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Abstract

We will describe a theory of emergent gravity, that allows us to identify the gravita-
tional effects of dark matter as the deformation of the dark energy medium via linear
elasticity under suitable conditions. To do so, we will introduce the necessary quantities
and constants in three different chapters. In the first part we will review Newtons theory
of gravitation as a classical view of gravity based on the universal gravitational constant
and the gravitational potential. In the second part we will briefly see some of the main
results in modern cosmology without being too specific. We will describe some experi-
mental facts such as the rotation curves of spiral galaxies, which suggest the existence
of dark matter. We will also explain why we need an acceleration scale as an alternative
to dark matter theories and how the two can come together in emergent gravity. In
the third part we will give a rigorous and yet elementary description of linear elasticity.
We will introduce the strain and stress tensors, how they relate to each other and also
see some important parameters that will help us to describe the dark energy medium in
details. We will show the existence of a preferred direction in the dark energy medium
that identifies an interface surface where all the identifications can be made. In the final
chapter we will finally merge all notions given in the previous three chapters to formulate
a simple, yet complete description of the theory, describing its weak and strong points.
Once we have shown that gravitational and elastic quantities are somehow related under
certain conditions in the dark energy medium, it will become easy to see the duality
between certain laws, especially from the energetic point of view.



Abstract

Descriveremo una teoria di gravitá emergente, che ci permette sotto certe condizioni di
identificare gli effetti gravitazionali della materia oscura come deformazioni del mezzo
di energia oscura tramite elasticitá lineare. Per fare ció, descriveremo quantitá nec-
essarie e costanti in tre differenti capitoli. Nella prima parte rivisiteremo la teoria
della gravitazione di Newton da un punto di vista classico della gravitá basato sulla
costante di gravitazione universale e sul potenziale gravitazionale. Nella seconda parte
vedremo brevemente alcuni dei risultati principali in cosmologia moderna senza essere
troppo specifici. Descriveremo alcuni fatti sperimentali come la velocitá di rotazione delle
galassie a spirale, che suggerisce l’esistenza della materia oscura. Spiegheremo in oltre il
motivo per cui abbiamo bisogno di una scala di accelerazione come alternativa alle teorie
sulla materia oscura e come le due possono congiungersi in gravitá emergente. Nella terza
parte daremo una rigorosa e al contempo elementare descrizione di elasticitá lineare. In-
trodurremo i tensori di sforzo e stress, come sono legati fra di loro e vedremo anche
alcuni importanti parametri che ci aiuteranno a descrivere il mezzo di energia oscura
nei dettagli. Mostreremo l’esistenza di una direzione preferenziale nel mezzo di energia
oscura che identifica una superficie di interfaccia dove tutte le identificazioni possono
essere fatte. Nel capitolo finale uniremo finalmente tutte le nozioni date nei tre capitoli
precedenti per formulare una semplice, ma allo stesso tempo completa descrizione della
teoria, descrivendo i suoi punti forti e deboli. Una volta che abbiamo mostrato che le
quantitá gravitazionali ed elastiche sono relazionate sotto alcune condizioni nel mezzo di
energia oscura, diventerá facile vedere la dualitá fra certe leggi, specialmente dal punto
di vista energetico.
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Chapter 1

Introduction

This paper is mainly based on Verlinde’s work on emergent gravity. What we propose
here is a formal approach to the laws that bind together gravity and elasticity. The main
idea is that local density of entropy given by mass remains in the dark energy medium
leaving an imprint. The result is that dark energy medium is deformed. We can apply
classical linear theory of elasticity results to describe its behaviour. The deformation
causes a stress, the medium relaxes very slowly and it generates a reaction elastic force
on mass. It’s this force, that dark energy medium exerts on mass, that causes an excess
of gravity which we observe as dark matter. These hypothesis are highly speculative and
emergent gravity is nowadays a really discussed and criticized theory but also a really
interesting approach to dark matter problem and a good alternative to MOND1 theories.

1.1 Summary

The correspondence equations shown in chapter 5, allow us to translate the response of
then dark energy medium described by the elastic quantities of chapter 4, in the form of
apparent gravitational quantities of chapter 2 thanks to the experimental results given
in chapter 3. This identification can only be made once proper conditions are met and
we are in the Newtonian regime.

Our main purpose is to describe the correspondence maps and explain the entities in-
volved. In revisiting Newton’s theory of gravitation we focus on the universal gravita-
tional constant and gravitational acceleration through the basic relations of the classical
theory in its most simplified version. Some of its applications will be discussed and some
of its main results shown, such as the orbit of the earth around the sun. Even if a more
complete covariant theory is available for describing such phenomena, we will deal with

1Modified Newtonian Dynamic (MOND) theories are about an hypothetical acceleration scale that
is the boundary below which the usual Newton’s law is no longer valid and needs to be modified.
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a simple yet satisfactory version of it.

The transition of the Newtonian regime to the elastic one can only be understood with
quantum theory in a de Sitter space which we shortly describe in the first part of Ap-
pendix A. Nonetheless we will give an insight at the reasons that led us on this path
in the cosmology chapter. Recent experimental results indicated us that not Newton’s
theory of gravitation and not even Einstein’s general relativity are enough to describe
all the gravity related phenomena in the universe. Thereby we start thinking that may
there be some intrinsic space-time properties that define a boundary where these laws are
no more valid. Here’s where the acceleration scale come into play, defining a limit where
standard Newton’s law, which can be derived by general relativity with the appropriate
conditions, are no more valid. Although these ideas are not well accepted, they seems to
lead to interesting theoretical results such as the one we are describing.

We can in fact identify the acceleration scale as a fundamental parameter that allow
us to describe the precise laws that binds gravity and elasticity. The latter, is better
described as linear elasticity since we will treat only the theory with a linear relation
between the strain and stress tensor, known as linear Hooke’s law. The phenomena de-
scribed by theory on a generic medium are then translated into the entanglement entropy
medium ones as we briefly see in Appendix A and thereby into the dark energy medium
ones. As we will see, being able to describe this relation between dark energy medium
deformations and apparent gravity gives us the chance to bind more deep laws such as
Gauss law and Poisson equation in an elegant and concise way.

Albeit we are looking forward to discuss a covariant theory, our treaty will merely stop
at the relation that gravitational self-energy and elastic energy have for the sake of
simplicity and of course, because of the limits of the most recent theoretical results.

1.2 Theoretical framework

We will mainly focus on gravity and elasticity or ”elastic gravity” as we call for short,
leaving the really complex theoretical framework aside, which we will describe shortly in
this section just to be clear on our main goal.

