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ABSTRACT 

 

Respirable fractions of airborne ambient particulate matter (PM), specifically PM10 and PM2.5, 

have been identified over the years as potential health hazards. Moreover, there is a big concern 

about potentially toxic species that can dissolve in lung fluids and bloodstream. This toxic species 

can be either organic or inorganic in origin. Due to chemical complexity, extremely small particle 

sizes, small sample size collected on filters, analysis of such samples is quite problematic. The 

technique that has a great potential for elemental speciation of fine PM inside the bulk of the filter 

is a synchrotron-based X-ray Absorption Fine Structure Spectroscopy. This technique allows to 

identify the form of an occurrence of an element in the complex mixture, complementing 

compositional elemental data obtained by X-ray fluorescence and Proton-Induced X-ray Emission 

(PIXE). Additionally, XAFS is non-destructive and sensitive to parts-per-million (ppm) 

concentration levels of many elements when the signals are detected in fluorescence configuration. 

However, it is well known that chemical composition of airborne PM on the surface differs from 

that of the core. Moreover, many studies have shown that there is a good correlation between the 

surface composition of aerosol particles and their role in environmental processes, such as 

atmospheric scavenging and cloud condensation nuclei. Therefore, an X-ray Photoelectron 

Spectroscopy was employed to investigate the surface composition of PM. XPS is a non-

destructive technique that requires minimum sample preparation. Furthermore, XANES K-edge 

spectra simulations using FDMNES code were performed in order to simulate lacking reference 

data for elements in scarce amounts. We went even further and performed FDMNES calculations 

for intermediate energy of sulphur K-edge. Previously such XAS simulations were done in solitary 

cases, therefore our interest was justified. Following the pre-edge and XANES analyses outcomes 

of the three investigated filters, and by considering the relative abundance of the metals in them, 

an EXAFS analysis at the Fe K-edge only was performed. It provided quantitative data of the 

selected metal core bonding, was performed. In particular the local atomic environment of the Fe 

site has been revealed, providing bond length referring mostly to the first coordination shell. 
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CHAPTER I INTRODUCTION 

I-1 PM 

I-1-1 Air Pollution: historical aspects 

In the 17th century, the coal burning near the palace at Westminster was forbidden by Queen 

Elizabeth I because of the offensive nature of smoke, and therefore the factories were moved away 

from London. Already in the 19th century, clinicians in England linked various lung diseases to 

air pollution. Nonetheless, a proper legislation to control air pollution was lacking in many 

industrial countries, until the major industrial air pollution episodes occurred in the Meuse Valley 

(Belgium, 1930), and in Donora Valley (Pennsylvania, United States, 1948) and in urban London 

(December 1952). In Belgium and US, air pollution was caused by excessive smoke from coal-

burning domestic appliances and industrial furnaces, whereas in London, a dense fog occurred 

during inversion weather and lasted for four days. The detected concentrations of smoke particles 

and sulphur dioxide were 10 times of normal levels. Almost 4,000 deaths occurred during or after 

the episode, mostly of elderly people with chronic heart and lung diseases. Later, in the 1970s and 

1980s many big cities had serious air pollution episodes such as Chicago, Mexico City, Lagos, 

Cairo, Tokyo etc. As a consequence, many developed countries introduced environmental 

legislation and created environmental protection agencies[8]. 

The introduction of new clean air regulations led to the reduction of pollution episodes in urban 

areas, elimination of winter smog (London-type pollution), and significantly improved levels of 

photochemical pollutants (California-type pollution) because of aggressive controls on vehicle 

exhausts and industrial fumes. But the problem of adverse health effects and excess deaths by 

airborne particulate matter (PM) in urban areas were not eliminated, as it was believed by an 

extensive review of Holland et al [9].  

The reason that PM became very important air pollutants in recent decades and their adverse health 

effects became more hazardous is that air pollution in urban areas has changed. Air pollution from 

combustion of traditional fossil fuels (biomass, coal, wood, crude oil, diesel with high content in 

sulfur) is now in much lower concentrations than 30 to 40 years ago because of better and cleaner 

technologies, but other pollutants have gained prominence, such as fine and ultrafine PM, because 

of a dramatic increase in motor vehicle use worldwide with the consequent rise in exhaust 

emissions in urban areas. Nowadays, airborne PM is found not only in big cities but also in small 

and large towns, and their size distribution and composition is now more varied, e.g. they may 

contain heavy metals, PAHs, etc.[8]. 
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I-1-2 Particulate matter composition and origins 

Particulate matter (PM) is a complex, heterogeneous mixture that changes in time and space. It 

encompasses emissions from both natural and man-made sources. Natural sources include wind-

blown dust, sea salt, volcanic ash, pollens, fungal spores, soil particles, the products of forest fires 

and the oxidation of biogenic reactive gases. Manmade sources include fossil fuel combustion 

(especially in vehicles and power plants), industrial processes (manufacturing metals, cement, lime 

and chemicals), construction work, quarrying and mining activities, cigarette smoking and wood 

stove burning. The main source of PM in urban areas is road transport in addition to the burning 

of fossil fuels in power stations and factories. Components of traffic-derived PM include engine 

emissions and wear, brake and tyre wear and dust from road surfaces. The largest single source of 

airborne PM from motor vehicles is derived from diesel exhaust (diesel fuel combustion results in 

many more particles than gasoline engines). Owing to the increase in the number of new cars with 

diesel engines in industrialised countries, diesel exhaust particles (DEPs) account for most 

airborne particulate matter (up to 90%) in the world’s largest cities. These particles are composed 

of a carbon core upon which high-molecular weight organic chemical components and heavy 

metals deposit. One of the most important distinctions of particulate pollution is based on how the 

particles are introduced into the atmosphere. [10]. 

The behaviour of particles in the atmosphere and within the human respiratory system is 

determined largely, but not wholly, by their physical properties which have a strong dependence 

on size, varying from a few nanometres to tens of micrometres. The class of coarse particles 

consists of particles having diameters greater than 2.5µm, the most widespread being PM2.5 and 

PM10.  This class includes the most visible or obvious forms of PM such as black smoke, soil, dust 

from roads and building sites, large salt particles from sea spray, mechanically generated particles, 

as well as some secondary particles. Coarse particles also include pollen, mould, spores and other 

plant parts. PM10 denotes all ambient PM (i.e. ultra-fine, fine and coarse particles) having a 

diameter of 10µm or less and are sometimes termed “thoracic” particles in that they can escape 

the initial defences of the nose and throat and penetrate beyond the larynx to deposit along the 

airways in the thorax[10]. 

I-1-3 Health hazards 

Over the years exposures to ambient PM have been related to enhanced mortality and morbidity. 

PM exposures were reported to induce oxidative stress, pulmonary inflammation and modulate the 

immune responses of the lungs. Moreover, the PM were linked to various respiratory infections 

such as pneumonia, especially among the elderly. Previously, the toxicity of PM has been related 

to the particle size and not to its composition, however in last years it is being discovered that the 
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composition of PM strongly determines its toxicity[11, 12]. Associations between chemical 

composition and particle toxicity tend to be stronger for the fine and ultrafine PM size fractions[8]. 

Janssen et al. have demonstrated, that exposure to air pollution is associated with reductions in 

lung function and growth, asthma, allergic rhinitis and respiratory infections in children. The 

reason that children are more vulnerable than adults is in the higher permeability of their airways 

to air pollutants compared to adults and the immaturity of their respiratory defence 

mechanisms[10, 13]. 
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I-2 X-ray Absorption Fine Structure Spectroscopy 

X-ray Absorption Fine Structure spectroscopy is a unique tool for studying at the atomic structure 

at a molecular level, being highly sensitive to the local structure around selected elements that are 

contained within a material. The main advantage of this technique is that it can be applied not only 

to crystals, but also to materials without a long-range order: amorphous systems, glasses, 

disordered films, solutions, liquids, metallo-proteins, and in this work, particulate matter. 

Moreover, XAFS is also an electronic spectroscopy, that measures transitions between bound 

initial states and continuum final states[14].  

I-2-1 Physics of XAFS 

XAFS is intrinsically a quantum mechanical phenomenon that is based on the X-ray photoelectric 

effect, in which an incoming X-ray photon is absorbed by an atom, followed by freeing an electron 

from an inner atomic orbital (Figure 1). The “photoelectron” wave scatters from the atoms 

surrounding the absorbing atom, creating interferences between the outgoing and scattered parts 

of the photoelectron wavefunction, which provides information about the structure, structural 

disorder and thermal motions of neighbouring atoms. Other phenomena occurring are heat, X-ray 

fluorescence and production of electrons (the detection of which is at the basis of an X-ray 

photoelectron spectroscopy experiment), and of course the scattering of X-rays which is another 

fundamental X-ray-material interaction. This scattering could be either coherent, also called elastic 

(i.e., X-ray diffraction, where the scattered photons interfere with each other) or incoherent, 

leading to the family of inelastic scattering-based techniques[3]. 

 

Figure 2 Interaction of X-rays photons with matter (taken from Giorgetti M.)[3] 
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As displayed at the bottom of Figure 1, the absorption of X-rays can be measured quantitatively, 

and it follows a similar exponential decay given by the Beer-Lambert law which describes optical 

transitions. The quantity of interest here is called linear absorption coefficient and it can be 

considered analogous to the absorbance in UV-vis spectroscopy. It is measured in [cm−1]. Actually, 

because of its applicability to all states of matter, it is more convenient to use the mass absorption 

coefficient μm obtained by normalization to the density of the material ρ, that is, (μ/ρ); therefore, 

the dimension becomes [cm2/g]. The absorption coefficient describes how strongly X-rays are 

absorbed as a function of energy E. In general, matter becomes more transparent to X-rays at 

higher energies; that is, X-rays are more penetrating following a decreasing function proportional 

to (1/E3) of the absorption cross-section μ(E). However, at specific energies that are element-

specific, there is a sudden increase in the cross section, also called X-ray absorption edge. This 

dramatic increase of the absorption is due to the photoelectric effect[3, 14]. In order to observe 

such an edge, the X-ray photon has to have a sufficient energy to liberate electrons from the low-

energy bound states in the atoms. Absorption edges were first measured by Maurice de Broglie in 

1913, and in 1920 Hugo Fricke first observed the “fine structure” – energy-dependent variations 

in μ(E). Afterwards, despite the enthusiasm about this new technique, the theoretical explanation 

of XAFS remained vague. Only in the 1970s Stern, Sayers and Lytle had clarified the essential 

points of a theory of XAFS and showed that XAFS could be a practical tool for structure 

determination.  

The X-ray photoelectric process which gives rise to such an absorption is summarized in Figure 2. 

An X-ray photon is absorbed by an atom, and the excess energy is transferred to an electron which 

is expelled from the atom, leaving it ionized. This electron is called photoelectron, and we will see 

how it is responsible for the EXAFS mechanism. The electron vacancy created in the photo 

absorption process leaves the atom in a very unstable condition and therefore two competing 

processes may occur. The first is X-ray fluorescence, in which a higher energy core-level electron 

fills the deeper core hole, emitting an X-ray of well-defined energy. This provides a unique 

signature of the atoms constituting the material once those photons are collected by a detector, as 

in X-ray fluorescence spectroscopy (XFS). The second process (for de-excitation of the core hole) 

is the Auger effect, in which an electron drops from a higher electron level and consequently, a 

second electron is emitted into the continuum. The measurement of these electrons is made 

possible by Auger spectrometers. In the hard X-ray region (>2 keV), X-ray fluorescence is more 

likely to occur than Auger emission, but for lower energy the Auger process dominates. 
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Figure 1 The photoelectric absorption process which creates a core hole, and its relaxation by fluorescent X-ray 

emission or Auger electron emission (taken from Giorgetti M.)[3] 

 

I-2-2 XANES and EXAFS regions 

X-ray Absorption Near Edge Structure (XANES) starts at absorption edge (Eo) and spans for 

approximately 30 eV. In this region a core electron is excited into a bound empty valence state. 

The shape and intensity is characteristic of the oxidation state, number and type of atoms bonded 

to the excited atom. Intense peaks at the top of the edge are historically called “white lines”, 

because of their appearance on photographic plates[14]. The most common and the simplest 

interpretation of the XANES region is an identification of the oxidation state of an element. When 

the electron density around the absorbing atom decreases, its affinity towards electrons increases, 
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resulting in the shift of the absorption edge to slightly higher energies. These shifts of the order of 

few eV act as fingerprints of specific oxidation states. Generally, the edge energy is assigned as 

the position of first inflection point at the absorption edge, or the maximum at the derivative 

spectrum.  

Additionally, by employing linear combination fitting techniques (LCF), the amounts of different 

components giving unique spectral features to XANES spectra, can be determined. This is made 

possible by the peculiar property of mass-absorption coefficients, which can be added together 

when multiple components are present. Also, XANES spectra can also be calculated. Among 

several programs performing such calculations, in this work the FDMNES code was employed.  

The FDMNES (Finite Difference Method Near Edge Structure) package is an ab initio code, which 

is based on building clusters around the absorbing atoms and performing several independent 

calculations when there are several non-equivalent absorbing atoms[15]. 

