when relative motion occurs at the point of contact between
wheels and rail during deceleration or acceleration, respectively, as well as
how to detect such anomalous conditions. Speed odometry error has to be
contained within 2% of the speed when travelling slower than 50 km/h and
1% otherwise.

In this work, odometry speed measurement is assumed to be available at
all times and is modelled as the true value plus some proper white noise in
this work, while a fixed bias is not considered. Hence, speed from odometry
is modelled as

vo = vo,true + νo (3.3)

where vo,true is the true body speed value, νo the white disturbance and
vo the actual reading.
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Chapter 4

Kalman Filtering

The Kalman Filter (KF) is a type of linear observer which is widely used in
noisy estimation applications such as control and navigation, in order to get
the best possible estimate of the internal state of a system in a stochastic
framework [15].

Just like other observes, the Kalman Filter works in a two-step fashion:
prediction and correction. In the prediction phase the current state esti-
mate and the predicted error covariance are propagated forward in time.
Once measurements are available, correction can take place and the system’s
states are updated according to the error between the actual measurements
and their estimate (also known as innovation). The greatest advantage of the
Kalman Filter with respect to other structures is that the stochastic charac-
teristics of the estimate error (that is, covariance and cross-covariance) are
also propagated.

4.1 Continuous-time Kalman Filter

Suppose to have a linear, time-invariant (LTI) continuous-time system per-
turbed by noise which can written in the form

ẋ(t) = Ax(t) +Bu(t) +Dw(t)

y(t) = Cx(t) + ν(t)

where w(k) and ν(k) are zero-mean, white Gaussian stochastic processes
with known covariances Q and R, respectively. System matrices A, B and
C must be known in advance.

Q and R are commonly referred to as process noise and measurement
noise. Their characterisation is essential in order to get the best possible be-

26



haviour of the filter in presence of disturbances. In some sense, they describe
the level of accuracy of the filter prediction and how much the filter can
“trust” the external measurements, respectively. The estimates’ stochastic
characterisation is defined by the covariance matrix P .

Given this framework, the KF in its continuous-time formulation has the
form

˙̂x(t) = Ax̂(t) +Bu(t) +K(t)(y(t)− ŷ(t))

Ṗ (t) = AP (t) + P (t)AT +DQDT −K(t)RK(t)T

K(t) = P (t)CTR−1

ŷ(t) = Cx̂(t)

The estimate provided by the Kalman Filter can be shown to be unbiased;
if noise is Gaussian it is also the maximum likelihood one, meaning that it
minimises the error covariance (P ) as well as the mean-squared error from
the true value. Assume now that pair (A,C) to be detectable and (A,D) to
be stabilisable. Then, it can be also shown that the KF error covariance P is
bounded and - most importantly - the presented filter formulation is globally
asymptotically stable, hence state estimation error will eventually reach zero
[10, Chapter 5]. This version of the KF, in which update occurs continuously
in time is also called the Kalman-Bucy filter [6].

If the system and filter representation are continuous-time but measure-
ments come at given time instants only (e.g. as from a digital processor)
then the Hybrid Kalman filter is obtained [30]. Given the usual LTI system
in state-space form, its prediction equations are as follows:

˙̂x(t) = Ax̂(t) +Bu(t) (4.1)

Ṗ (t) = AP (t) + P (t)AT +DQDT (4.2)

When measurements are available and update is performed, the following
relations are used to correct the estimate:

K = P (t)CT
(
CP (t)CT +R

)−1

xc(t) = x̂(t) +K (y(t)− Cx̂(t))

Pc(t) = (I −KC)P (t)

Corrected values xc and Pc are then used to re-initialise Equations (4.1)
and (4.2).
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4.2 Discrete-time Kalman Filter

Suppose to have an LTI, discrete-time system perturbed by noise which can
written in the form

x(k + 1) = Ax(k) +Bu(k) +Dw(k)

y(k) = Cx(k) + ν(k)

The Kalman Filter equations for the prediction step determine the so-
called a priori estimates and are the following:

x̂(k|k − 1) = Ax̂(k − 1|k − 1) +Bu(k − 1)

P (k|k − 1) = AP (k − 1|k − 1)AT +DQDT

while the state and covariance update equations are

K(k) = P (k|k − 1)CT
(
CP (k|k − 1)CT +R

)−1

x̂(k|k) = x̂(k|k − 1) +K(k) (y(k)− Cx̂(k|k − 1))

P (k|k) = (I −K(k)C)P (k|k − 1)

where x̂(k|k) and P (k|k) are also called a posteriori estimates of state and
covariance, respectively.

Figure 4.1: Overview of the Kalman Filter algorithm

It has to be noticed that the filter equations are written in a recursive fash-
ion which makes implementation easy. Moreover, correction is not strictly
required to take place at every algorithm step nor at some regular rate. This
happens if some measurements are bad or missing[10] or are simply provided
with a higher period than the algorithm cycle time. If this holds there is a
loss of the properties presented in Section 4.1, in particular for what concerns
optimality of P .
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4.3 Extended Kalman Filter

The Extended Kalman Filter (EKF) is a sub-optimal formulation of the
Kalman Filter and is widely used in inertial navigation applications. It is
commonly applied to non-LTI systems.

A crucial aspect to keep in mind about the EKF is that its optimality
properties outlined in [13] and Section 4.1 cannot be guaranteed because of
the non linearity of the system. As a matter of fact, the KF matrices are
functions of the state error covariance which is computed exactly for an LTI
system but just approximately to the first order in the other cases. This can
be a potential source of errors; as a consequence, too large inaccuracies may
result in bad behaviour or even divergence of the filter [29]. However, the
EKF shows acceptable performances if applied when higher-order terms are
not too relevant.

The EKF has the same structure of the standard filter, with the difference
that matrices A,C,D are now built by means of linearisation about the current
state estimate (and control input), meaning that they are possibly complex,
non-linear functions of state, inputs and noises. Given a generic non linear
system in the form

ẋ = f(x, u, w)

z = h(x, ν)

The matrices to be used for the EKF are obtained as

A(k) =
∂f(x, u, w)

∂x

∣∣∣∣
x=x̂(k|k−1),u=u(k−1),w=0

D(k) =
∂f(x, u, w)

∂w

∣∣∣∣
x=x̂(k|k−1),u=u(k−1),w=0

C(k) =
∂h(x, ν)

∂x

∣∣∣∣
x=x̂(k|k−1),ν=0

Linearising about w = 0 and ν = 0 comes directly from the assumption of
zero-mean noise in Section 4.1. Should this not hold, the zero vector has to be
replaced by their respective mean value. As a final remark, state prediction
should be carried out by using the actual non-LTI model for greater accuracy
with respect to a linearised version computed from matrices A, D and C. The
EKF can be applied to both continuous- and discrete-time systems.
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4.4 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is another variant of the standard
Kalman Filter to be used in non linear systems [14] with the main purpose
is to overcome the limitations and flaws of the EKF [29].

As a matter of fact, matrix P plays a crucial role as it contains the
covariance of the state estimation error. The information about how noise
covariance is “reshaped” by the system dynamics should be propagated in
the best possible way since it strongly influences the Kalman gain K and thus
the correction performed by the observer, as can be seen from the previous
formulations of the filter.

The EKF might be not applicable for all non-LTI systems. First, the
Jacobian matrix A may be complex to derive or not precisely known for
some systems or in some states; secondly, the expression APAT is just a first-
order approximation of the predicted value of P and is exact only for linear,
time-invariant systems. This may be not sufficient to perform the right state
correction on some non-linear systems in which higher-order terms are more
relevant. This is way the EKF is also referred to as “First-Order Filter”. It is
noteworthy to point out that higher-order formulations of the EKF exist, but
are hard to derive, computationally expensive and applicable for low noise
levels [8].

The main concept behind the UKF is that “it is easier to approximate
a probability distribution rather than a generic non-linear function” [14].
Even if also the EKF propagates a probability description of the estimate,
the Unscented Kalman Filter uses a more complete characterisation built by
using higher-order moments rathe than just mean and covariance.

The core part of the UKF is to propagate a number of carefully-chosen
states and expected outputs (called sigma points or just σ-points) via the
state transition function. Then, such points are transformed by the non-
linear function (the state dynamics, in this case). The new distribution
moments are computed and the state estimate is eventually corrected accord-
ingly. This technique has the advantage to propagate higher-order moments
of the involved probability distributions with higher precision than the EKF,
even though not exactly. The level of achieved accuracy depends on the
number and the choice of sigma points.

4.5 Invariant Extended Kalman Filter

Another advanced structure for state estimation in a stochastic framework
is the so-called Invariant Extended Kalman Filter [3]. This can be especially
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useful if the state-space is non linear but can be described by Lie groups or
mathematical structures featuring symmetries, in general.

In this filter, an exponential mapping can be used to perform a transfor-
mation into a subset of RN , whose size is the same of the corresponding Lie
algebra; this is not performed by a standard EKF, which has the “additional”
task to converge into it and does not feature this invariance property of the
IEKF.

Because of how the use of such exponential mapping instead of a simple
linearisation, the IEKF is structurally more robust with respect to the stan-
dard Extended Kalman Filter in terms of state estimation, even if neither
has optimality guarantees.
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Chapter 5

Products for terrestrial inertial
navigation and the proposed
approach

Preliminary research is necessary to understand the level of performance of
currently available inertial navigation devices as well as the standard method-
ologies for algorithms to approach the problem of inertial navigation. These
starting information will be used in order to develop a valuable solution to
be applied to trains.

Nowadays, Kalman filtering is definitely one of the most common tools to
develop inertial navigation algorithms [10, 25]. In particular, the Extended
KF is used because of the system being non linear. INS can be developed
in different ways according to the available signals: there may be a single
EKF[22], two cascaded filters [18], both structures having advantages and
disadvantages in terms of complexity, modularity and domain of convergence
in practical situations. Other, more complex techniques, such as Invariant
EKFs can be used as well [3]. Additional details and relevant results about
Kalman filters are presented in Chapter 4.