In this paper we will work on usual four dimensional space-time even if, to be consistent
the theory requires an introduction of de Sitter space which is a direct generalization of
a four dimensional space-time hypersphere by adding extra spatial dimensions. In this
context entropy has a different behaviour then the one in usual space-time and justify
our assumptions on local density of entropy which is given by mass that remains in dark
energy medium.
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In our work we will consider only classical fields that cover a patch or the whole mani-
fold of space or space-time. Sometimes we will refer to fields as mediums where all the
necessary approximations are supposed to be given.

As we all know, at small scales what really describes the universe behaviour is quan-
tum mechanics and since we will deal with low acceleration scales it is mandatory to do
so. We will anyway ignore the real structure of space-time and consider its entropy like
an intrinsic property i.e. a given field. It is none less worthwhile to say that gravity is
emergent from an entanglement structure of a microscopic theory, which is why we refer
to this theory as emergent gravity.

When we speak of dark energy medium we mean a form of energy that permeates the
entire universe and that can only be detected indirectly by observations of our universe
accelerating expansion.

1.3 Conventions and notation

Since we will treat several topics, each with its own usual notation, we will stick to stan-
dard conventions used in general relativity even in classical theories, for an homogeneous
notation between different chapters of this paper.

We recall that Greek lower-case indices α, β, . . . , ω ∈ {0, 1, 2, 3} and Latin lower-case
indices a, b, . . . , z ∈ {1, 2, 3} unless specified otherwise, where 0 is reserved for tempo-
ral component and 1, 2, 3 for spatial components. Indices between parenthesis will have
different meaning to be specified from the context and they do not follow summation
rule. We always chose to use upper and lower indices version of Einstein summation
convention where the metric tensor will be gij = δij = diag(1, 1, 1) unless specified dif-
ferently. When we will call vectors and higher order tensors with their components, we
will always implicitly assume to have fixed an orthonormal basis, unless specified other-
wise. For example, if we consider two generic vectors v,u ∈ R3 we can write their inner
product using our conventions as:

v · u = viδiju
j = viui ≡

3∑
i=1

viui = v1u1 + v2u2 + v3u3

while we will reserve the notation |ui| =
√
uiui for the modulus of a vector. The

Minkowski metric will have signature (−,+,+,+) where we use positive sign for spatial

3



components and negative sign for temporal component.

We will mark definitions with blue italic font the first time they appear as relevant
in our discussion while black italic font will be used for important statements and laws.

Shorthand notation LHS (left hand side) and RHS (right hand side) will be used to
specify which side of an equation we are referring to.

We will usually refer to fields omitting their nature without any misconception since
we can always define them as a quantity given for each point of our manifold.

We will use the dot on a quantity to indicate its total derivative with respect to time,
which is meant to be proper time if not specified otherwise.

4



Chapter 2

Newtonian gravity

Newton’s gravitational theory states that every point mass attracts each other point
mass in the universe by a force inversely proportional to square distance and pointing
along the line that intersect them. We will introduce the definition of conservative forces
of which gravitational force is one. We will speak of Newton’s gravitational law and give
a brief introduction of gravitational potential theory.

2.1 Conservative forces

In nature, a force field F i can only be of two types, determined by the condition that
the path integral: ∫ r(2)

r(1)

F idxi (2.1.1)

depends or less by the path that joins points r(1) and r(2). If path integral (2.1.1) do not
depends on path between the two points but only on the actual points r(1) and r(2) then
the force field is said to be a conservative force field .

If we fix point r(1) to r̄(1) path integral (2.1.1) for a conservative force field will be a
well defined function U(r(2)): ∫ r(2)

r̄(1)

F idxi = U(r(2)) (2.1.2)
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Figure 2.1: Two different generic paths (blue) joining the points r(1) and r(2) (red).

If we move now from r(2) to r(2) + dx1 along the direction x1 we have:

U(r(2) + dx1) =

∫ r(2)+dx
1

r̄(1)

F idxi = U(r(2)) +

∫ r(2)+dx
1

r(2)

F idxi = U(r(2)) + F 1dx1

so that:

U(r(2) + dx1)− U(r(2)) = F 1dx1

and we can write the force as:

F 1 = ∂1U(r(2)) (2.1.3)

If we repeat this reasoning, moving now along x2 and x3 we obtain three equations in
the form of (2.1.3) which can be written as:

F i = ∂iU(r(2)) (2.1.4)

We can now fix r(2) to r̄(2) letting r(1) as variable and repeat the process above that led

6



to (2.1.4) concluding that must exist a function U(r(1), r(2)) such that:

F i = ∂iU(r(1), r(2)) (2.1.5)

where ∂i = ∇i is the usual gradient according to our notation.

2.2 Gravitational force

Classically, the force that keeps planets in orbit around the sun is called force of gravity
and it was firstly studied by Isaac Newton.

The gravitational force that the sun of mass M exerts on earth of mass m is given
by Newton’s law of universal gravitation:

F i = −GmM
|ri|2

r̂i (2.2.1)

where the sun has been placed in the origin of our system and where |ri|2 = riri is the
modulus square of position vector ri which defines position of earth, of direction given
by r̂i = ri/|ri|.

The constant G is the gravitational constant and it has a value of:

G ' 6, 67× 10−11m3s−2kg−1 (2.2.2)

According to Newton’s law of universal gravitation (2.2.1), the gravitational force that
acts on earth is proportional to its inertial mass m. This can only be explained by
equivalence principle in Einstein’s general relativity which states that inertial and grav-
itational masses are the same quantities i.e. inertial mass is gravitational charge [10].

Newton’s gravitational force is a conservative force and as such, it is possible to write it
as a gradient of a scalar function U(|ri|) according to eq. (2.1.5):

F i = −∂iU(|ri|) (2.2.3)

where the sign choice is arbitrary but made such that the potential U(|ri|) of our planet
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in the gravitational field of the sun is in the form:

U(|ri|) = −GmM
|ri|

(2.2.4)

Since gravitational force is a conservative the total energy of the system must be con-
served. In fact we can write energy for unit mass as:

E =
|ṙi|2

2
− GM

|ri|
(2.2.5)

which is time independent, meaning that it does not depend on time explicitly.

Since gravitational potential is a central potential on the other hand we have that total
angular momentum of the system, given by the vector product:

`i = rkpjεi jk (2.2.6)

where pj is the linear momentum, must be conserved. In fact, it can be shown from
properties of Levi-Civita tensor1 εi jk that defines the vector product, that the following
relation must hold:

ri`
i = rir

kpjεi jk = 0 (2.2.7)

The above expression (2.2.7) is just saying that, since the three vectors involved are
coplanar, they must have a null scalar triple product. This is actually an equation
for a plane passing from the origin and with normal direction k̂i parallel to the third
component `3 of the angular momentum `i and since it is constant over time, the motion
of earth around the sun will be in the plane [10]. The problem is thus reduced to a
bidimensional problem and it is possible to determine the orbit of earth around the sun.

