ALMA MATER STUDIORUM — UNIVERSITA DI BOLOGNA
CAMPUS DI CESENA
SCUOLA DI INGEGNERIA E ARCHITETTURA

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA E SCIENZE
INFORMATICHE

SECURITY-RELATED EXPERIENCES WITH SMART CONTRACTS
OVER THE ETHEREUM BLOCKCHAIN

Tesi in

Sicurezza delle Reti

Relatore Presentata da

Gabriele D’Angelo Francesco Maughelli

Sessione |

Anno Accademico 2016 - 2017

“se I'essenza della vita é racchiusa
nel DNA, allora la societa e la civilta
non sono altro che colossali sistemi
di memoria”

- Batou

CONTENTS

S U1 N o PP 4
LOINTRODUCTION ...ttt er e e et e e et e e et e e et e e e e e e e e et e e aenann s 5
1.1 BITCOIN AND BLOCKCHAIN ... ittt e e e ena s 6
1.2 THE RISE OF DISTRIBUTED LEDGERSot e 8
1.3 WHAT THE BLOCKCHAIN IS ..o et senea s 12
1.3 THE BIG PLAYERS / BLOCKCHAIN TODAYotttieiiiiieeeeiiiieeee e 19
20ETHEREUM ...ttt ettt e et e e e e e st e e e s nnnneeeeeeans 21
2.1 THE ETHEREUM PROUJECT ...ttt e e e e 22
2.2 THE PLATFORM ..ottt eme ettt e e et e e e e s e e e e e ennsbeeeeeeeeanns 25
2.3 OUR PROJECT'S GOAL ...coiiiiiie i eeeeee ettt e e e s s sseasansaaeenaae s e e e nnns 29
S0 DEVEL OPMENT L.t et e e et e e e et e e e e tnaaeee 31
3.1 THE SOLIDITY LANGUAGE ...t ee e 33
3.2 SETTING THE ENVIRONMENT ...ttt ceeeee e e e e eeens 36
3.3 TECH SHOWG CASE ..ottt mmeee ettt ettt e e e e e et aeeeennsaneeeaa e 39
TG T80 R 121 1N 7 o SRR 39
3.3.2 RANDOM GENERATIONtiiiiiiiiiiiiiees et e e e e e sitieeeeeesssnnaseeaeeessnnseeeanns 42
3.3.3 RUBIXI/ DYNAMIC PYRAMID ...ttt 45
3.3.4 PAYMENTS AND TRANSACTIONS ..ottt 47
3.3.5 ENERGY TRADE ...ttt e e e raa e e anans 51
3.4 BLOCKCHAIN DEPLOYMENT .. oottt et s e e et eeeetn e e satn e e eann e e eannaenees 54
A0 CONSIDERATIONS ... e e e e e e e e e e et e eeeaa e e e eaaaaaes 56
4.1 TECHNOLOGY GAPS / LIMITS ..ottt 61
4.2 CODE EXECUTION SECURITY ...utiiiiiiiiiiiteemmeiieee e esiieee e siiieeee e e nnseeeeens 64
4.3 POWER CONSUMPTION / COSTS ...uttiiiiiieiimmmeemeeeee e eitieee e sineeee e nnnaneesd 66
5.0 CONCLUSIONS......coiiieiiiitiiiie ettt e et te e e e sttt e e e e e e s sba e e e e e e e aasbneeeeaeesannnnneeaans 69
BIDIOGIaPNY ... e e e e e aeaaaae 72

SUMMARY

We live in a world ruled by states: higher expressif organized societies and civilizations,
systems built by people, implicitly or explicithgablishing laws, conventions and regulations
that society must adhere on in order to live. Whgstems such as these are constructed the
inner self of people’s majority is projected inketbig picture, forming a vast array of features
that can describe a civilization e&altismandstructuralismfight over the assertion thathe
whole is other than the sum of the patist in a way we can bear witness of this sharpnes
every time we look at an elegant engineered saludeployed into the real world.

However, man itself is a complex individual andidg the process of defining a majority,
some identities will be lost or something will beld back, confined to a minority that
statistically cannot rise.

These grounds need a different approach, somethaighave to emerge from individual
themselves aside from organizations and regulatibas can deliver at the same time
meaningful significance to people with an equalrghass in its design. This kind of projects
has always followed similar principles, whether ngeirelated to censorship, anonymity,
persistency of information or truth. Services likar, WikiLeaksandBitcoinare just examples.
The decentralization process of already existimgises is the reason of their success and the
cause of their widespread usage: the ability tadewagulations if needed and express their
potentialevenwhen ethic is at risk. These tools have been aleaiten by unknown people
that emerged from the sidelines to deliver a d#iférmechanism than centralized services
already provided with the clear intent to give wand means to those that could not surface
in the society cog.

But as with everyree-from-controltool that exist, the responsibility, consequerares ethics

of its usage rely solely in the hands of the findividual and his own judgment.
Cryptocurrencies blend into this world not diffetigrirom other distributed technologies: they
can be deployed for a number of use cases as angufirency could. Their appealing side is
of course their availability and the relatively gicity in which a complex operation (like a
fund transfer) can be achieved over the simplenetenetwork, but this is just one side of the

innovation.

1.0 INTRODUCTION

Starting frombitcoin’s inception in 2009 the term “cryptocurrency” habeavidely adopted

to describe a different type of money in relatiorchassic “fiat” currencies (on printed papers).
Taking advantage of a distributed environment andeaurity mechanism enforced by
cryptographybitcoin started a new age of services for economics amgdcéions over the
internet, edging with a new payment model for motraysfers that set off many banks,
companies and governments. The 2016 has beentgygagdor blockchain-based technologies
like Bitcoin and Ethereum the innovation introduced with distributed ledgdied more and
more start-ups, companies, researchers and comeoghep(even non-tech ones) to experiment
on it, testing, employing and starting to use itaasalternate way of carrying out their own
business model. However, understanding the needscamplexities beyond a distributed
ledger and the new platforms built on top of ihg an easy task. To get ahead of all this and
in order to grasp this techtfsomentunwe first have to go back a few years into blocktlsa
background and analyze its history. This chaptdirtvei a guide throughout all the available
data on this topic and will give the reader meangnderstand the concepts and technicalities
that will arise later in the work.

In the past few years blockchain technology hasapsignificantly, however we couldn’t talk
about blockchain while leaving out its “fathebitcoin. In a way, they each represent a side of
a single coin, the first being the main backbon d&ructure behind bitcoin while the latter
has been the main purpose of the existence of tihaik itself. In order to lay out the key
concept behind this work we have to speak al®@t and introduce some insight about
cryptocurrenciesoo, however since they are not the main topidhisf document these details
will be given out progressively as we peer deepto ithe arguments. The amount of
information given on these other topics will beited to the scope of the actual paragraph’s

subject.

One of the major premise in the analysis of thekdbain phenomenon is that it has arisen
completely online in the network and in an anonysfashion that prevented the majority of
fact checking and investigations from both governts@nd individuals. After the breakout of

this technology however a significant amount okegsh and tests have been done exploring

! Blockchain

both its technical and structural aspects. Thiddeshany new projects and forks that more or

less did set a new kind of services developed bgrgtarties interested in blockchain.

1.1 BITCOIN AND BLOCKCHAIN

A cryptocurrency can be defined as a digital atds®t can interact as a medium used for an
exchange, the term “crypto” is a prefix adoptedi¢zlare that transactions generated by this
currency are cryptographically-secured (e.g. V8#A-256). There are a number of digital
currencies and cryptocurrencies in the networl8bigbin is the first deployed payment system
of its kind (Castillo, 2013) invented by the mysbes Satoshi Nakamotditcoin (orBTCfor

the currency itself) is the first decentralizedwal currency deployed (Calvery, 2013) and the
largest of its kind in terms of total market valuéhe system is fullypeer-to-peerwith
transactions taking place directly between usetls mo need of an intermediary (or a trusted
administrator); in order to be a validated systhmttansactions are verified by network nodes
and then recorded into a publtiistributed ledgecalledblockchain This main decentralization
feature, along with encryption, public availabilijd data persistency can be realized only
through the blockchain data structure and thidhiésreason that made bitcoin very popular

online and across the globe.

BC was first described iINakamoto’spaper as an elegant solution to achieve all tfesteres
and solve at the same time both ihignite digital asset reproducibilitgharacteristic and the
double spendingroblems involved in the development of electramichey (Armstrong,
2016). The distributed ledger data architecture waglly overshadowed by the “bitcoin
revolution” and the wave of news that the virtuatrency brought in the web. Recently
however it has become clear that the cryptocurrénpyst a part of the innovation introduced
and that Bitcoin in its former implementation ist soitable to be a silver bullet in payment
systems (though the real question is “should ityd=?”). As the spotlight moved away solely
from bitcoin, blockchain risen from the shadows dedame very popular.

A blockchain is essentially a decentralized digiealger with duplicate copies that records
transactions on thousands of computers aroundahle v a way that those transactions cannot
be altered retrospectively. This enables and allasget ownership and transfer to be recorded

without external verification, in fact the autheatiion process comes from mass collaboration

2 Secure Hash Algorithm, a family of cryptographic hash functions.

powered by collective self-interest (Don TapschBigre's Why Blockchains Will Change the
World, 2016).

Under this guise, blockchain offers a way for peopho do not know or trust each other to
create a record of who owns what that will compeldssent of everyone concerned. A database
that contains the payment history of every bitaninirculation, the blockchain provides proof
of who owns what at any given time. In order toyide durability to this data, the distributed
ledger is replicated on thousands of computersnodés” around the world and is publicly
available. A BC database consists of transactiomsdocks. Blocks hold batches of valid
transactions that are timestamped, hashed and eshattd avierkle Treé. Each block includes
the hash of the prior block in the blockchain, intkthe two: linked blocks form a chain. This
architecture maintains a growing list of blockssltveating a digital ledger. Blocks are secured
from revision and tampering, cryptography is usedllow each participant on the network for

ledger manipulation in a secured way without anp frem central authority.

As blockchain popularity increased between smalifB&lised companies, a number of big-
time firms (like IBM, Intel, Samsung, Microsoft amathers) started to research on this
technology and finding that its openness would grarwide variety of freedom in its
implementation and therefore in its usage. Howsdtier plain “old” structure of Bitcoin’s
blockchain was not viable to be developed withta increasing concepts. In order to create
tangible proof of business research companiesestaid develop their own blockchain
implementations and protocols, taking Nakamotoiginal one as basis and setting up new

rules and new features.

With recent investments, many groups and firms haueed their forces to produce new
blockchain services that can reduce costs in th&ibg and financial sector. This immediate
and big advantage can be achieved out of thisliechuse of the natural similarities brought
from its use with currencies and tokens. Many oitheas for usage beyond financial have been
elaborated over the expectancy of BC, coveringdewariety of possibilities ranging from the
use in public offices (for records, trades, loamg so forth) to supply chaingT*, automation,
messaging, data storage and so on. This growingrougation created a schism about the

fundamental question over which some partiesdgitlate over:

3 Hash Tree or Merkle Tree is a tree in which every non-leaf node is labelled with the hash of the labels or
values (in case of leaves) of its child nodes.
4 Internet of Things

“is there any value in a blockchain without a crgptirrency?”

To better understand this question we will poirttthat blockchain is both an economic and a
computer science innovation. However the term “wratmn” here comprehend a new
combination of existing techniques, rather thaneting which has no precedent whatsoever.
As a peer-to-peer technology we can compare BGadMorld Wide Webits invention is
considered as an innovation, even though it die lihore than combining hypertext with some
existing Internet protocols. The point of having this question thoug because some
blockchain forks do stripe away its binding witlergptocurrency, flushing away aspects that
were initially conceived to strengthen its architee. In light of other purposes we can say that
blockchain without a token do serve a purpose wlsghst different from the original bitcoin
BC one (Greenspan, Ending the bitcoin vs blockcligbate, 2015). The notion of shared
public ledgerger semay not sound revolutionary or intriguing but teal innovation here are
not the digital coins themselves, but the trustmaeused to mint them, which promises much
more besides simple financial transactions (Thenggost, 2015).

1.2 THE RISE OF DISTRIBUTED LEDGERS

Nakamoto’s paper states thabmmerce on the Internet has come to rely almastgively on
financial institutions serving as trusted third pias to process electronic payments. While the
system works well enough for most transactiorstilitsuffers from the inherent weaknesses of
the trust-based modelWhat Nakamoto first described and then deployed complete
payment system that overcomes this model, shittingrust-based third-parties to peers on the
internet, willing to cooperate with the goal to msle the mutual benefits of this working
payment system. Briefly, following the author défons, we can define an electronic coin as
a chain of digital signatures. The coins are trametl from an owner to the next by the digitally
signing the hash of the previous transaction giespublic key of the next owner. Public keys
are cryptographically generated addresses stortbe inlockchain that are seldom tied to a real-
world identity. A payee can verify the signaturesverify the chain of ownership but the
problem is that the same payee can't verify that @inthe owners did not double-spend the
coin. The only way to confirm the absence of agaation is to be aware of all transactions in
fact, for our purposes, the earliest transactidghesone that counts, so we don't care about later
attempts to double-spend. In order to accompligwtithout the use of a third trusted party we

need:

e Publicly announced transactions.

* A system for participants to agree on a singleohysof the transactions order.

* Proof (for the payee) that at the time of eachdaation, the majority of nodes agreed
it was the first received.

Transaction Transaction Transaction

Owner 3's
Public Key

Owner 2's
Public Kev

Owner 1's
Public Key

Owner 0's
Signature

-

Owner 1's Owner 2's

Signature Signature

.

% G\\“i‘\ -1 .-_\“i‘\ -

= ="
e P e
_— ; /' JI’ f/,
Owner 1's Owner 2's Owmner 3's
Private Key Private Key Private Key

Picture 1 - Bitcoin's blockchain model

-

The solution for those needs has been laid out tétfollowing features:

- A timestamp server thattakes the hash of a block of items to be timestargel then
publishes the hash. The timestamp proves thatateerdust have existed at the right time and
ordered to get into the hash. Each timestamp ieslude previous one in its hash, forming a
chain, with each additional timestamp reinforcing thesbefore it.

- A solid and guaranteed mechanism that can elimithe reproducibility problem of the digital
medium calledProof-of-Work (POW). The concept of POW has been introduced by Dwork
and Naor (Dwork C, 1992) and defines a mechanismwifich the resources needed to solve a
computational problem should not be easily acquaredl may not be scaled at will. Formally

we can consider the function:
F(d,c,x)->{True, False }

whered is a positive number defined dsficulty, c andx are bit-strings where the first is the

challengeand the secondreonce. F is called @PoWfunctionif it has the following properties:

> A nonce is an arbitrary number that may only be used once.

1. F(d,c, x)is fast to compute i, candx are given
2. For fixed parameterd andc, finding x so thatf (d, c, x) = Trueusing a unit-resource

is distributed withexp(1/d) i.e., computationally difficult but feasible.

The mining operation involves the process of saafor a value &) that when hashed (like
with SHA-256, will make the hash begins with a number of zerts. The average work
required is exponential in the number of zero bitsted but can be verified by executing a
single hash. The key feature here is asymmetrywvirk must be moderately hard (but feasible)
to resolve (hence the term “puzzle” in the slangriof-of-work) but easy to check by other
nodes in order to be validated. To align this featwith the timestamp network the POW is
implemented by incrementing thencein the block until a value is found that gives iheck’s
hash the required zero bits. Once the CPU effablean expended to make it satisfy the proof-
of-work, the block cannot be changed without redail the work. As following blocks are
chained after it, the work to change the block womkclude redoing all the blocks after it.
Proof-of-work also solves the problem of determgniepresentation in majority decision
making, being able to surpass a one-IP-address«ateefthat could be subverted by anyone
able to allocate many IPs) in favor of a one-CPW-wate. The majority decision here is
represented by the longest chain, which has tretegeproof-of-work effort invested in it. To
compensate for increasing hardware speed and ggingierest in running nodes over time, the
proof-of work difficulty is determined by a movirayerage targeting an average number of

blocks per hour. If they're generated too fastdiffeculty increases (Nakamoto, 2008).

Blockchain wor kflow:

1. New digitally signed transactions (coming from @$e&re broadcast to all nodes.
Each node collects new transactions into a block.
Each node works on finding the proof-of-work far @wn block, solving the puzzle.
When a node finds a POW, it broadcasts the bloel toodes.
Nodes accept the block only if all transactiong are valid and not already spent.

o 0k~ w D

Nodes express their acceptance of the block bywstaking on creating the next block

in the chain, using the hash of the accepted kdsdke previous hash.

The node’s puzzle can only be solved by trial amdretherefore across the network, all nodes
(called often “miners” for mined currencies) gritistough trillions of possibilities looking for

the answer. When a node finally comes up with atswi the other quickly check it (again,

10

solving is hard but checking is easy), and eacleiogt confirms the solution updates the chain
accordingly, nodes always consider the longestnckaibe the correct one and will keep
working on extending it. The hash of the headeobes the new block’s identifying string,
and that block is now a permanent part of the ledgéth this type of robust workflow,

blockchain have been even described as a valueargelprotocol (Bheemaiah, 2015).

