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Introduction

This thesis investigates the role of filtrations and gradings in the study of Lie

(super)algebras.

In his paper [6] Kac indicates filtrations as the key ingredient used to solve

the problem of classifying simple finite-dimensional primitive Lie superalge-

bras. In [9] he relates the problem of classifying simple infinite-dimensional

linearly compact Lie superalgebras to the study and the classification of even

transitive irreducible Z-graded Lie superalgebras.

A Z-graded Lie superalgebra is a Lie superalgebra L = ⊕j∈ZLj where the

Lj’s are Z2-graded subspaces such that [Li, Lj] ⊂ Li+j. Consequently, L0 is

a subalgebra of L and the Lj’s are L0-modules with respect to the adjoint

action.

A (decreasing) filtration of a Lie (super)algebra L is a sequence of sub-

spaces of L:

L = L−d ⊃ L−d+1 · · · ⊃ · · · ⊃ L0 ⊃ L1 ⊃ . . .

such that [Li, Lj] ⊂ Li+j. The positive integer d is called the depth of the

filtration. If L0 is a maximal subalgebra of L of finite codimension and

the filtration is transitive, i.e., for any non-zero x ∈ gk for k ≥ 0, where

gk = Lk/Lk+1, there is y ∈ g−1 such that [x, y] 6= 0, the filtration is called,

after [12], a Weisfeiler filtration.

The associated Z-graded Lie (super)algebra is of the form g = GrL =

⊕k≥−dgk, and has the following properties:

(1) dim gk <∞;
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2 Introduction

(2) gj = gj1 for j > 1;

(3) if a ∈ gj with j ≥ 0 and [a, g−1] = 0, then a = 0;

(4) the representation of g0 on g−1 is irreducible.

A Z-grading satisfying property (3) is called transitive, if it satisfies

property (4) it is called irreducible. Besides, it is said of finite growth if

dim gn ≤ P (n) for some polynomial P .

Weisfeiler’s classification of such Z-graded Lie algebras remained unpub-

lished, but it is through these filtrations that Weisfeiler solved in a com-

pletely algebraic way the problem of classifying primitive linearly compact

infinite-dimensional Lie algebras [12], a problem which had been first faced

by Cartan [2] and then solved in [4] by the use of rather complicated methods

from analysis.

Weisfeiler’s idea leads Kac to the following classification theorem of infinite-

dimensional Lie algebras, later generalized by Mathieu:

Theorem 0.1. [5] Let L be a simple graded Lie algebra of finite growth.

Assume that L is generated by its local part and that the grading is irreducible.

Then L is isomorphic to one of the following:

(i) a finite dimensional Lie algebra;

(ii) an affine Kac-Moody Lie algebra;

(iii) a Lie algebra of Cartan type.

Theorem 0.2. [10] Let L be a simple graded Lie algebra of finite growth.

Then L is isomorphic to one of the following Lie algebras:

(i) a finite dimensional Lie algebra;

(ii) an affine Kac-Moody Lie algebra;

(iii) a Lie algebra of Cartan type;

(iv) a Virasoro-Witt Lie algebra.
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The classification of simple finite-dimensional Lie superalgebras [6] is di-

vided into two main parts, namely, that of classical and non-classical Lie

superalgebras. A Lie superalgebra L = L0̄ + L1̄ is called classical if it is

simple and the representation of the Lie algebra L0̄ on L1̄ is completely re-

ducible. In the case of such Lie superalgebras almost standard Lie algebras

methods and techniques can be applied.

For the classification of the nonclassical simple Lie superalgebras L a

Weisfeiler filtration is constructed and the classification of finite-dimensional

Z-graded Lie superalgebras with properties (1)–(4) is used. In the proof

the methods developed in Kac’s paper [5] for the classification of infinite-

dimensional Lie algebras are applied and the Lie superalgebra L with fil-

tration is reconstructed from the Z-graded Lie superalgebra GrL. These

methods rely on the connection between the properties of the gradings and

the structure of the Lie (super)algebra. This thesis is focused on these prop-

erties to which Chapters 1, 2 and 3 are dedicated.

Chapter 4 is dedicated to the Lie superalgebras of vector fields W (m,n)

and S(m,n). Here W (m,n) = derΛ(m,n) where Λ(m,n) = C[x1, . . . , xm]⊗
Λ(n) is the Grassmann superalgebra and S(m,n) is the derived algebra

of S ′(m,n) = {X ∈ W (m,n) | div(X) = 0}. If n = 0 these are infinite-

dimensional Lie algebras, if m = 0 they are finite-dimensional Lie superalge-

bras.

If we set deg(xi) = − deg ∂
∂xi

= 1 for every even variable xi, and deg(ξj) =

− deg ∂
∂ξj

= 1 for every odd variable ξj, then we get a grading of W (m,n)

and S(m,n), called the principal grading, satisfying properties (1)− (4). The

properties of this grading can be used to prove the simplicity of the Lie

superalgebras W (m,n) and S(m,n) (see Sections 4.1.2 and 4.2.2).

We then classify, up to isomorphims, the strongly symmetric gradings of

length 3 and 5 of W (m,n) and S(m,n), and give a detailed description of

them. A Z-grading of a Lie superalgebra g is said symmetric if g = ⊕ki=−kgi
for some k < ∞. If, in addition, the grading is transitive, generated by its

local part and g−i and gi are isomorphic vector spaces, then the grading is
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called strongly symmetric. We say that a strongly symmetric grading has

length three (resp. five) if k = 1 (resp. k = 2).

The study of such gradings is motivated by [11], where a correspondence

between strongly-symmetric graded Lie superalgebras of length three and five

and triple systems appearing in three-dimensional supersymmetric conformal

field theories is established.

We prove the following results:

Theorem 0.3. 1. If (m,n) 6= (0, 2), (1, 1) the Lie superalgebra W (m,n)

has no strongly symmetric Z−gradings of length three.

2. A complete list, up to isomorphisms, of strongly symmetric Z−gradings

of length three of the Lie superalgebras W (0, 2) and W (1, 1) is the fol-

lowing:

(a) (|1, 1)

(b) (|0, 1)

(c) (0|1)

Theorem 0.4. A complete list, up to isomorphisms, of strongly symmetric

Z−gradings of length five of the Lie superalgebra W (m,n) is the following:

1. (|1, 2) for m = 0 and n = 2

2. (0, ..., 0|1,−1, 0, ..., 0)

Theorem 0.5. 1. If (m,n) 6= (1, 2) then the Lie superalgebra S(m,n) has

no strongly symmetric Z-grading of length three.

2. A complete list, up to isomorphisms, of strongly symmetric Z−gradings

of length three of the Lie superalgebra S(1, 2) is the following:

(a) (0|1, 1)

(b) (0|1, 0)
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Theorem 0.6. A complete list, up to isomorphisms, of strongly symmetric

Z−gradings of length five of the Lie superalgebra of S(m,n) is the following:

1. (0, ..., 0|1,−1, 0, ..., 0)

2. (0|2, 1) for m = 1 and n = 2

Throughout this thesis the ground field is C.





Introduzione

In questa tesi viene analizzato il ruolo di filtrazioni e graduazioni nello studio

di (super)algebre di Lie.

Nel suo articolo [6] Kac indica le filtrazioni come ingrediente chiave uti-

lizzato per risolvere il problema di classificare le superalgebre di Lie semplici,

di dimensione finita, primitive. In [9] mette in relazione il problema di clas-

sificare le superalgebre di Lie semplici, di dimensione infinita, linearmente

compatte, allo studio e classificazione delle superalgebre di Lie Z-graduate

even, transitive, irriducibili.

Una superalgebra di Lie Z-graduata è una superalgebra di Lie L = ⊕j∈ZLj
dove gli Lj sono sottospazi Z2-graduati tali che [Li, Lj] ⊂ Li+j. Ne segue che

L0 è una sottoalgebra di L e che gli Lj sono L0-moduli rispetto all’azione

aggiunta.

Una filtrazione (decrescente) di una (super)algebra di Lie L è una se-

quenza di sottospazi di L:

L = L−d ⊃ L−d+1 · · · ⊃ · · · ⊃ L0 ⊃ L1 ⊃ . . .

tale che [Li, Lj] ⊂ Li+j. L’intero positivo d è chiamato profondità della

filtrazione. Se L0 è una sottoalgebra massimale di L di codimensione finita

e la filtrazione è transitiva, i.e., per ogni x ∈ gk non nullo, per k ≥ 0, dove

gk = Lk/Lk+1, esiste y ∈ g−1 tale che [x, y] 6= 0, la filtrazione è chiamata,

seguendo [12], una filtrazione di Weisfeiler .

La (super)algebra di Lie Z-graduata associata è della forma g = GrL =

⊕k≥−dgk, e ha le seguenti proprietà:

(1) dim gk <∞;

1
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(2) gj = gj1 per j > 1;

(3) se a ∈ gj con j ≥ 0 e [a, g−1] = 0, allora a = 0;

(4) la rappresentazione di g0 su g−1 è irriducibile.

Una Z-graduazione che soddisfa la proprietà (3) è chiamata transitiva,

se soddisfa la proprietà (4) è chiamata irriducibile. Inoltre, si dice che ha

crescita finita se dim gn ≤ P (n) per qualche polinomio P .

La classificazione di Weisfeiler di tali algebre di Lie Z-graduate rimase

non pubblicata, ma fu grazie a queste filtrazioni che Weisfeiler risolse in un

modo completamente algebrico il problema di classificare le algebre di Lie

primitive, linearmente compatte, di dimensione infinita [12], un problema

che venne prima affrontato da Cartan [2] e poi risolto in [4] con l’utilizzo di

complicati metodi dell’analisi.

L’idea di Weisfeiler portò Kac al seguente teorema di classificazione di

algebre di Lie infinito-dimensionali , in seguito generalizzato da Mathieu:

Teorema 0.1. [5] Sia L un’algebra di Lie semplice graduata di crescita finita.

Assumiamo che L sia generata dalla sua parte locale e che la graduazione sia

irriducibile. Allora L è isomorfa a una delle seguenti:

(i) un’algebra di Lie finito-dimensionale;

(ii) un’algebra di Lie di Kac-Moody di tipo affine;

(iii) un’algebra di Lie di tipo Cartan.

Teorema 0.2. [10] Sia L un’algebra di Lie semplice graduata di crescita

finita. Allora L è isomorfa a una delle seguenti algebre di Lie:

(i) un’algebra di Lie finito-dimensionale;

(ii) un’algebra di Lie di Kac-Moody di tipo affine;

(iii) un’algebra di Lie di tipo Cartan;

(iv) un’algebra di Lie Virasoro-Witt.
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La classificazione delle superalgebre di Lie semplici finito-dimensionali [6]

è divisa in due parti principali, ossia, quella delle superalgebre di Lie classiche

e non classiche. Una superalgebra di Lie L = L0̄ +L1̄ è chiamata classica se è

semplice e la rappresentazione dell’algebra di Lie L0̄ su L1̄ è completamente

riducibile. Nel caso di tali superalgebre di Lie vengono applicati metodi e

tecniche simili alle algebre di Lie.

Per la classificazione delle superalgebre di Lie non classiche, semplici L, si

costruisce una filtrazione di Weisfeiler e si utilizza la classificazione di super-

algebre di Lie Z-graduate finito-dimensionali con le proprietà (1)–(4). Nella

dimostrazione, vengono applicate le tecniche utilizzate nell’articolo di Kac [5]

per la classificazione di algebre di Lie infinito-dimensionali e la superalgebra

di Lie L con filtrazione è ricostruita dalla superalgebra di Lie Z-graduata

GrL. Queste tecniche si basano sul legame tra le proprietà delle graduazioni

e la struttura della (super)algebra di Lie. Questa tesi studia queste proprietà,

a cui sono dedicati i capitoli 1, 2 e 3.

Il capitolo 4 è dedicato alle superalgebre di Lie di campi vettorialiW (m,n)

e S(m,n). W (m,n) = derΛ(m,n) dove Λ(m,n) = C[x1, . . . , xm] ⊗ Λ(n) è

la superalgebra di Grassmann e S(m,n) è l’algebra derivata di S ′(m,n) =

{X ∈ W (m,n) | div(X) = 0}. Se n = 0 queste sono algebre di Lie infinito-

dimensionali, se m = 0 sono superalgebre di Lie finito-dimensionali.

Se poniamo deg(xi) = − deg ∂
∂xi

= 1 per ogni variabile pari xi, e deg(ξj) =

− deg ∂
∂ξj

= 1 per ogni variabile dispari ξj, allora otteniamo una graduazione

di W (m,n) e S(m,n), chiamata graduazione principale, che soddisfa le pro-

prietà (1)− (4). Le proprietà di questa graduazione possono essere usate per

dimostrare la semplicità delle superalgebre di Lie W (m,n) e S(m,n) (Sezioni

4.1.2 e 4.2.2).

In seguito classifichiamo, a meno di isomorfismo, le graduazioni forte-

mente simmetriche di lunghezza 3 e 5 di W (m,n) e S(m,n), e diamo una

loro descrizione. Una Z-graduazione di una superalgebra di Lie g è detta

simmetrica se g = ⊕ki=−kgi per qualche k < ∞. Se, inoltre, la graduazione

è transitiva, generata dalla parte locale e g−i and gi sono spazi vettoriali
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isomorfi, allora la graduazione è chiamata fortemente simmetrica. Diciamo

che una graduazione fortemente simmetrica ha lunghezza tre (risp. cinque)

se k = 1 (risp. k = 2).

Lo studio di tali graduazioni è motivato da [11], dove è stabilita una cor-

rispondenza tra superalgebre di Lie con graduazione fortemente-simmetrica

di lunghezza tre e cinque e sistemi tripli che intervengono nelle teorie di

campo conforme supersimmetrico tridimensionali.

Otteniamo i seguenti risultati:

Teorema 0.3. 1. Se (m,n) 6= (0, 2), (1, 1) allora la superalgebra di Lie

W (m,n) non ha Z-graduazioni fortemente simmetriche di lunghezza

tre.

2. Una lista completa, a meno di isomorfismi, di Z-graduazioni fortemente

simmetriche di lunghezza tre delle superalgebre di Lie W (0, 2) e W (1, 1)

è la seguente:

(a) (|1, 1)

(b) (|0, 1)

(c) (0|1)

Teorema 0.4. Una lista completa, a meno di isomorfismi, di Z−graduazioni

fortemente simmetriche di lunghezza cinque della superalgebra di Lie W (m,n)

è la seguente:

1. (|1, 2) per m = 0 e n = 2

2. (0, ..., 0|1,−1, 0, ..., 0)

Teorema 0.5. 1. Se (m,n) 6= (1, 2) allora la superalgebra di Lie S(m,n)

non ha Z-graduazioni fortemente simmetriche di lunghezza tre.

2. Una lista completa, a meno di isomorfismi, di Z−graduazioni forte-

mente simmetriche di lunghezza tre della superalgebra di Lie S(1, 2) è

la seguente:
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(a) (0|1, 1)

(b) (0|1, 0)

Teorema 0.6. Una lista completa, a meno di isomorfismi, di Z−graduazioni

fortemente simmetriche di lunghezza cinque della superalgebra di Lie S(m,n)

è la seguente:

1. (0, ..., 0|1,−1, 0, ..., 0)

2. (0|2, 1) per m = 1 e n = 2

In questa tesi il campo utilizzato è C.





Chapter 0

Preliminaries on

representations of semisimple

Lie algebras

In this chapter we recall some basic facts about the irreducible representa-

tions of a semisimple Lie algebra.

0.1 Highest and lowest weights

We consider a semisimple Lie algebra g and a Cartan subalgebra h of g.

Moreover, we consider a finite-dimensional representation ρ of g on V or,

equivalently a g−module V . If λ is an element of h∗ we set:

Vλ = {v ∈ V | ρ(h)(v) = λ(h)v ∀h ∈ h}

Definition 0.1. If Vλ 6= 0 we call λ a weight of ρ.

Definition 0.2. An element vλ ∈ Vλ is called a weight vector if vλ 6= 0.

We denote by Lρ the set of all the weights of ρ. It follows that V =

⊕λ∈LρVλ.
If the representation is the adjoint representation of g, then a weight α is

7



8 0. Preliminaries on representations of semisimple Lie algebras

called a root of g. It follows that g = ⊕αgα, with g0 = h, and if α 6= 0 we

have dim(gα) = 1.

Definition 0.3. A nonzero vector eα ∈ gα is said root vector.

Moreover if [gα, Vλ] 6= 0 and λ + α ∈ Lρ then [gα, Vλ] ⊂ Vλ+α , on the

other hand [gα, Vλ] = 0 if λ+ α /∈ Lρ.
We know that the Killing form (a, b) = tr(ad(a)ad(b)) and its restriction to

h are nondegenerate. Therefore if α 6= 0 we have [eα, e−α] = (eα, e−α)hα 6= 0,

where hα ∈ h is the unique vector such that α(h) = (hα, h).

We denote by ∆ the set of nonzero roots of g.

Definition 0.4. A subset Σ of ∆ is called base if:

1. Σ is a basis of h∗

2. every root can be written as
∑
kiαi, with ki all nonnegative or all

nonpositive integers

We call positive (resp. negative) the roots for which all ki are nonnegative

(resp. nonpositive) and we denote the set of positive (resp. negative) roots

by ∆+ (resp. ∆−). Moreover we call simple roots the elements of Σ =

{α1, ..., αs}. We have that ∆ = ∆+ ∪ −∆+.

We denote by h∗0 the linear span of ∆ over Z, it follows that the Killing form

is positively definite on h∗0 and Lρ ⊂ h∗0.

If α ∈ ∆ and λ ∈ Lρ, the elements λ+ sα are weights if −p ≤ s ≤ q where p

and q are non negative integers and p−q = 2(λ, α)/(α, α). We call numerical

marks of λ ∈ h∗ the numbers 2(λ, αi)/(αi, αi). If λ ∈ Lρ, its numerical marks

are integers.

Definition 0.5. We call λ ∈ h∗0 dominant if its numerical marks are nonneg-

ative.

Definition 0.6. A weight Λ ∈ Lρ is said highest weight of ρ if Λ + α /∈ Lρ
for every α ∈ ∆+.
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Definition 0.7. A weight M ∈ Lρ is said lowest weight of ρ if M − α /∈ Lρ
for every α ∈ ∆+.

Definition 0.8. A nonzero vector v ∈ VΛ, where Λ is the highest weight, is

said highest weight vector of ρ.

Definition 0.9. A nonzero vector v ∈ VM , where M is the lowest weight, is

said lowest vector of ρ.

The highest and lowest vectors are unique up to scalars.

It is known that if ρ is an irreducible finite-dimensional representation of a

semisimple algebra g then Λ is dominant and for any dominant linear func-

tion Λ there is a unique finite-dimensional representation with highest weight

Λ, up to isomorphisms.

Every representation ρ of g in V induces a representation ρ∗ of g in V ∗, ρ and

ρ∗ said contragredient, moreover λ ∈ Lρ if and only if −λ ∈ Lρ∗ . It follows

that if Λ is the highest weight of ρ then −Λ is the lowest weight of ρ∗.

If g is simple, then its adjoint representation is irreducible and its highest

weight is the highest root.

Definition 0.10. A Lie algebra g 6= 0 is said reductive if Rad(g) = Z(g).

Theorem 0.1. 1. Let g be a reductive Lie algebra, it follows that g =

[g, g]⊕ Z(g) and [g, g] is either semisimple or 0.

2. If a nonzero Lie algebra g ⊂ gl(V ), where V is finite-dimensional, acts

irreducibly on V , then g is reductive and dim(Z(g)) ≤ 1

Proof. 1) If g is abelian, the thesis is obvious. Let us consider g a non

abelian reductive Lie algebra. Then g′ = g/Z(g) is semisimple, it follows,

by Weyl’s theorem, that adg ∼= g′ acts completely reducibly on g. From

the semisimplicity of g/Z(g), it follows that [g, g]/Z(g) ∼= [g/Z(g), g/Z(g)] =

g/Z(g), i.e. for all x ∈ g there exist y, z ∈ g such that x = [y, z] + c for some

c ∈ Z(g), that is g = [g, g]+Z(g). Since Z(g) is an adg−submodule of g, then
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g = M ⊕Z(g), where M is an ideal of g. We have that [g, g] ⊂ [M,M ] ⊂M ,

so g = [g, g]⊕ Z(g).

2) We denote by S the radical of g. By Lie’s theorem the elements of S have

a common eigenvector in V , hence s.v = λ(s)v ∀s ∈ S. Let x ∈ g, then

[s, x] ∈ S, so s.(x.v) = λ(s)x.v + λ([s, x])v. But g acts irreducibly on V ,

so every element of V is obtained acting by elements of g on V and taking

linear combinations. It follows that every matrix of s ∈ S is triangular, with

respect to a suitable basis, with only λ(s) on the diagonal. But the trace of

the elements of [S, g] is zero, so λ is null on [S, g]. Then s ∈ S acts diagonally

as λ(s) on V . We have that S = Z(g) and dim(S) ≤ 1.