1The Levi-Civita tensor is defined by the property that it takes the value 1 for {i, j, k} ∈
{{1, 2, 3}, {2, 3, 1}, {3, 1, 2}}, it takes the value −1 for {i, j, k} ∈ {{3, 2, 1}, {1, 3, 2}, {2, 1, 3}} and it
takes the value 0 if two or more indices are the same.
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Figure 2.2: A tridimensional representation of earth orbit (blue line) around the sun
(red) in the plane (x1, x2) while the third component of angular momentum is directed
along x3 axis.

2.3 Gravitational potential

Let’s consider a direct generalization of Newton’s gravitational law (2.2.1) by considering
two generic bodies of mass m, m′ and respectively of position vectors ri, r′i which reads:

F i = mgi (2.3.1)

where the gravitational acceleration is given by:

gi = G
m′

|∆ri|2
∆̂ri (2.3.2)

as we define ∆ri = r′i − ri and ∆̂ri =
∆ri

|∆ri|
.

We can write the gravitational potential in a more general form using (2.1.5) and (2.3.1).
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Φ = −G m′

|∆ri|
(2.3.3)

we can show that gravitational acceleration (2.3.2) is given by the gradient of the gravi-
tational potential (2.3.3).

∂i
(

1

|∆ri|

)
=

∂

∂ri

[
3∑
i=1

(r′
i − ri)2

]− 1
2

=

=

(
−1

2

)
[−2(r′

i − ri)]

[
3∑
i=1

(r′
i − ri)2

]− 3
2

=
∆ri

|∆ri|3

So that we get exactly (2.3.2):

gi = −∂iΦ = Gm′∂i
(

1

|∆ri|

)
= G

m′

|∆ri|2
∆̂ri

We can further generalize, by considering N mass points each of mass ms and position
vector ri(s) with s ∈ {1, 2, . . . , N}. Gravitational potential at the generic point rk will

take the form [10]:

Φ = −G
N∑
s=1

m(s)

|rk(s) − rk|
(2.3.4)

If we consider a continuous distribution of mass we will just substitute, with proper
considerations, the sum with an integral over all the distribution volume V and the mass
m with a mass density ρ, to get the following expression [10]:

Φ = −G
∫
V

ρ(r′i)

|r′i − ri|
d3r′i (2.3.5)

where dm′ = ρ(r′i)dV ′ is the mass of the unit volume dV ′ = d3r′i. We can also write the
gravitational acceleration by taking the gradient of (2.3.5):

gi = −∂iΦ (2.3.6)

which yields by straightforward calculation:

gi = G

∫
V

r′i − ri

|r′i − ri|3
ρ(r′i)d3r′i (2.3.7)
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Figure 2.3: A tridimensional representation of two masses m and m′ (blue) placed at
distance |∆ri|.
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Chapter 3

Cosmology

Cosmology is the study of the universe at large spatial scales and long times, it study
the origin and future of the universe trying to give a physical explanation of observative
phenomena. We will speak of cosmological principle and scale factor to be able to
introduce Hubble parameter. We will then explain why we need an acceleration scale
and how it shows up.

3.1 Cosmological principle

Modern cosmology is based on principles that allow us to give a satisfying description
from a physical point of view and mathematically simple at the same time. The most
important principle is the cosmological principle:

The universe is homogeneous and isotropic.

Isotropy and homogeneity are observative facts that result to be evident on large spatial
scales, such as the length scale of superclusters of galaxies1. We recall that homogene-
ity means that physical properties taken in exam do not depended on the point, while
isotropy means that physical properties taken in exam do not depend on direction. If
we assume as principle that does not exists any preferred observer in the universe, ho-
mogeneity is a direct consequence of isotropy [5]. We can in fact consider a universe
isotropic for all possible observers and since none of them is preferential the universe will
be homogeneous.

1Superclusters of galaxies are sets of gravitationally bound galaxies which exibit properties as a
single.
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Let’s assume cosmological principle to be true and through this assumption we will
build a universe model that will later confirm it. In the following construction we will
consider the universe as filled with a homogeneous and isotropic fluid called cosmic fluid
formed by galaxies [5].

3.2 FRW metric and scale factor

The cosmological principle implies existence of a space-time metric uniquely defined, also
known as Friedman-Robertson-Walker metric shortly called FRW metric.

The general form of a space-time metric is:

ds2 = gµνdx
µdxν (3.2.1)

where gµν is the metric tensor . Given the cosmological principle we have that compo-
nents g0i of metric tensor are null since, for a fixed time t, physical parameters cannot
depend on point and are the same in all the space [11]. The space-time metric (3.2.1)
can thus be written as:

ds2 = −c2dt2 + d`2 (3.2.2)

where we have set −c2dt2 = g00dx
0dx0 and d`2 = gijdx

idxj to be the spatial metric.

Let’s now consider the surface of an hypersphere in R4. Using polar coordinates (ρ, θ, φ)
and w ∈ R as fourth coordinate we can write the metric on this surface as:

dl2 = dρ2 + ρ2dΩ2 + dw2 (3.2.3)

Where dΩ2 = sin2 θdθ2 + dφ2 is the metric of a unit sphere in R3.

If we set a ∈ R+ \ {0} to be the radius, the equation of the hypersphere will be:

ρ2 + w2 = a2 (3.2.4)

Differentiating (3.2.4) we obtain ρdρ+ wdw = 0 which give us:

13



dw2 =
ρ2dρ2

a2 − ρ2
(3.2.5)

where we used again (3.2.4) to set w2 = a2 − ρ2 on the denominator. By substituting
(3.2.5) in (3.2.3) and using some simple algebraic manipulations we get:

dl2 =
dρ2

1−
(ρ
a

)2 + ρ2dΩ2 (3.2.6)

which is the metric of a three-dimensional isotropic and homogeneous space with positive
Gaussian curvature K = a−2 > 0.

We can consider a direct generalization of (3.2.6) by formally considering a ∈ C so
that K ∈ R and we can write the Gaussian curvature as [6]:

K = |K|sign(K) (3.2.7)

where k = sign(K) is called curvature constant :

k =


1 if K > 0

0 if K = 0

−1 if K < 0

(3.2.8)

Imposing a rescaling of radial coordinate ρ = ar and considering as further generalization
a = a(t), which doesn’t break homogeneity [11], we get the generalized version of (3.2.6):

dl2 = a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
(3.2.9)

So that the FRW metric can be written as:

ds2 = −c2dt2 + a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
(3.2.10)

by substituting (3.2.9) into (3.2.2).

The new coordinates (t, r, θ, φ) are called comoving coordinates [5]. In this frame the
coordinate t is the proper time of an observer which moves with the cosmic fluid at
constant r, θ, φ.
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The new function a(t), which is a real valued function for an arbitrary real Gaussian
curvature K, is the so called cosmic scale factor . It depends only on proper time t and
it has dimensions of a length. We will define present scale factor as ao = a(to) = 1 where
to is present time.