There are a number of factors in place to thwaackers that can be summarized in:

1. Chancelt is virtually impossible predict which nodeiper) will solve the puzzle, and
so there can be no clue on who will get to updageblockchain at any given time.

2. History: Each new header contains a hash of the previoak’s header, which in turn
contains a hash of the header before that, and sdl the way back to the beginning.
It is this concatenation that makes the blocks atain. Starting from all the data in
the ledger it is trivial to reproduce the headertfee latest block. Making a change
anywhere even back in one of the earliest blockscatise a chained reaction where all
the subsequent block’s headers will come out differThe ledger will no longer match
the latest block’s identifier, and will be rejected

3. Reward probably one of the most important key featurésitcoin’s blockchain.
Solving the POW puzzle (and forging a new blockectty) creates new bitcoins. As
of now the winning miner earns 12 bitcoin, worttoab$28.460 at current prices. The

puzzle-solving step adds is an incentive which arage nodes to stay honest.

With this kind of countermeasures in place everkiked and resourceful attacker, able to
assemble more CPU power than the rest of all thestanodes, would have ultimately to choose
between using that power to defraud people byiagehhck his payments or using it to generate
new coins. In the end, is all about considering@dgprofit out of the resources used: the puzzle-
solving operation is very CPU-intensive, which deacomputer power in form of electricity
that has a non-negligible cost to the hardwareisesWnot considering the hardware cost itself).
The bitcoin reward profit must be matched with ttwurly, daily or weekly cost of power

consumption that could “waste” all the amount dtdins earned. This is a strong security

policy.

11

1.3 WHAT THE BLOCKCHAIN IS

Studying its architectural side, we can observe ltiheckchain not only provides a way for
secure transactions to take place, but also madasit to recover corrupt data and in the same
time minimizes loss possibility as every node iedide chain has a copy of data. Blockchain
can thus be integrated into multiple areas: sonteaeh are about payment systems related to
digital (and physical) currency, like title traclginpayments, transactions, others range from
permission distribution (like distributed sharingtmmg systems) to information anchoring,
“truth proving”, meta-token creation, identity denstration, intellectual propriety handling,
secure messaging, insurances and so on. Busineasasd that the potential of BC lies not so
much in using it as a replacement technology, atlter in its ability to enable new business
process improvement opportunities (Fredrik Mil&@16). This concept has been absorbed by
researchers and programmers and then re-engineeddterent blockchain implementations

that add other key-features. Successful use casdbuw not limited to):

Land Registry: one of the first tryout applications of blockchautside the cryptocurrency
scope has been the use in house and land registryBenefits in this sectors can be obtained
on two sides: the first being the storage of lamthiag registry in a safe ledger, the second is
about home-sales tracking, both encompasses tpenymver a crucial asset for citizens of a
nation. On July 2016 Sweden and Scandinavian waréucting tests to put the country’s land
registry system on blockchain. The long shot o fflanning is to put real estate transactions
on blockchain once the buyer and seller agree aiead and a contract is made, so that
everybody (banks, government, brokers, buyers ahers) will be able to track the progress
of the deal (Chavez-Dreyfuss, 2016). This kind pplecation could potentially help all
countries currently struggling with land title fichgince many databases are simply hacked and

the contained properties’ ownership faked.

Crowdfunding: being blockchain the structure behind a cryptocuwyeone of the most
successful project in the area is crowdfunding. &&a behind this concept is to provide a
decentralized version of a funding applications ihesign is meant to function as a streamlined
tool to commit pledges from people all around tleld/and use them to fuel special projects
that will be more independent from countries pekcand limitations. The money gained from
pledges will be made available (and “unlocked”}tte project owners only if and when the

target amount is reached. This service has beehhysdifferent websites and organizations to

12

create not only projects related to technology esearch but even medical, emergencies,
cultural and so forth (Higgins, Bitcoin-Powered @dfunding App Lighthouse Has Launched,
2015).

Smart Contracts. arguably the most advanced feature integrated entie blockchain
technology. They were first defined in the earl@Q@9 as a set of computer protocols and user
interfaces intended for formalizing and securinigtrenships and agreements over computer
networks, a SC thus encodes the terms of a traditicontract into a computer program that
executes its clauses automatically (Szabo, 1994ihinV blockchain technology, smart
contracts can be self-executing and self-enforeimgpout the need for intermediaries. A
particular clause could encapsulate, for exampleptex terms and conditions which could be
met only with a contingency on an external eveutlisas a required target amount of money
for a crowdfunding operation). A blockchain-basé&d iS publicly visible to all users and can
be extended with appropriate programming languagructions which both define and
execute an agreement. This complex feature exthredslockchain domain to other important
business areas that includes financial instrumém@sonds, shares and derivatives, assurance
policies, contracts and other instruments and &etiens where nodes can monitor the events
related to the rules dictated by the smart contiac2015,UBS was already experimenting
with “smart bonds” using bitcoin blockchain (Ro2615), but the group that has poured more
resources and commitment in this direction isEtteereum Foundatian

There are a number of potential benefits in usim@rs contracts that will be covered as we
proceed but the most interesting feature is theipisy of embedding trust in a code that could
overcome moral hazard problems and reduce costsrification and enforcement. It is still
debated however if the legal status of these ccisti@uld raise serious consumer protection
issues. Since blockchain-based smart contractifirat an early stage, some believe that they
are not reliable and with several unsolved problémternational Monetary Fund, 2016),
however it would be wrong to neglect their wide aaifities just because their use is difficult

and hard to comprehend at first.

Digital Organizations: in light of the feature offered by the previous rexdes, smart contracts
can be custom-programmed and pushed onward regutithe creation of a new level of
organization scheme. @decentralized autonomous organizat{@AO) is a complex set of rules

6 UBS AG: a Swiss global financial services company based in Zurich and Basel.

13

and clauses defined by a number of smart contractating what can be considered a full-
working company or organization composed by a h&eelancers. This kind of system is run
by people themselves but enforced by software rthhey work together on projects which are
voted inside the organization’ scope, the resoufmesey) available to the organization is then
committed once a project is approved and peopl@aeton deliver or on completion of the
project. All of this is achieved potentially onlimathout the need to congregate physically or
to form a brand new organization from scratch.dlthe DAQO’s financial assets, transaction
record and program rules are therefore kept oroekbhain that runs all the structure of the
organization and, usually, supply even the necggeals to handle projects and the interaction
with people (Paul Vigna, 2015). It is fair to saywever that even if this business model has a
good number of successful cases, it is still a demgs terrain to build something real on
because there is no clear legal standing for ypis 6f organizations and regulators are doubtful

about the real advantages (Popper, 2016).

Finance: being blockchain the structure behind cryptocuriesicone of its most common
customization and use involves bank and financeds On September 2016 a number of major
firms is Switzerland including: Swisscom, the Swatsck exchange, Zurich Cantonal Bank
and others, have formed a consortium to use bl@hkdbchnology for the facilitation of selling
shares outside of a stock exchange. RBEEVcompany is another consortium that allowed
some of the biggest financial institution in therlddo research on blockchain and integrate it
in financial systems. The main driver for the u$eB€ in this area is that while payment
requests can be fast over the web and internegdiual financial assets being transferred still
moves over old systems that connect all the irigirtg involved in the physical process of the
transactions. It can take days for the funds toadlst reach an account, therefore these systems
both slow and really expensive too.

This kind of problems are not uniquely tided to k&wor credit institutions; many companies
and public bodies suffer from hard-to-maintain ammbmpatible databases, resulting in a high
transaction costs because of the interoperabiigded when interfacing to other systems. This
is the problem thaEthereun’, one of the most ambitious distributed-ledger gehjvants to
solve. The blockchain usedHkithereuntan deal with more data than bitcoin’s can andntes
with a programming language that allows users ttewnore sophisticated smart contracts able,
for example, to create invoices that pay themsefihen a shipment arrives or share certificates

7 Link: “https://www.ethereum.org/”

14

which automatically send their owners dividendgribfits reach a certain level. Strictly for
finance world, blockchain would significantly lowtre upkeep for the transaction systems and
ease some of the procedures, lowering costs bynggayment processing more efficient. On
June 2015MasterCard® company replied to a request for information abblackchain
technology with a 4-page response stating tthigital currency’s risks outweigh the benefits
(Spaven, 2015). On 21October 2016 howeveV¥ISA® announced new details about a
forthcomingB2B'° payment service developed with a blockchain spadibe launched in 2017
(Higgins, Visa to Launch Blockchain Payments Serviext Year, 2016)MasterCard
probably changed opinion early before in the timeland just after 10 days (on Octobet)31
they released an experimental API frdfastercard Labghat is connected to their internal
blockchain work.

Private vs. Public / Token vs. Tokenless blockchains: from the moment when new
implementations of blockchain technology risen ¢hlesis been a wide degree of modifications
and customizations. The difference between custopiementations is the use of public or
private ledgers, bound with a token or tokenlesese. The former structure of blockchain is,
by definition, a public distributed ledger born lwihe specific purpose of being the backbone
for bitcoin currency. Its public applications hoveeware not restricted to a currency or token
use of this structure: car leasing and sales ausmmhy transaction that will lead to a
programmable economy that will output on théernet of Thingsmarkets prediction, ride
sharing, healthcarand supply chain management are just examplestledget! is a global
distributed ledger built for the specific need odcking the source, origin and trade of
diamonds, in order to prevent fraud. A diamond kbbain can record each gem’s unique
combination of attributes, giving it a precise atstinct pattern which can then be put on the
ledger in order to verify its tracking and statasaosupply chain or in a chain of custody (Levy,
2016).

Other versions of blockchain that follow a tokeadischeme have a different purpose from the
original bitcoin’s; by removing the medium contedd®y anonymous miners we lose some
features like transparency and decentralized dgdomised on proof-of-work. However if we

consider a private blockchain maintained withinrgke organization there is no need of these

8 Mastercard Incorporated

% Visa Inc.

10 Bysiness-To-Business

Y Link: “https://www.everledger.io/”

15

features because we hgwerfect trustin this scenario BC is useful for keeping decalized
databases in sync or can be used for creating esusdor specific types of transactions
betweerorganization that have onlylanited degree of trust. Instead of using bitcoin or any
currency as token, we can have a token-free moadehich each row can represent multiple
assets, this system would be built on top of aetldsst of authorized miners, who identify
themselves by signing the blocks that they créldies is a radical different approach from the
traditional blockchain, but it serves well on hight¢gulated financial systems if you can accept
the restriction that miners must be pre-approve@é¢@span, Ending the bitcoin vs blockchain
debate, 2015). This type of BC, with the ability rigstrict the participation and consensus
process falls under theermissionedalass of distributed ledgers. These ledgers dtesshject

to open debates and controversy because they wenld as a mere distributed version of the
multiversion concurrency contrgMVCC), which is usually implemented by traditional
corporate-level databases. Therefore this procéésemtroduce some security issues and
pitfalls that cannot be longer mitigated from alpylioken-mined environment (Don Tapscott,
The Blockchain Revolution: How the Technology BehiBitcoin is Changing Money,
Business, and the World, 2016). After this desmiptve can summarize the different designs
of distributed ledgers into the following categsr{Buterin, On Public and Private Blockchains,
2015):

> Fully public blockchains. the more traditional approach is represented by
decentralized ledgers open to all Internet usenyoAe can read, submit transactions
and participate in theonsensus proceseeded for determining which blocks will be
added onto the chain. The security in this modgbrsvided by a combination of
economic incentives and cryptographic verificatiosing mechanisms such as proof-
of-work or proof-of-stake. The general principlerdn@s that the degree to which
someone can have an influence in the consensuggsae proportional to the real

guantity of economic resources that they can borggear.

> Fully private blockchains: the opposite approach is one in which permissinagkept
centralized and assigned by a trusted entity #aces the proof needed while mining.
Such a system does not need an embedded tokemrenay since his central entity
can assign manually computers to verify transasti®ead permissions may be public
or restricted to some extent based on the busmede! implied. Applications include

database management, auditing, etc.

16

» Hybrid or consortium blockchains. another approach is to make up a mixed set of
rules from the previous two, consensus validatiooc@ss is controlled by a pre-
selected individual or organization. The rightéad the associated blockchain may be
public or restricted to the participants. Theseteays are considered partially
decentralized due to their nature of being shastdiden different companies/entities
that may hold one single node of the computati@b tbgether form the blockchain.
Business rules are applied in nodes to conform tioetime BC procedures, the different

degrees of trust at work here can be subject to toden and token-free models.

Disadvantages of Blockchain: after a complete readout on its main features pptcations
it is fair to point out even the drawbacks andidifities that are compelled with the use of
distributed ledgers. There is, of course, a traddémf using BC technology; the more

influencing aspects will be summarized in the failag list:

e Space: blockchain requires increasingly more storagecspas the number of
transactions climb up, this space is occupied e¢head every simple node (or miner
node) that is contributing to the consensus proadsthe ledger because every
transaction is stored by everyone. This factoritgyated by optimization techniques to

prune the unneeded data but still remain a ceisgae while using a blockchain.

Blockchain Size

ource: blockchain.info

ME

2009 2010 201 2012 2013 2014 2015 2018 2017

Picture 2- Blockchain total size for Bitcoin network

17

Time: transaction completion takes more time comgao other technologies, this is
because the transaction verification process igdoand is dependent on the miners for
verification. After this process, a transactioisadcasted to all nodes as new block.
Although custom ledgers have mitigated this prohlgémemains a huge drawback for
bitcoin’s BC that today can handle only 7 transawiper second due to its protocol
restricting the block size to 1 megabyte and takingaverage 10 minutes for a new

block to be mined.

Costs: from user prospective, the fees for trammasimay vary from service to service
and from miner to miner since every one of themidée¢he charge rate for the
transaction’s verification. On the other side tledware cost for the mining process is
non-negligible, tied with the hourly/daily/weeklypwer consumption required for the

CPU calculus to be carried out.

Security: the whole structure of cryptocurrencypas immune to the threat of hacking.
During bitcoin’s brief history the company has bedtacked more than 40 times with
a few thefts that exceeded $1 million in value gotbrojects (like Ethereum) have been
attacked and drained too. The standard blockchetwark is an implicit solution for
the notoriouByzantine General Probletheslie Lamport, 1982), but relies on the fact
that the majority of its miner nodes remdianest(> 50%). However, a number of
research and studies pointed out that this is moagh: a sufficient large mining pool
that employs &elfish Miningstrategy (Ittay Eyal, 2014)ould subvert the network’s
protocol into one where blocks generated outsiéepibol would be ignored. Bitcoin
protocol as it is now will never be safe againss tigpe of attack if the mining pool
manages to get more than 1/3 of the total mininggvef the network. However, there
are other consideration to take into account farbd® spending attack to be deployed
like effective resulting probabilities of succesg ashrate, earned value vs costs,
number of confirmations and others (Rosenfeld, 2014

Objectiveness: when it comes to reality, the blbeke phenomenon has received a
huge hype into the believing that it can be thalfemswer to a plethora of problems,
this is misleading because BC is no silver buReinctual and meticulous analysis must

be done when striping BC from its former applicat{bitcoin) in order to understand

18

both benefits and drawbacks of this technologys thibecause there is a complex
interplay of many critical technology componentattivork together to make bitcoin
secure, many of which can’t be applied outsidestt@pe of the cryptocurrency. An
important notion to keep into consideration whentipg from token models is that
bitcoin isn’t secure because of blockchain (prityarinstead the security is provided
because the effort and cost of subverting the winlecture is greater than the value of

what's being protected.

1.3 THE BIG PLAYERS / BLOCKCHAIN TODAY

Blockchain technology has come a long way fronmitioduction with Bitcoin in 2009, as new

business possibilities emerges, new brands andap®re are trying to get an edge on the
market by providing a fully-personalized blockch#hat can deliver more tailed-services than
the original one. This section will introduce thate-of-the-art projects on distributed ledgers
provided by organizations that are currently red@ag or providing an extensive blockchain-
based product (a platform) on top of which thirdtigs can develop a variety of services tailed
to their specific business needs. To better unaedsthe size of the projects based on

cryptocurrencies, we will list them by their totalue of market capitalization as of July 2017:

-Bitcoin: although Bitcoin (BTC) is not designed to change its former implementation
(therefore having limited applications other thae briginal) it has the largest capitalization
between cryptocurrencies, being over $40.700.00@0.00is large share is due to its age,
moreover that the system has been adopted arownadvemld by a number of official
organizations and institutions and even becauseht main cryptocurrency used to exchange
for minor digital currencies. A single BTC todaystevalue of $2.470 but as stated, the future
development of this system is stuck on a debate ttreebetter way to upgrade the backbone

rules of the system.

-Ethereum: With a market total value of about $26.192.000.800 a token price of $280, this
project comprises both a cryptocurrency paymentesyqcurrency is called “ETH”) and a
distributed environment built on top of a custorodbichain conceived for the deployment of
smart contractshat can generat@apps(decentralized applications). We will cover Etheneu

in the next chapter.

19

-Ripple: A financial-target solution with a total market walof $9.888.000.000 built upon a
distributed, open source, internet protocol, cossstedger refined into the Ripple Transaction
Protocol (RTXP). Once a company joins the netw&ikple is designed to enable payments
(with both fiat and digital currencies) across @iéint ledgers and networks persistently and
globally. One of its main feature is the great eegof interoperability, giving banks and other
financial parties located on different networks aldity to make transactions with one another
directly even in the events of cross-border paysidRipple therefore allows customers to have
lower total costs when executing payments, and dokoffer new type of products and
services without the need to worry about the uimalgprovider or financial infrastructure used.
(Liu, 2013).