Another part of the XAS spectrum that comes after the XANES region and ranges to approximately 

1000 eV above the edge is called Extended X-ray 

Absorption Fine Structure spectrum (EXAFS). The 

EXAFS phenomenon arises from the quantum-

mechanical interference resulting from the scattering 

of a photoelectron by the potential of the surrounding 

atoms.  

This is seen from Figures 3 and 4 where the 

photoelectron emitted by the photoabsorbing atom 

(blue) propagates as a spherical wave and spreads 

out over the solid. At this point the mechanism can 

be different in case of an isolated atom (Figure 3) or 

a coordinated atom on (Figure 4). In the latter case, 

the emitted photoelectron is reflected off by the 

neighbouring atoms (yellow) to the absorbing atom 

and so does every atom in the material. The 

amplitude of all the reflected electron waves adds 

either constructively or destructively to the spectrum 

of the absorbing atom and hence the X-ray 

absorption coefficient exhibits the typical oscillations 

depicted at Figure 4 (bottom).  

Figure 2 Emission of a photoelectron for an isolated 

atom (adapted from Giorgetti M.)[3] 
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A crucial issue is the recognition that the 

photoelectron is not infinitely long lived but decays 

as a function of time and distance, therefore, the 

EXAFS cannot probe long-range distances. EXAFS 

can give only local structural information, of about 

several angstroms around the selected atomic 

species. Of course, this mechanism does not happen 

in the case of isolated atoms like Ar gas, which leads 

to the corresponding X-ray absorption edge to appear 

featureless as observed in Figure 3 (bottom). From 

the time frame of the EXAFS phenomenon it is 

helpful to underline that this takes place at a time 

scale much shorter than that of atomic motion (also 

vibrations), so the measurement is a sum of 

instantaneous spectra of molecules at different stages 

of their vibrational cycle. This results in a damping 

of the EXAFS oscillations and is normally 

considered in the data analysis by means of an 

EXAFS Debye-Waller like factor. EXAFS should be 

considered as a bulk technique, because all the 

materials under investigation contribute to the overall 

shape of the XAS spectrum. As the oscillations in absorption are related to neighbouring atoms, 

the EXAFS region gives information about the number and type of neighbouring atoms and their 

distance to the absorbing atom [3, 16]. As a customary, in order to obtain the relevant structural 

parameters from an EXAFS features the experimental spectrum is fitted with a suitable structure. 

In this work, the fit obtained for an Fe K-edge case will be presented.  

I-2-3 Synchrotron radiation 

At the same time as XAFS spectroscopy was developing, research on synchrotron radiation was 

equally progressing. In the 1970s, when Stern, Sayers and Lytle were completing XAFS theory, 

the first synchrotron radiation facilities were developed. Nowadays, almost all XAFS experiments 

are performed at Synchrotron Radiation Sources (SRS) due to a high energy tuneable X-ray beams 

that are produced there. SRSs were the “bonuses” coming from high-energy physics experiments, 

which were later adapted to produce high-energy electromagnetic radiation with desirable spectral 

characteristics. Electrons moving close to the speed of light within an evacuated pipe are guided 

Figure 3 Emission of a photoelectron for a 

coordinated atom. The absorption coefficient 

measured at a central atom threshold shows a fine 

structure due to the presence of neighboring 

atoms (adapted from Giorgetti M.)[3] 
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around a closed path of 100-1000 meters circumference by vertical magnetic fields. When the 

trajectory bends, the electrons accelerate (change velocity vector). Accelerating charged particles 

then emit electromagnetic radiation[14].   

I-3 X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy was developed in the mid-1960s by Kai Siegbahn and his 

research group at the university of Uppsala, Sweden. The technique was first called ESCA 

(Electron Spectroscopy for Chemical Analysis). Later, in 1981, Siegbahn was awarded the Nobel 

Prize for Physics for his work with XPS. 

The XPS experiment is based on irradiating a solid in vacuo with monoenergetic X-rays and by 

analysing the energy of the electrons emitted. The spectrum is a plot of the number of detected 

electrons per energy interval versus their kinetic energy. Each element has a unique spectrum with 

the mixture of elements giving the sum of the peaks of individual constituents. As the mean free 

path of electrons in solids is very small, the detected electrons originate from the top few atomic 

layers only, which makes XPS unique surface-sensitive technique. Quantitative data can be 

obtained from peak heights or peak areas, and identification of chemical states can be concluded 

from the exact measurement of peak positions and separations [17].  

I-3-1 Principles of the technique 

XPS proceeds by irradiating a sample with 

monoenergetic soft X-rays, generally Mg Kα 

(1235.6 eV) or Al Kα (1486.6 eV), and by 

analysing the energy of the detected 

electrons (Figure 6). These photons 

(penetrating power 1-10 μm) interact with 

atoms in the surface region, causing the 

electrons to be emitted by the photoelectric 

effect. The emitted electrons have measured 

kinetic energy given by:  

KE=hν-BE-φs 

where hν is the energy of the photon, BE is 

the binding energy of the atomic orbital from 

which the electron originates, and φs is the 

spectrometer work function.   

Figure 5 Relative binding energies and absorption cross-

sections of uranium. The binding energy is proportional to the 

distance below the line indicating the Fermi level, and the 

ionization cross-section is proportional to the length of the 

line.[1] 
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BE is the energy difference between the initial and final states after the photoelectron has left the 

atom. As there is variety of possible final states of the ions from each type of atom, there is a 

corresponding variety of KE (Kinetic energies) of the emitted electrons. Furthermore, there is a 

different probability or cross-section for each final state. The Fermi level corresponds to zero BE 

(by definition), and the depth beneath the Fermi level in the Figure 5 indicates the relative energy 

of the ion remaining after electron emission, or the binding energy of the electron. The line lengths 

indicate the relative probabilities of the various ionization processes. The p, d and f levels become 

split upon ionization, leading to vacancies in the p1/2, p3/2, d3/2, d5/2, f5/2 and f7/2 levels. The spin-

orbit splitting ratio is 1:2 for p levels, 2:3 ford levels and 3:4 for f levels.   

As each element has a unique set of binding energies, XPS can be used to identify and determine 

the concentration of the elements of the surface. Variations in the elemental binding energies (the 

chemical shifts) come from the differences in the chemical potential and polarizability of 

compounds. These chemical shifts are used to identify the chemical state of the materials being 

analysed.  

 

Figure 6 Schematic of XPS experiment (taken from Crist V.)[18] 

In addition to the photoelectrons emitted in the photoelectric process, Auger electrons may be 

emitted because of relaxation of the excited ions remaining after photoemission. This Auger 
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electron emission occurs roughly 10-14 seconds after the photoelectric event. The competing 

emission of a fluorescent X-ray photon is a minor process in this energy range. In the Auger 

process (described previously on Figure 2 in XAFS introduction part), an outer electron falls into 

the inner orbital vacancy, and a second electron is simultaneously emitted with an excess energy. 

The Auger electron possesses kinetic energy equal to the difference between the energy of the 

initial ion and the doubly charged final ion, and is independent of the mode of the initial ionization.  

Therefore, photoionization leads to two emitted electrons - a photoelectron and an Auger electron.   

The probability of electron interaction with matter is way higher, so while the path length of the 

photons is of the order of micrometres, that of the electrons is of the order of tens of angstroms. 

Thus, while ionization occurs to a depth of a few micrometres, only those electrons that originate 

within tens of Angstroms below the solid surface can leave the surface without energy loss. These 

electrons which leave the surface without energy loss produce the peaks in the spectra and are the 

most useful. The electrons that undergo inelastic loss processes before emerging form the 

background[17].  

MOTIVATION OF WORK 
 

As described in the introduction, PM is a complex, heterogeneous mixture that changes in time 

and space. It encompasses many different chemical components and physical characteristics, many 

of which have been cited as potential contributors to its toxicity. Each component has multiple 

sources, and each source generates multiple components. Identifying and quantifying specific 

components and assigning chemical speciation represents one of the most challenging problems 

of analytical and environmental science. Generally, PM analysis is done using conventional 

techniques such as: gravimetry, inductively coupled plasma- mass spectrometry, atomic absorption 

spectroscopy etc. However, these techniques give information only about the elemental 

composition. In this work, we have successfully gone beyond the elemental characterization. By 

using core-level spectroscopy techniques we were able to obtain oxidation states, local structure 

arrangement and symmetry around selected sites and element quantification of different layers. 

Since the term speciation refers to the chemical form or compound in which an element occurs, 

this work can be considered an excellent example of chemical speciation.  
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CHAPTER II EXPERIMENTAL AND METHODS 
 

II-1 PM sampling 

Particulate matter deposited on filters were collected by the group of Prof. Laura Tositti (University 

of Bologna, Chemistry Department) from January till July 2012. For each collection, daily 

samplings of 24h duration were made. The two samples were named VADO and QUI, referring to 

their respective sampling zones.  Therefore, several filters were available for analysis, which were 

identified by their sampling number. The VADO filter deposited PM10 on two different types of 

filter (quartz and Teflon), while the QUI filter collected PM10 and PM2.5 on Teflon filters. In this 

work only two VADO filters (VADO 118 and VADO 28) and one QUI 156 filter will be analysed.  

 

The particulates were collected on two different types of filters: Teflon and quartz chosen 

according to the type of analysis planned, in order to obtain the most complete characterization of 

the particulates. Since, the PM is an extremely complex mixture where a number of organic and 

inorganic species are present, the choice of the filtering support was a critical aspect. The material 

constituting the membranes should be compatible with the type of analyte to be determined, and 

must not alter its composition through the chemical impurities. The degree of purity of the filters 

was verified every time a new set was acquired. Generally, the filters in quartz are used to 

determine and characterize the carbon fractions and the ions, while those in polymeric material are 

used to determine and characterize the inorganic fraction. The Teflon filters were used for PIXE 

analysis. 

 

The sampling instruments 

have three units as shown 

on Figure 7:  

1. Two sampling lines 

allowing the sampling of a 

particulate matter 

suspended in the 

atmosphere. Each line 

includes a sampling head 

with the function of 

collecting the exact size of 

PM, and with anti-wind 

and anti-rain properties. Figure 7 The scheme and the photo of a sampler FAI SWAM Dual Channel 

 

 (Tositti et al.) 
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2. A filtering station with one or two filtering membranes on which PM is accumulated. 

3. Two suction pumps, which intake air from the environment through the sampling heads, 

the sampling tubes and the filtering membranes located in the filtering station. 

At the end of every sampling cycle, the filters were transferred in a waste container. The operator 

could proceed to replace the filters (loading clean filters, unloading sampled filters) at any moment 

without interfering with the ongoing sampling. The two sampling pumps worked simultaneously 

and synchronously, to allow the collection of samples that are independent but perfectly equivalent 

in terms of the sampling’s time length. Furthermore, the sampler was equipped with a temperature 

controlling system, in order to limit the loss of semi-volatile species such as NH4NO3 and various 

other organic species (adapted from Tositti et al.) 

II-2 XAFS data collection 

X-ray absorption near edge structure (XANES) and Extended X-Ray Absorption Fine Structure 

(EXAFS) spectra have been recorded at the XAFS of Elettra-Sincrotrone Trieste, Basovizza, Italy 

through the project №20150161 “Airborne particulate matter: metal speciation by X-Ray 

Absorption Spectroscopy” (project leader M. Giorgetti)[19] and further in-house experiments. The 

storage ring was operated at 2.0 GeV in top up mode with a typical current of 300 mA.  Data have 

been recorded at the S, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn K-edges. The white beam was 

monochromatized using a fixed exit monochromator equipped with a pair of Si (111) crystals. 

Harmonics were rejected by using the cut-off of the reflectivity of the Platinum mirror placed at 3 

mrad with respect to the beam upstream the monochromator and by detuning the second crystal of 

the monochromator.   

Internal reference of Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn foils were used for energy calibration 

in each scan. The first inflection point for Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn was set at 4038.5, 

4966, 5465, 5989.9, 6539.0, 7112, 8333, 8979 and 9659 eV, respectively. This allowed a 

continuous monitoring of the energy during consecutive scans. No energy drifts of the 

monochromator were observed during the experiments. Spectra were collected with a constant k-

step of 0.03 Å-1 with 3s/point acquisition time from 2200 to 3500 (S K-edge); from 3800 to 4800 

eV (Ca K-edge); from 4700 to 5500 (Ti K-edge); 5200-6000 eV (V K-edge); 5700 to 6500 eV (Cr 

K-edge); from 6300 to 7100 (Mn K-edge); from 6900 to 7700eV (Fe K-edge); from 8100 to 8900 

eV (Ni K-edge); 8700 to 9400 eV (Cu K-edge) and from 9400 to 10500 (Zn K-edge). 

