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Sommario
La disponibilità di osservazioni profonde di ammassi di galassie, ottenute con telescopi

spaziali, ha permesso la scoperta di diversi casi di lensing forte che coinvolgono una galas-
sia d’ammasso e una sorgente retrostante (eventi di galaxy-galaxy strong lensing, GGSL).
Ciononostante, questo tipo di eventi sembra essere molto raro nelle più recenti simulazioni
idrodinamiche di ammassi di galassie. Questo apparente contrasto fra teoria e osservazioni
è uno dei motivi che ci hanno spinto ad indagare sulla fenomenologia degli eventi di GGSL
negli ammassi di galassie. Inoltre, lo studio delle sottostrutture presenti negli ammassi è
di fondamentale importanza per vincolare le proprietà della materia oscura. In particolare,
nella presente tesi abbiamo cercato di verificare la possibile esistenza di un collegamento fra
le proprietà fisiche degli ammassi di galassie e la probabilità di osservare eventi di GGSL.
Abbiamo quantificato questa probabilità definendo la sezione d’urto per il GGSL. Nel corso
del lavoro sono state impiegate simulazioni numeriche di lensing da ammassi di galassie, le
cui proprietà rispettano le predizioni del modello cosmologico ΛCDM. Nel corso della tesi
abbiamo messo in luce come alcune proprietà degli ammassi, quali la pendenza del loro pro-
filo di densità, la funzione di distribuzione radiale e la funzione di massa delle sottostrut-
ture influenzino la sezione d’urto. Questi risultati sono stati confermati quando abbiamo
applicato la nostra procedura all’ammasso MACSJ1149. Inoltre, grazie al nostro metodo, ab-
biamo potuto saggiare la validità di due modelli di massa, ottenuti da un’analisi di lensing
forte degli ammassi MACSJ1149 e MACSJ1206, confrontando il numero di eventi di GGSL
predetti dai modelli con quelli effettivamente osservati.

Abstract
The availability of deep, space based observations of galaxy clusters led to the discovery

of many strong lensing events between cluster members and background sources (galaxy-
galaxy strong lensing events, GGSL). Nevertheless, this kind of events seems to be very rare
in the more recent hydrodynamical simulations of galaxy clusters. This apparent contrast
between theory and observations is one of the reasons which lead us to analyze the phe-
nomenology of GGSL events in galaxy clusters. Moreover, the study of substructures in
clusters is fundamental in order to constrain dark matter properties. In particular, in this
thesis we investigate on the existence of a link between the physical properties of clusters
and the likelihood to observe these galaxy-galaxy strong lensing (GGSL) events. We quan-
tify this probability defining the GGSL cross-section. We pursue our goal by employing
numerical simulations of lensing by clusters whose properties are in agreement with the
predictions of the ΛCDM cosmological model. We find that the inner slope of the cluster
mass profile, the radial distribution function and the mass function of substructures influ-
ence the GGSL cross-section. These findings are confirmed when we apply our method to
the cluster MACSJ1149. Moreover, thanks to our method, we are able to check the validity
of two mass models, obtained through a strong lensing analysis of the clusters MACSJ149
and MACSJ1206, comparing the number of GGSL events predicted by the models and the
number of observed events.
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Chapter 1

Cosmology

1.1 The homogeneous Universe

Modern cosmology rests on the solid base of Einstein’s Theory of General Relativ-
ity. Within this framework, gravity is the manifestation of geometrical properties of
space-time, which are determined by the matter-energy content of the latter. This
quantities are related by the fundamental field equation

Rµν −
1

2
Rgµν =

8πG

c4
Tµν + Λgµν (1.1)

where R is the curvature scalar, Rµν , gµν and Tµν are respectively the Ricci, metric
and energy-momentum tensors, and Λ is the cosmological constant. The presence of
the cosmological constant in the field equation is not essential, from a mathematical
point of view; the physical motivation of his presence is the observed accelerated
expansion of the universe, as will be clarified later. Given a particular mass-energy
distribution described by Tµν and fixed Λ is, at least in principle, possible to solve
this non-linear system of equations to find out the metric tensor, namely the gravi-
tational field.

In cosmology, we are interested in the description of the universe on large scales,
much larger than the typical intergalatic distance. Nowadays, thanks to the ob-
servations of the Cosmic Microwave Background (CMB) and to the measurements
of galaxies distribution, we can assert that, on such large scales (a few hundreds
Mpc), the universe is homogeneous and isotropic. If we assume that our position
in the universe is not special, we can say that homogeneity and isotropy are funda-
mental properties of the universe, valid in every point. This statement is known
as the Cosmological Principle. Under this circumstances, it can be shown (Wein-
berg, 1972) that gµν assumes a particularly simple and symmetric form, the so-called
Friedmann-Robertson-Walker (FRW) metric, that defines a unique form of the line ele-
ment ds2 = gµνdx

µdxν :

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(1.2)

where a(t) is the scale factor of the universe, an unknown function of time that de-
termines the scaling of spatial coordinates r, θ, φ, and k is a constant that can only
have the values +1, 0,−1. A metric of this type describes a space-time with a con-
stant curvature scalar R, whose value determines k. Such a symmetric universe is
necessarily filled with a perfect fluid, described with an energy-momentum tensor of
the form

T̃µν ≡ Tµν +
Λc4

8πG
gµν = (ρ̃c2 + P̃ )vµvν − P̃ gµν (1.3)
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where ρ̃ = ρ+ ρΛ = ρ+ Λc2

8πG is the effective energy density, P̃ = P + PΛ = P − Λc4

8πG
is the effective pressure and vµ is the velocity four-vector of the fluid. The effect of
the cosmological constant is adding a positive energy and a negative pressure to the
cosmic fluid.

The value of k defines the constant curvature of the universe, namely his geom-
etry. It can be shown (Weinberg, 1972) that:

• if k = 0, (1.2) describes a flat, infinite space;

• if k = +1, (1.2) describes a closed space, whose geometry is that of a 3D sphere
and whose volume is finite at every instant;

• if k = −1, (1.2) describes an open, infinite space, whose geometry is that of a
3D hyperboloid.

The value of k is not predicted by the Einsten equations (1.1), and it must be mea-
sured with experiments.

1.1.1 The expansion of the universe

Current observations show that spectra of distant galaxies experience a cosmological
redshift, that is the frequency νs at which a photon is emitted from a distant source is
higher than the frequency νo we observe on Earth. This phenomenon is quantified
by the redshift z defined as

z =
νs − νo
νo

=⇒ 1 + z =
νs
νo
. (1.4)

As demonstrated in Weinberg, 1972, 1 + z coincides with the ratio between the scale
factor at the time to when the photon is observed and the scale factor at the time ts
when the photon is emitted, that is

1 + z =
νs
νo

=
a(to)

a(ts)
. (1.5)

The redshift z is positive, as observed, if and only if a(to) > a(ts), that is if the
universe is expanding (ȧ > 0). In the limit of small distances between source and
observer, namely when z is small, it can be shown that holds a simple relations
between the redshift of light and the proper distance of the object from which light
was emitted:

z = H0dP (1.6)

known as Hubble law. H0 = ȧ(t0)/a(t0) is called Hubble constant, but it is only the
present-day value of the Hubble parameter H(t) = ȧ(t)/a(t). However, if z and dp
are large, the redshift-distance relation is k-dependent.

The scale factor a(t) can be expressed as a power series, if t− t0 is small enough:

a(t) = a(t0)

[
1 +H0(t− t0)− 1

2
q(t0)H2

0 (t− t0)2 + ...

]
(1.7)

where q(t) is called deceleration parameter and quantify how much the universe’s ex-
pansion is decelerated or accelerated. It’s given by

q(t) = − ä(t)a(t)

ȧ2(t)
. (1.8)
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1.1.2 Distances in cosmology

From the FRW metric (1.2) one can define the so called proper distance dP between two
points in the universe as the distance measured by a "chain of observers" between
the two points, at the same cosmic time t. Choosing the reference system in which
dφ = dθ = 0 one has

|ds| = a(t)
dr√

1− kr2
(1.9)

from which one defines

dP =

∫ r

0

a(t)dr′√
1− kr2

= a(t)f(r) (1.10)

with

f(r) =


arcsin(r) k = 1

r k = 0

arcsinh(r) k = 0.

(1.11)

The proper distance between two points measured today is the comoving distance
dC = dP (t0) = a(t0)f(r) = a(t0)

a(t) dP (t). These kind of distances are not directly
measurable, because it’s not possible a simultaneous measurement of all length ele-
ments between us and a distant galaxy. However, it is possible to define other kinds
of distances that are, at least in principle, measurable. But, since the universe is not
necessarily flat and static, these definitions do not coincide and there is not a unique
definition of length intervals. They are equivalent only in the local universe, where
the effect of curvature and expansion is negligible. These definitions are:

Luminosity distance dL defined as

dL ≡
(

L

4πF

)1/2

(1.12)

where L is the luminosity of the source at r, emitting light at time t, and F is the
luminous flux measured by the observer at time t0. Due to the expansion of the uni-
verse, photons are redshifted and time intervals between their arrivals are enlarged,
so the measured flux drops by a factor (a(t)/a(t0))2:

F =
L

4πa2(t0)r2

(
a(t)

a(t0)

)2

=
L

4πa2(t0)r2
(1 + z)−2 (1.13)

thus
dL = a(t0)r(1 + z). (1.14)

Angular diameter distance dA defined as

dA =
DP

∆θ
= a(t)r (1.15)

where DP = a(t)r∆θ is the proper diameter of the light source in r at time t. From
this follow that

dA = dL
a2(t)

a2(t0)
=

dL
(1 + z)2

. (1.16)
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Angular diameter distance is the distance definition that is naturally used in gravi-
tational lensing studies, as will be clarified in chapter 2.

1.1.3 Friedmann equations

Inserting (1.2) and (1.3) in (1.1) one can find the two well-known Friedmann equations:

(
ä

a

)
= −4πG

3

(
ρ+

3P

c2

)
+

Λc2

3
= −4πG

3

(
ρ̃+

3P̃

c2

)
(1.17a)(

ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λc2

3
=

8πG

3
ρ̃− kc2

a2
. (1.17b)

The previous equations are not independent: they are related by the condition of co-
variant conservation of the energy-momentum tensor (1.3), namely by the condition
of energy conservation in the universe:

T̃µν;ν = 0 =⇒ d

dt

(
a3ρc2

)
− P da

3

dt
= 0. (1.18)

Rewriting the second Friedmann equation (1.17b) in terms of the Hubble parameter
and for t = t0 (today) we find

H2
0

(
1− Λc2

3H2
0

− 8πGρ0

3H2
0

)
= −kc

2

a2
0

(1.19)

and defining today’s critical density of the universe as ρc,0 =
3H2

0
8πG we can write

H2
0

(
1−

ρΛ,0

ρc,0
− ρ0

ρc,0

)
= −kc

2

a2
0

. (1.20)

Finally, introducing today’s density parameters of the i-th component as Ωi,0 =
ρi,0
ρc,0

we can write

H2
0 (1− ΩΛ,0 − Ω0) = −kc

2

a2
0

(1.21)

from which is evident that the curvature of the universe and his today’s energy con-
tent are related as follows:

• k = 0 ⇐⇒ ΩΛ,0 + Ω0 = Ωtot,0 =
ρΛ,0+ρ0

ρc,0
= 1

• k = 1 ⇐⇒ ΩΛ,0 + Ω0 = Ωtot,0 =
ρΛ,0+ρ0

ρc,0
> 1

• k = −1⇐⇒ ΩΛ,0 + Ω0 = Ωtot,0 =
ρΛ,0+ρ0

ρc,0
< 1.

Moreover, from (1.17a) it is easy to show that

Λc2 > 4πG

(
ρ+

3P

c2

)
⇐⇒ ä > 0 (1.22)

that is to say that observed accelerated expansion of the universe is made possible
by a positive cosmological constant.



1.1. The homogeneous Universe 5

1.1.4 Equation of state

With the two Friedmann equations alone we aren’t able to find solutions for ρ(t), P (t), a(t).
For this purpose it’s necessary to use an equation of state describing the perfect cos-
mic fluid. In standard cosmology it takes the general form

P = wρc2 (1.23)

where the value of the state parameter w depends on the particular component of the
fluid we are considering. Indeed,

w =


0 pressureless, non relativistic matter ("dust")
1/3 radiation, ultra-relativistic matter
−1 cosmological constant

(1.24)

so, from (1.18) and (1.23) it’s possible to write a single expression for ρ in terms of a
and w:

ρw ∝ a−3(1+w) ∝ (1 + z)3(1+w) (1.25)

which becomes, in the three cases:

• dust-dominated universe: w = 0 =⇒ ρM = ρM,0

(
a0
a

)3
• radiation-dominated universe: w = 1

3 =⇒ ρR = ρR,0
(
a0
a

)4
• Λ-dominated universe: w = −1 =⇒ ρΛ = ρΛ,0

(
a0
a

)0
= ρΛ,0.

1.1.5 Present-day measured cosmological parameters

Results of the Planck experiment (Planck Collaboration et al., 2016), focused on the
measurement of CMB properties, indicate that the actual value of the Hubble pa-
rameter is H0 = 67.8 ± 0.9 km s−1Mpc−1. This means that the present-day value of
the critical density of the universe is

ρc,0 =
3H2

0

8πG
≈ 2 · 10−29g cm−3h2 (1.26)

where h is given by H0 = 100h km s−1Mpc−1. The measured matter density param-
eter is Ωm = 0.308± 0.012 while the curvature of the universe is strictly constrained
to be k < 0.005, pointing out the flatness of the universe. These results are consistent
with high-redshift supernovae observations (Riess et al., 1998) and with results of
COBE and BOOMERANG experiments (Jaffe et al., 2001), indicating that ΩΛ ∼ 0.7
and q ∼ −0.55. In this work we adopt the values ΩΛ = 0.7, Ωm = 0.3 and h = 0.7.

1.1.6 Friedmann model for a flat universe

As shown in Sect. 1.1.4, the energy density of every component, having a differ-
ent equation of state, has a different evolution with cosmic time. This fact makes
possible to identify different epochs during the history of the universe, in which a
different component was the dominant one. Boundaries of this epochs can be found
imposing the equivalence of matter and radiation density and of matter and dark
energy density, respectively:



6 Chapter 1. Cosmology

• matter-radiation equivalence: ρM = ρR when

ρM,0

(
a(t0)

a(teq)

)3

= ρR,0

(
a(t0)

a(teq)

)4

(1.27)

ρM,0(1 + zeq)
3 = ρR,0(1 + zeq)

4 (1.28)

(1 + zeq) =
ρM,0

ρR,0
∼ 3 · 104 =⇒ zMR

eq ∼ 3 · 104; (1.29)

• matter-Λ equivalence: ρM = ρΛ when

ρΛ,0 = ρM,0(1 + zeq)
3 (1.30)

(1 + zeq) =

(
ρΛ,0

ρM,0

)1/3

∼ 1.7 =⇒ zMΛ
eq ∼ 0.7. (1.31)

This means that dark energy started to dominate our universe recently, at z . 0.7,
while at redshifts 0.7 . z . 3 · 104 the universe energy content was dominated by
matter. Before this epoch, radiation was predominant.

Thus, as a first approximation, in this three epochs we can consider the cosmic
fluid as made up of the dominant component only:

• at z & 3 · 104, during the radiation epoch, weff ∼ 1/3

• at 0.7 . z . 3 · 104, during the matter epoch, weff ∼ 0

• at z . 0.7, during the dark energy epoch, weff ∼ −1.

Combining Eq. (1.17a) and (1.23) in the different epochs, one can show that an accel-
erated expansion of the universe is possible only in a Λ-dominated universe, while
in the matter- and radiation-dominated epochs the expansion of the universe was
decelerated (ä < 0). This fact, together with the observational evidence of ȧ > 0,
means that at z & 0.7 the function a(t) has negative concavity so, somewhere in the
past, in correspondence of the Big Bang, the scale factor was null. Moreover, the age
of the universe is necessarily finite and less than the Hubble time H−1

0 = a/ȧ. This is
shown in fig. 1.1

In a single-component universe dominated by the element with state parameter
w, Eq. (1.21) reads

H2
0 (1− Ωw,0) = −kc

2

a2
0

(1.32)

while from the Friedmann equations and from Eq. (1.25) one obtains

H2(t) = H2
0

(a0

a

)2
[
1− Ωw,0 + Ωw,0

(a0

a

)1+3w
]
. (1.33)



1.1. The homogeneous Universe 7

FIGURE 1.1: The concavity of a(t) ensures that there must be a singu-
larity in the past, namely a point when a = 0. It also ensures that the
age of the Universe, t0 , is less than the Hubble time, 1/H0. Figure

from Berry, 1989.

If such a universe is also flat (k = 0 ↔ ρw,0 = ρc ↔ Ωw,0 = 1), it is possible to find
explicit solutions for a(t), H(t), q(t), ρw(t), namely:

t−1
0 = H0

3(1 + w)

s
(1.34a)

a(t) = a0

(
t

t0

) 2
3(1+w)

(1.34b)

H(t) =
ȧ

a
=

2

3(1 + w)
t−1 (1.34c)

q(t) = − äa
ȧ2

=
3(1 + w)

2
− 1 = const. = q0 (1.34d)

ρw(t) =
1

6πG(1 + w)2t2
(1.34e)

From these relations we can conclude that, in this model, the universe undergoes an
indefinite expansion, whose speed depends on w. Finally, from Eqs. (1.25), (1.33)
and from the definitions of the critical density and Ωw one obtains that

Ωw(z) =
Ωw,0(1 + z)1+3w

1− Ωw,0 + Ωw, 0(1 + z)1+3w
(1.35)

that is to say that if Ωw,0 is larger, equal or smaller than 1, then Ωw(z) is always larger,
equal or smaller than 1, even if approaching the Big Bang (z → ∞), the density
parameter tends to unity (Ωw(z)→ 1). The evolution of the universe cannot change
its geometry.
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1.2 Evolution of perturbations

1.2.1 Linear theory

Today’s universe can be described as homogeneous and isotropic only on large
scales. In order to describe structures observed on smaller scales, from galaxy clus-
ters to galaxies, it is necessary to introduce inhomogeneities in our theory. Structure
formation theories describe the evolution of primordial density fluctuation during the
history of the universe.

The generation of primordial perturbations is described by the Inflation theory,
whose predictions agree with present observations, accounting for the homogene-
ity, isotropy and flatness of the observable universe and for the absence of magnetic
monopoles. According to this scenario, primordial density and temperature fluc-
tuations originate from quantum effects in the early universe, slightly after the Big
Bang. The growth of these small inhomogeneities of the cosmic fluid into the present
observable structure of the universe can be calculated with the laws of gravity in an
expanding universe.

The quantity

RH(t) = a(t)

∫ a(t)

0

da′

ȧ′a′(t′)
(1.36)

is called radius of the cosmological horizon and defines the radius of the portion of the
universe that is in causal connection with the observer, namely the boundary of the
observable region of the universe. This quantity is important in the study of the evo-
lution of perturbations, since it defines a length scale under which the gravitational
collapse of dark and ordinary matter can be prevented by other physical processes
opposing to gravity (basically the cosmic fluid pressure). Moreover, in this regime
gravitational collapse can be well described with a Newtonian theory, the so-called
Jeans theory, exposed below.