This allow us to define:

H(t) =
ȧ(t)

a(t)
(3.2.11)

as the Hubble parameter and consequently:

Ho =
ȧ(to)

a(to)
(3.2.12)

as the Hubble constant which is Hubble parameter at present time.

FRW metric determines a three-dimensional surface Σt which evolves in time and has ge-
ometry uniquely determined by the value of k. From (3.2.8) we have only 3 possible cases:

(i) k = 1.

Spatial metric (3.2.4) takes the form:

dl2 = a2(t)

(
dr2

1− r2
+ r2dΩ2

)
(3.2.13)

So that Σt is a three-dimensional sphere and the metric takes the usual form with a
coordinate transformation r = sin(X).

dl2 = a2(t)[dX2 + sin2(X)dΩ2] (3.2.14)

FRW metric (3.2.10) is:

ds2 = −c2dt2 + a2(t)[dX2 + sin2(X)dΩ2] (3.2.15)

which defines a closed universe.
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(ii) k = 0.

Spatial metric (3.2.9) takes the form:

dl2 = a2(t)
(
dr2 + r2dΩ2

)
(3.2.16)

So that Σt is a flat three-dimensional hyper-surface and FRW metric (3.2.10) is:

ds2 = −c2dt2 + a2(t)(dr2 + r2dΩ2) (3.2.17)

which defines a flat universe.

(iii) k = −1.

Spatial metric (3.2.9) takes the form:

dl2 = a2(t)

(
dr2

1 + r2
+ r2dΩ2

)
(3.2.18)

So that Σt is a three-dimensional hyperboloid and the metric takes the usual form with
a coordinate transformation r = sinh(Y ).

dl2 = a2(t)[dY 2 + sinh2(Y )dΩ2] (3.2.19)

FRW metric (3.2.10) is:

ds2 = −c2dt2 + a2(t)[dY 2 + sinh2(Y )dΩ2] (3.2.20)

which defines an open universe.
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(a) Open Universe (b) Flat Universe (c) Closed Universe

Figure 3.1: Models of possible universes in two spatial dimensions.

Figure 3.2: Average distance between glaxies < Dgal > in function of cosmic time t in
open universe (blue line), flat universe (green line) and open univse (red line).
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3.3 Acceleration scale

It’s well known from modern cosmology that spiral galaxies have a rotational speed,
given by the dynamic of stars gravitationally bound, which rotate around the center of
mass of the galaxy. It’s possible to find out observationally rotational speed of stars in
spiral galaxies in function of distance from center of mass [9]. It turns out to be approx-
imatively constant even at great distances, fact in disagreement with Newton’s theory.

If we consider that density of stars in a spiral galaxy decrease with radius, we expect a
speed that decrease with increasing distance from center of mass.

These observative facts led to develop a theory that suppose the existence of an ”hidden”
mass called dark matter . Dark matter would be responsible of the intense gravitational
field in periferic zones of spiral galaxies which leads to a greater rotational speed values
than the expected ones [9].

An other approach to the problem is to consider that at small acceleration scales New-
tonian gravity would not be valid. These assertion were firstly proposed in Modified
Newtonian Dynamic (MOND) by Milgrom, who calculated that the acceleration scale
α0 which determines the transition between Newtonian dynamic and MOND must be:

α0 ' 1, 2× 10−10ms−2 (3.3.1)

for his law to fit rotation curves data. It is interesting that, from theoretical point of
view the acceleration scale α0 can be defined as [3]:

α0 =
cH0

2π
(3.3.2)

where c is the speed of light in vacuum, H0 is Hubble’s constant (3.2.12) and 2π it’s a
normalization factor, showing that α0 is in fact a fundamental quantity.

Even if Acceleration scale (3.3.2) was firstly determined in MOND theories, it will play
an important role in elastic gravity as a fundamental constant and not as direct con-
sequence of MOND. Its meaning will remain the same while the applications will be
totally different. We will not treat it as a scale for which Newton’s gravitational laws
stop working, but as a scale where gravitation and elastic theory meets.
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Figure 3.3: A graphic showing rotation velocity vrot in function of distance from center
of galaxy R. Observed rotation curve is the blue line while expected newtonian rotation
curve is black dotted line.
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Chapter 4

Linear elasticity

Linear elasticity is a branch of continuum mechanics that deals with infinitesimal strains.
We will derive strain and stress tensors and show that they are bound by a linear relation
also known as Hooke’s law. We will also speak very shortly of elastic waves and finally
introduce a preferential direction in the medium of extreme importance for our concern.

4.1 Strain tensor

When we apply a force to solid bodies they get deformed and as result they change in
shape and volume [14]. The position of each point that makes the body is described by
the radius vector xi.

A deformed body has in general, points moved in xi
′
, such that we can define a dis-

placement vector as:
ui = xi

′ − xi (4.1.1)

With deformation distance between points changes. If we consider two points infinitesi-
mally close before the deformation takes place, they will be joined by the radius vector
dxi and their distance will be d` =

√
(dx1)2 + (dx2)2 + (dx3)2 which can be cast as:

d` =
√
dxidxi (4.1.2)

where dxidxi = gijdx
idxj = δijdx

idxj. After the deformation points will be joined by a
radius vector given by dxi

′
= dxi + dui so that new distance between the two points will

be d`′ =
√
dxi′dxi

′ .
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We can write the square of the new distance as:

d`
′2 = dxi′dx

i′ = (dxi + dui)(dxi + dui) =

= dxidxi + duidui + dxidui + dxidu
i

Taking in account that ui = ui(xk) we have dui = ∂ku
idxk and using (4.1.2) we find:

d`
′2 = d`2 + ∂ku

i∂luidx
kdxl + 2∂kuidx

kdxi

Since ∂kui is symmetrical we can write ∂kui =
1

2
(∂kui + ∂iuk) which gives us:

d`
′2 = d`2 + ∂ku

i∂luidx
kdxl + (∂kui + ∂iuk)dx

idxk =

= d`2 + (∂kui + ∂iuk + ∂ku
l∂iul)dx

idxk

Or alternatively:
d`

′2 = d`2 + 2uikdx
idxk (4.1.3)

Where:

uik =
1

2
(∂kui + ∂iuk + ∂ku

l∂iul) (4.1.4)

is the strain tensor .

The strain tensor uik given by eq. (4.1.4) is symmetrical:

uik = uki (4.1.5)

we can in fact use the symmetry of ∂kui and write:

uik =
1

2
(∂kui + ∂iuk + ∂ku

l∂iul) =
1

2
(∂iuk + ∂kui + ∂iu

l∂kul) = uki

Since uik is symmetrical as seen in eq. (4.1.5), we can diagonalize it at any given point,
meaning that it is possible to find a frame of axis called principal axis of the strain tensor
in which the associated matrix is diagonal [14].