Moreover, several non-linear observers have been developed in literature
for inertial navigation. They are used for both position/velocity estimation
and are also quite popular for attitude reconstruction by exploiting the prop-
erties of the rotation group SO(3) [17, 18]. Finally, techniques from adaptive
control are commonly employed to estimate and compensate for sensors non-
idealities, such as biases [18]; their approach is generic and can be exploited
under many engineering fields.
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5.1 Market Analysis

A market research was carried out to figure out the state of the art concern-
ing commercial inertial navigation systems. Data were collected about the
performance limits of each device as well as their operative fields. In particu-
lar, dead reckoning performance were considered to understand the entity of
the drift after prolonged period of GPS outages. The purpose of this research
is also to understand the sensors available on board across several solutions
according to their intended application field.

VectorNav

VectorNav is a company specialized in high-end embedded navigation sys-
tems [28]. Two of its most remarkable products are the VN-200 and VN-300
GPS/INS modules. They both have 3-axis MEMS accelerometer, MEMS
gyroscope, magnetometer and a barometer1. They also have a small size
which makes them suitable for integration on several types of hardware. In
particular, VN-200’s dimensions are 36 x 33 x 9 mm.

Figure 5.1: VectorNav VN-200

GPS data are updated at a rate of 5 Hz and the navigation algorithm runs
at a 400 Hz rate. Thermal calibration can be requested; in such a way sensors
noise is better compensated over the whole range of operating temperatures

1Such sensor sets is often called 10-Axis IMU in a commercial context, even if such
nomenclature is misleading
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(-40 ◦C to +85 ◦C), otherwise just a 25 ◦C-calibration is performed. Some
accuracy information about the VN-200 module are the following:

� Horizontal position accuracy: 2.5 m

� Vertical position accuracy: 5 m

� Velocity accuracy 0.05: m/s

However, no information about its operative capabilities without GPS could
be gathered.

SBG Systems

SBG Systems is specialized in ING/GPS modules [19]. Some of its most
remarkable module series are Ellipse, Ekinox and Apogee. They are all char-
acterised by reduced dimensions and a number of communication interfaces,
as well.

Concerning Ellipse modules, they are equipped with MEMS accelerom-
eters, gyroscopes. Some also have magnetometers and pressure sensors and
can exploit the vehicle odometry (where available) to improve their perfor-
mance. The declared accuracy during GPS availability is of 2 meters for
positioning and 0.1 m/s for speed estimation. Data are gathered from in-
ertial sensors at a 200 Hz rate and processed at 1 kHz rate inside the unit,
together with GPS position and speed data.

It is noticeable to point out that their performance in absence of GPS
signal is documented on their website. The company declares an error of 12
meters over a 6-minute, 2.5 km journey in urban environment without GPS
aiding. Such discrepancy boils down to about 3 meters if odometry aiding is
enabled [20].

Advanced Navigation

Advanced Navigation in an Australian company specialised in high-quality
robotics and navigation technologies[2]. Spatial is a miniaturized navigation
module with thermally-calibrated sensors able to perform properly under a
wide range of operating conditions. The device mounts MEMS accelerome-
ters, gyroscopes, a triaxial magnetometer and a pressure sensor. Moreover,
external odometry can be used as an additional aid.

Concerning its navigation precision, the Spatial features a position accu-
racy of 2 m and 3 m on the horizontal and vertical directions, respectively, a
speed precision of 0.05 m/s and a sub-degree attitude precision.
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Figure 5.2: Advanced Navigation Spatial

Dead-reckoning capabilities of the device are briefly described according
to a test carried out along a 1.6 km urban tunnel. The test was carried out
in 2.5 minutes with the following results:

� Position error turns out to be 5 % (about 90 meters) without odometry
aiding

� If odometry is used inside the algorithm, then the position error be-
comes about 1 % of the overall path (17 meters)

According to the company website, the Spatial module can also work without
much performance degradation in a urban environment where GNSS cover-
age and accuracy is poor. The estimate of the vehicle’s kinematic state is
computed at 1 kHz rate, as the other devices typically do.

Trimble

The Trimble Aardvark 88788-50 embedded module is designed to provide
stable position estimation during GNSS outages or bad coverage such as
in urban canyons where buildings may obstruct the line of sight with the
satellites [27]. It is equipped with gyroscopes and GPS receiver only and
lacks accelerometers. Unlike the previous modules, it cannot resolve the the
vehicle’s speed autonomously so it must receive informations from odometry
while its gyroscope determine the orientation in order to properly integrate
and obtain the position.

Despite its “reduced” sensors set, the module is declared to have 2 meters
of positioning accuracy and 3 meters of elevation precision.
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5.2 Summary of market analysis

The above-presented solutions present good and similar performances in
terms of position, speed and orientation accuracy. The positioning error
is of 2-3 meters for the horizontal components and of 2-5 meters along the
vertical one among all the presented devices during GNSS availability. In
addition, all the solutions in this chapter are strapdown IMUs, which are
definitely the most popular nowadays.

Most of the solutions are designed for land and air vehicles. Anyway,
application on trains is possible even if there is no explicit reference to it.
Every module comes with different communication interfaces and protocols
and has limited size and low power consumption, which makes them suitable
for designing embedded systems. Their sensors set is very similar and MEMS
technology is almost always present. Moreover, the use of odometry can
further improve the algorithm performance even if it is strictly required for
the Trimble only.

On the other hand, few details could be collected about the performance
during GNSS outages, even if the relative positioning error was not very
different between the Ellipse and Spatial modules. In addition, it is not even
clear whether other devices available on the market can actually operate
without a regular update from the GNSS system. It is also to be pointed out
that use of the magnetometer, which is present on many platforms, might be
impossible under some operating conditions and this can worsen the overall
performance since one of the assumed measurement is practically useless.

A more comprehensive list of GPS/INS devices from the same and other
manufacturers can be found at [7].

5.3 The proposed approach

According to the information gathered in the previous sections, the approach
in this work is to develop first a standard EKF-based algorithm because of
its popularity. Its detailed formulation is presented in Chapter 6.

Several two-block solutions have been developed, too, and are presented
in Chapter 7. The main purpose of this second approach is to separate the
problem of attitude estimation from position and velocity and to overcome
some limitations of the single-stage algorithm that have been detected during
simulations, the limited use of explicit information on attitude being the first.

As a matter of fact, accelerometer readings can be also used to provide
partial information about the inclination of the vehicle without relying just
on low-rate GNSS position and speed data; moreover, using two separate
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stages helps reducing overall complexity and opens to modularity. Further
details on the interconnections are found in Chapter 9.

In particular, an AHRS based on a standard EKF and one on a formula-
tion of the explicit complementary filter on SO(3) have been developed and
adapted to the available information sources. The choice of implementing a
non linear observer is related to their popularity[17] in AHRS algorithms.

Concerning translation dynamics, a full-order observer and a reduced one
have been implemented in Simulink, the latter exploiting train lateral velocity
being structurally zero in order to quantify the performance improvement,
especially during GNSS outages.

Chapter 8 eventually describes the proposed solution for integrating maps
during navigation. It has been developed in order to easily integrate on the
inertial navigation solutions designed in the previous chapters with as few
modifications as possible, require limited computational effort and provide
as much explicit information as possible.
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Chapter 6

Single-Stage INS Algorithm

The first INS algorithm was developed on the basis of a standard EKF struc-
ture as reported in Section 4.3.

6.1 Mechanization equations

6.1.1 Speed

The vehicle speed is represented in the North-East-Down frame, which is not
assumed to be inertial. Therefore, all relative rotations have been taken into
account. We have that[10]

v̇ne =

vNvE
vD

 = Rnev̇e +Rne(ω
e
en)×ve (6.1)

By replacing v̇e from Equation (2.26) we have that

v̇ne = Rne(Reb(u− ba) + ge − 2(ωeie)×ve) +Rne(ω
e
en)×ve

Where f b has already been replaced by the unbiased accelerometer read-
ings. This brings to the final dynamics equation for the speed

v̇ne = Rnb(u− ba) + gn − (ωnen + 2ωnie)×v
n
e (6.2)

where all terms are functions of measurable quantities, system states or
known constants. u is the vector of accelerometer readings, ba is its biases,

gn =

0
0
g

 is the gravity acceleration, ωen is the rotation between the NED
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and ECEF frame due to the vehicle motion on the Earth surface defined as

ωnen =

 λ̇ cos(φ)

−φ̇
−λ̇ sin(φ)

 (6.3)

and the Earth rotation rate vector in the NED frame is

ωnie =

 ωie cos(φ)
0

−ωie sin(φ)

 (6.4)

where ωie is defined as in equation (2.14)

6.1.2 Position

The position expressed in geographic coordinates (latitude, longitude and
height) has the following nonlinear dynamics from Equation (2.32):

φ̇ =
vN

Rm + h

λ̇ =
vE

(Rm + h) cos(φ)

ḣ = −vD

where Rm m is the Earth mean radius. They can be rewritten in matrix
form as

ṗ =

φ̇λ̇
ḣ

 =

 1
Rm+h

0 0

0 1
(Rm+h) cos(φ)

0

0 0 −1

 vne = T (φ, h)vne (6.5)

6.1.3 Attitude

The dynamic of the attitude Rnb comes from equation (2.3) and is given
by[10]

Ṙnb = Rnb

(
ωbnb
)
× = Rnb

(
ωbib − ωbin

)
× = Rnb

(
(ω − bg)− ωbie − ωben

)
× (6.6)

where ω denotes gyroscope readings, bg the sensor bias and ωbie and ωben are
the rotations in body frame of the aforementioned angular rates. Quaternion
representation has been chosen for dynamics implementation. Hence, from
Equations (2.11) and (6.6) the final expression can be obtained as

q̇nb =
1

2

(
0

ω − bg − ωbie − ωben

)
◦ qnb
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6.1.4 Sensor biases

As mentioned in Section 3.1, sensor biases are slowly time-varying additive
disturbances to the readings, so they can be modelled as constants:

ḃa = 0 (6.7)

ḃg = 0 (6.8)

6.1.5 Measurements

The available measurements for the single-stage formulation of the INS algo-
rithm are GNSS position and speed, the former being already expressed in
geographical coordinates. Thus, the measurement model is simply

z =

(
p
vne

)
(6.9)

For the sake of performance analysis, the complete speed vector is as-
sumed to be fully known.

