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Abstract

Il principale obiettivo di questa Tesi è lo studio del moto dell’intracluster medium
(ICM) in rotazione in ammassi di galassie e fare dei test osservativi per la fu-
tura generazione di telescopi ad alte energie, come il progetto ATHENA (che
sarà operativo dal 2028). Nel lavoro realizzato da Bianconi et al. (2013) studi-
arono la rotazione del gas in ammassi con un potenziale sferico di Navarro,
Frenk e White utilizzando semplici profili di velocità, valutando i principali ef-
fetti della rotazione sull’ellitticità delle isofote X; nella seconda parte il lavoro
si focalizzò nello studio di spettri simulati utilizzando le specifiche tecniche del
calorimetro a bordo del satellite Giapponese Astro-H.
Utilizzando il metodo presentato nel lavoro di Ciotti and Bertin (2005) abbiamo
espanso il potenziale gravitazionale in forma ellissoidale. Quindi abbiamo as-
sunto uno schiacciamento del potenziale di ∼ 0.4 corrispondente ad una dis-
tribuzione di densità sempre positiva. Abbiamo ricreato potenziali oblati e
prolati per verificare come le diverse geometrie avessero effetti sulle quantità
osservabili dell’ICM. In particolare abbiamo considerato aloni di dark mat-
ter assialsimmetrici con una distribuzione di NFW e con un rapporto assiale
di ∼ 0.6 e abbiamo confrontato l’evidenza osservativa dello schiacciamento
delle isofote con le misure ottenute da Lau et al. (2012) con osservazioni su
un campione di ammassi con i satelliti CHANDRA e ROSAT. Abbiamo mis-
urato uno schiacciamento medio di circa 0.13 per quanto riguarda i modelli
non rotanti e di circa 0.16 per quanto concerne i modelli rotanti, sia nel caso
oblato che prolato. Questi risultati sono anche in accordo con quanto trovato
da Vikhlinin et al. (2009), dove misurarono una ellitticità media di ∼ 0.18.
L’ultima parte del lavoro presenta uno studio degli spettri simulati in banda X
a diversi raggi dal centro degli ammassi dopo che si è convoluta la brillanza su-
perficiale dell’ammasso con la risposta strumentale dello spettrometro ad alta
risoluzione (X-IFU - X-ray Integral Field Unit) che sarà a bordo di ATHENA
per misurare il moto coerente del gas. Abbiamo misurato uno spostamento
Doppler della riga del ferro a 6.7 keV dell’ordine di ∼ 5 eV, che corrisponde
ad una velocità di circa 1000 km/s, per i modelli oblati. Nei modelli prolati
invece abbiamo trovato uno spostamento del centroide di circa ∼ 15 eV, con-
sistente con una velocità di rotazione di oltre 2400 km/s. Dopo aver valutato
lo spostamento della riga dovuto al moto abbiamo analizzato l’allargamento
della suddetta riga dovuto alla dispersione di velocità lungo la linea di vista.
Abbiamo quindi trovato che nelle regioni più interne si raggiunge un allarga-
mento dell’ordine di 1000 km/s per i modelli prolati mentre per i modelli oblati
si raggiunge circa 300 km/s.





Abstract

The main scope of this Thesis is to study models of rotating intracluster medium
(hereafter ICM) in galaxy clusters and to make observational test for the next
generation X-ray telescopes, like ATHENA (scheduled to be launched in 2028).
Bianconi et al. (2013) studied the gas rotation in clusters with spherical Navarro,
Frenk, White gravitational potential using simple velocity profiles and evaluat-
ing the effect of rotation on the ellipticity of X-ray isophotes; the second part of
that work was based on the study of simulated X-ray spectra using the specifics
of the calorimeter on board of the Japanese Satellite Astro-H.
Using the method provided by Ciotti and Bertin (2005) we expanded the po-
tential in an ellipsoidal form. Thus, the adopted flattened gravitational poten-
tial corresponds to everywhere-positive density distribution with a maximum
flattening of ∼ 0.4. We created both oblate and prolate gravitational poten-
tial in order to explore how different geometries influence the observational
properties of the ICM. In particular, we considered axisymmetric NFW halos
with axial ratio of ∼ 0.6 and we compared the observational quantity, like the
isophotal ellipticity, with the measurements from the paper Lau et al. (2012)
made with CHANDRA and ROSAT for a sample of clusters. We measured a
mean ellipticity of about ∼ 0.13 for the non-rotanting models and a ∼ 0.16 for
the rotating models, both oblate and prolate. This result is comparable with
what was found in Vikhlinin et al. (2009) where they found a mean ellipticity
of ∼ 0.18.