-Others: There are a number of other smaller projects inbtbekchain area (besides minor

digital currencies as well), we will reference hgret some of the most notorious.

The Hyperledgeropen-source project is a distributed ledger ptatfborn in the end of 2015,
by a collaborative effort created to advance ciodsstry blockchain technologies, hosted by
theLinux FoundationThe project aims at improving different aspedétthe BC technology by
combining new open protocols and standards withgie to develop an enterprise-level
modular framework that can be deployed in differigpe of businesses or industry-specific
applications (The Linux Foundation, 2015). Hypeged itself is the sum of different
blockchain projects, each with an individual idgntieatures, purpose and objectives as stated

by the project community.

Multichainis an off-the-shelf platform based on a forlBatoin Core it is focused on bringing
the powerful features dditcoin’s blockchain technology into institutional financgdctor with
relatively ease while extending its capabilitied.tAe main features are packetized in a ready
solution that can create and deploy private bloaktd) either within or between organizations,
providing all controls needed for suiting the neeaxdsthe organizations. Being private,
Multichain addresses the mining problem with opasngeclined with the use of integrated
management of user permissions that ensures utigibild allows transactions only among
chosen participants with enough privileges (GreanspMultiChain Private Blockchain

Whitepaper)

20

2.0 ETHEREUM

Ethereum is an open source project created andtaiveed by theEthereum Foundatids,
which develops a public distributed computing mati built on top of a customized blockchain
network. The objective of Ethereum is creating gmomoting development of both
decentralized protocols and tools in order to baittew set ofiecentralized applicationsvith

a different set of tradeoff that will be usefulsolving a large class of problems in business
domain (Foundation Team, 2014). To make an exawfpd¢her on-chain implementation we
can take Bitcoin: it offers a rudimentary scriptisigstem that is neither expressive nor user-
friendly. Many people in industry and research haiexl to design and implement different
smart-contract-like applications attempting to @étrBitcoin’s scripting language (Marcin
Andrychowicz S. D., 2013). However the effectivpressiveness of this scripting language is
very poor and the retrofitting process is both tenasuming and costly, leading to more and
more laborious work demanding a high effort fotatbe efficient. Such need for custom
implementations is the one that drove the Etheréoomdation into the creation of a smart
contracts ad-hoc platform, which has become trs¢ &nd more viable to program at the
moment than previous attempts and work-aroundsk@&fpdeatures of this protocol are focused
on rapid development times, security for small maplons and the boosting of interaction
capabilities between the different applicationd.oklthis is accomplished by buildifapps?

on top of a blockchain’s abstract foundational tayietegrated with a built-inTuring-
completé* (Ethereum Community, 2016) programming languagealke of defining smart
contracts. Ethereum is hence a complete platfarprovides a decentralized virtual machine
called EVM (Ethereum Virtual Machine) that can execute codeahputation on a “global-
computer” realizingpeer-to-peercontracts and services while using a token caditreer
(Buterin, Ethereum White Paper, 2014).

Being a background platform capable of providingraareasing number of ways to develop
services, many small, medium or enterprise-levalggts have adopted the Ethereum platform.
The aim of this project is having a decentralizekbh-based “operating system” upon which
all third-parties can develop their business sohgion. With this feature the Ethereum platform

is natively inclined to support all sort of branelmtokenized-projects that can be implemented

12 A non-profit organization, https://www.ethereum.org/foundation

13 This writing style identifies Ethereum Distributed Applications specifically

14 1n computability theory, an instruction set or programming language is said to be Turing complete if it can be
used to simulate any single-taped Turing machine.

21

with its programming language. Applications on gide range from anything related to digital
currencies to contracting, savings wallets, wilisl @very specific-regulated need, all of this
can be mapped with Ethereum smart contracts usied=TH currency to pay for services
offered by the platform. We can then find all apations in which there is still a token
component but the business model involves a noretaop side, like identity and reputation
systems, decentralized file storage or decentdlemonomous organizations. On a third
category we can put all application related to daedized governance, online voting,
management and so on, which do not have a finamoalponent at all. Beyond these
categories, Ethereum has a longer list of appbtoatimany of which have been proposed and
funded, others are currently being scoped anddest@e accurately. Domains that involve
insurances, decentralized data feed, multisignatamsaction contracts, cloud computing,
peer-to-peer gambling, prediction markets and deakzred marketplaces are just examples
(Buterin, Ethereum White Paper, 2014).

2.1 THE ETHEREUM PROJECT

The Ethereum environment and platform have beerged to be adaptable and flexible,
unlike Bitcoin, Ethereum founders wanted to creafiglly trustless smart contract platform. As
a programmable blockchain, Ethereum provide usélsmeans to create their own operations
at any wanted level of complexity instead of refyjast on currency transaction scripting. The
core concept behind this programmable-feature essthereum Virtual Machinea runtime
environment for the execution of smart contradts & completely isolated environment, thus
the running code inside it has no access to eXtezsaurces like file system, network or other
processes. The deploy process is carried out detlareum client and follows a high level
language compilation with a specific EVM compil8mart contracts are then deployed on the
blockchain and reside on the network stored inegigp binary-format calle&VM bytecode
The EVM can execute code of arbitrary algorithmemplexity thus falling under th€uring
Complete classification, its main programming language ezhlSolidity is modelled on
JavaScript

The Ethereum environment hapeer-to-peenetwork protocol and blockchain structure way
different than the Bitcoin’s original, its databgabout 20 GB in size for an Ethereum full node
as of now) is constantly maintained and updatethbynodes throughout the network. Nodes
that run the Ethereum client execute the sameuictsdns set on a local EVM instance, this

process is used to maintain a decentralized consetsoss the blockchain granting interesting

22

features like high level of fault tolerance, no ddwe and of course censorship-resistant data
storing. This structure and protocol together @eat environment that, as advertised, favors
application that'automate direct interaction between peers or fa@ie coordinated group
action across a network’(Ethereum Community, 2016). As a both common aheap
infrastructure, users can take advantage of otteskground” features like: user authentication
verified by cryptographic signatures, easy-deploysyment logic, a certain degree of
resistance in denial of service attacks (we wglurae this point later), great interoperability
between contracts, no server infrastructure (aglsipoint of failure).

The roadmap for any average Ethereum-based projdecome live starts with a concept of
service that can be implemented on the blockcllaendesigners describe that concept and lay
out what can be defined as a “white paper” thaestdneir goal and gives some use cases. After
the presentation comes, a date and time periodhergen for the crowdfunding phase of the
project, this process has been defined in jargdinasl Coin Offer” (or ICO, as opposed to
the classic “initial public offering”). The ICO sas as a mean to raise funds for the new
cryptocurrency venture, therefore bypassing theorogs and regulated capital-raising
processes required by venture capitalists or banisthe duration of an ICO, a pre-mined
fixed amount of the new currency’s token is soldady backers in exchange for other cryptos
(Investopedia, s.d.). Once the duration is exparetthe target amount of tokens have been sold,
the projects goes to development status and wibll goiidance and timing, it goes from first
test version to a final product or service.

The important thing to notice here is that all béde processes (with exception of the
presentation part) can be achieved solely withatmereum platform, using smart contracts to
write code that operate the ICO phase, hold fundslater, the service itself. If the contract is
well-coded, it can even refund money back to bacKethe target is not reached within the
initial offer time-window. To understand the scopgthis platform’s ecosystem we will
summarize here a brief overview of the main Etheréased projects that are currently being
deployed or funded to an active status (as of d0ly7), describing their concept or proposal:

5 Short for “Cryptocurrencies”

23

-Aragon: a distributed application designed for running @sA\(Decentralized Autonomous
Organizations), anything needed to manage a digaaipany like cap table, governance,
fundraising, payroll, accounting, bylaws and othecessities are packed together in an easy

and manageable environment. Aragon is currentiipha.

-Augur: a decentralized prediction market with the apild forecast the outcome of an event
based on thewisdom of the crowdprinciple. Following this method, information eellected

from the crowd and averaged into the most realmigsibility and therefore the most probable
outcome. Correct predictions are awarded by thear&twhile incorrect reports are penalized,
all of this is to create an incentive to truthfaporting and it is enforced with the usage of a

tradableReputatiortoken. Augur is currently in beta.

-Bancor: a protocol that enables anyone to create a npw @y crypto called “smart token”
that can hold and trade other cryptocurrenciesases the market of other tokens by removing

the need of second parties in token trades (ex@nandancor is deployed and live.

-Brave & Bat: Brave is a new blockchain-enabled browser thesiters an environment resistant
to both ads and trackers while introducing a neschkdhain-based digital advertising model.
Giving a new focus on the user attention and thinoiing Basic Attention Toke(BAT), the
project has created a decentralized ad exchangeyfgmanew advertising strategy that aims to
solve malvertisingproblems on the internet. The philosophy hereh&t tuiser can receive
rewards for their “attention” if they choose to ¢bhe ads on the website. Brave is currently

available while Bat is in beta.

-Status. an open source messaging platform and browseérighdesigned to enable mobile
devices in the use of Ethereum decentralized agpies, turning devices into a light client
node of the network that can peer in and intetettus is currently in alpha.

-Peer Name: an Ethereum-based DNS (Domain Name System) émaéis as both a provider
for Ethereum name system (ENS) and for other dealezeéd domain names that come from
different DNS zones than the one usually provided@®ANN. PeerName is a deployed and

live service.

-Sonm: project that aims to provide a universal coseetiire super-computer designed for

general-purpose computation. In this concept, nomethe network can make use of their idle

16 Internet Corporation for Assigned Names and Numbers

24

computer power to become part of the Sonm netwadkearn its token or spend it in exchange

for computation. Sonm concept has been fundedne.Ju

-Slock.it: a decentralized smart physical lock that caetigo the blockchain. ThisT-related
usage backs the fact that one can lock any asgeagartment, car, bycicle) behind Beck
and anyone can rent the asset for a fee in EthHas froject showcased the potential of
Ethereum connected to a real-world device in thginmeng and today is enforced by smart
contract and deployed by several businesses, tongleAirBnB’.

-Swarm: a peer-to-peerstorage platform and content distribution servioplemented in a
serverless paradigm. From user prospective, swarerates like WWW? but without a
specific server with the integration of blockch@ased domain name resolution. Anyone with
free space can rent it for a token reward or upltsadata to the network, indexing headers will

be maintained in the blockchain. Swarm is curremtlgipha.

-Truffle: a development framework to ease smart contratihgrit enables support for special
deployments, library linking, testing on public private networks and other related tools.
Truffle is currently in beta.

2.2 THE PLATFORM

Ethereum now is in its second, and stable, relealed Homestead The pre-release had
launched on May 20130{ympictestnet), followed by a first release codenarfRazhtier on
August 2015 and then by Homestead in March 201@. dther two planned releases are
Metropolis(precise date is still to be announced, shouldgierb the end of 2017) askrenity
One very important notion about the evolution dfdteums that at a certain point the protocol
will shift from the use ofProof-Of-Workas a validation mechanism for miners in favor of
Proof-Of-StakeThere will be substantial protocol changes duthi® evolution but overall it
will be a major feature providing new functionadgifor top programmers while maintaining
its legacy, however in order to resolve backwabimpatible changes usually a network fork
is required.

Ethereum is composed by different basic key-comptghat we can break down as follows:

1 - Ethereum blockchain network and protocol

17 https://www.airbnb.it/
18 World Wide Web

25

2 - Nodes that run an up-to-date Ethereum client
3 -Gas

4 - Web-3 interface

5 - Ethereum Virtual Machine

6 - Smart Contracts

The decentralized structure (1) keeps record asaetions between accounts and their balance
of ETH, no one controls or owns Ethereum and tlogept is open-source. Ethereum’s basic

unit is therefore thaccountand there can be two type of accounts:

-Externally Owned AccountEOAS) which are controlled by private keys andrespnt
identities of external agents (e.g. humans, miniondes or automated agents).

-Contract Accountsvhich are controlled by an internal contract cdus tan be triggered into
activation only externally by an EOA. They can peni operations only when instructed to do
so, this is due to the requisite that nodes (2)trbesable toagreeon the outcome of a

computation, leading to a strictly deterministie@eution.

Both account entities are definsthte objectdecause they implicitly incorporate attributes
that define a state. Specifically an Ethereum agtoontains a 20-byte static address plus other

four fields:

- A Nonceused as counter to ensure transaction uniquenesg giuiocessing
- The account’s actuather balance
- Thecontract coddif we are dealing with a Contract Account)

- The account’s internatorage(empty by default)

From this prospective we can observe that the sfad# accounts contribute to the state of the
Ethereum network overall. Transaction sent from armount to another have an intrinsic cost
calledGas(3) that must be paid by the transaction issues. i&axpressed units, each unit of
gas as a price in ETH and its purpose is twofetuimfthe user side it discourages the submission
of spam-like transactions or useless computati@siks (like DDo® attacks or infinite loops).
From the miner side it fixesteansactionfeethat he can request as payment in order to mine

(validate) a user transaction into a new blockefledger. When a transaction is sent to a smart

9 Distributed Denial of Service

26

contract activating some code, the computatioxéxeted by one (or potentially every) node
and the gas here is used to pay for each stegdptbhgram” including computational power
or memory storage therefore settindgpard limit to how much time, effort or resources are
allocated for a single program execution. Minertawba reward from the system even when
their block is successfully added into the chain, thisesents the joint economic incentive for
people to invest on mining hardware and electritiys however will change with the future
protocol migration irProof-of-Stakg Usually a computational step costs 1 gas uritheere

are operations that cost a higher amount of ghsreitecause they perform more operations or
because they need to increase the amount of datadtwred in the state. Plus, a fee of 5 gas is
applied for every byte in the raw transaction d&tgoossible attacker is requested to pay
proportionately for all the resources he wants emscme (computation, bandwidth and
storage). If a code execution runs out of gas gtpint an exception is raised inside the

program, the state is reverted to pre-executionadinaf the gas is lost.

State State'
14c5fBba: 14c5f3ba:
-1024 eth n -1014 erh

Transaction
kEb752980: From: blk_J?EaE'ﬁO:
- 5202 eth 14¢5f88a - 5212 eth

it 1cortract storege(ts.deta[]):
renrart stocagalte carz[00] = s datal1]

[0, 235235, 0, ALICE ...,

E92hfu2f:

-0 eth

Szhelbdvalde) 2, cortracLsierage| 0]}
sane(bovalue | 3, certract.storage| 1]}
sane(bdvalue ;) 2, cortracLsicrage|z])

[ALICE, BOB, CHARLIE]

4096ad65:
- il erh

To:
bb75a980
Value:
10
Data:
2,
CHARLIE
Sig:
30452fdadb3c
f7959f2ceb8al

it 1contract.storage(ts. datafo]l:
coatract, storage[tx datal0]] - datal1]

|0, 235235, CHARLUIE, ALICE ..

892bfa2f:

- 0 eth

serd|tevalue | 3, contractstoragal0])
serd|tx.value [3, contract.storaga(l))
serdlte.value / 3, contractstoragal[2])

[ALICE, BOB, CHARLIE]

4096acEs:
- 77 cth

Picture 3 - Ethereum state transition example

The state transition function Bicture 3, APPLY (S, TX) -> $an be defined as follows:
1- Check if transaction is well-formed, the signatigealid, and the nonce matches the
nonce in the sender's account. If not, return eor.er
2- Calculate the transaction feeSIARTGAS * GASPRICHWhereSTARTGASrepresents the
maximum number of computational steps allowed texsxuted, andASPRICEthe fee

payedper computational step) and determine the sending addrem the signature.

27

Subtract the fee from the sender's account balamdencrement the sender's nonce. If
there is not enough balance to spend, return an. err

3- Initialize GAS = STARTGAS and take off a certain quantity of gas per bgtpay for the
bytes in the transaction.

4- Transfer the transaction value from the sendecswat to the receiving account. If the
receiving account does not yet exist, create thdfreceiving account is a contract, run
the contract's code either to completion or uhgl ¢xecution runs out of gas.

5- If the value transfer failed because the sendendichave enough money, or the code
execution ran out of gas, revert all state chaegespt the payment of the fees, and add
the fees to the miner's account.

6- Otherwise, refund the fees for all remaining gahéosender, and send the fees paid for
gas consumed to the miner.

(Buterin, Ethereum White Paper, 2014)

From a “back end” prospective, Ethereum is seax\Visb 3.dechnology, enabling a different
version of internet where services like DNS andtdigdentity are decentralized and everyone
can blend in this structure with economic interacsi (Buterin, TNABC 2015 - Bitcoin 2.0 -
Ideas and Applications, 2015). Specifically we cae an object provided hweb3.jslibrary

(4) which is the Ethereum compatildi@vaScript APthat implements th&eneric JISON RPE
specification. In ordeto make use of Papps with an Ethereum node, the conwaiion is
handled througlRPC callsto an exposed web3 interface, its API hag#robject that we can
use for specific Ethereum interactions along witheo commands (Triantafyllidis, 2016)
(Nicola Atzei, 2016).