Spectra have been collected in fluorescence mode with the sample positioned at 45° with respect 

to the beam. The total fluorescence yield is measured as a function of the X-ray energy using a 

silicon drift KETEK detector. More than one spectrum was collected per each sample. The spectra 

were then averaged and normalized according to the standard procedure using the ATHENA 

program[20]. 
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II-3 XPS data collection 

Surface chemical characterization was performed using XPS in a Thermo Scientific Escalab 220i-

XL spectrometer. Samples of ~0.25 cm2 of VADO 118 and ~0.09 cm2 of VADO 28   were 

supported on the sample holder with a carbon tape. For all XPS measurements the base pressure 

in the analyzer chamber was 1.0*10-8 mbar or less. The samples were excited by Al 

Kα (1486.68 eV) radiation from an Aluminium-Magnesium-twin-X-ray tube.  Two lens modes 

were used: large area (LAE) and large area-XL (LAXL) depending on the size of the probe. When 

the latter mode was utilized the samples were irradiated with electron gun (flood gun) to prevent 

a positive charge accumulation. The layer composition and depth profiles of the VADO 118 and 

VADO 28 filters were investigated by sputtering with 1 keV Ar+ ions. The etching time was varied 

as 2, 10 and 30 min for VADO 118 filter and 10 min for VADO 28 filter.  

The measurement parameters for the survey (white background) and detailed spectra (blue 

background) of the filters are summarized in Table 1 below. The measurement conditions were 

kept constant for all VADO 118 samples, and varied slightly for VADO 28 and QUI 156 as 

indicated in below.  

 

Filter code Sputtering 

time 

(min) 

Energy  

range 

 (eV) 

Pass 

energy 

(eV) 

Step 

size  

(eV) 

Dwell 

time (ms) 

Number 

of scans 

Lens 

mode 

QUI 156 0 -5 --1205 50 1 100 1 LAE 

VADO 118 0, 2, 10, 30 -5 -- 1205 50 0.5 100 1 LAE 

VADO 28 10 -5 -- 1205 50 0.5 100 1 LAXL 

QUI 156 0, 2, 10, 30 Depending 

on the  

element 

  

10 0.1 300 5 LAE 

VADO 118 0, 2, 10, 30 20 0.1 300 4 LAE 

VADO 28 “old” 10 20 0.1 300 4 LAXL 

VADO 28 “new”   10  50 0.1 300 4 LAXL 

Table 1 XPS measurement parameters 

The data acquisition was performed using Thermo Scientific™ Avantage Software and data 

analysis with UNIFIT 2016 software[21, 22]. First the background was fitted using Shirley 

function followed by curve fitting using a convolution of Gaussian and Lorentzian functions.  
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II-4 FDMNES package details 

The FDMNES (Finite Difference Method Near Edge Structure) package is an ab initio code, which 

is used to calculate the XANES (X-ray absorption near edge structures) spectra, which extend up 

to around 50 eV after the absorption edge.  It builds clusters around the absorbing atoms 

performing several independent calculations when there are several non-equivalent absorbing 

atoms[15]. The challenging problem is  to compute the final states, which depend on the local 

atomic structure, while  the initial state is a core state easy to calculate. There are different ways 

to calculate these final states. One of them uses the local density approximation by considering 

clusters using the multiple scattering (MS) theory. Generally, MS theories use a muffin-tin 

approximation: averaging of the potential needed for the expansion of the wave functions. This 

approximation assumes the spherical shape of the potential in the atomic and outer sphere regions 

and volume averaged in the interatomic regions, which makes the results depend on the size of the 

interstitial region. 

Another way to solve the Schrodinger equation using the local density approximation which avoids 

the muffin-tin approximation is the finite-difference method (FDM). The first formulation of FDM 

to solve the Schrodinger equation was given in the 1930s.  

II-4-1 Finite difference method 

In the FDM method a general way to solve 

differential equations by discretizing them over a 

grid of points in the whole volume where the 

calculation is made (Figure 8). In XANES, the 

equation is solved over a spherical volume, centred 

on the absorbing atom and the radii extending over 

a sufficiently large cluster. Inside this sphere the 

classical FDM equation is used. However, close to 

the ion core, the kinetic energy of the electron is 

very high, whereas in the region between two ion 

cores, it is much lower. A way to solve this 

discrepancy is in performing an expansion in 

spherical waves in very little sphere around the atomic cores (0.5-0.7Å), assuming that potential 

is quite spherically symmetric in these areas. After writing the Schrodinger equation on all points 

of the grid, the potential must be introduced in the general matrix. As usual in standard XANES 

calculations, the local density approximation is used to calculate the potential. The FDM 

Figure 8. General view of the region of calculation 

around the absorbing atom. Symmetry planes are 

used to reduce the area of calculation. This one is 

divided in three zones: (1) around the atomic cores, 

(2) between the atoms where the standard FDM 

calculation is used, (3) the outer sphere region. White 

points are at the boundary of the ion core. Gray points 

are at the boundary of the outer sphere (adapted from 

Joly et al.)[5] 
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formulation allows no approximation of the shape of the potential, thus avoiding the problem 

related to the classical muffin-tin approximation.  

 II-4-2 Muffin-tin calculations 

The muffin-tin approximation corresponds to a monopolar representation of the potential and the 

potential in the interstitial region is constant. Overlapping muffin-tin spheres are used to take into 

account a part of the scattering power of the interstitial area. The use of overlapping spheres 

approximation is mathematically wrong, however when it is up to 10-15%, the advantages 

overcome the error. Sometimes, relatively good artificial agreement can even be reached when 

changing the interstitial potential and the muffin-tin radius. In order to have the best possible MS 

muffin-tin calculation, a muffin-tin radius and the interstitial potential value should be chosen 

carefully. The best radius is the one which minimizes the potential jump between the sphere and 

the interstitial area. For a muffin-tin approximation, generally a 10% to 15% overlap is used, 

because it has empirically been observed by the authors that with such overlap that the agreement 

with experiment is often the best [5].  

II-4-3 The general procedure  

All the sequences of the spectra calculations can be summarized in the following way: 1) From the 

molecule or the unit cell atom positions the code evaluates the non-equivalent and equivalent 

atoms with the symmetry operation relating them to each other. 2) For each non-equivalent and 

absorbing atom, a cluster is formed around it with a radius chosen by the user. The point group is 

evaluated, giving the shape of the scattering tensors and the useful representation to calculate. 3) 

For each cluster the final states are calculated. One of the two methods are chosen by the user: the 

finite differences method (FDM) or the multiple scattering theory (MST), the latter within the 

limits of the muffin-tin approximation (MT)[15]. The FDM is time consuming, so generally we 

start with MT approximation.  

II-4-4 Details of the calculations 

To interpret X-ray near-edge absorption spectra, we performed theoretical calculations in the 

framework of the MST within the MT potential approximation and the finite difference method 

with a full potential. Both methods were implemented in the FDMNES (2016) code (Joly, 2001). 

As mentioned earlier, the calculations started using MT approximation, but this method failed to 

reproduce spectral features, therefore only spectra calculated using FDM are presented here. 

Another thing to note is that the calculations were executed with a number of different sulphates, 

however only sodium sulphate was measured experimentally by us, therefore it is the only sulphate 

presented here. 
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For sodium sulphate spectra calculations clusters with radii of 6 Å and for sodium sulphate 

decahydrate clusters of 4.1 Å and 6 Å are presented here. The unit-cell parameter for 

Na2SO4*10H2O was taken from Ruben et al. with a space group P21/c [23]; for anhydrous Na2SO4 

from  Neues et al., Mincryst card №4721 [24]; for Na2SO3 crystal structure information was taken 

from Zachariesen et al., with the space group C3i  [25] and for sphalerite ZnS from Wyckoff et al., 

Mincryst card №4449[24]. The experimental sphalerite spectrum was taken from ESRF sulphur 

XANES database[26]. 
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CHAPTER III RESULTS 
 

In order to perform a full characterization of the particulate matter deposited on filters, both bulk 

and surface analyses were carried out. This section is therefore organized as follows. The starting 

point were PIXE (Figure 9) and X-ray fluorescence response experiments, which allowed to list 

the elements present in the filters. The X-ray fluorescence response for QUI 156, VADO 118 and 

VADO 28 is reported in the Appendix Figures A1, A2 and A3, respectively. As it is shown below 

on Figure 9, sulphur is a dominant inorganic non-metal element in the PM. Also, large quantities 

of Na, Mg, Al, Ca and Fe metals are present. These experiments set the feasibilities for each metal 

core K-edge experiments. Then, considering the concentrations of elements and peculiarities of 

synchrotron radiation experiment, a number of elements were analysed by XAS experiment (bulk) 

depending on their relative concentration. Later, K-edge reference spectra of reference compounds 

were recorded for these elements. In case of the absence of experimental reference data, XANES 

calculations using FDMNES code were performed. Finally, in order to analyse the surface of the 

filters, XPS experiments were carried out.  

 

 

 

 

 

Figure 9 Element concentrations in QUI 156, VADO 118 and VADO 28 filters by PIXE analysis (data was kindly 

provided by the group of Prof. Tositti) 
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III-1 XANES 

III-1-1 Results obtained with experimental reference XANES spectra 

III-1-1-1 Sulphur 

Sulphur was present in all filters according to PIXE elemental analysis and fluorescence response 

data, and in VADO 28 filter there was more sulphur, 11.2 μg/cm2, than in VADO 118 and QUI 

156 filter (roughly equal amounts of 7.9 μg/cm2 ). The comparative XANES S K-edge spectra of 

all filters are shown below on Figure 10. As we can see the VADO 28 has a weak peak at lower 

energies which is absent in other filters. QUI 156 filter shows more evident spectral features than 

the VADO filters.  

 

 

The results of linear combination fitting for VADO 28 performed in ATHENA are demonstrated 

below on Figure 11 and fits for QUI 156 and VADO 118 filter can be found in the Appendix 

Figures A4 and A5. 

 

 

Figure 10 Comparative sulfur K-absorption edge spectra of VADO 118, VADO 28 and QUI 156 filters 
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Figure 11 Results of linear combination fitting in ATHENA of S K-edge spectrum of VADO 28 filter 

 

 

III-1-1-2 Zinc  

Zinc was present in all filters according to PIXE elemental analysis and fluorescence response 

data, but Zn K-edge spectra were collected only for QUI 156 and VADO 118. The comparative 

XANES Zn K-edge spectra of all filters are shown below on Figure 12.  

 

Figure 12 Comparative zinc K-edge XAFS spectra of the QUI 156 and, VADO 118 filters 
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The results of linear combination fitting for QUI 156 performed in Athena are demonstrated above 

on Figure 13 and fits for VADO 118 filter can be found in the Appendix Figure A6. 

III-1-1-3 Calcium  

Calcium is present in abundance in all samples according to PIXE elemental analysis and 

fluorescence response data, therefore Ca K-edge spectra were collected for all filters. The 

comparative XANES Ca K-edge spectra of all filters are shown below on Figure 14.  

 

Figure 13 Results of linear combination fitting in ATHENA of QUI 156 Zn K-edge XANES spectrum 

Figure 14 Comparative calcium K-edge XAFS spectrum of the QUI 156, VADO28 and VADO 118 filters 
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Results of linear combination fitting for VADO 118 performed in Athena are demonstrated above 

on Figure 15 and fits for QUI 156 and VADO 28 filters are shown in the Appendix Figures A7-8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 Results of linear combination fitting in ATHENA of VADO118 Ca K-edge XANES spectrum 
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III-2-1-4 Iron  

Iron was found in all filters according to fluorescence response data and PIXE elemental analysis, 

especially in abundance in QUI 156 filter, 13.89 μg/cm2. The comparative XANES Fe K-edge 

spectra of all filters are shown below on Figure 16. The results of linear combination fitting for 

QUI 156 performed in Athena is demonstrated below on Figure 17 and fits for VADO 118 and 

VADO 28 filters are shown in Appendix Figures A9 and A10. 

 

 

 

Figure 16 Comparative iron K-edge XANES spectrum of the QUI 156, VADO 28 and VADO 118 filters 

Figure 17 Results of linear combination fitting in ATHENA of QUI 156 Fe K-edge XANES spectrum 
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III-1-2 Results obtained with calculated reference XANES spectra 

III-1-2-1 Manganese  

Manganese was present in all filters according to PIXE elemental analysis and fluorescence 

response data, but the amounts were rather low for VADO filters. QUI 156 filter had higher amount 

of Mn, 0.256 μg/cm2. The comparative XANES Mn K-edge spectra of all filters are shown below 

on Figure 18.  

 

 

Results of linear combination fitting for VADO 28 performed in Athena are demonstrated below 

on Figure 19. The fits for QUI 156 and VADO 118 filters are demonstrated Appendix Figures A11 

and A12. 

Figure 18 Comparative manganese K-edge XAFS spectra of the QUI 156, VADO28 and VADO 118 filters 

Figure 19 Results of linear combination fitting in ATHENA of VADO 28 Mn K-edge XANES spectrum 
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III-1-2-2 Chromium  

Chromium was present in all filters, but in very small amounts. From fluorescence response data 

and PIXE elemental analysis, QUI 156 filter has the highest amount of 0.041 μg/cm2, therefore the 

Cr K-edge spectrum of QUI filter only was recorded. No reference data were collected for Cr 

samples, so the speciation was performed based on theoretical calculations only. The results of 

linear combination fitting for QUI 156 performed in Athena are demonstrated below on Figure 20. 