In early phases of perturbations growth, when the density contrast between the
mean "background" density of the universe ρb and the density of the perturbation ρ
is small, that is when

δ =
δρ

ρ
=
ρ− ρb
ρb

� 1, (1.37)

the gravitational collapse of inhomogeneities can be described by a linear, first-order
approximation. If we do not consider the expansion of the universe, on length scales
smaller than RH the equations that describe the growth of perturbations are the
continuity equation, the Euler equation, the Poisson equation and the entropy con-
servation: 

∂ρ
∂t + ~∇(ρ~v) = 0
∂~v
∂t + ~v~∇~v = −1

ρ
~∇P − ~∇φ

∆φ = 4πGρ
dS
dt = 0

(1.38)

This system can be solved with constant density, pressure and gravitational potential
ρb, Pb, φb and null velocity. Adding to this solution small perturbations δρ, δP, δφ, δv
and leaving only first-order terms in equations, one obtains

∂δρ
∂t + ρb~∇δ~v = 0
∂δ~v
∂t = −v2

s
ρb
~∇δρ− ~∇δφ

∆δφ = 4πGδρρb

(1.39)
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where v2
s is the sound speed in adiabatic conditions, when δP = v2

sδρ. Writing
perturbations as plane waves f(~r, t) = fkexp(i~k~r + iωt), we obtain the dispersion
relation

ω2 = v2
sk

2 − 4πGρb, (1.40)

which has two real solutions for ω2 > 0, leading to the propagation of stable plane
waves, and two imaginary solutions for ω2 < 0, one of which leading to an indefinite
growth of perturbations. The boundary between these two regimes is given by ω2 =
0, when the perturbation is static. Recalling that k = 2πλ, this happens when the
perturbations has a length scale equal to the Jeans length

λJ = vs

√
π

Gρb
(1.41)

which corresponds to a Jeans mass

MJ =
4

3
πρbλ

3
J . (1.42)

So, if the size λ of the perturbation is such that λ > λJ (or, equivalently, its mass M
is greater than MJ ), this perturbation can undergo gravitational collapse; otherwise
it can only propagate in the universe as a stable wave.

In an expanding universe, growth of perturbations is more difficult. In this case
the perturbation can be described as a closed universe contained in a flat background
universe. Imposing the equivalence of their two Hubble parameters and studying
the evolution with Friedmann equations, one obtains

δ ∝ (ρba
2)−1 (1.43)

so, before and after the time teq corresponding to the matter-radiation equivalence
(1.29) the time dependence of the density contrast is

t < teq : δ ∝ a2 ∝ t (1.44a)

t > teq : δ ∝ a ∝ t2/3. (1.44b)

If λ > RH , where the only relevant force is gravity, this solution refers to all com-
ponents of the cosmic fluid; if λ < RH (and λ > λJ ), this solution holds only for
the main component of the universe at a given time and, potentially, also for com-
ponents physically coupled with the main one, with the others possibly influenced
by microphysical processes. Rewriting Eq. (1.38) in terms of a velocity ~u, which is the
sum of the peculiar velocity of the perturbation and the expansion velocity given by
the Hubble law, and using δ(~r, t) = δk(t)exp(i~k~x), it is possible to obtain, for t > teq
(namely in a matter-dominated universe), the following equation for δk:

δ̈k + 2δ̇k
ȧ

a
+ δk

[
k2v2

s − 4πGρb
]

= 0 (1.45)

which is solvable with the ansatz δk ∝ tα. When λ� λJ = vs
5

√
24π
Gρb

, this leads to the
two solutions

δ− ∝ t−1 ∝ a−3/2 ∝ (1 + z)3/2 (1.46a)

δ+ ∝ t2/3 ∝ a ∝ (1 + z)−1. (1.46b)
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For t < teq (namely in a radiation-dominated universe) one finds

δ̈k + 2δ̇k
ȧ

a
+ δk

[
k2v2

s −
32

3
πGρb

]
= 0 (1.47)

that, using δk ∝ tα when λ� λJ = vs
√

3π
8Gρb

, leads to

δ+ ∝ t ∝ a2 ∝ (1 + z)−2. (1.48)

However, it can be shown that in such conditions λJ > RH .
Summarizing, δ+ solutions describe the growing perturbations in a flat universe,

before and after the equivalence between matter and radiation energy density. If
the size of the fluctuation is greater than the cosmological horizon (λ > RH ), δ+

describes the evolution of all components of the cosmic fluid, so

λ > RH :

{
t < teq : δ ∝ a2 ∝ t for all components
t > teq : δ ∝ a ∝ t2/3 for all components

(1.49)

while if λ < RH , δ+ describes only the evolution of perturbations of the main com-
ponent of the universe:

λ < RH

{
t < teq : no instability for radiation
t > teq : δ ∝ a ∝ t2/3 only for matter.

(1.50)

Nevertheless, until the decoupling occurred at zdec ∼ 300, ordinary matter ("baryons")
was coupled with radiation, due to frequent scattering. This means that the solution
given by Eq. (1.50) holds at t < teq for both radiation and baryons and at tdec > t >
teq only for dark matter (DM), which isn’t affected by radiation scattering, and holds
also for ordinary matter only after, for t > tdec. Before decoupling, as for radiation,
baryons weren’t able to collapse on sub-horizon scales.

The extent of dark matter perturbations before the equivalence was restricted by
the Meszaros effect (see Peter Coles, 2002), which imposes that

δk,DM = 1 +
3

2

a

aeq
=⇒ δk,DM ≤

5

2
before equivalence. (1.51)

After teq dark matter perturbations on sub-horizon scales grow as given by Eq.
(1.50), so at decoupling, when baryons can undergo gravitational collapse, in the
universe were already present dark matter potential wells. This leads to the baryon
catch-up effect, implying that baryonic perturbations follow the dark matter ones:

δk,B = δk,DM

(
1− adec

a

)
for t > tdec. (1.52)

In a universe without dark matter this process wouldn’t be possible, causing δk,B to
be much smaller than observed today.

However, as seen, perturbations which do not have enough mass to collapse are
propagating as density waves, under the influence of the global gravitational field.
This fact causes a leveling of existing perturbations at the scale reached by dark
matter perturbations traveling at speed vs at time t, called free streaming scale:

λFS(t) = a(t)

∫ t

0

vsdt
′

a(t′)
. (1.53)
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The free streaming mass MFS ∝ λ3
FS grows whit time, and coincides with the Jeans

mass before teq; after teq, MFS remains constant and equal to MJ(teq). This means
that at the equivalence only perturbations with mass larger than the free streaming
mass are survived. The Jeans length and mass change with the evolution of the uni-
verse, because the dominant component of the cosmic fluid and the particles’ veloc-
ity vs changes. The maximum value reached by the Jeans mass during the history of
the universe is the minimum mass that ensures a perturbation to continuously grow.
The maximum Jeans mass is reached at teq, but its value depends on the properties
of dark matter. For example, we can distinguish between Cold Dark Matter (CDM)
and Hot Dark Matter (HDM) models. In CDM scenarios, the velocity of DM parti-
cles at the epoch of decoupling between radiation and matter is non-relativistic; on
the contrary, in HDM scenario DM particles are lighter and their velocities at decou-
pling are still relativistic. Intermediate scenarios correspond to Warm Dark Matter
models. The mass and velocity of DM particles have a great impact on structure for-
mation: CDM theories predictMJ(teq) = MFS(teq) ∼ 106M⊙, smaller than the mass
of lightest galaxies, while HDM theories predict Mt(aeq) = MFS(teq) ∼ 1016M⊙,
bigger than the mass of heaviest galaxy clusters. These different values imply that
in an HDM universe the biggest structures are the oldest ones, the opposite in a
CDM universe. Current observations support the CDM scenario, in which galaxies
are older than galaxy clusters, the latter often observed out of equilibrium.

FIGURE 1.2: Density evolution of a spherical overdense region in the
nonlinear regime. Figure from Padmanabhan, 2002.
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1.2.2 Nonlinear theory

The assumptions used in the linear theory break down when δ ∼ 1. Analytical so-
lutions for the nonlinear collapse can be found only in the simple case of a spherical
perturbation, which is too simple to describe realistic structures but give us some
interesting information about the collapse process. As can be seen in Fig. 1.2, ini-
tially the perturbation expands but slower than the universe, since the turn-around
point is reached at time tmax, when δ(tmax) ∼ 4.6. Here the contraction starts, and a
virialized structure is formed at tcoll, when δ(tcoll) ∼ 400.

For an accurate description of structure formation in this regime numerical simu-
lations are needed. Nowadays it is possible to simulate the evolution of dark matter
fluctuation during the history of the universe in large volumes (hundreds of Mpc
on a side), and to identify structures whose properties are compatible with those of
observed galaxies and galaxy clusters. Fig 1.3 illustrates the results of such a sim-
ulations, in which the formation of the so-called cosmic web, a filamentary structure
connecting dense clumps of matter corresponding to cluster of galaxies, is evident.

FIGURE 1.3: A snapshot from the Millennium cosmological simula-
tion, showing the dark matter distribution at z=0 in a galaxy cluster
(left) and on a larger scale (right). Figure from the Millennium Simu-

lation website.
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1.3 Problems of the ΛCDM model

The standard ΛCDM cosmological model is not exempt from problems. On galactic
scale, the two main problems are the so-called missing satellite problem and the cusp-
core problem.

The missing satellite problem consists in the fact that simulated galaxy-sized ha-
los retain a large amount of substructure, predicting hundreds or thousands of sub-
halos. In contrast, observations in the local group show that our galaxy only have
few tens of satellites. A plausible solution for this problem can be found in baryonic
physics, without invoking a modification of the standard cosmological model: many
halos could be dark because of the absence of star formation inside them. Effectively,
the velocity threshold at which subhalo and dwarf satellite counts diverge is close
to ∼ 30 km/s, the value at which heating of intergalactic gas by the ultraviolet pho-
toionizing background should suppress gas accretion onto halos, which could plau-
sibly cause these halos to remain dark. An additional contribute to the suppression
of star formation in these small haloes can be found in supernovae and stellar winds
(Weinberg et al., 2015). However, comparing the most massive satellites found in
simulations (the ones which one would expect to be the most luminous) with the
Milky Way’s observed satellites, it is found that the mass in the central regions of
these subhalos exceeds the mass inferred from stellar dynamics of observed dwarfs
by a factor ∼ 5. Since it seems unlikely that these massive subhalos are dark and
that the observed dwarfs reside in less massive hosts, this "too big to fail" problem
is still unresolved with baryonic physics. This evidence suggests that simulations
of ΛCDM structure formation predict too much mass in the central regions of halos
and subhalos: from this point of view, the missing satellites problem looks similar to
the cusp-core problem, discussed in the next paragraph.

The cusp-core problem arises fitting observed galactic rotation curves with the-
oretical models of the distribution of dark matter, stars and gas. NFW dark matter
halos overpreditcs the rotation speed in the inner few kpc by a factor two or more
with respect to isothermal models with a constant density core. Despite uncertain-
ties in modeling and observations, it seems clear that resolving the cusp-core prob-
lem requires a modification of the halo profiles of typical spiral galaxies predicted
by N-body simulations. High-resolution hydrodynamic simulations of galaxy-sized
halos with star formation and feedback show that this effects, injecting energy into
dark matter particles orbits, can cause the dark matter profile to drop at the centre,
forming cores with nearly constant density. However, this solution needs to further
observational confirmations. If not found, this problem can become another chal-
lenge to the standard ΛCDM model.

Instead of invoking the complex aforementioned baryonic solutions to the miss-
ing satellites and to the cusp-core problem, one can try to match simulations and
observations modifying the hypothesis which simulations are based on: in partic-
ular, that dark matter is "cold". In fact, if dark matter is "warm", its free-streaming
velocities in the early universe were large enough to erase primordial perturbations
on sub-galactic scales. Thus, in such a situation, the subhalo mass function drops at
low masses. The results of a simulated galaxy-sized halo in some WDM universes
are depicted in fig. 1.4, in which is evident the loss of substructure at low masses in
warmer scenarios.

However, this affects Lyman-α forest observations and seems to be in contrast
with observations of strong lensing systems, that show evidence for a significant
subhalo fraction as well as the existence of small (∼ 108M�) substructures (see Sect.
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FIGURE 1.4: Portraits of a Milky Way-like halo at z = 0 in high res-
olution simulations with different dark matter particles properties.
Structure within 500 kpc of the center is shown. From Polisensky and

Ricotti, 2011.

3.2.2). Another possibility consists in a high dark matter self interaction (Self In-
teracting Dark Matter, SIDM), but current theories can resolves only the cusp-core
problem leaving too much satellites around Milky Way-like galaxies. Summariz-
ing, today doesn’t exists a definitive solution to this problems, so further work is
needed to find possible bugs in the current standard cosmological model. Probing
substructures mass function down to small masses and investigating dark matter
distribution in subhalos are promising ways to test the ΛCDM model.

Some tension between theory and observations exists also on larger scale. Grillo
et al., 2015 compare the results of their strong lensing analysis of the cluster MACS0416
with simulated clusters of comparable mass extracted from high resolution cosmo-
logical simulations. They found that the inner regions of simulated clusters contains
considerably less mass in substructures with respect to observations. The mismatch
is particularly evident in the central 150 kpc and it corresponds to a lack of massive
subhalos with circular velocities vc & 100 km/s (Fig. 1.5).

A similar result is reported in Munari et al., 2016: the number of massive (vc &
200 km/s) substructures in the inner 2.2 Mpc of the cluster Abell 2142 is signifi-
cantly higher than simulations predictions (Fig. 1.6). This result is even more robust
then the previous one, since the authors directly compare the outcomes of simula-
tions and velocities measurements, without any intermediate mass calibration as for
strong lensing analysis.

In Natarajan et al., 2017 the substructure population derived from the lensing
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FIGURE 1.5: Number of subhalos as a function of the projected dis-
tance from the galaxy cluster center (left panel) and, within a two-
dimensional aperture of 420 kpc, of their circular velocity value (right
panel). The black histograms represent the values derived by Grillo
et al., 2015 in the analysis of MACS0416 and the gray diamonds and
bars show, correspondingly, the median values and the 1σ uncertain-
ties obtained from cosmological simulations. Image from Grillo et al.,

2015.

analysis of three clusters (MACSJ1149, MACSJ0416 and Abell 2744) is compared to
those found in simulated clusters of similar mass. They report an excellent agree-
ment between the observed and the simulated subhalo mass function over four
decades in mass (109 − 1013M�). On the other hand, they find discrepancies in
the subhalos radial distribution: in all three clusters, galaxies are significantly more
centrally distributed with respect to simulations (Fig. 1.7). The reasons for this mis-
match cloud be in sub-grid physics models implemented in simulations, for example
over-efficient dynamical friction, tidal stripping and AGN feedback. However, as ex-
plained by the authors, this discrepancy can be also due to the fact that current cos-
mological simulations do not fully capture the dynamical complexity of disturbed,
merging and rapidly evolving systems as the three observed clusters appears to be.
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FIGURE 1.6: Distribution of the values of circular velocity of member
galaxies of Abell 2142 within 2.2 Mpc in projection from the cluster
center. The white histogram refers to the sample of members with
measured velocity dispersion. Error bars represents the 16th and 84th
percentiles in each bin. The blue histogram shows the distribution of
the values of circular velocity of the members that have either a spec-
troscopic measurement of velocity dispersion or a velocity dispersion
estimate inferred from the Fundamental Plane. When this last his-
togram is corrected to account for the incompleteness of the sample,
the pale blue histogram is obtained. The colored symbols with error
bars are the median values of circular velocity of subhalos in different
simulated clusters, as indicated in the legend. Thick and thin error
bars indicate the 16th-84th percentiles and the minimum-maximum

values, respectively. Image from Munari et al., 2016.
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FIGURE 1.7: Each panel shows the comparison between the observed
radial distribution of substructures and the distribution predicted
by different sets of cosmological simulations. Simulated substruc-
tures are always less concentrated than observed ones. Images from

Natarajan et al., 2017.
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Chapter 2

Gravitational Lensing

2.1 Gravitational Lensing Theory

Light rays propagate according to Einstein’s Theory of General Relativity. In this
framework photons travel on null geodesics, whose geometrical properties are af-
fected by the matter-energy content of space-time.

As seen in Chapter 1, on scales much larger than a few hundreds Mpc the uni-
verse can be described with the homogeneous and isotropic FRW metric (1.2). On
smaller scales, the universe becomes "clumpy" due to the presence of galaxies and
galaxy clusters, so the space-time metric and the light rays paths are locally influ-
enced by the uneven distribution of matter. However, in many astrophysical situa-
tions the local gravitational field φ = −GM

R is small (|φ| � c2) or, in other words, the
distance R to the center of mass of the distribution of matter is much larger than his
Schwarzschild radius Rs = 2GM/c2. Moreover, in ordinary situations the relative
velocity v between the observer, the deflecting mass (lens) and the light source is
much less than c. In such situations the weak field approximation is valid, namely the
local gµν can be written as a small perturbation on the flat Minkowskian metric:

ds2 = gµνdx
µdxν =

(
1 +

2φ

c2

)
c2dt2 −

(
1− 2φ

c2

)
(d~x)2. (2.1)

Light propagates on null geodesics, for which ds2 = 0, so the light speed in the
gravitational field is

c′ =
d~x

dt
= c

√
1 + 2φ/c2

1− 2φ/c2
≈ c

(
1 +

2φ

c2

)
< c. (2.2)

This fact permits to define and effective refraction index as

n =
c

c′
=

1

1 + 2φ/c2
≈ 1− 2φ

c2
< 1. (2.3)

Using a variational approach based on the Fermat Principle, it is possible to show
(see Schneider, Ehlers, and Falco, 1992) that the deflection angle ~̂α of a light path
passing near a mass M with impact parameter b at z = 0 is

~̂α(b) =
2

c2

∫ +∞

−∞
~∇⊥φdz (2.4)

if this deflection occur on spatial scales much smaller than the distances between
source, lens and observer (thin screen approximation) and on temporal scales in which
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the expansion of the universe can be neglected. These conditions are generally satis-
fied even if the lens is a galaxy cluster. If the lens is a point mass, the previous result
reduces to

|~̂α|(b) =
4GM

c2b
=

2Rs
b

(2.5)

that is twice the value predicted with a Newtonian approach. It’s important to notice
that the deflection angle by a point mass depends linearly on M . Under the previ-
ous hypothesis, all general relativistic equations can be linearized and the resulting
simplified theory is called Gravitational Lensing Theory.

The typical configuration of a gravitational lensing system is shown in fig. 2.1.
Within the thin screen approximation, the lens is a two-dimensional distribution of
matter on the so-called lens plane, where the deflection occurs. In this view, the lens
mass distribution is described by the surface mass density

Σ(~ξ) =

∫ +∞

−∞
ρ(~ξ, z)dz. (2.6)

Thanks to the linearity of (2.5), the deflection angles of multiple point lenses Mi can
be linearly superposed, so

~̂α(~ξ) =
4G

c2

∫ +∞

−∞

(~ξ − ~ξi)Σ(~ξ′)

|~ξ − ~ξi|2
d2ξ′. (2.7)

FIGURE 2.1: The typical configuration of a gravitational lensing sys-
tem. Image from Bartelmann and Schneider, 1999.

2.1.1 The Lens Equation

If ~θ, ~β, ~̂α are small, the true position of the source and its apparent position on the
lens plane are related by a simple but fundamental equation, the lens equation, that
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can be obtained by geometrical construction:

~θDS = ~βDS + ~̂αDLS (2.8)

whereDS , DLS are the angular diameter distances between source and observer and
source and lens, respectively. Introducing the reduced deflection angle ~α ≡ DLS

DS
~̂α,

previous equation becomes
~β = ~θ − ~α(~θ). (2.9)

It’s common pratice to write the lens equation in dimensionless form, defining a
length scale ξ0 on the lens plane and a corresponding length scale η0 = ξ0DS/DL on
the source plane. In this way, one can define the new vectors

~x ≡
~ξ

ξ0
; ~y ≡ ~η

η0
=⇒ ~α(~x) =

DLDLS

ξ0DS
~̂α(ξ0~x) (2.10)

where ~α(~x) is called the scaled deflection angle, to finally get:

~y = ~x− ~α(~x). (2.11)

2.1.2 Lensing potential and convergence

The lensing properties of a mass distribution are fully determined by its effective
lensing potential, a quantity proportional to the projection of the Newtonian potential
φ on the lens plane:

Ψ̂(~θ) =
DLS

DLDS

2

c2

∫
φ(DL

~θ, z)dz. (2.12)

Its dimensionless counterpart is given by Ψ = Ψ̂
D2
L

ξ2
0

. With a few calculations it’s easy
to show that

~∇xΨ(~x) = ~α(~x) (2.13)

and that the Laplacian of Ψ gives twice the convergence κ:

∆xΨ(~x) = 2κ(~x) (2.14)

that is defined as a dimensionless surface mass density:

κ(~x) ≡ Σ(~x)

Σcrit
with Σcrit =

c2

4πG

DS

DLDLS
. (2.15)

Σcrit is called critical surface density and is a fundamental property of the lensing
system, depending on the relative distances between source, lens and observer. In-
tegrating (2.14) and using (2.13), one obtains:

Ψ(~x) =
1

π

∫
R2

κ(~x) ln |~x− ~x′|d2x′ (2.16)

~α(~x) =
1

π

∫
R2

κ(~x)
~x− ~x′

|~x− ~x′|2
d2x′. (2.17)

The dependence of the factor in front of the lensing potential (2.12) on the lens and
source redshift is illustrated in Figs. 2.2 and 2.3. Fixing the source redshift and mov-
ing the lens from the observer to the source, the effective lensing potential decreases
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to zero when zL = zS . This means that, for a fixed source distance, light is more
effectively bent by nearer lenses. On the other hand, fixing the lens redshift and
moving the source away, the effective lensing potential grows with source distance.