21



Non null components of diagonalized strain tensor matrix u11, u22, u33 are called principal
values of strain tensor , commonly denoted as u(1), u(2), u(3).

If the strain tensor is diagonal uikdx
idxk = uiidx

idxi and square distance (4.1.3) takes a
very simple form:

d`
′2 = d`2 + 2uikdx

idxk = δikdx
idxk + 2uiidx

idxi

and remembering the definition uii = u(i) of the principal strains, can also be written as:

d`
′2 = (δii + 2u(i))dxidxi (4.1.6)

Where we intend as extraordinary case a sum on the index between pharentesis. Eq.
(4.1.6) implies that a strain in any elemental volume, can be seen as composed of three
independent strains in the directions of principal axis of the strain tensor [14].

4.2 Stress tensor

After a deformation, position of molecules that compose a body changes and the molecules
go out of equilibrium position resulting in formation of internal forces called internal
stresses . These forces are actually generated by intermolecular short range forces that
bring the body back to its equilibrium position [14].

Let’s consider a body after a deformation, which we will call medium from now on,
of volume V and surface S. If F i is force per volume unit and F idV is force on volume
element dV , the total force acting on the body will be:

F i =

∫
V

F idV (4.2.1)

Since forces that exercise between adjacent volume elements balance to each other, the
resulting force will be a surface force. For Gauss theorem we can write a volume integral
of a vector F i as surface integral if the vector can be written as divergence of rank 2
tensor σik, namely F i = ∂kσ

ik. In this case, we write RHS of eq. (4.2.1) as:∫
V

F idV =

∫
V

∂kσ
ikdV (4.2.2)
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If we consider dfk the direction normal to surface element dS, using Gauss theorem we
have:

F i =

∮
S

σikdfk (4.2.3)

Where σik is the stress tensor . The total force acting on body will be other than the
integral of forces ϕi = σikdfk that act on surface elements dS, so that we can rewrite
(4.2.3) as:

F i =

∮
S

ϕi (4.2.4)

4.3 Hooke’s Law

Let’s consider a deformed medium, in the case where the deformation changes in a way
that ui changes only by a small amount δui. If δR is work done by internal infinitesimal
stresses per unit volume and according to eq. (4.2.2) force per unit volume is F i = ∂kσ

ik

then we can write:

δR = ∂kσ
ikδui (4.3.1)

Integrating (4.3.1) over all the medium volume :∫
V

δRdV =

∫
V

∂kσ
ikδuidV (4.3.2)

which is total infinitesimal work done by internal stresses. Using integration by parts on
RHS of (4.3.2) we obtain:∫

V

∂kσ
ikδuidV =

∮
S

σikδuidfk −
∫
V

σik∂k(δui)dV

Considering the case of an infinite medium undeformed at infinity, integration surface
S∞ is at infinity and the surface integral will be zero, since we can formally put σik = 0
on S∞. There will only be left a volume term and using the fact that ∂k(δui) = ∂i(δuk)

23



we get: ∫
V

∂kσ
ikδuidV = −

∫
V

σik∂k(δui)dV =

= −1

2

∫
V

σik∂k(δui)dV −
1

2

∫
V

σik∂k(δui)dV =

= −1

2

∫
V

σik[∂k(δui) + ∂i(δuk)]dV = −1

2

∫
V

σikδ[∂kui + ∂iuk]dV

In our approximation uk can be considered small enough that strain tensor (4.1.4) takes
the form:

uik =
1

2
(∂kui + ∂iuk) (4.3.3)

where small second order term ∂ku
l∂iul is neglected, so that:

−1

2

∫
V

σikδ[∂kui + ∂iuk]dV = −
∫
V

σikδuikdV

With this approximation, eq. (4.3.2) becomes:∫
V

δRdV = −
∫
V

σikδuikdV (4.3.4)

which leads to the relation between strain tensor, stress tensor and work done per unit
volume:

δR = −σikδuik (4.3.5)

For the first law of classical thermodynamics, for a reversible process an infinitesimal
variation of internal energy is given by [13]:

dE = TdS − dR (4.3.6)

where S is total entropy and T is temperature of the system. Reversible means that we
are considering only elastic deformations of our medium, process for which there is no
residual strain. In fact, if we deal only with small deformations the medium will go back
to its equilibrium once external forces stop acting.
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An other requirement is that deformation process is slow enough to allow us to de-
fine thermodynamic equilibrium at each given instant of time. keeping this in mind, we
can write free energy of the system as [14]:

F = E − TS (4.3.7)

Differentiating (4.3.7) and using first law of thermodynamics (4.3.6) along with (4.3.5):

dF = dE − TS − SdT = −dR− SdT = σikduik − SdT

Let’s further suppose that deformation happens at fixed temperature so that:

dF = σikduik (4.3.8)

which leads to:

σik =
∂F

∂uik
(4.3.9)

Eq. (4.3.8) imply that we can expand F in powers of uik and stopping to second order
we have:

F = F0 +
1

2
λu2 + µuiku

ik ; i 6= k (4.3.10)

where F0 is a constant, u = ui i is the trace of strain tensor and λ, µ are the so called
Lamé parameters. If we differentiate eq. (4.3.10) we obtain:

dF = λudu+ 2µuikdu
ik = λuδikdu

ik + 2µuikdu
ik = (λuδik + 2µuik)du

ik

and using eq. (4.3.8) it brings us to Hooke’s law:

σik = λuδik + 2µuik (4.3.11)

which describe the linear relation between stress tensor and strain tensor (4.3.3).

We will define:

K = λ+
2

3
µ (4.3.12)
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as the bulk modulus where µ is the lamé parameter called rigidity modulus. The bulk
modulus describes the medium response to uniform pressure while the rigidity modulus
µ describes response to shear stress, for this reason the latter is also called shear modulus.

Further, we will also define:

M = λ+ 2µ (4.3.13)

as the pressure waves modulus or P-waves modulus for short. M and µ determines pres-
sure and shear waves’ velocity in homogeneous isotropic media of density ρ, respectively
via:

vp =

√
M

ρ
(4.3.14)

vs =

√
µ

ρ
(4.3.15)

so that P-waves modulus and shear modulus must be positive:

M ≥ 0 , µ ≥ 0 (4.3.16)

4.4 Largest strain

For isotropic media properties do no depend on spatial direction and the strain tensor
(4.1.4) can be written as sum of a symmetric traceless tensor and a diagonal tensor [17]:

uij =
1

3
uδij +

(
uij −

1

3
uδij

)
(4.4.1)

where we will define:

vij =
1

3
uδij (4.4.2)
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as volumetric strain tensor and:

dij = uij −
1

3
uδij (4.4.3)

as deviatoric strain tensor.