The last part of the work presents the analysis of simulated X-ray spectra at
different distances from the center of massive clusters after convolving the sur-
face brightness with the instrument response of the calorimeter spectrometer
(X-IFU - X-ray Integral Field Unit) on board of ATHENA to measure the ICM
bulk motion.
We measured a Doppler shift of the iron line at 6.7 keV in the order of ∼ 5
eV that corresponds to a velocity peak of the profile below the 1000 km/s for
the oblate models. In the prolate models we found a centroid shift of ∼ 15 eV,
consistent with velocity rotation higher than 2400 km/s. After the evaluation
of the centroid shift of the 6.7 keV line we studied the broadening of the line
due to dispersion velocity in the line of sight. In the innermost regions of the
prolate models we measured a broadening of∼ 1000 km/s while for the oblate
models about 300 km/s.





Chapter 1

Introduction

In this Thesis we will present a study of gas rotation in galaxy clusters and
the study of spectroscopic features in X-ray emission through high resolution
instruments on ATHENA1, the next big European project in the field of X-ray
observatory satellite.
The gas is in equilibrium with flattened axisymmetric dark matter potential
obtained from the Navarro, Frenk, White profile, hereafter NFW, and the effect
of the rotation contributes in the flattening of the isophotes. The flattening of
the isophotes is one the most interesting terms of comparison for the goodness
of our models with observational data from the papers of Lau et al. (2012) and
Fang et al. (2009).
The last section of the work aimed to measure gas velocity from mock obser-
vations using X-IFU (X-ray Integral Field Unit) proposed for ATHENA.
We explored both the line centroid shift due to the gas motion and the line
broadening due to the dispersion of velocity in the line of sight to verify the
power of reconstructing the velocity profile of the gas thanks to high resolu-
tion spectroscopy.

1.1 Scientific Purpose

Dark matter halos are not spherical but tend to be triaxial and elongated in the
direction of the collapse flow (e.g. Kazantzidis et al. 2004, Bryan et al. 2013,
Despali et al. 2017). We decided to create a flattened dark matter potential
starting from a spherical NFW potential in order to model the gas rotation and
verify photometric and spectroscopic features in X-rays.
The mass estimated under the assumption of hydrostatic equilibrium tends to
differ from gravitational weak lensing measurement, this effect is known as
hydrostatic bias (see section (1.5) for further details). This gap between these
two measurements may be reduced adding the term of bulk motion of gas in
the equilibrium because the rotation changes the effect of the gravitational po-
tential on the gas distribution (e.g. Bianconi et al. 2013, Rasia et al. 2014, Nipoti
et al. 2015).

1ESA for futher information and see chapter 5 for the technical specifics.
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CHAPTER 1. INTRODUCTION 2

One of the efforts needed before the start of a big mission is to foresee the im-
provements that this particular instrument, such as ATHENA, could give to the
scientific community. Testing the possibilities of what ATHENA can achieve in
the next decades of work is basically the theoretical starting point of what we
could expect from observations when this satellite will be operative.
The high resolution spectrometers will allow us to achieve direct detection of
the motion of the intracluster medium, hereafter ICM, with great accuracy.
In fact, X–ray high–precision spectroscopy potentially offers one of the most
promising ways to directly measure such gas motions, detectable from the de-
tailed study of the shape and centroid of resolved spectral emission lines (Biffi
et al. 2013a). The expectations for heavy–ion emission lines in the X–ray spec-
tra diagnostics are related in particular to the most prominent emission line in
X–ray spectra, namely the 6.7 keV line from helium–like iron. In fact, the large
atomic mass of the FeXXV ion significantly reduces the thermal line broaden-
ing and the line width turns out to be definitely more sensitive to turbulent gas
motions (e.g. Inogamov and Sunyaev 2003).