0.2 Dynkin Diagrams

We know that a semisimple Lie algebra can be described by a Dynkin dia-

gram. If we fix a set of simple roots Σ = {α1, ..., αs}, the numbers

< αi, αj >= 2(αi, αj)/(αj, αj) are non positive integers. The Dynkin dia-

gram is composed by s nodes, which represent the simple roots, where the

ith and the jth nodes are linked by < αi, αj >< αj, αi > edges with an arrow

pointing to αi if | < αi, αi > | < | < αj, αj > |, i.e. if αi is shorter than αj.

If ρ is an irreducible representation of g, it can be represented by a Dynkin

diagram endowed with the numerical marks 2(Λ, αi)/(αi, αi) of the highest

weight Λ of ρ, written by the corresponding nodes.



Chapter 1

Lie superalgebras

In this chapter we introduce some basic notions about superalgebras, Lie

superalgebras and some examples.

1.1 Superalgebras

Definition 1.1. (M-grading) Let A be an algebra and M an abelian group,

we define an M-grading on A a decomposition of A as A = ⊕α∈MAα, where

the Aα’s are subspaces of A such that AαAβ ⊂ Aα+β.

We call an algebra A endowed with a grading as in Definition 1.1 M-graded

and an element a ∈ Aα homogeneous of degree α. Moreover a subspace of A

is called M -graded if B = ⊕α∈M(B ∩ Aα). All subalgebras and ideals of an

M−graded algebra are meant to be M−graded.

Definition 1.2. (Homomorphism) A homomorphism φ of two M -graded

algebras A and A′ is a homomorphism which preserves the grading, i.e.

φ(Aα) ⊂ A′ϕ(α), with ϕ an automorphism of M .

We are interested in the case M = Z2 = {0̄, 1̄}.

Definition 1.3. (Superalgebra) A superalgebra is a Z2-graded algebra A =

A0̄ ⊕ A1̄.

11



12 1. Lie superalgebras

We call the elements of A0̄ even and the elements of A1̄ odd. If a ∈ Aα
we will say that α is the parity of a and we will denote it by p(a).

Definition 1.4. (Tensor product) Let A and B be superalgebras. We define

A ⊗ B as the superalgebra with underlying space the tensor product of the

spaces A and B and induced Z2-grading. The product is defined as follows:

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)p(a2)p(b1)a1a2 ⊗ b1b2 ai ∈ A, bi ∈ B

Definition 1.5. (Bracket) On a superalgebra we define the following bracket:

[a, b] = ab− (−1)p(a)p(b)ba (1.1)

We call abelian a superalgebra A in which [a, b] = 0 for all a, b ∈ A.

The definition of associativity is the same as for algebras.

Remark 1. If A is an associative superalgebra, then the following identity

holds:

[a, bc] = [a, b]c+ (−1)p(a)p(b)b[a, c] (1.2)

Indeed, the left hand side is:

[a, bc] = a(bc)− (−1)p(a)p(bc)(bc)a =

a(bc)− (−1)p(a)((p(b)+p(c))(bc)a

The right hand side is:

(ab− (−1)p(a)p(b)ba)c+ (−1)p(a)p(b)b(ac− (−1)p(a)p(c)ca) =

(ab)c− (−1)p(a)p(b)(ba)c+ (−1)p(a)p(b)b(ac)− (−1)p(a)((p(b)+(p(c))b(ca) =

a(bc)− (−1)p(a)((p(b)+p(c))(bc)a

Example 1. If M is an abelian group and V = ⊕α∈MVα an M -graded space,

we can considerEnd(V ) with the inducedM -grading, i.e., End(V ) = ⊕α∈MEndαV
where:

EndαV = {a ∈ EndV | a(Vs) ⊆ Vs+α}

If M = Z2 we have EndV = End0̄V ⊕ End1̄V
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Example 2. If Λ(n) is the Grassmann algebra in the variables ξ1, . . . , ξn, we

define p(ξi) = 1̄, for every i ∈ {1, ..., n}. Λ(n) with this grading is said the

Grassmann superalgebra.

1.2 Lie superalgebras

Definition 1.6. (Lie superalgebra) A superalgebra g = g0̄⊕ g1̄ with bracket

[, ] is called a Lie superalgebra if the following conditions hold:

[a, b] = −(−1)p(a)p(b)[b, a] anticommutativity

[a, [b, c]] = [[a, b], c] + (−1)p(a)p(b)[b, [a, c]] Jacobi identity

Remark 2. g0̄ is a Lie algebra. Besides, g1̄ is a g0̄-module with the action given

by the bracket and the following map is a homomorphism of g0̄-modules:

ϕ : S2g1̄ −→ g0̄

(g1, g2) 7−→ [g1, g2]

On the other side, a Lie superalgebra is completely determined by the Lie

algebra g0̄, the g0̄-module g1̄ and a map ϕ such that for a, b, c ∈ g1̄:

ϕ(a, b)c+ ϕ(b, c)a+ ϕ(c, a)b = 0

Example 3. Bracket (1.1) defines on an associative superalgebra A a Lie su-

peralgebra structure that we will indicate by AL. Indeed anticommutativity

and the Jacobi identity follow from the definition of the bracket and associa-

tivity: for a, b ∈ A,

[a, b] =ab− (−1)p(a)p(b)ba = −(−1)p(a)p(b)(−(−1)p(a)p(b)ab+ ba) =

− (−1)p(a)p(b)[b, a]
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Moreover:

[a, [b, c]] = [a, bc− (−1)p(b)p(c)cb] =

a(bc)− (−1)p(b)p(c)a(cb)− (−1)(p(b)+p(c))p(a)(bc)a+

(−1)(p(b)+p(c))p(a)(−1)p(b)p(c)(cb)a =

a(bc)− (−1)p(b)p(c)a(cb)− (−1)(p(b)+p(c))p(a)(bc)a+

(−1)p(b)p(a)+p(c)(p(a)+p(b))(cb)a

and:

[[a, b], c] + (−1)p(a)p(b)[b, [a, c]] =

[ab− (−1)p(a)p(b)ba, c] + (−1)p(a)p(b)[b, ac− (−1)p(a)p(c)ca] =

(ab)c− (−1)p(a)p(b)(ba)c− (−1)p(c)(p(a)+p(b))c(ab)+

(−1)p(a)p(b)(−1)p(c)(p(a)+p(b))c(ba)+

(−1)p(a)p(b)b(ac)− (−1)p(a)p(b)(−1)p(a)p(c)b(ca)+

− (−1)p(a)p(b)(−1)p(b)(p(a)+p(c))(ac)b+

(−1)p(a)p(b)(−1)p(a)p(c)(−1)p(b)(p(a)+p(c))(ca)b =

a(bc)− (−1)p(b)p(c)a(cb)− (−1)(p(b)+p(c))p(a)(bc)a+

(−1)p(b)p(a)+p(c)(p(a)+p(b))(cb)a

1.3 Derivations

Definition 1.7. Let A be a superalgebra. We call D ∈ EndsA a derivation

of A of degree s, where s ∈ Z2, if:

D(ab) = D(a)b+ (−1)sp(a)aD(b) (Leibniz rule)

We call DersA ⊂ EndsA the space of derivations of degree s on A and

DerA = Der0̄A⊕Der1̄A. Notice that DerA is not an associative subalgebra

of EndA, but it is a Lie subalgebra of (EndA)L.

Remark 3. Let us consider a Lie superalgebra g. Then the map:

ada(b) = [a, b] for a, b ∈ g
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is a derivation, by the Jacobi identity. Derivations of this form are said inner

derivations.

Remark 4. Inner derivations are an ideal of g. Indeed [D, ada] = adD(a) ∀D ∈
Derg,∀a ∈ g.

Example 4. Let us consider the Grassmann superalgebra Λ(n) = Λ0̄(n) ⊕
Λ1̄(n). Our purpose is to describe DerΛ(n). We see Λ(n) as the quotient

Λ̃(n)/I where Λ̃(n) is the free associative superalgebra generated by ξ1, ..., ξn

and I is the ideal generated by the relations ξiξj + ξjξi. The grading is given

by setting p(ξi) = 1̄, ∀i = 1, ..., n. If P,Q ∈ Λ̃(n) are homogeneous elements,

then [P,Q] = PQ− (−1)p(P )p(Q)QP ∈ I. Therefore let D be a derivation of

Λ̃(n) of degree s. We have:

D(ξiξj + ξjξi) = D(ξi)ξj + (−1)sξiD(ξj) +D(ξj)ξi + (−1)sξjD(ξi) =

(D(ξi)ξj + (−1)sξjD(ξi)) + (D(ξj)ξi + (−1)sξiD(ξj)) ∈ I

So D(I) ⊂ I. Notice that, by the Leibniz rule, D(1) = 0. Besides, by the

Leibniz rule, a derivation D of Λ̃(n) is completely determined by the values

D(ξi), therefore, if we choose P1, ..., Pn ∈ Λ(n), there is only one derivation

D of Λ(n) such that D(ξi) = Pi. Let us consider the relation ∂
∂ξi

(ξj) = δij,

this defines a derivation on Λ(n). So we can now write a derivation D ∈ Λ(n)

such that D(ξi) = Pi in the following way:

D =
n∑
i=1

Pi
∂

∂ξi

1.4 The superalgebra l(V ), supertrace and bi-

linear forms

We consider a Z2-graded space V = V0̄⊕V1̄. We already noticed that EndV ,

with the induced Z2-grading, is an associative superalgebra and (EndV )L is

a Lie superalgebra. We shall denote (EndV )L by l(V ) = l(V )0̄ ⊕ l(V )1̄ or

l(m,n), if m = dim(V0̄) and n = dim(V1̄).
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Let us consider a basis {e1, ..., em, em+1, ..., em+n} of V where {e1, ..., em} is

a basis of V0̄ and {em+1, ..., em+n} a basis of V1̄. We call such a basis homo-

geneous. With respect to this basis every element of l(V ) has matrix of the

form: (
α β

γ δ

)

with α a m × m matrix, β a m × n matrix, γ a n × m matrix, δ a n × n

matrix. An element of l(V )0̄ has a matrix of the form
(
α 0
0 δ

)
, and an element

of l(V )1̄ has a matrix of the form
(

0 β
γ 0

)
.

Definition 1.8. (Supertrace) Let us consider an element A =
(
α β
γ δ

)
of

l(m,n). The supertrace of A is:

str(A) = trα− trδ

Since the supertrace does not depend on the choice of the homogeneous

basis, we can consider the supertrace of A in any homogeneous basis.

Let us now introduce some definitions about bilinear forms. In the following

V = V0̄ ⊕ V1̄ will be a Z2-graded space and f a bilinear form on V .

Definition 1.9. A bilinear form f on V is said consistent if f(a, b) = 0 ∀a ∈
V0̄,∀b ∈ V1̄.

Definition 1.10. A bilinear form f on V is said supersymmetric if f(a, b) =

(−1)p(a)p(b)f(b, a).

Definition 1.11. A bilinear form f on a Lie superalgebra g is said invariant

if f([a, b], c) = f(a, [b, c]).

Proposition 1.1. The bilinear form str(ab) is consistent, supersymmetric

and invariant on l(V ). Moreover:

str([a, b]) = 0 ∀a, b ∈ l(V ).
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Proof. Let us set str(ab) = (a, b). We fix a homogeneous basis of l(V ). We

start showing consistency: we consider a =
(
α 0
0 δ

)
∈ l(V )0̄ and b =

(
0 β
γ 0

)
∈

l(V )1̄. Then ab =
(

0 αβ
δγ 0

)
so (a, b) = 0.

We now prove supersymmetry. Let us consider a =
(
α 0
0 δ

)
and b =

(
α̃ 0
0 δ̃

)
,

ab =
(
αα̃ 0
0 δδ̃

)
, then (a, b) = tr(αα̃)−tr(δδ̃) = tr(α̃α)−tr(δ̃δ). If a ∈ l(V )0̄ and

b ∈ l(V )1̄ supersymmetry follows from consistency. Finally we analyze the

case a, b ∈ l(V )1̄, i.e. a =
(

0 α
β 0

)
and b =

(
0 γ
δ 0

)
with respect to a homogeneous

basis. We have (a, b) = tr(αδ) − tr(βγ) and (b, a) = tr(γβ) − tr(δα), then

(a, b) = −(b, a). The property str([a, b]) = 0 ∀a, b ∈ l(V ) is equivalent to

supersymmetry.

It remains to show invariance, using (1.2) we get:

0 = str([b, ac]) = ([b, a], c) + (−1)p(a)p(b)(a, [b, c])

therefore

([b, a], c) = −(−1)p(a)p(b)(a, [b, c])

We conclude −(−1)p(a)p(b)([b, a], c) = ([a, b], c) = (a, [b, c])

1.5 Classical Lie superalgebras

Definition 1.12. (Classical Lie superalgebra) Let g = g0̄ ⊕ g1̄ be a finite

dimensional Lie superalgebra, g is said classical if it is simple and g1̄ is a

completely reducible g0̄-module.

1.5.1 A(m,n)

We define:

sl(m,n) = {a ∈ l(m,n) | str(a) = 0}

This is an ideal of l(m,n) of codimension 1, since ∀a, b ∈ l(m,n), str[a, b] = 0.

If m = n the set of elements of the form λI2n is an ideal of sl(m,n).
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We set:

A(m,n) = sl(m+ 1, n+ 1) if m 6= n m, n ≥ 0

A(n,n) = sl(n+ 1, n+ 1)/ < I2n+2 >

1.5.2 B(m,n), D(m,n), C(n)

Let us consider a non degenerate, consistent, supersymmetric bilinear form

F on V , such that V0̄ and V1̄ are orthogonal, FV0̄×V0̄
is symmetric and FV1̄×V1̄

is skew-symmetric. Then n must be even, say n = 2r.

We define the orthogonal-symplectic superalgebra osp(m,n) = osp(m,n)0̄ ⊕
osp(m,n)1̄ in the following way:

osp(m,n)s =
{
a ∈ l(m,n)s | F (a(x), y) = −(−1)sp(x)F (x, a(y))

}
, s ∈ Z2

Let us consider the case m = 2l + 1. With respect to a conveniently chosen

basis, the matrix of F becomes:

0 Il 0

Il 0 0

0 0 1

0 Ir

−Ir 0


hence an element of osp(m,n) becomes of the form:

a b u x x1

c −aT v y y1

−vT −uT 0 z z1

yT1 xT1 zT1 d e

−yT −xT −zT f −dT


(*)

where a is a matrix of size l× l, b and c are skew-symmetric of size l× l, d is

r × r, the matrices e and f are symmetric of size r × r, u and v are column

vectors of length l, x and y are of size l× r, finally z is of a column vector of
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length r.

Similarly, in the case m = 2l, if we choose a basis conveniently, the matrix

of F becomes: 
0 Il

Il 0

0 Ir

−Ir 0


then a matrix of osp(m,n) is of the same form as (*) up to deleting the

central column and row.

We define:

B(m,n) = osp(2m+ 1, 2n) m ≥ 0 n > 0

D(m,n) = osp(2m, 2n) m ≥ 2 n > 0

C(n) = osp(2, 2n− 2) n ≥ 2

1.5.3 The superalgebras P(n), n ≥ 2 and Q(n), n ≥ 2

P(n) is a subalgebra of sl(n+ 1, n+ 1), whose elements are of the form:[
a b

c −aT

]
with tr(a) = 0, b symmetric and c skew-symmetric.

Before defining the elements of Q(n), we consider the subalgebra Q̃(n) of

sl(n+ 1, n+ 1) consisting of matrices of the form:[
a b

b a

]
with tr(b) = 0. The center of Q̃(n) is C =< I2n+2 > and we set Q(n) =

Q̃(n)/C.
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Chapter 2

Z-gradings

Let us introduce some definitions about Z-gradings.

Definition 2.1. (Z-graded Lie superalgebra) A Lie superalgebra g = g0̄⊕g1̄

is said Z-graded if:

g = ⊕i∈Zgi
[gi, gj] ⊂ gi+j ∀i, j ∈ Z

Definition 2.2. If g = ⊕i∈Zgi is a Z-graded Lie superalgebra s.t. gi = 0

∀i < −d for some d ∈ N, i.e, g = ⊕i≥−dgi, we will say that d is the depth of

the grading.

Definition 2.3. (Consistent Z-grading) A Z-grading is said consistent if:

g0̄ = ⊕g2i g1̄ = ⊕g2i+1

From Definition 2.1 it follows that g0 is a subalgebra of g and [g0, gi] ⊂
gi,∀i ∈ Z, so the gi’s are g0-modules with respect to the adjoint representa-

tion restricted to g0.

Example 5. Let us consider a Z2-graded space V = V0̄ ⊕ V1̄ as Z−graded,

i.e V = V0 ⊕ V1, then l(V ) is endowed with a Z−grading, compatible with

the Z2−grading, and l(V ) = l−1⊕ l(V )0̄⊕ l1, where the elements of l−1 have

matrix of the form
(

0 0
γ 0

)
and the elements of l1 have matrix of the form(

0 β
0 0

)
.

21
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Example 6. If we choose a homogeneus basis of l(m,n), then the elements of

sl(m,n) = sl(m,n)−1⊕sl(m,n)0̄⊕sl(m,n)1, seen as Z-graded, are of the fol-

lowing form: the elements of sl(m,n)0̄ are matrices
(
α 0
0 δ

)
with tr(α) = tr(δ),

the elements of sl(m,n)1 are matrices
(

0 β
0 0

)
and the elements of sl(m,n)−1

are
(

0 0
γ 0

)
, where α is a m × m matrix, β is a m × n matrix, γ is a n × m

matrix, δ is a n× n matrix.

Example 7. The Lie superalgebra osp(m,n) can be realized also in a different

way. We consider a space V0̄ of dimension m endowed with a nondegenerate

symmetric bilinear form (, )0 and V1̄ a space of dimension n = 2r endowed

with a nondegenerate skew-symmetric bilinear form (, )1. Therefore we de-

fine:

osp(m,n)0̄ = Λ2V0̄ ⊕ S2V1̄ and osp(m,n)1̄ = V0̄ ⊗ V1̄

Moreover we set:

[a ∧ b, c] = (a, c)0b− (b, c)0a with a ∧ b ∈ Λ2V0̄, c ∈ V0̄

[a ◦ b, c] = (a, c)1b+ (b, c)1a with a ◦ b ∈ S2V1̄, c ∈ V1̄

From these definitions, we obtain that the brackets on Λ2V0̄ and S2V1̄ are

defined by:

[a ∧ b, c ∧ d] = [a ∧ b, c]d+ c[a ∧ b, d]

[a ◦ b, c ◦ d] = [a ◦ b, c]d+ c[a ◦ b, d]

Moreover, if we consider a⊗ b, c⊗ d ∈ V0̄ ⊗ V1̄ we define:

[a⊗ c, b⊗ d] = (a, b)0c ◦ d+ (c, d)1a ∧ b

We can now consider the following Z-grading on osp(m,n):

osp(m,n) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

In order to do this, we consider V1̄ as direct sum of isotropic subspaces V ′1̄⊕V
′′

1̄ ,

hence:

osp(m,n) = S2V ′1̄ ⊕ (V0̄ ⊗ V ′1̄)⊕ (V ′1̄ ⊗ V
′′

1̄ ⊕ Λ2V0̄)⊕ (V0̄ ⊗ V ′′1̄ )⊕ S2V ′′1̄
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Definition 2.4. (Irreducible Lie superalgebra) A Z-graded Lie superalgebra

g = ⊕i∈Zgi is said irreducible if the representation of g0 on g−1 is irreducible.

Definition 2.5. (Transitive Lie superalgebra) A Z-graded Lie superalgebra

g = ⊕i∈Zgi is said transitive if, given a ∈ gi, i ≥ 0, [a, g−1] = 0 implies a = 0.

Definition 2.6. (Bitransitive Lie superalgebra) A Z-graded Lie superalgebra

g = ⊕i∈Zgi is said bitransitive if it is transitive and in addition, given a ∈
gi, i ≤ 0, [a, g1] = 0 implies a = 0.

Theorem 2.1. Let g be a simple Z-graded Lie superalgebra which is generated

by g−1 ⊕ g0 ⊕ g1. Then g is bitransitive.

Proof. Let x ∈ gi, i ≥ 0 such that [x, g−1] = 0, we show that x = 0. Indeed

let us consider:

I = ⊕+∞
k,l=0(adg1)k(adg0)lx

I is an ideal of g, indeed let g ∈ g and h ∈ I; since g−1⊕ g0⊕ g1 generates g,

then g =
∑

[gi, gj] with gi, gj ∈ g−1⊕g0⊕g1, but every term of this sum is such

that [[gi, gj], h] ∈ I by definition of I. If x 6= 0 then I is nontrivial. But also

I 6= g since no elements of gk, k < i lie in I, due to its definition. This leads to

a contradiction, so x = 0. Similarly if we choose J = ⊕+∞
k,l=0(adg−1)k(adg0)lx

with x ∈ gi, i ≤ 0 we can show that bitransitivity holds.

2.1 Local Lie superalgebras

Definition 2.7. (Local Lie superalgebra) Let ĝ = g−1 ⊕ g0 ⊕ g1 be a Z2-

graded space which is the direct sum of the Z2-graded spaces gi, i = −1, 0, 1.

If ∀i, j such that |i+ j| ≤ 1 there is a bilinear operation:

gi × gj −→ gi+j

(x, y) 7−→ [x, y]
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that is anticommutative ad satisfies the Jacobi identity, provided that the

commutators in the identity are defined, then ĝ is said a local Lie superalge-

bra.