We can rewrite the strain tensor (4.4.1) as sum of a volumetric and a deviatoric part:

uij = vij + dij (4.4.4)

Since strain and stress tensors are symmetrical and linearly related by Hooke’s law
(4.3.11) , they can be simultaneously diagonalized. In fact, we have that the condi-
tion of applicability of simultaneous diagonalization theorem [uij, σ

ki] = 0 is satisfied [1]:

[uij, σ
ki] = uijσ

ki − σkiuij = uij(λuδ
ik + 2µuki)− (λuδik + 2µuki)uij =

= λuu k
j + 2µuiju

ki − u k
j λu− 2µukiuij = 2µ(uiju

ki − ukiuij) = 2µ[uij, u
ki] = 0

where we used (4.3.11) and (4.1.5). One can immediately see that [uij, u
ki] = 0 using

strain tensor definition (4.1.4) and its symmetry property (4.1.5).

We have then a base of common eigenvectors {ai(k)} of tensors uij and σij. Let’s consider

the set {u(1), u(2), u(3), σ(1), σ(2), σ(3)} = {u(i), σ(i)} formed by eigenvalues of uij and σij
respectively, called principal values of strain and stress. It allow us to define the largest
principle of strain and stress as [17]:

s = max{u(i), σ(i)} (4.4.5)

The largest principle of strain and stress is an eigenvalue of uij or σij and it has associ-
ated a common eigenvector si ∈ {ai(k)} which can be normalized:

ni =
si

|si|
(4.4.6)

Deviatoric strain tensor (4.4.3) is symmetric since strain tensor is (4.1.5), so it must
be diagonalizable. If we call {di(k)} its eigenvectors of eigenvalues {d(k)} then ni will be

parallel to a direction detected by qi ∈ {di(k)} of eigenvalue q ∈ {d(k)} called maximal
strain.
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The eigenvalue equation then becomes:

di jn
j = qni (4.4.7)

Where ni is the direction of maximal strain.

Eq. (4.4.7) defines the direction of maximal strain as the normalized eigenvector
ni = qi/|qi| of the deviatoric strain tensor associated with the eigenvalue q such that
qi/|qi| = si/|si| where si is the eigenvector defined by the largest principle of strain and
stress.
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Chapter 5

Gravity-Elasticity

Elastic Gravity theory deals with the identification between dark energy medium de-
formation and observed gravity. We will give via assumption some ”correspondence
maps” that will allow us to translate the deformation of the medium in gravitational
terms. Then, we will show that given these maps, it is possible to determine elastic
counterparts of gravitational main results such as gauss’ law and poisson equation.

5.1 Correspondence maps

We can make a correspondence between elastic and gravitational quantities once it is
given the direction of maximal strain which determines a perpendicular interface surface
S. This surface is the boundary between two spatial regions occupied by the dark energy
medium in two different states. The only constants that will play a role in the identifi-
cation are the acceleration scale and the universal gravitational constant [17].

Correspondence maps are relations which allow us to to translate the elastic response
of the dark energy medium in terms of a gravitational field. These maps will be given
as guessed since we have not the necessary tools to derive them from more deep laws.
A general idea on how to prove the first correspondence relation is shown in Appendix
A. Anyway, from these maps we will be able to show that they yield the exact form of
many familiar relations, both in gravitational and elastic version.
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Figure 5.1: The interface surface S in blue and the direction of maximal strain ni.

The displacement field (4.1.1) is related to the gravitational potential field (2.3.5) by:

ui =
Φ

α0

ni (5.1.1)

The strain tensor (4.3.3) is related to the gravitational acceleration (2.3.7) by:

uijnj = − g
i

α0

(5.1.2)

while the stress tensor given by Hooke’s law (4.3.11) is related to surface mass density:

Σi = − gi

4πG
(5.1.3)

by the following relation:

σijnj = α0Σi (5.1.4)

where we recall that ni is the direction of maximal strain given by eq. (4.4.7).

It is also possible to determine shear modulus of the dark energy medium and P-waves
modulus (4.3.13) respectively as:

µ =
α2

0

16πG
(5.1.5)

M = 0 (5.1.6)
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Where the proof, which is quite complex, will be omitted and a general idea on how to
derive them is shown in Appendix B.

5.2 Gauss law and Poisson equation

Gauss’ law states that the total flux through a closed surface S is proportional to the
charge inside that region [15]. Gravitationally, it can be derived if we consider a mass M
enclosed in a sphere surface A of radius |ri|. We recall that inertial mass M is actually
a gravitational charge.

Since the net gravitational flux through the area element dA of the sphere is:

dφ = gidAi = gdA =

(
−GM
|ri|2

)
(|ri|2 sin θdθdϕ) = −MG sin θdθdϕ

the total flux through the entire sphere surface can be written as:∮
A
gidAi = −MG

∫ π

o

sin θdθ

∫ 2π

0

dϕ = −4πMG

It can be shown that we can choose an arbitrarily shaped close surface S called Gaussian
surface through which the same result apply:∮

S

gidSi = −4πMG (5.2.1)

It takes a simpler form if it’s expressed in terms of surface mass density (5.1.3):∮
S

ΣidSi = M (5.2.2)

also known as gravitational Gauss law.
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Figure 5.2: A tridimensional representation of the spherical gaussian surface A in blue,
the mass M in red and the area element dA in green. The direction of the vector dAi is
the same of the gravitational field gi.

We can now apply the correspondence map (5.1.4) to (5.2.2) and get:∮
S

ΣidSi =

∮
S

σijnj
α0

dSi = M

multiplying both sides by nj and α0 we have:∮
S

σijnjn
jdSi = Mα0n

j

and recalling that njnj = 1 we finally end up with:∮
S

σijdSi = −f j (5.2.3)

which is the elastic counterpart for gravitational Gauss law (5.2.2) where we have defined:

f j = −Mα0n
j (5.2.4)

as the elastic charge vector that is the point force acting on the points of the medium.
This point force acts as a point source for the elastic displacement field uk.

Using Gauss theorem we can write LHS of eq. (5.2.1) as:
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∮
S

gidSi =

∫
V

∂ig
idV

while its RHS can be written as:

−4πGM = −4πG

∫
V

ρdV =

∫
V

(−4πGρ)dV

where V is the volume of the Gaussian surface S and ρ is the mass density. Bringing
LHS and RHS results together, the relation:∫

V

∂ig
idV =

∫
V

(−4πGρ)dV (5.2.5)

give us gravitational Gauss law in differential form:

∂ig
i = −4πGρ (5.2.6)

It takes a simpler form using surface mass density (5.1.3):

∂iΣ
i = ρ (5.2.7)

Using correspondence map (5.1.4) we find:

∂iΣ
i = ∂i

(
σijnj
α0

)
= ρ

Again, multiplying both sides by nj and α0 we have:

∂iσ
ijnjn

j = ρα0n
j

and again recalling that njnj = 1 we obtain:

∂iσ
ij = −bj (5.2.8)

which is the elastic counterpart for gravitational Gauss law in differential form where we
have defined:

bj = −ρα0n
j (5.2.9)
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as the density of elastic charge vector that is force per unit volume acting on the medium.