1.2 Cosmological background and formation of struc-
tures

We present a brief overview of the cosmological background that is involved in
this work. Under the assumption of a large-scale homogeneous and isotropic2

Universe we can describe the space-time with the Robertson - Walker Metric3

that is a general formulation of the geometry of the space-time obtained from
the main equations of the General Relativity4 :

ds2 = (cdt)2 − a(t)2

[
dr2

1−Kr2
+ r2(dθ2 + sin2θdϕ2)

]
, (1.1)

where ds2 is the distance in the space-time. They used polar coordinates
r, θ and ϕ, t the proper time, a(t) is the function that describes the evolution
of the Universe (called scale factor or expansion parameter) and it is correlated
with the redshift (1 + z = a0/a(t)). K is the curvature parameter that is constant
and it could assume the values −1, 0 and 1 respectively closed, flat and open
Universe (Coles and Lucchin 2002).

From this point using the equation (1.1) to resolve the Einstein equations5

we can obtain the functional form for a(t):

ä = −4

3
πG

(
ρ+ 3

P

c2

)
a, (1.3)

2The assumption of an homogeneous and isotropic Universe beyond the large scale sctructure
of the galaxies is called Cosmological Principle.

3Some authors refer to a Friedmann - Lemaı̂tre - Robertson - Walker Metric.
4All the sign convention are taken from Coles and Lucchin.
5The Einstein equation is the field equation of General Relativity:

Gµν = Rµν −
1

2
gµνR− Λgµν =

8πG

c4
Tµν , (1.2)

where Gµν is the Einstein Tensor, Rµν is the Ricci Tensor, R is the trace of Rµν called Ricci Scalar, Λ
is the Cosmological Constant, gµν is the metric tensor and Tµν is the stress-tensor.
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and

ȧ2 +Kc2 = −8

3
πGρa2, (1.4)

these equations (1.3), (1.4) are known as Friedmann Cosmological equations and
from equation (1.4) we can derive the curvature parameter K:

K

a2
=

1

c2

(
ȧ

a

)2(
ρ(z)

ρcrit(z)
− 1

)
, (1.5)

where:

ρcrit(z) =
3

8πG

(
ȧ

a

)2

, (1.6)

that is the density of the universe. The density parameter, as it is known Ω, is the
main parameter that defines the geometry of the Universe and it is defined as:

Ω(z) =
ρ(z)

ρcrit(z)
. (1.7)

We live in a “flat universe” Ω = 1.00 ± 0.02 (Planck Collaboration et al. 2016)
that is obtained by adding the three main components of the universe: dark
matter and baryons under the name of mass component, relativistic compo-
nent (also called radiation) and cosmological constant Λ:

Ω = Ωm + ΩRad + ΩΛ = 0.315+0.018
−0.018 + 9.24× 10−5 + 0.6817+0.0018

−0.0018 = 1.00+0.02
−0.02.