Let g be a Z-graded Lie superalgebra, then g−1 ⊕ g0 ⊕ g1 is a local Lie

superalgebra which is called the local part of g. Transitivity and bitransitivity

for local parts can be defined as for usual Lie superalgebras. In the following

we consider Z-graded Lie superalgebras generated by their local parts.

Definition 2.8. (Maximal Lie superalgebra) Let g be a Z-graded Lie super-

algebra and let ĝ be its local part, g is called maximal if, given any other

Z-graded Lie superalgebra g′, an isomorphism of the local parts ĝ and ĝ′ can

be extended to a surjective omomorphism of g onto g′.

Definition 2.9. (Minimal Lie superalgebra) Let g be a Z-graded Lie super-

algebra and let ĝ be its local part. Then g is called minimal if, given any

other Z-graded Lie superalgebra g′, an isomorphism of the local parts ĝ and

ĝ′ can be extended to a surjective omomorphism of g′ onto g.

Theorem 2.2. Let ĝ = g−1 ⊕ g0 ⊕ g1 be a local Lie superalgebra. Then

there exist a maximal Z-graded Lie superalgebra and a minimal Z-graded Lie

superalgebra whose local parts are isomorphic to ĝ.

Proof. Let us start from considering the free Lie superalgebra F ĝ that is

freely generated by ĝ and let Ĩ be the ideal of F ĝ generated by the relations

as [x, y] = z in ĝ. We set g̃ = F ĝ/Ĩ. Let us denote by π the natural pro-

jection of F ĝ onto the quotient space g̃ and let g̃−1 = π(g−1), g̃0 = π(g0)

and g̃1 = π(g1). Let g̃− be the subalgebra generated by g̃−1 and g̃+ the

subalgebra generated by g̃1. It follows that g̃− ⊕ g̃0 ⊕ g̃+ = g̃, its local part

is isomorphic to ĝ and g̃ = ⊕ig̃i, where g̃i = g̃i1 and g̃−i = g̃i−1, is a minimal

Lie superalgebra.

In order to construct a maximal Lie superalgebra whose local part is isomor-

phic to ĝ, we consider the set:

L2 = {a ∈ F ĝ | [a, g−1] ⊂ g1}
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In the same way:

L−2 = {a ∈ F ĝ | [a, g1] ⊂ g−1}

Recursively, we define, if i > 2, Li = {a ∈ F ĝ | [a, g−1] ⊂ Li−1} for i > 2

and Li = {a ∈ F ĝ | [a, g1] ⊂ Li+1} for i < −2. It follows that (⊕i≤−2Li)⊕
ĝ⊕ (⊕i≥2Li) is a maximal Lie superalgebra.

Theorem 2.3. i) Let g be a bitransitive Z-graded Lie superalgebra, then g

is minimal.

ii) Let g be a minimal Z-graded Lie superalgebra. If its local part is bitran-

sitive then g is bitransitive.

iii) Two bitransitive Z-graded Lie superalgebras are isomorphic if and only

if their local parts are isomorphic.

Proof. i)

Let g = ⊕i∈Zgi be a bitransitive Z-graded Lie superalgebra. We suppose

that g is not minimal and that h is a minimal superalgebra with local part

isomorphic to the local part of g. Then there exits a surjective morphism:

ϕ : g −→ h

which is the extension of the isomoprhism between the local parts. Moreover

h ∼= g/Ker(ϕ), where clearly Ker(ϕ) 6= 0, since g is not minimal, is an

ideal of g. We have Ker(ϕ) ∩ g−1 ⊕ g0 ⊕ g1 = 0 because ϕ|g−1⊕g0⊕g1 is an

isomorphism. Then if g is not minimal there exists an ideal J 6= 0 of g such

that J ∩ (g−1⊕ g0⊕ g1) = 0. Let k ∈ Z be the smallest integer in module for

which (J ∩ gk) 6= 0. Let us suppose for the sake of simplicity k > 0, then:

[J ∩ gk, g−1] ⊂ gk−1 ∩ J = 0

From the minimality of k it follows [J ∩ gk, g−1] = 0, and from transitivity

J ∩ gk = 0 which leads to a contradiction.

ii) First we prove transitivity. Let us consider z ∈ gk, k ≥ 2 such that
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[z, g−1] = 0. Since g is minimal, we know that it is generated by its local

part. As in the proof of Theorem 2.1, I = ⊕+∞
j,l=0(adg1)j(adg0)lz is an ideal

of g which is contained in ⊕i≥2gi because k ≥ 2. If we suppose z 6= 0, then

I 6= 0, and this leads to a contradiction because g/I has the same local

part of g and an isomorphism of their local parts can be extended, using

the projection to the quotient, to an epimorphism from g onto g/I, but not

the viceversa. This contradicts the minimality of g. The same argument

proves that if z ∈ gk, k ≤ −2 is such that [z, g1] = 0 and we consider

I = ⊕+∞
j,l=0(adg−1)j(adg0)lz, the we obtain z = 0.

iii) follows from i).

Theorem 2.4. Let g = ⊕igi be a Z-graded Lie superalgebra generated by its

local part. Suppose that a consistent supersymmetric invariant bilinear form

(, ) is defined on g−1⊕g0⊕g1 such that (gi, gj) = 0 if i+j 6= 0. Then (, ) can

be uniquely extended to a consistent supersymmetric invariant bilinear form

on g.

Proof. We start from setting (gi, gj) = 0 if i + j 6= 0. We extend (, ) by in-

duction when x ∈ gk and y ∈ g−k in order to keep the property of invariance.

Since g is generated by g−1 ⊕ g0 ⊕ g1, we can assume, up to linear combina-

tions, that x = [xk−s, xs], with xi ∈ gi and y = [ys−k, y−s] with y−i ∈ g−i. In

order to maintain invariance, we define:

(x, y) = ([[xk−s, xs], ys−k], y−s)

or

(x, y) = −(−1)p(xk−s)p(xs)(xs, [xk−s, [ys−k, y−s]])

let us show that this is a good definition. From hypothesis of induction, the
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extension is well defined if 0 < s < k, so:

([[xk−s, xs], ys−k], y−s) =

− (−1)p(xk−s)p(xs)([xs, [xk−s, ys−k]], y−s) + ([xk−s, [xs, ys−k]], y−s) =

(−1)p(xk−s)p(xs)(−1)p(xs)(p(xk−s)+p(ys−k))([xk−s, ys−k], [xs, y−s])+

+ (−1)p(xk−s)(p(xs)+p(ys−k))+p(y−s)p(xk−s)([xs, ys−k], [y−s, xk−s]) =

(−1)p(xs)p(ys−k)([xk−s, ys−k], [xs, y−s])+

+ (−1)p(xk−s)(p(xs)+p(ys−k))+p(y−s)p(xk−s)([xs, ys−k], [y−s, xk−s]) =

− (−1)p(xs)p(ys−k)(−1)p(xs)p(y−s)([[xk−s, ys−k], y−s], xs)+

− (−1)p(xk−s)(p(xs)+p(ys−k))+p(y−s)p(xk−s)+p(ys−k)(p(y−s)+p(xk−s))(xs, [[y−s, xk−s], ys−k]) =

− (−1)p(xs)p(ys−k)+p(xs)p(y−s)([[xk−s, ys−k], y−s], xs)+

− (−1)p(xk−s)p(xs)+p(y−s)p(xk−s)+p(ys−k)p(y−s)(xs, [[y−s, xk−s], ys−k]) =

− (−1)p(xs)p(ys−k)+p(xs)p(y−s)+p(xs)(p(y−s)+p(xk−s)+p(ys−k))(xs, [[xk−s, ys−k], y−s])+

− (−1)p(xk−s)p(xs)+p(y−s)p(xk−s)+p(ys−k)p(y−s)(xs, [[y−s, xk−s], ys−k]) =

− (−1)p(xs)p(xk−s)(xs, [[xk−s, ys−k], y−s])+

− (−1)p(xk−s)p(xs)+p(y−s)p(xk−s)+p(ys−k)p(y−s)(xs, [[y−s, xk−s], ys−k]) =

− (−1)p(xk−s)p(xs)[(xs, [[xk−s, ys−k], y−s])+

+ (−1)p(y−s)p(xk−s)+p(ys−k)p(y−s)(xs, [[y−s, xk−s], ys−k])] =

− (−1)p(xk−s)p(xs)[(xs, [[xk−s, ys−k], y−s])+

+ (−1)p(y−s)p(xk−s)+p(ys−k)p(y−s)+p(ys−k)(p(y−s)+p(xk−s))+p(y−s)p(xk−s)

· (xs, [ys−k, [xk−s, y−s]])] =

− (−1)p(xk−s)p(xs)[(xs, [[xk−s, ys−k], y−s])+

+ (−1)p(xk−s)p(ys−k)(xs, [ys−k, [xk−s, y−s]])] =

− (−1)p(xk−s)p(xs)(xs, [xk−s, [ys−k, y−s]])

Theorem 2.5. Let g be a simple superalgebra, then an invariant form on g

is either non degenerate or identically zero, and any two invariant forms on

g are proportional.
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Proof. If (, ) is an invariant form on g, then its radical is an ideal of g, so,

due to the simplicity of g, the radical is the whole g or 0. In the first case

(, ) is identically zero, in the second it is non degenerate. We consider now

two invariant forms α and β on g. We define, ∀x ∈ g, φx, ψx ∈ g∗ such that

∀y ∈ g:

φx(y) = α(x, y) and ψx(y) = β(x, y).

Let us suppose that α is non degenerate, then there exists a unique morphism

F of g-modules such that:

F : g∗ −→ g∗

φx −→ ψx

Indeed, since α is non degenerate, F is uniquely determined because there

exists a unique isomorphism

γ : g −→ g∗

x −→ φx.

It remains to show that F is indeed a morphism of g-modules. We first show

that z.φx = φ[z,x], ∀z ∈ g. Indeed, we have:

z.φx(y) = −(−1)p(z)p(x)φx(z.y) =

−(−1)p(z)p(x)φx([z, y]) =

−(−1)p(z)p(x)α(x, [z, y]) = (invariance)

−(−1)p(z)p(x)α([x, z], y) =

α([z, x], y) =

φ[z,x](y)

Similarly, we have: z.ψx = ψ[z,x], ∀z ∈ g. Then F is a a morphism of
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g-modules, indeed:

F (z.φx) = F (φ[z,x]) =

ψ[z,x] =

z.ψx =

z.F (φx)

Finally g is simple, so g is an irreducible g-module, therefore g∗ is irreducible

and, by Schur’s Lemma, F = λI. Then ψx = λφx, i.e. for every y ∈ g

β(x, y) = λα(x, y).

2.2 Z-graded Lie superalgebras of depth 1

Theorem 2.6. Let g = ⊕i≥−1gi be a Z-graded transitive irreducible Lie su-

peralgebra. If (Z(g0))0̄ is nontrivial, then it is one dimensional, (Z(g0))0̄ =<

z >, and [z, g] = sg,∀g ∈ gs.

Proof. Let 0 6= z ∈ (Z(g0))0̄. We define:

F : g−1 → g−1

g 7→ [z, g]

Then F is g0-invariant, indeed if g0 ∈ g0:

[g0, F (g)] = [g0, [z, g]] =

[[g0, z]︸ ︷︷ ︸
=0,z∈C

, g] + [z, [g0, g]] = F ([g0, g])

By Schur’s Lemma, since g−1 is an irreducible g0-module, F = λId. Since

z 6= 0, we can choose it such that λ = −1. It follows that (Z(g0))0̄ = < z >,

because if y ∈ (Z(g0))0̄ then ∀g ∈ g−1:

[z, g] = −g and [y, g] = αg

⇓

[αz + y, g] = 0.
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From transitivity y = −αz. Let us use induction on k > −1. Suppose

[z, gk] = kgk,∀gk ∈ gk, x ∈ g−1 and let gk+1 ∈ gk+1 then:

[z, [x, gk+1]] =

[[z, x], gk+1] + [x, [z, gk+1]] =

−[x, gk+1] + [x, [z, gk+1]]

By the inductive hypothesis [z, [x, gk+1]] = k[x, gk+1], so:

[x, [z, gk+1]− (k + 1)gk+1] = 0

We conclude using transitivity.

Theorem 2.7. Let g = ⊕i≥−1gi be a Z-graded transitive irreducible Lie su-

peralgebra. If the representation of g0 on g1 is faithful, then g is bitransitive.

Proof. We set V = {a ∈ g−1 | [a, g1] = 0}. V is a g0-submodule of g−1,

indeed if g0 ∈ g0, a ∈ V :

[[g0, a], g1] = (Jacoby identity)

[g0, [a, g1]]− (−1)p(g0)p(a) [a, [g0, g1]]︸ ︷︷ ︸
=0,a∈V

=

[g0, [a, g1]] = 0

We know that the representation of g0 on g1 is faithful, then g1 6= 0 and, by

transitivity, [g−1, g1] 6= 0. It follows V 6= g−1, then by irreducibility V = 0.

For the elements of g0 the thesis is obvious from hypothesis.

Theorem 2.8. If a Lie superalgebra g = g0̄ ⊕ g1̄ is simple and g1̄ 6= 0, then

these conditions are necessary: the representation of g0̄ on g1̄ is faithful and

[g1̄, g1̄] = g0̄. Moreover if these two conditions hold and, in addition, the

representation of g0̄ on g1̄ is irreducible, then g is simple.

Proof. Let us consider V = {g ∈ g0̄ | [g, g1̄] = 0}. V is the kernel of the

adjoint representation of g0̄ on g1̄, so V is an ideal of g0̄, moreover, it is clear
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from its definition that it is an ideal of g. Since g is simple and g1̄ 6= 0 then

V = 0.

Let us now show that [g1̄, g1̄] = g0̄. Indeed, let us set I = [g1̄, g1̄]⊕ g1̄. Then

I is an ideal of g, indeed if g1̄ ∈ g1̄:

[g1̄, I] =

[g1̄, [g1̄, g1̄]]︸ ︷︷ ︸
∈g1̄⊂I

+ [g1̄, g1̄]︸ ︷︷ ︸
∈I

and g0̄ ∈ g0̄:

[g0̄, I] = [g0̄, [g1̄, g1̄]] + [g0̄, g1̄]︸ ︷︷ ︸
∈I

⊆

[[g0̄, g1̄], g1̄] + [g1̄, [g0̄, g1̄]] + [g0̄, g1̄] ⊂ I

By simplicity of g, I = g, i.e. [g1̄, g1̄] = g0̄.

Let us now suppose that the representation of g0̄ on g1̄ is faithful and [g1̄, g1̄] =

g0̄ and that, in addition, the representation of g0̄ on g1̄ is irreducible, we then

shall prove that g is simple.

Let 0 6= J = J0̄ ⊕ J1̄ be an ideal of g. Then [J1̄, g0̄] ⊂ J1̄. It follows that

J1̄ is a g0̄-submodule of g1̄, hence, by irreducibility, we have either J1̄ = 0 or

J1̄ = g1̄.

The first case cannot hold, since it would follow [J0̄, g1̄] ⊂ J1̄ = 0, but g1̄ is

a faithful g0̄-module. Then J1̄ = g1̄, hence g0̄ = [g1̄, g1̄] ⊂ J . J = g.

Theorem 2.9. If a Z-graded Lie superalgebra g = ⊕i≥−1gi is simple and

g−1 6= 0, then these conditions are necessary: g is transitive and irreducible,

[g−1, g1] = g0. Moreover if these conditions hold and in addition [g0, g1] = g1

and gi = gi1,∀i > 0, then g is simple.

Proof. Let us prove the necessary conditions. Suppose that V is a Z2-graded

subspace of g such that: [g−1, V ] ⊂ V and [g0, V ] ⊂ V . We set g+ =

⊕i≥1gi and V n = [g+, [g+, ...[g+, V ]...]], ∀n ≥ 0, where n is the number of
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the g+ factors. Then, clearly by its definition, Ṽ =
∑

n≥0 V
n is an ideal of g

containing V . Now take:

V = {a ∈ ⊕i≥0gi | [a, g−1] = 0} .

From the previous observation, in this case Ṽ is an ideal of g contained

in ⊕i≥0gi, so by simplicity of g, Ṽ = 0, i.e., g is transitive. Moreover, if

we choose V as a non zero g0-submodule of g−1, it follows that Ṽ 6= 0 and

Ṽ ⊂ V⊕(⊕i≥0gi). By simplicity of g it follows that V = g−1 and irreducibility

is proved. It remains to show that [g−1, g1] = g0. Let us consider:

I = g−1 ⊕ [g−1, g1]⊕ g+

We prove that I is an ideal of g, from which it follows that [g−1, g1] = g0.

Indeed, if gi ∈ gi and x = a+b+c ∈ I, with a ∈ g−1, b ∈ [g−1, g1], c ∈ g+:

[gi, x] = [gi, a]︸ ︷︷ ︸
∈gi−1

+ [gi, b]︸ ︷︷ ︸
∈gi

+ [gi, c]︸ ︷︷ ︸
∈⊕k≥1gi+k

Note that if i ≥ 2 [gi, x] ∈ I; if i = 1, [gi, x] ∈ I because [gi, a] ∈ [g−1, g1]; if

i = 0 [gi, b] ∈ [g−1, g1] since [g−1, g1] is an ideal; finally if i = −1, [gi, x] ∈ I
since [g−1, g1] ⊂ I.

Let us now show that if g is transitive and irreducible, [g−1, g1] = g0, and

if in addition [g0, g1] = g1 and gi = gi1,∀i > 0, then g is simple. Let I 6= 0

be a graded ideal of g, I = ⊕i≥−1Ii. It follows that [g0, I−1] ⊂ I−1, hence,

by irreducibility, either I−1 = 0 or I−1 = g−1. If I−1 = 0 then [g−1, I0] = 0,

hence, by transitivity, I0 = 0. Similarly, it follows that Ik = 0, k ≥ 1. But

this is impossible since I 6= 0.

Therefore g−1 ⊂ I, then g0 = [g−1, g1] ⊂ I. Since g0 ∈ I, [g0, g1] = g1 ⊂ I.

Finally gi = gi1, ∀i > 0, then I = g.

Theorem 2.10. Let g = ⊕i≥−1gi be a Z-graded Lie superalgebra such that

g−1 6= 0. Suppose that the grading is consistent. If g is transitive and irre-

ducible, [g−1, g1] = g0 and in addition the adjoint representation of g0 on g1

is faithful and gi = gi1,∀i > 0, then g is simple.
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Proof. Let I 6= 0 be a graded ideal of g, I = ⊕i≥−1Ii. It follows that

[g0, I−1] ⊂ I−1, hence, by irreducibility, either I−1 = 0 or I−1 = g−1. If

I−1 = 0 then [g−1, I0] = 0, hence, by transitivity, I0 = 0. Similarly, it follows

that Ik = 0, k ≥ 1. But this is impossible since I 6= 0. Therefore g−1 ⊂ I,

then g0 = [g−1, g1] ⊂ I. Since g0 ∈ I, [g0, g1] ⊂ I. It remains to show g1 ⊂ I,

then I = g and g is simple since it does not contain non trivial ideals. Since

[g0, g1] ⊂ I, it is sufficient to prove that [g0, g1] = g1. Since the representation

of g0 on g−1 is irreducible and faithful, it follows that g0 is a reductive Lie

algebra, in particular g0 = [g0, g0] ⊕ Z(g0) where [g0, g0] is semisimple and

Z(g0) is the center, with dim(Z(g0)) ≤ 1. From Theorem 2.6 it follows that

if Z(g0) 6= 0, then Z(g0) =< c > with [c, x] = x ∀x ∈ g1, but c ∈ g0 ⊂ I,

so x ∈ I.

If Z(g0) = 0, we know that g0 is semisimple, so g1 is a completely reducible

g0-module, that is g1 = V1 ⊕ ...⊕ Vk, with Vi irreducible g0-modules.

It follows [g0, g1] = ⊕i[g0, Vi] = g1. Indeed [g0, Vi] = Vi, because Vi for every

i is an irreducible g0-module, and due to the fact that the representation on

g1 is faithful, it is non trivial. It is obvious that [g0, Vi] ⊂ Vi, but in fact the

equality holds due to irreducibility.

Theorem 2.11. Let g = ⊕i≥−1gi be a transitive irreducible Lie superalgebra

with a consistent Z-grading. If g1 6= 0 then [g0, g0] ⊂ [g−1, g1].

Proof. We notice that V = [g−1, [g−1, g1]] 6= 0, indeed there exists g1 3 a 6= 0,

so, since g is transitive, we have [a, g−1] 6= 0 and, again by transitivity,

[g−1, [g−1, a]] 6= 0. Moreover V is a g0-submodule of g−1. Indeed, if g0 ∈
g0, g̃−1, g−1 ∈ g−1, g1 ∈ g1, we have:

[g0, [g̃−1, [g−1, g1]]] =
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[[g0, g̃−1], [g−1, g1]]︸ ︷︷ ︸
∈V

+[g̃−1, [g0, [g−1, g1]]] =

[[g0, g̃−1], [g−1, g1]] + [g̃−1, [[g0, g−1], g1]]︸ ︷︷ ︸
∈V

+ [g̃−1, [g−1, [g0, g1]]]︸ ︷︷ ︸
∈V

.