  

Figure 20 Results of linear combination fitting in ATHENA of QUI 156 Cr K-edge XANES spectrum 
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III-1-2-3 Copper  

Copper content was very low, therefore XANES Cu K-edge spectrum of a rather low S/N ratio 

was obtained only for QUI 156 filter, which had the highest amount of Cu among other filters 

0.099 μg/cm2 (based on PIXE analysis and fluorescence response data). No reference spectra were 

recorded for Cu samples, so the assignment was performed based on FDMNES calculations only. 

The results of linear combination fitting for QUI 156 performed in Athena are demonstrated below 

on Figure 21. 

  

Figure 21 Results of a linear combination fitting in ATHENA of QUI 156 Cu K-edge XANES spectrum 
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III-1-2-4 Vanadium  

The vanadium XAFS spectrum was collected for all filters, however, the vanadium content was 

rather low to give a good S/N spectrum (from PIXE analysis and fluorescence response data). The 

XAFS spectrum of the QUI 156, shown in Figure 22 below demonstrates a limitation of XAFS 

spectroscopy. The PM is a complex mixture of different elements, therefore the EXAFS region of 

one element might interfere with another element. In our case a strong LII-edge of barium limits 

the EXAFS region for vanadium to about 120 eV,  thus impeding the EXAFS analysis.. 

Nonetheless, the presence of barium does not affect the observation of the vanadium K-edge 

XANES region, and that information was still available for interpretation of the speciation of 

vanadium. 

 

Figure 22 Comparative vanadium K-edge XAFS spectra of the QUI 156, VADO 118 and VADO 28 filters. Note a 

prominent Ba LII-edge peak at ~5620 eV. 
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III-1-2-5 Titanium  

The titanium XAFS spectrum was collected for QUI 156 and VADO 28 filters, however, the 

titanium content was rather low in both filters to give a good S/N spectrum (from PIXE analysis 

and fluorescence response data). The comparative XAFS spectra of the QUI 156 and VADO 28 

are shown on Figure 23 below. The spectrum of QUI 156 demonstrates a limitation of XAFS 

spectroscopy as in the case of vanadium. Here we see again barium  limiting the EXAFS region 

of QUI 156.  Strong LIII-edge of barium can be clearly seen on the spectra below. The results of 

FDMNES calculations are plotted on Figure 24 below.  

Figure 23 Comparative titanium K-edge XAFS spectra of the QUI 156 and VADO 28. Note a prominent Ba LIII-edge 

peak at ~5240 eV. 

Figure 24 Comparative spectra of experimental titanium K-edge XANES spectra of QUI 156 (first), and calculated 

spectra of TiO2-rutile of different cluster radii: 5.5Å with FDM (second), 6Å with MT (third) and 5Å with MT 

methods (the last). 
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III-1-2-6 Nickel  

According to PIXE elemental analysis nickel was present in all filters in very low quantities. 

XANES Ni K-edge spectrum was collected only for VADO 118 filter, which had the highest 

amount of Ni among other filters 0.057 μg/cm2 (from PIXE analysis and fluorescence response 

data). No reference spectra were recorded for Ni samples, so an assignment was performed based 

on calculations only. However, it is important to note that a fair LCF fit might be due to imprecise 

spectra calculations and to a non-suitable broadening function. Nevertheless, the results of linear 

combination fitting for VADO 118 performed in ATHENA are demonstrated below on Figure 25. 

 

Figure 25 Results of linear combination fitting in ATHENA of VADO 118 Ni K-edge XANES spectrum 
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III-2 XPS Results 

III-2-1 Comparative survey scans 

The multiple possible elements present in particulate matter can be identified in XPS survey scan 

because it spans a broad range of ejected core-shell electron energies. Figure 26 shows typical 

survey scans of PM collected on quartz (VADO118, VADO28) and PTFE (QUI 156) filters.  

 

Figure 26 A comparative “survey scan” over electron-binding energies characteristic of core shell electronic energy 

levels of VADO 118, VADO 28 and QUI 156 filters before sputtering. The individual peaks are labeled by the element 

and core shell energy. Other peaks arising from secondary Auger electrons are labeled in standard KL format.  

 

It can be noticed immediately that the comparative survey spectra (Figure 26) of two VADO filters 

are similar, revealing the presence of C 1s, O 1s, N 1s, Si 2p and Na 1s. Quartz – filter material, 

gives rise to Si 2p and O 1s signals. For QUI 156 filter the spectrum shows C 1s, O 1s, N 1s and 

F 1s peaks. The fluorine signal and double peak for carbon come from polytetrafluoroethylene 

(PTFE) - filter material. VADO 28 was collected using LAXL lens mode and a flood gun, however 

the survey spectrum does not reveal any significant differences. 
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III-2-2 Carbon  

In order to identify the chemical state of the atomic species detected, the detailed spectra were 

collected. The acquisition energy range for C 1s spectra spanned from 270 eV to 305 eV. The 

detailed C1s spectra of QUI 156, VADO 118 and VADO 28 “new” with fitted backgrounds, are 

shown on Figures 27 a, b and c respectively. The VADO 118 C 1s spectra after 2, 10 and 30 min 

of sputtering can be found in Appendix Figures A13a-c. 

 

Figure 27a A detailed C1s XPS spectrum of QUI 156 resolved into signals assigned as reported in the discussion part 

  

 

Figure 27b A detailed C1s XPS spectrum of VADO118 resolved into signals assigned as reported in the discussion  
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Figure 27c A detailed C1s XPS spectrum of VADO 28 “new” resolved into signals assigned as reported in the 

discussion part 
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III-2-3 Oxygen  

O 1s detailed spectra were acquired with energy range of 515-555 eV. Background-subtracted O 

1s spectra of the VADO 28 “new” shown on Figure 28 below. The O1s spectra for VADO 118 at 

0, 2, 10 and 30 min of sputtering and QUI 156 can be found in the Appendix Figures A14 a-e. 

 

Figure 28 A detailed O1s XPS spectrum of VADO 28 “new” resolved into signals assigned as reported in the 

discussion part 

 

III-2-4 Silicon  

Si2p detailed spectra were acquired in the 90-120 eV energy range. Si2p spectra of the VADO 28 

“new” with fitted background are shown on Figure 29 below.  

Figure 29 A detailed Si2p XPS spectrum of VADO 28 “new” resolved into signals assigned as reported in the discussion part 
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III-2-5 Nitrogen  

N1s detailed spectra were acquired in the energy range of 385-415 eV. Background-fitted N1s 

spectra of VADO 28 “new”, VADO 118 after 10 min of sputtering and QUI 156 are demonstrated 

on Figures 30 a, b and c, respectively. The N 1s spectra for VADO 118 at 0, 10 and 30 min of 

sputtering are shown in the Appendix A15a-c. 

 

 

 

 

 

Figure 30a A detailed N1s XPS spectrum of VADO 28 “new” resolved into signals assigned as reported in the 

discussion part 

 

 

 

 

Figure 30b A detailed N1s XPS spectrum of VADO 118 after 10 min of sputtering resolved into signals assigned 

as reported in the discussion part 
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Figure 30c A detailed N1s XPS spectrum of QUI 156 resolved into signals assigned as reported in the discussion part 
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III-2-6 Sodium  

Na 1s was evident only in VADO 118 and VADO 28 survey spectra, and the detailed spectra were 

acquired in the energy range of 1055-1085 eV. Background-subtracted Na1s spectra of VADO 

118 after 10 min of sputtering can be seen on Figure 31.  

 

Figure 31 Na1s XPS spectrum of VADO 118 after 10 min of sputtering resolved into signals assigned as reported in 

the discussion part 
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III-2-7 Iron  

Fe 2p became noticeable in VADO 118 survey spectrum only after 10 min of sputtering and the 

detailed spectrum was collected at the energy range of 690-745 eV. However, the spectrum after 

10 min of sputtering is too noisy to obtain a good fit.  Fe 2p spectra of VADO 28 “new” and VADO 

118 after 30 min of sputtering also have low S/N ratio, nonetheless the fitting was attempted as 

shown on Figures 32 a and 32b. 

 

 

 

Figure 32b A detailed Fe2p XPS spectrum of VADO 118 after 30 min of sputtering resolved into signals assigned 

as reported in the discussion part 

 

Figure 32a A detailed Fe2p XPS spectrum of VADO 28 “new” resolved into signals assigned as reported in the 

discussion part 
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III-2-8 Calcium  

Ca 2p became evident in VADO 118 survey spectrum only after 30 min of sputtering and the 

detailed spectrum was collected at the energy range of 335-370 eV. Ca 2p spectra of VADO 118 

after 30 min of sputtering and VADO 28 “new” after 10 min of sputtering with fitted background 

are shown on Figure 33a and 33b. 

 

Figure 33a A detailed Ca2p XPS spectrum of VADO 118 after 30 min of sputtering resolved into signals assigned as    

reported in the discussion part 

 

 

 

 

Figure 33b A detailed Ca2p spectrum of VADO 28 “new” (bottom) resolved into signals assigned as reported in the 

discussion part 
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CHAPTER IV DISCUSSION 
 

Metallic components of ambient air particulate matter are often cited as those most likely to exert 

health effects. They are generated by metallurgical processes, from impurities in fuel additives and 

in non-exhaust emissions (from mechanical abrasion such as brake- and tyre wear on vehicles). 

Interest is mainly targeted on transition metals such as Fe, V, Ni, Cr and Cu based on their potential 

to produce reactive oxygen species in biological tissues. A large fraction of ambient PM in many 

areas is derived from combustion processes and therefore, contains significant amounts of black 

carbon and organic carbon. Carbonaceous aerosol also originates from biological sources (e.g. 

viruses, pollen grains, plant debris) and contains secondary organic aerosol formed from the 

oxidation of biogenic and anthropogenic hydrocarbon emissions. More than 200 organic species 

have been identified, including alkanes, alkenes, aromatics, oxygenated compounds (including 

aldehydes, ketones and carboxylic acids), amino compounds, nitrates, polyaromatic hydrocarbons 

(PAH) and PAH derivatives[10]. Another widespread component is a wind-blown mineral dust 

tends to be made of mineral oxides. Sea salt is considered the second-largest contributor in the 

global aerosol budget, and consists mainly of NaCl originated from sea spray; other constituents 

of atmospheric sea salt reflect the composition of sea water, and thus include Mg, sulphate, Ca, K 

etc. In addition, sea spray aerosols may contain organic compounds, which influence their 

chemistry. Secondary particles originate from the oxidation of primary gases such as S and N 

oxides into sulphuric acid (liquid) and nitric acid (gaseous). The precursors for these aerosols—

i.e. the gases from which they originate—may have an anthropogenic origin (from fossil fuel or 

coal combustion) and a natural biogenic origin. In the presence of ammonia, secondary aerosols 

often take the form of ammonium salts; i.e. (NH4)2SO4 and NH4NO3 (both can be dry or in aqueous 

solution); in the absence of ammonia, secondary compounds take an acidic form as sulphuric acid 

(liquid aerosol droplets) and nitric acid (atmospheric gas), all of which may contribute to the health 

effects of particulates[15], [27]. In this section we show how many of the compounds listed above 

were identified by us as components of VADO and QUI filters.  

The discussion part is presented according to an element under investigation. These elements are 

presented in the following order: S, Fe, Ca, Ti, V, Cr, Mn, Cu, Zn, Ni, C, O, N, Na and Si, because 

of the different joint experimental and theoretical approaches used for their analysis. In the 

discussion part we show how we have successfully gone beyond just elemental characterization. 

By using core-level spectroscopic techniques we were able to obtain oxidation states, local 

structure arrangement and symmetry around selected sites and element quantification of different 

layers. 
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IV-1-1 Sulphur 

Sulphur is generally found in atmospheric aerosols, plus it was the only non-metal XAS spectra of 

which we have collected. Therefore, we start the discussion with sulphur. The position of a white 

line of recorded S K-edge spectra at 2482 eV revealed that our sulphur has oxidation state 6+. 

Then, a linear combination fitting in ATHENA was performed as shown on for VADO 28 on 

Figure 11 and in the Appendix Figures A4 and A5 for QUI 156 and VADO 118 filters. The LCF 

fit for VADO 118 showed that the main component is CaSO4*2H2O. The spectral shape of QUI 

156 filter resembles almost completely the one of CaSO4*2H2O. As it was mentioned before, for 

VADO 28 we can see a weak peak at lower energies which was not present in XANES spectra of 

other filters. Also, the amount of sulphur in this filter is larger than in other two. This small peak 

at lower energies was attributed to organosulfur, i.e. dibenzothiophene which was retrieved from 

ESRF database[26]. The final fit of VADO 28 in ATHENA shows that besides dibenzothiophene, 

also CaSO4*2H2O and ZnSO4*7H2O are present (Figure 11). The presence of the latter will be 

shown again from the fit of Zn K-edge XANES spectra.  

Sulphur compounds study with FDMNES 

Sulphur is a heterovalent compound which forms chemical bonds with more electropositive and 

electronegative elements and has a range of oxidation states from 2- to 6+. The position of a white 

line of XANES spectrum is a fingerprint of a chemical state. The sulphur K-edge spectra are 

characterized by a prominent absorption edge feature, which stands for the transition of the S 1s 

core electron to the lowest unoccupied antibonding states on the S atom, and various post-edge 

features. The energy position of the edge feature of S K-edge XANES increases from 2469.5-2470 

eV for transition-metal monosulphides (2-) to 2471 eV for disulphides of the pyrite group (1-), 

2472 eV for native S (0), 2478  eV  for  sulphites  and  2482  eV  for  sulphates [2]. 