(1.8)
The most reliable cosmological paradigm is the ΛCDM cosmology where Λ is
related to the cosmological constant, that is dominant, and CDM is for Cold
Dark Matter. We know that the largest virialized structures are the youngest,
in the sense that they were assembled recently. In fact galaxy clusters are the
youngest components of the Universe in a hierarchical paradigm where the as-
sembly of mass start to gather together from little halos to form the biggest.
This is known as bottom-up or hierarchical model of formation.
Before going in details in the formation of clusters we explore the formation
of the first fluctuations that are the triggers of the collapse for the formation of
objects like galaxies and clusters. The technique of the clustering6 is a wide-
used method to study the spatial correlation between the initial fluctuations
because they trace the objects distribution in the cosmic web7 in the redshift
space. Analyzing the redshift distribution one can reconstruct the motion of
the initial fluctuations and reconstruct how was the Universe after the infla-
tionary epoch.
Galaxy clusters are particularly interesting topic in astrophysics and cosmol-
ogy because in spite of the numerous mergers that experienced in the forma-
tion, sufficiently relaxed clusters (that can be considered clusters that do not
have experienced a recent major merger) can be considered systems close to

6The clustering is a statistical method used to study the correlation between the same type of
objects.

7The cosmic web is the spatial distribution of the structures of the Universe: galaxies, clusters
and super-clusters are distribuited not uniformly in the space but they tend to be concentrated in
big structures (known as nodes) and in big voids through them and they are connected by filaments
made of dark-matter and baryonic matter like diffuse gas and “field” galaxies.
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equilibrium. Clusters close to equilibrium and without evident signs of dy-
namical phenomena can be studied under the assumption of the conservation
of the total mass.

1.2.1 Structure Formation

The conventional paradigm for the formation of structures in the Universe is
based on the growth of small perturbations due to gravitational instabilities.
In the currently standard hierarchical structure formation scenario, objects are
thought to form via gravitational collapse of peaks in the initial primordial
density field characterized by the density contrast:

δ(t,x) =
ρ(t,x)− ρbk(t)

ρbk(t)
, (1.9)

where ρbk is the mean mass density of the Universe and x is a position in the
space.
For simplicty we assume that the δ(t,x) is a homogeneous and isotropic Gaus-
sian random fluctuation, more about the characterization and the way are stud-
ied the initial overdensities can be found in Guth and Pi 1982, Peebles 1982,
Bardeen et al. 1983 and Padmanabhan 2003. The initial fluctuations are dis-
tributed like a power-law:

Pin(t, k) =< |δk(t)|2 >= Aks (1.10)

where δk is the Fourier transform of δ(t,x) and it is mediated in the ensemble.
k is Fourier transform of the characteristic scale of the perturbations, A is the
normalization of the spectrum and s is the spectral index of the power-law.
When δ � 1 the gravitational collapse is in a linear regime, but observations
tell us that many objects in the Universe are in a non-linear regime (for instance
galaxy clusters). The collapse of the dark matter halos can be described using
the Press-Schecter formalism (Press and Schechter 1974) that predicts a number
of objects in a certain mass range.
Sufficiently high overdensity are able to collapse. The collapse is studied un-
der the assumption of spherical symmetry with spherically-symmetric density
fluctuation of initial radius Ri, that is the radius of the perturbation in a ρbk
mean density field. The growth of such perturbation stops at a maximum value
Rta, the radius of the turn around at a certain epoch and thenR(t) starts decreas-
ing until the perturbation collapses. The ratio between the density at the end
of the collapse, ρcoll, with the mean density ρbk is ∆vir = ρcoll/ρbk ≈ 200. In an
overdense region we are in a non-linear regime and the perturbations can not
be studied in the linear assumption. The evolution of a perturbation in a over-
dense region under the assumption of a spherical approximation is shown in
figure (1.1) where anl is the moment of the beginning of the non-linear regime
of the collapse, amax is the moment of the turn around when the perturbed re-
gion detaches from the expansion flow and acoll when there is the formed col-
lapsed region. Simple analytical models, such as the spherical collapse model,
can not make predictions about the internal structure of the dark matter halos
which instead has been widely studied in cosmological N-body simulations. In
the next section we will briefly describe the structural properties of dark matter
halos.
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Figure 1.1: Evolution of a perturbation in an overdense region in a spherical ap-
proximation. It is evident the moment of the turn around, when the perturbed
region differs from the Hubble flow (a−3) and starts to gain matter creating a
collapsed region (Padmanabhan 2003).