Let C be the centralizer of [g−1, g1] in g0. By irreducibility of the adjoint

representation of g0 on g−1 and transitivity, it follows that g0 is a reductive

Lie algebra, in particular g0 = [g0, g0] ⊕ Z(g0) where [g0, g0] is semisimple

and Z(g0) is the center of g0, with dim(Z(g0)) ≤ 1.

In order to prove the thesis it is enough to show that C is abelian: indeed

[g−1, g1] is an ideal of g0 and g0 = L1⊕ . . .⊕Lt⊕Z(g0), where we denote by

Li, with 1 ≤ i ≤ t, the simple ideals of g0. In particular [Li, Lj] = 0 ∀i 6= j.

Let J be [g−1, g1], an ideal of g0, the, up to reordering the indexes, we may

assume J = L1⊕ . . .⊕Lk and Cg0(J) = Lk+1 . . .⊕Lt⊕Z(g0). If C is abelian,

then C ⊂ Z(g0) and [g0, g0] ⊂ [g−1, g1], otherwise Li ⊂ C for some i, but Li

is not abelian since it is simple.

It remains to show that C is abelian, i.e. [a, b] = 0, ∀a, b ∈ C. Since g is

transitive, it is sufficient to prove that [g−1, [a, b]] = [[[g1, g−1], g−1], [a, b]] = 0

i.e. to show that for t ∈ g1, x, y ∈ g−1 and a, b ∈ C:

[[t, x], y], [a, b]] = 0

Indeed:

[[t, x], y], [a, b]] =

[[[[t, x], y], a], b] + [a, [[[t, x], y], b]] =

[[[[t, x], y], a], b]︸ ︷︷ ︸
:=d

− [[[[t, x], y], b], a]︸ ︷︷ ︸
:=e

where we used the fact that the Z-grading is consistent. We have:

e = [[[[t, x], y], b], a] =
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[[[t, x], [y, b]], a]− [[y, [[t, x], b]]︸ ︷︷ ︸
=0,b∈C

, a] =

[[[t, x], [y, b]], a] = (Jacobi identity)

[[t, [x, [y, b]]︸ ︷︷ ︸
∈[g−1,g−1]=0

], a] + [[x, [t, [y, b]]], a] =

[[x, [t, [y, b]]], a] =

−[[[t, [y, b]], x], a] =

−[[t, [y, b]], [x, a]] + [x, [[t, [y, b]], a]︸ ︷︷ ︸
=0,a∈C

] =

−[[t, [y, b]], [x, a]].

Moreover we observe that:

[[t, x], y] =

−[y, [t, x]] =

−[[y, t], x] + [t, [y, x]︸︷︷︸
∈[g−1,g−1]=0

] =

−[[t, y], x]

Therefore we have:

d = [[[[t, x], y], a], b] =

−[[[[t, y], x], a], b] =

−[[[t, y], [x, a]], b] + [[x, [[t, y], a]︸ ︷︷ ︸
=0,a∈C

], b] =

[[[x, a], [t, y]], b] =

[[[[x, a], t], y], b]− [[t, [[x, a], y]]︸ ︷︷ ︸
∈[g−1,g−1]=0

, b] =

[[[[x, a], t], y], b] =

[[[t, [x, a]], y], b] =
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[[t, [x, a]], [y, b]]− [y, [[t, [x, a]], b]︸ ︷︷ ︸
=0,b∈C

] =

[[t, [x, a]], [y, b]] =

[t, [[x, a], [y, b]]︸ ︷︷ ︸
∈[g−1,g−1]=0

] + [[x, a], [t, [y, b]]] =

−[[t, [y, b]], [x, a]] = e.

Theorem 2.12. Let g = ⊕i≥−1gi be a transitive irreducible Lie superalgebra

with a consistent Z-grading and g1 6= 0. Let the representation of g0 on g1

be irreducible and faithful, and denote by H a Cartan subalgebra of g0, by FΛ

the highest weight vector of the representation of g0 on g−1 and by EM the

lowest weight vector of the representation of g0 on g1.

Then:

a) If g1 and g−1 are contragredient g0-modules:

1) M = −Λ

2) [FΛ, EM ] = h 6= 0, h ∈ H

3) [g1, g1]=0

4) g−1 ⊕ [g−1, g1]⊕ g1 is simple

b) If g1 and g−1 are not contragredient:

1) [FΛ, EM ] = eα, with α = Λ +M a nonzero root of [g0, g0]

2) [g−1, g1] = [g0, g0]

3) [g0, g0] is simple

Proof. Let α1, . . . , αm be a system of simple roots of [g0, g0] with respect to

H. It follows that: g−1 =< [· · · [FΛ, e−γ1 ], . . . , e−γk ] >, where γ1, . . . , γk ∈
{α1, . . . , αm} and e−γi is a root vector associated with −γi. Likewise, g1 =<

[· · · [EM , eδ1 ], . . . , eδk ] >, where δ1, . . . , δs ∈ {α1, . . . , αm} and eδi is a root
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vector associated with δi.

So we have: [g−1, g1] =< [. . . [FΛ, EM ], eβ1 , . . . , eβt ] >, with β1, . . . , βt ∈
{α1, . . . , αm,−α1, . . . ,−αm}.
From the hypothesis g1 6= 0 so it follows from transitivity that [g−1, g1] 6= 0,

then [FΛ, EM ] 6= 0.

We have [t, [FΛ, EM ]] = (Λ + M)(t)[FΛ, EM ], ∀t ∈ H. If g−1 and g1 are

contragredient g0-modules then Λ + M = 0, 1a), hence [FΛ, EM ] lies in the

centralizer of H in g which coincides with H itself, 2a). If g−1 and g1 are not

contragredient then Λ +M 6= 0 and [FΛ, EM ] is a root vector corresponding

to the root Λ+M , 1b). We now prove 3a). Le g̃ be the subalgebra generated

by g−1 ⊕ g0 ⊕ g1, then g̃ is bitransitive. Indeed by Theorem 2.11 [g−1, g1]

is either g0 or [g0, g0]. In the first case g̃ is simple because it satisfies the

hypothesis of Theorem 2.10. Indeed, g̃ is transitive, [g̃−1, g̃1] = [g−1, g1] = g̃0

by construction and the representation of g̃0 on g̃−1 = g−1 is irreducible:

otherwise there would exist a non trivial g̃0-submodule V of g−1, but, from

2.6, the elements of Z(g0) act as scalars on V , then V would be a nontrivial

g0-submodule of g−1, which is impossible since g−1 is irreducible (this argu-

ment proves also 4a)). Then g̃ is simple and by Theorem 2.1 it is bitransitive.

Now suppose that [g−1, g1] = [g0, g0], g̃ = g−1 ⊕ [g−1, g1]⊕ Z(g0)⊕ g1. Then

by Theorem 2.6, Z(g0) =< z >, where [z, x] = x,∀x ∈ g1, hence g̃ is bitran-

sitive.

There exists an automorphism:

ϕ : g−1 ⊕ g0 ⊕ g1 → g−1 ⊕ g0 ⊕ g1

carrying the positive roots of g0 in the negative ones and interchanges g−1

and g1. By Theorem 2.3 i), g̃ is minimal, so ϕ can be extended to an auto-

morphism of g̃ that interchanges g−1 and g1, hence [g1, g1] = 0.

It remains to prove 2b) and 3b).

We know that [g−1, g1] =< [. . . [eα, eβ1 ], . . . , eβt ] >⊂ H̃, where H̃ is the simple

ideal of [g0, g0] which contains the root space of α. But by Theorem 2.11:

[g0, g0] ⊂ [g−1, g1] ⊂ H̃ ⊂ [g0, g0]
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We conclude that [g−1, g1] = [g0, g0] and it is simple.

Theorem 2.13. Let g = g−1⊕ g0⊕ g1 be a transitive Lie superalgebra which

satisfies the hypotheses of Theorem 2.11. Then either g1 is a faithful and

irreducible g0-module, or dim(g1) = 1.

Proof. Suppose dim(g1) > 1. Let us suppose g1 is not irreducible, then by

Weyl’s Theorem, g1 = g′1 ⊕ g′′1, where g′1 and g′′1 are g0-submodules. If we

apply Theorem 2.11 to g−1 ⊕ g0 ⊕ g′1, it follows [g0, g0] ⊂ [g−1, g
′
1]. Then:

[[g0, g0], g′′1] ⊂ [[g−1, g
′
1], g′′1] ⊂ [g′1, [g−1, g

′′
1]] ⊂ g′1

where we used the Jacoby identity and the fact that [g1, g1] = 0. Since the

sum of g′1 and g′′1 is direct it follows that: [[g0, g0], g′′1] = 0. In the same

way it follows [[g0, g0], g′1] = 0. Hence [[g0, g0], g1] = 0. Now let us prove

that if [[g0, g0], g1] = 0 then dim(g1) = 1. Let a ∈ g1, a 6= 0, and define:

Fa : g−1 → g0

y 7→ [a, y]

Then Fa is a morphism of [g0, g0]-modules: for x ∈ [g0, g0], we have:

Fa([x, y]) = [a, [x, y]] = [ [a, x]︸︷︷︸
∈[[g0,g0],g1]=0

], y] + [x, [a, y]] = [x, Fa(y)]

By Theorem 2.12 Fa(g−1) = [g0, g0], since g−1 and Ca are not contragredient.

But g−1 is irreducible and [g0, g0] is an irreducible [g0, g0]-module since [g0, g0]

is simple by Theorem 2.12 3b), so Ker(Fa) = 0 then Fa is an isomorphism

onto its image. Therefore [g0, g0] and g−1 are isomorphic, irreducible [g0, g0]-

modules, so they are isomorphic highest weight modules, hence Fa = λId.

For a1, a2 ∈ g1, x ∈ g−1:

[a1, x] = λ[a2, x]⇒ [a1 − λa2, x] = 0⇒ a1 = λa2

Therefore we proved that dim(g1) = 1.

We conclude by showing that the representation of g0 on g1 is faithful. If it is
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not faithful, then there exists a simple ideal J of [g0, g0] such that: [J, g1] = 0.

Indeed Ker(adg0) is an ideal and it cannot be contained in Z(g0), since the

elements of Z(g0) act as scalars on g1 by Theorem 2.6. So Ker(adg0) is a

simple ideal of the semisimple Lie algebra [g0, g0].

Set g−1 = V1 ⊕ . . .⊕ Vk, where Vi are J-submodules of g−1 and let Fa be as

defined above.

We observe:

(Fa)|Vi : Vi → [g0, g0] = J ⊕ C[g0,g0](J)

x 7→ [a, x]

The Vi’s are irreducible and faithful J-modules, then they are nontrivial.

From the fact that Fa is an isomorphism onto its image and J acts trivially

on C[g0,g0](J), it follows Fa(Vi) ⊂ J , ∀i. Finally:

[g0, g0] ⊂ [g−1, g1] ⊂ J ⊂ [g0, g0]

Then J = [g0, g0], so dim(g1) = 1 and this is a contraditcion.
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Chapter 3

Filtrations

In this chapter we explain some results on Lie superagebras with filtrations.

Definition 3.1. (Filtration) A filtration of a Lie superalgebra L is a sequence

of Z2-graded subspaces Li, i ∈ Z, such that:

L = L−1 ⊃ L0 ⊃ L1...

Li = L ∀i ≤ −1

[Li, Lj] ⊂ Li+j ∀i, j ∈ Z⋂
i∈Z

Li = 0

Definition 3.2. A Lie superalgebra with filtration is said transitive if:

Li = {a ∈ Li−1 | [a, L] ⊂ Li−1} i > 0 (3.1)

Remark 5. If we consider a Lie superalgebra L and a subalgebra L0 of L

which does not contain any nonzero ideal of L, then condition (3.1) together

with L−1 = L defines a filtration on L. Indeed [Li, Lj] ⊂ Li+j ∀i, j ∈ Z.

This is obvious for i ≤ −1 or j ≤ −1. If i, j ≥ 0 we proceed by induction on

i+ j:

if i+ j = 0, that is i = j = 0, [Li, Lj] ⊆ Li+j since L0 is a subalgebra.

41
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if i+ j > 0:

[L, [Li, Lj]] =

[[L,Li]︸ ︷︷ ︸
⊂Li−1

, Lj]± [Li, [L,Lj]︸ ︷︷ ︸
Lj−1

] ⊂

Li+j−1

by induction. Moreover it is obvious that
⋂
i∈Z Li is an ideal of L contained

in L0, so
⋂
i∈Z Li = 0. This filtration is called the transitive filtration of the

pair (L,L0).

Let L be a filtered Lie superalgebra. Then we can consider the Z-graded

Lie superalgebra GrL, associated to L, defined as follows:

GrL = ⊕i≥−1GriL, GriL = Li/Li+1

GrL is a Z2-graded Lie superalgebra, due to the Z2-grading of Li, but the

Z-grading is not consistent in general.

If g = ⊕i≥−1gi is a Z-graded Lie superalgebra, we can canonically consider the

filtration given by Li = ⊕s≥igs, the properties of Definition 3.1 are obviously

verified by this Li.

3.1 Proprierties of L and GrL

Proposition 3.1. A Lie superalgebra L with filtration is transitive if and

only if GrL is transitive.

Proof. Let us suppose that GrL is transitive, i.e., for every ā = a + Li+1 ∈
GriL, i ≥ 0:

if [ā, Gr−1L] = 0 then ā = 0 or, equivantly,

if [a, L] ⊂ Li then a ∈ Li+1, i.e.

{a ∈ Li | [a, L] ⊂ Li} ⊂ Li+1 ∀i ≥ 0.

Since the reverse inclusion is obvious, equality holds, i.e., L is transitive.
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Now suppose that the filtration on L is transitive. Let ā = a + Li+1 ∈
GriL, i ≥ 0 such that [ā, Gr−1L] = 0 or,equivalently, [a, L] ⊂ Li. By the

transitivity of the filtration on L, a ∈ Li+1 that is ā = 0.

Proposition 3.2. Let L be a Lie superalgebra with filtration. If GrL is

simple then L is simple.

Proof. Let I 6= 0 be an ideal of L and set Ĩ = {ā ∈ GrL | a ∈ I}. Ĩ is an

ideal of GrL, indeed: let us consider ā ∈ Ĩ and ū ∈ GrL. For the sake of

simplicity we suppose ū ∈ GriL for some i. Then:

[ū, ā] = [u+ Li+1, a+ Lj+1] = [u, a] ∈ Gri+jL

Let x ∈ I be a non zero element, then x ∈ Li where i is the minimal index

such that x /∈ Li+1. It follows that 0 6= x̄ ∈ GriL ∩ Ĩ and Ĩ 6= 0. Since GrL

is simple, Ĩ = GrL, then I = L.

Remark 6. Let L be a Lie superalgebra with filtration. If there exist sub-

spaces Gi such that Li = Gi⊕Li+1 and [Gi, Gj] ⊂ Gi+j,∀i, j, then we say that

a Z-grading consistent with the filtration is defined on L and if dim(L) <∞
then L ∼= GrL.

Theorem 3.3. Let us consider a transitive finite-dimensional Lie superalge-

bra L with filtration. If GrL is consistently Z-graded, the representation of

Gr0L on Gr−1L is irreducible and Z(Gr0L) 6= 0, then L ∼= GrL.

Proof. We can apply Theorem 2.6 to GrL, so Z(Gr0L) =< z >, with [z, g] =

sg,∀g ∈ GrsL. We consider the map:

π : L0 −→ L0/L1 = Gr0L

x 7−→ x+ L1

We denote by z̃ an element of π−1(z). It follows that for ḡ ∈ Ls/Ls+1:

[z̃, ḡ] =

[z + L1, g + Ls+1] = sg + Ls+1
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So z̃ is diagonalizable in L, L = ⊕i≥−1Gi and Ls = Gs ⊕ Ls+1 where Gi is

the eigenspace relative to the eigenvalue i. Then we obtained a Z-grading

consistent with the filtration on L.

Let L = L0̄⊕L1̄ be a Lie superalgebra with a maximal proper subalgebra

L0 of L such that L0̄ ⊂ L0 and let us suppose that L0̄ does not contain

nonzero ideals of L. Let us consider, as defined before, the filtration of the

pair (L,L0):

Li = {a ∈ Li−1 | [a, L] ⊂ Li−1} i > 0.

Theorem 3.4. Let GrL = ⊕i≥−1GriL be Z-graded Lie superalgebra associ-

ated to the filtration of the pair (L,L0), then:

1. GrL is transitive;

2. the Z-grading of GrL is consistent;

3. GrL is irreducible;

4. if the representation of L0̄ on L1̄ is reducible, then Gr1L 6= 0.

Proof. 1) From the definition of its filtration, L is transitive, then, by Propo-

sition 3.1, GrL is transitive.

2) Since L0̄ ⊂ L0, L/L0 = Gr−1L ⊂ (GrL)1̄. We show, using induction and

transitivity, that GriL ⊂ (GrL)0̄ if i is even and GriL ⊂ (GrL)1̄ if i is odd.

If i is even, [GriL ∩ (GrL)1̄, Gr−1L] ⊂ Gri−1L ⊂ (GrL)1̄ by the inductive

hypothesis. Besides:

[GriL ∩ (GrL)1̄, Gr−1L] ⊂ [(GrL)1̄, (GrL)1̄] ⊂ (GrL)0̄

It follows that [GriL∩(GrL)1̄, Gr−1L] = 0, by transitivity GriL∩(GrL)1̄ = 0

and GriL ⊂ (GrL)0̄. The case i odd is similar.

3) Assume that GrL is reducible, then there exists L̃ ( L such that L̃ ⊃ L0

and [L0, L̃] ⊂ L̃.
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L̃ = L0 ⊕ V where V ⊂ L1̄, because L0̄ ⊂ L0, and [V, V ] ⊂ L0̄ ⊂ L0. It

follows:

[L̃, L̃] = [L0 ⊕ V, L0 ⊕ V ] = [L0, L0]︸ ︷︷ ︸
⊂L0⊂L̃

+ [L0, V ]︸ ︷︷ ︸
⊂L̃

+ [V, V ]︸ ︷︷ ︸
⊂L0⊂L̃

⊂ L̃

But this leads to a contradiction by the maximality of L0.

4) We suppose Gr1L = 0, then L1/L2 = 0 that is L1 = L2. Note that:

L2 = {a ∈ L1 | [a, L] ⊂ L1}

It follows that L1 is an ideal of L, then L1 ∩ L0̄ is an ideal of L0̄. From the

hypothesis L1 ∩ L0̄ = {0}, i.e., L1 ⊂ L1̄, so Gr0L = L0/L1 = L0̄. Since

Gr1L = 0, then GrL = Gr−1L ⊕ Gr0L, but Gr0L = L0̄, then Gr−1L = L1̄.

Using 3) we conclude that the representation of L0̄ on L1̄ is irreducible.
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Chapter 4

Superalgebras of vector fields

In this chapter we study the Z-gradings of some Lie superalgebras of vector

fields, focusing on the cases in which the grading is symmetric (see Definition

4.1) and of depth two.

4.1 The Lie superalgebra W (m,n)

We recall that Λ(n) is the Grassmann algebra in the n odd indetermi-

nates ξ1, ..., ξn. Let x1, ..., xm be even coordinates, we denote Λ(m,n) =

C[x1, ..., xm]⊗ Λ(n) and W (m,n) the space of its derivations:

W (m,n) =

{
m∑
i=1

fi
∂

∂xi
+

n∑
i=1

gi
∂

∂ξi
where fi, gi ∈ Λ(m,n)

}
.

The derivations ∂
∂xi

and ∂
∂ξi

are determined by:

∂

∂xi
(xj) = δij

∂

∂xi
(ξj) = 0

∂

∂ξi
(xj) = 0

∂

∂ξi
(ξj) = δij

We can define a Z-grading on W (m,n) by letting deg(xi) = ai = −deg( ∂
∂xi

)

and deg(ξi) = bi = −deg( ∂
∂ξi

), where ai ∈ N and bi ∈ Z and we call it grading

47
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of type (a1, ..., am|b1, ..., bn). The grading of type (1, ..., 1|1, ..., 1) is called

principal, instead the grading of type (1, ..., 1|0, ..., 0) is called subprincipal.

4.1.1 The principal grading

We study the principal grading of W (m,n). First we observe that with this

grading W (m,n) = ⊕∞j=−1W (m,n)j, i.e. it has depth one. We have:

W (m,n)0 =< xi
∂

∂xj
, ξi

∂

∂xj
, xi

∂

∂ξj
, ξi

∂

∂ξj
>∼= gl(m,n)

The isomorphism is given by the map:

Φ : W (m,n)0 −→ gl(m,n)

xi
∂

∂xj
7−→ ei,j

ξi
∂

∂xj
7−→ ei+m,j

xi
∂

∂ξj
7−→ ei,j+m

ξi
∂

∂ξj
7−→ ei+m,j+m

where by el,k we denoted the elementary matrix with 1 in position l, k.

Notice that

W (m,n)−1 =<
∂

∂x1

, ...,
∂

∂xm
,
∂

∂ξ1

, ...,
∂

∂ξn
>∼= Cm|n

and W (m,n)0 acts on W (m,n)−1 via the standard action, therefore the prin-

cipal grading of W (m,n) is irreducible.