Down to the Bapps bytecode, inside the node’s thenhave the EVM (5) which has a simple
stack-based architecture with a stack item sizerdjvof 256-bit (chosen to facilitate the
Keccak-256hash scheme and elliptic-curve computations). Sthek has a maximum size of
1024 elements and we can address its memory wsimple word byte array. The machine
comes also with an independent storage modeljgtssmilar in concept to the memory but
with a word-addressable word array fashion. As gppddo memory, which is volatile, storage
is persistent and is then integrated as part ofystem state if computation ends successfully.

More than that, the EVM does not follow the stadd&on Neumaniarchitecture; the program

20 J]SON-RPC is a stateless, light-weight remote procedure call (RPC) protocol. See RFC 4627 for JSON spec.
28

code is stored separately in a virtual ROM by whighcan interact only through a specialized
instruction (Buterin, Ethereum White Paper, 2014).

The machine can have exceptional execution forraéveasons, including stack underflows
and invalid instructions. Like the out-of-gas exii@p, they do not leave state changes intact.
Rather, the machine halts immediately and repotie fissue to the execution
agent (either the transaction processor or, reelgsithe spawning execution environment)
which will deal with it separately, we will see tls®me of this behaviours can lead to hazardous
situation and security issues (Wood, Ethereum:ccarsedecentralised generalised transaction
ledger, 2014).

Finally, Smart Contracts (6) provide functionattief the Web 3.0 tech while built on top the
Ethereum blockchain network, this gives them areealger Bitcoin scripting or other form of
“smartness” in digital currencies thanks to Turoampleteness, value-awareness, blockchain-
awareness and state. To better grasp the conceppraigrammable blockchain we can use a
definition provided by Gavin Wood, one of the prtjereators that describes Ethereuniaas
collection of non-localized singleton programmahdata structures” (Wood, What is

ethereum? | Ethereum Frontier Guide, s.d.).

2.3 OUR PROJECT’S GOAL

Since Ethereum has been aired as a streamlinetdotzZlunch secured blockchain-based
applications without the need of a different ledgeotocol or currency, the present work aims
to evaluate the system and its platform for thdalgpent of specific use-cases examples smart
contracts in relation to speed, costs and secUritg.approach to this work has not been easy:
the technology’snomentunin the last months has grown exponentially (alomt Ws market
value) and this has attracted many attentions fthen outside world, some looking for
information and knowledge, others seeking to defrpeople or attack the blockchain itself
causing quite a lot of confusion. More than thig steps to understand the basics of the
programming language are tied with a prior undedity of the structure and its components
for everything to work together, along with its degencies and constraints. Even if Ethereum
Homestead is in the first stated production reléBtigereum Community, 2016), there are still
a number of components that are difficult to ingegrand use, more than often some
workarounds are needed to secure a correct deptayene testing. We will point out that for
testing and deployment a private test network (wghown miner node) have been set up to
avoid real-chain use difficulties. Firstly becauas, stated, the smart contracts deployment,

29

transactions and calls do have a gas cost, padreatether, secondly because to get ahead of
security evaluations and procedures we need toheesade effect®f our computation in an
observable environment from which empirically eéiEthereum, that can be obtained only
locally.

The structure of this work can be break down wlhih following roadmap:

- Setting up a local Ethereum private network antirtede

- Search for non-trivial problems to adapt into Sn@ohtract code
- Develop specific use-cases for chosen problems

- Deploy Bapps on the testnet and evaluate theiruicec

- Security audit for both platform and applications

The security audit will make some consideratiorsudlthe structure of the blockchain and will
investigate the correct conditions upon which a @i@antract can safely deliver its intended
execution without unexpected result. However, aswmillesee execution correctness by itself
cannot guarantee the safeness of smart contractsmber of security issues in Ethereum SC
have been unveiled while developing custom codsideitthe scope of simpler examples
(Kevin Delmolino, 2016) and by performing staticadysis of all the contracts that reside on
the Ethereum Blockchain (Loi Luu D.-H. C., 2016pn% of these vulnerabilities have been
patched after a major attack drained more thanM@tbm the contract of the DAO in June
2016 (Siegel, 2016).

The assessment part covered in Chapter 1 has bgeneaal study and introduction of the
blockchain phenomenon, while Chapter 2 a more ateysresentation and analysis of the
Ethereum platform. Chapter 3 will cover all thegatg of a local Ethereum environment, the
development phase with a technical showcase dtitiigioning Bapps and some of the coding
guidelines that have been used and why. In Chdptieere will be a deep examination of the
result given out by our coded Papps: we will highti the current tech limitations of
blockchain, the security issues behind its languagksmart contract and a cost/consumption
evaluation of Ethereum blockchain use at its sb&tifre-art. Following chapter 4 there will be
a summary of the whole experience with our conolusbased on both the gathered result data

and our understanding of this innovative technology

30

3.0 DEVELOPMENT

This development chapter will focus the attentionaogrowing group of projects we have
selected among the developed ones to make outakracal showcase of Ethereum capacities
in both what can be achieved with the environmet laow it is coded with Solidity, plus
providing an overview on the main security issuas difficulties encountered. The highlights
provided in the next paragraphs will be the inputthe next one in which the results, methods
and limitations will be further analyzed. There arnumber of different base implementations
of the Ethereum protocol upon which clients do @hywhen executing its environment. The
main implementation projects available as of (Eeher Community, 2016), ordered by usage

and diffusion are:

- go-ethereumdeveloped ifGo language, it is the official Ethereum implemematand
Is focused on the use wifist client and Bapps development, it also has a segcurit

audit for smart contracts.

- Parity, developed irRustlanguage by thEthcorée! it is both an Ethereum client and a

Papps-enabled browser.

- cpp-ethereumdeveloped inrC++, best suited for miner nodes (currently the onlg on
that supports GPU-miningleT and also smart contracts development.

- pyethereumgdeveloped inPython it implements the Ethereum cryptoeconomic state

machine that aims at providing an easily hackabteextendable codebase.

- ethereumja puredavaimplementation provided as a library that can tmbedded in
any Java oScalaproject to provide full support for Ethereum prtband sub-services.
It also supports CPU mining and the project is spoad by<ether.camp32.

- ruby-ethereum,a Rubybased implementation of the Ethereum Virtual Maehi

developed by Jan Xj&

Every one of these implementations follows the ggma described in theEthereum
whitepaper(Buterin, Ethereum White Paper, 2014) and thegoaltspecified in th&thereum

21 A blockchain development startup started by one of Ethereum’s original founder Gavin Wood
2 http://www.ether.camp/
3 https://github.com/janx/

31

yellowpaper(Wood, Ethereum: a secure decentralised genetaliaasaction ledger, 2014).
All of them share the Ethereum Virtual Machine coahich issurprisingly simple: when the
EVM is running, its full computational state candefined by the tupleblock_statetransaction
messagecode memory stack pc, gag, whereblock _statds the global state containing all accounts
and includes balances and storage. At the beginoiirgvery execution round, the current
instruction is found by taking thed" (program countexbyte of code and each instruction has
its own definition in terms of how it affects thapte. There are of course different ways to
optimize the EVM execution via just-in-time compiten but a basic implementation of
Ethereum can be developed in a few hundred linesaé (Triantafyllidis, 2016).

Each low-level operation executed by the EVM hdSas cost in units of gas defined by a
specific formula defined asull_memory _gas_cost = 3 * W + floor(W*W / 512he design
choices for this formula are explained in frelowpaperand a complete cost is listed in an
online public spreadshéé{Foundation, s.d.). The totfeof transactions or executions must
then be calculated by multiplying the gas unit cegh the gas price cost and when a user
submits a new transaction, he has to specify éhétantends to send over. Many users use the
default gas price from their wallet client whenytlreake a transaction, this is generally the
right way to proceed. However, it sometimes makessdo pay more if you want to assign a
higher priority to the transaction: a higher fe@htiresult in a faster mining operation while a
lower fee is preferred for non-critical transactmnin order to save some money, especially if
time is not required by the process. There arecdséeli web servicésthat give a quick
overview of the gas situation across the Etherelookbhain and help to keep track of the

related statistics.

As we mentioned earlier all entities in Ethereumimmment are associated with an univocal
addressable account, referred to by its 160-B0drexadecimal character long public key (e.g.
0xB465E96404611e85A79b3c4c5Af9C18bfD7bL44c

This design works perfectly for the execution maehbut it is not very user-friendly, in that a
human will have a difficult time in remembering thedresses of all interested parties. A useful
servicé® has surfaced to counter this problem and prowdassociatedame.ettthat allows
users to register names that resolves into addrasseg an auction process. However, the

concept of unique address stands: when a new aisatreated on the blockchain the registrar

2 https://goo.gl/5mfkJC
% Like http://ethgasstation.info/
26 ENS — Ethereum Name Service

32

contract compiles the address after its creati@hhemd-code it in the ledger, this information
cannot be changed ever. This feature provide uneggeeven for Smart Contracts registration:
while anyone can deploy the same contract multijprees and interact with several of its

versions, the value of a contract is defined by#age across the network.

Since smart contracts operate as state machirsctiuld have certain stages in which they
behave differently or in which different functionan be called. During development this can
lead to frequent mistakes and errors made whileding such states, one of which could be
money leaking in contracts corner cases. Someafatlor defensive computation should
always be kept in mind when designing smart cotgrddsually the contract’s functions are
responsible to transition a contract through igges but is also common that some stages are

automatically reached at a certain point in time.

3.1 THE SOLIDITY LANGUAGE

Smart Contracts in Ethereum are written with ondhef specialized contract specification
languages, there are three of th&ulidity, which resembledavaScript Serpenimore close to
PythonandLLL that resemblelkISP. Solidity however is the official language of ththereum
Project and is suggested as the main languageeirguidelines. It is a®bject Oriented
language where the internal definitionaaintractis very close to classes, a contract can have

different features that we will quickly summarizgtiereum Community, 2016):

- Types: Solidity supports a number of different data typat they have to be known at
compile-time since the language is statically typHEte language supports Booleans,
integers (signed or unsigned of 8 up to 256 bitsl) faxed-size byte arrays. Strings can
be used in the form of dynamically-sized byte atvayare not a value type and there
is no support for floating point variables as df. yanother very interesting data type is
the Ethereumaddress it holds the 20 byte representation of an Ethmreaccount
address and also have internal predefined membetheck the balance or transfer
Ether via a contract, as well as to call functiémsn other contracts. Solidity also
supportsstructs enumerationgndmappingsvhich are in essence key-value stores that

map keys of any data type to values of any data agowell.

- StateVariables: classicvariablesand values that will be permanently stored in the

33

contract internal storage. Variables can be okdéfit Types and are subject to scope

and visibility like in any other language.

Functions: they define the executable units of code withi ¢ontract and are
distinguished in two types of functions: constamil &ransactional. Constant functions
have the sole purpose to return a value and camuate the state of the contract (or of
the blockchain), in a way we could define them @bkaout anyside-effectvith exception

of the returned value. They can be called direztlg do not consume gas since they do
not modify the blockchain. Transactional functioase used instead to obtain
computation that will modify the state of the cawtrand, when called, an amount of
gas has to be supplied to cover the transactiasa$cThere are four levels of visibility
for Solidity functions:

* External functions part of the contract specification €nfiace), therefore they can be
called by other contracts, but are not accessipliad contract itself. External calls are

carried out via message call and they are susdéepdilerrors that could raise exceptions.

* Public: functions that can be called by the contractfiiaéernally or by any external

contract or entity via message.

* Internal: functions that can only be accessed by the conitiself and its derivative
(inherited) contracts.

* Private Private functions are visible only to the contiigself and cannot be called by

any external entity or derivative contract.

Function Modifiers: they are constructs used to change the behatiar specific
function. They are mainly used to check if a gigendition is satisfied before a function
can be executed. Modifiers are inheritable propertf contracts, each function can

belong to multiple modifiers and they can be owelen by derived contracts.

Events: Events are the way for Solidity to provide infation in the “outside world”
of a smart contracts. They make use of EVM transadbgs, a special data structure
in the Blockchain that can be used to make JavpiScaillbacks interact with it in a

user-side interface of a Bapp. Functions can emeitd events populated with return

34

values, and event messages will be broadcast aneldson the blockchain. Event
messages are not accessible from within contratteven by the contracts that created

them.

All the operations performed by Solidity on its iadnles and data have access to two types of

memories in which manipulate or store data:

- Memory an “infinitely” expandable and non-persistentetan byte array that is
initialized to a new instance every time the corttraceive a message call. Every new
word (256-bit) of requested memory has a gas phae must be paid, its cost scales

guadratically the larger it grows.

- Storage a key-value store that maps 256-bit words to B6vords. Unlike memory,
which reset after computation ends, storage isigierg in the long term but it cannot
be enumerated. Storage operations like read or fynade more costly than their

memorycounterpart is, and a contract has only acceds tmin storage space.

Furthermore, contracts can inherit from other caots and they can call code that resides in
other SC on the blockchain. However every timerdraat makes a message call the triggered
code is executed imsenvironment using his memory space, moreover therdes to pay for

all the gas costs that will arise from the executd the called contract. The code can also
access th@alue senderanddata of the incoming message (the sender account),efisas
block header data from its executing node. The @aglealso return a single value or a static-
sized byte array of data as an output (Ethereummamty, 2016).

The Solidity structure similarities with a typedipuage like JavaScript gives the false
impression to a user that design and implementat@anbe similar, on the contrary Solidity
implements its features differently thus causingecariting errors. This uncomfortable process
can lead to a misalignment between the semantidheoflanguage and the intuition of a
programmer. The Ethereum programming languagelatds the appropriate constructs to
deal with the fact that its code will be storedagoublic blockchain, therefore the computational
steps could be unpredictably reordered or delay@dally, while some bad habits and
programming issues have been listed in the offid@@umentation (Ethereum Community,
2016), the platform has a shortfall over a complatel exhaustive security overview, a
developer has often to look up for details or amsvealine in research papers (Nicola Atzei,

35

2016) or discussion rooms (among the otl&itser, Slackand Reddi). A more precise and

formal documentation on Solidity security wouldrieeded.

3.2 SETTING THE ENVIRONMENT

In order to use an Ethereum environment we firetite download and install one of its clients.
The client of choice for this work has been themyaatform implementation, written 6o
language and callgdeth which is the most maintained. Our version of@eth client is/1.6.5-
stablefor Windowswhile the Go environment usedd®1.8.3 .In order to initialize a new
private blockchain we need a specda@nesis Blockvhich is different from Ethereum’s first
block, that will be statically created and put ba thain. The properties and values of this block
must be written into gsonfile that will set the initial parameters of oulobkchain network.
After some initial testing we created our test retwvith this configuration:
{
"config": {
"chainId": 21,
"homesteadBlock": @,

"eipl55Block": @,
"eipl58Block": @

}s
"difficulty": "200000000",

"gasLimit": "2100000",

"alloc": {
"0f6b7d05eced4916€6193129942091ce9a07c3009": { "balance": "400000" },
"7Eb94c165f4Cb5986b97c05530bbd7667d94ADe0" : { "balance": "250000" }

}
}

With the following parameters:

- chainld this value is used to separate the private naowdwork from the rest of the
Ethereum’s network. Connection between nodes did waly if peers have both identical
protocol version and network ID, therefore settingalue different thah (used for Ethereum

MainNetworB will guarantee the singularity of the network.

- difficulty: a scalar value that is applied during the catauteof this block, it also defines the
mining difficulty target which will be calculatedtar the first block and is obtained from the
previous block’s difficulty level and the timestamfhe value impacts directly on the block

generation frequency and on our test net is keptdad constant to favor a linear block

36

generation rate. In the real network this valuedymamically adjusted so that the block

generation is set on an average of 12 seconds.

- gasLimit: a scalar value that defines the hard-cap of Gasrefure per single block for all
the nodes in the network. In order to be able tolysthe results from local smart contracts
execution we keep this value high so we can “push”application with more performance.
However, we will point out that until 29 of Juneetgas limit for theMain Networkwas about
4.7 Millions, after major delays and network issaassed by a huge quantity of transactions
the limit has been adjusted to ~6.3 Millions, tliere increasing the total transaction capacity
of the network (Higgins, Miners Boost Ethereum'an&action Capacity with Gas limit increase,
2017).

Block gas limit evolution (last 24h)

7 000k

Gas Limit

6 500k

Date

Picture 4 - Block gas limit increase on 29th of June

- alloc: it is used to define one or more pre-filled waHdecounts. This is an Ethereum specific
functionality that is usually deployed to handle tkthereum pre-sale” phase period. We will
use it here in order to get two accounts with sbac funds out of the system.

We could specify other properties and attributeh@genesidile but they are out of the scope
of this work and this setup is more than enougtutoour tests Papps.

The next step is to initialize the network withammand that will take in our genesis file and
a local path to store the future blockchain thdl be created. Once the client has completed
the creation of the genesis block and of the basakend structure it is ready to be executed

with the local command to start the node client:

geth.exe --datadir path\to\blockchain\folder --networkid 21 --cache 1024 --nodiscover

Wherecacheoption specifies a custom quantity of memory alleddor the internal caching

operation in order to increase efficiency (the défavould be 128) and theodiscovedisables

37

the automatipeerdiscovery and addition feature, we want to make suait we do not connect
to the public blockchain by mistake.