1.2.2 Dark-Matter profiles and halo shapes

In the cold dark matter scenario we know that collisionless particles of dark
matter in the early phases of the universe gathered in halos of small mass. The
theory of the hierarchical formation claims that the small halos experienced
many mergers creating bigger halos where the baryons, after decoupling with
the radiation, are free to collapse in dense structures creating the first stars8

and the first galaxies. Galaxy clusters are the latest bound structures created
and they have experienced many mergers and many are still undergoing.
The first astronomer that proposed and tested the presence of a bigger amount
of mass was Fritz Zwicky (1937) in the work “On The masses of nebulae and
of cluster of nebulae”, where the mass estimated from observations of galaxy
clusters (especially the data from the Coma cluster) were much higher, about
an order of magnitude, than what was predicted before using only luminous
matter.
Starting from this evidence in the following years there were strong proofs
supporting this theory (e.g. Smith 1936, Babcock 1939, Oort 1940) for instance
the rotation curve of galaxies (that was expecting a rotation decreasing on the
radius increasing, as expected from Kepler’s law, but it keeps on constant).
The dark matter halos that were formed in simulations are not well represented

8The first stars are called “third” population stars composed only by hydrogen and helium, no
extra metals.
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as isothermal sphere (Burkert 1995):

ρ(r) ∝ 1

r2
, (1.11)

but have gently changing logarithmic slopes like:

ρ(r) =
ρref,z

r
rs

(1 + r
rs

)2
, (1.12)

which is known as the NFW density profile. This profile is one of the most
used for its simplicity and thanks to its ability in reproducing a wide range of
masses.
So far we have focused on the angle-averaged density profiles of halos. An-
other interesting property of halos is their shape, that is whether are close to
spherical, axisymmetric or triaxial (e.g. Buote and Tsai 1995, Jing and Suto
2000, Kazantzidis et al. 2004, Lee et al. 2008, Schneider et al. 2012, Bryan et al.
2013). The fact that dark matter halos are not spherical lead us to use a flat-
tened potential for our models.

1.3 Properties of galaxy clusters

Galaxy clusters can be studied in many observational windows from optical,
where can be studied the peculiarities of the galaxies inside the cluster and
gravitational effects from lensing, in the radio band, where non-thermal emis-
sion can be studied, and X-ray astronomy where the hot gas emission can be
analyzed. X-ray emission of the ICM is a tracer for dark matter distribution
because studying the isophotes, that are regions with the same surface bright-
ness, we can reconstruct the gas and dark matter distribution.
Typical cluster masses are about 1013∼15M�, smaller structures with lower
mass are typically called groups. Recently bigger structures are found, they
are called super-clusters and the first identified is the Laniakea, where the Milky
Way, our galaxy, resides. However these super-clusters are not virialized (Tully
et al. 2014).
The richness is a measure of the number of galaxies that are associated with the
cluster and it derives from the catalogation of Abell et al. (1989); cluster can be
classified based on the presence of spiral galaxies, in fact, clusters can be spiral
rich or spiral poor if there is a massive presence of that type of galaxy or there is
the dominance of elliptical galaxies. If there is a bigger central galaxy a cluster
can be defined as cD Cluster, where they refer to that galaxy as Central domi-
nant or core dominant.
Dark matter is the main component of clusters (approximately 80%), the sec-
ond main component is diffuse gas (∼ 13%) while stars are about the ∼ 7% of
the total mass (Bykov et al. 2015).
Typical dimensions of the virial radius of a cluster are about 1 ∼ 2 Mpc, the
virial radius is defined in section (2.1).
The ICM mean density, under the assumption of a gas fraction fgas = 0.13 is