Sulphates  

The first coordination shell of sulphur 

in sulphates is composed of four 

oxygen atoms. The S-O distances span 

from 1.47 to 1.49 Å, and the O-S-O 

angle from 106.3° to 112.2° in 

different sulphate compounds. The 

sulphate ion (SO4)
2- has tetrahedral 

symmetry and all sulphate spectra are 

quite similar to each other with a 

distinct white line at ~2482 eV. The 

Figure 34 An experimental sodium sulphate spectrum along with 

calculated in FDMNES sodium sulphate decahydrate spectrum using 

FDM and cluster radius of 6Å 
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origin of the white line comes from the transition from S 1s core electron to the 3p like (σ* type) 

lowest unoccupied level [2, 28]. Various calculations done with sulphate compounds showed that 

the shape of the white line does not vary depending on the cation. In our case the reference 

experimental spectrum was that of sodium sulphate, therefore first the calculations for anhydrous 

sodium sulphate from different databases were performed. However, the best fit was obtained only 

when the XANES spectra of sodium sulphate decahydrate were calculated with larger cluster radii. 

Another important thing in calculations are the energy range and step which should resemble the 

ones of the experimental spectra. Unfortunately, all the calculations could reproduce only the white 

line correctly. The small shoulder just after the white line could be reproduced by calculations only 

when larger cluster radius of 6Å was included as shown on Figures 34 and 35. The DFT 

calculations done by Mori et al. reproduced all features in sodium sulphate spectrum when a large 

cluster radius of 7Å was chosen. They have also shown that main features could be reproduced 

even with the 1st coordination cell distances, i.e. in the absence of cations. However, the small 

shoulder could be calculated only when cation was included. 

 

 

Figure 35 An experimental sodium sulphate spectrum (the last) along with calculated spectrum using FDM and cluster 

radius of 6Å (the first), spectra od sodium sulphate decahydrate using cluster radii of 4.1Å (the second) and 6Å (the 

third). 
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Sulphites 

Sulphites have three pyramidal 

oxygen atoms in the sulphite ion 

(SO3)
2- forming a trigonal C3v 

symmetry with a S-O interatomic 

distance of 1.505 Å and all O-S-O 

angles at 105.68°. The white line “I” 

in sulphites comes from S 1s—3p σ* 

transition and is found at ~2478 eV [2, 

29]. The second small peak “II” in 

sulphite spectra was assigned as 

coming from transitions to empty 

molecular orbitals consisting of S 3s 

and 3p and some O 2p, which indicates the hybridization between the 3s and 3p atomic orbitals of 

the central sulphur ion (Figure 36). The hybridization is possible in C3v symmetry, but forbidden 

in Td symmetry. Therefore, this peak is an indication of local symmetry difference between sodium 

sulphite and sulphate. Mori et al. have proven this by the cluster calculation with 7 Å in which 

including the cations did not significantly change the overall spectral shape. FDMNES calculations 

with a cluster radius of 6 Å also succeeds in reproducing this peak. 

However, with a smaller cluster radius of 5 Å, the peak “II” is less 

evident (Figures 38). Peak “III” at ~2482 eV was not reproducible 

by calculations using FDMNES code, and we hypothesized that it 

might be due to an oxidation of S4+ to S6+. In fact, this peak is 

missing in some experimental sodium sulphite spectra, as shown 

on the Figure 37 on the left from Fleet et al[2].  Mori et al. had 

faced the same problem and they initially suspected the 

contamination from the sulphate. However, additional XES 

measurements revealed the pure sulphite. Therefore, they 

concluded that this peak was due to band structure (i.e., long-range 

order) effects that were not accounted for in the computational 

model[28]. Sekiyama et al. explain this peak by the transition from 

S 1s to d-like a1* orbital [29]. 

 

 

Figure 37 Sulfur K-edge XANES 

spectra of sulfate and sulfite forms of 

sulfur. The progressive shift of the 

absorption-edge is shown (adapted 

from Fleet et al.)[2]  

Figure 36 Experimental sodium sulphite spectrum along with calculated 

spectrum using FDM and cluster radius of 6Å 
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Sulphides 

In contrast to sulphites and sulphates, 

where the first coordination shell is 

composed only of oxygen atoms, 

sulphides include the metal cation in the 

first coordination sphere of sulphur. The 

white line generally is found at ~2472 eV 

and many authors have suggested that it is 

due to orbital hybridization between the S 

3p and the metal 3d orbitals can explain 

(Figure 39). In sulphides, the 3p shell is 

fully occupied, therefore an orbital 

hybridization with metal 3d orbitals in a 

partially filled d-shell will transfer some S 

3p electron density to the cation. This creates unoccupied states of S 3p character[2, 28].  

The edge position does not only follow the screening effects but also depends on the energy of the 

cation 3d shell as well as the local symmetry, and thus the type of orbital hybridization. Mori et 

al. showed that spectral features in ZnS were not reproduced by using only first shell distances. 

Figure 39 Database zinc sulphide spectrum along with calculated 

spectrum using FDM and cluster radius of 8.5 Å 

Figure 38 An experimental sodium sulphite spectrum (the last) along with calculated spectra using FDM and cluster 

radius of 5 Å (the first) and 6 Å (the second). 



 

44 

 

When larger cluster of 5.5 Å was included, it presented a better modelling of the overall 

experiment. As it is shown on Figure 40 below at 6.5 Å some spectral features are missing, and at 

9.5 Å there are too many of them. For this particular case the cluster radius of 8.5 Å was the most 

suitable.  

 

 

 

 

 

 

 

 

 

 

 

Conclusion for FDMNES part 

As it was proven by Joly et al, Xu et al. and confirmed in this work, the muffin-tin approximation 

is not adequate  for computing XANES spectra in the low-intermediate edge energy ranges, since 

the resulting spectra fail to reproduce crucial spectral features. As non-muffin-tin FDM 

calculations take substantially longer times than muffin-tin MS ones, the multiple scattering 

method was used as a starting point. The FDM could reproduce well the white line in sulphates 

when large enough cluster radius was used. Other spectral features were not fully reproduced. In 

sulphites first two peaks and extended features were possible to calculate with a large cluster radius 

as well. The peak at 2482 eV was assigned as coming from sulphate contamination. In zinc 

sulphide the main and extended features were reproducible using only a very large cluster radius 

of 8.5 Å. Overall, FDMNES can be used for S K-edge spectra calculations, however using only 

non-MT finite difference method, large cluster radii and carefully chosen energy range and step. 

The FDMNES code is simple to use, but the FDM calculations are time consuming. 

Figure 40 Database zinc sulphide spectrum (the last) along with calculated spectra using FDM and cluster radius of 

6.5 Å (the first), 8.5 Å (the second) and 9.5 Å (the third). 
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IV-1-2 Iron XANES 

As it is shown of Figure 16, all Fe K-edge XANES spectra have similar shapes, with minor 

differences. In order to perform a linear combination fitting in Athena, several reference samples 

were collected at Elettra synchrotron facility: FeSO4*7H2O, Fe(NO3)3*9H2O, Fe2O3, 

[Fe(H2O)6](NH4)(SO4)2*6H2O and Fe2(SO4)3*5H2O. Additional XANES spectra of three different 

forms of an iron oxide were needed, therefore FDMNES calculations of hematite (α-Fe2O3), 

maghemite (γ-Fe2O3) and magnetite (Fe3O4) were performed. For hematite crystallographic data 

by Blacke et al., for maghemite by Shmakova et al. and for magnetite by Hamilton et al. were 

used, Mincryst cards № 1919, 5909 and 2702, respectively[24]. The results of the fits performed 

in ATHENA for QUI 156, VADO 118 and VADO 28 are presented in a Table 2 below. 

Component QUI 156 VADO 118 VADO 28 

FeSO4*7H2O 28% 11% 16% 

Fe(NO3)3*9H2O 27% 34% - 

Fe2O3 23% 33% 13% 

simulated magnetite 22% 22% 28% 

[Fe(H2O)6](NH4)(SO4)2*6H2O - - 43% 

Table 2 Linear combination fitting in ATHENA of QUI 156, VADO 118 and VADO 28 Fe K-edge XANES spectra 

 

The results of these fits might seem odd at the first look, however all samples appear to contain 

iron salts in the hydrates’ form and iron oxides. In order to establish if our recorded reference 

compounds were consistent with their crystallographic data (i.e. oxidation state and local 

geometry) and could be used to identify the oxidation state and local geometry of Fe in our 

samples, the pre-edge analysis of all of them was performed and the results shown in Figure 41 

for Fe2O3 and Figures A16 and A17 in the Appendix.  
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Identification of Fe oxidation state and local structure using pre-edge analysis have a lot of 

examples in the literature. Westre et al. describe thoroughly the pre-edge features of a number of 

ferrous and ferric compounds and give methodology for the interpretation of energy splitting and 

intensity distributions. They modelled pre-edge features by pseudo-Voigt line shapes (simple sums 

of Lorentzian and Gaussian functions), and functions modelling the background underneath the 

pre-edge features were chosen empirically [7]. Wilke et al. correlated the change of pre-edge 

features with oxidation state and local coordination environment of Fe atoms using various natural 

minerals. For all their fits they used pseudo-Voigt function with 50% of Gaussian and 50% of 

Lorentzian component [4]. In our case the fits were done using “Peak Analyzer” wizard of Origin 

Pro with Gaussian function as pseudo-Voigt function did not show good R2. 

Figure 41 Selected normalized pre-edge region (Fe K-edge) and the best fit obtained (Origin) of VADO 28, VADO 

118 (top), QUI 156 and Fe2O3 (bottom). 
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High-spin ferrous octahedral FeSO4*7H2O  

 Among the collected reference spectra, we had one 

high-spin ferrous octahedral compound, 

FeSO4*7H2O. Westre et al. performed fittings of a 

number of ferrous compounds with an E0=7111.2 

eV, and in our case E0 of 7112 eV was used. The 

comparison between pre-edge fittings performed by 

Westre et al. for octahedral high-spin FeII compound 

[Fe(H2O)6][SiF6] and for our reference sample of  

FeSO4*7H2O  is shown on Figure 42 on the right.  

As they report, all high-spin ferrous compounds 

have two very weak pre-edge features split by ~2 eV, 

which is the case in our spectra as well (Figure 42). 

The 1s--3d transition is formally electric dipole 

forbidden, but gains intensity through the allowed 

electric quadrupole transition. Since both ferrous 

compounds have a nearly centrosymmetric 

octahedral iron site, electric dipole intensity cannot 

be gained by mixing of the 3d orbitals with the 4p 

orbitals.  

In this work the fit was performed with three 

components, due to the shoulder in the first peak on 

the second derivative spectrum (Figure 42 C). In our 

case, the shoulder could not be distinguished from 

noise at the second derivative spectrum, most probably 

due to a different experimental resolution, therefore 

the fit with only two Gaussian components was done.  

 

 

 

 

 

Figure 42 (top) (C) The Fe K-edge pre-edge 

region of [Fe(H2O)6][SiF6] including the 

experimental data, a fit to the data (- - -), the 

background function (--), and the individual 

pre-edge peaks from the fit (°°°). The inset 

displays the second derivative of the data and 

the second derivative of the fit (- - -). (D) 

Ligand field analysis of [Fe(H2O)6][SiF6] (E) 

Theoretical simulation of the pre-edge region 

for [FeCl6](adapted from Westre et al.)[7] 

(bottom) The pre-edge fit for FeSO4*7H2O 

done in Origin. 
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High-spin ferric octahedral compound 

Westre et al. also discussed Fe K-edge XAS data 

measured for a series of high-spin ferric octahedral 

model complexes with varying ligation. Since these 

compounds have centrosymmetric octahedral site, 

the only intensity mechanism available for the 1s--

3d feature is the allowed electric quadrupole 

transition. In the high-spin ferric d5 case, the 5A1g 

ground state has a (t2g)
3-(eg)

2 configuration. 

Promotion of a 1s electron into the 3d orbital 

produces two excited hole configurations, (t2g)
2(eg)

2 

and (t2g)
3(eg)

1. 

Fits performed showed that there are two pre-edge 

features with splittings ranging from 1.1 to 1.5 eV. 

The splitting of the two pre-edge features is related 

to ligand field strength, with the splittings 

following the trend Fe-O/Fe-N>FeF3>FeCI3>FeBr3 

[7]. In our case (Fe-O) the fit showed two peaks with 

a splitting of 1.4 eV, which is in a good agreement 

with the paper. The pre-edge fits of high spin ferric 

compounds Fe(NO3)3*9H2O and Fe2(SO4)3*5H2O 

can be found in Appendix Figures A16 and A17.  

The fit of another octahedral ferric compound, an 

iron oxide as shown on Figure 43 (bottom right) 

includes four peaks. Wilke et al. (E0=7111.08 eV) 

report that in iron oxides and hydroxides from one 

to three other components are observed above 7115 

eV. In the literature the appearance of these peaks is 

explained by the long-range order around iron atom, 

involving 3d orbitals of distant neighbours [30]. 