Once the network and node are up we can use andramd a Geth instance to attach to the
client and use all the needed commands, we casthatamany consoles as we want while other
processes work through the node.

Once attached we are able to make the followingsstelus other operations):

- Definition of acoinbaseaccount needed for mining operations (we can eitleéine

one of the two already-created accounts or crea@eone via console).

- Use miner.start()/stop()to begin the mining process. While CPU is draintdgh
coinbase account will be rewarded with ETH evemyetia new block is minted (every

few seconds of computation).

- Get basic information on the node or on the aceowithin the blockchain, we can
query the structure to ask foalancesr prompt transactions and calls from one account
to the other (assuming we have all the keys angwiasl associated with the specific

sender account). Transactions follow a precisendifn.

We can start other nodes as well on the network thay require individual manual
configuration in order to discover each other siticey are not using Ethereum default
discovery protocol, another solution for setting aiparge set of private nodes could be a
bootstrappemode. As the number of nodes (and eventually miodes) raises however there
are some technical difficulties implied in the mgeaent of the network: too small difficulty
in the genesis block could lead miners workingh@irtown chain without the physical time to
pair with each other therefore generating staleinshghat will eventually breaking the

network’s functionality.

38

3.3 TECH SHOWCASE

Our focus now is to develop some examples and shatveven if complex solutions can be
achieved with relative speed, evaluating the camteectness and safeness against bugs and
malicious attacks is way much harder. To testéisalt output of our Dapprrectnessagainst
their design, we will deploy the code to our lobkickchain test net, the code snippets in the

document sometimes do omit unnecessary or repeated

3.3.1 FIBONACCI

As a base case for Solidity programming, we codEibanacci Smart Contract to observe the
bare computational power that the platform can eaahiwith the execution of a heavy

computation:

contract Fibonacci

{

function fiboRic(uint number) constant returns(uint result)

{
if (number == 0) return 0;
else if (number == 1) return 1;
else return Fibonacci.fiboRic(number - 1) +
Fibonacci.fiboRic(number - 2);
b

Code Snippet 1 - Recursive Fibonacci

This simple case that shows tieeursionfeatures of Solidity is probably one of the worsseyw

to implement a Fibonacci sequence but it giveshesopportunity to analyze the function’s
chained call and its results. Here we have to tiirtkerms oftransactionandexecution costs;
the idea is that every operation performed bystaek machindEVM) has a unique cost that
must be eventually summed up with the transaciish ftom the length of the transaction, both
expressed in units of gas. When a user wants wkena smart contracts execution he must
supply enough gas to cover all of that cost mudigpfor the actuayas pricevalue (expressed

in wei). Starting from a value aofumber = 1we observed the results of our computation and

depicted them in the following chart:

39

120000 13; 104873

100000

2 13; 83409
& 12; 73039
i 80000
[11; 53364 12,. 51575
Z 60000
= e 6. 24403 | 9 33689 TX. COST (caveat)
40000 [1.51767 > 11; 31900 EXEC. COST
@]
(@]
20000 7: 4709 10; 19741
1;297 | | 2;502|4;1169
0 9; 12225
0 2 4 6 8 10 12 14
FIBORIC(N)

Picture 5 - Gas cost for Recursive Fibonacci

As we can see, the harder the computation becdmdsdher our execution fees raises almost
doubling at every new step. For a valu@oimber = 13he execution times becomes very long
and the lag is physically visible, while for 14 azomputation is discarded, probably after an
out-of-gasexception is raised. BecaugsRicfunction isconstantit is expected not to modify
the chain state and we do not need an actual tamsdo trigger its execution. We used a
JSON-RPGCeth_callwhich is a specialized function that executes a megsage call without
transacting on the blockchain, indeed it is expthtat this execution would not consume any
gas at all. However, to prevent an idle scenasimall fallback quantity of gas (definstipend

is kept inside a contract that is used to triggeconstantactivations, this gas is spent if no
other gas is provided in the message call. We colitsburse manually provide more gas for
the execution but we have to keep in mind thatethean upper limit for total gas expenditure
in a single Block when it has to be validated drat total amount is the sumalf transactions
currently candidate to be validated by that nodgaiA it is a tradeoff between how much we
want to invest on this execution, averaged betvgbar users’ gas bets and total costs. This
example illustrates the importance tgasmeasurement must have during the design phase of
our smart contract, that said, on our private testwe can have more resources tharMam

Netwould allow us to use.

A more intelligent solution for the Fibonacci prebi is the following:

40

contract Fibonacci

{

function fiboMem(uint256 number) constant returns(uint256

{

if (number < 2) return number;

uint256[] memory fib = new uint256[](number+l);
fib[o] = ©;

fFib[1] = 1
for (uint256 i = 2; i <= number; i++)
{

fib[i] = fib[i-1] + fib[i-2];
b

return fib[number];

Code Snippet 2 - Memoized Fibonacci

result)

This code provides memoizetl version of the problem that levers on the use @fyarand an

iteration to store already computed results. Agiaim solution may seem harmless but we have

to think at our operations cost and constraintsh wicreased performance we can easily

compute a higher Fibonacci number and its costheillelatively low compared to the previous

solution growing at a slow linear rate:

40000
35000
30000
25000
20000
15000
10000

5000

UNIT OF GAS COST

50; 14392
30 8788 ———TX. COST (caveat)
15,4586 | 20 >%87 EXEC. COST
1,324
10 20 30 40 50
FIBOMEM(n)

Picture 6 - Gas cost for Memoized Fibonacci

However, for a sufficient high value olumberthis computation will inevitably lead to the

unsigned integeoverflow for Solidity language, this issue will no¢ detected anyhow by the

program, easily breaking up its design and funatigif no checks are made.

27 An optimization technique that stores the results of expensive function calls and then uses them when the
same input happens again during execution.

41

3.3.2 RANDOM GENERATION

A more challenging and critical problem to devellagide the Ethereum network is the safe use
and generation of random numbers in any fashioomRhe first release of smart contracts a
number of research and businesses have perforradeéston the subject, since Ethereum
involves tokens and therefore money transfergrafgant effort has been made by backers of
online gambling and similar projects to find aable and safe solution. The main issue here is
that the blockchain network is @eterministicenvironment: its nodes, EVMs and smart
contracts all rely on eonsensus protocohat favors a natural synchronization between peers
and, since none of those components can accesxtimmal world it is very difficult to find
sources ofandomnessapable of increasing the system’s entropy. Toldbe ta simulate non-
deterministic choices, many smart contracts thatdrnéis feature generates pseudo-random
numbers with their initialization seed chosen ueigdor all miners.

A first example of naive random generation is thk¥ing:

contract Random

{
uint256 FACTOR = 5
function randStatic() public constant returns (uint256)
{
uint256 lastBlockNumber = block.number - 1;
uint256 hashval = uint256(block.blockhash(lastBlockNumber));
return uint256(uint256(hashval) / FACTOR) + 1;
}
¥

Code Snippet 3 — static Random generation

This contract, which gives access to a random nunoises the hash of the last validated block
as seed, then divided foffactor that is equal to the max value of unsigned integeosder to
produce a result that is between 0 and 100. Thasngle is problematic because even if the
content of a future last block cannot be predicfeda time of at least ~12 seconds (average
mine time on network) any call to this contractgquroes thsameoutput value for that updated
node in the network, providing a very poor reséltifferent situation could be obtained with
the use oblock.timestampbject that provides a time representation snapalsgconds since
its Unix epock®. However even this single solution suffers from time-window problem that

can occur between nodes with same timestamps: ®ectdue Ethereum nodes tries to

28 Also know as POSIX time, starts from 00:00:00 UTC of January 1 1970, follows ISO 8601 data format.

42

synchronize, their block timestamps are relatdtiea system clocks at the moment of mining.
In order to resolve slightly different timing issjethe protocol tolerates an amount of
discrepancy between timestamps of a few seconds isTheneficial to our random generation,
but still not enough to guarantee a good measuranofomness.

We then defined another version of the random geoer

contract Random

{
function rand(uint seed) constant returns (uint randomNumber)
{
return(uint(sha3(block.blockhash(block.number-10),
seed))%100);
}
function timeRand(uint seed) constant returns (uint randomNumber)
{
return(uint(sha3(block.timestamp, seed))%100);
}
function multiBlockRand(uint seed, uint size) constant
returns (uint randomNumber)
{
uint number = 0;
for (uint i = 0; 1 < size; i++)
{
if (uint(sha3(block.blockhash(block.number-i-1),
seed))%2==
number += 2%**ji;
}
return number;
}
}

Code Snippet 4 — complex Random generation

This second solution implements three differentdcan functions: all of them have been
updated with @ha3call that computes tHethereum-SHA-8eccak-25§ hash of the provided
arguments. The first one at 1iB8 make use of both a blockhash and a user-provided tge
compute a hash that will generate a number in theL00 interval. The second one at 10&

is pretty similar but is provided with a timestamptead of a blockhash. The last one at 1lie

Is a bit more complex: what we are doing here isgua seed with an iterative calculation of a
(provided) number of previous blocks, the genedakiis to thwart a possible attacker by
providing a set of blockhashes instead of a singke during the computation. The operation
carried out in the loopinfpr produces a number between 0 ah{2fined bysize and can be
seen as a computation that will halve the possdslifor an attacker to influence the random

generation at every iteration.

43

There have been different considerations for thee afsrandom generators inside Ethereum
network (Loi Luu D.-H. C., 2016), one of the magamcern we want to point out is that even
with the use o$altand cryptographic functionssidesmart contracts, we still need to consider
the fact that all data sent to the blockchain ismgletelypublic by default. In order to make
good use of a random engine, which takes dataseed from a user, we need to secure the
communication client-side or a skilled attacker Imigust listen to the message and use its

content to make himself a random request and (plg3sibtain the same number.

Finally when it comes to random generation, we hHavearefully inspect the role that miners
will have in our model structure. A miner hasvaysthe final word over the block generation
if he is validating our smart contract executiomnnalicious miner can see the results of the
random computatiobeforeanyone else and could therefore deciddiscardthe block if the
obtained result is not favorable to him. The waate scenario is that a miner could triotge

his own block to purposefully bias the result of ttumber generation; it has been shown that
if the costs to carry out such attacks balancethét accordingly, there is no need for lots of
resources (Cécile Pierrot, 2016). This kind of indldence can lead to security issues and fraud
if an organized party, trying to secure a gambleioning a game, deploys this kind of attack.
The player might raise its stakes knowing thatrtireer won’t accept execution blocks that are
not favorable to them.

Some alternative solutions have been proposedismroblem involving time-commitment
protocols (Marcin Andrychowicz S. D., 2014), thag dased on secrets communicated by
participants and sent over in a hashed versioguaoantee for the safety of this protocol every
user pays a fee on the secret deposit operatider ba the (pseudo) random generation is
achieved by the combination of all the providedsts; if a malicious participant chose not to
reveal his own then he loses his deposit fee. Aga@attacker has to consider his own tradeoff
between costs and profit in order to carry out #ack. Examples of complex random
generation are theRANDAO bDapp (a DAO working as RNG of Ethereum -
https://github.com/randao/randyowhile a gamebased on random generation is Méaker

DART @ random number generating ggme

44

3.3.3 RUBIXI / DYNAMIC PYRAMID

Being smart contracts both a technological and @rdn innovation the difficulties to design
and code applications are subject to technicalitEdoth worlds. Therefore during the
modeling phase not only we have to follow the adrepecification of the Solidity language,
but also be sure that there are no pitfalls inldlgecal process of transactions, activations and
paymentsDynamicPyramids a smart contracts that implements its own vargiba Ponzi
Schem® that is designed to make participants gain monay fihe high investments made by
newcomer subscribers, attracted to the applicdtyopromised high-revenues in a small, mid,
or long term scenario. A dynamic pyramid alwaydoiws a similar scheme deployed in
different fashion: this example is of course triv@identify but there could be systems that are
initially used in an honest way to attract peogieef paying them out) and then subverted into
fraudulent execution. The owner DiynamicPyramidcontract has also the ability to collect
some of the fees sent by subscribers after theocgetion. After a first deploy the developers
updated the code of the contract and renamedRutmxi the following is just a fragment of

the complete code:

contract Rubixi

{
AAAFess private creator;
function DynamicPyramid() { creator = msg.sender; }
modifier onlyowner { if (msg.sender == creator) _; }
function collectAllFees() onlyowner
¢ if (collectedFees == 0) throw;
creator.send(collectedFees);
collectedFees = 0;
}
) ..

Code Snippet 5 — Rubixi

The developers did update the code but forgotrame the contract'sonstructorat line 06.
A constructor is executed only once during deplayhaad here it sets the owner’s address of

the contract; however, a constructor is requireldlatee a function namegqualto the contract’s

2 A fraudolent investment operation named after the famous Italian swindler Carlo Ponzi

45

name. By leaving this code as depicted anyone &éas able to become a temporary owner of
Rubixiby just calling théynamicPyramid(Junction, this has led to a number of people trying
to race and exploit the contract’s maliciousnesgréon funds from victims until the name of

the contract became famous.

This type of problem has been classified as “iminletdbugs”(Nicola Atzei, 2016)and more
generally refers to thanmutability feature of a blockchain itself. Once a smart cantra
bytecode has been deployed into the network imigossible to update: there are means to
create some sort of extendibility (obtained withrdiries and reference to other contracts) but
nothing can actually be changed without re-uplogdinewer version of the contract. Moreover
every deploy comes with a static address definitteat cannot bereused, created once on
deploy. A user of that specific contract needsadantformed of a newer version by other means
or tools and has to update his private list of Bapjth the new coordinates in order to find the
contract on the blockchain. This leads to a masmer and patch issues that cannot be
overcome by quick fixes: if a serious bug or prabls found the contract should have a safe
and designed method to be disabled because theoghisg provided by the language to do so
(Bill Marino, 2016). It is possible tkill the contract and prepare the new one with spedial(if
service can afford the related downtime): a comtraan be destroyed with the
selfdestruct(<recipient address>thvocation, all his funds will then be transferrtm the
specified account. This functionality might seenefusbut has to be encoded first and will
disable permanently the contract's address, leaup@ny party involved in the use of that
contract with the risk of losing all the eth semrtefver and without notice since a transaction to
an orphan address cannot be distinguished fronhanone (Ethereum Community, 2016). In

any case the contract code will remain on the cfaithe time being as garbage.

46

3.3.4 PAYMENTS AND TRANSACTIONS

At the heart of the Ethereum environment and smoadie usage related to finance are the
transactions. Payments and fund transfer pattemsfgparamount importance because they
are susceptible to security attacks that can drmds or disable some (or all) the contracts
functionality. The following snippet contains thade for a savings Dapp that implements both
a simple registration system and the savings imefeation.

In this example, the contraotvnerhas an administration role and can subscribe dedtse
system (a registered user becomadient) granting them access to its functionalities. Once

registered a client can:

- Deposit some funds
- Get his savings balance

- Withdraw an amount of his funds.

When the eth is sent to the contractdegositFunds(at line31the client-balance mapping is
updated with the amount deposited. However allethesent to the contract is kept within its
account balance; the information recorded on thpping is simply the personal amount. A
client can query its balance with tgetBalance(¥unction at line38, this property could be
createdpublic if we want a client talwaysvisualize its balance without asking the contract.
Finally at line44 we havewithdrawFunds(}that is used to retrieve the correct amount ofrethe

from the contract’s balance once the availabiktganfirmed.

47

contract SavingsContract

{
mapping (address => uint) clientFunds;
mapping (address => bool) clientStatus;
address owner;
event UpdateStatus(string message);
event UserStatus(string message, address user, uint amount);
function SavingsContract()
{
owner = msg.sender;
}
function addNewClient(address client)
{
if(msg.sender != owner) throw;
clientFunds[client] = ©;
clientStatus[client] = true;
¥
modifier ifClient()
{
if(clientStatus[msg.sender] != true) throw;
)
}
function depositFunds() ifClient payable returns(bool success)
{
clientFunds[msg.sender] = msg.value;
UserStatus('User has deposited money', msg.sender,
msg.value);
return true;
¥
function getBalance() ifClient returns(uint balance)
{
UpdateStatus('Someone called a getter');
return clientFunds[msg.sender];
¥
function witdrawFunds(uint amount) ifClient
{
if(amount <= clientFunds[msg.sender])
{
clientFunds[msg.sender] -= amount;
msg.sender.transfer(amount);
UpdateStatus('User transferred money');
}
else
{
UpdateStatus('Requested amount too large');
}
¥
}

Code Snippet 6 — Savings Wallet

48

The withdraw function is usually a very importaatson of any value transaction-based Bapp;
in order to comply with safety standards the openatcoded here have been designed as stated
by the* Checks-Effects-Interactions pattern” describedhendfficial documentation (Ethereum
Community, 2016).

Thecheckgpart is done first and is related to verificatidrsome pre-conditions that must be
met before proceeding with the execution: namedyf@ient modifierat line44that checks if
the caller of the function is actually registered @heif at line46 (a preemptive check to see if
the amount requested for withdrawal is lower oradiian the available) is true.