6.2 EKF design

Linearisation of the full-order, single stage EKF is performed based on Euler
Angles. The state transition matrix for the EKF is in the form [22]

A =



Jv

Jp

Jρ

03×15

03×15


(6.10)

where the sub-matrices are defined as

Jv =
(
Jvv Jvp −Rnb(u− ba) −Rnb 03

)
Jp =

(
T (φ, h) Jpp 03×9

)
Jpp =


0 0 − vN

(Rm+h)2

vE
sin(ϕ)

((Rm+h) cos(ϕ))2
0 − vE

(Rm+h)2 cos(ϕ)

0 0 0


Jρ =

(
(03×6 EA2) + EA3 03 −E

)
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where E is the matrix for computing the RPY angles derivative, as defined
in Equation (2.6), and

A2 =

 0 −ψ̇ cos θ 0

−θ̇ sinϕ+ ψ̇ cosϕ cos θ −ψ̇ sinϕ sin θ 0

−θ̇ cosϕ− ψ̇ sinϕ cos θ −ψ̇ cosϕ sin θ 0



A3 =−Rbn


0 1

Rm+h
0 0 0 −vE

(Rm+h)2
01×3

−1
Rm+h

0 0 0 0 vN
(Rm+h)2

01×3

0 − tanφ
Rm+h

0 −(vE)2

(Rm+h)(cosφ)2
0 vE tanφ

(Rm+h)2
01×3

+

+Rbn

01×3 wie sinφ 01×5

01×3 0 01×5

01×3 wie cosφ 01×5



Jvv =


vD

Rm+h
−2wie sinφ− 2vE tanφ

Rm+h
vN

Rm+h

2ωie sinφ+ vE tanφ
Rm+h

vD
Rm+h

+ vN tanφ
Rm+h

2ωie cosφ+ vE
Rm+h

−2 vN
Rm+h

−2
(
wie cosφ+ vE

Rm+h

)
0



Jvp =


2vEωie cosφ− v2E

(Rm+h)(cosφ)2
− ω2

ie(Rm + h) cos 2φ 0
v2E tanφ

(Rm+h)2
− vNvD

(Rm+h)2
− ω2

ie

2
sin 2φ

2vN(ωie cosφ− vD sinφ) + vEvN
(Rm+h)(cosφ)2

0 − vE
(Rm+h)2

(vN tanφ+ vD)

2vEωie sinφ+ ω2
ie(Rm + h) sin 2φ 0

v2E+v2N
(Rm+h)2

− ω2
ie

2
(1 + cos 2φ)


where the RPY angles derivative can be obtained from the prediction

model. The linearisation of the observation dynamics is simply given as

C =
(
I6 06×9

)
(6.11)

while the process noise distribution matrix comes out from the linearisa-
tion as

D =


Rnb 03 −Rnb 03

03×12

03 E(ϕ, θ) 03 −E(ϕ, θ)
03 03 I3 03

03 03 03 I3

 (6.12)

No other update possibilities are considered. State is corrected only when
GNSS measurements come in the form of position plus speed
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Chapter 7

Two-Stage INS Algorithms

The single-stage, EKF-based algorithm proposed in Chapter 6 suffers from
several limitations:

� The accelerometer is used only for speed estimation. Since gravity is
inherently present in the readings, the sensor may be used also as an
inclinometer to get additional measurements about attitude. In this
way, it would be possible to perform additional state updated at a
much higher rate than GNSS can provide so to improve performance

� Velocity expressed in NED frame, meaning that it is more difficult to
exploit the kinematic constraints of the train

� Complex, tightly-coupled structure

In order to overcome such limitations a double-structure algorithm has been
proposed.

7.1 Overview

The full-order, two-stage model estimates the whole geodetic position, the full
3-D speed vector as seen in the body frame, the relative orientation between
body and NED frames, as well as accelerometer and gyroscope biases.

The model is made up by two interconnected modules. The first one is
the AHRS, while the latter is an Extended Kalman Filter for the transla-
tional navigation dynamics. The first advantage of using a double structure
is simplicity because less states are propagated and the complexity is kept
limited. At first, no assumptions are made about the vehicle, so any type of
motion can be followed by the algorithm. Then, a reduced-order observer for
the translational dynamics will be proposed in order to exploit the kinematic
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constraints on the train speed, in order to improve performance. Moreover,
in this work two possible AHRS are developed and tested into simulations to
determine which one gives better performances and several combinations of
AHRS and translational dynamics observer will be put into test.

Finally integration with maps will be developed and integrated. The full
procedure will be explained on Chapter 8

7.2 EKF-based AHRS

The first proposed AHRS is based on the standard EKF structure presented
in Section 4.3 and on the “Dual Structure EKF” presented in [18]. Both
accelerometer and GPS will be used for state correction at different rates.

7.2.1 Mechanization equations

Roll, pitch and yaw angles are chosen for the internal attitude representation.
Moreover, gyroscope bias is taken into account and estimated.

It is known that RPY angles present a singularity for θ = ±π
2
, that is

a 90-degree positive or negative pitch. However, since this is clearly not an
operating condition for trains, the problem can be neglected.

According to equation (2.6), the AHRS mechanization equations turn out
to be as follows:

Θ̇ =

ϕ̇θ̇
ψ̇

 =

1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) sec(θ) cos(ϕ) sec(θ)

(ωbnb − bg) (7.1)

= E (ϕ, θ)
(
ω − ωbie − ωben − bg

)
(7.2)

ḃg = 0 (7.3)

where ωbie = Rbnω
n
ie and ωben = Rbnω

n
en

The available measurements are the gravity vector (as provided by the
accelerometers) and the yaw angle from the GPS receiver. As already men-
tioned in Section 3.1, accelerometers measure the difference between true and
gravity acceleration, so what can be actually read at rest or in uniform linear
motion is

a = −gb = Rbn

 0
0
−g


that is the opposite of the gravity acceleration as seen in body axes, corre-
sponding to a vector pointing upwards in NED frame. From the definition

43



of Rbn in equation (2.4) we have that

a =

 g sin(θ)
−g sin(ϕ) cos(θ)
−g cos(ϕ) sin(θ)


Therefore, the final measurement vector turns out to be

z =


ux
uy
uz
ψ

 =


g sin(θ)

−g sin(ϕ) cos(θ)
−g cos(ϕ) cos(θ)

ψGNSS


During manoeuvring, the accelerometer readings should be compensated by
taking out the true acceleration and the sensor bias. Otherwise, this results
in a different direction of the assumed gravity vector, thus implying errors in
the estimate. However, the attitude error will remain bounded.

An estimate of the acceleration terms can be done by using the gyroscope
readings, the speed estimate computed from the navigation algorithm and
some guess of the vehicle’s acceleration ˆ̇vbe which may be computed by a
standard state-variable filter.

Its basic structure in continuous-time is depicted in Figure 7.1. If it
response is fast enough, its output v̂ will basically follow the input v and
hence an estimate of its derivative can be accessed as the value entering the
integrator.

Figure 7.1: First-order state-variable filter scheme

Filter tuning should be a trade-off between fast response and limited high-
frequency noise amplification. Therefore, the compensated accelerometer
readings are computed as

u = a− ba − ˆ̇vbe − (ω − bg + ωbie)×v
b
e (7.4)

where a are the actual readings from the triaxial sensor.
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7.2.2 EKF design for the AHRS

An Extended Kalman Filter structure is used to manage the state correction
of the AHRS. The linearised model is used to propagate the covariance matrix
P at each step and compute the Kalman gain K, according to Section 4.3.

Moreover, the update stage is carried out in two different ways:

� if no external heading information is available, the state is updated via
the three accelerometer readings only. This update is partial in some
sense, because it cannot eliminate completely the attitude error but
keeps it bounded on the roll and pitch components. It is carried out
after every prediction step

� when a new heading information is available, both sources are used.
This update is typically performed at the rate in which GPS data arrive

Linearisation of AHRS equations

From equation (7.1) the linearisation of the AHRS process about some generic

state
(
Θ bg

)T
turns out to be

A =


∂ϕ
∂Θ

∂θ
∂Θ

E (ϕ, θ)

∂ψ
∂Θ

03 03


where

∂ϕ

∂Θ
=
(
CϕTθŵy − SϕTθŵz (1 + T 2

θ )(Sϕŵy − Cϕŵz) 0
)

∂θ

∂Θ
=
(
−(Sϕŵy + Cϕŵz) 0 0

)
∂ψ

∂Θ
=
(
SCθ(Cϕŵy − Sϕŵz) Sθ(Sϕŵy+Cϕŵz)

C2
θ

0
)

∂Θ

∂bg
= E (ϕ, θ)

where ŵ = w − bg and SCθ = sec θ. It has to be pointed out that ωnb is a
function of the attitude as well since the Earth and NED angular rates have
to be resolved in the body frame via the rotation matrix; however, since the
additional terms are small in amplitude, they have been neglected in the
linearisation
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Concerning the “full” observation function (that is, when GNSS is avail-
able), its linearisation about the current state is

C =

(
∂u
∂Θ

∂u
∂bg

∂ψGNSS
∂Θ

∂ψ
∂bg

)
=

(
∂u
∂Θ

03

0 0 1 01x3

)

that becomes in the end

C =


0 gCθ 0

−gCϕCθ gSϕSθ 0 03

gSϕSθ −gCϕCθ 0

0 0 1 01x3


When GNSS heading is not available, matrix C reduces to the first three

rows with no further modification. Finally, matrix D describes how the
process noise distributes across the states and turns out to be the following
function of the state:

D =

(
E (ϕ, θ) 03

03 I3

)

7.3 Non linear AHRS

The second AHRS algorithm developed has its core based on a complemen-
tary filter on the group SO(3) and adapted to the available measurements of
the current framework. The internal attitude representation is in quaternions
and gyro biases are estimated as well.