Therefore, these contributions were excluded in the 

centroid calculations by Wilke et al[4]. In our case the 

also first two components were included in centroid 

calculations as shown on Table 3 below.  

Figure 43 (top) (C) Fit to the Fe K-edge pre-edge 

region of Fe(acac)3 including the experimental data 

(s), a fit to the data (- - -), the background function (-

-), and the individual pre-edge peaks from the fit 

(°°°). The inset displays the second derivative of the 

data (- - -). (D) Systematic analysis of the octahedral 

pre-edge features. (E) Theoretical simulation of the 

pre-edge region for [FeCl6]3-](adapted from Westre 

et al.)[3] (bottom) The pre-edge fit for 

Fe(NH4)(SO4)2*12H2O done in Origin. 
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The fits of VADO 28 and VADO 118 filters show one component at 7114.43 eV and 7114.45 eV, 

respectively. The shape of pre-edge fits and the centroid positions allow to conclude that iron in 

these two filters is in a similar form. The pre-edge fit of QUI filter shows two components and a 

centroid at 7114.38 eV, revealing its difference from VADO filters. 

 The comparison of the fits performed in Origin with centroid values from Wilke et al. and Westre 

et al. show that our results are credible (Table 3). The difference between the authors’ values and 

ours are justified when considering different E0 values used for data treatment.  

compound oxid. 

state 

symm. ligation component 

position 

area centroid Wilke et 

al.[4] 

Westre 

et al.[7] 

FeSO4*7H2O ferrous Oh 6O 7112.61 0.0385 7113.41 7112.16 

 

     
7114.45 0.0296 

 
  

Fe2O3 ferric ? 6O 7115.10 0.0311 7114.51 7113.47 

 

     
7113.87 0.0285 

 
      

7117.85 0.0074 
 

      
7116.23 0.0226 

 
  

[Fe(H2O)6](NH4) 

(SO4)2*6H2O 

ferric Oh 6O 7114.10 0.0354 7114.67  7113.14 

    
7115.53 0.0231 

 
 7114.57 

Fe(NO3)3*9H2O ferric Oh 6O 7114.05 0.0268 7114.80       
7115.49 0.0291 

 
  

Fe2(SO4)3*5H2O ferric Oh 6O 7113.97 0.0173 7114.84 7113.61 

 

     
7115.41 0.0269 

 
  

QUI 156    7113.89 0.0355 7114.38   

    7115.16 0.0189    

VADO118    7114.45  7114.45   

VADO 28    7114.43  7114.43   

Table 3 Pre-edge characteristics of reference iron compounds and filters and their comparison with literature values 
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Petit et al. and Wilke et al. made their own 

calibration curves using the data from a 

number of iron compounds[4, 31]. Wilke et 

al. had plotted the centroid positions of 

binary mixtures between IVFe2+, VIFe2+, 

IVFe3+ and VIFe3+ against their integrated 

pre-edge intensity as shown on Figure 44. 

As it is shown the octahedral complexes are 

lower in intensity than less symmetrical 

tetrahedral ones. Also, a clear separation 

between the centroid positions of Fe2+ and 

Fe3+ compounds is evident. Generally, the 

difference of 1.4 eV is reported between 

Fe2+ (~7112.1 eV) and Fe3+ (7113.5 eV) [4, 

31].  At the end of the paper Wilke et al. 

describe a procedure for assigning the oxidation state and the geometry of unknown mixtures of 

iron compounds. However, they warn of the challenges of such way and the need of high S/N data.  

A summary of the pre-edge fits of our five reference samples are shown on Figure 45 below. 

Obviously, the number of reference compounds was not sufficient to build a full calibration curve 

in order to assign the oxidation state and the local geometry of our unknown iron samples. 

Nevertheless, we can see a clear separation between the centroid positions for our Fe2+ and Fe3+ 

compounds similar to literature values. The pre-edge intensity of our filters’ and Fe2O3 are slightly 

higher than that of octahedral reference compounds, therefore most probably the symmetry is not 

Figure 44 Summary of the pre-edge characteristics for the 

binary mixtures between IVFe2+, VIFe2+, IVFe3+ (taken from 

Wilke et al.)[4] 
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Figure 45 Summary of pre-edge region fittings showing the centroid positions vs pre-edge intensity 
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purely octahedral. Another thing to note is the centroid positions of our filters, which fall in 

between 2+ and 3+ oxidation states.  

Iron chemical state XPS 

Iron was the element of interest from the beginning of the XPS experiment, as the speciation of 

iron by means of only XAS technique was challenging. Therefore, the detailed spectra in the Fe 

2p energy range were collected for all samples. As it is shown on Figure 53 (right) of the evolution 

of at.% in VADO 118 with sputtering time, the amount of iron on the surface before sputtering 

was close to zero. Nonetheless, after 30 min of sputtering of VADO 118 filter, Fe 2p signal became 

slightly more prominent. The data obtained was fit as demonstrated on Figure 32b The Fe 2p XPS 

spectra in general are known as difficult to analyse, especially because of a steeply rising 

background and broadened line width [32].  The detailed spectrum of VADO 28 new after 10 min 

of sputtering with 50 eV pass energy also exhibited similar line shapes. The fit was performed 

using two Fe 2p peaks centred at ∼711 eV and at ∼724 eV. McIntyre et al. who carried out a 

rigorous study of iron oxides compounds using an XPS experiment. According to the authors, 

these two peaks signify Fe 2p3/2 and Fe 2p1/2 of α-Fe2O3 and/or γ-Fe2O3. This conclusion is 

supported by the results of XANES linear combination fitting and GNXAS calculations of EXAFS 

region. 

In the investigation of iron oxides they went further and studied the effect of sputtering on 

oxidation states of iron (III) oxides. It was revealed that after only few minutes of bombardment 

with argon ions, the Fe2O3 would reduce to FeO. The chemical shifts they assign for Fe 2p in FeO 

are centred at ∼709.5 eV, which we did not see for VADO samples [33]. It could be explained by 

the fact that Fe in VADO samples was covered with a layer of carbon species, and sputtering 

duration was enough only to scratch it away.  

Local structural environment of Fe: EXAFS analysis 

XAS and XPS experiments provided some valuable information about iron speciation. However, 

the results were not sufficient to draw final conclusions. Therefore, EXAFS region analyses using 

GNXAS package was performed. As customary in any EXAFS analysis, the experimental signal 

is compared to a theoretical one, which is calculated from an initial structural model.  In light of 

the experimental evidences mentioned above for the Fe case (pre-edge, XANES and XPS) the 

most suitable structural model could be an oxygen ligation for the first shell of Fe. Therefore, we 

have used the one by Maslen et al. of hematite[34].  In the model each Fe atom is surrounded by 

six O atoms. There are three at the corners of an equilateral triangle above the central Fe atom 

participating in an Fe-O bong length of about 2.11 Å. The remaining three form another equilateral 

triangle below the central Fe atom with a Fe-O interaction of 1.94 Å. As we will see this asymmetry 
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of the first shell coordination is not the case for the VADO filters, whereas more flexible first shell 

bond length distribution was obtained for the QUI case. There are several Fe -- Fe interactions, 

where the shortest one is visible on Figure 46 (right) along the face, shared between FeO6 

coordination octahedra. Overall the unit cell of hematite is depicted on the Figure 46 (left) below. 

The structure is hexagonal, the space group R3c, with 6 units of formula per unit cell.  

 

 

   

Figure 46. A unit cell of hematite (left). Fe atoms are diplayed in gold, O in red. A local fragment of the unit cell with 

local coordination (right). The picture displays both Fe-O and Fe -- Fe interactions.  

The EXAFS analysis was performed using the GNXAS package which is based on Multiple 

Scattering (MS) theory. The method is based on the decomposition of the EXAFS signals into a 

sum of several contributions, the n-body terms. It allows the direct comparison of the raw 

experimental data with a model theoretical signal. The procedure avoids any filtering of the data 

and allows a statistical analysis of the results. The theoretical signal is calculated ab-initio and 

contains the relevant two-body ϒ(2), the three-body ϒ(3) and the four-body ϒ(4) multiple scattering 

(MS) terms. The two-body terms are associated with pairs of atoms, probing their distances and 

variances. The three-body terms are associated with triplets of atoms and probe angles, bond-bond, 

and bond-angle correlations. The four-body terms are associated with chains of 4 atoms, and probe 

distances and angles in between, and bond-bond, and bond-angle correlations.  In this application, 

only the pair contribution ϒ(2) have been used in the fitting procedure, due to the light scattering 

of the first shell atoms, i.e. the oxygen, and the angles they form within their surrounding. As we 

will see this approach allows to simulate almost all the oscillatory portion of the EXAFS spectrum.  

Specifically, the two body signals included in the fitting procedures are: the two-atom 

contributions ϒ(2)  Fe-O with degeneracy of 6 (first shell); the two-atom contributions ϒ(2)  Fe--Fe 

with degeneracy of 3 (second shell); the two-atom contributions ϒ(2)  Fe--Fe with degeneracy of 3 

(third shell). Also, in VADO 28 case, an additional fourth shell due to the Fe- - Fe interaction with 

degeneracy of 3 has been included. In the case of QUI sample, several test have been done by 

considering an asymmetric distribution of the first shell[35-39]. 



 

53 

 

Data analysis is performed by minimizing a χ2-like residual function that compares the theoretical 

signal, µ(E), to the experimental one, µexp(E). The phase shifts for the photoabsorber and 

backscatterer atoms were calculated starting from the structural model of hematite taken from 

Maslen et al. [34]. They were calculated according to the muffin-tin approximation and allowing 

10% overlap between the muffin-tin spheres (which was justified previously in MT approximation 

theory). The Hedin-Lundqvist complex potential was used for the exchange-correlation potential 

of the excited state. The core hole lifetime, c, was fixed to the tabulated value and was included 

in the phase shift calculation. The experimental resolution used in the fitting analysis was about 2-

3 eV, in agreement with the stated value for the beam line used. The amplitude correction factor 

S0
2 were identified to be 0.70(5) for the Fe K-edge for all samples.   

By looking at the experimental signals diplayed in Figure 47, the relative FT’s show most likely 

two main peaks, plus several less intense peaks. They are indicated as Fe-O and Fe—Fe on Figure 

47. This holds true for all investigated filter samples but with different extent. The FT of the 

VADO118 samples shows the highest intense second peaks with respect to the other VADO 

sample (even though the K2 vs. K has an effect in the FT magnitude). The FT relative to the QUI 

sample is somewhat different to the other two. 

Several tests were made in order to check the possible ligation of the Fe site. Indeed, the following 

results were obtained: i) the asymmetry of the FeO6 octahedron, by considering 2+4 vs. 6 number 

of equivalent Fe-O distances; ii) the possible inclusion of a Fe—S interaction. This test failed for 

all three measurements; iii) the Fe-Fe interaction of the outer shell, which only in some cases were 

observed. The best fit have been obtained by using only two-body terms. This leads to a 

simplification of the possibile multiple scattering path which is normally mandatory for a 

straigthforward interpretation of an EXAFS signal. In our case, though, we decide to make the 

intertretation easier. This is corroborated by the magnitude of the observed FT peaks and by the 

obtained data. Figure 47 displays the best fits EXAFS for the three samples whereas the Table 4 

reports the structural and non structural parameters as obtained by the fitting procedures.  

 

Figures A18 and A19 in Appendix shows the details of the EXAFS analysis, for all filters. This 

kind of plot permits to identify the most contributing individual signals to the theoretical one. All 

the signals in both figures indicated that all signals are rather important in the determining the total 

theoretical one. Also, the Fe—Fe interactions modulates all the EXAFS by giving a peculiar high 

frequency contribution which is not negligible.  

 

Figure A20 from Appendix displays some examples of the two-dimensional section of the 

parameter space (contour plots) for some studied samples, which have been used to calculate the 
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error in the parameter determination.  These plots were selected among the parameters having 

strong correlation to reflect the highest error. The inner elliptical contour corresponds to the 95% 

confidence level. It is important to emphasize that this evaluation provides only statistical errors 

on EXAFS refined parameters and it does not account for systematic errors in the theory or peculiar 

to the experimental technique.  

 

 VADO028 (v0c) VADO118 (v1c) QUI156 (qsc) 

Fe-O / Å CN = 6 1.995(6) 1.992(7)  

σ2 Fe-O / Å2 0.012(2) 0.010(2)  

Fe-O / Å CN = 2   1.767(5) 

σ2 Fe-O / Å2   0.020(4) 

Fe-O / Å CN = 4   2.002(4) 

σ2 Fe-O / Å2   0.005(1) 

Fe- Fe / Å CN = 3 3.02(1) 3.05(1)  

σ2 Fe--Fe / Å2 0.012(2) 0.011(2)  

Fe--Fe / Å CN = 3 3.39(3) 3.38(2)  

σ2 Fe-Fe / Å2 0.024(5) 0.008(4)  

Fe--Fe / Å CN = 4 3.93(6)  3.78(4) 

σ2 Fe-Fe / Å2 0.03(1)  0.003(2) 

E0 Fe 7124.7(4) 7124.7(5) 7120.7(2) 

S0
2 Fe 0.70(5) 0.70(5) 0.70(5) 

χ2-like residual / (10-6) 10.4 5.84 6.78 

 

Table 4 Structural parameters from EXAFS fitting results of filter samples. The estimated parameter errors are 

indicated in parentheses 

 

Generally, we can see that the theoretical signal matches well with the experimental ones in all 

panels, indicating that the strategy was the suitable one. Certainly, some peaks were not fitted at 

all, but they belong to outer shell, i.e. above 4Å, and this is out of the aim of the present application.  