The effectssection is accessed after the various checks hese thone and it comprises the
changing of contract’s state variables. These ceflee internal state of the smart contract and
should always be consistent during any intermediaéage with no intervention or interruption
from external sources. In our code this part isiedrout by line48 which updates the new
value of a client’s balance.

Lastly we can instantiate and usgeractionsthanks to the fact that we modified all our
parameters in a safely fashion: the gabg.sender.transfer(amourdj line 49 executes a
transaction that will transfer the ether from tlumttact's address to the client’s. If, for any
reason the transactions fails to deliver the ethexxeption will be thrown back. In Solidity
however, a thrown exception cannot be caught: Wwhppens is that the execution stops, the
gas fee is lost and all the previously producee sifffects (including the ether transfers) are
reverted. The previous design pattern used in ode ¢s a meant to avoid security issues like
reentrancyand call to the unknowr(Ethereum Community, 201@hat could arise during
execution and have been problematic since the fimrepf smart contracts. Both this security
problems have been examined in depth by a numbautbbrs like (Nicola Atzei, 2016) and

can be described as follows:

- Reentrancyit involves the apparent atomicity and sequentidhtt transactions may
seem to possess. In reality, what happens is thaittacker could re-enter a caller
function thanks to the behaviour of thiallback° function. The immediate
consequences of such an attack is an unexpectedaition loop that will terminate
either only reaching the EVM's stack limit or afnsuming all the gas, preventing

further execution. Moreover, iftaansactionis generated inside the one-time attacked

30 A special function with no name and no arguments that can be arbitrarily programmed. The fallback function
is either executed when a function invocation doesn’t match any signature or also when the contract is passed
an empty signature.

49

function the malicious user could trick the contriato multiple execution of the same
lines thus generating multiple transactions thdt quickly drain all funds from the
contract's account. Reentrancy must be checked cidlye on complex
implementations such where contracts interact wither contracts or external
resources, this situation poses a higher sectmigat because of the way exceptions are
handled: when a function is directly called (likeaur code snippet) if an exception is
thrown it is capable of reverting every side effeaiduced until its occurrence. In case
of any externatall(), delegatecall()or transaction.send(}he exception is propagated
along the chain inside called contracts, reveriwvgry side effeaintil a subsequent call
is found. From that point the code resumes execlnitt depending on how tleall has
been done, its return Boolean may or may not bpggated back to the caller (Loi Luu
D.-H. C., 2016).

Call to the unknownthe problem involved here is related to the fhat ivhen aall is
performed (on the contract itself or another omg)signature is matched against the
definition of all the functions in the contractistérface. If no match is found for the
signature or if we are executingransferoperation then théllback functionof the
targeted contract is executed instead thus leadioghe execution of unexpected code.
The fallback function could or could not have baeplemented by developers: in order
to engineer this limit into an attack a party cenelop a smart contract which relies on
malicious code put inside the fallback function.emhafter the upload, if the party
manages the victim smart contract to make useehthlicious one they are able to
execute foreign code inside the environment of tdrgeted Dapp with obvious
consequences. This vulnerability has been spotted i few other cases such as type
cast or state operations (Nicola Atzei, 2016).

The infamous DAO attack (Siegel, 2016) has beeriethout exploiting these two security

vulnerabilities. After the painful situation wasodved a number of corrections have been made

to the language, with introduction of new secupgtterns, however not every smart contract

follows a disciplined approach and sometimes ricd@utions can be coded with that pattern,

resulting in a vast number of contracts being mdastill vulnerable to similar or other security
issues (Loi Luu D.-H. C., 2016).

50

3.3.5 ENERGY TRADE

Finally, in order to provide an example of the laage and platform full-fledged capabilities
for making a decentralized reality using a tokesdubproject we lay out the code of an energy
production and sale market system calle@rTrade The scope of this project is to give means
to a private energy producer to sell is own engrgyer into a market that will automatically
award him with a fee based upon an updated powes ate that can change dynamically. The

unit used to measure energy power output is kWbwlatt — hour).
The features provided lBnerTradeare:

- Energy selling for the producer, while being corteddo an Ethereum node, he can
issue transactions for each kWh produced and peb@ortionate payout based on the
last updated price rate and the energy amount.

- Any consumer user can also purchase some kWh afptiteged price rate.

- The price rate can vary based on multiple factoas @ére externally computed, however
the user buying and selling rate could influengs thctor, therefore the contract has a
function that returns the total amount of energgléd per user. This concept could be
extended with a collector smart contract takingrésilts and aggregating them on the
blockchain for subsequent external reading.

- The contract will expose an up-to-date price rateahy convenience.

The rewards and fees are coded into a custom wkstam calledEnerCoins that has its own
definition in a separate dedicated smart conti@ctce the energy price can change due to
demand and offer in the external market its vatugbitained from an external web service that
provides a simplexml which always has the updated price listed. Thidufeahas been
integrated into ouEnerTrade Bapphanks to the use of an external service cdlleatlize its

APl enables us to make “queries” out of the Ethereavironment and return simple results in
a safe and verifiable fashion with no side-effeMsreover, with the use of a custom token
there is no need fgrayableEthereum transactions since no actual ether is th(agde from
transaction fees), the business logic related eothpensations works directly within the code

and follows the rules defined in the coin’'s smaitcact.

51

import "github.com/oraclize/ethereum-api/oraclizeAPI.sol";

contract EnerTrade is usingOraclize

{
uint public kWh_price;
mapping (address => uint) energyBalance;
mapping (address => uint) enerCoinBalance;
address owner;

event newOraclizeQuery(string description);
event newEnergyRating(string price);

function EnerTrade()

{
owner = msg.sender;
updatePriceRate();

}

function __callback(bytes32 myid, string result)

{
if (msg.sender != oraclize_cbAddress()) throw;
newEnergyRating(result);
kWh_price = parseInt(result, 2);

}

function updatePriceRate() payable
{
newOraclizeQuery("kWh price update ongoing, stand by..");
oraclize_query("URL",
"xml(https://www.enertrade.com/rest/ratePrices).rate.kwh");

}

function sellkEnergy(uint kwh) public
{

}

coinBalance[msg.sender] += (kwh * kWh_price);

function buyEnergy(uint coin)

{

if (coin <= enerCoinBalance[msg.sender])

{

coinBalance[msg.sender] -= coin;
energyBalance[msg.sender] += (coin / kWh_price);

}

function getEnergyBalance() constant returns (uint kwh)

{
}

return energyBalance[msg.sender];

function getCoinBalace() constant returns (uint coin)

{
}

return enerCoinBalance[msg.sender];

function updateCurrentRate() { updatePriceRate(); }

Code Snippet 7 - EnerTrade

52

All the features of th&nerTrade Bappre coded into this snippet with the power selling
being handled in lin82in functionsellEnergythe buying at lin8in buyEnergyand the
Oraclize functions iri9 and26. We have to point out that since the Oraclize iggeand
updates arasynchronoushe Bapp cannot ensure a precise updated pricegdan operation.
This lack can be adjusted by using an “updatertuieaof the Oraclize API that enables us to
specify a time frequency for tlogaclized answeto be sent to our contract, that way for
example, if we specify a parameter of 60 seconeptite would be updated in a timed
fashion. In doing so we have to consider the nedagasexpenditure since it is our contract
that has to provide the right amount of gas to (rad¢o cover the price for every update to

be sent back.

The EnerTrade Dapan be extended with some features that could aserés core service
value in being a reliable service: a subscriptigsteam could be integrated in order to make
clients register first to the platform and thenegihe ability for them to interact with selling
and buying features. A registration could beneférea data collector smart contracts that
thanks to registrations could provide trading infation to the EnerTrade provider party or to

an external market that could in turn provide bgttece rates based on the given feedback.

This example illustrates the high capacity and dessnintegration features that an Ethereum
project can have while being distributed and eadgdployed. The EnerTrade producer user
could be a private owner of solar arrays connegfiftla simple Raspberry Pi that maintains a
light Ethereum client capable of making querieshi® blockchain environment. The user has
the ability to choose between making manual trai@macto EnerTrade basing his decisions on
its own mind or could¢todea smart contract capable of evaluating the howndgrgroduction
rate comparing it with actual price rates and makell energy on his behalf. With the support
of off-chain software this behaviour could be tunetb automation (since smart contracts
cannot auto-execute). This concept of distributeerend capacity for doing businesses with a
wide degree of freedom and customization is wieggined the work of the Ehereum foundation
and represents the ethos of the project itselfgBut Ethereum White Paper, 2014).

53

3.4 BLOCKCHAIN DEPLOYMENT

Each coding phase has been followed by a deploymera blockchain network to test the
correctness of our designs and in order to be tabémllect results wherever possible. Since
setting up a complete functioning and private bétgin environment is not an easy task and

not all test networks are suitable for every measient we relied on two main test networks:

- Testnet21, a private instance (on a local physomahputer) with a development
Ethereum network being launched and mined locaillly some accounts being created

and used for testing purposes.

- Remix IDE testnet: Remix is a web-based Soliditl for developers that has an easy
and quick-to-deploy testnet where we write, compitel can instantiate our smart
contracts and it comes equipped with 5 test acsount

All things considered, we point out that both thes&vorks relies on our local processor when
it comes to mining operation or smart contract eiea of any kind. We can relate with the
local Testnet21 environment directly via theth console which gives us all the necessary
operations for doing basic interactions like: actdowreation, handling, eth transfer,
transactions, smart contract deploy, executionis,call of which is obtained through the
interaction with the Web3 API and its commands. M/bsing the console we can even embed
and executdavaScripttode with the use ofs files or inline.

In order to be deployed, a smart contract must fiescompiled with either thsolc or the
Remixcompiler and if there is no error, it will outputketecode, ampplication Binary
Interface(or ABI in short) and a Web3 deploy code. Now for the e we must use one of
these objects based on what tool we are usingdplogiment. For a low-level console Web3
deploy we can save the output code intgsdile, unlock a user account that will create the

creation transaction and load the code using:

> personal.unlockAccount(©x07c48c6baal3aadf974b219bcb731aced7f28f95, “password”, 60)
>_ loadScript(‘deployFile.js”)

31 The official Solidity compiler

54

The script will issue a transaction with the requdsa smart contract creation with the
specified code and interface. After a moment ouramnode will validate the transaction and
output:

Contract mined! address: 0xd405d4f2dcde9ff66fb3aad615d296b357e4feff
transactionHash: ©xa8eb4dcd2d4a4b6e5f34edb5f049779354dc336d897f6d4ed68cf9f4d5919868

And it is done! We just need to store the addréssuo newly created Bapp in order to start
using it; generally, when we want to interact vatemart contract we just need its address and
a bit of documentation on its usage in order targite functions. We can deploy the contract
even from Ethereum’s official client calléMlist” (in our tests we usedersion 0.8.1]) itis a
more straightforward process since the only requer is the source code as the client will
perform every step necessary to publish the cottetive blockchain. Mist is both a Bapp-
enabled browser that can interact directly withldggd blockchain services and a wallet Bapp
that is used for handling user account operationsegh transfers.

If we want to add an already deployed smart coht@our list from another node (different
than the deploy node) we need its addressABid The contract’s interface system has been
designed to be strongly typed, known at compilatiole and static with no introspection
provided. The assertion made here by developdisatsall contracts will have the interface

definitions of any called contracts available ahpde-time (Catalano, 2017).

55

4.0 CONSIDERATIONS

This chapter will collect all the results from tgstonsiderations and research made on the
Ethereum blockchain topic and the Solidity smarttact development and will discuss both
the advantages and drawbacks of this innovati@arder to better understand its implications.
In this paragraph we will sum up all the questiaresasked ourselves about Ethereum during
the development of this project and give prelimynahort answers that will introduce key
insights into our analysis in the following secBoms with every new technology that
comprises a vast environment in which differenagl@and projects can flourish, there are a
number of factors that must be kept in mind duangunbiased evaluation

First of all is to set aside all the excitement &yge that a tool such as this can generate in
people’s mind, fueled by often wrong media gosapwe already stated, Ethereum, like other
blockchain technologies is milver bulletfor any immediate usage, it surely enables a time
shortening in development and deployment paraditgpasmore classic technologies do not
have. Fast web development and ubiquitous seraieefeatures that we saw only in last years
and in newer technologies (apart from enterprish t# course), however one must not rush
into believing that distributed and non-centraliz#dictures are free of hindrance. A precise
security evaluation must always be done in ordeveduate risks and benefits from the use of
a new technology, especially in a system that ve®Udigital money transfer over transactions.
Some businesses have been so much lead astrayhggiasm that have converted their local
services into blockchain-based services withouhesensidering benefits or issues of this
architecture, out of the blue.

We questioned ourselves with the following matters:

1. Can we use Ethereum to develop real applicatioasdhe useful both in a blockchain

and non-blockchain environment?

Our experience suggested that we are generallyiy@msin the answer, however we also want
to point out that application developed inside t#ereum environment do rely on its
architecture, this alone reflects what kind of pot§ are suited for this use and which does not.
Decentralized app that can take advantage of aldistd database are natural candidate for
development because of the availability and penscst level guaranteed by the system: a non-
distributed counterpart could face failures thatates part (or all) of its functionalities. Other

than this, we can argue that Smart Contracts aomaot sufficient to build a complete service,

56

its limitations compels us with the need of a u=ed-interface (to integrate with the official
JavaScriptAPI) that translates the client’s necessities interaction with the blockchain. In a
way this taxonomy is similar to the standard sofendivision betweefront-endandback-end
however, here the connections are more loose betheyg rely on a time-inefficient structure
which on average updates his status every ~12 decdiwe need to store data) and this limit
is hard-capped.

Moreover we have to think to the network stacktezldo our blockchain projects: starting from
the final user we have a (probably proprietary) sabed front-end (1) which act as a friendly
CLI*? that translates functionalities and send them tvaright Ethereum client (2) or directly
to a miner node (3). He in turn will execute sorode; validate our transactions and pass back
our results but the process could even go furfttbeiservice is reasonably complex and could
rely to external libraries or off-chain feature$. (Mow if we watch through the layers of the
communication stack we could say that objects 1r2k on an internet connection while 3
relies on asecond-tiernetwork built on internet too, therefore this miodsies heavily on
connection speed and will inherently suffers frony gerformance issue related to both
networks. At the end of all this the “no downtimahd “censorship-resistant” advertised
features we spoke of earlier may sound a littlénaigtic because rely on something that is not
under complete control of the environment. Althotigk is true for all web services, Ethereum
could also be bottlenecked by its own network ket happened in June after the launch of
the Status’ICO (Valenzuela, 2017).

2. Do we have acceptable development and applicatierioypnances, given the

environment constraints?

There are clear difficulties that arise startingnirsetting up a complete working development
environment to developing a correct smart contcadie. This is due to the project relatively

new coming out from preliminary test phase and bl probably balanced out as Ethereum
will continue to evolve into the neMetropolisand following releases. However, as of right
now development can be achieved following the Isafiom the docs (which too are not

complete) and after that by practicing severe-tiiad-error result evaluation on smart contracts.
Some Solidity development frameworks are curreb#ing developed and are lreta (like

MeteorandTruffle) but their overhead and set up is still buggyaltyh functioning.

32 Command Line Interface

57

Application performance is very good for executmncode that involves only reading and
simple interaction operations; it is obviously semwvhen transaction or on-chain storage is
required but this can vary from case to case. Afpam its tools, the development process is
an intuitive operation once one has mastered thimm k@ concepts around blockchain,
transactions and accounts, the language naturdasisnwith other object oriented languages
greatly helps in this.

Performances could not be evaluated without consiglelebug and release too: the first is
rather difficult because requires an accurate astetl working local environment in order to
sort out some observable results, that is, only genple Bapps can be tested “as they are”,
while other ones with incorporated business-logistibe thoroughly examined and checked
for corner cases. Even if project speedup carease thanks to the absence of heavy server or
database infrastructure requirements and overhredghse is a difficult process too: as we
pointed out, since every minor change or fix reggithe contract to be republished again,
propagation time an effort must be considered whaking versioning plans.

Time performance must also be acknowledged, welctmputational power peak set at every
12 seconds the Ethereum viability for real-timeiore-critical applications is practically out
of the equation, therefore limiting its usage idustrial operations. Other distributed ledgers
tailed for these use cases have or are currengly 8eveloped (like some with thigperledger
project) but they are way different from Ethereuihcaurse (The Linux Foundation, 2015).

3. Can we bridge the evaluation of our limited Dappthweal Ethereum applications?

An interesting question that follows all the worlbng until now. However to give an
appropriate answer we will first analyze some numbend statistics collected from the
available information on the Ethereum Dapps ecesystnd their usage. As of July 2017 there
are more than 550 confirmed Dapps on the Etherdookd¢hairf® a number that can be refined
into approximately 230 applications markedias, therefore running their service throughout
a bapp-enabled web-page. We precise that this nuisbet the effective number of uploaded
smart contracts in the blockchain but rather a taincomplete products that provide a
supported service.