< ρICM >≡ fgasMtot

r3
vir

∼ 10−27g/cm3. (1.13)
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Assuming a fully ionized gas with µ = 0.59, mean molecular weight, mean
temperature of ∼ 107K, virial radius of 2 Mpc and a total mass of 1015M� so
equation (1.13) corresponds to a number density < nICM >∼ 10−3∼−5 cm−3.
The ICM has a high temperature and it is observable in X-ray, in fact we can
measure the X-ray luminosity:

Lx = ε× V olume = nineΛ(T,Z)× 4π

3
r3
vir, (1.14)

where ε is the emissivity of the gas and depends on the ni the number density
of ions, ne the electrons number density and on Λ that is the cooling function
(see equation 2.58). Z is the metallicity of the gas, galaxy clusters present a
mean metallicity of 1/3 the solar abundance. So we assume in our models
Z = 0.3Z�.
In table (1.1) we summarize the main characteristics of the clusters and groups.

Cluster Mass LX rvir ne ni T fgas
[M�] [erg/s] [Mpc] [cm−3] [cm−3] [keV]

Massive 1015 1044 1− 2 10−3 10−3 ∼ 7.5 0.13
Poor Groups 1013 1042 0.1− 1 10−3 10−3 ≤ 2 0.10

Table 1.1: Main physical parameters of galaxy clusters and groups (from Bah-
call 1996).

1.3.1 Galaxy Clusters X-ray classification: Cool Cores and Non-
Cool Cores

It is known that there is a bimodality in the X-ray emission from the intracluster
medium that characterizes galaxy clusters between Cool Core and Non-Cool
Core. This difference is connected with the temperature profiles: cool cores
show a sudden drop toward the center while the second type has not a drop
in the center. The cooling time9of the cluster center in non-cool core clusters,
due to the low density in the core, is an order of magnitude higher than the
Hubble time 10 (e.g. Fabian and Nulsen 1977, Cowie and Binney 1977, Hudson
et al. 2010). The trend of the cooling time on radius is presented in figure (1.2),
we can see that the innermost regions had the lower cooling time and it is
associated with the high density in the core of this type of clusters.
Henning et al. (2009) show the different behaviour of surface brightness and

temperature in cool core and non-cool core simulated clusters (figure 1.3). As

9The radiative cooling time is the time necessary for the gas to emit photons and get a lower
energy, so a lower temperature,

tcool =
3nkBT

2nineΛ(T, Z)
, (1.15)

where Λ is the cooling function, n = ni + ne where ni is the ions density and ne is the electrons
density and kB is the Boltzmann’s constant.

10The Hubble time is defined as:
τH = 1/H0; (1.16)

where H0 is the Hubble constant. This is the time between the Big Bang and approximately the
age of the universe (Coles and Lucchin 2002).
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Figure 1.2: Cooling time of clusters in base of radius, the Hubble time is high-
lighted with a line at 13.7 Gyr (Peterson and Fabian 2006).

Figure 1.3: Averaged surface brightness for cool core and non cool core (left)
and averaged temperature profile for cool core (blue) and non cool core (red)
(right) of simulated clusters from Henning et al. (2009). The temperature pro-
files are normalized by the M − T relation temperature and the errorbars are
the 1 σ standard deviation from the radial point. The averaged surface bright-
ness profiles for simulated galaxy clusters cool core (10) are the blue dots and
red are for the non cool core (78). The non cool core sample are lowered in a
factor of 10 for a better understanding.
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already said, in the inner region of the cool core clusters there is a major amount
of gas and, in fact, the surface brightness is higher than in the non-cool core case
so the temperature profile is lower in the innermost part of these type because
higher density tends to cool faster.