FIGURE 2.2: DLS/DLDS for different values of the lens redshift zL ∈
[0.0, 1.0]. Source redshift is fixed at zS = 1.0.

FIGURE 2.3: DLS/DLDS for different values of the source redshift
zS ∈ [0.5, 3.0]. Lens redshift is fixed at zL = 0.5.

The other important distance combination is the lensing distance DLSDL/DS ,
present in the definition of the convergence. His behaviour is shown in Figs. 2.4
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FIGURE 2.4: Lensing distance as a function of the source redshift zS .
Lens redshift is fixed at zL = 0.5, while the source is moved in the

range zS ∈ [0.5, 10.0].

and 2.5. Fixing the lens redshift and moving the source away, the convergence in-
creases at once very rapidly and then more slowly. Conversely, fixing the source and
moving the lens between the observer and the source one notice that convergence
reaches a peak for an optimal zL that increases with zS .

2.1.3 Lens Mapping

The adimensional lens equation (2.9) defines a transformation between points on
source and lens planes, trough ~α(~x). If we assume that the scaled deflection angle
is fairly constant on the angular scale d~θ, we can locally linearize the lens equation.
In other words, if the angular size of the source is much smaller than the scale on
which physical properties of the lens change, we can describe the image distortions
trough the Jacobian matrix

A ≡ ∂~y

∂~x
=

(
δij −

∂αi(~x)

∂xj

)
=

(
δij −

∂2Ψ(~x)

∂xi∂xj

)
= (δij −Ψij) . (2.18)

A can be splitted in two parts, namely

A =

(
A− 1

2
TrA · I

)
︸ ︷︷ ︸

anisotropic

+

(
1

2
TrA · I

)
︸ ︷︷ ︸

isotropic

(2.19)

=

(
−1

2(Ψ11 −Ψ22) −Ψ12

−Ψ12
1
2(Ψ11 −Ψ22)

)
+ (1− k)δij (2.20)
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FIGURE 2.5: Lensing distance as a function of the lens redshift zL and
source redshift zS . Source redshift is fixed at zS = 1.0, 2.0, 3.0 in the
blue, green and red case respectively, while the source is moved away

from the lens.

and the pseudo-vector shear ~γ = (γ1, γ2) can be defined on the lens plane as

γ1(~x) =
1

2
(Ψ11 −Ψ22) (2.21)

γ2(~x) = Ψ12 = Ψ21. (2.22)

The anisotropic part ofA is called the shear matrix, and his eigenvalues are±
√
γ2

1 + γ2
2 =

±γ; this means that is possible to find an angle φ such that

A = (1− k)δij − γ
(

cos 2φ sin 2φ
sin 2φ − cos 2φ

)
. (2.23)

The previous equations clarify the meaning of convergence and shear: the former
induces an isotropic transformation, rescaling sources’ images by a factor equal in
all directions, the latter stretches images along a particular direction identified by
eigenvectors of A. A circular source of radius r on the source plane is mapped onto
an elliptical image on the lens plane, with semi-major and -minor axes given by

a =
r

λt
, b =

r

λr
(2.24)

with

λt = 1− k − γ (2.25a)
λr = 1− k + γ (2.25b)

called respectively tangential and radial eigenvalue of A. This effect is shown in fig.
2.6.
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FIGURE 2.6: The effect of convergence and shear on a circular source.
Source: Umetsu, 2010

Another important effect of lens mapping is magnification. Since gravitational
light deflection conserves the number of photons and their frequency, Liouville’s
theorem ensures that radiation density in phase-space is conserved, implying the
conservation of surface brightness Iν at the frequency ν. In contrast, gravitational
lensing changes photon flux, changing the solid angle subtended by the source from
dβ2 to dθ2. Defining the magnification µ as

µ =
dθ2

dβ2
= (detA)−1 = (λtλr)

−1 (2.26)

the observed flux Fν at the frequency ν is amplified by a factor |µ| with respect to
the flux of the source in absence of lensing:

Fν =

∫
lens plane

Iν(~θ)d2θ =

∫
source plane

ISν (~β(~θ))|µ|d2β. (2.27)

Magnification is ideally infinite where λt or λr are equal to zero: this points on the
lens plane constitute the tangential and radial critical lines. Near these lines images
are stretched along the direction of the tangential and radial eigenvectors of the Jaco-
bian matrix. Anyway, on critical lines the amplification is actually always finite: the
theory exposed so far is only a first-order approximation of what really happens, but
is enough for our purposes. Galaxy clusters can act as cosmic telescopes, reaching val-
ues of µ of ≈ 100 or more and allowing to investigate distant background galaxies
with unprecedented resolution. Highly magnified sources are those situated near
caustics, the locus of points on the source plane that correspond, through the lens
equation (2.8), to critical lines (Fig. 2.7).

When a lens is enough strong to allow the formation of critical lines, it become
possible to observe spectacular configurations of multiple images of the same source.
Since light rays forming different images follows different paths, there is a time delay
between them. This is caused both by the geometrical difference between paths and
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FIGURE 2.7: Example of critical lines of a simulated galaxy cluster
(left) and corresponding caustics (right). Critical lines are mapped

onto caustics through the lens equation (2.8).

by the different gravitational field affecting photons on different trajectories. It can
be shown (Schneider, Ehlers, and Falco, 1992) that the total delay is such that time
delay surfaces are described by the equation

t(~x) =
(1 + zL)

c

DSξ
2
0

DLDLS

[
1

2
(~x− ~y)2 −Ψ(~x)

]
= 0 (2.28)

where zL is the redshift of the lens. Taking the gradient of this surface, one has

∇t(~x) ∝ ~x− ~y −∇Ψ(~x) (2.29)
∝ ~x− ~y − ~α(~x) (2.30)

that is null where the lens equation (2.9) is satisfied, that is where images form.
Therefore, images are located at the stationary points of the time delay surface (2.28).

The curvature of the time delay surface is described by the Hessian matrix

Tij =
∂2t(~x)

∂xi∂xj
∝ (δij −Ψij) = Aij . (2.31)

Different types of stationary points on this surface give rise to different types of
image:

• Type I images occur at the minimums of time delay surface, where eigenvalues
of T and A are both positive, so detA > 0 and trA > 0. In this case µ > 0.

• Type II images arise at the saddle points of the time delay surface, where λt and
λr have opposite signs. Here µ is negative, that means that the image has an
opposite parity with respect to the source.

• Type III images befall on the maximums of time delay surface where detA > 0
and trA < 0, so they have positive magnification.

An example of time delay surface with the formation of a type I and a type II image
is given in Fig. 2.8. In general, magnification is higher along the direction on which
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FIGURE 2.8: Time delay surface for a point-like lens not perfectly
aligned with the source. Contour levels are shown in the bottom
plane and the dots indicate the location of the two images. Source:

Mollerach and Roulet, 2002.

curvature is smaller and vice versa. When a source and a circularly-symmetric lens
are perfectly aligned t(~x) has a maximum at the lens center, while minima are located
on a ring centered on the maximum. The source is therefore mapped in the so-called
Einstein Ring, forming a type I image, and to a type III image at the center, that is
usually highly demagnified due to the large curvature of t(~x) at this point (caused
by a steep mass profile). Multiple images are usually in odd number except for
singular lenses, where the infinite curvature of the time delay surface on the central
singularity causes the suppression of the central image. An example is given in
section 2.2.3. They appear or disappear near critical lines, namely when the source
cross caustics.

2.2 Lens Models

In gravitational lensing studies analytical lens models are often used for many ap-
plications: from interpreting observations to predicting the rate of lensing events.
We introduce here some of them which will be particularly useful in next chapters.

2.2.1 Generalities on axially symmetric models

In describing axially symmetric lenses, it is possible to reduce most of equations to
one-dimensional form. Indeed, the deflection always occurs in the direction to the
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FIGURE 2.9: Lensing of a point source by a non-singular, circularly-
symmetric lens. Left: image positions (black squares) and radial and
tangential critical lines (respectively, dotted and solid curves); right:
source position and corresponding caustics. Numbers indicate image
multiplicity. From Introduction to Gravitational Lensing - Lecture scripts.

lens center. The deflection angle in this case is

α(x) =
m(x)

x
with m(x) = 2

∫ x

0
x′κ(x′)dx′, (2.32)

so the lens equations becomes

y = x− m(x)

x
. (2.33)

Carrying out some calculations it is possible to show that

κ(x) =
1

2x

dm

dx
(2.34)

γ(x) =
m(x)

x2
− κ(x) = κ̄(x)− κ(x) (2.35)

where κ̄(x) is the mean value of κ inside the radius x. Tangential and radial critical
lines are found solving, respectively,

1− κ̄(x) = 0 and 1− 2κ(x) + κ̄(x) = 0. (2.36)

They are two concentric circumferences, mapped through the lens equation into a
point (tangential caustic) and into a circular radial caustic, as shown in fig 2.9. If
the source lies within the radial caustic, it produces three images (only two if the
potential is singular), only one otherwise. If source, lens and observer are perfectly
aligned, one has the formation of an Einstein ring.

2.2.2 Generalities on elliptical models

Broadly speaking, elliptical generalizations of axially symmetric profiles can be ob-
tained substituting the x variable in circular profiles with

√
x2

1 + fx2
2, where f is the

ratio between the minor and the major axes of the ellipse. This substitution can be
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FIGURE 2.10: Convergence (left) and potential (right) of a SIE model
whit f = 0.6. Colored curves represent iso-contours. The potential is

rounder that the convergence.

carried out in the surface density or in the potential. In the first case the expres-
sions for lensing quantities often become very complex, but they describe exactly
light deflection by an elliptical mass distribution. An example is given in Fig. 2.10,
where are shown convergence and potential for a Singular Isothermal Ellipsoid (SIE)
model (see section 2.2.4). In the second case, one can derive easily all lensing quan-
tities deriving the potential, but they can be unphysical for high ellipticities, when
convergence iso-contours assume a peanut-like shape and the convergence become
negative at large distances. Anyway, it is possible to give a general description of
critical lines and caustics phenomenology in elliptical models.

Singular elliptical models produces elliptical or nearly-elliptical tangential criti-
cal lines, without radial critical lines. The tangential caustic is extended and typically
shows four cusps. Image multiplicity changes when sources cross the tangential
caustic and the cut, an ellipse on the source plane that is not a true caustics because
it does not corresponds to a critical line. Depending on f , tangential caustic and cut
can have different relative dimensions, as shown shown in Figs. 2.11 and 2.12. When
source, lens and observer are perfectly aligned on can observe the Einstein cross, a
symmetrical four-images configuration (Fig. 2.13).

If the lens is not singular but has a core radius xc, depending on xc and f can
exist a radial caustic, and the central image isn’t suppressed anymore, leading to the
possibility to have three- and five-images configurations (Fig. 2.14).

2.2.3 Singular Isothermal Sphere

The Singular Isothermal Sphere (SIS) profile represents a lens whose constituent
matter behaves like an ideal gas in thermal and hydrostatic equilibrium, confined
by a spherically symmetrical gravitational potential. The density profile is given by

ρ(r) =
σ2
v

2πGr2
(2.37)

where σv is the velocity dispersion of the particles which make up the lens and r is
the radial distance. Projecting the three dimensional density on the lens plane we
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FIGURE 2.11: A SIE model whit f < f0 = 0.3942. Left: the tangential
caustic (red) is contained into the cut (blue). Right: tangential critical
line. This model hasn’t a radial critical line corresponding to the cut.
Axis units are relative to the Einstein radius of the corresponding SIS

model.

FIGURE 2.12: A SIE model whit f > f0 = 0.3942. Left: the tangential
caustic (red) isn’t fully contained into the cut (blue). Right: tangen-
tial critical line. This model hasn’t a radial critical line corresponding
to the cut. Axis units are relative to the Einstein radius of the corre-

sponding SIS model.
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FIGURE 2.13: The Einstein Cross configuration: a source (yellow
dot) nearly perfectly aligned with an elliptical lens form four images
(green dots). If the source was exactly on the optical axis, the four

images would form a symmetrical cross.

obtain the surface mass density

Σ(ξ) =
σ2
v

2Gξ
(2.38)

where ~ξ it’s the projection of ~r on the lens plane and z is the distance along the line
of sight: they satisfy the equation r2 = ξ2 +z2. Even though this profile is singular at
ξ = 0, it is widely used in lensing analysis and it was found to be a good description
of the total matter distribution (stellar plus dark) in elliptical galaxies (Koopmans et
al., 2009; Barnabè et al., 2011; Cappellari et al., 2015). This fact is commonly named
bluge-halo conspiracy. Choosing ξ0 = 4π

(
σv
c

)2 DLDLS
DS

as lenght scale, we obtain

Σ(x) =
Σcrit

2x
=⇒ κ(x) =

1

2x
(2.39)

and therefore
Ψ(x) = |x| , α(x) =

x

|x|
. (2.40)

The lens equations reads
y = x− x

|x|
(2.41)

that has 2 solutions if y < 1, only one otherwise. In the first case, the two images
arise at x = y + 1 and x = y − 1, at the opposite sides of the lens. Their angular
positions are

θ± = β ± θE (2.42)
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FIGURE 2.14: Multiple-image configurations produced by a nonsin-
gular elliptical mass distribution. The panel (S) shows the caustic
lines in the source plane and the positions numbered 1 to 10 denote
the source position relative to the caustic lines. The panel (I) shows
the image of the source without lensing. The panels (1) to (10) show
the resulting lensed images for the various source positions. Panel
(8) shows the Einstein cross configuration. Image from Kneib and

Natarajan, 2011
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where θE is the Einstein Radius of this lens model and correspond to

θE =

√
4GM(θE)

c2

DLS

DLDS
. (2.43)

Therefore, when a SIS lens produces two images, they are separated by an angular
distance of 2θE . On the other hand, when y > 1, Eq. (2.41) has only the solution
x = y + 1 that tends to y when the angular separation between source and lens is
big.

Calculating the derivatives of Ψ, it is possible to obtain the shear as

γ1 = −cos 2φ

2x
γ2 = −sin 2φ

2x
(2.44)

thus
γ(x) =

√
γ2

1 + γ2
2 =

1

2x
= κ(x). (2.45)

Consequently, the radial eigenvalue is everywhere equal to unity (and there is not
a radial critical line) and the tangential eigenvalue is equal to zero on the Einstein
ring, where the (tangential) magnification is maximum. The magnification profile is

µ =
|x|
|x| − 1

(2.46)

from which we see that for y →∞, µ→ 1 and if y < 1, the magnifications of the two
images are

µ+ = 1 +
1

y
, µ− = 1− 1

y
(2.47)

that is to say that for y → 1, the image on the same side of the source with respect to
the lens tends to the intrinsic source position, while the opposite image is demagni-
fied as it approaches the lens center.

With the lens equation it is easy to show that the tangential critical line (the Ein-
stein ring) corresponds to the single caustic point y = 0 on the source plane. Image
multiplicity changes when the source crosses the cut at y = 1.

2.2.4 Singular Isothermal Ellipsoid (SIE)

Choosing the same length scale ξ0 as for the SIS case and defining the ellipticity
e = 1 − a

b = 1 − f , one can introduce ellipticity in the Singular Isothermal model
rewriting the potential (2.40) as

Ψ(x) = |x| =⇒ Ψ(x, y) =
√

(1− e)x2 + (1 + e)y2. (2.48)

Deriving this elliptical potential, one obtains

κ(x, y) = γ(x, y) =
1− e2

2R3
(x2 + y2) (2.49)

where R2 = (1 − e)x2 + (1 + e)y2. The potential is always rounder than the mass
distribution, with epot ∼ emass/3 (see Fig. 2.10). The tangential critical line becomes
elliptical, and is mapped in an extended tangential caustic with four cusps (Figs.
2.11 and 2.12).
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FIGURE 2.15: Multiple images of the SIS model, with a circular source
of two different radii: a small source of radius 0.05 in the first row
and a large source of radius 0.3 in the second row. Their positions are
(-0.9:-0.7); (-0.5:-0.4); (+0.05:+0.05) in unit of Einstein radius, for each
column. The circular source is in gray and the corresponding multiple
images are in blue. The green lines are tangential critical curves and

dotted circles are the cuts. Source: Lee and Kim, 2014

2.2.5 NFW profile

The Navarro-Frenk-White (NFW) profile is widely used to describe dark matter dis-
tributions. It was proposed by Navarro, Frenk, and White, 1995 as a "universal"
function, capable to fit spherically averaged density profiles of dark matter halos
found in numerical simulations over two decades in radius. It’s given by

ρ(r) =
ρs(

r
rs

)(
1 + r

rs

)2 (2.50)

where rs is the scale radius and ρs is the dark matter density at the scale radius. It is
characterized by an isothermal slope at intermediate radii, but it is steeper near the
center and shallower at large distances. The total mass of a halo is usually written as

Mvir =
4π

3
r3
vir

∆vir

Ωm(z)
Ω0ρc (2.51)

where ρc represents the critical density of the Universe,Ω0 = Ωm(t0) is the today’s
value of the matter density parameter, ∆vir is the virial overdensity enclosed by rvir,
the virial radius of the halo, corresponding to the distance within which particles are
gravitationally bound to the halo traveling on equilibrium orbits. With this defini-
tion, ∆vir is a function of cosmology and redshift; in this work we adopt the value
∆vir = 200, originally proposed by Navarro, Frenk, and White, 1995 and widely
used in literature. An important parameter in the description of an NFW profile is
the virial concentration, defined as the ratio between the radius enclosing the virial
overdensity and the scale radius: cvir = rvir/rs. The dark matter density at the scale
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radius can be written in terms of the halo mass and concentration as

ρs =
Mvir

4πr3
s

[
ln(1 + cvir)−

cvir
1 + cvir

]−1

(2.52)

so the profile can be rewritten in terms of Mvir and cvir:

ρ(r|Mvir) =
c2
virr

3
vir

3r(rvir + cvirr)2

∆vir

Ωm(z)
Ω0ρc

[
ln

(
1 + cvir −

cvir
1 + cvir

)]−1

. (2.53)

Summarizing, the NFW profile is completely defined by two parameters, ρs and
rs or cvir and Mvir. The projected mass density is given in Bartelmann, 1996 as

Σ(x) =
2ρsrs
x2 − 1

f(x) (2.54)

where x = ξ/rs and f is given by

f(x) =


1− 2√

x2−1
arctan

√
x−1
x+1 x > 1

1− 2√
1−x2

arctanh
√
−x−1
x+1 x < 1

0 x = 1.