7.3.1 Mechanization equations

As in the EKF-based AHRS proposed in Section 7.2, the relative orienta-
tion between NED and body frame is computed. From Equation (2.11) and
Equation (7.1) the quaternion and gyro bias derivative simply write down as

q̇nb =
1

2

(
0

ω − bg − ωbie − ωben

)
◦ qnb =

1

2

(
0
ωbnb

)
◦ qnb

ḃg = 0
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7.3.2 Non linear observer design

The presented non linear observer (NLO) is the so-called Explicit Comple-
mentary Filter on SO(3) [17]. It requires at least two distinct reference
directions, in order to guarantee complete state convergence. Should there
be only one measurement available, convergence of at least one of the rotation
angles is still achieved.

The vectors’ directions must be known in some frame of reference1 (which
is going to be the NED in this case) and their value in body frame has to
be accessible from some measurements. Then, their readings have to be
compared with the estimates coming from the current attitude estimation to
perform correction.

Let v0i be the known vectors as seen in the NED frame and vi = Rbnv0i

their value in the body frame. Let v̂i = R̂bnv0i the estimates of vi. An output
injection term can be defined as

ωm =
n∑
i=1

ki(vi × v̂i) (7.5)

where × denotes the usual vector product. ωm can be seen as an angular
rate trying to bring the estimated directions onto the corresponding measure-
ments by adjusting the attitude. Then, the observer equations are defined
as[17, Appendix B]

˙̂qnb =
1

2

(
0

ω − bg − ωbie − ωben + kPωm

)
◦ q̂nb

˙̂
bg = −kIωm

where ki, kP and kI are positive tuning gains. The choice of kP and kI in-
fluences the dynamic behaviour of the filter in terms of response, overshoot
and so forth. The kis should be chosen according to the relative degree of
confidence towards each measurement, hence considerations about sensors
noise may come into play. This filter structure is also modular as it can be
expanded if additional direction-providing sensors are used (e.g. magnetome-
ters) and information can be properly merged by tuning the kis.

It can be proven the explicit complementary filter is locally exponentially
stable and converges for almost all initial conditions to the true attitude
and gyro bias trajectories. This results are stronger than those from the
EKF, which are indeed just local and hold inside some domain around the
linearisation point. This observer structure is similar to a sort of non linear

1They do not necessarily have to be constant vectors
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PI controller, where the integral term (corresponding to the gyroscope bias
observer) is used to nullify the steady-state error.

In this framework, the reference vectors are given as

v01 =
(
1 0 0

)T
v02 =

(
0 0 −g

)T
that is the geographical North and the opposite of the gravity vector.

A direct measure of v1 is not available because of the lack of a magne-
tometer; therefore, it is reconstructed via the GNSS heading information by
means of a “fictitious” rotation matrix

v1 = Rbn(ϕ̂, θ̂, ψGNSS)

1
0
0


In order to adapt the NLO to the non-continuous information from GNSS,

a fictitious heading value is instead used and updated every time ψGNSS is
available. An additional single-state observer is used to recreate the fictitious
measurement by using the last row of Equation (7.1)

v2 is obtained by the raw accelerometer readings when the body is at
rest, or by the compensated ones otherwise, computed again according to
Equation (7.4).

7.4 Full-order translational navigation EKF

The proposed INS algorithm for the navigation dynamics is realised by means
of an Extended Kalman Filter. It has been chosen to express the speed
state in the body-fixed coordinate system. This has the advantage of the
accelerometers entering linearly in the model since they measure accelerations
in the same reference.

7.4.1 Mechanization of translation equations

Starting from vbe = Rbnv
n
e , one can write the speed as seen in the body frame

as

v̇be = Rbnv̇ne +Rbn(wnbn)×v
n
e

= Rbn (Rnb(u− ba) + gn − (wnen + 2wnie)×v
n
e ) +Rbn(wnbn)×v

n
e

= u− ba +Rbng
n −Rbn(wnen + 2wnie − wnbn)×v

n
e

= u− ba +Rbng
n − (wben + 2wbie − wbbn)×v

b
e
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and by remembering wbn = win − wib = wie + wen − wib
2, one eventually

obtains
v̇be = a− ba +Rbng

n − (wbib + wbie)×v
b
e (7.6)

Hence, with reference also to Equation (2.32), the overall navigation dynam-
ics write down are as follows:

ṗ =

φ̇λ̇
ḣ

 =

 1
Rm+h

0 0

0 1
(Rm+h) cos(φ)

0

0 0 −1

Rnbv
b
e = T (φ, h)Rnbv

b
e

v̇be = a− ba +Rbng
n − (ω + ωbie)×v

b
e

ḃa = 0

where ωbie = Rbnω
n
ie according to equation (6.4) and by remembering that the

gyroscope measures the angular rate with respect to an inertial frame. The
current attitude estimate must be retrieved from some AHRS algorithm, for
example one of the two previously presented in this work. Refer to Figure 9.3
for the complete interconnection scheme of the two stages.

The position is expressed directly in geodetic coordinates for easier use.
Alternatively, additional conversions would be required in order to manage
GNSS data. Once again, a spherical Earth model is used for sake of simplicity
and local gravity is assumed constant everywhere, while the Earth rotation
rate is not neglected.

The available measurements are GPS position and speed as seen in the
body frame resulting in the trivial observation model

z =

(
p
vbe

)
Since GPS speed natively comes in NED frame, it has to be rotated via

the estimate attitude provided by the EKF-based AHRS, which might be
another source of estimation errors if the attitude is not precisely estimated.

The common assumption for GPS velocity being available in all its three
components[22, 10, 25] is done for this algorithm, as well. Alternatively, a
state-variable filter can be employed again to get an estimate of the “down”
component from elevation. The other two are commonly given in the form
of modulo and course, yet conversion is straightforward via the equations

vN = vGPS cosψ

vE = vGPS sinψ

2This actually holds in whatever reference frame
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7.4.2 EKF design for the translation equations

Similarly to the AHRS, the complete non linear model is used to predict the
future position and speed. This is particularly important because the update
rate of this part of the algorithm is relatively low, therefore it is desirable to
reduce drift caused by approximate equations as much as possible.

Linearisation of translation equations

The matrices for the EKF are obtained with the same approach used in
Section 7.2 for the AHRS. The structure of the linearised process function A
is as follows:

A =

Jpp Jpv 03

Jvp Jvv −I3

03x9

 (7.7)

where

Jpp =
∂P

∂P
=


0 0 − vN

(Rm+h)2

vE
sin(ϕ)

((Rm+h) cos(ϕ))2
0 − vE

(Rm+h)2 cos(ϕ)

0 0 0


Jpv =

∂P

∂vbe
= T (φ, h)Rnb

Jvp =
∂vbe
∂P

= (vbe)×Rbn

−ωie sin(ϕ) 0 0
0 0 0

−ωie cos(ϕ) 0 0


Jvv =

∂vbe
∂vbe

= −(ω + ωbie)×vNvE
vD

 = vne = Rnbv
b
e

Concerning matrices C and D, they are obtained in the same way as
above and turn out to be

C =
(
I6 06x3

)
D =

03 03

I3 03

03 −I3


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7.5 Reduced-order translational navigation EKF

This second model is a reduced version of the previous one. The main un-
derlying assumption is that trains can only move along the direction they
are heading towards, so the lateral velocity components will structurally be
zero. Speed estimation along Y and Z body axes is therefore an unnecessary
task and possibly a source of errors during navigation. No state reduction
on the position has been carried out.

Another advantage of using a reduced model is the possibility to directly
exploit odometry speed to correct velocity at a higher rate. In this framework,
odometry is assumed to be always available at the same rate of MEMS sensors
and is constantly used for correction. When GNSS data arrive, both position
and speed are used to update the EKF state estimate.

The reduced-order model can be obtained in a straightforward way from
the full-order one by taking out the differential equations for body speed and
accelerometer bias along directions Y and Z. Therefore, the mechanisation
equations simply write down as

Ṗ = T (φ, h)Rnb

(
vbx 0 0

)T
v̇bx = ax − bax − g sin(θ)

ḃax = 0

where θ is the pitch angle. Notice that centrifugal effects do not appear in
the equation since they are always orthogonal to the vehicle speed vector.
The equations result in a reduced-order observer with 5 states.

The EKF matrices can be easily obtained from Equation (7.7) and the
following ones by taking out the rows and columns of the unaccounted states.
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Chapter 8

Map integration algorithm

Another important information that can be used are maps. They constrain
the position of the train to a given subset of the 3D space. They can also
provide information about the expected speed direction. According to their
level of accuracy and completeness, maps definitely have bigger availability
than satellite-based systems, hence they can be used at a higher frequency,
for longer time periods and also during GNSS outages in order to limit the
estimation drift.

The way maps are integrated in the navigation algorithms of this work
is as additional position and speed measurements for the observers. In this
way, no re-projection or algebraic constraint on the state of the estimators is
introduced. In this way, complexity is kept limited and the overall algorithm
is modular, meaning that GPS measurements and maps data are seen in the
very same way to each one of the algorithms proposed in Chapters 6 and 7,
which indeed require very few modifications. Filters can be properly tuned
by simply modifying the R matrix (or other parameters, in case of non EKF-
based structures) with values describing the confidence that is given to each
different source of information.