We can see that gravitational Gauss law (5.2.7) is a Poisson equation once we express
the gravitational acceleration (2.3.7) in terms of the gravitational potential (2.3.5) with
relation (2.3.6):

∂iΣ
i = ∂i

(
− gi

4πG

)
=
∂i∂

iΦ

4πG
= ρ

so that Gravitational Poisson equation is:

∂i∂
iΦ = 4πGρ (5.2.10)

where, according to our notation ∂i∂
i = ∇i∇i is the laplacian operator.

We can apply the correspondence maps (5.1.1) and (5.2.9) to Gravitational Poisson
equation (5.2.10) LHS and RHS respectively:

∂i∂
iΦ = ∂i∂

i(α0u
knk) = 4πGρ = 4πG

(
−b

jnj
α0

)
to get the corresponding elastic Poisson equation:

∂i∂
iΨ = − χ

4µ
(5.2.11)

which is elastic counterpart for gravitational Poisson equation (5.2.10), where we have
defined:

Ψ = −uknk (5.2.12)

as the medium elastic potential and:

χ = ρα0 (5.2.13)

as the elastic charge density which is the modulus of the elastic charge density vector
(5.2.9):

|bj| =
√
bjbj =

√
ρ2α2

0n
jnj = ρα0 = −bjnj = χ
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Taking the modulus of the point force (5.2.4) we have that the elastic charge is:

E = Mα0 (5.2.14)

with the dimensions of a force.

5.3 Energy correspondence

Gravitational self-energy of a mass configuration is energy of self-interaction, in other
words, it’s energy with negative sign needed to dissociate the mass into point masses
and bring them to infinity. Gravitational self-energy can be expressed in terms of the
acceleration field (2.3.7) and surface mass density (5.1.3) as [17]:

U =
1

2

∫
V

giΣidV (5.3.1)

If we apply correspondence maps (5.1.2) and (5.1.4) we get:

U =
1

2

∫
V

giΣidV =
1

2

∫
V

(−uijnjα0)

(
σijn

j

α0

)
dV

and since it’s an energy, we can take it with a positive sign by formally considering
U ′ = −U as:

U ′ =

∫
V

uijσijdV (5.3.2)

which is the elastic counterpart for gravitational self energy, also called elastic energy.

35



Chapter 6

Conclusion

We have not yet found any evidence that at these scales Newtonian mechanics and usual
physics laws should stop working but the great discrepancy between luminous and dark
matter gravitational effects point us indirectly in this direction. Anyway, our physical
knowledge on these phenomena is still based on ”non local” observations and this may
be an important factor which we should take care of.

Hereby we conclude that we tried to describe a way to measure this apparent gravity
effects we attribute to dark matter from a thermodynamic point of view as an entropy
related phenomenon. More precisely, we mean entropy related to dark energy, where the
latter can be thought as a positive energy lifted from negative ground state energy by
excitations of the microscopic degrees of freedom.

The main result we want to emphasize is that, once we introduced the correspondence
maps, we were able to derive the elastic version of the Gauss law and Poisson equation
just by applying them to their gravitational counterparts. Moreover the elastic energy is
directly derived from the gravitational self-energy, underlining that there can be a more
deep connection between the two theories. More precisely it is interesting to notice that
to a rank 1 tensor in gravitation corresponds a rank 2 tensor in linear elasticity.

It is natural then, to raise the question whether or not the non-Newtonian regime can
be somehow related to non-linear elasticity and to continuum mechanics in general and
if so, where it could lead.

The results we obtained are still non relativistic in the sense that they should be written
in covariant form to properly agree with Einstein’s general relativity. After all, Emergent
gravity is still a young theory and many researches are still going on nowadays.
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Appendix A

Correspondence maps derivation

As we already pointed out, we are working in a de Sitter space1 which can be denoted as
dSd−1 ⊂ R1,d−1 where d is the number of space-time dimensions, with the metric induced
by the standard Minkowski metric. Globally it can be written as a closed FRW universe
(3.2.15) and it can be easy visualized as the hyperboloid with one sheet [4]:

− x2
0 +

d−1∑
j=1

x2
j = L2 (A.1)

where L is a positive real number. A remarkable property of de Sitter space is that en-
tanglement entropy has, besides the usual area law that appears in Anti de Sitter space,
a volume law which comes into play when we add matter. This volume law enters in
competition with the area law and causes microscopic de Sitter states to show glassy be-
haviours. This means that at long time scales these states exhibit properties due to their
ergodic dynamics, impossible to observe at human time scales. When we add matter to
de Sitter space its entanglement entropy content decreases and the resulting distribution
of entanglement entropy density with respect to its equilibrium position is described by
a displacement vector ui, where now i ∈ {1, 2, . . . , d− 1}.

An other fundamental property of de Sitter space is that it has a cosmological hori-
zon2 L and no asymptotic spatial infinity. The entanglement entropy on the horizon can
be interpreted as quantifying the amount of entanglement between two opposite sides of
the horizon. These facts allow us to treat a de Sitter space much like we would treat a
black hole and use some of the known laws with appropriate precautions.

As we know from general relativity the metric outside the mass for a static patch will

1de Sitter space is the simplest solution of Einstein equations with a positive cosmological costant.
2Cosmological horizon is a measure of the distance at which two particles can no longer exchange

information in a classical way.
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take the form [16]:

ds2 = −
(

1− r2

L2
+ 2Φ(r)

)
dt2 +

(
1− r2

L2
+ 2Φ(r)

)−1

dr2 + r2dΩ2 (A.2)

also known as de Sitter-Schwarzschild solution, where Φ(r) is the Newton potential due
to mass M :

Φ(r) = − 8πGM

(d− 2)Ωd−2rd−3
(A.3)

and Ωd−2 is the surface area of a unit (d− 2)-sphere.

Without the mass M the horizon would be at distance L and the entropy on the horizon,
also know as Bekenstain-Hawking entropy [2], would simply be:

SDE(L) =
A(L)

4G~
(A.4)

where the subscript DE stands for Dark Energy and A(L) = Ωd−2L
d−2 is the area of the

horizon. Also, note that in these reasonings we implicitly set c = 1, fact that we will
bring back at the end of the discussion.

The addition of the mass M caused the horizon to move from L to L + u(L) where
u(L) = Φ(L)L with the approximation Φ(L) << 1 is the displacement of the horizon:

u(L) = − 8πGM

(d− 2)Ωd−2Ld−4
(A.5)

which results to be negative, in agreement with the fact that the horizon has been re-
stricted.