1.4 Cluster mass estimating methods

The total mass of a cluster is one the most important quantity to obtain in the
study of this type of objects. In this paragraph, we present the most used meth-
ods to measure the mass in different windows of observation, from optical
band to X-rays.
We start with the X-ray emission where, assuming hydrostatic equilibrium and
spherical symmetry, we can obtain a measure of the mass:

M(< r) = −kBTgas(r)
Gµmp

[
d log ρgas(r)

d log r
+
d log Tgas(r)

d log r

]
, (1.17)

where Tgas(r) and ρgas(r) are the temperature and density profiles, kB is the
Boltzmann’s constant, µmp is the mean molecular weight of the gas. The density
and temperature profiles can be obtained from observations (Böhringer and
Werner 2010, Biffi et al. 2013b, Amodeo et al. 2017).
The virial theorem may be used to measure the mass of the cluster using the ve-
locity dispersion of the galaxies in the cluster. Starting from the Virial theorem:

2T + U = 0, (1.18)

where T is the kinetic energy and U is the potential energy. Substituting in the
equation (1.18) the value of kinetic energy and potential energy assuming for
simplicity that the cluster mass distribution is a uniform sphere of radius rvir

Mcluster σ
2
v −

3

5

GM2
cluster

rvir
= 0, (1.19)

we obtain:

Mcluster ≈
5

3

rvirσ
2
v

G
, (1.20)

where Mcluster is the total mass inside rvir, G is the gravitational constant and
σv is the velocity dispersion of the galaxy inside the cluster and it is typically
about ∼ 1000 km/s (Sadat 1997 and Saro et al. 2013).
Obviously, this method takes many strong assumptions and some biases may
affect the value of the mass measured. For instance, a strong assumption is con-
sidering that a cluster is not in dynamical interaction. Another bias that affects
the measurement is related to σv of the galaxies because the velocity disper-
sion is a composite effect of the coherent motion of the galaxy in the cluster
and the proper inner motion and it is not simple to distinguish the contributes
(e.g. Sadat 1997, Saro et al. 2013). Another useful method to obtain the global
mass is using the kinematic of galaxies, under spherical assumption and in the
isotropic case where σr = σθ:

M(r) = − r2

Gngal

dngalσ
2
r

dr
. (1.21)
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The equation (1.21) is obtained from stellar hydrodynamics equations and it
uses the number of galaxies (ngal) and the dispersion velocity in the radial
direction σr. This method suffers from the poor knowledge of the orbits of
galaxies in clusters (Sadat 1997).
Concluding this excursus on methods for evaluating the total mass of the clus-
ter we must cite gravitational lensing: strong lensing for the inner region of the
cluster and weak lensing for the outskirts. Thanks to this method we can ob-
tain a measure of the total mass of the cluster. The lensing mass evaluation can
be described as:

M(θt) = πD2
l r

2
tΣcrit ≈ 4.4× 1014M�

(
rt

[30 arcsec]

)2(
DlDs

Dls [Gpc]

)
, (1.22)

under the assumption of strong lensing and this is the cluster mass enclosed
by a tangential critical curve11 at radius rt or the correspondent angular value
θt (Hoekstra et al. 2013).
Here Ds, Dl, and Dls are the angular diameter distances between the observer
and the source, observer and the lens and lens and the source. Hence, the lens-
ing signal depends on the redshifts of both the lenses and the sources. Multi-
plying with πΣcritD

2
l converts the adimensional mass inside rt to the projected

mass inside of the physical radius Dlrt. The value of Σcrit strongly depends
on the relative distances of observer and source, lens and observer and their
relative distance:

Σcrit =
c2

4πG

Ds

DlDls
. (1.24)

In weak lensing measurement we obtain the values of k(θ;M∆, c∆) (conver-
gence profile) and γ(θ;M∆, c∆) (shear profile) that are needed to determine the
tangential distortion profile defined as:

g+(θ) =
γ(θ)

1− k(θ)
, (1.25)

under the assumption of a spherical lens. The mass distribution is supposed
spherical and comparing k and γ we can obtain a measurement of the inner
mass (Okabe et al. 2010, Umetsu et al. 2011, Okabe and Smith 2016).
The Sunyaev-Zeldovich effect12 can also be used to constrain the mass in the
cluster.
The equation (1.28) shows the relation between the integrated comptonization

11The critical curves in gravitational lensing are lines where a source have an “ideal” infinite
amplification. That are the eigenvalues of the Jacobian matrix A that defines the mapping of the
lens:

A = δij −
∂2Ψ

∂xi∂xj
= (1 − k)

[
1 − g1 −g2
g2 1 + g1

]
(1.23)

where Ψ is the deflection potential, gi = γi/(1 − k) is the reduced shear (γ, connected with the
deflection potential) and k is the converge. For more details see Hoekstra et al. (2013).