Table 4 shows that the local atomic structures of the two VADO samples match well with the 

hypothetical model that has been used in the calculation, even though the asymmetry of the model 

is no longer present here. Indeed, Fe is surrounded by six oxygens, at about 1.99 Å composing a 

FeO6 figure in the first shell. This is not the case for the QUI sample where an asymmetric first 

shell (two shorter Fe-O distances at 1.77 Å and 4 longest distances at 2.00 Å) produce the best fit. 

The second shell of the VADO samples is confirmed to be Fe at around 3.05 Å and 3.39 Å. 

Eventually those results not only confirm the ligation suggested by the pre-edge data analysis, i.e.: 
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the FeO6 figure, but also allowed to determine of the Fe-O bond length. Also, the obtained values 

for the EXAFS Debye-Waller factor in the first shells suggests the occurrence of a significant 

structural disorder around the Fe atomic site. This is also seen from the higher values of the pre-

edge intensity depicted on Figure 45.  

 

 

Figure 47. Comparison of the experimental (-) and theoretical (…) kn-weighted EXAFS signals (upper panels) and the 

corresponding Fourier Transform (FT) of the kn-weighted EXAFS for filter samples at the Fe K-edge. The different 

level of S/N reflect the relative abundance of the Fe in the filters. Because of the higher concentration, the EXAFS 

analysis of the VADO118 sample has been computed in K2.  
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IV-1-3 Calcium XANES 

Ca K-edge spectrum for all filters had good S/N ratio. Two reference compounds’ spectra were 

collected at Elettra synchrotron: CaSO4*2H2O and CaCO3. The linear combination fitting was 

performed in ATHENA and as shown on Figure 15 in VADO 118 filter calcium is predominantly 

in CaSO4*2H2O form with minor amount of CaCO3. For QUI 156 and VADO 28 the fits are not 

perfect, but both of the filters contain different ratios of calcium sulphate and calcium carbonate 

as demonstrated on Figures in Appendix A7 and A8, respectively.  

Calcium chemical state XPS 

As mentioned earlier in the XPS experimental section, the Ca 2p signal in VADO 118 became 

apparent only after 30 min of sputtering and S/N was still low as shown on Figure 33a. The Ca 2p 

signal for both filters was fit with one doublet centred at ∼347.5 eV, which was assigned to calcium 

sulphate signal [40]. Moreover, the O 1s spectra for VADO 118 show presence of sulphur oxides 

and linear combination fitting of XANES data showed calcium sulphate as the main component 

as mentioned in the paragraph above. The CaSO4 is generally formed in the atmosphere when 

CaCO3 reacts with H2SO4 produced by the photo-oxidation of the SO2 emitted during the burning 

of fossil fuels [41].  

The absence of sulphur signals can be explained by small XPS cross-section values for sulphur 

and the fact that non-organic sulphur is generally found in the bulk of the filter.  

For VADO 28 “new” (Figure 33b) the Ca 2p signal was fitted for two compounds, calcium 

carbonate at ∼347 eV and one for calcium sulphate at ∼347.8 eV[41].  The carbonate signal is 

present in C 1s and O 1s spectra of VADO 28 “new” [40, 42]. Furthermore, the linear combination 

fitting of XANES spectra of VADO 28 reveals that both calcium sulphate and calcium carbonate 

are present as mentioned earlier.  
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IV-1-4 Titanium  

Titanium K absorption edge spectrum 

represents the limitation of XAFS, as it was 

shown before on Figure 23, its EXAFS region 

overlaps with Ba LIII edge. In order to identify 

the chemical state of Ti in QUI 156 and VADO 

28 filters, the pre-edge analyses were 

performed. Ti compounds were studied 

extensively through the analysis of their pre-

edge features[43-45]. The pre-edge of QUI 156 

spectra showed clearly three peaks A1, A2 and 

A3. Fitting of QUI 156 with the Lorentzian 

functions gave three components at: 4968.5, 

4971.1, 4974.1 eV as can be seen on Figure 48 

(top). VADO 28 was fit with pseudo-Voigt 

function, as the fit with Lorentzian functions 

was not satisfactory (Figure 48, bottom). The 

positions of these peaks and their relative 

intensities allowed to conclude that in our filters 

Ti exists as TiO2-rutile, with Ti(IV) having a six-

fold octahedral coordination number. The 

origins of these pre-edge peaks were assigned as coming from transitions to the mixed Ti p-d 

orbital. The first and second components were interpreted as coming from dipolar transitions from 

Ti 1s to t2g and eg levels, and the third to 4p levels[43, 44].  

Farges et al. have studied rigorously FEFF calculations of Ti compounds varying different 

parameters such as cluster radius. They have demonstrated that 59 atoms, i.e. 5.5 Å cluster radius 

is sufficient to reproduce well XANES and EXAFS regions accurately with all features B-E3 

(Figure 24). The pre-edge features were not reproduced, and as authors explain, full MS 

calculations are needed with radius cluster of 15Å[43]. 

In this work an attempt was made to reproduce the calculations using the ab initio approach of 

FDMNES code. Green’s function formalism method was used with a cluster radius of 5, 5.5 and 

6Å and crystallographic structure information of Howard et al. [46]. As it is shown on Figure 24 

the three pre-edge peaks were not reproduced correctly by FDMNES calculations. The C2-C3 and 

E1-E3 features are well reproduced even for 5Å calculations. They are not clear on QUI 156 

Figure 48 Selected normalized pre-edge region (Ti K-

edge) and the best fit obtained(Origin) of QUI 156 (top) 

and VADO 28 (bottom) 
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spectra as the S/N is very low, but all the spectra were compared with Farges et al.  The D feature 

appears only at 6Å cluster radius calculations. The B shoulder which was reproduced well by 

Farges et al. in our case is shifted to lower energy in all cases. In general, FDMNES calculations 

with MT potential reproduced well the rutile TiO2 features except the pre-edge region where it 

requires full MS calculations.  

IV-1-5 Vanadium 

First thing to note on the vanadium K-edge 

spectra of VADO filters, besides 

overlapping Ba LIII-edge, are the distinct 

pre-edge peaks. The XANES spectrum of V 

K-edge is very sensitive to the local 

symmetry of the around the vanadium. The 

pre-edge peak is present in all vanadium 

spectra which originates from formally 

forbidden 1s-3d electronic transition. This transition  is allowed when there is a distortion of local 

symmetry, which in turn leads to p-d orbitals mixing[47, 48]. The intensity and energy position of 

the pre-edge peaks allows to obtain structural and chemical information of vanadium compounds. 

An extensive study of various vanadium compounds with a wide range of oxidation states (-1..+5) 

and coordination geometries (octahedral, tetrahedral, square pyramid, trigonal bipyramidal, 

dodecahedral) was done by Wong et al. [49] 

However, in order to use that study as a reference 

high-resolution spectra with high S/N are 

necessary. In all our filters the amount of 

vanadium was rather low, so the some spectral 

features are indistinguishable from the noise. 

Nonetheless, the normalized intenisty of the pre-

edge peak and the derivative plots of the K-edge 

spectra(Figure 49) of vanadium allow us to say 

that it is V2O5 or V2O4 present in our filters. The 

pre-edge peak fitting of VADO filters’ spectra 

was attempted as in the study by Chaurand et al. [50] According to the authors for V4+ standard 

compounds, two components are required to model pre-edge peaks, with centroid positions 

depending on local symmetry of V. For V5+standard compounds, all spectra must be fitted with 

three components. The pre-edge fit of VADO filters performed in Origin was not satisfactory. The 

Figure 49 Derivative plots of the K-edge spectra of vanadium 

Figure 50 Vanadium XANES spectrum of the NIST 

urban PM SRM.[6] 
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NIST paper by Huggings et al. demonstrates a very similar spectrum for urban PM SRM to our 

VADO filters (Figure 50). According to the authors the vanadium in their PM exists as V2O4 

deduced by comparison with Wong et al. Their arguments say that a pre-edge feature at 4.4 eV is 

reasonably sharp and symmetric, therefore it suggests a single oxidation state for vanadium. The 

peak position and intensity allowed them to identify a tetravalent vanadium coordinated by oxygen 

anions [6].  

IV-1-6 Chromium 

Chromium, which is found in natural environments in two oxidation states 3+ and 6+, is an unusual 

element. In Cr(VI) form it is highly soluble and toxic to living organisms, and in Cr(III) form it is 

relatively insoluble and an essential micronutrient[51]. Therefore, assigning correctly the 

oxidation state of Cr in a particulate matter is essential. Chromium K-edge spectrum of QUI 156 

has low S/N ratio therefore the speciation is rather approximate. The starting point in the 

assignment was visual inspection of the spectra in order to calculate XANES spectra of reference 

compounds. Various calculations with the cluster radius of 6Å and Green formalism method were 

performed and a linear combination fitting with three relevant compounds of QUI 156 filter is 

shown on Figure 20. To calculate XANES spectra of eskolaite (Cr2O3) crystallographic data by 

Belokoneva et al. from Mincryst database, card №8455, was chosen. For spinel Fe2CrO4 paper by 

Smyth et al., Mincryst database, card №890 was used [24]. The last component, basic  chromium  

sulfate Cr(OH)SO4*H2O was calculated based on the paper by Riou et al. [52]. As it can be noted 

the spectrum of QUI 156 is too noisy to obtain a reliable fit. Nonetheless, the rough proportions 

vary as 45% for Cr(OH)SO4*H2O, 20% for Cr2O3 and 35% for Fe2CrO4. We can deduce that most 

chromium is in oxidation state 3+ in QUI 156 filter, which is the case in the NIST paper by 

Huggings et al. [6]. Another confirmation of a correct assignment of Cr oxidation state is the pre-

edge region: it is dramatically different for Cr(III) and Cr(VI) species. When there is Cr(VI) 

present, it gives a very intense pre-edge peak due to a 3d-4p mixing in the four-coordinate 

transition metal ions, such as Ti4+ and V5+ also mentioned in this work [51]. Our findings suggest 

most likely the presence of of Cr(III). 

IV-1-7 Manganese 

Mn K-edge spectrum for QUI 156 and VADO 118 have an acceptable S/N ratio, but not for VADO 

118. Due to the absence of reference spectra, calculations with FDMNES software were performed 

using the cluster radius of 6Å and Green formalism method. Comparison of spectral features of 

our filters and the paper by Ressler et al. lead to the idea of MnSO4 and 

Mn5(PO4)2[PO3(OH)]2*4H2O as possible components [53]. The XANES spectrum of ilesite 

(MnSO4*4H2O) was calculated using crystallographic data by Baur et al. from Mincryst database, 
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card №2123. For hureaulite Mn5(PO4)2[PO3(OH)]2*(PO4)2 paper by Moore et al., Mincryst 

database, card №2051 was used [24]. The fits are not perfect, nonetheless a conclusion can be 

made that Mn is predominantly in oxidation state 2+ in all filters as shown on Figure 19 for VADO 

28, and Figures A11 and A12 in Appendix for QUI 156 and VADO 118.   

IV-1-8 Copper 

Copper K-edge spectrum of QUI 156 has a low S/N, therefore the speciation of Cu is approximate. 

The visual comparison of XANES K-edge spectra of various copper compounds allowed to 

conclude that copper species in QUI 156 filter are similar to copper sulphate. The FDMNES 

calculations for chalcanthite (CuSO4*5H2O) were performed using Green formalism on muffin-

tin potential with cluster radius of 6Å and are based on the paper by Bacon et al. from Mincryst 

database, card №827[24]. As it is shown on Figure 21 the overall shape of XANES and EXAFS 

regions were well reproduced, except for the pre-edge region. Comparison with NIST paper by 

Huggings et al. confirms the assignment of six-fold coordinated Cu2+ surrounded by oxygen 

anions. [6] 

IV-1-9 Zinc 

Zn K-edge spectrum for QUI 156 and VADO 118 have similar spectral features and an acceptable 

S/N ratio. Three reference compounds’ spectra were collected at Elettra synchrotron: 

ZnSO4*7H2O, ZnCO3 and Zn(NO3)2*6H2O. The linear combination fitting was performed in 

Athena and for QUI 156 the best fit was obtained with approximately 82% of ZnSO4*7H2O and 

18% of ZnCO3 as shown on Figure 13. For VADO 118 a good fit was not obtained, it is clear 

though that the main component is ZnSO4*7H2O as shown in Appendix Figure A6. Results from 

NIST paper by Huggings et al. also include zinc in six-fold coordination by oxygen anions as the 

main form of Zn species in both urban and diesel PM [6].  