Proposition 4.1. The principal grading of W (m,n) is transitive.

Proof. Let a =
∑

deg(Pi)≥1 Pi
∂
∂xi

+
∑

deg(Qj)≥1Qj
∂
∂ξj

be an element ofW (m,n)≥0,

where Pi, Qj ∈ Λ(m,n). We show that if [a,W (m,n)−1] = 0 it follows a = 0.

In fact if [a, ∂
∂xk

] = 0,∀k = 1, ...,m we have:

−
∑

deg(Pi)≥1

∂Pi
∂xk

∂

∂xi
−

∑
deg(Qj)≥1

∂Qj

∂xk

∂

∂ξj
= 0 ∀k = 1, ...,m



4.1 The Lie superalgebra W (m,n) 49

From this we deduce that ∂Pi
∂xk

=
∂Qj
∂xk

= 0 ∀i, j, k. Analogously if [a, ∂
∂ξr

] =

0,∀r = 1, ..., n we obtain ∂Pi
∂ξr

=
∂Qj
∂ξr

= 0 ∀i, j, r. So Pi, Qj ∈ C and this leads

to a contradiction.

4.1.2 Simplicity

Theorem 4.2. W (m,n) is simple if (m,n) 6= (0, 1).

Proof. We consider W (m,n) with the principal grading. We have:

[W (m,n)−1,W (m,n)1] = W (m,n)0, in fact it is obvious that W (m,n)0 ⊃
[W (m,n)−1,W (m,n)1], on the other hand [W (m,n)−1,W (m,n)1] ⊃ W (m,n)0

because:

xi
∂

∂xj
= [

∂

∂xi
,
x2
i

2

∂

∂xj
]

ξi
∂

∂xj
= [

∂

∂xj
, xjξi

∂

∂xj
]

xi
∂

∂ξj
= [

∂

∂ξj
, xiξj

∂

∂ξj
]

ξi
∂

∂ξj
= [

∂

∂ξj
, ξjξi

∂

∂ξj
] if i 6= j

ξi
∂

∂ξi
=

[ ∂
∂x1
, x1ξi

∂
∂ξi

] if m ≥ 1

[ ∂
∂ξk
, ξkξi

∂
∂ξi

] if n ≥ 2

Now let I be a nonzero ideal of W (m,n) and let us show that I = W (m,n).

Indeed, due to the irreducibility ofW (m,n)−1 and the fact that [I−1,W (m,n)0] ⊂
I−1, it follows I−1 = 0 or I−1 = W (m,n)−1. In the first case we have that

[W (m,n)−1, I0] ⊂ I−1 = 0, hence, by transitivity, I0 = 0 and, proceeding in

the same way, Ii = 0 ∀i which is impossible because I 6= 0.

So I−1 = W (m,n)−1 and W (m,n)0 = [W (m,n)−1,W (m,n)1] ⊂ I, hence it

remains to show that a generic element of the type PQ ∂
∂xi

or PQ ∂
∂ξj

lies in

I, where P ∈ C[x1, ..., xm] and Q ∈ Λ(n). Suppose m ≥ 1: we denote by P̃
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an element of C[x1, ..., xm] such that ∂P̃
∂xi

= P . It follows:

PQ
∂

∂xi
= [

∂

∂xi
, P̃Q

∂

∂xi
]

PQ
∂

∂ξj
= [

∂

∂xi
, P̃Q

∂

∂ξj
]

Now suppose m = 0 and n ≥ 2: we show that a generic element of the type

Q ∂
∂ξi

, with deg(Q) ≥ 2 lies in I. Indeed, since deg(Q) ≥ 2, there exists some

k 6= i, such that:

Q
∂

∂ξi
= [ξk

∂

∂ξk
, Q

∂

∂ξi
]

We conclude I = W (m,n).

Remark 7. We now analyze the case (m,n) = (0, 1) and notice that W (0, 1)

is not simple.

W (0, 1) =<
∂

∂ξ
, ξ
∂

∂ξ
>

and

[W (0, 1),W (0, 1)] =<
∂

∂ξ
>( W (0, 1)

4.1.3 Subprincipal grading

Let us consider the subrincipal grading of W (m,n), i.e., the grading of type

(1, ..., 1|0, ...0). We have:

W (m,n)0 =< Pi
∂

∂ξi
, Pi ∈ Λ(n) > + < xiPl

∂

∂xj
, Pl ∈ Λ(n) >

∼= gl(m)⊗ Λ(n) +W (0, n)

The isomorphism is:

Φ : W (m,n)0 −→ gl(m)⊗ Λ(n) +W (0, n)

xi ⊗ Pl
∂

∂xj
+ Pk

∂

∂ξr
7−→ ei,j ⊗ Pl + Pk

∂

∂ξr

On the other hand we have that:

W (m,n)−1 =< Pi
∂

∂xj
, Pi ∈ Λ(n) >∼= Cm ⊗ Λ(n)

We observe that W (m,n) with the subprincipal grading has depth 1.
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Proposition 4.3. W (m,n) with the subprincipal grading is irreducible.

Proof. Let S 6= 0 be a submodule of W (m,n)−1
∼= Cm ⊗ Λ(n) and z ∈ S a

nonzero element. Then z is of the form:

z =
∑
k

αkPk
∂

∂xk
where Pk ∈ Λ(n), αk ∈ C

Let us suppose αi 6= 0 for an index i, we have:

[xi
∂

∂x1

, z] = −αiPi
∂

∂x1

∈ S

We recall that W (m,n)0
∼= gl(m)⊗ Λ(n)⊕W (0, n). By the action of gl(m)

on ∂
∂x1

we generate Pi ⊗ Cm. Moreover by the action of W (0, n) on Pi we

generate 1⊗Cm, finally by the action of gl(m)⊗Λ(n) on 1⊗Cm we generate

Cm ⊗ Λ(n).

Proposition 4.4. W (m,n) with the subprincipal grading is transitive.

Proof. Let a be an element of W (m,n)≥0 such that [a,W (m,n)−1] = 0. The

element a is of the form:

a =
∑

deg(Pi)≥1

PiQi
∂

∂xi
+

∑
deg(P̃j)≥0

P̃jQ̃j
∂

∂ξj
, Pi, P̃j ∈ C[x1, ..., xm], Qi, Q̃j ∈ Λ(n)

We have:

0 = [a,
∂

∂xk
] = −

∑
deg(Pi)≥1

∂

∂xk
(PiQi)

∂

∂xi
−

∑
deg(P̃j)≥0

∂

∂xk
(P̃jQ̃j)

∂

∂ξj

We obtain that:

∂

∂xk
(PiQi) = 0 ∀i, k

∂

∂xk
(P̃jQ̃j) = 0 ∀j, k

So we get that Pi, P̃j ∈ C, but deg(Pi) ≥ 1 ∀i, so Pi = 0 ∀i. Therefore,

including now the constants P̃j in the elements Q̃j, a =
∑
Q̃j

∂
∂ξj

. Moreover

we also know:

0 = [a, T (ξ1, ..., ξn)
∂

∂xk
]
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This means: ∑
Q̃j
∂T (ξ1, ..., ξn)

∂ξj

∂

∂xk
= 0

Finally Q̃j
∂T (ξ1,...,ξn)

∂ξj
= 0 ∀j, ∀T ∈ Λ(n). In particular we choose T = ξh

∀h = 1, ..., n and get:

0 = Q̃h
∂

∂ξh
ξh = Q̃h

4.1.4 Symmetric gradings

Definition 4.1. (Symmetric grading) A Z-grading of a Lie superalgebra g

is said symmetric if g = ⊕ki=−hgi with h = k <∞.

Definition 4.2. (Strongly symmetric grading) A Z-grading of a Lie super-

algebra g is said strongly symmetric if it is symmetric, transitive, generated

by its local part and g−i ∼= gi as vector spaces ∀i.

Definition 4.3. (Strongly symmetric grading of length five (resp. three)) A

Z-grading on a Lie superalgebra g is said strongly symmetric of length five

(resp. three) if it is strongly symmetric and h = k = 2 (resp. h = k = 1).

Our aim is to obtain a complete list, up to isomorphisms, of strongly

symmetric gradings of length five of the Lie superalgebra W (m,n).

Remark 8. Notice that if deg(xi) 6= 0 for some i, then the length of the

grading is not finite. Therefore a grading of W (m,n) has finite length if an

only if it is of type (0, ..., 0|b1, ..., bn).

Remark 9. 1. If there exists an index i ∈ {1, ...,m} such that ai is odd,

then the Z-grading is not consistent. In fact ∂
∂xi
∈ W0̄ would lie in

W−ai .

2. If there exists an index j ∈ {1, ..., n} such that |bj| is even, then the

Z-grading is not consistent. In fact ∂
∂ξj
∈ W1̄ would lie in W−bj .
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3. A Z-grading of type (a1, ..., am|b1, ..., bn), where all ai’s are even and all

bj’s are odd, is consistent. Indeed, let P ∈ C[x1, ..., xm] and Q ∈ Λ(n):

deg(PQ ∂
∂xi

) = deg(P )+deg(Q)+deg( ∂
∂xi

) and deg(PQ ∂
∂ξi

) = deg(P )+

deg(Q) + deg( ∂
∂ξi

).

Now we start our analysis from W (0, n) and then generalize it to W (m,n).

4.1.5 W (0, n), n ≥ 2

First we consider a grading of type (|b1, ..., bn) where bi > 0 ∀i. We denote by

k the maximal degree and by −h the minimal degree of elements of W (0, n)

in this grading. It follows:

k = b1 + b2 + ...+ bn −min {bi} h = max {bi}

So:

h = k ⇔ b1 + b2 + ...+ bn −min {bi} = max {bi} ⇔ n = 2

We first study the case n = 2 .

A) W (0, 2)

i) Z-grading of type (|b, B) where 0 < b ≤ B.

In this case h = k = B and the degree that we can obtain are:

−b,−B, 0, b−B,B − b, B, b

Remark 10. We are interested in Z-grading such that g−1 6= 0, so if a

Z-grading is such that g−l 6= 0 for some l > 0 and g−i = 0 for every

0 < i < l, then we assume, up to isomorphisms, l = 1.

• If B = b the grading becomes of type (|b, b), we suppose b = 1.

We have:

W (0, 2)−1 =<
∂

∂ξ1

,
∂

∂ξ2

>∼= C2

W (0, 2)0 =< ξi
∂

∂ξj
>∼= gl(2)

W (0, 2)1 =< ξ1ξ2
∂

∂ξ1

, ξ1ξ2
∂

∂ξ2

>∼= C2
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It is consistent and generated by its local part.

• If B > b and B = 2b, with b = 1, so that b−B = −b, we have:

W (0, 2)−2 =<
∂

∂ξ2

>

W (0, 2)−1 =<
∂

∂ξ1

, ξ1
∂

∂ξ2

>

W (0, 2)0 =< ξi
∂

∂ξi
>

W (0, 2)1 =< ξ1ξ2
∂

∂ξ2

, ξ2
∂

∂ξ1

>

W (0, 2)2 =< ξ1ξ2
∂

∂ξ1

>

It is generated by its local part and it is not consistent.

• If B > b and B > 2b so that −b > b−B, we have, assuming b = 1:

W (0, 2)−B =<
∂

∂ξ2

>

W (0, 2)1−B =< ξ1
∂

∂ξ2

>

W (0, 2)−1 =<
∂

∂ξ1

>

W (0, 2)0 =< ξi
∂

∂ξi
>

W (0, 2)1 =< ξ1ξ2
∂

∂ξ1

>

W (0, 2)B−1 =< ξ2
∂

∂ξ1

>

W (0, 2)B =< ξ1ξ2
∂

∂ξ2

>

It is not generated by its local part since [W (0, 2)−1,W (0, 2)−1] =

0.

• If B > b and B < 2b so that −b < b − B, we have, choosing
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b−B = 1:

W (0, 2)−b−1 =<
∂

∂ξ2

>

W (0, 2)−b =<
∂

∂ξ1

>

W (0, 2)−1 =< ξ1
∂

∂ξ2

>

W (0, 2)0 =< ξi
∂

∂ξi
>

W (0, 2)1 =< ξ2
∂

∂ξ1

>

W (0, 2)b =< ξ1ξ2
∂

∂ξ2

>

W (0, 2)b+1 =< ξ1ξ2
∂

∂ξ1

>

It is not generated by its local part, since [W (0, 2)−1,W (0, 2)−1] =

0.

ii) Z-grading of type (|0, a) where a > 0.

We observe that h = k = a, so we choose a = 1. We have:

W (0, 2)−1 =<
∂

∂ξ2

, ξ1
∂

∂ξ2

>

W (0, 2)0 =< ξi
∂

∂ξi
, ξ1ξ2

∂

∂ξ2

,
∂

∂ξ1

>

W (0, 2)1 =< ξ1ξ2
∂

∂ξ1

, ξ2
∂

∂ξ1

>

It is not consistent.

iii) Z-grading of type (|a,−b) where a, b > 0.

We observe that h = k = a + b, we can obtain the degrees −b −
a,−a,−b, 0, b, a, a+ b.
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• If a = b = 1, then h = k = 2, we have:

W (0, 2)−2 =< ξ2
∂

∂ξ1

>

W (0, 2)−1 =<
∂

∂ξ1

, ξ1ξ2
∂

∂ξ1

>

W (0, 2)0 =< ξi
∂

∂ξi
>

W (0, 2)1 =< ξ1ξ2
∂

∂ξ2

,
∂

∂ξ2

>

W (0, 2)2 =< ξ1
∂

∂ξ2

>

It is consistent and generated by its local part.

• If a > b, we have, choosing b = 1:

W (0, 2)−a−1 =< ξ2
∂

∂ξ1

>

W (0, 2)−a =<
∂

∂ξ1

>

W (0, 2)−1 =< ξ1ξ2
∂

∂ξ1

>

W (0, 2)0 =< ξi
∂

∂ξi
>

W (0, 2)1 =<
∂

∂ξ2

>

W (0, 2)a =< ξ1ξ2
∂

∂ξ2

>

W (0, 2)a+1 =< ξ1
∂

∂ξ2

>

It is not generated by its local part, since [W (0, 2)−1,W (0, 2)−1] =

0.

• If b > a, we have a situation analogous to the previous one, ob-

taining a grading which is not generated by its local part.
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Now we study W (0, n), with n ≥ 3.

B) W (0, n), n ≥ 3

We saw in the previous section that in this case there is no symmetric Z-

grading of type (|b1, ..., bn) where bi > 0 ∀i. So the following cases are left:

bi ≥ 0 for every i and bj = 0 for some j, or bi > 0 and bj < 0 for some

i 6= j. We observe that in both these options it follows that W (m,n) =

⊕ki=−hW (m,n)i with h, k <∞ and:

h =
∑
bi≤0

|bi|+max {bi ≥ 0}

k =
∑
bi≥0

bi + |min {bi ≤ 0} |

Then, if we set b1 = max {bi}, b2 = min {bi} :

h = k ⇔

b1 + ...+ bn = max {bi ≥ 0} − |min {bi ≤ 0} | ⇔

b1 + ...+ bn = max {bi ≥ 0}+min {bi ≤ 0} ⇔

b1 + ...+ bn = max {bi}+min {bi} ⇔

b3 + ...+ bn = 0

Remark 11. If a Z-grading is of type (|b1, ..., bn) such that bi > 0 and bj < 0

for some i 6= j, it is sufficient, in order to study symmetric gradings of

length five, to analyze a grading of type (|B, b, 0, ..., 0), with B > 0, b < 0.

Indeed if bi, bj, bk 6= 0 for some distinct i, j, k, since bi > 0 and bj < 0, then

deg(ξiξk
∂
∂ξj

) = bi + bk − bj ≥ 3 if bk > 0 or deg(ξjξk
∂
∂ξi

) = bj + bk − bi ≤ −3

if bk < 0.

i) Z-grading of type (|b1, ..., bn) where bi ≥ 0 for every i and bj = 0 for some

j, it follows that h = k if and only if the grading is of type (|a, 0, ..., 0)
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where a > 0. We have, choosing a = 1:

W (0, n)−1 =<
∂

∂ξ1

> ⊗Λ(ξ2, ..., ξn)

W (0, n)1 =< ξ1
∂

∂ξ2

, ξ1
∂

∂ξ3

, ..., ξ1
∂

∂ξn
> ⊗Λ(ξ2, ..., ξn)

Since n ≥ 3, dim(< ξ1
∂
∂ξ2
, ξ1

∂
∂ξ3
, ..., ξ1

∂
∂ξn

>) ≥ 2 and W (0, n)−1 �
W (0, n)1.

ii) Z-grading of type (|b1, ..., bn)such that bi > 0 and bj < 0 for some i 6= j.

In particular we analyze a grading of type (|B, b, 0, ..., 0), with B > 0,

b < 0, in fact this is sufficient in order to study symmetric gradings

of length five by Remark 11. We have h = k = −b + B, the possible

degrees are −B, b, b − B,B,−b, B − b, 0, B + b. We notice that surely

−b − B 6= −B, b − B,−b, B − b. So only the following possibilities

remain: −b − B = b, −b − B = B and −b − B = 0, which can be

rewritten as B = 2|b|, |b| = 2B and |b| = B. If no one of these hold,

then dim(W (0, n)−b−B) = 0 and dim(W (0, n)b+B) > 0.

• B = 2|b|, we choose |b| = 1, so that the grading is (|2,−1, 0, ..., 0).

We have:

W (0, n)−2 =<
∂

∂ξ1

> ⊗Λ(ξ3, ..., ξn)

W (0, n)2 =< ξ1ξ2
∂

∂ξ2

, ξ1
∂

∂ξ3

, ..., ξ1
∂

∂ξn
> ⊗Λ(ξ3, ..., ξn)

It is not symmetric since W (0, n)−2 � W (0, n)2.

• |b| = 2B, we choose B = 1, so that the grading is (|1,−2, 0, ..., 0).

This is analogous to the previous one, W (0, n)−2 � W (0, n)2.
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• |b| = B, we choose B = 1, so that the grading is (|1,−1, 0, ..., 0).

W (0, n)−2 =< ξ2
∂

∂ξ1

> ⊗Λ(ξ3, ..., ξn)

W (0, n)−1 =<
∂

∂ξ1

, ξ1ξ2
∂

∂ξ1

, ξ2
∂

∂ξ3

, ..., ξ2
∂

∂ξn
> ⊗Λ(ξ3, ..., ξn)

W (0, n)0 =< ξi
∂

∂ξi
, ξ1ξ2

∂

∂ξ3

, ..., ξ1ξ2
∂

∂ξn
,
∂

∂ξ3

, ...,
∂

∂ξn
> ⊗Λ(ξ3, ..., ξn)

W (0, n)1 =<
∂

∂ξ2

, ξ1ξ2
∂

∂ξ2

, ξ1
∂

∂ξ3

, ..., ξ1
∂

∂ξn
> ⊗Λ(ξ3, ..., ξn)

W (0, n)2 =< ξ1
∂

∂ξ2

> ⊗Λ(ξ3, ..., ξn)

This grading is symmetric, not consistent and generated by its

local part.

4.1.6 W (m,n), m ≥ 1, n ≥ 1

The analysis of the Z-grading of type (0, ..., 0|b1, ..., bn) of the Lie superalge-

bra W (m,n) is similar to that of the grading of type (|b1, ..., bn) of the Lie

superalgebra W (0, n). Indeed, the following relations still hold:

h =
∑
bi≤0

|bi|+max {bi ≥ 0}

k =
∑
bi≥0

bi + |min {bi ≤ 0} |

Then:

h = k ⇔

b1 + ...+ bn = max {bi ≥ 0} − |min {bi ≤ 0} | ⇔

b1 + ...+ bn = max {bi ≥ 0}+min {bi ≤ 0}

Remark 12. In these formulas it is tacit that if either {bi ≥ 0} = ∅ or

{bi ≤ 0} = ∅ we mean that max {bi ≥ 0} or respectively min {bi ≤ 0} are

substituted by a 0.

The possibilities become:
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i) Z-grading of type (0, ..., 0|b1, ..., bn) where bi ≥ 0 ∀i, it follows that h = k

if and only if the grading is of type (0, ..., 0|a, 0, ..., 0) where a > 0. We

have, choosing a = 1:

W (m,n)−1 =<
∂

∂ξ1

> ⊗C[x1, ..., xm]⊗ Λ(ξ2, ..., ξn)

W (m,n)1 =< ξ1
∂

∂ξ2

, ξ1
∂

∂ξ3

, ..., ξ1
∂

∂ξn
, ξ1

∂

∂x1

, ..., ξ1
∂

∂xm
> ⊗C[x1, ..., xm]

⊗ Λ(ξ2, ..., ξn)

W (m,n)−1
∼= W (m,n)1 if and only if m = 1 and n = 1, the grading

becomes (0|1). Indeed:

W (1, 1)−1 =<
∂

∂ξ
> ⊗C[x]

W (1, 1)0 =< P (x)
∂

∂x
,Q(x)ξ

∂

∂ξ
>

W (1, 1)1 =< ξ
∂

∂x
> ⊗C[x]

This strongly symmetric grading of W (m,n) of length three is not

present in the list given in [1] because W (1, 1) ∼= K(1, 2) (for the def-

inition of the Lie superalgebra K(1, 2) see [9]). We give a description

of it.