8.1 Map data model

Map data are assumed to be organized as a simple 2-D matrix whose structure
is depicted in Table 8.1 Rows are assumed to be already sorted by increasing
arc length values in order to simplify the further steps of the algorithm. No
particular assumptions are made on the geometry nor on the size of the map
vector, while it has been assumed equal spacing between consecutive points.
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Arc length (m) Latitude (rad) Longitude (rad) Height (m)
x1 φ1 λ1 h1

x2 φ2 λ2 h2

...
...

...
...

xN φN λN hN

Table 8.1: Map data structure

8.1.1 Uncertain maps

An “uncertain” version of the maps has been prepared to evaluate the perfor-
mance of the algorithm in presence of errors. This choice reflects a possible
scenario in which, for example, a GPS device is used to record the train path
for further use, therefore some inaccuracy is introduced by the measurements.

In this work, maps have been rendered uncertain by means of some addi-
tive noise to the ideal trajectory. It has been added in the direction normal
to the ideal train path (including the vertical component). Results related to
the use of uncertain (or “noisy”) maps rather than ideal ones can be found
in Chapter 10, as well.

8.2 Integration algorithm

The main steps of the map injection algorithm are the following:

1. Starting from the index of the last iteration solve a standard optimiza-
tion problem. The cost function is the distance between each point of
the map and the currently estimated position plus some user-tunable
“feedforward” term, meant to compensate for computation delays. To
this purpose, Matlab function fminbnd has been used and the problem
has been properly set up for sake of computational efficiency

2. Once the minimum is found, the value is directly as a measurement for
the filter without further elaboration

3. The velocity is computed by means of the finite difference [11] centred
on the position of the closest map point. The vector is then scaled
so that its norm matches the speed from odometry, which is assumed
to be always available. Should the closest map point be close to the
beginning or the end of an array, and thus have not enough elements
before or after, the forward or backward finite differences are used,
respectively
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4. Store the array index as the starting point for the next algorithm iter-
ation

Previous map index

old index

Find closest point to current position P̂ on map

Pmap

Compute vmap,ψmap from map

Inject Pmap,vmap,ψmap into the INS
as measurements with proper noise characterisation

Store new index

Figure 8.1: Map integration algorithm work flow

In order to keep the computational cost limited some precautions have
been taken:

� The optimization problem is limited within a proper range of the last
detected index. The interval is centred on the starting index and its size
is proportional to the speed from odometry, plus some fixed value. Pa-
rameters are empirically tuned off-line to ensure the expected solution
to fall into the search range.

� The maximum number of iterations are capped to an empirically-chosen
threshold

� The map correction algorithm is run at a limited rate.

Notice that the arc length is not directly used in the algorithm while
an additional measure is employed, that is the speed from the tachometer.
Distance as measured from odometry is ignored here, as well as elsewhere
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in the proposed inertial navigation systems. The feed-forward term on the
estimated coordinates is used to project the current position a bit further
to compensate for the motion and possibly choose a more suitable point for
the update. It is not a key element of the algorithm but adds an additional
degree of freedom for tuning.

Code of the Matlab function implementing the algorithm can be found
in Appendix A.
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Chapter 9

Simulation Set-up

In this chapter the implementation of the above-presented algorithms via dif-
ferent simulation set-ups is discussed. Simulation results are then discussed
in Chapter 10.

Models have been implemented in the Matlab-Simulink environment. The
main functional blocks of each simulation are the plant model, the INS algo-
rithm and the GPS availability model. The last one’s purpose is to simulate
the arrival of valid GNSS data or absence of satellite signal according to
a user-defined time schedule, in order to test the algorithm under several
conditions of external measurements. The actual map update rate during
periods of availability is set by the algorithm itself.

The general scheme in Figure 9.1 is related to all the developed algo-
rithms.

Figure 9.1: General simulation scheme
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9.1 Plant model

The physical plant was recreated in Simulink in continuous time. Geograph-
ical coordinates, NED frame speed and quaternion representation have been
used in the model according to Equations (2.32), (6.2) and (6.6). GPS posi-
tion and speed are output and noise is added to the true values, if required
for the simulation. The latter is assumed to be available in all its three
components as well in as modulo plus course.

In addition, MEMS sensors model is present, whose equations are re-
ported in Equations (3.1) and (3.2). As mentioned in 3, their bias is modelled
as a constant additive disturbance. Odometry speed noise model is given in
Equation (3.3).

All the inertial navigation algorithms receive measurements from the
plant subsystem and output to the user all their estimates. As an addi-
tional step, pre-filtering of accelerometers and gyroscope is used. This is a
common practice in inertial navigation in order to end up with better signals
from the sensors. The two filters are designed as simple low-pass filters whose
parameters are collected in Table 10.1.

9.2 Single-Stage INS algorithm

In order to validate the algorithm structure, simulations for the single-stage
algorithm from Chapter 6 have been carried out on a continuous-time hybrid
model to avoid discretization-related errors. The core of the single-state INS
algorithm does not differ much from a standard EKF structure. As it can
be seen from Figure 9.2, EKF update is triggered by new available GNSS
data properly correcting the internal state estimate; the standard prediction
equations are used otherwise. Moreover, heading from GNSS is not directly
used and speed from odometry is ignored.

The prediction model is based on Equations (2.32), (6.2) and (6.6). Proper
transformations similar to those presented in Chapter 2 and that can be
found in [10, 25] are used to convert the internal quaternion representation
into RPY angles in order to use the KF filter equations of Chapter 6. The
a posteriori RPY angles estimate is then converted back to re-initialise the
integrators. Unlike the double-state formulations, it is not necessary to fur-
ther elaborate GPS measurements since the internal speed representation is
in NED frame.
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Figure 9.2: Single-stage INS scheme
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9.3 Double-Stage INS algorithms

The algorithms that can be used to build several variation of double-stage
inertial navigation algorithms have been directly implemented in discrete-
time. A standard forward Euler discretization has been used for the con-
version from the continuous-time formulation, while the exact expression
from Equation (2.13) has been used for improved accuracy on quaternions1.
Figure 9.3 shows the basic scheme of the tested variants, which have been
made up as

1. EKF-based AHRS + Full-order translation EKF

2. EKF-based AHRS + Reduced-order translation EKF

3. NLO-based AHRS + Full-order translation EKF

4. NLO-based AHRS + Reduced-order translation EKF

It is important to notice the standard interconnection between the two sys-
tems and the estimates that are exchanges, as well as the map injection
algorithm discussed in Chapter 8, which takes position estimate and odom-
etry speed as inputs and outputs geographical coordinates, 3D velocity and
heading to both modules in the form of measurements. GNSS update is acti-
vated by the external availability model, while map-based update is triggered
by an internally-generated signal at a user-chosen rate. Such signal can be
also completely deactivated to evaluate algorithm performance in different
conditions. Results obtained with several combinations of GNSS and maps
availability are presented in Chapter 10, too.

As remarked in Section 7.4, velocity measurements are provided to the
translation EKF in NED coordinates and rotated via the estimated attitude
R̂bn coming from the used AHRS algorithm. Whenever the reduced-order
model from Section 7.5 is used, then odometry speed is used also in the
functional block as well as the “reduced” model equations.

The stages’ structure is the same of the EKF presented in the single-
state algorithm in Figure 9.2, with the addition of the state-variable filter
of Figure 7.1 - implemented in discrete-time as well - for computing the
compensated accelerations for the AHRS.

Non-linear observer

The NLO-based AHRS structure is quite different from the other stages. It is
based on the equations presented in Section 7.3 and represented in Figure 9.4.

1They are actually implemented in the NLO-based AHRS only
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Figure 9.3: Double-stage INS scheme

The “Non linear observer” block implements the dynamical part of the filter
performing attitude and gyroscope bias estimation with the PI-like control
action performed by ωm, which is built according to Equation (7.5) by com-
paring the estimated and measured reference vectors.

Measurements v1 and v2 correspond to the true North and local grav-
ity vectors and are generated by the third functional block. The additional
single-state observer used to generate “fictitious” values of v1 between new
GNSS or maps samples is also present there. Eventually, just like the Ex-
tended Kalman Filter-based structure, the accelerometer compensation term
from the translational EKF is an additional input and the estimate attitude
and gyroscope bias are outputs to be fed back to the other stage for position,
velocity and accelerometer bias prediction.
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Figure 9.4: NLO-based AHRS scheme
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Chapter 10

Simulation Results

The most relevant results from the simulation models described in Chapter 9
are reported in thie following sections. Several combinations of algorithms
have been used in order to understand the different performance levels under
ideal and more realistic conditions. Map integration algorithm from Chap-
ter 8 has been also tested. Some of the simulation parameters are contained
in Table 10.1

Parameter Value
GPS data rate 1 Hz

Map-based update rate 1 Hz
Accelerometers, gyroscopes and odometry data rate 100 Hz

INS update frequency1 1000 Hz
Distance between map points 5m along arc length

Accelerometer filter bandwidth 10 Hz
Gyroscope filter bandwidth 5 Hz
Accelerometer noise power 10−3 (m/s2)2/Hz

Gyroscope noise power 10−4 (rad/s)2/Hz
Odometry noise power 10−3 (m/s)2/Hz

Table 10.1: Simulation parameters for all models

The choice of filters’ bandwidth has been empirical based on previous
simulations results and [18] in order to search for a trade-off between output
accuracy and reduced noise in the slow-dynamics framework of trains.

1Only for algorithms already implemented in discrete-time, i.e. all those developed as
two stages
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10.1 Single-Stage INS algorithm

The simulation was performed at a constant speed of 10 m/s towards East
and constant attitude without sensors and GPS noise and sensors biases.
The single-stage EKF was perfectly initialized speed and attitude and run
without any bias estimation, while a small position error was introduced.
GPS update occurs after 5 seconds since simulation start without no further
outage. Simulations results are shown in Figures 10.1 to 10.4

Figure 10.1: True position, ideal conditions

The peak that can be noticed in the down velocity error at 5 seconds is
due to the GPS update that “reveals” the elevation error to the filter. From
that moment on, the estimate position and speed tend to the true values with
a residual error of about 2 meters along North and East1, which is due to the
tuning of the EKF measurement matrix. The following tests were performed
with a smaller R matrix and resulted in lower steady-state position errors,
as expected.