IV-1-10 Nickel 

In order to identify the speciation of nickel in VADO 118 filter various calculations using 

FDMNES code were performed. The visual comparison with the Ni K-edge spectra allowed to 

choose two Ni species as possible components[54]. First, trevorite (NiFe2O4) calculations were 

performed using Green formalism on muffin-tin potential with cluster radius of 6Å and based on 

the paper by Hill et al. from Mincryst database, card №4840. Another nickel compound, retgersite 

(NiSO4*6H2O) was calculated also with cluster radius of 6Å using Green formalism method, 

Mincryst database, card №7055[24]. According to LCF in Athena our nickel spectra consists from 

~40% of NiSO4*6H2O and ~60% of NiFe2O4 (Figure 25). The LCF fit does not match fully the 

experimental spectrum, however we can say that Ni in our sample is most probably in oxidation 

state 2+. 
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IV-1-11 Carbon 

Most samples that have been exposed to the atmosphere generally have so-called “adventitious 

carbon” contamination. C 1s spectrum for contamination typically has C-C, C-O-C and O-C=O 

components. These chemical states of carbon are present in all filters: signal at ~285 eV stands for 

C-C signal of an aliphatic carbon, which was used for calibration of binding energy scale. The 

signal at ~286 eV is an indication of the C-O functional group, implying the presence of alcohols, 

ethers, and carboxylic acids and the one at ~288.5 eV is associated with O-C=O of carboxylic 

carbon [55-57]. In general, the adventitious carbon can be removed by argon sputtering, which is 

demonstrated on VADO 118 spectra after 2, 10 and 30 min of sputtering on Figures A13 a, b and 

c in the Appendix.  

An additional peak that is present in all filters at ~282 eV signifies metal carbides[41, 42]. The 

most intense peak at ∼293 eV in QUI 156 filter, shown on Figure 27a, comes from the C-F bonds 

of the PTFE filter together with F 1s signal at ∼690 eV mentioned earlier [57]. The signal at ∼290 

eV in VADO 28 new filter on Figure 27c was assigned to a metal carbonate, presumably calcium 

carbonate. The region between 288-290 eV generally stands for metal carbonates, however it 

overlaps with carboxylic carbon signals at ∼288.5 eV. The detailed assignment of carbon peaks 

presented here is only a scientific guess, which however it is comparable to the literature.  

IV-1-12 Oxygen 

The VADO 28 new spectrum of O 1s on 

Figure 51 shows broad signals ranging 

from ∼538 to 528 eV. This indicates the 

coexistence of different oxygen chemical 

environments on the surface which overlap 

with each other[57]. The O 1s spectra from 

all filters reveal two components as shown 

in Figure 28 for VADO 28 “new” and 

Appendix Figures A14a-e. The peak at 

∼530 eV was assigned to the oxygen from 

metal oxides and metal carbonates. The 

large peak at ∼533 eV was identified as an overlap of O 1s signals coming from silicon, sulphur, 

nitrogen oxides [56]. Additionally, the organic C-O signals cover the region from 531.5-532 eV, 

and organic C=O can be found at ∼533 eV[58].  

Figure 51 O 1s evolution of components 1 (top) and 2 (bottom) 

in VADO 118 
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As sputtering of VADO 118 proceeded the two components of O 1s peak were changing in 

opposite way as shown on Figure 51. The at.% of the large peak 1 (at the top) centred at ∼533 eV 

belonging to Si, N, S oxides rises, while the peak 2 (bottom) at ∼530 eV decreases slightly. The 

rise of at.% of peak 1 is consistent with the “uncovering” of filter surface with sputtering as was 

shown on Figure 53.  

IV-1-13 Nitrogen  

The detailed N 1s spectra of all filters show 

two overlapping asymmetric peaks at ∼399 

eV and ∼402 eV as shown on Figures 30 a, b 

and c. The peak 1 at ∼399 eV has higher 

intensity then peak 2 at ∼402 eV for all 

VADO 118 spectra. It was assigned to 

pyrrolic and amide nitrogen forms (Appendix 

Figures A15a-c).  The component 2 at ∼402 

eV was attributed to a quaternary nitrogen[42, 

55, 59]. In QUI 156 N 1s spectrum quaternary 

nitrogen is the dominating peak, with a small 

pyrrolic/amide signal (Figures 30c). In VADO 28 new spectrum an additional peak can be seen at 

∼407 eV which signifies the nitrate chemical shift [55, 59]. This peak is consistent with O 1s 

spectra assignment done previously. 

The at.% of pyrrolic and amide component of the fit grow as the sputtering time increases in 

VADO 118 filter as shown on Figure 52. After 10 min and 30 min of sputtering of VADO 118 

filter the at.% does not change significantly. The similar trend is observed for the 2nd component 

of the fit, just with decrease of quaternary nitrogen. After 10 min of sputtering, further 

bombardment with argon ions does not affect the at.% of both peaks. This can be interpreted as 

ammonia, which was on the surface, is getting removed by argon ions, allowing to unleash the 

pyrrolic and amide nitrogen forms.  

IV-1-14 Sodium  

All Na 1s filters spectra (Figure 31 example of VADO 118) were fitted with a single peak centred 

at ∼1072 eV which identifies as sodium cation, most probably coming from sodium chloride, i.e. 

sea salt [42].  

 

 

Figure 52 The evolution of N 1s components 1 and 2 

with sputtering time of VADO 118 filter 
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IV-1-15 Silicon 

The Si 2p spectra in all VADO filters revealed the peak at ∼103 eV, shown on Figure 29 from the 

fit of VADO 28 “new” which indicates silicon dioxide coming from the filter material quartz [57, 

60]. The QUI 156 survey spectrum did not show any presence of Si, which allows to say that the 

only source of Si is quartz.   

IV-2 In depth profile: XPS sputtering experiment in the case of VADO 118 filter  

XPS analysis allows to quantify the elements present in the first few nm of analysed particles 

surface. However, sputtering with Ar+ ions can give a depth profile information on samples. The 

atomic percentage (at.%) was obtained for VADO 118 filter to observe the change of relative 

amounts of elements with sputtering time as demonstrated on Figure 53 for O, Si, C, Fe, N and 

Na. Ca peak became noticeable only after 30 min of sputtering, therefore it was not included in 

overall quantification. 

As it can be seen there is a similar trend in at.% increase of Si 2p and O 1s with sputtering time 

and quite a dramatic decrease of C 1s signal from 41 to 27%. Fe 2p signal was not present at the 

detailed scan of iron compounds’ energy range before sputtering. After 10 min of sputtering the 

hint of the signal appeared, however it did not increase throughout sputtering experiments. For Na 

we see slight rise in at.%, but after 30 min of sputtering the amount comes back to the original. 

This could indicate that sodium scattered all over the filter in different layers. The N 1s signal 

stays steady except the small increase after the first sputtering. This might be due to ammonia, 

which was uncovered after 2 min of sputtering and was ejected by argon ions. These trends allow 

to say that probably carbon was at the surface, covering other elements. As sputtering proceeded, 

it had removed some surface carbon, allowing Fe, N, Na and the filter material quartz (Si and O) 

to be closer to the surface. In general, we can only make assumptions about the nature of processes 

that happened during sputtering. 

Figure 53 The evolution of O, Si, C (left) and of Fe, N, Na (right) at.% with sputtering time in VADO 118  
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Figure 54 An approximate sketch showing the layers in VADO118 filter. 

To sum up the information about from XPS sputtering and XAS experiments, a sketch of VADO 

118 filter was produced. The background of the picture is the SEM image of a quartz filter 

magnified 120 times[61]. The top surface layer (up to 10 nm) before sputtering shows the presence 

of mostly adventitious carbon, carbide, some nitrogen forms, trace amount of Na+. The middle 

layer represents the composition of the filter that was probed after 30 min of sputtering with Ar 

ions. Adventitious carbon, carbide, pyrrolic/amide, ammonia, Na+(more) are still present. Also, at 

this depth (roughly 60 nm) we start seeing a signal for an iron oxide and calcium 

sulphate/carbonate. The last layer represents the bulk of the filter, where the results were taken 

from XAFS data analysis. We can see the presence of zinc sulphate/carbonate, copper sulphate, 

titanium dioxide, Cr(III), Mn(II), Ni (II). SiO2 is not represented on the picture, as it is the filter 

material itself in the form of fibers.  
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CONCLUSIONS 
 

In this master thesis the peculiar characteristics of core level spectroscopic techniques have been 

utilized to have a clearer picture on the chemical description of particulate matter samples.  Not 

only chemical state of the various elements present in the filters have been probed, but also the 

local geometric structure and chemical bonding centred around single atomic sites. Two 

techniques that are based on the creation of a core-hole, namely, the X-ray Absorption 

Spectroscopy (XAS) and X-ray Photoelectron Spectroscopy (XPS), have been used in combination 

to theoretical calculation of XAS K-edges for various elements. Indeed, owing to the capabilities 

of FDMNES software to perform calculations for metal edges fast and due to a simple input 

procedure, the chemical speciation of all recorded XAS data was performed, even though we 

planned to do the speciation of a few selected elements only.  

Data analysis included both the pre-edge portion of the XAS spectrum and the Linear Combination 

Fitting (LCF) of the XANES spectra, which provided valuable information about the oxidation 

states and local geometry of transition metal compounds.  Metal speciation in some relevant cases 

were done by analysing the photo-electron kinetic energy emitted by the samples.  

In the case of an iron metal, all previously listed approaches were not sufficient to make final 

conclusions about the coordination number and oxidation state. Therefore, its local structure has 

been unravelled by using the data from an EXAFS region.  

At the end, we can have an information about the chemical speciation of elements in the bulk of 

the filter, as well as on the surface. In the case of VADO 118 filter we could even demonstrate the 

chemical composition of successive layers.  

To conclude, this master thesis brought to a further level conventional analysis of a particulate 

matter by employing the potentials of core-level spectroscopies and theoretical calculations.  

 

 

 

 

 

 

 



 

66 

 

APPENDIX 

 

Figure A1 Fluorescence response of QUI 156 filter 

 

 

                             

Figure A2 Fluorescence response of VADO 118 filter 
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       Figure A3 Fluorescence response of VADO 28 filter 
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Figure A4 Results of linear combination fitting in ATHENA of QUI 156 S K-edge XANES 

spectrum 

 

 

 

Figure A5 Results of linear combination fitting in ATHENA of VADO 118 S K-edge XANES 

spectrum 
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Figure A6 Results of linear combination fitting in ATHENA of VADO 118 Zn K-edge XANES 

spectrum 

 

 

 

Figure A7 Results of linear combination fitting in ATHENA of QUI 156 Ca K-edge XANES 

spectrum 
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Figure A8 Results of linear combination fitting in ATHENA of VADO 28 Ca K-edge XANES 

spectrum 

 

Figure A9 Results of linear combination fitting in ATHENA of VADO 118 Fe K-edge XANES 

spectrum 
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Figure A10 Results of linear combination fitting in ATHENA of VADO 28 Fe K-edge XANES 

spectrum 

 

 

Figure A11 Results of linear combination fitting in ATHENA of QUI 156 Mn K-edge XANES 

spectrum 
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Figure A12 Results of linear combination fitting in ATHENA of VADO 118 Mn K-edge XANES 

spectrum 
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Figure A13a A detailed C 1s XPS spectrum of VADO 118 after 2 min of sputtering 

Figure A13b A detailed C 1s XPS spectrum of VADO 118 after 10 min of sputtering 

Figure A13c A detailed C 1s XPS spectrum of VADO 118 after 30 min of sputtering 
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Figure A14a A detailed O 1s XPS spectrum of VADO 118 before sputtering 

Figure A14b A detailed O 1s XPS spectrum of VADO 118 after 2 min of sputtering 
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Figure A14c A detailed O 1s XPS spectrum of VADO 118 after 10 min of sputtering  

 

 

 

 

 

 

 

 

 

 

Figure A14c A detailed O 1s XPS spectrum of VADO 118 after 30 min of sputtering  
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Figure A15a N1s XPS spectrum of VADO 118 before sputtering 

 

 

 

 

 

 

 

 

 

 

 

Figure A15b A detailed4 N1s XPS spectrum of VADO 118 after 2 min of sputtering 
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Figure A15c A detailed N1s XPS spectrum of VADO 118 after 30 min of sputtering 
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Figure A16 The pre-edge fit of Fe(NO3)3*9H2O 

 

 

                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A17 The pre-edge fit of FeSO4*7H2O 
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Figure A18 Best fit of VADO118 sample at Fe K-edge, in terms of individual EXAFS 

contributions to the total theoretical signal. The comparison of the total theoretical signal (•) with 

the experimental one (-▲-) is also shown at the bottom.  

 

 

Figure A19 Best fit of VADO028 and QUI156 samples at Fe K-edge, in terms of individual 

EXAFS contributions to the total theoretical signal. The comparison of the total theoretical signal 

(•) with the experimental one (-▲-) is also shown at the bottom. 
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Figure A20 Examples of the two dimensional section of the parameter space (contour plots) for 

the filter samples. Colors reflect the filters ID: red-QUI156; blue-VADO118, black-VADO028. 

These plots were selected among the parameters having strong correlation to reflect the highest 

error. As expected, a strong correlation between the E0 energy and bond distance is observed. The 

the inner elliptical contour corresponds to the 95% confidence level.  
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