W (1, 1)0 =< ξ
∂

∂ξ
> ⊗C[x]+ <

∂

∂x
> ⊗C[x] ∼=

I oW (1, 0)

where I is an abelian ideal isomorphic, as a W (1, 0)−module, to C[x].

Indeed:

[P (x)
∂

∂x
,Q(x)ξ

∂

∂ξ
] = P

∂Q

∂x
ξ
∂

∂ξ

W (1, 1)−1 is isomorphic, as a module, to C[x], W (1, 0) acts naturally
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on it, meanwhile I acts by multiplication on it. Indeed:

[P (x)
∂

∂x
,Q(x)

∂

∂ξ
] = P

∂Q

∂x

∂

∂ξ

[P (x)ξ
∂

∂ξ
,Q(x)

∂

∂ξ
] = −PQ ∂

∂ξ

ii) Z-grading of type (0, ..., 0|b1, ..., bn) where there exist a bi > 0 and a bj < 0

for some i 6= j. We focus on (0, ..., 0|B, b, 0, ..., 0), with B > 0, b < 0.

Slightly adjusting the case ii) of W (0, n), n ≥ 3, we obtain that the only

symmetric grading, in which W (m,n) is generated by its local part, is

(0, ..., 0|1,−1, 0, ..., 0)

Therefore we have proved the following results:

Theorem 4.5. 1. If (m,n) 6= (0, 2), (1, 1) the Lie superalgebra W (m,n)

has no strongly symmetric Z−gradings of length three.

2. A complete list, up to isomorphisms, of strongly symmetric Z−gradings

of length three of the Lie superalgebras W (0, 2) and W (1, 1) is the fol-

lowing:

(a) (|1, 1)

(b) (|0, 1)

(c) (0|1)

Theorem 4.6. A complete list, up to isomorphism, of strongly symmetric

Z−gradings of length five of the Lie superalgebra W (m,n) is the following:

1. (|1, 2) for m = 0, n = 2

2. (0, ..., 0|1,−1, 0, ..., 0)

Remark 13. Neither (|1, 2) nor (0, ..., 0|1,−1, 0, ..., 0) is consistent.

We now give a description of these gradings:



62 4. Superalgebras of vector fields

• (|1, 2):

W (0, 2)−2 =<
∂

∂ξ2

>

W (0, 2)−1 =<
∂

∂ξ1

, ξ1
∂

∂ξ2

>

W (0, 2)0 =< ξi
∂

∂ξi
>

W (0, 2)1 =< ξ1ξ2
∂

∂ξ2

, ξ2
∂

∂ξ1

>

W (0, 2)2 =< ξ1ξ2
∂

∂ξ1

>

We have that W (0, 2)0 is an abelian Lie algebra of dimension two.

W (0, 2)−2 and W (0, 2)2 are W (0, 2)0-modules of dimension 1 isomor-

phic to C. W (0, 2)−1 =< ∂
∂ξ1

> ⊕ < ξ1
∂
∂ξ2

>, where < ∂
∂ξ1

> and

< ξ1
∂
∂ξ2

> are W (0, 2)0-modules of dimension 1. Finally W (0, 2)1 =<

ξ1ξ2
∂
∂ξ2

> ⊕ < ξ2
∂
∂ξ1

> which are W (0, 2)0-modules of dimension 1.

• (0, ..., 0|1,−1, 0, ..., 0):

W (m,n)−2 =< ξ2
∂

∂ξ1

> ⊗C[x1, ..., xm]⊗ Λ(n− 2)

W (m,n)−1 =< ξ2 > ⊗W (m,n− 2)⊕

(<
∂

∂ξ1

> ⊕ < ξ1ξ2
∂

∂ξ1

>)⊗ C[x1, ..., xm]⊗ Λ(n− 2)

W (m,n)0 =< ξ1ξ2 > ⊗W (m,n− 2)o (< ξ1
∂

∂ξ1

, ξ2
∂

∂ξ2

> ⊗C[x1, ..., xm]⊗ Λ(n− 2)⊕

W (m,n− 2))

W (m,n)1 =< ξ1 > ⊗W (m,n− 2)⊕

(<
∂

∂ξ2

> ⊕ < ξ1ξ2
∂

∂ξ2

>)⊗ C[x1, ..., xm]⊗ Λ(n− 2)

W (m,n)2 =< ξ1
∂

∂ξ2

> ⊗C[x1, ..., xm]⊗ Λ(n− 2)
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where by Λ(n− 2) we mean Λ(ξ3, ..., ξn). W (m,n)0 is not simple since

it contains a non trivial abelian ideal, i.e. I :=< ξ1ξ2 > ⊗W (m,n− 2).

< ξ1
∂
∂ξ1
, ξ2

∂
∂ξ2

> ⊗C[x1, ..., xm]⊗ Λ(n− 2) acts on I by multiplication,

indeed let P, P̃ ∈ C[x1, ..., xm] and Q, Q̃ ∈ Λ(n− 2):

[PQξ1
∂

∂ξ1

, P̃ ξ1ξ2Q̃
∂

∂xj
] = PQP̃ξ1ξ2Q̃

∂

∂xj

[PQξ1
∂

∂ξ1

, P̃ ξ1ξ2Q̃
∂

∂ξj
] = PQP̃ξ1ξ2Q̃

∂

∂ξj

[PQξ2
∂

∂ξ2

, P̃ ξ1ξ2Q̃
∂

∂xj
] = PQP̃ξ1ξ2Q̃

∂

∂xj

[PQξ2
∂

∂ξ2

, P̃ ξ1ξ2Q̃
∂

∂ξj
] = PQP̃ξ1ξ2Q̃

∂

∂ξj

W (m,n− 2) acts on I by adjoint action, let X, Y ∈ W (m,n− 2):

[X, ξ1ξ2Y ] = ξ1ξ2[X, Y ]

The grading is not irreducible, indeed < ξ1ξ2
∂
∂ξ1

> ⊗C[x1, ..., xm] ⊗
Λ(n− 2) is a proper submodule of W (m,n)−1.

I and < ξ1
∂
∂ξ1

> ⊗C[x1, ..., xm]⊗Λ(n−2) act trivially on this submod-

ule, < ξ2
∂
∂ξ2

> ⊗C[x1, ..., xm]⊗ Λ(n− 2) acts by multiplication:

[Pξ1ξ2Q
∂

∂xj
, P̃ ξ1ξ2Q̃

∂

∂ξ1

] = 0

[Pξ1ξ2Q
∂

∂ξj
, P̃ ξ1ξ2Q̃

∂

∂ξ1

] = 0

[Pξ1Q
∂

∂ξ1

, P̃ ξ1ξ2Q̃
∂

∂ξ1

] =

PP̃ ξ1Qξ2Q̃
∂

∂ξ1

− (−1)p(Q)(p(Q̃)+1)PP̃ ξ1ξ2Q̃Q
∂

∂ξ1

=

PP̃ ξ1Qξ2Q̃
∂

∂ξ1

− PP̃ ξ1Qξ2Q̃
∂

∂ξ1

= 0

[Pξ2Q
∂

∂ξ2

, P̃ ξ1ξ2Q̃
∂

∂ξ1

] = −PP̃ ξ2Qξ1Q̃
∂

∂ξ1
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W (m,n− 2) acts on it by derivation:

[PQ
∂

∂xj
, P̃ ξ1ξ2Q̃

∂

∂ξ1

] = P
∂P̃

∂xj
Qξ1ξ2Q̃

∂

∂ξ1

[PQ
∂

∂ξj
, P̃ ξ1ξ2Q̃

∂

∂ξ1

] = PP̃Qξ1ξ2
∂Q̃

∂ξj

∂

∂ξ1

I acts trivially on W (m,n)−2:

[Pξ1ξ2Q
∂

∂ξj
, P̃ ξ2Q̃

∂

∂ξ1

] = 0

[Pξ1ξ2Q
∂

∂xj
, P̃ ξ2Q̃

∂

∂ξ1

] = 0

< ξ1
∂
∂ξ1
, ξ2

∂
∂ξ2

> ⊗C[x1, ..., xm] ⊗ Λ(n − 2) acts on W (m,n)−2 by mul-

tiplication. W (m,n− 2) acts on W (m,n)−2 by derivation:

[PQ
∂

∂xj
, P̃ ξ2Q̃

∂

∂ξ1

] =

P
∂P̃

∂xj
Qξ2Q̃

∂

∂ξ1

[PQ
∂

∂ξj
, P̃ ξ2Q̃

∂

∂ξ1

] =

− PQξ2
∂Q̃

∂ξj

∂

∂ξ1

4.2 The Lie superalgebra S ′(m,n)

We call divergence of a vector field D =
∑m

i=1 fi
∂
∂xi

+
∑n

i=1 gi
∂
∂ξi
∈ W (m,n)

the expression:

divD =
m∑
i=1

∂fi
∂xi

+
n∑
i=1

(−1)p(gi)
∂gi
∂ξi

We denote by S ′(m,n) the subspace of W (m,n) consisting of vector fields

with zero divergence, S ′(m,n) is a subalgebra of W (m,n).

Moreover we call S(m,n) the derived algebra of S ′(m,n). A Z-grading

on W (m,n) induces gradings on S ′(m,n) and S(m,n).
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4.2.1 The principal grading

The principal grading of W (m,n) induces a grading on S ′(m,n) that we still

call principal. With respect to this grading:

S ′(m,n) = ⊕∞i=−1S
′(m,n)i

where:

S ′(m,n)0 =< xi
∂

∂xi
+ ξj

∂

∂ξj
, xi

∂

∂xj
, ξi

∂

∂ξj
, xi

∂

∂ξj
, ξi

∂

∂xj
, i 6= j >∼= sl(m,n)

The isomorphism is given by the map:

Φ : S ′(m,n)0 −→ sl(m,n)

xi
∂

∂xi
+ ξj

∂

∂ξj
7−→ ei,i + ej+m,j+m

xj
∂

∂xj
i 6= j 7−→ ei,j

ξi
∂

∂ξj
i 6= j 7−→ ei+m,j+m

xi
∂

∂ξj
7−→ ei,j+m

Moreover:

S ′(m,n)−1 =<
∂

∂x1

, ...,
∂

∂xm
,
∂

∂ξ1

, ...,
∂

∂ξn
>∼= Cm|n

So with this grading W (m,n) is irreducible because S ′(m,n)−1 acts via

the standard action on S ′(m,n)0.

Proposition 4.7. S ′(m,n) with the principal grading is transitive.

Proof. It follows from the transitivity of the principal grading of W (m,n).
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4.2.2 Simplicity

Theorem 4.8. S ′(m,n) is simple if m > 1 or m = 0 and n ≥ 3.

Proof. We prove the simplicity of S ′(m,n) using the principal grading. First

we observe that [S ′(m,n)−1, S
′(m,n)1] = S ′(m,n)0, in fact it is sufficient to

show that [S ′(m,n)−1, S
′(m,n)1] ⊃ S ′(m,n)0:

xi
∂

∂xj
= [

∂

∂xi
,
x2
i

2

∂

∂xj
] i 6= j

ξi
∂

∂ξj
=

[ ∂
∂ξk
, ξkξi

∂
∂ξj

] if n ≥ 3 and m = 0

[ ∂
∂x
, xξi

∂
∂ξj

] if m > 1
i 6= j

xi
∂

∂xi
+ ξj

∂

∂ξj
= [

∂

∂xk
, xkxi

∂

∂xi
+ ξjxk

∂

∂ξj
] ∃xk 6= xi because m > 1

xi
∂

∂ξj
= [

∂

∂xk
, xkxi

∂

∂ξj
] ∃xk 6= xi because m > 1

ξi
∂

∂xj
= [

∂

∂xk
, xkξi

∂

∂xj
] ∃xk 6= xj because m > 1

xi
∂

∂xi
− xj

∂

∂xj
=

1

4
[
∂

∂xi
+

∂

∂xj
, (x2

i + 2xixj + x2
j)

∂

∂xi
+

− (x2
i + 2xixj + x2

j)
∂

∂xj
]+

− xj
∂

∂xi
+ xi

∂

∂xj
i 6= j

ξi
∂

∂ξi
− ξj

∂

∂ξj
=

[ ∂
∂x
, xξi

∂
∂ξi
− xξj ∂

∂ξj
] m > 1

[ ∂
∂ξk
, ξkξi

∂
∂ξi
− ξkξj ∂

∂ξj
] n ≥ 3

Now let I be a nonzero ideal. We will show that I = S ′(m,n). In fact

from the irreducibility of S ′(m,n)−1 and the fact that [I−1, S
′(m,n)0] ⊂ I−1,

it follows I−1 = 0 or I−1 = S ′(m,n)−1. In the first case we have that

[S ′(m,n)−1, I0] ⊂ I−1 = 0, by transitivity we have I0 = 0 and, proceeding in

the same way, Ii = 0 ∀i which is impossible because I 6= 0.

It follows that I−1 = S ′(m,n)−1 and S ′(m,n)0 = [S ′(m,n)−1, S
′(m,n)1] ⊂ I.

It remains to show that an element of degree higher than 0 lies in I. Let us

first analyze the case m = 0 and n ≥ 3.
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It is enough to prove that a system of generators of S ′(m,n)k, k < n− 1,

lies in I. Indeed we have:

ξi1ξi2 · · · ξik+1

∂

∂ξi
=

1

2
[ξi1

∂

∂ξi1
− ξi

∂

∂ξi
, ξi1ξi2 · · · ξik+1

∂

∂ξi
] i 6= i1, ..., ik+1

ξiξi1ξi2 · · · ξik
∂

∂ξi
− ξjξi1ξi2 · · · ξik

∂

∂ξj
=

[ξi1
∂

∂ξi1
− ξi

∂

∂ξi
, ξiξi1ξi2 · · · ξik

∂

∂ξi
− ξjξi1ξi2 · · · ξik

∂

∂ξj
]

i, j 6= i1, ..., ik+1, i 6= j

If m > 1 we have:

x
λj1
j1
· · ·xλjljl ξi1 · · · ξit

∂

∂ξj
=

[
∂

∂xj1
,
x
λj1+1

j1

λj1 + 1
· · ·xλjljl ξi1 · · · ξit

∂

∂ξj
] j 6= i1 · · · it, λj1 + ...+ λjl + t = k + 1

x
λj1
j1
· · ·xλjljl ξi1 , ..., ξit−1(−ξj

∂

∂ξj
− xjs
λjs + 1

∂

∂xjs
) =

[
∂

∂xjs
, x

λj1
j1
· · ·

x
λjs+1
js

λjs + 1
· · ·xλjljl ξi1 · · · ξit−1(−ξj

∂

∂ξj
− xjs

(λjs + 2)

∂

∂xs
)]

x
λj1
j1
· · ·xλjljl

∂

∂xs
=

[
∂

∂xj1
,
x
λj1+1

j1

λj1 + 1
· · ·xλjljl

∂

∂xs
] s 6= λj1 , ..., λjl , λj1 + ...+ λjl = k + 1

xλss x
λj1
j1
· · · xλjljl

∂

∂xs
+ λsx

λs−1
s x

λj1
j1
· · ·xλjljl ξi

∂

∂ξi
=

[
∂

∂xs
,
xλs+1
s

λs + 1
x
λj1
j1
· · ·xλjljl

∂

∂xs
+ xλss x

λj1
j1
· · ·xλjljl ξi

∂

∂ξi
]

xλss x
λj1
j1
· · · xλjljl

∂

∂xs
− λsxλs−1

s x
λj1
j1
· · · x

λt+1
t

λt + 1
· · ·xλjljl

∂

∂xt
=

[
∂

∂xs
,
xλs+1
s

λs + 1
x
λj1
j1
· · ·xλjljl

∂

∂xs
− xλss x

λj1
j1
· · · x

λt+1
t

λt + 1
· · ·xλjljl

∂

∂xt
]
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Remark 14. Let us analyze the cases in which S ′(m,n) is not simple.

i) m = 0 and n = 1, then P (ξ) ∂
∂ξ
∈ S ′(0, 1) if and only if P (ξ) = a ∈ C, so

S ′(0, 1) =< ∂
∂ξ
> which is abelian.

ii) m = 0 and n = 2, we have:

S ′(0, 2) =< ξ1
∂

∂ξ2

, ξ2
∂

∂ξ1

, ξ1
∂

∂ξ1

− ξ2
∂

∂ξ2

,
∂

∂ξ1

,
∂

∂ξ2

>

We notice that < ∂
∂ξ1
, ∂
∂ξ2

> is a non trivial ideal.

iii) m = 1 ∀n: S ′(1, n) = S(1, n) + Cξ1ξ2 · · · ξn ∂
∂x

.

First we show that ξ1ξ2 · · · ξn ∂
∂x

/∈ S(1, n), in fact:

[P (x, ξ)
∂

∂x
+

n∑
l=1

Ql(x, ξ)
∂

∂ξl
, R(x, ξ)

∂

∂x
+

n∑
j=1

Tj(x, ξ)
∂

∂ξj
] = (4.1)

P (x, ξ)
∂R(x, ξ)

∂x

∂

∂x
− (−1)p(P )p(R)R(x, ξ)

∂P (x, ξ)

∂x

∂

∂x
+

n∑
j=1

(P (x, ξ)
∂Tj(x, ξ)

∂x

∂

∂ξj
− (−1)p(P )(p(Tj)+1)Tj

∂P

∂ξj

∂

∂x
)+

n∑
l=1

(Ql(x, ξ)
∂R

∂ξl

∂

∂x
− (−1)p(R)(p(Ql)+1)R(x, ξ)

∂Ql(x, ξ)

∂x

∂

∂ξl
)+

∑
l,j

[Ql
∂

∂ξl
, Tj

∂

∂ξj
]

Therefore the term ξ1ξ2 · · · ξn ∂
∂x

can come out from this bracket only if

one of these holds:

• If P (x, ξ)∂R(x,ξ)
∂x

∂
∂x

= ξ1 · · · ξn ∂
∂x

, then it should be P = ξi1 · · · ξit ,
R = xξit+1 · · · ξin , such that ξi1 · · · ξitξit+1 · · · ξin = ξ1 · · · ξn. Then:

P
∂

∂x
+

n∑
l=1

Ql
∂

∂ξl
=

ξi1 · · · ξit
∂

∂x
+

n∑
l=1

Ql
∂

∂ξl
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The condition of null divergence gives:

n∑
l=1

(−1)P (Ql)
∂Ql

∂ξl
= 0

And:

R(x, ξ)
∂

∂x
+

n∑
j=1

Tj(x, ξ)
∂

∂ξj
=

xξit+1 · · · ξin
∂

∂x
+

n∑
j=1

Tj(x, ξ)
∂

∂ξj

The condition of null divergence gives:

ξit+1 · · · ξin +
n∑
j=1

(−1)P (Tj)
∂Tj
∂ξj

= 0

In this case the terms of (4.1) that involve ∂
∂x

become:

ξ1 · · · ξn
∂

∂x
−
∑
j

(−1)p(P )(p(Tj)+1)Tj
∂P

∂ξj

∂

∂x
+
∑
l

Ql
∂R

∂ξl

∂

∂x

We now observe that ξ1 · · · ξn ∂
∂x

cannot be canceled by neither the

terms
∑

lQl
∂R
∂ξl

∂
∂x

because they contain x nor the terms Tj
∂P
∂ξj

∂
∂x

if

Tj 6= ξit+1 · · · ξinξj where j 6= it+1, ..., in.

So we focus on:

R(x, ξ)
∂

∂x
+

n∑
j=1

Tj(x, ξ)
∂

∂ξj
=

xξit+1 · · · ξin
∂

∂x
+

∑
j 6=it+1,...,in

αjξit+1 · · · ξinξj
∂

∂ξj

The divergence condition becomes:

ξit+1 · · · ξin(1−
∑

j 6=it+1,...,in

αj) = 0
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Therefore:

ξ1 · · · ξn
∂

∂x
−
∑
j

(−1)p(P )(p(Tj)+1)Tj
∂P

∂ξj

∂

∂x
=

ξ1 · · · ξn
∂

∂x
−

∑
j 6=it+1,...,in

(−1)t(n−t+2)αjξit+1 · · · ξinξj
∂ξi1 · · · ξit

∂ξj

∂

∂x
=

ξ1 · · · ξn
∂

∂x
−

∑
j 6=it+1,...,in

(−1)t(n−t+2)αjξit+1 · · · ξinξi1 · · · ξit
∂

∂x
=

ξit+1 · · · ξin((−1)t(n−t) −
∑

j 6=it+1,...,in

(−1)t(n−t+2))αjξi1 · · · ξit
∂

∂x
=

(−1)t(n−t)ξit+1 · · · ξin(1−
∑

j 6=it+1,...,in

αj)ξi1 · · · ξit
∂

∂x
= 0

• There exists a j̄ such that Tj̄
∂P
∂ξj̄

= ξ1ξ2 · · · ξn, then Tj̄ = ξi1 · · · ξitξj̄,
P = ξj̄ξit+2 · · · ξin , such that ξi1 · · · ξitξj̄ξit+2 · · · ξin = ξ1ξ2 · · · ξn.