1An angle of 10−4 degrees corresponds to about 11.1 meters along any direction at the
Equator, since parallel circles decrease in size as latitude’s modulo increases
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Figure 10.2: Position error, ideal conditions

Figure 10.3: Velocity error, ideal conditions

With sensor bias

The following results are related to the same initial condition and trajectory
of the first test with the only addition of a fixed accelerometer and gyroscope
bias to the readings. Bias estimation has been disabled in this run in order
to test the algorithm’s robustness to such disturbances e.g. in case of wrong
estimation. Maximum bias amplitude along each direction is 0.1 m/s2 for
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Figure 10.4: Attitude, RPY angles, ideal conditions

accelerometers and 0.1 rad/s for gyroscopes.

Figure 10.5: Position error, MEMS bias only
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Figure 10.6: Velocity error, MEMS bias only

Figure 10.7: Attitude, RPY angles, MEMS bias only

Figures 10.5 and 10.6 show how the position and speed error (caused by
wrong accelerometer readings) is kept contained by GPS updates. However,
the EKF could not completely correct for the attitude error induced by the
gyroscope bias, as seen from Figure 10.7, which results unbounded on the
yaw component. Attitude errors are one of the most relevant source of errors
during dead reckoning, hence it is crucial to keep them as low as possible.

Another simulation has been carried out with the same initial values and
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motion type, its results being presented in Figures 10.8 to 10.10. Both ac-
celerometer and gyroscope bias are estimated and compensated in this run.
It can be appreciated from Figure 10.8 that only two gyroscope bias con-
verge to the true value, while the Z-axis estimation reaches a wrong value
without anyway becoming unstable. This clearly has the effect of increasing
the attitude error, as can be seen in Figure 10.10, similarly to the previous
simulation. This implies big speed and positioning errors during dead reck-
oning. On the other hand, position and speed estimation still converge to
the true values. Limited convergence is achieved for accelerometer bias, too.

Figure 10.8: True and estimated gyroscope bias, MEMS bias plus estimation

Figure 10.9: True and estimated accelerometer bias, MEMS bias plus esti-
mation

As it can be seen from all the above simulations, the single-stage algorithm
shows partial convergence towards the true values. As outlined also in the
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Figure 10.10: Attitude, MEMS bias plus estimation

introduction of Chapter 7, the full set of informations given by the sensors is
not completely exploited. In particular, the accelerometer is used explicitly
only in the speed dynamics, while it can be used also to get an estimate of
the attitude and correct it at a higher rate than GNSS.

Because of the convergence issues, no test with map integration has been
carried out for two main reasons: first, map information has the same struc-
ture as GNSS data, so observability is left unchanged; secondly, injected
information cannot be more accurate than GNSS since they are only based
on proprioceptive sensors and their action can also bring the system away
from a correct estimate (see also the “ringing” effect documented in the Sec-
tion 10.2 as well as Figure 10.13 for an insight on the phenomenon).

10.2 Double-Stage INS algorithms

The simulation results related to the two-stages INS algorithm are reported
in this section. Four variations have been tested, according to the type of
AHRS (EKF-based or non-linear estimator) and the order of the navigation
EKF (full or reduced). The map integration algorithm described in Chapter 8
is implemented on all the four variants.

Each simulation has been run for 200 seconds. The benchmark path is
composed in this way:

1. The train is stopped for the first 35 seconds
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2. 25 seconds of constant acceleration at 1m
s2

3. After reaching the speed of 25m
s

at T = 60 seconds, the train turns
counter-clockwise to perform a circle of radius about 600 meters

10.2.1 Double-EKF, full-order algorithm

Without white noise

In the following test all measures are assumed to be noise-free, including
maps. A small bias is added to all the three gyroscope axes and assumed to
be partially known at the beginning, while accelerometer bias is absent and
not estimated. Moreover, a period of GPS and maps outages has been mod-
elled to determine quantitatively how the amplitude of the estimation error
grows with time. Figure 10.11 shows how the outages have been arranged.
Therefore, there are 30 seconds of “complete” dead reckoning, GPS is un-

Figure 10.11: GPS and maps availability during the simulations

available for 90 seconds and one minute of navigation is based only on maps.
These availability structure is shared among all the tests of this subsection,
unless otherwise specified.

As shown in Figures 10.12 and 10.13 the position estimation accuracy is
very high and contained within about 4 meters throughout dead reckoning.
The “ringing” effect on the error is due to the relatively high map granularity
of 5 meters and to the consequent, unavoidable discrepancy with GPS read-
ings; as a matter of fact, this occurs only in the periods where GPS and maps
are used jointly, that is in the first 90 seconds and in the last ten. Moreover,
its “shape” may change but the maximum amplitude is limited and related
to map density. Hence, because of the nature of this effect, using map aiding
at a higher frequency will not cancel it out and coarse granularity will worsen
the estimation.

Ringing amplitude has already been reduced to these values by using
a bigger R matrix when the map-based update occurs, which is also quite
desirable for the use of uncertain maps. In addition, using a denser map can
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further improve the situation. Another solution is to keep the algorithm run
continuously, in order to keep it up to date, but to inject corrections either
only when GPS is not available or at a lower frequency.

Figure 10.12: True and estimated trajectory, no noise

Height estimation is also accurate and prone to the very same ringing
effect. The maximum error reached during dead reckoning is less than 2
meters and mainly related to a (small) attitude error in the pitch component.

Speed estimation is also accurate. The error along the Z component is due
to the sudden change of motion and the subsequent attitude error, related to
the speed of the state-variable filter compensating the accelerometer readings.
A proof of this statement can be seen from Figure 10.16

Roll and pitch errors are influenced by accelerometers compensation. In
case they were not present, a constant error would be present in the attitude,
with negative effects during dead reckoning, especially along the “pitch” com-
ponent. It is also possible to notice how the yaw error decreases progressively
with time, because of the gyroscope bias estimation that gradually reaches
the true values. This is an important aspect since the algorithm will be
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Figure 10.13: Position error in degrees, no noise

better initialised when dead reckoning will start and drift will be contained.
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Figure 10.14: Estimated height and error, no noise

72



Figure 10.15: True and estimated body speed and error, no noise

73



Figure 10.16: True and estimated attitude and error, no noise

Figure 10.17: Gyroscope bias, no noise
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Noise on MEMS sensors only

Starting from the previous simulation, sources of disturbances are incremen-
tally introduced. Figures 10.18 to 10.26 show the result of the double EKF
algorithm on the same benchmark, with added white noise only on MEMS
sensors. GPS, odometry and maps still provide ideal measurements to the
algorithm.

Figure 10.18: True and estimated trajectory, MEMS noise only

Figure 10.19: Position error in meters, MEMS noise only

It can be easily seen that some non-negligible error is introduced by noise
during dead reckoning without maps. In particular, the final position error af-
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ter 30 seconds of navigation without any external aid turns out to be of about
40 meters on the plane according to Figure 10.20, most of it being related
to a heading estimate drift of about 5-6 degrees, as seen from Figure 10.25,
rather than of a wrong body speed estimate on the corresponding axes (see
Figure 10.23).

Figure 10.20: Detail of true and estimated plane trajectory, MEMS noise
only

The height error is manly related to the Z component of the estimated
speed. A possibility to reduce this effect is via a reduced-order observer,
whose results are discussed later in this chapter.

Concerning attitude, the noisy estimate is mainly related to the sensors
noise, but the error still remains bounded within less than 10 degrees. Ac-
celerometers are more relevant on roll and pitch, while yaw is more influenced
by gyroscope noise.

Under these noisy conditions, gyroscope bias estimates are still correct
and very close to their actual values.
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Figure 10.21: True and estimated height, MEMS noise only

Figure 10.22: True and estimated body speed, MEMS noise only
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Figure 10.23: Body speed estimation error, MEMS noise only

Figure 10.24: True and estimated attitude, MEMS noise only
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Figure 10.25: Attitude estimation error, MEMS noise only

Figure 10.26: Gyroscope bias, MEMS noise only
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Noise on all sources

The same benchmark and algorithm have been used in another simulations
with noise added on MEMS sensors, GPS, odometry and maps. Starting
estimates and periods of measures’ availability are left unchanged.

As expected, position and height estimates are less accurate throughout
the simulation due to the noise added on GPS and maps, even if the max-
imum amplitude is not bigger with respect to the previous one. However,
positioning error after the period of dead reckoning is strongly dependant on
the state of the filter after the last received measurement.

Figure 10.27: Detail of true and estimated trajectory, all noises

Speed and attitude estimates are obviously worse when eteroceptive sen-
sors (including maps) become noisy. In particular, an important error is
present on the axes orthogonal to the speed of the vehicle, while the X com-
ponent presents a smaller error. Also heading becomes very noisy when
maps are not ideal and when the vehicle is at a stop, as can be seen from
Figure 10.32.

The spikes on the yaw attitude are due to map inaccuracy and sign change
in odometry speed at stop; in fact, the effect disappears as the train starts
moving. Moreover, it can be noticed that the “ringing” effect present in the
previous two simulation is almost completely covered by GNSS noise and
thus not distinguishable (see Figures 10.13 and 10.19 ). However, the overall
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Figure 10.28: Position error in meters, all noises

performance level in presence of noise is considered acceptable in relation with
the noise level and similar to the performance levels depicted in Section 5.1.

In addition, gyroscope bias estimates converge to the true values in 60-80
seconds since simulation start, with a small residual error due to noise, as
seen from Figure 10.33.