(2.55)

Defining κs ≡ ρsrsΣ−1
crit, one has

κ(x) = 2κs
f(x)

x2 − 1
. (2.56)

The shear can be written down following Eq. (2.35). Finally, lensing potential and
deflection angle are given by

Ψ(x) = 4κsg(x) , α(x) =
4κs
x
h(x) (2.57)

with

g(x) =
1

2
ln2 x

2
+


2 arctan2

√
x−1
x+1 x > 1

−2 arctanh2
√
−x−1
x+1 x < 1

0 x = 1

(2.58)

h(x) = ln
x

2
+


2√
x2−1

arctan
√

x−1
x+1 x > 1

2√
1−x2

arctanh
√
−x−1
x+1 x < 1

1 x = 1

(2.59)

A comparison between some lensing properties of SIS and NFW profiles is shown
in fig. 2.16.

2.2.6 gNFW profile

The slope of the Navarro-Frenk-White profile can be made steeper or shallower in-
troducing an additional parameter β, namely writing a generalized NFW profile
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FIGURE 2.16: Some properties of NFW and SIS lenses as functions of
the distance from the lens center. Top left panel: reduced deflection
angle; top right panel: lensing potential; bottom left panel: conver-
gence; bottom right panel: shear. Image from Introduction to Gravita-

tional Lensing - Lecture scripts.
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(gNFW) as
ρ(r) =

ρs(
r
rs

)β (
1 + r

rs

)3−β . (2.60)

For this profile is defined a new concentration parameter c−2 = cvir/(2 − β). In
analogy with the NFW case, it can be shown that this profile can be written in terms
of the three parameters c−2,Mvir, β.

Using dimensional notation, the surface mass distribution can be written as (Wyithe,
Turner, and Spergel, 2001):

Σ(ξ) = 2ρsrsx
1−β

∫ π
2

0
sin θ(sin θ + x)β−3dθ (2.61)

and the other lensing quantities can be derived applying the equations given in sec-
tion 2.2.1. Several properties of this lens model such as, for example, the deflection
angles can only be derived numerically.

2.2.7 PIEMD profile

The Pseudo Isothermal Elliptical Mass Distribution (PIEMD) profile is widely used
in lens modeling. The main advantage of using this profile is that its lensing prop-
erties can be expressed analytically. In this work we refer to the profile described in
Elíasdóttir et al., 2007. The 3D density distribution is given by

ρ(r) =
ρ0

(1 + r2/a2)(1 + r2/s2)
(2.62)

where ρ0 is the central density, a is the core radius and s > a is the truncation radius.
Inside the core radius the density scales as ρ(r) ∝ ρ0/(1 + r2/a2), while for r � s
the density is not zero but falls off as r ∝ r−4. In the intermediate region (a . r . s)
the profile is isothermal. The projected density at the projected radius ξ on the lens
plane is given by

Σ(ξ) = 2

∫ ∞
ξ

ρ(r)rdr√
r2 − ξ2

= Σ0
as

s− a

(
1√

a2 + ξ2
− 1√

s2 + ξ2

)
(2.63)

where
Σ0 = πρ0

as

s+ a
. (2.64)

One can obtain the convergence applying the definition (2.15), while the shear is
given by

γ(ξ) =
Σ0

Σcrit

as

s− a

[
2

(
1

a+
√
a2 + ξ2

− 1

s+
√
s2 + ξ2

)
+

(
1√

a2 + ξ2
− 1√

s2 + ξ2

)]
.

(2.65)
The mass inside ξ is

M2D(< ξ) = 2π

∫ ξ

0
Σ(ξ′)ξ′dξ′ = 2πΣ0

as

s− a

(√
a2 + ξ2 − a−

√
s2 + ξ2s

)
(2.66)
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FIGURE 2.17: Comparison between PIEMD (dotted line), NFW
(dashed line) and SIS (dot-dashed line) profiles. The surface densi-
ties are obtained fitting the same set of multiple images (marked with
arrows) with the different profiles, as explained in Jullo et al., 2007.
The SIS profile has a constant slope and hardly follows the other pro-

files.

from which one can obtain the lensing potential by integration:

Ψ(ξ) = 2G

∫ ξL

ξ

M2D(ξ′)

ξ′
dξ′ (2.67a)

= 4πGΣ0
as

s− a
(
√
s2 + ξ2 −

√
a2 + ξ2 + a ln

(
a+
√
a2 + ξ2

)
− (2.67b)

− s ln
(
s+
√
s2 + ξ2

)
) + constant (2.67c)

where ξL is a limiting integration radius leading to the constant term. Thus, the
deflection angle is given by

α(ξ) = − 2

c2

DLS

DS

dΨ

dξ
(2.68a)

=
8πG

c2

DLS

DS
Σ0

as

s− a

(
ξ/a

1 +
√

1 + (ξ/a)2
− ξ/s

1 +
√

1 + (ξ/s)2

)
. (2.68b)

A comparison between PIEMD, NFW and SIS profiles is shown in Fig. 2.17.

2.2.8 External shear

In order to obtain more realistic models, it is often needed to place a lens into an
external shear field created by surrounding matter, on a sheet of constant surface
mass density or both. This situation is particularly common in dense environments,
such as galaxy clusters. This will be discussed in more details in the next chapters.
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In general, both situations can be described by an external potential Ψ satisfying

γ1 =
1

2
(Ψ11 −Ψ22) = const. (2.69)

γ2 = Ψ12 = const. (2.70)

κ =
1

2
(Ψ11 + Ψ22) = const. (2.71)

Since both the sum and the difference of Ψ11,Ψ22 need to be constant, Ψ11 and Ψ22

themselves must be constant. Thus, the potential is of the form

Ψ = Cx2
1 + C ′x2

2 +Dx1x2 + E, (2.72)

implying that

1

2
(Ψ11 −Ψ22) = C − C ′ = γ1 (2.73)

Ψ12 = D = γ2 (2.74)
1

2
(Ψ11 + Ψ22) = C + C ′ = κ. (2.75)

Imposing κ = 0 one has C = −C ′, requiring C = γ1

2 , so the external shear potential
Ψγ is given by:

Ψγ =
γ1

2
(x2

1 − x2
2) + γ2x1x2. (2.76)

Similarly, imposing a null shear field one obtains the potential Ψκ of a sheet of a
constant surface mass density:

Ψκ =
κ

2
(x2

1 + x2
2). (2.77)

Adding an external perturbation to a lens model obviously modifies its lensing prop-
erties. The effect of a constant external shear field is to change the light bending
introducing an additional deflection angle ~αγ :

~∇Ψγ = ~αγ =

(
γ1 γ2

γ2 −γ1

)
~x (2.78)

while a sheet of constant surface mass density gives the deflection angle ~ακ:

~ακ = ~∇Ψκ = κ~x. (2.79)

In this case the lens equation is ~y = ~x(1 − κ), so if this sheet is critical (κ = 1) it
focuses light rays in the origin.
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Chapter 3

Galaxy clusters as gravitational
lenses

This chapter is dedicated to galaxy clusters. After a presentation of their general
properties, we present the wide range of gravitational lensing phenomena that can
be observed in galaxy clusters, from weak to strong lensing, with a particular atten-
tion to strong lensing of background sources by cluster members. In fact, all the rest
of the work will focus on this kind of events.

3.1 Main properties of galaxy clusters

Galaxy clusters play a special role in the present universe, since they are the largest
structures, and therefore the youngest to form in the universe. They originate from
the greatest mass peaks in the primordial matter density field, gravitationally am-
plified through the structure formation process described in the previous chapter. In
cosmological N-body simulations, they appear as dense concentrations of matter at
the intersections of "cosmic web" filaments. Clusters are thought to form trough a
hierarchical sequence of mergers and accretion of smaller systems, that may be sur-
vived until present time to form the actual substructure population. Dark matter is
the dominant mass component (80 − 85%) followed by Intracluster Medium (ICM,
10 − 15%) and stars in galaxies, making up only a few percent of the total cluster
mass.

The main observational properties of clusters and groups of galaxies are sum-
marized in Table 3.1 (Bahcall, 1999). The table lists the typical range and/or median
value of each observed property, for rich and poor clusters. Rich clusters are defined
by Abell, 1958 as those containing at least 30 galaxies within a magnitude range of
m3 to m3 + 2 within a radius of R ≈ 1.5/h Mpc of the cluster center, where m3 is the
magnitude of the third brightest cluster member. In the next sections, properties of
galaxy clusters relevant to our discussion are exposed with further details.

3.1.1 Galaxies

Galaxies in clusters are different with respect to those found in the field. In par-
ticular, as shown in Fig. 3.1 it is clear that clusters host mainly early-type galaxies
(ETGs), while in the field it’s more common to find spiral, irregular and star-forming
galaxies (Dressler, 1980).

At the center of galaxy clusters it is possible to find the most massive galaxies
in the universe, generally called Brightest Cluster Galaxies (BCG) or cD-type galax-
ies. They are thought to form via accretion of matter falling in the cluster potential
well and thanks to merging between several galaxies (Ostriker and Hausman, 1977,
Merritt, 1984).
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Property Rich clusters Poor clusters (groups)
Richness 30-300 galaxies 3-30 galaxies
Radius (1-2) h−1 Mpc (0.1-1) h−1 Mpc
Radial velocity dispersion 400-1400 km s−1 100-500 km s−1

Radial vel. disp. (median) ∼ 750 km s−1 ∼ 250 km s−1

Mass (r ≤ 1.5 h−1 Mpc) (1014 − 2 · 1015)h−1 M� (1012.5 − 1014)h−1 M�
Luminosity (B band) (6 · 1011 − 6 · 1012)h−2 L� (1010.5 − 1012) h−2 L�
Mass-to-light Ratio 300hM�/L� 200hM�/L�
Cluster number density (10−5 − 10−6)h3Mpc−3 (10−3 − 10−5)h3Mpc−3

Correlation scale (22±4)h−1 Mpc (13±2)h−1 Mpc

TABLE 3.1: Typical properties of groups and clusters of galaxies. For
more details, see Bahcall, 1999. Here, radius means the radius of the
main concentration of galaxies (where, typically, the galaxy surface

density drops to ≈ 1% of the central core density).

Kinematics of galaxies can be used to infer the cluster total mass. The virial
theorem states that, for an object that is bound by gravity, the kinetic energyK of the
system and its gravitational potential energy U are related by 2K+U = 0. Applying
this result to a cluster with mass M and radius R, we can write the kinetic energy of
cluster members in terms of their velocity dispersion σv as

K ≈ 1

2
Mσ2

v (3.1)

and the total potential energy of the system as

U ≈ −GM
2

R
. (3.2)

From the previous equations follows a simple relation between the mass of the entire
system, its size and the velocity dispersion of galaxies, namely

M ≈ Rσ2
v

G
≈
(

R

1h−1Mpc

)(
σv

103km/s

)
1015h−1 M� (3.3)

(Rosati, Borgani, and Norman, 2002). Thus, the total mass of a galaxy cluster can be
estimated measuring members velocities.

More refined methods make use of redshift measurement to deduce the infall
velocity field around the cluster (see, for example, the caustic method by Diaferio
and Geller, 1997, Rines and Diaferio, 2006).

3.1.2 Intracluster Medium

Observed ICM in nearby and distant clusters has a typical temperature that follows
the relation :

kBT ≈ µmpσ
2
v ≈ 6

(
σv

103km s−1

)2

KeV (3.4)

wheremp is the proton mass and µ is the mean molecular weight, expected if gas and
member galaxies shares the same dynamics (Rosati, Borgani, and Norman, 2002).
Assuming spherical symmetry, the condition of hydrostatic equilibrium connecting
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FIGURE 3.1: The fraction of elliptical (E), lenticular (S0), and spi-
ral+irregular (S+I) galaxies as a function of the log of the projected
density, in galaxies Mpc−2 , for a sample of cluster galaxies and for
the field. The upper histogram shows the number distribution of the

galaxies over the bins of projected density (Dressler, 1980).

the local gas pressure p to its density ρg is

dp

dr
= −GM(< r)ρg(r)

r2
. (3.5)

Inserting the equation of state for a perfect gas into the previous equation, one can
write M(< r) as

M(< r) = − kBTr
Gµmp

(
d ln ρ

d ln r
+
d lnT

d ln r

)
. (3.6)

This expression is commonly used to estimate the gravitational mass of galaxy clus-
ters and groups from the measurements of temperature and gas density profiles with
X-ray observations. It clearly relies on the hypothesis of hydrostatic equilibrium and
spherical symmetry. A common way to simplify the previous expression is to use
the so-called β-model (Cavaliere and Fusco-Femiano, 1976), consisting in further
assuming that the galaxy distribution is isothermal and thus that the gas density
profile can be written as

ρg(r) = ρ0

[
1 +

(
r

rcore

)2
]− 3

2
β

, (3.7)

while the observed surface brightness profile at projected radius b is of the form

I(b) = I0

[
1 +

(
b

rcore

)2
] 1

2
−3β

. (3.8)
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Here rcore is a suitable scale radius and β is defined as

β =
σ2
r

kT/µmp
(3.9)

where σr is the galaxies line-of-sight velocity dispersion. This model is self-consistent
and permits to rewrite Eq. 3.6 as

M(< r) = − kBr
2

Gµmp

[
3βrT

r2 + r2
core

− dT

dr

]
(3.10)

and thus to obtain the total mass profile of a galaxy cluster from the observed gas
temperature profile.

3.1.3 Dark matter density profiles

Dark matter is the main component of galaxy clusters. N-body cosmological simula-
tions predict that radially-averaged dark matter halos profiles on all mass scales can
be described by the Navarro-Frenk-White profile, which was extensively discussed
in Sect. 2.2.5. Nevertheless, the same simulations show that there is a considerable
scatter in measurements of profile shapes of different clusters, as demonstrated by
Meneghetti et al., 2014 (Fig. 3.2). In fact Sand et al., 2004, studying a sample of six
strong lensing clusters, found that the inner slope is consistent with β ≈ 0.52 and
inconsistent with β & 1. Similarly, a lensing analysis of the cluster Abell 383 by
Newman et al., 2011 shows that the inner slope of the density profile is < 1 at 95%
confidence level. Analogous results are reported by Newman et al., 2009 for Abell
611, while findings of Newman et al., 2011 on a sample of seven massive clusters
suggest a steep inner slope β > 1. In any case, it is clear that density profile of single
clusters can depart from the NFW.

3.1.4 Concentration-mass relation

The halo concentration is a decreasing function of the host halo mass and depends
on redshift, since on average halos at higher redshift are less concentrated. This re-
sult, found in numerical simulations, is explained in terms of halo formation history:
massive halos which formed recently have suffered major mergers in recent times,
so they are less concentrated. From the observational point of view, the c-M relation
was studied with gravitational lensing (e.g. Meneghetti et al., 2014), X-ray observa-
tions (e.g. Ettori et al., 2010) or through the dynamical analysis of cluster members
(e.g. Biviano et al., 2013). In this work we use the concentration-mass-redshift rela-
tion provided by Meneghetti et al., 2014, fitted by

c(M, z) = A

(
1.34

1 + z

)B ( M

8× 1014h−1M�

)C
(3.11)

The values of A,B,C found with the 3-dimensional fitting of observed galaxy clus-
ters with NFW profiles are A = 3.757±0.054, B = 0.288±0.077, C = −0.058±0.017.
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FIGURE 3.2: Distributions of the inner slopes obtained from the
gNFW fits (β) and of the Einasto index 1/n derived from the analysis
of the density (solid histograms) and of the surface-density profiles
(dashed histograms) of halos in the MUSIC-2 cosmological simula-
tion, as they result from fitting the halo density profiles with gNFW

models (Meneghetti et al., 2014).

3.1.5 Subhalo mass function

As highlighted by Gao et al., 2004, the subhalo populations of different haloes found
in the GIF2 cosmological N -body simulation1 are not scaled copies of each other,
but vary systematically with halo properties. On average, more massive haloes con-
tain more subhaloes, and these subhaloes contain a larger fraction of the mass of
the parent halo, due to their more recent formation. At given halo mass, subhaloes
are more abundant in haloes which are less concentrated, namely formed more re-
cently, because fewer substructures were destroyed by dynamical processes into the
main halo. However, there is considerable scatter in the abundance of subhaloes in
haloes of similar mass, concentration or formation time. This result probably reflects
differences during the formation history of the halo.

As shown in Giocoli et al., 2010, the mass function of substructures found in the
GIF2 simulations can be estimated taking into account the hierarchical formation
history of halos: their best fit function is

1

Mvir

dN(Mvir, cvir, zl)

dm
= A(1 + zl)

1/2 c∗

cvir
mαexp

[
−β̃
(

m

Mvir

)3
]

(3.12)

where dN is the number of substructures with mass between m and m + dm, A =
9.33 · 10−4, β̃ = 12.2715, α = −0.9 and c∗ is the mean concentration of a halo with
mass Mvir at redshift zl. As shown in Fig. 3.3 (left panel), it is a power-law function
at low masses with an exponential cut-off at high masses.

1http://wwwmpa.mpa-garching.mpg.de/Virgo/
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FIGURE 3.3: Left panel: Substructure mass function given by Eq. 3.12
per unit host halo mass (in units of 1010/hM�), at z=0. Host haloes
are divided in seven different mass bins, shown in different colors.
The solid line shows a power law distribution with slope α = −0.9.
The dashed lines show the fit to the data for each mass bin with
the high mass exponential cut-off (adapted from Giocoli et al., 2010).
Right panel: radial subhalo density distribution given by Eq. 3.13.
The different curves show this distribution for different values of the

host halo concentration cvir (Giocoli et al., 2012).

3.1.6 Subhalo radial distribution

The radial distribution of subhaloes in GIF2 cosmological simulations it is found to
be much less concentrated than that of the dark matter (Gao et al., 2004, Gao et al.,
2012). Thus, substructures aren’t good tracers of the total halo mass distribution.
This radial profile do not depend on the mass of the subhaloes and has a weak de-
pendence on the mass (or concentration) of the parent halo. Gao et al., 2004 find that
the radial distribution of subhaloes appears "universal" and can be accurately fitted
by the formula

n(< d)

Ntot
=

(1 + acvir)d
b

(1 + acvird2)
(3.13)

where d is the distance from the host halo centre in units of the virial radius, Ntot

is the total number of subhalos in the host, a = 0.244 and b = 2.75. This function is
plotted in the right panel of Fig. 3.3 for different concentrations.

However, Eqs. (3.12) and (3.13) are based on results of dark matter-only simu-
lations. The correspondence between simulated dark matter halos and galaxies it
is not trivial, since baryons are expected to play an important role in galaxy forma-
tion and evolution. Processes like adiabatic contraction of baryons and AGN and
supernovae feedback can affect the distribution of dark matter inside halos, result-
ing in a modification of density profiles. Moreover, condensation of baryons inside
subhalos could increase their central density making them less affected by tidal dis-
ruption. This fact could cause an increase of subhalos abundance close to the halo
center. Anyway, in lensing analysis it is common to assume that galaxies are good
tracers of dark matter substructures (especially when the "simply-parametrized" or
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the "light-trace-mass" approaches are used, see Sect. 3.2.1). In this work we adopt
the same hypothesis.

3.2 Gravitational lensing in galaxy clusters

3.2.1 Strong lensing

Some examples of strong lensing effects due to galaxy clusters are visible in Fig. 3.8,
relative to the cluster MACS0416. In this cluster there are 37 families of multiple
images known to date, some of which results in highly distorted arcs (e.g. images
5b and 5c in the same figure). These strong lensing events allow the mass modeling
of the clusters itself. Once it is established, thanks to spectrophotometric measure-
ments, that many images belong to the same source, their positions and redshifts can
be used for constraining gravitational lensing models of the cluster, through the pro-
cess called lens inversion. If many sets of multiple images are available, it is possible
to determine the position of critical curves, thus obtain an estimate of the projected
mass they enclose within their area Ac. Thus, an effective Einstein radius can be
defined as

θE =

√
Ac
π
. (3.14)

For an axially symmetric lens, the average projected mass enclosed by the Einstein
radius is the critical density, so we can write

M2D(< θE) = π(DLθE)2Σcrit, (3.15)

while for a generic mass distribution the enclosed projected mass profile it is given
by

M2D(< θ) = ΣcritD
2
L

∫
|~θ′|<θ

κ(~θ′)d2θ′. (3.16)

Mass measurements based on the previous equations are more precise near θE ,
where different modeling assumption tend to agree within a few percent (Meneghetti
et al., 2016).