We classified the collected data and plotted talte in the following graphic:

33 As read from “State of the Dapps” web service available at https://dapps.ethercasts.com/

58

DAPPS TYPE SHARE

30

25
o
X 20
=
w1
w 15
<
< 10
5 . . . -
0
o QA o 74
< < < <
& ‘ <& & & o
& e«“\ S & & N <§’ Q(Q
\& 3 S S <@ \O
Ko 2 > \6 NG AQJ
& N §§ & S © 2
Q’b (@) AS) e\ $. \(\ Q
< 'b(o (\‘ PN NG
o & F c

Picture 7 - Distributed Apps shares by type in Ethereum

With the following examples of decentralized seegitisted inside this classification:

- Financial services:all applications that are built around economicst (mcluding
custom token unless directly tied with financialigd such as exchanges, prediction
systems, markets, notary services, advertisemeattophs, investment, remittance,

insurance, virtual checks, microcredit and so on.

- Other servicesthe most colorful such as image creation and s&ragatars, blog
generation, DNS resolving, contest creator, vatidahd voting platform, messaging,
forum creation, Bitcoin bridging, Bitcoin full imementation, fithess motivational
community apps, educational Ponzi schemes, shasages pegged to URLs and files,
document and information dissemination, whitepdiper-companies record, data

scraping, links and address validation and so on.

- Gambling / Lottery:every application that stakes a certain amount ohey for a

promised (and an improbable) payout.

- Chain-related servicexloud-storage, Ethereum naming, DAOs, token-basgjégs,

enterprise blockchain implementations and so on.

- Real-World servicesestate crowdfunding, ether time-store bank, lengtaiform,

frequent flier program, e-commerce payments, reahsportation of goods with

59

Ethereum-aware pegged devices that can track eipes]i gold storage, asset

propriety, electric car refuel systems sharing smon.

- Chain-related toolswallets, Bapp-enabled browsers, chain exploreraincstats and

gas statistics providers.
- Gamesall applications with a simple gaming purpose (withmoney involved).

- Development:bBapp developing frameworks, external support liesgr random
generation DAOs, code designers, Solidity test Rtran environments.

As we can see, the majority of these services imeids a blockchain enabled app either for
storage purposes of some important informatiomeruse of th@2parchitecture as it is, with
leading cases and applications tied in the findarid transactional area. However, the quality
of these applications reside primarily in the gosgof the economic algorithms built behind
the forecasting operation of stocks, titles ancestmnents making it hard to evaluate as they
are. The blockchain here is seen as a cheaper ianples infrastructure than the classic
enterprise solutions but still, the know-how rensaim the hands of the service providers and
not on the smart contract by itself.

4. Is there any advantage in the use of Ethereumansié a traditional approach?

Ethereum has indeed materialized some very powedntepts and has managed to build a
platform around them using features that were presly just theorized like state machine
replication systems (Rachid Guerraoui, 2009), arenaleployed from both an algorithmic
(modified GHOS®* protocol implementation) and business (distribuéednomy) point of
views (Yonatan Sompolinsky, Secure High-Rate Treti@a Processing in Bitcoin, 2015). All
of this will surely benefit the decentralizationopess of internet services and create a
streamlined channel for private users to get toakhetter the web and to trust its architecture.
The advantages we saw here in this work have begmiyrrelated to the ease that Ethereum
aims to get to starting from the design procesbaaleployment of a working economic Bapp;
the steep learning curve is justified by the higmplexity that the platform hides from final

users.

34 The “Greedy Haviest Observed Subtree” was first introduced in (Yonatan Sompolinsky, Accelerating Bitcoin’s
Transaction Processing Fast Money Grows on Trees, Not Chains, 213)

60

5. Which security does this platform offer to smamiracts?

A short answer to this question would be: “stillt renough”. Even with the embedded
cryptography functions (an expected feature #mgttype of modern transaction-based system
should have) and a “List of Known Bugs” providedtlé end of Solidity documentation
(Ethereum Community, 2016) there are still a numddeways to circumnavigate checks and
submit faulty or bugged contracts. In the first slay July a new compiler version of Solidity
has been released that now has a major impact areding possibly dangerous variables or
features inside a source code. However Etheregnrisntly in development phase and its low
maturity can be understood but have to be acknayel@dby both Solidity developers and final
users that often consider this an underestimagddy.eEven the Solidity language itself is still
under development as some features are currentlavalable (floating points are just an
example), the absence of proper experienced-dodatimmand more comprehensive security-
related guidelines therefore makes it harder tcecagblications efficiently. Stability issues
have become less frequent but still present sorestimnhile official guidelines warns against
deploying anything that is production-ready to ttetwork at its current stage, postponing

everything with the following release.

4.1 TECHNOLOGY GAPS / LIMITS

Our work has documented a wide range of possibj@ementations and use cases of the
Ethereum blockchain and its environment praisisgativantages and features; now we will
focus solely on its limitations based on our exgece and its architecture evaluation. We will
proceed by summarizing its limitations startingnfrdechnical ones and then proceed to

different points of view related to the technolatpelf and the stakeholders tied to it.

1. Consensus protocol:
CurrentlyProof-of-Workdelivers goods results on average, the problerasectwith PoS are
mainly tied with itsenormousenergy consumption (the Bitcoin network alone buabsut
14.43 TWh* on a yearly estimate, close to the total energysemption of the whole
Turkmenistap (Digiconomist, s.d.), and the fact that this aamsus protocol could be

influenced with the use of a certain amount of veses (Ittay Eyal, 2014). Although Ethereum

351 Terawatt-hour equals 102 watt-hour

61

PoW is slightly different, safer and more efficights protocol will likely be abandoned in
favor of Proof-of-StakeThe idea behind PoS is that instead of having éwgan amount of
work spent on the block generation, the nodeshalle to prove ownership of their currency
balance. In a PoS system the blocks are minedéopdldes voting on which will be the next
block in the chain while the voting rights are disited according to the “stake” each node
(validator) has in the network. For the consensus part tevabdatorscan rely on botlehain-
basedproof of stakeor BFT-styleproof of stake algorithms which have a differealidator
selection policy. The approach used by Ethereurdad8 is different than already deployed
projects likeBlackCoin(Vasin, 2014)and PPCoin (Sunny King, 2012)having an array of
benefits that range from low-energy consumptiorss leneed of new coins, “mining”
centralization risk discouragement and penaltiesake 51% attacks more expensive (Buterin,
Proof of Stake FAQ, 2017). Ethereum leader andtaraéatalik Buterinis currently working
on theCasperalgorithm, which is the Ethereum implementationPobof-of-Stake that will
replace the current PoS. All information about @asm@an be found online in the community

website however, this falls outside the scope efpfesent work.

2. Scalability requirements:

As time progresses and the blockchain becomesndiresl and longer, the space needed to
store all the distributed ledger information inges as well, generating a scalability
requirement that cannot be easily resolved. Thablpm has been central point of discussion
since Ethereum creation, a number of official andfficial threads have been opened on the
topic (like in Ethereum Reddit A number of partial solutions have been propobgd
developers and researchers, summarized in thdea(imon, 2017) but the only proposal
which does not implies a radical change in the ngroperation, block size or the use of sub-
chains is theshardingtechnique. Sharding was first introduced in (LauLV. N., 2016) and
later suggested for implementation into the Bitawtwork: the paper describes techniques and
operations to split the transaction processingestatthe state itself into multiple partitions
called “shards”. The hindrance here is that theretfone could lead to some optimization but
in the end, Ethereum developers should choose wirablem to solve: the processing one,
resulting in a very high transaction throughputazaty or the space one, partitioning state
information to multiple nodes. The overall problesvery actual, with different hybrid
proposals and solutions being actively discussedd®, 2017). For the time being however,

the space requirement to store a full Ethereum moltl@ot shrink at all.

62

3. Unpredictable state:
As we saw previously, the state of a smart conisadetermined by the value of its address
fields and balance. However, even a simple calhéocontract could take several seconds in
order to take place, this could result in findingumexpected state of the contract. Generally,
when a user sends a transaction over to the netwankoke a contract, he cannot be sure that
the transaction will be run in the same state thetract was at the time of sending that
transaction. This may happen because during the same-window other transactions or
contract activations could have changed its si#tere is an intrinsic mutual exclusion and
state propagation problem here that must kept mdnathen designing the logic of a viable
Papp. Even if the user is fast enough to be trst for send a transaction it is not guaranteed
that such transaction will be the first to be rnartks to the lack of total ordering in transaction
pools. Miners that group transactions in blocksrerterequired to preserve any order and they
could choose not to include some transactiond,aha can also easily happen if a user assigns

substantial differerfieesto transactions.

4. Smart Contracts issues:
As we saw, there are a number of problematic fadioat do not encourage smart contract
development and neither contribute to their spregadtirst of allspeed: even 12 seconds are
still alot of time for end-users usually accustomed to bugtodf or services with a feedback
provided in a few clicksProof-of-Stakegoromises a significant drop in this time, butaisho
be proven. Transactions do haveast, in order to complete some basic and not-academic
operations they always require a fee; surely, theumt paidper transactions not as expensive
as other Ethereum’s competitors are (like Bitcdnj still it is to be noted. Moreover, the
carried out computation is largely forced togudblic with no direct means to maintain secrets
or provide any privacy at all: this is a featurattiEthereunwantsto provide in the future
(Buterin, Privacy on the Blockchain, 2016). As ight now however a solution to this problem
must always be custom-developed and is difficuénéorce and maintain until new features
are made out of Solidity. Finally, an off-chainisesintegration is very hard to obtain: while
there are some very useful services (like the acmesedQraclizg it is still dragon’dand with

few certainties and legion of workarounds.

5. Other related risks:

63

As a new technology that covers a wide area ofiegpbns and peers into economics there are

other kind of risks that we can categorize underftlowing arguments:

- Regulatory governments could realize the versatility of aoremic platform such as
this and choose to limit or forbid its usage. Siright now we have to rely mostly on
exchanger sites in order to convert fiat to cryptoencies they could censor those sites
and cut down its usage. Or they could reach a pdirggulations that will make the use

of the system not viable or convenient anymore.

- Reputational,a bad reputation is always a token of low constitamra although this
concept is cross related to everything the cryptecies tech can be directly
influenced by a number of third-party rep image lé&xchangers (like what happened
in 2014 withMt.Gox, new fraudulent pyramidal scheme bapps, a nuroberser’s
wallet hacks and other security-related violations.

- Adoption related to reputation too but focused more orudex end. It is very hard to
convey an Ethereum explanation to the general putiien the press and news sources
appoint the word “cryptocurrency” ®verythingwhich is financial related on the web
and dubs “blockchain” with no reference to specpgioducts or systems. Another
problem is that it is still difficult for a non-teaiser to acquire Ether and secure it safely,
the absence of a third-party (like a bank) entityt ttakes all the risks of managing (or
losing) the user’s money is not easily acceptedepnand distributed responsibility is
a great burden. All of this must be acknowledged should be understood by the final

user at the same time.

4.2 CODE EXECUTION SECURITY

We provided examples and proof that code executisiie the Ethereum environment is
critical to its usability, moreover security must&dequately audited in order to create a correct
and valid PBapp service. Apart from specific codeer and behaviours we reviewed that can
lead to security breaches, we will summarize soigklights regarding what has been seen
contributing to the disruption of proper services.

Denial-of-Service attacks in Ethereum can be maletther against the platform or against a
specific smart contract service, these attacksetarglnerabilities in the EVM specification

level, combined with security flaws in the Etherecliient. The community has experienced an

64

example of this on September 2016 (Wilcke, 201); dttackers flooded the network with a
huge quantity of instruction execution requestwimch the cost in gas was too low compared
to the computational effort needed to carry thein ®his resulted in a heavy slowdown of the
network and of the synchronization process. After énd of the attack a number of fixes and
low-level gas cost EVM corrections had to be mautralled-out, the outcome of all this was
another blockchain fork like in the past witheDAOincident (Swende, 2016).

Even clients have been proven to be critical indaie upkeep of the Ethereum protocol and
must be subject to severe security audit in ordeyuiarantee an adequate level of security as
an attacker could use a flaw in the system as swéz undermine its protocol (Karl Wist,
2016). A single Denial-of-Service attack deployeggiast a contract relies on a malevolent
fallback function being coded inside a smart cantby an attacker. An example is that if the
function is implemented with just a “throw” except| any situation in which an honest caller
smart contract calls the attacker one (with an etxe@c that prompts the fallback) would end
up in being reverted every time, possibly disablimg service. A thorough example of this is
given in the"King of the Ether Throne’game application in different papers (Nicola Afzei
2016), while other research papers like (Kevin D#ino, 2016) and (Loi Luu D.-H. C., 2016)
have shown that even a simple smart contract &oak; Paper, Scissors” game can contain
several logic problems.Code security is therefateal in Solidity development and it requires
an “economic thinking” prospective different frorther development processes: application
designers should always consider costs, fees dedsiee coding prior to any business logic.
Contracts have to be written to ensure fairnes®(exrer possible) when multiple parties may
attempt to access the service or result, but tlyefdetor to safety is keeping the economic
incentive for performing an attack always greatantthe payout of its eventual success.
From a different prospective however we have sem@rtracts that are bound to follow a rigid
application logic greatly limiting one’s capacity write malware over the platform, even
because a contract has access only to its own nyecomtext (Triantafyllidis, 2016). The
security of the platform itself is hence relayedtbe security of the EVM and with the single
clientimplementation. As we pointed, the effortshibe focused on maintaining a healthy EVM
implementation with no bugs or exploitable secusgues, as long as this task is accomplished,
the code security is reasonably safe. Moreoverge ateployed on the blockchain only the
contract’s bytecode is stored, thus a user mustyavwput a degree dfustin both the Bapp
provider and in the executing node.

65

There will be always bugs, pitfall that may commihght since the project is continuously in
motion, however, following the updated documentatmd guidelines from community can
ease the process while newer and safer Soliditga@atterns are unveiled.

4.3 POWER CONSUMPTION / COSTS

Lastly, as energy consumption and costs are anotiteral factor into the evaluation of the
blockchain technology itself we will give some gisis about the topic. In order to better

understand this details we will provide data arappics, while discussing costs implications:

4.75

3

@

> 45

L

j=1

=

= 4.25

e

=

[0}

E 4

b

Ll

3.75

3.5

A A A A A A A A A A A A A A A

<y " >y oY N N e &Y & e oy N oY oY o
T . 9§ A . g A Ui ¢ ¢ i S Ui 1 $
o (0\ (o\ A (0\ "’O\ (0\ (0\ o (0\ AN AN N\ AL AN
O PSR\ P P PO PP P
N A - L e) AC A S N S A AN A 1

Picture 8 - Ethereum Energy consumption index

Although this data source is still in beta andectiéd by an external obsertfiit relays a good
esteem of the actual hash power being used fomgibiocks in the Ethereum environment.
Ethereum uses way less power than Bitcoin does l@sssnodes, and a different hashing
algorithm calledethash) but with his roughly annual average of ~41BAhconsumption, it is
closeMoldovacountry, with an amount of energy spest transactiorequal to 50 KW/h.

As of July 2017, the estimated price for Bitcoinners is about 5 $ cents per KWh, while
Ethereum miners are assumed to pay about 12 $ ddridds due to the fact that Bitcoin miners,

after coming a long way down from CPU, GPU and FR@Aing>’, nowadays relies heavily

36 digiconomist.net
37 CPU: Central Processing Unit, GPU: Graphical Processing Unit, FPGA: Field-Programmable Gate Array

66

on ASICS® that can deliver easil§0,000 GH/? at 0,25 W/GH® and from the inception of
crypto this hardware has been well-industrialiZéthereum on the other hand is mined only
over GPUs becaudgthashis ASIC-resistant and has been design such afothieo reasons:
Firstly, in order to diminish the feasibility of mer aggregation into bigools(like for Bitcoin)

that could retain a major total hashpower, secomdlgause PoW is used has a bootstrap
algorithm to mint the initial coins but the longrtegoal has always been PoS. This calculations
do not take into consideration the revenue gengtat¢he cryptocurrencies, that is, when block
generations mints new tokens there is an effegi@ay@ut that must be considered if we want to
make a complete year evaluation based on the €@stergy against revenues. In this sense
Ethereum generates just a smaller value of grassme than Bitcoin (~$2 vs $2.4 billion)
meaning that Ethereum efficiency is way higherhas dirculating supply and volume of eth

overcome is elder brother (Coinmarketcap, 2017).

As for the maintenance costs of Smart Contract atbeged our own data on the following
table:

DEPLOY MEAN TTC MEAN

DAPP NAME costT USECOST | ne of TTC TX Fee

(gas units) (avg use) Blocks) (Seconds) (ether)
<simple transaction> 21.000 - 3,6 69 0,00042 | $0,080
Fibonacci 326.954 $0,325 5,2 99 0,006539 | $1,275
Random 304.210 $ 0,075 5,2 99 0,006084 | $1,186
Rubixi 2.032.749 $ 0,585 5,2 99 0,040655 | S 7,928
SavingsContract 883.432 $0,943 5,2 99 0,017669 | S 3,445
EnerTrade 3.005.475 --- 5,2 99 0,06011 | $11,721

For every issued transaction, the gas costs hasfb@el to 20 Gwei as this is the signdfed
Gas price mid-range for a safe and relatively femtsaction validation (TTC is Time-To-
Confirmation). We have separated theploy cosiwhich is the sum of the transaction and
payload costs) and used it as the reference fahaltemaining table data apart from tise
costthat is a direct estimate of an average use (diwyea round-trip of a full functionality or
function calls). Thel'X Feefields are the effective cost of our contractstfateployment over
the Ethereum network, as we can deduce when ekiéraies and tools are involved in the

38 Application-specific integrated circuits

39 Gigahash per second

40 Watts per Gigahash

41 Information taken from http://ethgasstation.info

67

project, the cost is greater because all the netexe oimportedcode in our file will be added
dynamically to the lines right before the compdatiin byte-code. This information gives a
rough esteem of smart contracts upkeep.