So:

P
∂

∂x
+

n∑
j=1

Qj
∂

∂ξj
=

ξj̄ξit+2 · · · ξin
∂

∂x
+

n∑
j=1

Qj
∂

∂ξj

The condition of zero divergence becomes:

n∑
j=1

(−1)P (Qj)
∂Qj

∂ξj
= 0

Then:

R
∂

∂x
+

n∑
j=1

Tj
∂

∂ξj
=

R
∂

∂x
+
∑
j 6=j̄

Tj
∂

∂ξj
+ ξi1 · · · ξitξj̄

∂

∂ξj̄

The condition of zero divergence becomes:

∂R

∂x
+
∑
j 6=j̄

(−1)P (Tj)
∂Tj
∂ξj
− ξi1 · · · ξit = 0
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In this case the terms of (4.1) that involve ∂
∂x

become:

ξj̄ξit+2 · · · ξin
∂R

∂x

∂

∂x
−

∑
j 6=j̄,i1,...,it

(−1)(n−t)(p(Tj)+1)Tj
∂ξj̄ξit+2 · · · ξin

∂ξj

∂

∂x
+

− (−1)(n−t)(t+2)ξi1 · · · ξitξj̄ξit+2 · · · ξin
∂

∂x
+
∑
l

Ql
∂R

∂ξj

∂

∂x
=

ξj̄ξit+2 · · · ξin
∂R

∂x

∂

∂x
−

∑
j 6=j̄,i1,...,it

(−1)(n−t)(p(Tj)+1)Tj
∂ξj̄ξit+2 · · · ξin

∂ξj

∂

∂x
+

− (−1)(n−t)(t+2)ξ1 · · · ξn
∂

∂x
+
∑
l

Ql
∂R

∂ξl

∂

∂x

Now we analyze these subcases:

1. If ∂R
∂x
6= 0 we have that the terms

∑
lQl

∂R
∂ξj

∂
∂x

cannot cancel

ξ1 · · · ξn ∂
∂x

, we focus onR = βxξi1 · · · ξit and Tj = αjξi1 · · · ξitξj
j 6= j̄, i1, ..., it that can cancel ξ1 · · · ξn ∂

∂x
. In this case the

terms of (4.1) that involve ∂
∂x

become:

βξj̄ξit+2 · · · ξinξi1 · · · ξit
∂

∂x
+

−
∑

j 6=j̄,i1,...,it

(−1)(n−t)(t+2)αjξi1 · · · ξitξj̄ξit+2 · · · ξin
∂

∂x
+

− (−1)(n−t)(t+2)ξi1 · · · ξitξj̄ξit+2 · · · ξin
∂

∂x
+
∑
l

Ql
∂R

∂ξj

∂

∂x

So:

βξj̄ξit+2 · · · ξinξi1 · · · ξit
∂

∂x
+

−
∑

j 6=j̄,i1,...,it

(−1)(n−t)(t+2)αjξi1 · · · ξitξj̄ξit+2 · · · ξin
∂

∂x
+

− (−1)(n−t)(t+2)ξi1 · · · ξitξj̄ξit+2 · · · ξin
∂

∂x
=

((−1)t(n−t)β −
∑

j 6=j̄,i1,...,it

((−1)(n−t)(t+2)αj)− (−1)(n−t)(t+2))ξ1 · · · ξn
∂

∂x

(4.2)
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But the condition of zero divergence of R ∂
∂x

+
∑n

j=1 Tj
∂
∂ξj

be-

comes:

∂R

∂x
+
∑
j 6=j̄

(−1)P (Tj)
∂Tj
∂ξj
− ξi1 · · · ξit =

βξi1 · · · ξit +
∑

j 6=j̄,i1,...,it

(−1)t+1(−1)tαjξi1 · · · ξit − ξi1 · · · ξit =

(β −
∑

j 6=j̄,i1,...,it

αj − 1)ξi1 · · · ξit = 0

Therefore (4.2) becomes:

((−1)t(n−t)β −
∑

j 6=j̄,i1,...,it

((−1)(n−t)(t+2)αj)− (−1)(n−t)(t+2))ξ1 · · · ξn
∂

∂x
=

(−1)t(n−t)(β −
∑

j 6=j̄,i1,...,it

(αj)− 1)ξ1 · · · ξn
∂

∂x
= 0

2. If ∂R
∂x

= 0, and R = βξi1 · · · ξit , then the terms of (4.1) that

involve ∂
∂x

become:

ξj̄ξit+2 · · · ξin
∂R

∂x

∂

∂x
−

∑
j 6=j̄,i1,...,it

(−1)(n−t)(p(Tj)+1)Tj
∂ξj̄ξit+2 · · · ξin

∂ξj

∂

∂x
+

− (−1)(n−t)(t+2)ξ1 · · · ξn
∂

∂x
+
∑
l

Ql
∂R

∂ξl

∂

∂x
=

−
∑

j 6=j̄,i1,...,it

(−1)(n−t)(p(Tj)+1)Tj
∂ξj̄ξit+2 · · · ξin

∂ξj

∂

∂x
+

− (−1)(n−t)(t+2)ξ1 · · · ξn
∂

∂x
+

∑
l=i1,...,it

βQl
∂ξi1 · · · ξit

∂ξl

∂

∂x

Focusing on Tj = αjξi1 · · · ξitξj j 6= j̄, i1, ..., it and Ql =

γlξj̄ξit+2 · · · ξinξl, that can cancel ξ1 · · · ξn the last expression

becomes:
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−
∑

j 6=j̄,i1,...,it

(−1)(n−t)(t+2)αjξi1 · · · ξitξj
∂ξj̄ξit+2 · · · ξin

∂ξj

∂

∂x
+

− (−1)(n−t)(t+2)ξ1 · · · ξn
∂

∂x
+

+
∑

l=i1,...,it

βγlξj̄ξit+2 · · · ξinξl
∂ξi1 · · · ξit

∂ξl

∂

∂x
=

−
∑

j 6=j̄,i1,...,it

(−1)(n−t)(t+2)αjξ1 · · · ξn
∂

∂x
+

− (−1)(n−t)(t+2)ξ1 · · · ξn
∂

∂x
+

+
∑

l=i1,...,it

βγlξj̄ξit+2 · · · ξinξi1 · · · ξit
∂

∂x
=

−
∑

j 6=j̄,i1,...,it

(−1)(n−t)(t+2)αjξ1 · · · ξn
∂

∂x
+

− (−1)(n−t)(t+2)ξ1 · · · ξn
∂

∂x
+

∑
l=i1,...,it

βγl(−1)(n−t)tξ1 · · · ξn
∂

∂x
=

(−1)(n−t)t(−
∑

j 6=j̄,i1,...,it

αj − 1 +
∑

l=i1,...,it

βγl)ξ1 · · · ξn
∂

∂x
(4.3)

But the condition of zero divergence of R ∂
∂x

+
∑n

j=1 Tj
∂
∂ξj

be-

comes:

∂R

∂x
+
∑
j 6=j̄

(−1)p(Tj)
∂Tj
∂ξj
− ξi1 · · · ξit =

∑
j 6=j̄,i1,...,it

(−1)t+1(−1)tαjξi1 · · · ξit − ξi1 · · · ξit =

(−
∑

j 6=j̄,i1,...,it

αj − 1)ξi1 · · · ξit = 0

On the other hand the condition of zero divergence of
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P ∂
∂x

+
∑n

l=1Ql
∂
∂ξl

becomes:

∂P

∂x
+
∑
l

(−1)p(Ql)
∂Ql

∂ξl
=∑

l

γl(−1)n−t+1(−1)n−tξj̄ξit+2 · · · ξin = 0

Therefore (4.3) becomes 0.

This proves that ξ1 · · · ξn ∂
∂x

/∈ S(1, n).

Now we show that every element different from ξ1ξ2 · · · ξn ∂
∂x

lies in

S(1, n). In order to do this, we consider the principal grading and

prove that a basis of [S ′(1, n), S ′(1, n)]k lies in S(1, n). Indeed we have:

1. If k < n− 1:

xk+1 ∂

∂ξi
= [

∂

∂x
,
xk+2

k + 2

∂

∂ξi
]

xk+1 ∂

∂x
+ (k + 1)xkξi

∂

∂ξi
=

1

k + 2
[
∂

∂x
, xk+2 ∂

∂x
+ (k + 2)xk+1ξi

∂

∂ξi
]

xhξi1 · · · ξik+1−h

∂

∂x
− (−1)k+2−hhxh−1ξiξi1 · · · ξik+1−h

∂

∂ξi
=

1

h+ 1
[
∂

∂x
, xh+1ξi1 · · · ξik+1−h

∂

∂x
− (−1)k+2−h(h+ 1)xhξiξi1 · · · ξik+1−h

∂

∂ξi
]

ξi1 · · · ξik+1

∂

∂x
= [

∂

∂ξi
, ξiξi1 · · · ξik+1

∂

∂x
] i 6= i1, ..., ik+1

ξi1 · · · ξik+1

∂

∂ξi
= [

∂

∂x
, xξi1 · · · ξik+1

∂

∂ξi
] i 6= i1, ..., ik+1

2. If k = n−1 can be treated in the same way, except for the element

ξ1ξ2 · · · ξn ∂
∂x

3. If k > n− 1: xk+1 ∂
∂ξi

, xk+1 ∂
∂x

+ (k+ 1)xkξi
∂
∂ξi

, xhξi1 · · · ξik+1−h
∂
∂x
−

(−1)k+2−hhxh−1ξiξi1 · · · ξik+1−h
∂
∂ξi

where k + 1− h ≤ n− 1 can be

obtained as seen in the first case.

Proposition 4.9. S(1, n) is simple if n ≥ 2.
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Proof. We shall prove the statement using principal grading. We show that

[S(1, n)−1, S(1, n)1] = S(1, n)0, indeed:

ξi
∂

∂ξj
= [

∂

∂x
, xξi

∂

∂ξj
], i 6= j

x
∂

∂x
+ ξj

∂

∂ξj
= [

∂

∂x
,
1

2
x2 ∂

∂xi
+ ξjx

∂

∂ξj
]

x
∂

∂ξj
= [

∂

∂x
,
1

2
x2 ∂

∂ξj
]

ξi
∂

∂x
= [

∂

∂ξi
, ξjξi

∂

∂x
], i 6= j

ξi
∂

∂ξi
− ξj

∂

∂ξj
= [

∂

∂x
, xξi

∂

∂ξi
− xξj

∂

∂ξj
]

Now let I be a nonzero ideal of S(1, n). We will show that I = S(1, n). By

the irreducibility of S(1, n)−1 = S ′(1, n)−1 and the fact that [I−1, S(1, n)0] ⊂
I−1, it follows I−1 = 0 or I−1 = S(1, n)−1. In the first case we have that

[S(1, n)−1, I0] ⊂ I−1 = 0, by transitivity we have I0 = 0 and, proceeding in

the same way, Ii = 0 ∀i which is impossible because I 6= 0.

So I−1 = S(1, n)−1 and S(1, n)0 = [S(1, n)−1, S(1, n)1] ⊂ I,

It remains to show that an element of degree k > 0 lies in I.

xk+1−tξi1 · · · ξit
∂

∂ξj
=

[
∂

∂x
,
xk+2−t

k + 2− t
ξi1 · · · ξit

∂

∂ξj
] j 6= i1 · · · it

xk+1−tξi1 , ..., ξit−1(−ξj
∂

∂ξj
− x

k + 2− t
∂

∂x
) =

[
∂

∂x
,
xk+2−t

k + 2− t
ξi1 · · · ξit−1(−ξj

∂

∂ξj
− x

(k + 3− t)
∂

∂x
)]

xk+1 ∂

∂x
+ (k + 1)xkξi

∂

∂ξi
=

[
∂

∂x
,
xk+2

k + 2

∂

∂x
+
xk+1

k + 1
ξi
∂

∂ξi
]

Remark 15. S(1, 1) is not simple. Indeed < ∂
∂ξ
> ⊗C[x] is a non zero ideal

of S(1, 1).
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4.2.3 Subprincipal grading

The subprincipal grading is that of type (1, ..., 1|0, ...0). We have:

S ′(m,n)0 =< xi
∂

∂xi
− xj

∂

∂xj
i 6= j, xi

∂

∂xj
i 6= j > ⊗Λ(ξ1, ..., ξn) + S ′(0, n)

∼= sl(m)⊗ Λ(ξ1, ..., ξn) + S ′(0, n)

The isomorphism is:

Φ : S ′(m,n)0 −→ sl(m)⊗ Λ(ξ1, ..., ξn) + S ′(0, n)

(xi
∂

∂xi
− xj

∂

∂xj
)⊗ P (ξ1, ..., ξn) i 6= j 7−→ (ei,i − ej,j)⊗ P (ξ1, ..., ξn)

xi
∂

∂xj
⊗ P (ξ1, ..., ξn) i 6= j 7−→ ei,j ⊗ P (ξ1, ..., ξn)

S ′(0, n) 3 P 7−→ P

On the other hand we have that:

S ′(m,n)−1 =<
∂

∂x1

, ...,
∂

∂xm
> ⊗Λ(n) ∼= Cm ⊗ Λ(n)

We observe that S ′(m,n) with the subprincipal grading has depth 1.

Proposition 4.10. S ′(m,n) with the subprincipal grading is irreducible.

Proof. Let S 6= 0 be a submodule of S(m,n)−1
∼= Cm ⊗ Λ(n) and z ∈ S a

nonzero element. Then z is of the form:

z =
∑
k

αkPk
∂

∂xk
where Pk ∈ Λ(n), αk ∈ C

Let us suppose αi 6= 0 for an index i. Then we have:

[xi
∂

∂x1

, z] = −αiPi
∂

∂x1

∈ S

We recall that S ′(m,n)0
∼= sl(m) ⊗ Λ(n) ⊕ S ′(0, n). By the action of sl(m)

on ∂
∂x1

we generate Pi ⊗ Cm. Moreover by the action of S ′(0, n) on Pi we

generate 1⊗Cm, finally by the action of sl(m)⊗Λ(n) on 1⊗Cm we generate

Cm ⊗ Λ(n).
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Proposition 4.11. S ′(m,n) with subprincipal grading is transitive.

Proof. Let a 6= 0 be an element of S ′i≥0(m,n) and suppose [a, S ′−1(m,n)] = 0.

Since S ′−1(m,n) = W−1(m,n), we have, by the transitivity of W (m,n) with

the subprincipal grading, that a = 0.

4.2.4 Symmetric gradings

Our aim is to obtain a complete list, up to isomorphisms, of strongly sym-

metric gradings of length five of the Lie superalgebra S ′(m,n).

Remark 16. We notice that we are interested only in Z-gradings of type

(0, ..., 0|b1, ..., bn) or (a|), in fact if there exists an ai 6= 0 and m ≥ 2, the

maximal degree k would not be finite, because for example an element of the

form xl1
∂
∂x2

would lie in S ′ for every l. On the other hand if m = 1 and n ≥ 1

the maximal degree k would not be finite, because, similarly, an element of

the form xl ∂
∂ξ1

would lie in S ′ for every l. Moreover the gradings of type

(0, ..., 0|b1, ..., bn) and (a|) are of finite depth, because the squares of the ξi’s

are zero.

The grading of type (a|) is very elementary, indeed, if we suppose a = 1

S ′(1, 0) =< ∂
∂x
>= S ′(1, 0)−1.

We will start our analysis from S ′(0, n) and then generalize it to S ′(m,n).

4.2.5 S ′(0, n)

We first consider a grading of type (|b1, ..., bn) where bi > 0 ∀i. We denote

by k the maximal degree and −h the minimal degree of elements of S ′(0, n)

with such a grading. We set max(bi) = b2 and min(bi) = b1 It follows:

k = b2 + ...+ bn −min {bi} = b2 + ...+ bn − b1

h = max {bi} = b2
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So:

h = k ⇔

−b1 + b2 + ...+ bn = b2 ⇔

b3 + ...+ bn = b1 ⇔

n = 3 and b3 = b1

Therefore we first study the case n = 3 and grading (|b, B, b), B ≥ b. We

have h = k = B and the following two possibilities:

1. If B = b, supposing b = 1:

S ′(0, 3)−1 =<
∂

∂ξ1

,
∂

∂ξ2

,
∂

∂ξ3

>

S ′(0, 3)1 ⊃< ξ1ξ2
∂

∂ξ3

, ξ1ξ3
∂

∂ξ2

, ξ2ξ3
∂

∂ξ1

, ξ1ξ3
∂

∂ξ1

− ξ2ξ3
∂

∂ξ2

, ξ1ξ2
∂

∂ξ2

− ξ1ξ3
∂

∂ξ3

>

Then dim(S ′(0, 3)−1) < dim(S ′(0, 3)1).

2. If B > b we have:

S ′(0, 3)−B =<
∂

∂ξ2

>

S ′(0, 3)B ⊃< ξ1ξ2
∂

∂ξ3

, ξ2ξ3
∂

∂ξ1

>

Then dim(S ′(0, 3)−B) < dim(S ′(0, 3)B).

Therefore now we study gradings of type (|b1, ..., bn) with bi ≥ 0 ∀i such that

bj = 0 for some j, or such that bi > 0 and bj < 0 for some i 6= j. First we

analyze what happens for n = 2 and then n ≥ 3.

A) S ′(0, 2)

The possibilities are:
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i) (|0, a) with a > 0. We suppose a = 1. Then:

S ′(0, 2)−1 =<
∂

∂ξ2

, ξ1
∂

∂ξ2

>

S ′(0, 2)0 =< ξ1
∂

∂ξ1

− ξ2
∂

∂ξ2

,
∂

∂ξ1

>

S ′(0, 2)1 =< ξ2
∂

∂ξ1

>

Therefore dim(S ′(0, 2)−1) > dim(S ′(0, 2)1).

ii) (|a,−b) with a, b > 0 and a > b then h = k = a+ b and:

S ′(0, 2)−b = 0

S ′(0, 2)b =<
∂

∂ξ2

>

Therefore dim(S ′(0, 2)−b) < dim(S ′(0, 2)b).

iii) (|a,−b) with a, b > 0 and a < b then h = k = a + b, It is analogous to

the previous one.

iv) (|a,−a) with a > 0, we suppose a = 1, we have h = k = 2 and:

S ′(0, 2)−2 =< ξ2
∂

∂ξ1

>

S ′(0, 2)−1 =<
∂

∂ξ1

>

S ′(0, 2)0 =< ξ1
∂

∂ξ1

− ξ2
∂

∂ξ2

>

S ′(0, 2)1 =<
∂

∂ξ2

>

S ′(0, 2)2 =< ξ1
∂

∂ξ2

>

This grading not generated by its local part, since [S ′(0, 2)−1, S
′(0, 2)−1] =

0.
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B) S ′(0, n), n ≥ 3

Let (|b1, ..., bn) be a Z−grading such that bi ≥ 0 ∀i and bj = 0 for some j, or

such that bi > 0 and a bj < 0 for some i 6= j.

We observe that in both these cases S ′(0, n) = ⊕ki=−hS ′(0, n)i with h, k <

∞ and:

h =
∑
bi≤0

|bi|+max {bi ≥ 0}

k =
∑
bi≥0

bi + |min {bi ≤ 0} |

Then, if we set b1 = max {bi}, b2 = min {bi} :

h = k ⇔ b3 + ...+ bn = 0

i) Z-grading of type (|b1, ..., bn) where bi ≥ 0 ∀i and bj = 0 for some j. Notice

that h = k if and only if the grading is of type (|a, 0, ..., 0) where a > 0.

We have, choosing a = 1:

S ′(0, n)−1 =<
∂

∂ξ1

> ⊗Λ(ξ2, ..., ξn)

S ′(0, n)1 =< ξ1
∂

∂ξ2

> ⊗Λ(ξ3, ..., ξn)+ < ξ1
∂

∂ξ3

> ⊗Λ(ξ2, ξ4, ..., ξn) + ...

+ < ξ1
∂

∂ξn
> ⊗Λ(ξ2, ξ3, ..., ξn−1)+ < ξ1ξi

∂

∂ξi
− ξ1ξj

∂

∂ξj
> ⊗Λ(ξk, k 6= i, j, 1)

i 6= j, i, j 6= 1

Therefore:

dim(S ′(0, n)−1) = 2n−1

dim(S ′(0, n)1) = (n− 1)2n−2 + (n− 2)2n−3

dim(S ′(0, n)−1) = dim(S ′(0, n)1)⇔

2n−1 = (n− 1)2n−2 + (n− 2)2n−3 ⇔
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2n−1 = 2n−3(2n− 2 + n− 2)⇔

4 = 3n− 4⇔

n = 8/3

So these two spaces have always different dimensions.

ii) Z-grading of type (|b1, ..., bn) with bi > 0 and bj < 0 for some i 6= j.

Let us analyze the grading of type (|B, b, 0, ..., 0), with B > 0, b < 0.

In fact this is sufficient, by Remark 11, in order to study symmetric

gradings of length five. We have h = k = −b+B, the possible degrees

are −B, b, b − B,B,−b, B − b, 0, B + b. We notice that −b − B 6=
−B, b−B,−b, B − b. Therefore we have the following possibilities:

iia) −b−B = b, i.e., B = 2|b|;

iib) −b−B = B, i.e., |b| = 2B;

iic) −b−B = 0, i.e., |b| = B.