As result, the entropy change in the dark energy medium on the horizon due to the addi-
tion of mass SM(L) is negative and can be calculated by formally considering dL ∼ u(L):

SM(L) = u(L)
dSDE
dL

= −2π

~
ML (A.6)

The entropy reduction (A.6) correspond to a reduction of entanglement between the two
sides of the horizon where the mass M was added.

Since we know from general relativity that mass reduces the growth rate of the area
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as a function of the geodesic distance [17], we can immediately write with proper con-
siderations that for a generic radius r < L the reduction entropy due the addition of a
mass M as:

SM(r) = −2π

~
Mr (A.7)

which shows that the mass M reduces in general, reduces the entanglement entropy of
the region with radius r by SM(r). This result is true for de Sitter, flat space and Anti
de Sitter. We can see that:

SM(r) =
r

L
SM(L) (A.8)

showing that the ratio between r and L is the scale factor between entropy removed from
a spherical region of radius r (A.7) and the total de Sitter entropy removed (A.6).

From a similar reasoning, we can deduce that when there is no mass added the de
Sitter entropy of a spherical region of radius r must be similar to Bekenstain-Hawking
entropy calculated in r but with r/L as scaling factor:

SDE(r) =
r

L

A(r)

4G~
(A.9)

So that when we set r = L we get exactly the expression of Bekenstain-Hawking entropy
(A.4).

From the fact that entropy removed by mass SM(r) ∝ r we deduce that u(r) ∝ r−(d−3)

seen that the Newton potential Φ(r) ∝ r−(d−3). This lead us to the conclusion that the
displacement of the spherical surface due to the addition of the mass must be [17]:

u(r) = Φ(r)L (A.10)

We can rewrite that expression now considering again c to fix the dimensions and bring
back the normalization factor 2π we introduced in the acceleration scale (3.3.2) to end
up with:

u(r) = Φ(r)
2π

c2
L (A.11)
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We can now write the horizon as the Hubble length scale defined by:

L =
c

H0

(A.12)

so that the above expression becomes:

u(r) = Φ(r)
2π

H0c
=

Φ(r)

α0

(A.13)

which is the radial displacement of the spherical surface corresponding to the removal of
entropy medium in a symmetrical way due to the addition of mass.

If we want to translate the entropy medium displacement in terms of dark energy medium
displacement we need to move ourself in the direction of maximal strain as we already
pointed out. This bring us to translate the radial direction for the entropy medium dis-
placement as the direction of maximal strain for the dark energy medium displacement:

ui =
Φ

α0

ni (A.14)

Showing correspondence map (5.1.1) once we have set d = 4 so that i ∈ {1, 2, 3} as usual.

41



Appendix B

Shear and P-waves modulus
derivation

Let’s consider the killing symmetry associated with the horizon. From Noether’s theo-
rem we have a conserved current and as such, a Noether charge Q[ξ] which depends on
the killing vector ξa and can be defined by the following expression:∫

hor

Q[ξ] =
~
2π
S (B.1)

where the integration is performed on the horizon and S is the horizon entropy.

Using Wald’s formalism [12], when there is no stress energy on the bulk1 we can use
the above expression (B.1) to write the first law of thermodynamics in de Sitter space
as:

~
2π
δS + δHξ = 0 (B.2)

Where Hξ is the Hamiltonian associated with the killing symmetry.

In our approximation where the stress is concentrated in a small region with radius
negligible with respect to the Hubble length L, we will consider the variation of the
Hamiltonian as an integral extended from the horizon to a surface at infinity S∞ of the
variation of the Noether charge:

δHξ =

∫
S∞

(δQ[ξ]− ξ · δB) (B.3)

1The term ”Bulk” is used in theoretical physics when we speak of spaces with higher dimensions
than the usual 11 dimensions used in M-theory.
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where the second term ξ · δB vanishes on the horizon for a suitable choice of the (d-1)-
form B.

So that the Hamiltonian can be written as:

Hξ =

∫
S∞

(Q[ξ]− ξ ·B) (B.4)

If we now choose ξa to be an asymptotic time translation ta we can define the canonical
energy as:

E =

∫
S∞

(Q[t]− t ·B) (B.5)

and following Wald’s calculations [12], this allow us to define ADM mass2 [7]. We remark
that we assumed that at spatial infinity the surface integral gets finite and the metric
approaches a well defined asymptotic form. It can be shown that once we set c = 1 we
can write ADM mass as [17]:

MADM =

∫
S∞

(Q[t]− t ·B) =
1

16πG

∫
S∞

(∂jhi j − ∂ih)dAi (B.6)

where hi j is the spatial metric and h = hjj its trace.

We will now make some approximations, that will allow us to treat ADM mass (B.6),
which can be defined only at spatial infinity, as mass in the interior of de Sitter space.

The approximations are the following:

· The surface S∞ is sufficiently large that the gravitational field of the mass M is
negligible.

· The surface S∞ is sufficiently small so that its radius r∞ is negligible with respect
to the Hubble length L.

Given the above approximations, if we pick a particular surface S∞ with a spherical
symmetry and the spatial metric with the following form:

hij = δij + 2Φ(r)ninj (B.7)

2The Arnowitt-Deser-Misner formalism (ADM formalism) is an approach to general relativity which
allow us to view the gravitational field as an Hamiltonian system [8].
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with ni = ri/|ri| we can write the expression for the mass [17]:

M = − 1

8πG

∫
r∞

Φ(r)∂jnjdA (B.8)

where Φ(r) is the Newton potential defined as:

Φ(r) = − 8πGM

(d− 2)Ωd−2rd−3
(B.9)

and Ωd−2 is the surface area of a unit (d− 2)-sphere.

It can be shown that, given our particular spherical choice of the surface S∞ and the
correspondence map (5.1.1), we can write the mass expression as [17]:

M =
α0

8πG

∫
S∞

(uijnj − uni)dAi (B.10)

We can justify eq. (B.10) by saying that we chose a particular reference frame in de
Sitter space with respect to which we define the mass M . This reference frame is chosen
such that the gravitational regime makes the transition to the elastic one.

We can now multiply both sides by α0 so that on LHS we obtain a force and on RHS we
get:

Mα0 =
α2

0

8πG

∫
S∞

(uijnj − uni)dAi =

∫
S∞

σijnjdAi (B.11)

where we used the familiar Hooke’s Law (4.3.11) and stress tensor physical meaning as
seen in eq. (4.2.3). The expression above (B.11) lead us to write the the lamé parameters
as follow:

µ =
α2

0

16πG
(B.12)

λ = − α2
0

8πG
(B.13)

showing eq. (5.1.5) and eq. (5.1.6).
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