Approaches used for the mass modeling are of many types. Three classes of
strategies often used in strong lensing studies are the "simply-parametrized", the
"free form" and the "light-trace-mass". Simply parametrized models try to reproduce
the mass distribution with a set of physically motivated components, described each
by a small number of parameters, representing the galaxies in the cluster and the
overall cluster halo (see e.g. Kawamata et al., 2016). On the other hand, free form
models are particularly flexible, since they are made out of components which are
not associated with any specific physical object and used as building blocks (see, for
example, Diego et al., 2016). Finally, light-trace-mass model are build assuming that
light approximately traces mass, so mass components are obtained smoothing and
rescaling the observed surface brightness of cluster members (Zitrin et al., 2015).

3.2.2 Galaxy-galaxy strong lensing

In dense environments like galaxy clusters it is not rare to observe galaxy-galaxy
strong lensing (GGSL) events, namely cluster members acting as strong lenses on
some background source. Here below, we illustrate only few examples of GGSL
events.
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FIGURE 3.4: Color composite image of the galaxy-galaxy strong lens-
ing event in the cluster MACSJ1206 reported by Grillo et al., 2014.
Five multiple images of a source with a bimodal structure (at z ≈ 3.7)
are visible around two lens cluster galaxies (at z = 0.44), G1, near the

top, and G2, in the middle.

MACSJ1206 hosts at least 2 GGSL events. The first system, described in Grillo et
al., 2014 and visible in Fig. 3.4, consists of a total of ten multiple images belonging to
two different sources at z ≈ 3.7. In the second one, shown in Fig. 3.5, a source forms
an Einstein ring around an elliptical galaxy of the cluster. Finally, Bradley et al., 2014
reports spectroscopic observations of a tangential arc, in which the source exhibits
a clear emission line at 8146 Å, corresponding to Lyα at z = 5.701 (Fig. 3.6). How-
ever, the lens is not a cluster member in this case, but a foreground galaxy. Parry
et al., 2016 report the discovery of a galaxy-galaxy strong lensing event in the cluster
MACSJ1115. Here, two cluster members (G1 and G2 in Fig. 3.7) act as lenses causing
the formation of a quadruple image system around G1. The modeling of these sys-
tems allows to constrain the dark matter fraction in G1 and G2, demonstrating how
these kind of events can give us information on the influence that dark matter has
on the structure and evolution of the inner regions of galaxies. Caminha et al., 2016
report a galaxy-galaxy lensing system in MACS0416, shown in Fig. 3.8 (top-right
inset). In this case, three images of the same source at z = 3.2215 (spectrscopic red-
shift measured in MUSE spectra) are formed around two cluster galaxies. A special
galaxy-galaxy strong lensing event is that discovered in MACSJ1149 by Kelly et al.,
2015. During November 2014, thanks to Grism Lens-Amplified Survey from Space
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FIGURE 3.5: Complete Einstein ring around a cluster member in the
cluster MACSJ1206.
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FIGURE 3.6: Observed 1D longslit spectrum of MACS1206-179 ob-
tained with VLT/VIMOS as part of the CLASH VLT program (PI: P.
Rosati). The spectrum exhibits a clear emission line at 8146 Åcorre-
sponding to Lyα at z= 5.701 overlapped to the continuum spectrum
of an early type galaxy. The upper-left inset shows the slit location.
The upper-right insert shows a close up of the emission line, which
shows an asymmetric profile suggestive of Lyα. The 2D spectrum is

shown along the bottom of the plot (from Bradley et al., 2014).
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FIGURE 3.7: Colour-composite images of the strong lensing system
in the cluster MACSJ1115 obtained with Subaru and HST/ACS. The
high angular resolution of the HST/ACS data allows to resolve the
multiple images (A, B, C and D) of the background source. The two
main lenses, G1 and G2, are members of the galaxy cluster, with G1
located approximately 120” away from the BCG (from Parry et al.,

2016).
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FIGURE 3.8: Color composite image of the cluster MACSJ0416 from
Hubble Frontier Fields data. White and red circles mark the positions
of multiple images with known spectroscopic redshifts. The inset is
a blow-up of the region around family 14, around two galaxy cluster
members, G1 and G2. The blue circles indicate the positions of the

BCGs (BCG,N and BCG,S) (from Caminha et al., 2016).
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FIGURE 3.9: Inner region of the cluster MACSJ1149 (z = 0.544). The
three red circles marks the positions of the multiple images of the
same background spiral galaxy (z = 1.489). In the bottom-right circle
are visible, as yellow dots, the four images of the Supernova Refsdal,

lensed by a cluster member.

(GLASS, Treu et al., 2015) observations, it was discovered the first multiply imaged
Supernova (SN), nicknamed "SN Refsdal". SN Refsdal appears as an Einstein Cross
around an elliptical cluster member, and it is hosted in an arm of a background spiral
galaxy at redshift 1.489 that is triply imaged too by the cluster potential. Due to time
delays between different images, SN Refsdal was observed approximately one year
later in one of the other two images of the spiral galaxy, while in the other image the
Supernova was visible some decades ago (Fig. 3.9).

In general, galaxy-galaxy strong lensing systems add informations useful to im-
prove the reconstruction of the cluster mass distribution. On the other hand, these
events also allow to constrain the mass of the lens galaxies and of the dark matter
substructures which host them. In fact, many efforts have been dedicated to charac-
terize CDM substructures even on sub-galactic scales, in clusters or in galaxies. Pre-
vious attempts to use lensing to constrain substructures in galaxies include anoma-
lous flux ratio between multiple images around the lens. Dalal and Kochanek, 2002
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FIGURE 3.10: The detection of a dark-matter dominated satellite in
the gravitational lens system B1938+666 at redshift 0.881. The data
shown here are at 2.2 micron and were taken with the W. M. Keck
telescope. Top-left panel: the original data set with the lensing galaxy
subtracted. Top-middle panel: the final reconstruction. Top-right
panel: the image residuals. Bottom-left panel: the source reconstruc-
tion. Bottom-middle panel: the potential correction from a smooth
potential required by the model to fit the data. Bottom-right panel:
the resulting dimensionless projected density corrections. A strong
positive density correction is found on the top part of the lensed arc.

From Vegetti et al., 2012.

show the potentiality of this methods on a sample of seven galactic lenses, finding a
good agreement between observed mass fraction in substructures and CDM predic-
tions. Subhalos can be identified also by studying surface brightness fluctuations in
highly magnified Einstein rings, using a technique named "gravitational imaging".
First of all, a smooth parametric model for the lens potential is built by using the
surface brightness emission from the Einstein ring; next the best-fit model is further
refined using local potential corrections defined on a regular grid, and then trans-
lated into surface density corrections. This technique is used by Vegetti et al., 2012,
who reports the detection of a 1.9×108 M� dark satellite of a massive elliptical galaxy
at z = 0.881. This galaxy act as lens for a background source at z = 2.059, which
forms an almost complete Einstein ring with diameter ≈ 0.9 arcseconds. These im-
ages (at 1.6 and 2.2 micron) are taken using the Near Infrared Camera (NIRC2) on
the W . M. Keck 10-m telescope, equipped with an adaptive optics system. This lens
is shown in Fig. 3.10. Other examples of successful application of the gravitational
imaging technique can be found in Vegetti et al., 2010 and Vegetti and Vogelsberger,
2014.

Moreover, important results in dark matter substructures detection are obtained
with the ALMA interferometer. Hezaveh et al., 2016 reports the detection of a 108.96 M�
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FIGURE 3.11: Maps showing the enhance to the fit of observed arc
brightness provided by the addition of a substructure to the smooth
lens model, as a function of the location of the substructure. Black
means low improving, red means high improving. The three panels
correspond to the analysis of ALMA Band 6 only (left), Band 7 only
(middle), and joint Bands 6 and 7 (right). From Hezaveh et al., 2016.

subhalo in the strong lensing system SDP.81, studying the astrometric anomaly of
the gravitational arc (Fig. 3.11).

3.2.3 GGSL in numerically simulated galaxy clusters

Since many galaxy-galaxy strong lensing events were observed, it is interesting to
ask ourselves what is the GGSL signal predicted by cosmological simulations. In
particular, here we focus on numerical simulations of galaxy clusters, considering
the hydrodynamical simulations presented by Rasia et al., 2015. This clusters sam-
ple is also dubbed "Dianoga". With the aim to investigate the role of gas physics
and feedback processes in the evolution of the intra cluster medium, they performed
high-resolution zoomed simulations of galaxy clusters extracted from the Magneticum
cosmological simulation. They consists of 24 massive cluster with M500 between 5
and 20 × 1014 h−1M� and 5 poorer clusters with M500 in the range 0.7 − 3 × 1014

h−1M�
2. Simulations are carried out with the GADGET-3 code and include the

effects of stellar and AGN feedback and of gas radiative cooling. Dark matter parti-
cles have masses of 8.3×108 h−1M�. Using the technique described in Meneghetti et
al., 2016, the Dianoga clusters have been studied using the "ray-tracing" method. By
computing the deflection fields of these clusters we were able to determine their crit-
ical lines. These are shown, overlapped to the cluster convergence maps, in Fig. 3.12.
The critical lines refer to sources at zs = 3. As it can be seen, there are no critical lines
around substructures. This means that the predicted galaxy-galaxy strong lensing
signal is extremely small, since no multiple images of background sources can form
around member galaxies. For comparison, Fig 5.11 shows the critical lines of the
strong lensing model of the cluster MACSJ1149 by Kawamata et al., 2016. At zs = 3
(right panel) many secondary critical lines are visible, even if the observed filed of
view is smaller than those of Dianoga simulations. The discrepancy between these
findings and observations of clusters of similar mass may indicate some limitations
of the simulations. A possible explanation of the lack of GGSL in simulations could
be the spatial and mass resolution of the latter. In fact, too high dark matter particle
masses or too large softening lengths can make critical lines around substructures

2With M500 we mean the mass enclosed within a radius encompassing the region whose density is
500 times the critical density of the universe.
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unresolvable. Alternatively, the reason they not form may have other explanations
and be due to incorrect assumptions on the nature of DM or in the baryon physics.

The main goal of this thesis is to investigate with more details this apparent in-
consistency between theory and observations. If this mismatch is real, we aim to
find its origin. To pursue our goal, we make use of simulations of galaxy clusters
realized with the semi-analytical techniques extensively exposed in the next chap-
ter. In this way, we can build lensing maps with an arbitrary high mass and spatial
resolution. During the work, we also study how the probability to observe galaxy-
galaxy strong lensing events is influenced by the physical properties of clusters and
substructures within them. In particular, we focus our attention on two properties
of the cluster mass profile: its concentration and inner slope. Since these parameters
describe how matter is distributed inside the main halo, they could affect the lensing
power of substructures. Moreover, investigate how the radial distribution function
and the mass function of subhalos affect the probability to observe GGSL events.

3.2.4 Weak lensing

The weak lensing regime is characterized by small values of convergence and shear,
namely κ, γ � 1. In such a situation, there is no multiple imaging or high distortion
of background sources: the only effect is a slightly distortion of background galaxies.
Since we do not know the true shapes of the observed galaxies, informations about
the weak lensing signal has to be extracted statistically.

Images of background galaxies are described by their surface brightness I(~θ),
where ~θ is the position on the image plane. The luminosity center of the image is
given by

~θ =

∫
d2θqi[I(~θ)]~θ∫
d2θqi[I(~θ)]

(3.17)

where qi is a cut-off function that truncates the brightness profile at some isophotal
level. The tensor of the second moments of the brightness distribution is given by

Qij =

∫
d2θqi[I(~θ)](θi − θ̄i)(θj − θ̄j)∫

d2θqi[I(~θ)]
, (3.18)

from which one can define the complex ellipticity

ε = ε1 + iε2 = |ε|e2iφ =
Q11 −Q22 + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)1/2

. (3.19)

The same arguments apply for the true surface brightness of the source, for which
we can define the brightness tensor Q(s). The image distortion due to the weak
lensing is described by the Jacobian matrix introduced in sec. 2.1.3, thus

Q(s) = AQAT = AQA. (3.20)

The last equality is translated in terms of complex ellipticities as

ε(s) =

{
ε−g

1−g∗ε if |g| 6 1
1−gε∗
ε∗−g∗ if |g| > 1

(3.21)
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FIGURE 3.12: Convergence maps of clusters extracted from the cos-
mological hydrodynamical simulations of Rasia et al., 2015 for a
source redshift zs = 3.0. Critical lines are shown in white: even if
substructures are present, they not produce secondary critical lines.

The scale of each figure is shown in each panel.
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where ε and εs are the complex ellipticities of the image and of the source and g is
the complex reduced shear

g(~θ) = g1 + ig2 = |g|e2iφ =
γ(~θ)

κ(~θ)
. (3.22)

The symbol ∗ denotes the complex conjugation. The inverse relation is given by

ε =


ε(s)+g

1+g∗ε(s)
if |g| 6 1

1+gε(s)∗

ε(s)∗+g∗
if |g| > 1.

(3.23)

Assuming that the intrinsic average source complex ellipticity ε(s) is zero (namely
that the phases φ are random for unlensed sources), we obtain that the measured
average ellipticity of images is

〈ε〉 =

{
g if |g| 6 1
1
g∗ if |g| > 1.

(3.24)

Recalling Eqs. 2.14, 2.17, 2.22, which relate convergence and shear with the lensing
potential, one can derive the following relation involving the Fourier-Space trans-
formations κ̂ and γ̂ of κ and γ:

κ̂ = κ−2
[
(κ2

1 − k2
2)γ̂1) + 2κ1κ2γ̂2

]
. (3.25)

Applying the convolution theorem and transforming back to real space, we obtain

κ(~θ)− κ0 =
1

π

∫
d2θ′D∗(~θ − ~θ′)γ(~θ′) (3.26)

where

D(~θ) =
θ2

2 − θ2
1 − 2iθ1θ2

|~θ|4
. (3.27)

Evaluating g(~θ) through ellipticity measurements, studying the previous integral
it is possible to find the distribution κ(~θ) that induces the observed mean shape
distortion, namely that solves the equation for the given reduced shear (Kaiser and
Squires, 1993).

3.3 Galaxy clusters surveys

In the last 30 years, many cluster surveys have been made with the primary goal
of using lensing to study the mass distribution in these massive structures. Strong
lensing observations with extremely high level of details became possible with the
advent of the Hubble Space Telescope. In particular, in the last 6 years, HST has ded-
icated an enormous amount of orbits to carry out deep multiband observations of
cluster fields in the framework of two surveys, namely the CLASH and the Frontier
Field surveys. Since these are both relevant for this thesis work, we briefly introduce
them here.
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3.3.1 Cluster Lensing and Supernova Survey with Hubble

The Cluster Lensing and Supernova Survey with Hubble (CLASH) (Postman et al.,
2012) targeted 25 massive galaxy clusters, observing each of them in 16 passbands.
The survey goals are:

• the mapping of the distribution of dark matter in galaxy clusters using strong
and weak gravitational lensing;

• the detection of Type Ia supernovae out to redshift z ≈ 2;

• the detection and characterization of galaxies at z > 7, thanks to the magnifi-
cation power of targeted galaxy clusters;

• the study of the internal structure and evolution of the galaxies in and behind
these clusters.

With these aims, CLASH has been allocated 524 HST orbits, the majority of which
(474) are for cluster imaging and, simultaneously, for the parallel SN search program.
An additional 50 orbits were allocated as a reserve for SN follow-up observations.
This results in a magnitude limit of ≈ 27.5 in the HST i band. The cluster sample
covers a wide redshift range (0.15 < z < 0.9, with a median of z ≈ 0.4), spans
almost an order of magnitude in mass (from ≈ 5 to ≈ 30× 1014 M� ), and all have X-
ray temperature > 5 keV. The total area of complete 16-filter coverage in every cluster
is 4.07 square arcminutes. Observations were finished in 2013. Table 3.2 presents the
25 clusters observed in the CLASH program, four of which are shown in Fig. 3.13.

Cluster Name Redshift Cluster Name Redshift
Abell 209 0.209 CLJ1226+3332 0.890
Abell 383 0.189 MACS1311-0310 0.494
MACS0329-0211 0.450 RXJ1347-1145 0.451
MACS0416-2403 0.396 MACS1423+2404 0.545
MACS0429-0253 0.399 RXJ1532+3021 0.363
MACS0647+7015 0.591 MACS1720+3536 0.391
MACS0717+3745 0.548 Abell 2261 0.224
MACS0744+3927 0.686 MACS1931-2635 0.352
Abell 611 0.288 MACS2129-0741 0.570
MACS1115+0129 0.353 RXJ2129+0005 0.234
MACS1149+2223 0.544 MS2137-2353 0.315
Abell 1423 0.214 RXJ2248-4431 0.348
MACS1206-0847 0.440

TABLE 3.2: Clusters observed with HST during the CLASH survey.
From Postman et al., 2012.

3.3.2 Hubble and Spitzer Fontier Fields

The Frontier Fields (Lotz et al., 2016) are a director’s discretionary time program us-
ing the HST and the Spitzer Space Telescope to observe with unprecedented depth
the 6 galaxy clusters liste in Tab. 3.3, known to be powerful strong lenses. The aim
of the initiative is to combine the power of these telescopes with the magnification
power of the six massive clusters of galaxies to observe sources which could not be
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FIGURE 3.13: Inner regions of fours clusters observed with HST dur-
ing the CLASH survey. Multiple images and gravitational arc are

clearly visible in all panels.

detected otherwise. This observations allow to probe galaxies with optical/near-
infrared magnitudes of ≈ 29, and 10 - 100 times fainter in regions of high magni-
fication. Thus, HST observations of these strongly-lensed fields can probe galaxies
as intrinsically faint or fainter than those detected in the Hubble Ultra Deep Field
Initiative (Rafelski et al., 2015) in a much shorter exposure time.

Images are taken in seven HST bandpasses and in two additional Spitzer filters.
The program were completed in September 2016 and the collected data constitute
the foundation of many studies of gravitational lensing in galaxy clusters. In fact, in
order to understand many of the properties of background lensed galaxies, reliable
lensing models for each cluster are required. Five independent teams, using different
approaches (see section 3.2.1) but the same input dataset, consisting in an unprece-
dented set of strong-lensed arcs and multiple images, developed lensing models for
the six clusters3.

3Lensing models of Frontier Fields clusters are availiable at
http://www.stsci.edu/hst/campaigns/frontier-fields/Lensing-Models



3.3. Galaxy clusters surveys 61

Fig. 3.14 shows three Frontier Field clusters and their relative parallel fields ob-
served by HST.

Cluster Name Redshift Cluster Name Redshift
Abell 2744 0.308 MACS1149+2223 0.544
MACS0416-2403 0.396 RXJ2248-4431 0.348
MACS0717-3745 0.545 Abell 370 0.375

TABLE 3.3: Clusters observed with HST during the Frontier Fields
survey (Lotz et al., 2016).
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FIGURE 3.14: Three clusters (left) and their relative parallel fields
(right) observed with HST during the Frontier Fields survey. The
depth of these observations (mag ≈ 29) allows to detect many more
faint sources and lensing features with respect to CLASH survey (Fig.

3.13) thus to obtain better constrained lensing models.
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Chapter 4

Simulations of gravitational
lensing by galaxy clusters

In this chapter we describe the codes and the techniques used to produce and an-
alyze the lensing simulations considered in this thesis work. We begin introducing
the tools used to model complex lenses, then we discuss how to extract lensing in-
formations from the produced maps. In particular, we describe a novel algorithm to
locate critical lines around substructures, to map them onto caustics and to measure
the galaxy-galaxy strong lensing (GGSL) cross section, the quantity we are inter-
ested in. This algorithm was integrated in a simulation pipeline, which is described
in detail in the following sections.