If none of these cases holds, then dim(S ′(m,n)−b−B) = 0 and

dim(S ′(m,n)b+B) > 0, hence we rule this possibility out. In case iia)

(resp. iib)) we can assume |b| = 1 (resp. B = 1) hence getting a grading

of depth three. Now suppose |b| = B, and set B = 1, i.e., consider the

grading of type (|1,−1, 0, ..., 0). We have:

S ′(0, n)−2 =< ξ2
∂

∂ξ1

> ⊗Λ(ξ3, ..., ξn)

S ′(0, n)−1 =<
∂

∂ξ1

> ⊗Λ(ξ3, ..., ξn)+

< ξ1ξ2
∂Q(ξ3, ..., ξn)

∂ξj

∂

∂ξ1

+ (−1)p(Q)ξ2Q(ξ3, ..., ξn)
∂

∂ξj
> j ≥ 3

S ′(0, n)0 =< Q(ξ3, ..., ξn)ξ1
∂

∂ξ1

−Q(ξ3, ..., ξn)ξ2
∂

∂ξ2

> +

< Q(ξ3, ..., ξn)
∂

∂ξi
− ξ1

∂Q(ξ3, ..., ξn)

∂ξi

∂

∂ξ1

> +ξ1ξ2 ⊗ S(m,n− 2)
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S ′(0, n)1 =<
∂

∂ξ2

> ⊗Λ(ξ3, ..., ξn)+

< ξ1ξ2
∂Q(ξ3, ..., ξn)

∂ξj

∂

∂ξ2

+ (−1)p(Q)ξ1Q(ξ3, ..., ξn)
∂

∂ξj
> j ≥ 3

S ′(0, n)2 =< ξ1
∂

∂ξ2

> ⊗Λ(ξ3, ..., ξn)

Note that this grading is symmetric, it is consistent if and only if n = 2

and it is generated by its local part.

4.2.6 S ′(m,n), m > 1 and n ≥ 2

The analysis of the Z-grading of type (0, ..., 0|b1, ..., bn) of the Lie superalge-

bra S ′(m,n) is similar to that of the grading of type (|b1, ..., bn) of the Lie

superalgebra S ′(0, n). Indeed, the following relations still hold:

h =
∑
bi≤0

|bi|+max {bi ≥ 0}

k =
∑
bi≥0

bi + |min {bi ≤ 0} |

Then:

h = k ⇔

b1 + ...+ bn = max {bi ≥ 0} − |min {bi ≤ 0} | ⇔

b1 + ...+ bn = max {bi ≥ 0}+min {bi ≤ 0}

Remark 17. As in the general case of W (m,n), in these formulas we mean

that if either {bi ≥ 0} = ∅ or {bi ≤ 0} = ∅ then max {bi ≥ 0} = 0 (resp.

min {bi ≤ 0} = 0).

The following possibilities may thus occur:

i) bi ≥ 0 ∀i:

in this case h = k if and only if the grading is, up to isomorphisms, of
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type (0, ..., 0|a, 0, ..., 0) with a > 0. Let us set a = 1. Then we have:

S ′(m,n)−1 =<
∂

∂ξ1

> ⊗Λ(ξ2, ..., ξn)⊗ C[x1, ..., xm]

S ′(m,n)1 =< P
∂Q(ξ2, ..., ξn)

∂ξj
ξ1

∂

∂xi
− (−1)p(Q)+1 ∂P

∂xi
Q(ξ2, ..., ξn)ξ1

∂

∂ξj
>

j ≥ 2

where P ∈ C[x1, ..., xm] and Q ∈ Λ(ξ3, ..., ξn).

ii) bi > 0 and bj < 0 for some i > j.

In order to study symmetric gradings of length five it is sufficient to

analyze gradings of type (0, . . . , 0|B, b, 0, . . . , 0) with B > 0, b < 0, by

Remark 11. Then h = k = −b + B and the degrees which appear are:

−B, b, b − B,B,−b, B − b, 0, B + b. Notice that −b − B 6= −B, b −
B,−b, B − b. Therefore we have the following possibilities:

iia) −b−B = b, i.e., B = 2|b|;

iib) −b−B = B, i.e., |b| = 2B;

iic) −b−B = 0, i.e., |b| = B.

If none of these cases holds, then dim(S ′(m,n)−b−B) = 0 and

dim(S ′(m,n)b+B) > 0, hence we rule this possibility out. In case iia)

(resp. iib)) we can assume |b| = 1 (resp. B = 1) hence getting a grading

of depth three. Now suppose |b| = B, and set B = 1, i.e., consider

the grading of type (0, ..., 0|1,−1, 0, ..., 0), let P ∈ C[x1, ..., xm] and

Q ∈ Λ(ξ3, ..., ξn):

S ′(m,n)−2 =< ξ2
∂

∂ξ1

> ⊗Λ(ξ3, ..., ξn)C[x1, ..., xm]
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S ′(m,n)−1 =<
∂

∂ξ1

> ⊗Λ(ξ3, ..., ξn)⊗ C[x1, ..., xm]+

< P
∂Q(ξ3, ..., ξn)

∂ξj
ξ2

∂

∂xi
− (−1)p(Q)+1 ∂P

∂xi
Q(ξ3, ..., ξn)ξ2

∂

∂ξj
> +

< Pξ1ξ2
∂Q(ξ3, ..., ξn)

∂ξj

∂

∂ξ1

+ (−1)p(Q)Pξ2Q(ξ3, ..., ξn)
∂

∂ξj
> j ≥ 3

S ′(m,n)0 =< PQ(ξ3, ..., ξn)
∂

∂xi
+ (−1)p(Q) ∂P

∂xi
ξ1Q(ξ3, ..., ξn)

∂

∂ξ1

,

PQ(ξ3, ..., ξn)ξ1
∂

∂ξ1

− PQ(ξ3, ..., ξn)ξ2
∂

∂ξ2

,

P
∂Q(ξ3, ..., ξn)

∂ξj

∂

∂xi
− (−1)p(Q) ∂P

∂xi
Q(ξ3, ..., ξn)

∂

∂ξj
,

P ξ1ξ2
∂Q(ξ3, ..., ξn)

∂ξj

∂

∂xi
− (−1)p(Q) ∂P

∂xi
ξ1ξ2Q(ξ3, ..., ξn)

∂

∂ξj
> j ≥ 3

S ′(m,n)1 =<
∂

∂ξ2

> ⊗Λ(ξ3, ..., ξn)⊗ C[x1, ..., xm]+

< P
∂Q(ξ3, ..., ξn)

∂ξj
ξ1

∂

∂xi
− (−1)p(Q)+1 ∂P

∂xi
Q(ξ3, ..., ξn)ξ1

∂

∂ξj
> +

< Pξ1ξ2
∂Q(ξ3, ..., ξn)

∂ξj

∂

∂ξ2

+ (−1)p(Q)Pξ1Q(ξ3, ..., ξn)
∂

∂ξj
> j ≥ 3

S ′(m,n)2 =< ξ1
∂

∂ξ2

> ⊗Λ(ξ3, ..., ξn)C[x1, ..., xm]

This grading is symmetric, consistent if and only if n = 2 and generated

by its local part.

4.2.7 S(1, n), n ≥ 2

We start by analyzing the grading of type (0|b1, ..., bn) with bi > 0 for every

i. Recall that S(1, n) = S ′(1, n)\ 〈ξ1 · · · ξn ∂
∂x
〉, hence S(1, n) = ⊕ki=−hS(1, n)i

where, if we set b1 = min(bi) and b2 = max(bi):

h = b2 k = b2 + ...+ bn

Then:

k = h⇔ b2 + ...+ bn = b2 ⇔ b3 + ...+ bn = 0⇔ n = 2

The following possibilities may then occur:
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i) (0|b, b) where b = 1, that is (0|1, 1). We have:

S(1, 2)−1 =<
∂

∂ξ1

,
∂

∂ξ2

> ⊗C[x]

S(1, 2)1 =< rxr−1ξ1ξ2
∂

∂ξ1

− xrξ2
∂

∂x
, rxr−1ξ1ξ2

∂

∂ξ2

− xrξ1
∂

∂x
> r ≥ 0

Note that this grading is symmetric and consistent.

ii) (0|b, B), B > b. This grading is symmetric of length 5 if and only if

b = 1 and B = 2. Then we have:

S(1, 2)−2 =<
∂

∂ξ2

> ⊗C[x]

S(1, 2)−1 =<
∂

∂ξ1

, ξ1
∂

∂ξ2

> ⊗C[x]

S(1, 2)0 =< ξ1
∂

∂ξ1

− ξ2
∂

∂ξ2

> ⊗C[x]+ < xr
∂

∂x
+ rxr−1ξi

∂

∂ξi
, i = 1, 2 >

S(1, 2)1 =< ξ2
∂

∂ξ1

> ⊗C[x]+ < rxr−1ξ1ξ2
∂

∂ξ2

− xrξ1
∂

∂x
> r ≥ 0

S(1, 2)2 =< xrξ2
∂

∂x
− rxr−1ξ1ξ2

∂

∂ξ1

>

This grading is symmetric and generated by its local part, but not

consistent.

Finally we consider the Z-grading of type (0|b1, ..., bn), where either bi > 0

for some i and bj < 0 for some j or bi ≥ 0 for every i and bk = 0 for at least

one k. The analysis of these cases can be carried out as for S ′(m,n) with

m > 1 and n ≥ 2, keeping in mind that ξ1 · · · ξn ∂
∂x

/∈ S(1, n). Notice, though,

that the grading of type (0|1, 0) of S(1, 2) is strongly symmetric of length

three. Indeed, let us consider S(1, n) with the grading of type (0|1, 0, ..., 0).

Then we have:

S(1, n)−1 =<
∂

∂ξ1

> ⊗Λ(ξ2, ..., ξn)⊗ C[x]

S(1, n)1 =< P (x)
∂Q(ξ2, ..., ξn)

∂ξi
ξ1
∂

∂x
− (−1)p(Q)+1∂P (x)

∂x
Q(ξ2, ..., ξn)ξ1

∂

∂ξi
>

for i ≥ 2
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Therefore S(1, n)1 is isomorphic to n − 1 copies of S(1, n)−1, that is

S(1, n)1
∼= S(1, n)−1 if and only if n = 2.

If n = 2 we obtain:

S(1, 2)−1 =<
∂

∂ξ1

> ⊗Λ(ξ2)⊗ C[x]

S(1, 2)1 =< ξ1
∂

∂ξ2

> ⊗C[x]+ < xrξ1
∂

∂x
− rxr−1ξ1ξ2

∂

∂ξ2

>

Therefore we have proved the following results:

Theorem 4.12. 1. If (m,n) 6= (1, 2) then the Lie superalgebra S(m,n)

has no strongly symmetric Z-grading of length three.

2. A complete list, up to isomorphisms, of strongly symmetric Z−gradings

of length three of the Lie superalgebra S(1, 2) is the following:

(a) (0|1, 1)

(b) (0|1, 0)

Theorem 4.13. A complete list, up to isomorphisms, of strongly symmetric

Z−gradings of length five of the Lie superalgebra of S(m,n) is the following:

1. (0, ..., 0|1,−1, 0, ..., 0)

2. (0|2, 1) for m = 1 and n = 2

We now give a description on the strongly symmetric Z−gradings of

length five of the Lie superalgebra of S(m,n).

1. S(1, 2) with grading (0|2, 1). It follows that:

S(1, 2)0 =< ξ1
∂

∂ξ1

− ξ2
∂

∂ξ2

> ⊗C[x]+ < xr
∂

∂x
+ rxr−1ξ1

∂

∂ξ1

>∼=

C[x]oW (1, 0)
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and I :=< ξ1
∂
∂ξ1
− ξ2

∂
∂ξ2

> ⊗C[x] is a non trivial abelian ideal. Indeed:

[xr
∂

∂x
+ rxr−1ξ1

∂

∂ξ1

, xt
∂

∂x
+ txt−1ξ1

∂

∂ξ1

] =

txr+t−1 ∂

∂x
+ t(t− 1)xr+t−2ξ1

∂

∂ξ1

− rxr+t−1 ∂

∂x
− r(r − 1)xr+t−2ξ1

∂

∂ξ1

[P (x)(ξ1
∂

∂ξ1

− ξ2
∂

∂ξ2

), Q(x)(ξ1
∂

∂ξ1

− ξ2
∂

∂ξ2

)] = 0

W (0, 1) acts naturally on I, indeed:

[xr
∂

∂x
+ rxr−1ξ1

∂

∂ξ1

, P (x)ξ1
∂

∂ξ1

− P (x)ξ2
∂

∂ξ2

] =

∂P

∂x
xrξ1

∂

∂ξ1

− ∂P

∂x
xrξ2

∂

∂ξ2

Moreover:

S(1, 2)−1 =<
∂

∂ξ1

> ⊗C[x]⊕ < ξ1
∂

∂ξ2

> ⊗C[x] ∼=

S1 ⊕ S2

with S1 and S2 S(1, 2)0-modules. In particular: S1
∼= C[x](−1) and

S2
∼= C[x](1), where by C[x](λ) we denote the twisted action of W (1, 0)

on C[x] defined as follows, for X ∈ W (1, 0), λ ∈ C and P ∈ C[x]:

X.P = X(P ) + λdiv(X)P

Indeed:

[xr
∂

∂x
+ rxr−1ξ1

∂

∂ξ1

, Q(x)
∂

∂ξ1

] =

xr
∂Q

∂x

∂

∂ξ1

− rQxr−1 ∂

∂ξ1

[xr
∂

∂x
+ rxr−1ξ1

∂

∂ξ1

, Q(x)ξ1
∂

∂ξ2

] =

xr
∂Q

∂x
ξ1

∂

∂ξ2

+ rQxr−1ξ1
∂

∂ξ2
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Moreover C[x] acts on S1 by multiplication for −1 and on S2 by mul-

tiplication for 2. Indeed:

[P (x)(ξ1
∂

∂ξ1

− ξ2
∂

∂ξ2

), Q
∂

∂ξ1

] = −PQ ∂

∂ξ1

[P (x)(ξ1
∂

∂ξ1

− ξ2
∂

∂ξ2

), Qξ1
∂

∂ξ2

] = 2PQξ1
∂

∂ξ2

Finally S(1, 2)−2 =< ∂
∂ξ2

> ⊗C[x] is isomorphic, as a module, to C[x],

it is a W (1, 0)−module with respect to the natural action, meanwhile

it is a C[x]−module with respect to the product action.

2. S(m,n) with grading (0, ..., 0|1,−1, 0, ..., 0):

S ′(m,n)0 =< PQ
∂

∂xi
+ (−1)p(Q) ∂P

∂xi
ξ1Q

∂

∂ξ1

> +

< PQξ1
∂

∂ξ1

− PQξ2
∂

∂ξ2

> +

< P
∂Q

∂ξj

∂

∂xi
− (−1)p(Q) ∂P

∂xi
Q
∂

∂ξj
> +

< Pξ1ξ2
∂Q

∂ξj

∂

∂xi
− (−1)p(Q)ξ1ξ2

∂P

∂xi
Q
∂

∂ξj
> j ≥ 3 =

W (m, 0)⊗ Λ(n− 2)⊕ I1 ⊕ S(m,n− 2)⊕ I2

where P ∈ C[x1, ..., xm] and Q ∈ Λ(n − 2) and by Λ(n − 2) we mean

Λ(ξ3, ..., ξn).

I1
∼= C[x1, ..., xm]⊗Λ(n−2) and I2

∼=< ξ1ξ2 > ⊗S(m,n−2) are abelian

ideals. The ideals I1 and I2 commute, indeed let P, P̃ ∈ C[x1, ..., xm]

and Q, Q̃ ∈ Λ(n− 2):

[PQξ1
∂

∂ξ1

− PQξ2
∂

∂ξ2

, P̃ ξ1ξ2
∂Q̃

∂ξj

∂

∂xi
− (−1)p(Q̃)ξ1ξ2

∂P̃ (x)

∂xi
Q̃
∂

∂ξj
] =

PQP̃ξ1ξ2
∂Q̃

∂ξj

∂

∂xi
− (−1)p(Q̃)PQξ1ξ2

∂P̃ (x)

∂xi
Q
∂

∂ξj
+

PQP̃ξ2ξ1
∂Q̃

∂ξj

∂

∂xi
− (−1)p(Q̃)PQξ2ξ1

∂P̃ (x)

∂xi
Q
∂

∂ξj
= 0

S(m,n− 2) acts by derivation on I1, W (m, 0) acts on I1 by derivation,

Λ(n− 2) by multiplication.

S(m,n− 2) and W (m, 0)⊗ Λ(n− 2) act on I2 via the adjoint action.
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Moreover:

S ′(m,n)−1 =<
∂

∂ξ1

> ⊗Λ(n− 2)⊗ C[x1, ..., xm]+

< P (x)
∂R(ξ3, ..., ξn)

∂ξj
ξ2

∂

∂xi
− (−1)p(R)+1∂P (x)

∂xi
R(ξ3, ..., ξn)ξ2

∂

∂ξj
> j ≥ 3

< P (x)ξ1ξ2
∂Q(ξ3, ..., ξn)

∂ξj

∂

∂ξ1

+ (−1)p(Q)P (x)ξ2Q(ξ3, ..., ξn)
∂

∂ξj
> j ≥ 3 =

S1 + S2 + S3
∼=

C[x1, ..., xm]⊗ Λ(n− 2) + S(m,n− 2) + C[x1, ..., xm]⊗W (0, n− 2)

By direct and long computations one can see that the following inclu-

sions hold:

[I1 ⊗ Λ(n− 2), S1] ⊂ S1

[W (m, 0)⊗ C[x1, ..., xm], S1] ⊂ S1

[S(m,n− 2), S1] ⊂ S1

[I2 ⊗ Λ(n− 2), S1] ⊂ S2 + S3

[I1 ⊗ Λ(n− 2), S2] ⊂ S2 + S3

[W (m, 0)⊗ C[x1, ..., xm], S2] ⊂ S2 + S3

[S(m,n− 2), S2] ⊂ S2

[I2 ⊗ Λ(n− 2), S2] = 0

[I1 ⊗ Λ(n− 2), S3] ⊂ S3

[W (m, 0)⊗ C[x1, ..., xm], S3] ⊂ S2 + S3

[S(m,n− 2), S3] ⊂ S2 + S3

[I2 ⊗ Λ(n− 2), S3] = 0

Therefore this grading is not irreducible, since S2 + S3 is a submodule.

Finally:

S ′(m,n)−2 =< ξ2
∂

∂ξ1

> ⊗Λ(ξ3, ..., ξn)C[x1, ..., xm]
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Therefore W (m, 0) ⊗ Λ(n − 2) acts on S ′(m,n)−2 by (−1)−twisted

action. Indeed, let Q, Q̃ ∈ Λ(n− 2):

[P (x)Q
∂

∂xi
+ (−1)p(Q)∂P (x)

∂xi
ξ1Q

∂

∂ξ1

, P̃ ξ2Q̃
∂

∂ξ1

] =

P
∂P̃

∂xi
Qξ2Q̃

∂

∂ξ1

− (−1)p(Q)p(Q̃)(−1)p(Q)∂P (x)

∂xi
P̃ ξ2Q̃Q

∂

∂ξ1

=

P
∂P̃

∂xi
Qξ2Q̃

∂

∂ξ1

− ∂P (x)

∂xi
QP̃ξ2Q̃

∂

∂ξ1

C[x]⊗ Λ(n− 2) acts on S ′(m,n)−2 by multiplication:

[P (x)Q(ξ3, ..., ξn)ξ1
∂

∂ξ1

− P (x)Q(ξ3, ..., ξn)ξ2
∂

∂ξ2

, P̃ ξ2Q̃
∂

∂ξ1

] =

− PQP̃ξ2Q̃
∂

∂ξ1

− (−1)p(Q)p(Q̃)(−1)p(Q)P̃ ξ2Q̃PQ
∂

∂ξ1

=

− PQP̃ξ2Q̃
∂

∂ξ1

− PQP̃ξ2Q̃
∂

∂ξ1

=

− 2PQP̃ξ2Q̃
∂

∂ξ1

and S(m,n− 2) acts on S ′(m,n)−2 by derivation:

[P (x)
∂Q(ξ3, ..., ξn)

∂ξj

∂

∂xi
− (−1)p(Q)∂P (x)

∂xi
Q(ξ3, ..., ξn)

∂

∂ξj
, P̃ Q̃ξ2

∂

∂ξ1

] =

P (x)
∂Q(ξ3, ..., ξn)

∂ξj

∂P̃

∂xi
Q̃ξ2

∂

∂ξ1

− (−1)p(Q)∂P (x)

∂xi
Q(ξ3, ..., ξn)P̃

∂Q̃

∂ξj
ξ2

∂

∂ξ1

< ξ1ξ2 > ⊗S(m,n− 2) acts on S ′(m,n)−2 trivially:

[P (x)ξ1ξ2
∂Q

∂ξj

∂

∂xi
− (−1)p(Q)ξ1ξ2

∂P (x)

∂xi
Q
∂

∂ξj
, P̃ Q̃ξ2

∂

∂ξ1

] = 0
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