68

5.0 CONCLUSIONS

In this work, we started by studying what the bldwkin phenomenon is, trying to understand
why this technology has received such a hype inntledia and what can it really achieve.
However, we wanted to look for a solid applicatosruse case that could benefit from this tech
and not just from its hype. As we peered deeperthe papers that described the main technical
features of distributed ledgers and gained insighttheir limits, we discovered the Ethereum
blockchain project and our attention was then aagktby the concepts conveyed with its vision.
We covered a lot of ground in the Ethereum blockcldgvelopment and assessed wherever
possible, all the features and innovations propdsed focusing on Smart Contracts. The
Ethereum team is making a great work into deligamext-generation tool that has enabled
an innovative tech such as blockchain to bettexgiatte with everyday life and necessities.
Whereas Bitcoin and the othatcoinsprovided a “dark” and cloudy way to financially-aebe
just an end, Ethereum managed to create a dedeatrahean to use policies and code into a
more comprehensive system that has a great pdtentia

Some questions do remain: will a killer-Bapp berfdwver? The rise of other Ethereum-like
projects may have more success than EthereumrBdould significantly update its structure
and become more capable? These are all good poitiigk on, but as long as the Ethereum
community carries on with development, keeps tigeials clear and their mind open the
maturity of the whole project will be just a mattdrtime. People must understand what this
technology is really about and what are the comeetcases that can lever its features and not
just use it for everything that comes by. We sam@ughout this work that the importance of
the platform in being a common groundy{abal computerwhere new applications and ideas
can grow on, with the ability to interact with eaather relying on a networked set of peers that
can transfer even money value and currencies.ddgeee and freedom and flexibility has only
be seen in the past with the invention of ¥derld Wide Weland itsHTTP protocol in 1980,
and that was too an attempt to decentralize afssémwices that were before only created
specifically ad-hoc. Like for any distributed tectwgy that has been invented and deployed
(Peer-to-Peemlike), some time is required to reach its fulldtional state and potential. The
paradigm shift of decentralized features in operatisuch as money transfers, public verifiable
votes and online contracting needs to be digesgatidowhole internet community, however
the simplicity expressed in Ethereum is unpreceztband other traditional approaches would
be too complex and very difficult to understand floe general public. We can argue that

69

Ethereum today is the most advanced form of prograbte distributed ledger actively
deployed and maintained and this uniqueness is whiagnable the technology to take the
necessary steps to be considered a next-geneestvonment and platform.

There is however plenty of security work to do ahaa both with the current state of Bapps
and with the future features that will likely tore in the platform; a significant effort could
be invested into discovering and potentially fixitgyvulnerable components in order to make

the community and the project grow alike.

70

IMAGE INDEX

Picture 1 - Bitcoin's blockchain MOdelcoviiiiiie e 9
Picture 2 - Blockchain total size for Bitcoin NEtWOrKccoovveiiiieieiiiieeceeeee e, 17
Picture 3 - Ethereum state transition eXample......cccovveeeiiiiiiiiciiiee e 27
Picture 4 - Block gas limit increase on 29th Of JUNE.......ceviiiiiiiiiiieeeiei e 37
Picture 5 - Gas cost for Recursive FIbONACCiuveiiiiiieiiiiieeccee e 40
Picture 6 - Gas cost for Memoized FIboNacCCi........ccccuvviieeiei i, 41
Picture 7 - Distributed Apps shares by type in Ethereumccoccvveiviiieiiiiiiiiecinieee e 59
Picture 8 - Ethereum Energy conSUMPLION iNAEX ..ccvvvvieiiiiiiieiiniiiee e esieee e srre e e s saeee e 66
Code Snippet 1 - RECUrSIiVE FIDONACCH cuuvviiiiriiiieiiiiiiee ettt aae e s 39
Code Snippet 2 - MemOoized FIDONACCI....uuiiiriiiiiiiiiiieieiiiee ettt e e s 41
Code Snippet 3 — static RaNAOmM gENEratioN........cccvieiiiiiiieiiiiieee e 42
Code Snippet 4 — complex Random ZeNeratioN.........cooceviveeeieieiiiciiiieeeee e 43
Code SNIPPET S — RUDIXI..uvveiiiiiiiiiiiiiiiii e e e et e e e e e s e e senbbaaeeeeeeesesnansrens 45
Code SNIPPet 6 — SAVINES WaAllETuvveeeiiiiiiiiiiieeee e e e e e e e saarres 49
(0oTe (oI a¥ o] o 1= A A 3 1= T ol I - o [USRI 52

71

Bibliography

Armstrong, S. (2016 Move over Bitcoin, the blockchain is only just meftstarted Wired.
Retrieved from http://www.wired.co.uk/article/unlethe-blockchain

Bheemaiah, K. (2015Block Chain 2.0: The Renaissance of Mowyred. Retrieved from
https://www.wired.com/insights/2015/01/block-ch&ir®/

Bill Marino, A. J. (2016) Setting Standards for Altering and Undoing Smanhiacts.
Cornell Tech (Jacobs Institute).

BitcoinWebHosting. (2016). Retrieved from http:#twiryofbitcoin.org/

Buterin, V. (2014)Ethereum White PapeRetrieved from
https://github.com/ethereum/wiki/wiki/White-Paper

Buterin, V. (2015)On Public and Private Blockchaingthereum Blog. Retrieved from
https://blog.ethereum.org/2015/08/07/on-public-anidate-blockchains/

Buterin, V. (2015). TNABC 2015 - Bitcoin 2.0 - Ideand Applications. (Bitcoinist.net,
Interviewer)

Buterin, V. (2016)Privacy on the BlockchairRetrieved from blog.ethereum.org:
https://blog.ethereum.org/2016/01/15/privacy-omtheckchain/

Buterin, V. (2017)Proof of Stake FAQRetrieved from github.com:
https://github.com/ethereum/wiki/wiki/Proof-of-Sed#AQ

Cachin, C. (2016)Architecture of the Hyperledger Blockchain Fabieirich: IBM
Research. Retrieved from https://www.zurich.ibm.fdeol/papers/cachin_dccl.pdf

Calvery, J. S. (2013). Statement of Jennifer Sh&sMyery, Director Financial Crimes
Enforcement Network United States Department offtteasury. Financial Crimes
Enforcement Network.

Castillo, J. B. (2013RBitcoin: A Primer for PolicymakergG. M. University, Ed.) Mercatus
Center.

Catalano, R. (2017Ethereum Contract ABRetrieved from
https://github.com/ethereum/wiki/wiki/Ethereum-Craut-ABI

Cécile Pierrot, B. W. (2016Malleability of the blockchain’s entrop$orbonne Universités,
EPFL IC LACAL. IACR Cryptology ePrint Archive 2016.

Chavez-Dreyfuss, G. (201&@weden tests blockchain technology for land registew
York: Reuters.

Coinmarketcap. (2017, JulygryptoCurrency Market CapitalizationRetrieved from
coinmarketcap.com: https://coinmarketcap.com/

Digiconomist. (n.d.)Bitcoin Energy Consumption IndeRRetrieved from digiconomist.net:
http://digiconomist.net/bitcoin-energy-consumption

72

Don Tapscott, A. T. (2016Here's Why Blockchains Will Change the WoHdrtune.
Retrieved from http://fortune.com/2016/05/08/whgdkchains-will-change-the-
world/

Don Tapscott, A. T. (2016].he Blockchain Revolution: How the Technology Betliitcoin
is Changing Money, Business, and the Wdvpldktfolio / Penguin.

Dwork C, N. M. (1992)Pricing via processing or combating junk email.

Ethereum Community. (201&tthereum Homestead Dod3etrieved from Ethdocs.org:
http://ethdocs.org/en/latest/introduction/index.htm

Ethereum Community. (20163olidity Official DocumentatiarRetrieved from
solidity.readthedocs.io: http://solidity.readthesla@/en/develop/index.html

Foundation Team. (2014thereum Foundation Mission and Vision Statement.

Foundation, E. (n.d.\cas Costs for EVM operations 1Retrieved from docs.google.com:
https://docs.google.com/spreadsheets/d/1m89CVu)rRES3-
YAUCCcNK950dUzMQPMJBXxRtGCqs/edit#gid=0

Fredrik Milani, L. G.-B. (2016)Blockchain and Business Process Improven&Rirends.

Greenspan, G. (201%nding the bitcoin vs blockchain debaRetrieved from
http://www.multichain.com/blog/2015/07/bitcoin-vésbkchain-debate/

Greenspan, G. (n.dMultiChain Private Blockchain WhitepapeZoin Sciences. Retrieved
from http://www.multichain.com/download/MultiChaWhite-Paper.pdf

Higgins, S. (2015)Bitcoin-Powered Crowdfunding App Lighthouse Hasriched.
Coindesk. Retrieved from http://www.coindesk.conobin-powered-crowdfunding-
app-lighthouse-launches-open-beta/

Higgins, S. (2016)Visa to Launch Blockchain Payments Service Next. Y3zanDesk.
Retrieved from http://www.coindesk.com/visa-blochiziipayments-service/

Higgins, S. (2017). Miners Boost Ethereum's TratisacCapacity with Gas limit increase.
Retrieved from http://www.coindesk.com/miners-etun-transactions-gas-limit/

Hyperledger. (2016, November Hyperledger Welcomes IrohRetrieved from
Hyperledger: https://www.hyperledger.org/blog/2Q1801/hyperledger-welcomes-
iroha

Hyperledger. (2016, November Rjeet Sawtooth Lakd&etrieved from Hyperledger:
https://www.hyperledger.org/blog/2016/11/02/meeatis@th-lake

Hyperledger. (2017, Jenuary 1Hyperledger Says Hello To CellRetrieved from
Hyperledger: https://www.hyperledger.org/blog/2@i717/hyperledger-says-hello-
to-cello

International Monetary Fund. (2016j)irtual Currencies and Beyond: Initial Considerai®
IMF Discussion Notelnternational Monetary Fund. Retrieved from
https://www.imf.org/external/pubs/ft/sdn/2016/sda3gpdf

73

Investopedia. (n.d.pefinition of 'Initial Coin Offering (ICO)'Retrieved from
investopedia.com: http://www.investopedia.com/téringial-coin-offering-ico.asp

Ittay Eyal, E. G. (2014Majority is not Enough: Bitcoin Mining is vulnerabiCornell
University, Department of Computer Science.

Karl Wist, A. G. (2016)Ethereum Eclipse AttackETH Zurich. Retrieved from
https://www.research-collection.ethz.ch/bitstreaamfitie/20.500.11850/121310/eth-
49728-01.pdf?sequence=1&isAllowed=y

Kelly, J. (2016)Exclusive: Blockchain platform developed by baokse open-source.
London: Reuters. Retrieved from http://uk.reutemnfarticle/us-banks-blockchain-r3-
exclusive-idUKKCN12K17E

Kevin Delmolino, M. A. (2016)Step by Step Towards Creating a Safe Smart Contract
Lessons and Insights from a Cryptocurrency Uabiversity of Maryland, Cornell
University, Department of Computer Science.

Leslie Lamport, R. S. (198Z)yhe Byzantine Generals Proble8RI International.

Levy, H. P. (2016)The CIO's Guide to Blockchai@artner. Retrieved from
http://www.gartner.com/smarterwithgartner/the-ognsee-to-blockchain/

Liu, A. (2013).Beyond Bitcoin: A Guide to the Most Promising CogpirrenciesVice.
Retrieved from http://motherboard.vice.com/blogiay-bitcoin-a-guide-to-the-most-
promising-cryptocurrencies

Loi Luu, D.-H. C. (2016)Making Smart Contracts Smarte&kCM CCS.

Loi Luu, V. N. (2016) A Secure Sharding Protocol For Open Blockchaiational
University of Singapore, Singapore. Retrieved from
https://www.comp.nus.edu.sg/~loiluu/papers/elaghidb

Marcin Andrychowicz, S. D. (2013%ecure Multiparty Computations on BitcolREE
Symposium on Security and Privacy.

Marcin Andrychowicz, S. D. (2014%ecure Multiparty Computations on Bitcouniversity
of Warsaw, Poland.

Nakamoto, S. (2008Bitcoin: A Peer-to-Peer Electronic Cash Syst&atrieved from
https://bitcoin.org/bitcoin.pdf

Nicola Atzei, M. B. (2016)A survey of attacks on Ethereum Smart Contradtéversita
degli Studi di Cagliari.

Paul Vigna, M. J. (2015 he Age of Cryptocurrency: How Bitcoin and Digikhbney Are
Challenging the Global Economic Ord&t. Martin's Press.

Popper, N. (2016A Venture Fund With Plenty of Virtual Capital, iNtd Capitalist.The
New York Times.

Rachid Guerraoui, V. Q. (2009)he next 700 BFT ProtocolRetrieved from
https://infoscience.epfl.ch/record/121590/files/TB3-2009.pdf

74

Ripple. (2017)Ripple Solutions Guideipple.com. Retrieved from
https://ripple.com/files/ripple_solutions_guide.pdf

Rosenfeld, M. (2014)Analysis of hashrate-based souble-spending.
Ross, R. (20156mart Money: Blockchains Are the Future of therhmge Newsweek.

Sayer, P. (2016Bankers plan to give Corda blockchain code to Higulger project.
PCWorld. Retrieved from http://www.pcworld.com/al&/3134014/bankers-plan-to-
give-corda-blockchain-code-to-hyperledger-projeatlh

Siegel, D. (2016, 06 25)Understanding The DAO AttacRetrieved from coindesk.com:
http://www.coindesk.com/understanding-dao-hack+alists/

Simon, A. (2017)On sharding blockchaingThe Ethereum Foundation) Retrieved from
github.com: https://github.com/ethereum/wiki/wikv&ding-FAQ

Spaven, E. (2015MasterCard: Digital Currency’s Risks Outweigh therfits.CoinDesk.
Retrieved from http://www.coindesk.com/mastercaigltdl-currencys-risks-
outweigh-the-benefits/

Stefan Thomas, E. S. (n.d.). A Protocol for Intégler Payments. 25. Retrieved from
https://interledger.org/interledger.pdf

Sunny King, S. N. (2012PPCoin: Peer-to-Peer Crypto-Currency with ProofSitake.

Swende, M. (2016, October 13nnouncement of imminent hard fork for EIP150 gzt ¢
changesRetrieved from blog.ethereum.org:
https://blog.ethereum.org/2016/10/13/announcenranttent-hard-fork-eip150-gas-
cost-changes/

Szabo, N. (199465mart Contractsunpublished manuscript. Retrieved from
http://www.erights.org/smart-contracts/

The Economist. (2015). The great chain of being sinout thingsThe EconomistRetrieved
from http://www.economist.com/news/briefing/21678zZ2chnology-behind-bitcoin-
lets-people-who-do-not-know-or-trust-each-othernddiependable

The Linux Foundation. (2015)inux Foundation Unites Industry Leaders to Advance
Blockchain Technologysan Francisco: The Linux Foundation. Retrievedhfro
https://www.linuxfoundation.org/news-media/announeats/2015/12/linux-
foundation-unites-industry-leaders-advance-blocktha

Triantafyllidis, N. P. (2016)Developing an Ethereum Blockchain Applicatibmiversity of
Amsterdam, System & Network Engineering, MSc.

Valenzuela, J. (2017, June 2O Mania Grinds Ethereum to a Halt, Scaling Issiikd
Limited to Bitcoin Retrieved from dashforcenews.com:
https://www.dashforcenews.com/ico-mania-grinds-ethm-halt-scaling-issues-not-
limited-bitcoin/

Vasin, P. (2014)BlackCoin's Proof-of-Stake Protocol w#ww.blackcoin.com. Retrieved
from https://bravenewcoin.com/assets/WhitepapexsKkaloin-pos-protocol-v2-
whitepaper.pdf

75

Wilcke, J. (2016, September 22he Ethereum network is currently undergoing a DoS
attack Retrieved from blog.ethereum.org:

https://blog.ethereum.org/2016/09/22/ethereum-negtwearrently-undergoing-dos-
attack/

Wood, G. (2014)Ethereum: a secure decentralised generalised tretnsa ledger.

Wood, G. (n.d.)What is ethereum? | Ethereum Frontier GuiRetrieved from
Ethereum.gitbooks.io: https://ethereum.gitbookBontier-
guide/content/ethereum.html

Yonatan Sompolinsky, A. Z. (2015ecure High-Rate Transaction Processing in Bitcoin.
Retrieved from http://fc15.ifca.ai/preproceedingger _30.pdf

Yonatan Sompolinsky, A. Z. (213)ccelerating Bitcoin’s Transaction Processing Fast
Money Grows on Trees, Not ChaiRetrieved from
http://www.cs.huji.ac.il/~avivz/pubs/13/btc_scaldii full.pdf

76