4.1 Simulation software

4.1.1 MOKA

The first component of our simulation pipeline is the code MOKA (Matter density
distributiOn Kode for gravitationAl lenses). This code is able to create realistic maps
of substructured triaxial dark matter halos, whose properties are in agreement with
those of galaxy clusters extracted from DM-only cosmological numerical simula-
tions. Detailed information on this publicly available code1 can be found in the
reference paper (Giocoli et al., 2012). Here we summarize some of the features that
are relevant to our project.

MOKA analytically calculates surface mass density distributions of halos formed
by a smooth, triaxial matter distribution and by an ensemble of substructures. This
code is particularly useful for our purposes, since maps can be calculated with an
arbitrarily high resolution, both spatial and in mass. The user can choose to build ha-
los with an NFW density profile, discussed in section 2.2.5, or with its generalization
presented in section 2.2.6.

As highlighted in section 3.1.4 CDM simulations show that halo concentration is
a decreasing function of mass and depends on the halo formation history. By default
MOKA works with the following relation, proposed by Zhao et al., 2009:

cvir(Mvir, zL) = 4

{
1 +

[
t(zL)

3.75t0.04

]8.04
}1/8

(4.1)

1MOKA can be downloaded from http://cgiocoli.wordpress.com/research- interests/moka
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where t0.04 is the time at which the main progenitor of the halo assembles 4% of its
mass, zL is the lens redshift and Mvir its virial mass. However, the user is free to use
a tailored c −M relation or to build clusters with given mass and concentration. If
axial ratios are not imposed by the user, MOKA assigns a shape to the halo following
the triaxiality distribution model given by Jing and Suto, 2002, based on dark matter
simulations.

Substructures are introduced in the smooth halo using analytical fitting formulae
to numerical simulations, and their properties are saved in catalogs readable by the
user. The subhalo mass function is given in Eq. (3.12); masses mi are assigned to
substructures randomly sampling this distribution down to the minimal massmmin,
that can be chosen by the user. Unless otherwise specified, we used mmin = 1010h−1

M�.
The subhalo cumulative spatial distribution is based on the work of Gao et al.,

2004 and is given in Eq. (3.13). Substructures are placed in the main halo sampling
this distribution and randomly assigning angular positions.

Substructures are modeled as SIS (see Eq. (2.37)), and the user can choose to trun-
cate the profile at a radius Rsub = Gmsub/2σ

2
v . Many studies (Koopmans et al., 2009;

Barnabè et al., 2011; Cappellari et al., 2015) shown that this profile well reproduce
the total mass distribution (baryons plus dark matter) of elliptical galaxies.

It is possible to include a BCG at the halo centre, whose stellar density profile is
described by the Hernquist profile

ρstar(r) =
ρg

(r/rg)(1 + r/rg)3
(4.2)

with rg = 0.551Re and Re = 0.03Rvir (Keeton, 2001), and ρg is the density at rg. The
total BCG stellar mass is

Mstar =
2Mstar,0

(Minfall/M0
)−α′′ + (Minfall/M0

)−β′′
(4.3)

with α′′ = 0.39, β′′ = 1.96 and logMstar,0 = 10.35 and with a Gaussian scatter
σMstar = 0.148 (Wang et al., 2006).

The total massMvir is thus subdivided asMvir = Msmooth+ΣNtot
i=1 mi+Mstar. It is

possible to construct more complicated mass distribution with many smooth halos,
each one populated with substructures as described above.

For every constructed mass distribution, the code computes the maps of the rel-
evant lensing quantities defined in sections 2.1.2, 2.1.3. For example, in Fig. 4.1 we
show maps of convergence and effective potential.

4.1.2 LENSTOOL

LENSTOOL (Jullo and Kneib, 2009) is a publicly available software 2 widely used
to model strong lenses by fitting lensing constraints such as families of multiple
images and highly distorted sources. To build these models, the user can opt for a
variety of lens models with different density profiles and shapes. While the main
purpose of this code is to fit observations, it can be used to produce lensing maps
for customized mass distributions. In particular, we used it to study the properties
of lenses based on the models produced with MOKA (total mass and substructures)
but with density profiles not yet implemented in the MOKA code. To this goal, we
adapted the output catalogs of MOKA to be imported by LENSTOOL.

2Lenstool and its manual can be found at https://projets.lam.fr/projects/lenstool/wiki
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FIGURE 4.1: Convergence (left) and effective potential (right) maps
calculated by MOKA, for a cluster of 1015h−1 M� at z = 0.5 for a

source plane at zS = 3.0

4.2 A novel algorithm for galaxy-galaxy strong lensing in clus-
ters

4.2.1 Extraction of critical lines and caustics

As we have seen earlier in this thesis, strong lensing events can be observed around
galaxies in clusters. These events are the main focus of this work. We consider a
galaxy or a substructure a strong lens when it has a tangential critical line which
is well separated from the principal critical line of the cluster. We build an algo-
rithm to locate these critical lines (which we call "secondary") and to compute the
corresponding cross-section for strong lensing.

Thanks to equations (2.13) and (2.22), we can write convergence and shear in
terms of deflection angles as

κ(~x) =
1

2
~∇~α(~x) (4.4)

γ1(~x) =
∂αx(~x)

∂x
− ∂αy(~x)

∂y
(4.5)

γ2(~x) =
∂αx(~x)

∂y
=
∂αy(~x)

∂y
(4.6)

so convergence and shear maps can be obtained from deflection angles maps
trough partial derivatives. Thus, for every mass distribution considered, we calcu-
late with LENSTOOL only deflection angle maps.

Tangential eigenvalue maps can be found by combining the convergence and the
shear maps as shown in Eq. (2.25). Tangential critical lines correspond to the zero-
level contours in this images. The zero-level contours are splitted in several groups
of points, which correspond to the primary and secondary critical lines in the lens
plane. For each group of points we follow the path around the corresponding lens,
reconstructing all the critical lines. An example of the result of this procedure is
shown in the left panel of Fig. 4.2, where the primary and the secondary critical
lines identified in a simulation are shown in different colors. The implementation of
this algorithm makes usage of several methods taken from the matplotlib graphical
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PYTHON package3. Once the critical lines are reconstructed, we can use the lens
equation (2.11) to map each of them on the source plane. This involves to interpolate
the deflection angle maps at the location of the critical points. In the right panel of
Fig. 4.2 we show the caustics corresponding to the critical lines shown in the left
panel. The match between caustics and critical lines can be made using the color
code. The above procedure can be applied to maps computed for different source
redshifts.

FIGURE 4.2: Left: critical lines in the central region of a simulated
galaxy cluster of 1015h−1M�. Right: zoom on the corresponding
caustics on the source plane. The match between critical lines and

caustics can be done using the color code.

In order to check the reliability of the procedure, we have performed some tests
to ensure that caustics are well reconstructed. In particular, since we are interested
in reconstruct caustics due to critical lines around substructures, it is fundamental
to determine what is the resolution required to study the substructures we are inter-
ested in. Results of these tests are summarized in Fig. 4.3. The code is able to locate
critical lines with areas of a few pixel, but the shape of the corresponding caustics
obtained through the mapping onto the source plane it is not trustworthy when not
many pixels are involved. We consider 50 pixel as the smallest critical line area that
permits to obtain truthful caustics. The conversion between pixels and angular sep-
aration on the sky determines the minimum angular extension of critical lines which
are well resolved.

Since we are interested in comparing predictions of our models with observa-
tions, it is important to understand if every caustic pinpointed by our algorithm is
able to product an observable strong lensing event. In fact, a caustic too small with
respect to the source extension do not produce any detectable distortion in the im-
age; on the other hand, irrespective of caustic properties, a critical line with limited
extension produces effects (an Einstein ring or multiple images) not resolvable in ob-
servations. We chose to consider as "observable" any strong lensing event for which
multiple images separation (or Einstein ring diameter) is greater than d = 1.0′′. Any
critical line with effective radius (see Eq. 3.14) smaller than d/2 is excluded. This

3http://matplotlib.org/
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choice automatically reject those critical lines which are too small to be mapped into
realistic caustics if the map resolution is better than ≈ 0.15 arcsec/pixel.

4.2.2 Galaxy-galaxy strong lensing cross-section

As presented in the previous chapter, we are interested in understand how galaxy
clusters properties affect the observed distribution of galaxy-galaxy strong lensing
events, and if from these observations we can extract some constraints on the for-
mers. A galaxy-galaxy strong lensing event happens when a background source is
located on, or inside, the tangential caustic formed by a cluster member. In order
to quantify the probability to have an event of this kind, we define the galaxy-galaxy
strong lensing cross-section σgg(zs) as the total area enclosed by the caustics formed by
substructures on the source plane at redshift zs:

σgg(zs) =
∑
i

Ai(zs), (4.7)

where Ai is the area of the i-th caustic on the source plane at redshift zs formed
by a cluster member. Measuring this quantity in simulations, we can quantify the
probability to have galaxy-galaxy strong lensing events in clusters with different
properties.

Critical lines and caustics are represented into the code as polygons, so their area
A can be calculated with the Shoelace formula (also known as Gauss area formula):

A =
1

2

∣∣ n−1∑
i=1

xiyi+1 + xny1 −
n−1∑
i=1

xi+ 1yi − x1yn
∣∣ (4.8)

=
1

2

∣∣ n∑
i=1

xi(yi+1 − yi−1)
∣∣ (4.9)

where n is the number of the polygon’s vertex. This formula is valid for any non-
self-intersecting polygon, convex or concave. Its demonstration is based on the de-
composition of the polygon into triangles, but can be seen also as a special case of the
Green’s theorem. Computation involving geometrical quantities were implemented
with the aid of the PYTHON package Shapely4.

4.2.3 Primary and secondary critical lines

In order to calculate the cross-section for strong lensing events around subhalos, we
need to identify which caustics are due to substructures and which are due to the
smooth, extended halo. In other words, we need to select only critical lines around
substructures (secondary critical lines) and to exclude from the computation critical
lines due to the large-scale matter distribution (primary critical lines).

If we had a single, smooth, large-scale halo, we would have a single critical line
within which λt,halo = 1 − κhalo − γhalo < 0 and λt,halo > 0 outside. Adding a
substructure to this halo, the total convergence and shear are the sum of the their
respective κ and γ:

κtot = κhalo + κsub (4.10)
γtot = γhalo + γsub (4.11)

4http://toblerity.org/shapely/manual.html
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so critical lines correspond to those points on which

λt,tot = 1− κtot − γtot = 0. (4.12)

Generally, if the substructure is inside the main halo’s critical line where κhalo +
γhalo > 1, one has κtot + γtot > 1. Conversely, if the substructure is outside the
primary critical line, where κhalo + γhalo < 1, it can happen that due to the pres-
ence of the substructure κtot + γtot > 1, so it is possible the formation of a critical
line where λt,tot = 0. Therefore, secondary critical lines are located only outside the
primary critical line, which is the only one containing the point on which the main
halo is centered. In this work, we consider as strong lenses only those substructures
which forms secondary critical lines located outside the main critical line. In this
way, when a secondary critical lines and the primary critical line merge, the corre-
sponding secondary caustic (which is called "resonant" in this case) is immediately
excluded from the computation of the cross-section. A source located inside a reso-
nant caustic can be multiply imaged, giving rise to a GGSL event, but our algorithm
reject these cases.

4.2.4 Substructures near the primary critical line

In particular situations, a secondary critical line inside the primary can form. For
this to be possible, the contribute to the total shear of the substructure must be nega-
tive, in order to have κtot + γtot < 1 inside the primary critical line. This is shown in
Figs. 4.4 and 4.5. Here, a 1012 M� SIS, indicated with a red dot, is moved on the lens
plane along a straight line crossing the primary critical line due to an elliptical NFW
halo of 1015 M�. When the substructure is well inside the primary critical line (Fig.
4.4, top and middle panels), his presence do not affect much the lensing properties
of the main halo and there is not the creation of an additional critical line. When the
subhalo is near the position of the unperturbed critical line (bottom panel of Fig. 4.4,
top panel of Fig. 4.5) a secondary critical line, internal to the primary, and the cor-
responding caustic arise, but they disappear when the substructure is moved away
from the main halo. The primary critical line first undergoes an outstanding defor-
mation (middle panel of Fig. 4.5) and then the substructure forms and independent
secondary critical line (bottom panel of Fig. 4.5). As the subhalo moves away, its
critical line shrinks. The same happens to caustics.

Even if we are especially interested in secondary critical lines and caustics, the
algorithm keeps track of the area of the primary critical line of any given cluster.
Thus, we are able to classify clusters depending on their Einstein radius.

The working principles of our novel algorithm are summarized in Fig. 4.6.
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FIGURE 4.3: Caustics (right) obtained mapping on the source plane
critical lines (left) with different areas. Green numbers in both figures
of each panel indicate pixels. Top panel shows a critical line with area
A ∼ 100 pixel. The corresponding caustic is well resolved and its
area can be accurately calculated. The same happens in the second
panel with a critical line with area A ∼ 50 pixel. At lower resolution
are often obtained caustics not well resolved, with areas of a few pixel
and non realistic shapes, as shown in the last three panels (where crit-
ical lines have area of approximately 25, 15 and 10 pixel respectively).
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FIGURE 4.4: Evolution of critical lines (left column) and caustics
(right column) moving a 1012 M� SIS (whose position is indicated

with a red dot) with respect to an elliptical NFW halo of 1015M�.
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FIGURE 4.5: Evolution of critical lines (left column) and caustics
(right column) moving a 1012 M� SIS (whose position is indicated

with a red dot) with respect to an elliptical NFW halo of 1015M�.
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FIGURE 4.6: Flux diagram representing the various steps of our al-
gorithm for the calculation of the galaxy-galaxy strong lensing cross-

section.
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Chapter 5

Results

This chapter presents the results on the galaxy-galaxy strong lensing cross-section
in galaxy clusters. After introducing the cross-section, we investigate whether this
quantity is sensitive to some physical property of galaxy clusters. In particular, we
realize many sets of simulations varying the inner slope and the concentration of the
cluster mass profile and the radial distribution and the mass function of substruc-
tures. Finally we test our findings on a real cluster, MACSJ1149, and we test the
reliability of two strong lensing models of MACSJ1149 and MACSJ1206, calculating
the number of expected GGSL events and comparing them with observations.

All cross-section measurements are made on lensing maps with a resolution of
0.04 arcsec/pixel, obtained simulating 160×160 arcseconds2 fields-of-view covered
with a 4000× 4000 pixels grid. As discussed in section 4.2, this resolution is required
to resolve well the critical curves with diameters of 1 arcsec, which we have taken as
the lower limit for the detection of strong lensing events.

5.1 General considerations on cross-section

As presented in Eq. (4.7), we define the galaxy-galaxy strong lensing cross-section
σgg(zs) as the area enclosed by secondary caustics on the source plane at redshift zs.
Since substructures are embedded in a complex environment, their lensing proper-
ties depend on their position in the cluster. Fig. 5.1 shows how the cross-section
changes moving the same substructure with respect to the cluster main halo. Start-
ing with a subhalo located well outside the main halo critical line, we moved the
substructure on a straight line approaching the cluster center. Since the cluster mass
density is a decreasing function of radius, moving the substructure towards the clus-
ter center means moving it where the convergence is higher. As explained in Sect.
2.1.3, this cause an enlargement of the secondary critical line and thus of the cor-
responding caustic, entailing a growth of the cross-section. However, as exposed
in Sect. 4.2.3 and 4.2.4, when the substructure enter the main halo critical line, sec-
ondary critical lines can not exist, and the cross-section drops to zero. Small sec-
ondary critical lines just inside the primary one can form if the substructure gives
a negative contribution to the total shear, but the corresponding caustics are always
tiny and their contribution to the cross-section is therefore negligible. For exam-
ple, the area of the caustic relative to the internal critical line visible in the top-right
panel of Fig.5.1 is of the order of 10−5 arcsec. When the subhalo exits from the pri-
mary critical line, its cross-section is again significant, and then decreases when the
substructure moves away. Summarizing, for a given substructure, its contribution
to the total cross-section is higher when it is located near, but outside, the primary
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FIGURE 5.1: Dependence of the cross-section on substructure posi-
tion. Small panels, clockwise from top left: critical lines configuration
of a system composed by a 1015M� elliptical NFW halo positioned in
the center of the field and a 1012 M� SIS substructure, whose position
is indicated with a green dot. When the substructure enters the pri-
mary critical line, a small secondary critical line is formed inside the
primary (third panel). Big panel: galaxy-galaxy strong lensing cross-
section measured for the different substructure positions relative to
the cluster center. Cross-section is higher when the substructure is
near but outside the primary critical line and drops to zero when the
substructure is inside. The asymmetry of the cross-section profile is
due to the asymmetry of the main halo with respect to the vertical

axis.

critical line. It becomes negligible as the substructure falls inside the primary critical
line.

The size of critical lines grows when the source redshift zs increase, since both
convergence and shear are increasing functions of the lensing distance, whose trend
is shown in Figs. 2.4 and 2.5. This fact corresponds to an increase of caustics sizes,
namely a growth of the cross-section. The evolution of the total galaxy-galaxy strong
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lensing cross section in galaxy clusters with respect to zs generally follows this be-
haviour, but it is mitigated by the growth of the primary critical line. In fact, since it
size increases with the source redshift, the region where secondary critical lines can
not form expands too. That is, the contribution to the total cross-section by a partic-
ular substructure for a given source redshift zs,1 might be erased for zs,2 > zs,1. An
example is given in Fig. 5.2.

FIGURE 5.2: Critical lines and caustics for zs = 3 (top panel) and
zs = 3.5 (bottom panel) for a simulated NFW cluster of 1015h−1 M�
located at zL = 0.5. The field of view is 160× 160 arcsec2. The biggest
secondary critical line present when zs = 3, located just outside the
primary one, disappears when zs = 3.5, due to the enlargement of the
latter. The same happens to the corresponding caustics, which gives

no more contribution to the total cross-section.
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5.2 The effect of the inner slope of the mass profile

As discussed in section 3.1.3, the mean, radially-averaged density profile of galaxy
clusters found in cosmological simulations can be described by the NFW profile
(2.50). However, dark matter distribution of single halos can be fitted more accu-
rately with the generalized NFW profile (2.60), in which the additional slope param-
eter β is introduced.

As explained in section 3.2.1, the strong lensing modeling of galaxy clusters usu-
ally allows to determine with great accuracy the position of the primary critical line,
and thus to measure its Einstein radius θE . Assuming to know θE of a particular
cluster, it is interesting to investigate if the slope of its gNFW profile has some effect
on the probability of observing GGSL events. Fixing the Einstein radius allows to
highlight the role of secondary critical lines. Moreover, in this way we can investi-
gate if the GGSL cross-section can give us additional information useful to improve
a real strong lensing model.

In order to examine this possibility, we consider 11 values of β in the range [0.5−
1.5] and we create 100 simulated clusters for each value. In order to keep θE fixed
with varying β, we adjust the cluster virial mass, from≈ 2.8×1015h−1M� for β = 0.5
to ≈ 2.8× 1014h−1M� for β = 1.5. As reference case, we consider simulated clusters
with NFW profile (β = 1) of 8× 1014h−1 M� and concentration cvir = 3.7 at redshift
zL = 0.5 (these values satisfy the c −M − z relation given in Eq. (3.11)). The mean
Einstein radius is 14.86′′ for a source plane at zs = 3, corresponding to ≈ 90 kpc on
the lens plane, indicated by a dashed line in the left panel of Fig. 5.3. The same plot
shows the family of gNFW profiles which produce the same θE . The right panel of
the same figure illustrates how the measured GGSL cross-section varies as a function
of β: the mean value is indicated as a blue, solid line, while shaded bands indicate
the 68%, 95% and 100% intervals. All values are relative to a source plane at redshift
zs = 3.