81



Figure 10.29: Estimated height, all noises

Figure 10.30: Height error, all noises
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Figure 10.31: True and estimated body speed, all noises

Figure 10.32: Attitude error, RPY angles, all noises
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Figure 10.33: Gyroscope bias, all noises
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To provide an additional comparison, the following simulation has been
carried out by assuming maps to be always available, so only a GPS outage is
present between 90 and 180 seconds. The other conditions were unchanged.
The maximum position error is reduced with respect to the previous case
from 10 to a about 5 meters, but - most importantly - it is almost com-
pletely localized along the map trajectory, according to Figure 10.34. Speed
measurement from odometry plays a crucial role in determining the position-
ing error.

Figure 10.34: Detail of true and estimated trajectory, all noises, map always
available

Figure 10.35: Position error in meters, all noises, map always available
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10.2.2 Double-EKF, reduced-order algorithm

The reduced-order version of the above algorithm has been tested to evaluate
its performance by exploiting the kinematic constrain of the vehicle.

Without white noise

Here are reported the results of a simulation run with the reduced-order
observer algorithm for the navigation dynamics. All noises are absent in this
first test, with the exception of gyroscope bias. Accelerometer bias is not
accounted in the estimation

Figure 10.36: Position error in meters, no noise

It is easy to see that the same positioning performance are achieved for
latitude and longitude, while height error results to be more limited be-
cause of the reduced order with respect to the full-order observer (see fig.
Figure 10.14). The same performance were noticed for what concerns speed
accuracy along body axis X.

Since the AHRS algorithm is the same of the full-order model, no relevant
difference in the performance was noticed even with the usual interconnection
used to compensate the true acceleration and centripetal effects. Moreover,
gyroscope bias estimation still converges to the true value with the same
timings of the previous tests, as shown in Figures 10.17, 10.26 and 10.33.
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Figure 10.37: Body speed error, no noise

Figure 10.38: Attitude error, no noise

Figure 10.39: Gyroscope bias, no noise
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Noise on all sources

Two simulations have been carried out for comparison with the full-oder
model in order to understand the advantages and drawbacks of a simplified
structure. In the first test with noise, GPS and maps are made available
according to Figure 10.11 and noise is present on all possible sources. Once
again, accelerometer bias is absent and not estimated.

Figure 10.40: Lateral position error in meters, all noises

The benefits of the reduced-order observer can be noticed in the speed
estimation. As shown in Figure 10.40, the elevation error is more limited
thanks to the assumption on the train motion. On the other hand, the
cause of the residual error is to be found on the attitude error, induced by
accelerometers noise.

The plane position error results to be bigger in this run. However, the
cause of this drift is to be found on the AHRS because of a small residual error
in bias estimation at the beginning of the dead reckoning phase which is not
corrected by any source for 30 seconds. It can be appreciated in Figures 10.42
and 10.43 and whose effect are visible on the overall plane trajectory depicted
in Figure 10.44.
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Figure 10.41: Height error in meters, all noises

Figure 10.42: Attitude error, all noises
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Figure 10.43: Gyroscope bias, all noises

Figure 10.44: True and estimate plane trajectory, all noises
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In the second run, maps are assumed to be available at all times. Then
gyro bias estimates converge and the heading error remains bounded because
of the continuous correction. The residual position error is due to the noise
on odometry readings and map uncertainties as it is again all contained along
the train’s expected path given by the map.

Figure 10.45: True and estimate plane trajectory, all noises, map always
present

In order to provide a useful comparison, in the following plots uncertain-
ties on maps and odometry have been removed in order to better appreciate
which is the major cause. In the simulation reported in Figure 10.47 odom-
etry has no noise, while in Figure 10.48 the ideal maps and noisy odometry
were used.

It is possible to see that both uncertainties have more or less the same
effect on the performance degradation. Nevertheless, another crucial role is
played by the filters initialisation before dead reckoning, which is not exact
and affected by GNSS’ and sensors’ non-idealities. Another important factor
is map granularity, which may lead to an additional drift according to the
position of the closest point to the estimation. However, the maximum error
along each direction is not greater than 8-10 meters at any time in this
benchmark.
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Figure 10.46: Position error in meters, all noises, map always present

Figure 10.47: Position error in meters, ideal odometry reading
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Figure 10.48: Position error in meters, ideal maps

93



10.2.3 NLO-EKF, full-order algorithm

The following two algorithm differ from the previous ones in the AHRS sec-
tion, which employes the nonlinear observer designed in Section 7.3 and im-
plemented according to the scheme in Chapter 9.

Without white noise

The first simulation is completely without noise, except for some partially
known gyroscope bias. The source availability diagram is the same as the
previous simulations (see figure 10.11) in order to provide useful informa-
tion for a comparison on the same benchmark and conditions. Results are
presented in Figures 10.49 to 10.53.

Figure 10.49: Position error in meters, no noise

As seen in Figures 10.49 and 10.50, the positioning error is still limited,
even if the results on the elevation are slightly worse in this case. The same
ringing effect due to the coarse map granularity of 5 meters is present also
in this case.

No relevant differences were noticed on the trend of body speed estimates.
In addition, the quality of attitude estimation is as good as in the EKF case.
Finally, Figure 10.53 shows how the gyroscope bias estimates converge to
the true values with a “time constant” similar to the EKF-based AHRS,
thus proving the excellent convergence properties of the NLO.

On overall, it is possible to appreciate that the estimation performance
are very similar to those achieved by the double EKF-based algorithm on
the same ideal conditions. It can be easily noticed that the effect of a wrong
initialisation of the algorithm is rapidly compensated and corrected by the
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Figure 10.50: Height estimation error, no noise

first measurements, especially for what concerns attitude since because of the
accelerometers’ data rate. This behaviour is shared by all the four two-stage
algorithms proposed in this work.
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Figure 10.51: Body speed error, no noise

Figure 10.52: Attitude error, no noise

96



Figure 10.53: Gyroscope bias, no noise
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MEMS noise only

The following simulation was carried out by adding a white noise disturbances
to the accelerometers and gyroscope, their spectral density being the same
as in the previous cases. As expected, errors induced by the full-order model
are related to the body speed along the vertical axis, causing an important
elevation error of 35 meters after 30 seconds of total dead reckoning, as shown
in Figures 10.54 and 10.56.

Figure 10.54: Height error, MEMS noise only

On the other hand, positioning error on the East-North plane are mostly
related to some drift in the attitude, especially in the yaw component. The
overall error along each component is less than 20 meters during dead reck-
oning (from T=150 s to T=180 s) resulting in about 24 meters of distance
on the plane and 45 meters in 3D2 ; however, it should be pointed out that
such values tend to vary between runs because of the stochastic disturbances
and the amplifying effect of integrators with respect to small perturbations
of the initial state during dead reckoning.

Nevertheless, estimation of gyroscope non-idealities performed by the
NLO is still accurate and converges to the true values, as shown in Figure 10.59.

2Mainly driven by elevation error, see fig 10.54
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Figure 10.55: Position error, MEMS noise only

Figure 10.56: Body speed error, MEMS noise only
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Figure 10.57: True and estimated trajectory, MEMS noise only

Figure 10.58: Attitude error, MEMS noise only
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Figure 10.59: Gyroscope bias, MEMS noise only
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All noise sources

The following results are obtained from a simulation where GPS, maps and
odometry noise were present together with MEMS’. As expected, positioning
errors on all components tend to be greater. The main cause is related to
errors on the body speed estimate, as seen from Figure 10.62.

Figure 10.60: Position error, all noises enabled

Figure 10.61: Elevation error, all noises enabled

Attitude error is limited, even if the estimation is noisy. Once again,
error on roll and pitch components is constantly bounded thanks to the
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Figure 10.62: Body speed error, all noises enabled

continuous accelerometer-based correction and the NLO-based AHRS shows
performances that are very similar to the EKF-based one.

As already observer in Figures 10.53 and 10.59, gyroscope bias estima-
tion shown in Figure 10.64 is still very accurate, thus reducing drift during
unavailability of both GNSS and map aiding.

103



Figure 10.63: Attitude error, all noises enabled

Figure 10.64: Gyroscope bias, all noises enabled
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10.2.4 NLO-EKF, reduced-order algorithm

In this sections the results obtained with the INS algorithm based on the
NLO and a reduced-order navigation observer are presented.

Ideal case, no noise

As previously done with the other three variants, results in ideal, white-noise
free, simulations are presented.

Figure 10.65: Position error, no noise

Figure 10.66: Elevation error, no noise

The same “ringing” effect shown in the previous simulations under ideal
conditions is present also here in the intervals when both GNSS and maps are
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used. Gyroscope bias estimation converges as well with the usual dynamics
that came out in the results reported in the previous sections. Finally, at-
titude estimation errors are due to the body accelerations and compensated
by the algorithm structure. Once again, the big starting attitude error is
immediately corrected by the observer.

Figure 10.67: Attitude error, RPY angles, no noise

MEMS noise only

Similarly to what has been reported for the other simulations, using a reduced-
order navigation observer greatly reduces elevation drift. The error reported
in Figure 10.68 is limited to less than one meter at the end of dead reckoning
phase (that is at T=180 seconds).

Figure 10.70 allows to appreciate the “shape” of the estimation drift on
the North-East plane at the end of dead reckoning.
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Figure 10.68: Elevation error, MEMS noise only

Figure 10.69: Position error, MEMS noise only
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Figure 10.70: Detail of true and estimated trajectory, MEMS noise only

Figure 10.71: Gyroscope bias, MEMS noise only
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All noise sources

Figures 10.72 to 10.77 show the result of a simulation run in which all possible
noise sources were added.

With the aid of Figures 10.11 and 10.74, it is possible to appreciate from
the plane trajectory in Figure 10.75 that the position error during the “map-
only” phase (from 90 to 150 seconds) is again contained within a small range
of the true train trajectory, its magnitude being about 22 meters along arc
length. This phenomenon occurs throughout all the simulations in this sec-
tion.

Figure 10.72: Position error, all noises enabled

From Figures 10.76 and 10.77 it is possible to appreciate the quality of
gyroscope bias estimation and the boundedness of the attitude error, which
is confined within a range of ± 5 degrees in roll and pitch, basically.
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Figure 10.73: Elevation error, all noises enabled

Figure 10.74: True coordinates, all noises enabled
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Figure 10.75: Plane trajectory, all noises enabled

Figure 10.76: Attitude error, all noises enabled
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Figure 10.77: Gyroscope bias, all noises enabled
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10.3 Accelerometer bias estimation

As seen in the simulation results of this chapter, the proposed two-stage
algorithms are able to estimate asymptotically gyroscope bias with a good
convergence speed. On the other hand, accelerometer biases show their effect
both on attitude and speed/position dynamics of the observer, therefore it is
more difficult to estimate the latter ones correctly. As a matter of fact, wrong
accelerometer readings provide to the AHRS a wrongly-oriented gravity vec-
tor, thus leading to a wrong estimated orientation. As shown in Figure 10.78,
the phenomenon of wrong attitude estimation affects both the EKF-based
and the NLO-based AHRS algorithms in very similar ways.

Figure 10.78: Attitude error, EKF-based (left) and NLO-based (right) AHRS

Even if the lateral position error is not as big as one would expect, that’s
because of the error in the body speed estimation that compensates for it.
In fact, speed measurements from GPS are wrongly rotated into the body
frame, and then the resulting velocity is rotated back by the opposite rotation
when resolving for position.

It must be also pointed out that the navigation EKF estimates accelerom-
eter bias mainly by looking at the speed error and adjusting their estimates
accordingly. Hence, even if a wrong body speed partially compensates for
the wrong attitude, bias estimation does not converge to the true values, as
shown in Figure 10.79.

As a further demonstration, if he navigation EKF is provided the true
attitude, bias estimates converge to their true value, as shown in Figure 10.80

However, there is a big error in the elevation component, as expected. The
errors along all directions will become very large during extended periods of
both GNSS and map outages.
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Figure 10.79: Accelerometer bias, double-EKF (left) and EKF-NLO (right),
full-order algorithm

Figure 10.80: Accelerometer bias estimate with true attitude

All the two-stage algorithms presented in Chapter 7 present a subsystem
whose dynamics are much faster than the other. In this case, the AHRS
converges in very little time to an estimate of the relative orientation and can
be considered as a static system with an algebraic input/output relationship.
Singular perturbation analysis is a valid tool that can be applied to this
framework to study the stability of the interconnection by relying on the
results provided by the Thikonov theorem[16, Chapter 11]. The main goal
of the analysis could be understanding if the presented algorithms can be
adapted to reach convergence of all the estimates or if the two-stage structure
is not suitable to this purpose.
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10.4 Summary of the results

Concerning the single-EKF structure and its already outlined limitations, its
convergence domain turned out to be insufficient for practical applications
and showed poor convergence properties for attitude and MEMS bias. As
a matter of fact, a non-null unobservable subspace is also present during
normal train manoeuvring, that is when there are no sudden accelerations or
fast attitude changes.

A number of observability analyses following different approaches are
present in literature. It has been shown that the unobservable state space
is strongly related to the type of motion the vehicle is subjected to and is
generally a linear combination of attitude and MEMS sensors bias[12, 24].
As a result, attitude and frequent acceleration changes are required in order
for the overall state space to be completely observable. This also motivates
the estimation behaviour outlined in Figure 10.8, in which in particular the
gyroscope bias along the direction of the specific force is unobservable during
constant linear motion.

On the other hand, the four proposed two-stage algorithms show good
performances during dead reckoning. Using a reduced-order model brings
to some improvement in position and speed estimation, in particular along
the vertical axis, which appears to be the most sensible to errors and prone
to drift; however, it has been observed that the advantage brought by the
reduced-order structure can be less appreciated in noisy conditions as well
as complete dead reckoning.

Both developed AHRS algorithms are able to correctly estimate and com-
pensate for gyroscope biases during the interconnection with both transla-
tional model observers, making them quite reliable. As a matter of fact,
they could also work by their own without particular problems, provided
that proper compensation of vehicle acceleration is performed where dictated
from the particular working conditions.

Even if a correct accelerometer bias estimation is not achieved, simula-
tions proved better convergence properties for gyroscope bias and attitude
with the two-module algorithms. A final consideration that can be done is
that the proposed two-stage structure is not the only possibility to design two
interconnected observers; however, it has the advantage of using accelerom-
eters in a more structured way instead of using only GNSS information as
measurements.
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Chapter 11

Conclusions

Several INS algorithms were proposed in this work. They all make use of
a subset of sensors commonly used in IMUs. Simulations have proven that
using the accelerometer to provide information on the attitude allows to in-
crease the rate of some information and to converge more rapidly to the
correct value. The reduced-order structure for navigation equation, devel-
oped to exploit the train kinematic constraints, provided better positioning
accuracy during dead reckoning. The modified NLO structure showed to
have the same performance of a standard EKF structure, its main advantage
being much lower computational load with respect to the other solution and
global convergence in all practical situations. Nevertheless, using a two-stage
structure allows for greater modularity and flexibility.

Moreover, addition of the map integration algorithm proved to be very
useful to improve positioning during GNSS outages. The strongest result
obtained is the containment of the position error along the train path and of
the speed estimate along suitable values for the vehicle. Simulation results
during dead reckoning with or without maps turned out to be very satisfac-
tory and suitable for non-safety critical tasks, such as on-board information
to passengers.

The problem of on-line compensation of sensor bias has been addressed.
No problems were found for gyroscopes, while some issues arose when dealing
with accelerometers because of their usage in several block of the two-stage
algorithm presented in Chapter 7.

Future development for this work may be focused on the study of the
interconnection stability concerning accelerometer bias estimation. Another
possible topic can be related to machine learning applied to maps. If the
train runs the same path several times it is possible to collect information
from the IMU and adjust the map according to the found discrepancy and
the level of confidence of data, as well as fill possible gaps in the trajectory
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and improve data granularity, which turned out to be an important factor to
have good navigation performance.
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Appendix A

MATLAB code for map aiding

1 function [yaw ,pos ,spd ,new_idx] = map_point(v_o ,map ,x_hat ,R_m ,

Rnb ,idx_old)

2 % structure of "map" variable:

3 % ascissa lat lon h (above Earth centre)

4 opt_rng = round (10 + 0.3* v_o); % search range depends on

vehicle speed , plus some margin

5 st = max(1,idx_old -opt_rng /2); % abbrev. start

6 fi = min(st+opt_rng ,length(map)); % abbrev. finish

7

8 t_ff = 0.001; % use to tune feedforward term

9 x_add = t_ff*diag([ 1/R_m 1/( R_m*cos(x_hat (1)) ) 1])*Rnb*[1

0 0]’*v_o; % feedforward term

10

11 fun = @(i) distance_map(round(i), x_hat+x_add , map , R_m ,

x_hat (1));

12 opt=optimset(’MaxIter ’,25,’Display ’,’iter’,’FunValCheck ’,’on’

,’TolX’,1e-3);

13 % MaxIter and TolX are tuned by hand

14 [idx , D] = fminbnd(fun ,st,fi,opt);

15 idx = round(idx);

16 % output new index and position

17 new_idx = idx (1);

18 pos = map(idx(1) ,2:4) ’;

19 % at leat one assignment must be guaranteed

20 spd = [0 0 0]’;

21

22 % use finite differences method

23 st = max(1,new_idx -4);

24 fi = min(new_idx+4,length(map));

25 % define coefficients for central difference

26 coeff6 = [ -1/60 3/20 -3/4 0 3/4 -3/20 1/60];

27 coeff8 = [ 1/280 -4/105 1/5 -4/5 0 4/5 -1/5 4/105 -1/280];

28
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29 % use coeff6 or coeff8 according to the desired level of

accuracy

30

31 if st > (new_idx -4) % if true it means st has been shifted

because of the beginning of map array

32 % use forward difference , I’m at the beginning of the

array

33 coeff6 = [ -49/20 6 -15/2 20/3 -15/4 6/5 -1/6]; %

coefficients FW difference

34 coeff8 = [ -49/20 6 -15/2 20/3 -15/4 6/5 -1/6 0 0];

35 st = new_idx;

36 fi = st + 8;

37 else

38 if fi < (new_idx +4) % similar to the previous if but for the

end of map array

39 % use backward difference , I’m at the end of the array

40 coeff6 = [ 1/6 -6/5 15/4 -20/3 15/2 -6 49/20]; %

coefficients BW difference

41 coeff8 = [ 0 0 1/6 -6/5 15/4 -20/3 15/2 -6 49/20];

42 fi = new_idx;

43 st = fi - 8;

44 end

45 end

46

47 spd = map(st:fi ,2:4) ’*coeff8 ’; % division by step size is

omitted as scaling will occur later

48 spd(1) = spd(1)*R_m;

49 spd(2) = spd(2)*R_m*cos(pos(1));

50

51 spd = spd/norm(spd)*v_o; % scale according to odometry speed

52 yaw = atan2(spd(2),spd(1)); % heading (for AHRS ...)

There follows the distance map function, which is used to compute the
distance between the estimated position and some point on the map:

1 function d=distance_map(index , x_hat , map , R_m , lat)

2 QD = diag([R_m R_m*cos(lat) 1]); % to convert latitude/

longitude into meters

3 if (index >0 && index <= length(map)) % consistency check

4 dist=sqrt ((( x_hat - map(floor(index) ,2:4) ’)’)*QD*( x_hat - map

(floor(index) ,2:4) ’)); % round index to be sure it’s

integer

5 else

6 dist=realmax;

7 end

8 d=dist; % return distance
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