FIGURE 5.3: Left: convergence profiles of gNFW clusters with differ-
ent values of the slope parameter β but with the same Einsten radius,
indicated by the vertical dashed line. Right: measured GGSL cross-
section as a function of the slope β of the gNFW profile. The solid line
indicates the mean value, shaded bands indicates the 68%, 95%, 100%
intervals. All values are relative to a source plane at redshift zs = 3.
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The measured cross-section increase with decreasing β, tripling its mean value
from β = 1.5 to β = 0.5. In other words, at fixed Einstein radius, clusters with a
shallower profile produce more GGSL events. In fact, as can be seen in Fig. 5.3,
outside the Einstein radius, where the GGSL signal forms, the convergence is higher
for shallower profiles. This means that at fixed distance from the cluster centre, sub-
structures are located in a denser environment and thus are able to produce larger
and more abundant critical lines and caustics. Moreover, in order to keep θE fixed,
clusters with a shallower profile have a larger total mass. That is, they host on av-
erage more substructures, and a larger fraction of the total cluster mass is stored in
subhalos (see Sect. 3.1.5).

5.3 The effect of the halo concentration

The shape of the NFW profile depends also on the concentration parameter cvir =
Rvir/Rs. Analogously to the procedure previously described, we produced several
realizations of simulated clusters with varying concentration and total mass, while
preserving the extension of the primary critical line. Again, the reference clusters
has mass of 8 × 1014h−1 M� and concentration cvir = 3.7 at redshift zL = 0.5. The
left panel of Fig. 5.4 shows the convergence profiles in the different cases (solid lines)
and the mean Einstein radius for zs = 3 (dashed line). The right panel displays the
measured cross-section as a function of cvir: the shaded bands indicates the 68%,
95% and 100% intervals, while the solid line represent the mean value. We vary the
concentration in the range cvir = [3.05 − 4.65] and, to keep θE constant, the mass
Mvir in the range [1× 1015 − 6.5× 1014] h−1M�.

FIGURE 5.4: Left: convergence profiles of NFW clusters with differ-
ent concentration cvir but with the same Einsten radius, indicated by
the vertical dashed line. Right: measured GGSL cross-section as a
function of the concentration cvir of the NFW profile. The solid line
indicates the mean value, shaded bands indicates the 68%, 95%, 100%
intervals. All values are relative to a source plane at redshift zs = 3.0.

As we can see, in the range of halo concentrations we considered, cvir do not
affect substantially the convergence profiles near the Einstein radius. The conse-
quence of this fact is that secondary critical lines and caustic are not particularly
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affected by the main halo concentration, thus the GGSL cross-section varies only by
≈ 30%. Contrary to the inner slope, the concentration of the cluster profile can not
be considered a quantity able to strongly affect the abundance of GGSL events.

5.4 The effect of the substructures mass function

As exposed in section 3.1.5, the subhalo mass function (SHMF) measured from nu-
merical simulation of structures formation has the form of a power law at low masses
with an exponential cut-off at high masses. MOKA implements the SHMF (3.12) de-
rived by Giocoli et al., 2010, which we report here:

1

Mvir

dN(Mvir, cvir, zl)

dm
= A(1 + zl)

1/2 c∗

cvir
mαexp

[
−β̃
(

m

Mvir

)3
]
. (5.1)

A = 9.33 ·10−4 is a normalization factor, β̃ = 12.2715 controls the exponential cut-off
and α = −0.9 is the power-law index. c∗ is the mean concentration of a halo with
mass Mvir at redshift zl. The mass fraction in substructures f is given by

f =
Msubs

Mvir
=
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Mvir

∫ Mvir

mmin

dm
dN

dm
m. (5.2)

Aiming at studying the influence of the SHMF on the GGSL cross-section, we
produce two kinds of simulations. In the first simulations set we study the effect of
massive subhalos on the total GGSL signal by varying A and β̃ keeping constant the
mass fraction in substructures f . On the other hand, in the second one we vary the
values of α and A keeping f fixed. In this way, one can study the effect of small sub-
structures. Simulations consist of 100 clusters for each value of α and β̃ considered.
The clusters have a massMvir = 1015h−1 M�, a concentration cvir = 3.5, a minimum
subhalo mass of 1010h−1 M� and a redshift zL = 0.5. The resulting mass fraction in
subhalos is 0.168.

Fig. 5.5 shows the different SHMF obtained varying β̃ and the resulting cross-
section, whose mean value (solid line) drops monotonically with increasing β̃, halv-
ing from β̃ = 10 to β̃ = 108. The effect is particularly evident for β̃ > 104, when
the high-mass tail of the SHMF starts to deviate significantly from the standard case.
This confirms our suspects: massive substructures are the main contributors to the
GGSL cross-section, and their absence drastically diminish the chances of observ-
ing strong lensing events by cluster substructures. On the contrary, Fig. 5.6 shows
that the GGSL cross-section is not particularly sensitive to the low-mass end of the
SHMF: even if we increase the number of small substructures, due to their low mass
they have not a significant impact on the probability of GGSL events. The cross-
section is fairly constant in the range 0.2 < α < 0.7, and drops by a factor ≈ 2 only
for 0.7 < α < 1.0 when, in order to preserve f , the abundance of subhalos with low
mass cause the suppression of massive substructures.
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FIGURE 5.5: Left: subhalo mass function (5.1) for different values of
the cutoff parameter β̃. The graph displays the mean number of sub-
structures in 100 MOKA simulations in each mass bin. Right: mea-
sured GGSL cross-section as a function of β̃. The solid line indicates
the mean value, shaded bands indicates the 68%, 95%, 100% intervals.

All values are relative to a source plane at redshift zs = 3.0.

FIGURE 5.6: Left: subhalo mass function (5.1) for different values of
the power-law index α. The graph displays the mean number of sub-
structures in 100 MOKA simulations in each mass bin. Right: mea-
sured GGSL cross-section as a function of α. The solid line indicates
the mean value, shaded bands indicates the 68%, 95%, 100% intervals.

All values are relative to a source plane at redshift zs = 3.0.

5.5 The effect of the substructure radial distribution function

The last property we consider is the radial distribution of subhalos inside the clus-
ter. Galaxy clusters found in cosmological simulations exhibit a radial distribution
function of substructures described by Eq. (3.13), which we report here:

n(< d)

Ntot
=

(1 + acvir)d
b

(1 + acvird2)
. (5.3)

d is the distance to the host halo centre in units of the virial radius,Ntot is the total
number of subhalos in the host, a = 0.244 and b = 2.75. In order to study the impact
of the substructure radial distribution on GGSL cross-section, we have constructed
many realizations of simulated clusters with different values of the parameter b. Fig.
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5.7 shows the resulting cumulative subhalo radial distributions: diminishing b sub-
structures are moved from the outskirts toward the cluster center.

From the right panel of the same figure, it is evident that the mean GGSL cross-
section (solid line) has a significant dependence on b: in clusters with more centrally
distributed subhalos it is more likely to observe strong lensing events by cluster
members. The mean cross section increases by a factor ≈ 5 from β = 1.55 to β =
2.75 This fact has a trivial explanation: since the region from which the majority
of the strong lensing signal forms is near the cluster primary critical line, a higher
concentration of substructures in this region increases the signal itself.

FIGURE 5.7: Left: cumulative radial distribution of substructures for
different values of the parameter b of Eq. 5.3. Radial distances x are
measured in unit of the virial radius of the cluster. Right: measured
GGSL cross-section as a function of b. The solid line indicates the
mean value, shaded bands indicates the 68%, 95%, 100% intervals.

Values are relative to a source plane at redshift zs = 3.0.

5.6 Application to a real cluster: MACS1149

As discussed in the previous sections, the GGSL cross-section is particularly sen-
sitive to the subhalo radial distribution, to subhalo mass function and to the inner
slope of the cluster mass profile. Here we consider a real cluster: MACSJ1149.

5.6.1 Previous works on MACSJ1149

The galaxy cluster MACSJ1149 has celestial coordinates 11:49:36.3, +22:23:58.1 (R.A.,
Dec.) and at redshift z=0.544. During the past years it was observed in the frame-
work of several cluster surveys, in many bands. Thanks to its X-ray luminosity, it
was discovered by the MAssive Cluster Survey (MACS, Ebeling, Edge, and Henry,
2001). Subsequently, more recent observations in the same band revealed the pres-
ence of at least four merging DM halos (Ogrean et al., 2016). Its complex morphology
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has been studied in more details thanks to optical images and spectroscopic obser-
vations taken with the Hubble Space Telescope (HST) as part of the Grism Lens-
Amplified Survey from Space (GLASS, Treu et al., 2015), Cluster Lensing And Super-
nova survey with Hubble (CLASH, Postman et al., 2012) and Hubble Frontier Field
initiative (HFF, Lotz et al., 2016). Spectroscopy of many sources is available also
from the Multi-Unit Spectroscopic Explorer (MUSE) instrument on the Very Large
Telescope (VLT) and from observations with the DEep Imaging Multi-Object Spec-
trograph (DEIMOS) on the Keck-II Telescope.

During November 2014, thanks to GLASS observations, it was discovered in this
cluster the first multiply imaged Supernova (SN) (Kelly et al., 2015), nicknamed "SN
Refsdal". SN Refsdal appears as an Einstein Cross around an elliptical cluster mem-
ber, and it’s hosted in an arm of a background spiral galaxy at redshift 1.489 that
is multiply imaged by the cluster potential. Due to time delays between different
images, the SN Refsdal reappeared approximately one year later in one of the other
two images of the spiral galaxy. In the last image the SN was visible some decades
ago. Accurate analysis of HST images revealed also the presence of 108 multiple
images from 36 sources.

Thanks to the abundance of constraints (cluster member positions and velocity
dispersion, multiple image positions, time delays) MACSJ1149 was used as a test-
bed for comparing different gravitational lensing modeling strategies, as described
in Treu et al., 2016. Many groups have attempted to reproduce the lensing peculiar-
ity of this cluster, using different optimization softwares and different hypothesis
in describing its mass distribution. In this work, we have taken as reference model
the one proposed in Kawamata et al., 2016. This lensing model was built using the
software GLAFIC (Oguri, 2010) with a parametric approach (see Sect. 3.2.1). Clus-
ter members were selected using photometric redshifts available from HST data and
through the study of the cluster red sequence, and modeled as pseudo-Jaffe ellip-
soids (PJE, Keeton, 2001) with null core radius, a profile almost identical to the trun-
cated SIE. In order to reduce the number of free parameters, substructure velocity
dispersions σi and truncation radii rt,i were computed using scaling relations link-
ing these quantities to the measured luminosities Li. In particular, they are given by:

σi = σ∗L
1/4
i (5.4a)

rt,i = rt,∗L
η
i (5.4b)

where σ∗, rt,∗ and η are the parameters to optimize. The elliptical galaxy respon-
sible for the splitting of the images of the Supernova Refsdal was modeled indepen-
dently. Its free parameters are the velocity dispersion and the truncation radius of
the profile. The ellipticity and position angle of each galaxy are derived from the
HST images and fixed. The total number of cluster member considered in the mod-
eling is 171. The main dark matter halos were modeled with elliptical NFW profiles,
withMvir, position, ellipticity e = 1−a/b, position angle θe and concentration cvir as
free parameters. These NFW components were placed at the positions of brightest
cluster galaxies. The best fitting model predicts four main halos. The model in-
cludes also an external shear and an internal multipole perturbation to the potential,
describing an asymmetry of the latter. Best fitting model parameters relevant for this
discussion are summarized in Table 5.1.

The model constraints consist of positions of multiple images of background
sources with known spectroscopic redshifts, positions of knots in the lensed galaxy
that hosts the SN Refsdal, and positions of the supernova images. Model predictions
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Component Model Mass e θe cvir ∆x ∆y
(1014h−1M�) (deg) (arcsec) (arcsec)

Main halo 1 NFW 8.26 0.49 126.37 3.82 -0.21 -0.12
Main halo 2 NFW 1.61 0.67 76.36 6.66 [16.38] [47.36]
Main halo 3 NFW 0.64 0.70 158.13 2.57 -22.93 -32.21
Main halo 4 NFW 0.16 0.68 150.23 [10.00] [-44.77] [-54.86]

σ∗ rt,∗ η
(km s−1) (arcsec)

Subshalos PJE 233.07 2.88 0.26
σ e θe rt ∆x ∆y

(km s−1) (deg) (arcsec) (arcsec) (arcsec)
Galaxy PJE 232.08 [0.30] [47.50] 1.26 [3.22] [-11.11]

TABLE 5.1: Best fit parameters for the lensing model of MACSJ1149
by Kawamata et al., 2016. Coordinates are relative to the cluster BCG.
Numbers in square brackets were fixed during the model optimiza-
tion. For uncertainties on the best fit parameters, see Kawamata et al.,

2016.

on positions and time delays of the reappearence of SN Refsdal are fully consistent
with the observed values. We take the cross-section of this model as reference.

MACSJ1149 is one of the 20 clusters considered in the thorough analysis by
Umetsu et al., 2016. In this work, strong lensing, weak lensing (shear and mag-
nification data) obtained with HST during the CLASH survey and with the wide-
field Suprime-Cam on the Subaru Telescope are used to derive the total cluster mass
profile to ≈ 1000′′ (Fig. 5.9). Fitting an NFW model, the cluster has a virial mass
Mvir = 25.02±5.53×1014M� and a concentration cvir = 2.1±0.6 (reported as M200c

and c200c by Umetsu et al., 2016).
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FIGURE 5.8: Multiple images systems used for mass modeling (yel-
low squares) and radial and tangential critical curves for a source at
z=8.0 for the best fitting model of MACSJ1149 by Kawamata et al.,

2016.
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FIGURE 5.9: Surface mass density profile of MACSJ1149 derived by
Umetsu et al., 2016 from a joint analysis of HST strong/weak-shear
lensing and ground-based weak shear/magnification lensing data
(black squares). Error bars represent the 1σ uncertainty. The gray

area shows the best-fit NFW profile (1σ uncertainty).

5.6.2 Full constrained simulations of MACSJ1149

In order to study the effect of different cluster properties on the cross-section, we
have carried out three sets of 100 simulations each. In the first one, which we refer
to as "full constrained" set, the large-scale distribution of matter (the four main ha-
los) and the positions of the 171 substructures are fixed to the values of the reference
model. However, subhalo masses are generated according to the theoretical SHMF
in the ΛCDM cosmology. We generate 171 subhalos, we order them in mass, and we
place them at the observed locations of the cluster galaxies in MACSJ1149. While
doing this, we make sure that the most massive subhalos correspond to the bright-
est galaxies. Thus, we build many realizations of simulated clusters with the same
properties of MACSJ1149, except for the SHMF. A difference between observed and
theoretical SHMFs could entail a mismatch between measured cross-sections in the
two cases.

The left panel of Fig. (5.10) shows the distributions of observed (blue) and simu-
lated (magenta) substructures velocity dispersion distributions. Shaded band indi-
cates 68%,95% and 100% intervals. The model has an excess of substructures with
central velocity dispersion of about 150 km/s. In some simulations, we find sub-
structures with masses higher than observed. The right panel of the same figure
shows a comparison between the convergence profiles and the Einstein radius of
model (red) and simulations (blue). Simulations show an excess of convergence in
the inner 10′′. However, this region is well inside the Einstein radius, thus it has not
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FIGURE 5.10: Left: Comparison between the substructures velocity
dispersions distribution of the reference model of MACSJ1149 (blue
solid line) and of the full constrained simulations (magenta, solid
line: mean values; shaded magenta bands: 68%,95% and 100% in-
tervals). Right: comparison between the convergence radial profile
of the reference model of MACSJ1149 (red solid line) and of the full
constrained simulations (blue, solid line: mean profile; shaded blue
bands: 68%,95% and 100% intervals). Vertical, red, dashed line in-
dicates the circularized Einstein radius of the model, calculated as
RE =

√
S/π, where S is the area of the primary critical line. The verti-

cal, blue, dashed line and the vertical blue band indicate respectively
the mean value and the full interval covered by the same quantity in

simulations.
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influence on the cross-section. In the region relevant for our analysis, simulations
convergence profiles are compatible with those of the model.

The GGSL cross-section of the reference model and of simulations are shown in
Fig. 5.12. Despite the differences between the SHMFs in the two cases, the measured
cross-section are compatible in the source redshift range [1.0−8.0]. Both simulations
and model exhibit a drop in the cross-section between zs = 2.0 and zs = 3.0. This
is due to the effect described in Sect. 5.1 and it is caused by the relative positions
of main halos and massive substructures, identical in the two cases. The effect on
critical lines is shown in Fig. 5.11.

FIGURE 5.11: Critical lines of the reference model of MACSJ1149 for
zs = 2.2 (left) and zs = 3.0 (right). Black crosses in the left panel show
the position of the centers of the four main halos. Increasing source
redshift, the primary critical lines (those which contain the centers of
the four main halos) expand and merge, causing the disappearance of
secondary critical lines and of their corresponding caustics, causing a

decrease of the cross-section.

5.6.3 Constrained simulations of MACSJ1149

In the second set of simulations we populate the cluster with subhalos that not only
follow the SHMF in ΛCDM cosmology, but also reproduce their radial distribution.
The differences in the measured cross-section between this simulation set and the
previous one are due to the substructures radial distribution only. We call these
simulations "constrained".

The cumulative radial distribution of model and simulations are displayed in
Fig. (5.13). Inside the considered radius of 80 arcsec (about 500 Kpc at z = 0.544),
simulated clusters (magenta band) have always less subhalos with respect to obser-
vations (blue curve): ≈ 130 substructures against the 171 observed cluster members.
This fact is in agreement with findings of Natarajan et al., 2017 (see Fig. 1.7, upper
right panel). Consistently with results of section 5.5, the lack of substructures in
simulations makes their cross section always substantially lower with respect to the
model (Fig. 5.14). The cross-section of the reference model (blue curve) is ≈ 4 times
higher than the mean cross-section of simulated clusters (magenta curve). Moreover,
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FIGURE 5.12: Measured galaxy-galaxy strong lensing cross-section of
the reference model of MACSJ1149 (blue line) and of full constrained
simulations (magenta). Bands of different hues indicates the 68%,
95% and 100% intervals. The dark magenta line is the mean value

of the measured cross section in simulations.
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FIGURE 5.13: Left: comparison between the cumulative radial distri-
bution of substructures in the reference model of MACSJ1149 (blue
solid line) and in constrained simulations (magenta, solid line: mean
value; shaded blue bands: 68%,95% and 100% intervals). Vertical,
blue, dashed line indicates the circularized Einstein radius of the
model, calculated as RE =

√
S/π, where S is the area of the pri-

mary critical line. The vertical, magenta, dashed line and the verti-
cal magenta band indicate respectively the mean value and the full
interval covered by the same quantity in simulations. Right: Compar-
ison between the convergence radial profile of the reference model of
MACSJ1149 (red solid line) and of the constrained simulations (blue,
solid line: mean profile; shaded blue bands: 68%,95% and 100% in-
tervals). Vertical, red, dashed line indicates the circularized Einstein
radius of the model, while the vertical, blue, dashed line and the ver-
tical blue band indicate respectively the mean value and the full in-

terval covered by the same quantity in simulations.

the model cross-section is always ≈ 2 times higher than the maximum cross-section
found in simulations (pale magenta band).
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FIGURE 5.14: Measured galaxy-galaxy strong lensing cross-section of
the reference model of MACSJ1149 (blue line) and of constrained sim-
ulations (magenta). Bands of different hues indicates the 68%, 95%
and 100% intervals. The dark magenta line is the mean value of the

measured cross section in simulations.
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5.6.4 Unconstrained simulations of MACSJ1149

In the third simulations set, which we call "unconstrained", we have replaced the
four main NFW halos of the model with a single, spherical NFW halo with virial
mass and concentration as measured by Umetsu et al., 2016 (see section 5.6.1). Sub-
structures are treated as in constrained simulations. Since MACSJ1149 has a complex
geometry, replacing its four main halos with a single spherical halo can alter signifi-
cantly the morphology of primary critical lines. This is evident in Fig. 5.15, in which
the pale blue band shows the large spread in Einstein radii found in simulations.

FIGURE 5.15: Comparison between the convergence radial profile of
the reference model of MACSJ1149 (red solid line) and of the un-
constrained simulations (blue, solid line: mean profile; shaded blue
bands: 68%,95% and 100% intervals). Vertical, red, dashed line in-
dicates the circularized Einstein radius of the model, calculated as
RE =

√
S/π, where S is the area of the primary critical line. The verti-

cal, blue, dashed line and the vertical blue band indicate respectively
the mean value and the full interval covered by the same quantity in

simulations.

The cross-section of unconstrained clusters (Fig. 5.16, magenta bands) is slightly
smaller than in the constrained case, suggesting that the radial distribution of sub-
structures has a significantly higher impact on the total cross section than the shape
of the main halo.
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FIGURE 5.16: Measured galaxy-galaxy strong lensing cross-section of
the reference model of MACSJ1149 (blue line) and of unconstrained
simulations (magenta). Bands of different hues indicates the 68%,
95% and 100% intervals. The dark magenta line is the mean value

of the measured cross section in simulations.

5.7 Expected number of GGSL events

The previous results rely on the accuracy of the reference strong lensing model of
MACSJ1149 by Kawamata et al., 2016. A simple validation test of this model is to
verify if the expected number of observable GGSL events in this cluster is consistent
with observations.

In order to calculate the number of expected GGSL events in a particular clus-
ter, we need to know the distribution of sources both in redshift and in magnitude
and to account for the magnification effect of the cluster. More precisely, the num-
ber Ngg of observable GGSL events involving sources at redshift zs with magnified
magnitude mµ is given by the product of the GGSL cross-section and the number
density of sources at redshift zs with magnified magnitude mµ. The latter quantity
is obtained from the unlensed distribution of sources Ns at redshift zs taking into
account the two contrasting effect induced by the presence of the cluster lens. First,
the lens "bright up" sources, that is it amplifies their fluxes bringing faint sources
above the observational flux limit. We describe this effect through the magnifica-
tion probability distribution P (µ, zs). Second, since the magnification amplify not
only the sources but also the area in between them, the number density of source is
diluted. We describe this effect through the function f(zs). The net effect is called
magnification bias. Summarizing, the numberNgg of observable GGSL events is given
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by

Ngg(zs,mµ) = σgg(zs)
Nls(zs,mµ)

A
(5.5a)

= σgg(zs)
Ns(zs,m)

A
∗ P (µ, zs) ∗ f(zs) (5.5b)

where Nls(zs,mµ) is the number of lensed sources at redshift zs with amplified
magnitudemµ observed in a portion of the sky of areaA. A more precise description
of the functions f(zs) and P (µ, zs) is given in the next sections.

5.7.1 Calculation for MACSJ1149

We calculate the GGSL cross-section σgg of MACSJ1149 using the reference model
by Kawamata et al., 2016. Since we do not know the true, unlensed source distri-
bution behind MACSJ1149, we have to assume one on the basis of existing galaxy
survey data. In order to do meaningful comparison with CLASH observations (lim-
iting magnitude ≈ 27.5 in the F814W band), we need to apply the magnification
probability distribution to a deep catalog like the Hubble Ultra Deep Field (HUDF)
catalog (Rafelski et al., 2015, Fig. 5.17), which has a limiting magnitude of 29.5 in
the HST F775W band (effective wavelength of 7693 Å). Unfortunately, HUDF has a
very small field (11.4 arcmin2 only) so it is likely affected by cosmic variance. The
wide-field survey COSMOS (1.73 deg2) (Ilbert et al., 2009, Fig. 5.18) is much wide,
but the photometric redshift catalog has a limiting magnitude of ≈ 25 only (Subaru
i+ band, effective wavelength of 7629 Å).

In order to exploit both the dept of HUDF and the width of the COSMOS field,
we have decided to combine them. If one simply correct the HUDF counts account-
ing for the smaller field finds, for m < 25 and z > 0.544, ≈ 22% less galaxies with
respect to COSMOS. Due to the greater robustness of COSMOS counts, we re-sample
the HUDF catalog in order to match the COSMOS magnitude distribution. In partic-
ular, we describe the COSMOS magnitude distribution using the fitting functional

N(m) = B × 10A×m (5.6)

as done by Leauthaud et al., 2007 for 20 < i+ < 26, and extending it down to the
HUDF magnitude limit. Here N has units of number deg−2 0.5 mag−1, A = 0.332
and logB = −3.543. Thus, in each magnitude bin between 25 < m < 29.5 we adjust
the number of the HUDF sources randomly sampling the observed distribution and
replicating the extracted sources. In this way, we construct the redshift and magni-
tude distribution of unlensed sources Ns(zs,m). The left panel of Fig. 5.19 shows
the magnitude distribution of all sources in this new catalog, irrespective of their
redshift, compared to the functional in Eq. 5.6.

The magnification probability P (µ, zs) is obtained from maps of magnification
on the source plane. The magnification on the source plane does not coincide with
the magnification on the image plane defined in (2.26): the former is the total magni-
fication of the source flux, while the latter describes the magnification of each image
of the source. The magnification on the source plane can be derived from the mag-
nification on the lens plane tracing light rays back to the source plane and adding
up magnifications relative to all images of the same source. We derive maps of this
quantity for the reference model of MACSJ1149, for different redshifts of the source
plane, using a FORTRAN code. Then, P (µ, zs) is simply given by the fraction of
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FIGURE 5.17: Hubble Ultra Deep Field catalog. Left: magnitude dis-
tribution of detected sources. Right: redshift distribution of detected

sources.

FIGURE 5.18: COSMOS photometric catalog. Left: magnitude distri-
bution of detected sources. Right: photometric redshift distribution

of detected sources (black solid line) from Ilbert et al., 2009.

FIGURE 5.19: Magnitude distribution of sources in the unlensed (left)
and lensed (right) "COSMOS+HUDF" catalog obtained considering
the lensing properties of MACSJ1149, as explained in the text. The
dashed line is the fitting functional (5.6) used to construct the un-

lensed catalog for mag > 25.
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FIGURE 5.20: Left: probability to have a source magnified more than
µ for different values of source redshift zs. Right: fraction of the
source plane f mapped into the observed lens plane, for different

source plane redshifts zs. Both panels are relative to MACSJ1149.

pixels with magnification µ in the map calculated for the source redshift zs. The
left panel of Fig. 5.28 displays P (> µ, zs) =

∫∞
µ P (µ, zs)dµ. A random sampling

of this probability distribution allows us to assign a new, amplified magnitude to
each source in the combined COSMOS+HUDF catalog, thus obtaining the lensed
sources magnitude distribution. As shown in the right panel of Fig.5.19, the high
lensing power of MACSJ1149 amplifies almost all considered sources up to magni-
tudes ≈ 27.5, the value we take as the lower limit for detection. If we had a deeper
unlensed catalog, probably more faint sources would be brightened up above this
limit. For this reason, our calculation will give a lower limit to the number of ex-
pected GGSL events.

The function f(zs) can be easily estimated by the same maps of magnification on
the source plane as

f(zs) =
As(zs)

A
(5.7)

where A is the area of the observed portion of the sky and As is the corresponding
area on the source plane. We considered a region of 160×160′′ centered on the cluster
center. The behavior of f as a function of zs is shown in the right panel of Fig. 5.20.
Some examples of magnification maps are shown in Fig. 5.29.

Now it is possible to apply (5.5b) and calculate the number of expected observ-
able GGSL events in a CLASH-like observation. Since we are interested in the total
number of events, independently of source redshift and magnitude, we integrate
Ngg over z and m, obtaining:

Ntot =

∫ 6

0.544
dzs

∫ 27.5

0
dmµNgg(zs,mµ) ≈ 0.29. (5.8)

MACSJ1149 hosts one known GGSL event, the one involving SN Refsdal de-
scribed in Sect. 3.2.2. This result may indicate some defect in the considered lensing
model, in particular in the assumed scaling relations used for substructures model-
ing (see Sect. 5.6.1). However this number has to be taken as a lower limit since, as
explained before, the unlensed catalog we consider is not enough deep to correctly
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FIGURE 5.21: magnification on the source plane (left: zs = 0.6; right:
zs = 6.0) for the cluster MACSJ1149. Higher magnifications arise at
caustics. The white portion of the map near borders, clearly visible
in the right panel, is the fraction 1-f(zs) of the source plane that is
not visible to the observer due to lensing. In other words, only the
remaining fraction f of the source plane is mapped into the observed
field. On higher redshift source planes one has generally higher mag-
nifications but lower values of f (see also Fig. 5.20). Both maps have

sides of 160”, centered on the cluster center.
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FIGURE 5.22: Left: number density of background sources derived
applying the procedure described in the text to our COSMOS+HUDF
catalog truncated at mag 6 27.5. Right: number of expected GGSL
events in MACSJ1206 in each source redshift bin. The anomaly at

zs ≈ 2.5 reflects the redshift distribution of the HUDF catalog.

reproduce the density of sources with observable magnitude up to ≈ 27.5. More-
over, the reliability of the modeling approach used by Kawamata et al., 2016 was
proven also by Meneghetti et al., 2016, who perform a comparison between different
mass reconstruction algorithms. As displayed in Fig. 5.23, GLAFIC is one of the
codes which better reproduces the true substructure mass distribution.
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FIGURE 5.23: Comparison between different mass reconstruction al-
gorithms (Meneghetti et al., 2016). Red histograms show the distri-
butions of the ratios between reconstructed and true substructures
masses. In each panel is shown the median r and the 25-th and 75-
th percentiles of the distribution. The best algorithms are those with
r close to unity and narrow distributions of m/mtrue. The models
relevant to our discussion are those labeled as "CATS" and "Johnson-

Sharon", created with LENSTOOL, and the GLAFIC model.
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5.7.2 Calculation for MACSJ1206

We have applied the same kind of test to the cluster MACSJ1206. This cluster (Fig.
5.24), discovered during the MAssive Cluster Survey (MACS, Ebeling, Edge, and
Henry, 2001), is an X-Ray luminous cluster of galaxies located at coordinates 12 :
06 : 12.15 (R.A.), −08 : 48 : 03.4 (Dec) and at redshift z = 0.44. As MACSJ1149, it
was included in the CLASH survey (Postman et al., 2012). From the comprehensive
analysis by Umetsu et al., 2016 (Fig 5.25), MACSJ1206 has a virial mass of Mvir =
18.17 ± 4.23 × 1014M� and a concentration cvir = 3.7 ± 1.1 (reported as M200c and
c200c by the authors). In this work, we take as reference model for MACSJ1206 the
strong lensing model by Caminha et al. (in preparation).

The model, obtained with LENSTOOL code, consists of three large-scale PIEMD
halos and 265 PIEMD substructures. Substructures were modeled using the follow-
ing scaling relations, corresponding to a constant mass-to-light ratio:

σi = σ∗L
1/4
i (5.9a)

rt,i = rt,∗L
1/2
i (5.9b)

rc,i = rc,∗L
1/2
i (5.9c)

where Li are substructures measured luminosities and σi, rt,i and rc,i are substruc-
tures velocity dispersions and truncation and core radii. The best fit values for σ∗
and rt,∗ are σ∗ = 280.472158 km/s and rt,∗ = 3.015359′′; rc,∗ was set to 0.01′′. The
model includes also an external shear due to the surrounding distribution of matter.

The procedure used to obtain the number of expected observable GGSL events
in MACSJ1206 is the same described for MACSJ1149. We calculate the GGSL cross-
section σgg of MACSJ1206 using the reference model by Caminha et al. (in prepara-
tion). The result is shown in Fig. 5.26, compared to the cross-section of the reference
model of MACSJ1149. The lensed COSMOS+HUDF catalog magnitude distribution
of sources is shown in the right panel of Fig. 5.27. The magnification probability
distribution for this cluster is shown in Fig. 5.28, together with the function f(zs).
Examples of magnification maps for this cluster are shown in Fig. 5.29. The resulting
number of expected observable GGSL events in MACSJ1206 is

Ntot =

∫ 6.0

0.440
dzs

∫ 27.5

0.0
dmµNgg(zs,mµ) ≈ 1.22. (5.10)

MACSJ1206 hosts at least 2 GGSL events (see Sect. 3.2.2) thus, similarly to what
found for MACSJ1149, the model predicts a smaller number of observable GGSL
events than observed. This fact may indicate some error in the modeling proce-
dure, like the assumption of a constant mass-to-light ratio for galaxies. However,
as for MACSJ1149, some inaccuracy could come from the method we employed to
construct our COSMOS+HUDF catalog. The good performances of LENSTOOL in
cluster modeling was proved by Meneghetti et al., 2016, as shown in Fig. 5.23.
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FIGURE 5.24: True color image of the cluster MACS1206, ob-
tained from HST data collected during the CLASH survey (credits:

NASA/ESO).
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FIGURE 5.25: Surface mass density profile of MACSJ1206 derived
by Umetsu et al., 2016 from a joint analysis of HST strong/weak-
shear lensing and ground-based weak shear/magnification lensing
data (black squares). Red dots are relative to the lensing model by
Merten et al., 2015. Error bars represent the 1σ uncertainty. The gray

area shows the best-fit NFW profile (1σ uncertainty).

FIGURE 5.26: Galaxy-galaxy strong lensing cross-section for the ref-
erence models of MACSJ1206 (Caminha et al., in preaparation) and

MACSJ1149 (Kawamata et al., 2016).
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FIGURE 5.27: Magnitude distribution of sources in the unlensed (left)
and lensed (right) "COSMOS+HUDF" catalog obtained considering
the lensing properties of MACSJ1206, as explained in the text. The
dashed line is the fitting functional (5.6) used to construct the un-

lensed catalog for mag > 25.

FIGURE 5.28: Left: probability to have a source magnified more than
µ for different values of source redshift zs. Right: fraction of the
source plane f mapped into the observed lens plane, for different

source plane redshifts zs. Both panels are relative to MACSJ1206.
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FIGURE 5.29: magnification on the source plane (left: zs = 1.0; right:
zs = 8.0) for the cluster MACSJ1206. Higher magnifications arise at
caustics. The white portion of the map near borders, clearly visible
in the right panel, is the fraction 1-f(zs) of the source plane that is
not visible to the observer due to lensing. In other words, only the
remaining fraction f of the source plane is mapped into the observed
field. On higher redshift source planes one has generally higher mag-
nifications but lower values of f (see also Fig. 5.28). Both maps have

sides of 160”, centered on the cluster center.

FIGURE 5.30: Left: number density of background sources derived
applying the procedure described in the text to our COSMOS+HUDF
catalog truncated at mag 6 27. Right: number of expected GGSL
events in MACSJ1206 in each source redshift bin. The anomaly at

zs ≈ 2.5 reflects the redshift distribution of the HUDF catalog.
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Chapter 6

Conclusions

Thanks to the availability of deep observations of massive galaxy clusters, like those
provided by the CLASH and Frontier Fields surveys, several strong lensing events
between a cluster member and a background source were discovered and studied in
detail. Their characterization give us useful constraints for the mass modeling of the
lens galaxy and of the whole cluster. However, in the state-of-the-art hydrodynam-
ical simulations of galaxy clusters, the paucity of critical lines around substructures
suggest that this kind of event is very rare. This apparent contrast between the-
ory and observations is the reason which lead us to analyze the phenomenology of
GGSL events in galaxy clusters. In particular, we studied how the physical proper-
ties of galaxy clusters affect the likelihood to observe GGSL events. We quantified
this probability defining the GGSL cross-section as the area of tangential caustics
formed by substructures. In fact, a source located inside such a tangential caustics is
multiply imaged around a cluster member.

Firstly, we looked for a possible relation between the galaxy-galaxy strong lens-
ing cross-section and the inner slope and concentration of the cluster mass profile.
Then, we considered the subhalos mass function (SHMF) and radial distribution.
In order to pursue our goal, we built simulated galaxy cluster varying the afore-
mentioned physical parameters. This was possible using the softwares MOKA and
LENSTOOL. Combining the capabilities of these two semi-analytic codes, it was
possible to generate lensing maps of realistic clusters obeying the ΛCDM paradigm
with arbitrary resolution, both spatial and in substructures mass. To measure the
galaxy-galaxy strong lensing cross-section, we created a novel algorithm able to lo-
cate tangential critical lines around substructures (which we call "secondary critical
lines"), map them onto the corresponding caustics and measure the area enclosed.
The results obtained in this first part of the thesis can be summarized as follows.

• The largest contribution to the galaxy-galaxy strong lensing cross-section comes
from massive substructures near, but outside, the main critical line of the clus-
ter. Conversely, secondary critical lines inside the primary critical line can form
only in particular situations, and the sizes of the corresponding caustics are al-
ways negligible in the computation of the cross section.

• The inner slope of the cluster mass profile influences the galaxy-galaxy strong
lensing cross-section. In particular, fixing the cluster Einstein radius, shallower
profiles favour the occurrence of galaxy-galaxy strong lensing events. In this
case, substructures outside the Einstein radius are embedded in a higher con-
vergence environment, which facilitates the creation of secondary critical lines.

• The halo concentration has a similar effect, although its amplitude is smaller.

• The galaxy-galaxy strong lensing cross-section is sensitive to the substructures
mass function, and in particular to the high-masses cutoff. Clusters with less
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massive substructures have a smaller cross-section, upholding what we said in
the first point. Conversely, the cross-section does not show a clear dependence
to the low-mass end of the subhalos mass function.

• The substructures radial distribution function has a larger impact on the cross-
section. In clusters with more abundant substructures in the central regions it
is more likely to observe galaxy-galaxy strong lensing events.

In the second part of the thesis we tested our the previous results on a real cluster:
MACSJ1149. We took as reference a lensing model obtained exploiting CLASH and
Frontier Field observation, and we measured its cross-section. Then we built several
simulations of MACSJ1149 varying some properties with respect to the reference
model. First, we substitute the observed subhalo mass function with the ΛCDM
one. Second, we changed the positions of subhalos inside the cluster, using the radial
distribution function found in cosmological simulations. Finally, we substitute the
complex large scale dark matter distribution found in the modeling with a simple
Navarro-Frenk-White dark matter halo. In all these three cases we measured the
resulting cross-section. We found the following results.

• The difference between the observed subhalo mass function in MACSJ1149
(provided by the reference lensing model) and the standard ΛCDM SHMF
used in simulations it is not enough to see a difference in the measured cross-
sections.

• The observed radial distribution of substructures in the inner region of MACSJ1149
is notably different from what found in cosmological simulation for clusters of
the same mass. Namely, our simulations of MACSJ1149, obtained using the
same large-scale mass distribution of the reference model but positioning sub-
structures following ΛCDM prescriptions, contain much less subhalos in the
inner region. According to what previously discussed, our simulations exhibit
a substantially smaller cross-section for GGSL.

• Substituting the large-scale mass distribution of the model with a single NFW
halo we observe only a small decrease of the cross-section compared to the
previous case. That is, in this case the shape of the large-scale dark matter
distribution does not affect much the cross-section.

Finally, we use our method to check the validity of the reference model of MACSJ1149
and of an analogous strong lensing model of the cluster MACSJ1206. This has been
done comparing the number of observable galaxy-galaxy strong lensing events pre-
dicted by models and the number of observed GGSL events. In order to complete
this task, it was necessary to assume a distribution of sources behind the clusters and
to calculate the magnification effect on these sources caused by the clusters them-
selves. The first issue was faced considering a combination of the COSMOS and
Hubble Ultra Deep Field catalogs. Amplification maps on different source planes
were calculated directly from the lensing maps of the clusters. From them we have
extracted a magnification probability function that we applied to our sources cat-
alog, finding a number density of sources with observed magnitude above a fixed
observational limit. Multiplying this quantity by the clusters GGSL cross-section,
we find a lower limit to the expected number of observable events. In both cases,
models slightly underestimate the number of events. This fact may indicate some
defect in the modeling procedure, for example in the scaling relations assumed for
substructures. However, also the combination of the COSMOS and HUDF catalogs
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and the procedure of magnification of sources fluxes are not exempt from uncertain-
ties.

Given the simplicity and the flexibility of our novel algorithm (the cross-section
calculations needs deflection angles maps only) we expect to be able, in the near fu-
ture, to apply a similar analysis to all CLASH and Frontier Fields clusters, extending
our study to a more statistically significant sample of clusters.
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