12The Sunyaev-Zeldovich is a scattering phenomenon where the CMB photons (cosmic mi-
crowave background) scatter with the high temperature free electrons of the astrophysical plasma
in clusters and lead a distortion of the millimeter emission peak of the CMB due to Inverse Comp-
ton.
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parameter YX13 that can be used as a proxy for total mass.

M500
X

1014M�h−1
=
(
AXh

3/2
)( YX

3× 1014M� keV

)BX
E(z)CX ; (1.28)

where multiplying for an h will give the value of the cluster mass in units
of M� h (Vikhlinin et al. 2009). M500

X is the total mass obtained from X-ray
measurement at r500, the value of the normalization AX in the best fit from
Vikhlinin et al. (2009) is 5.77 ± 0.2, the slope BX best fit is about 0.57 ± 0.03.
The parameter E(z) = H(z)/H0 is derived from the cosmology (see section 1.2
for the definition and the defition of H(z), equation 2.3) and CX is the term
of redshift evolution (mean value −0.40 ± 0.20). The Yx is the comptonization
parameter (e.g. Saliwanchik et al. 2015, Grainge et al. 2015).
Also X-ray scaling relations can be used to determine the mass using observ-
ables like temperature, luminosity and velocity dispersion (e.g. Zhang et al.
2011, Giodini et al. 2013). The scaling relations can be obtained using the as-
sumption of equilibrium, via virial theorem, and:

M∆z
=

4π

3
∆zρcrit,0E

2
zR

3
∆z
. (1.29)

Chosen a value for ∆ we can obtain

Tgas ∝
GM

R
∝ R2

vir, (1.30)

substituting the equation (1.30) in equation (1.29) we obtain:

M∆z
∝ T 3/2

gas . (1.31)

(Stanek et al. 2006). The X-ray bolometric luminosity, LX , can be related the
total mass:

LX ∝ εR3
∆z
∝ T 1/2

gas ρ
2
gasR

3
∆z
∝ T 1/2

gas f
2
gasMtot ∼ f2

gasT
2
gas, (1.32)

assuming gas fraction constant we get that:

LX ∝ T 2
gas ∝M

4/3
tot . (1.33)

1.5 Hydrostatic mass bias

The mass determination that we analyzed in section (1.4), especially using X-
ray and Sunyaev-Zel’dovich data, are combined under the assumptions of hy-
drostatic equilibrium in gravitational potential with spherical symmetry.

13The SZ effect of a cluster in a solid angle:

Yc =

∫
ycdΩ = D−2

A (z)

∫
ycdA =

σT

mc2
D−2
A

∫
V
PedV ; (1.26)

where DA is angular diameter distance, dΩ is the projected area in the sky, σT is the Thomson
cross section, dV = dldA is the volume and the Pe is the pressure profile. The other parameter in
that equation is yc that is the comptonization parameter of the thermal Sunyaev-Zeldovich:

yc =
kBσT

mec2

∫
l
TXnedl. (1.27)

(De Martino and Atrio-Barandela 2016)
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Generally is found that mass estimated with weak lensing method, that char-
acterize the all cluster’s mass on the line of sight is about 9 ∼ 10 % higher than
what is estimated in X-rays under the assumption of hydrostatic equilibrium
(Zhang et al. 2010). To obtain these mass measurements many works adopted
some approximations that bias low the value of about 5 ∼ 10 % with a scatter
of 10 ∼ 25 % (Meneghetti et al. 2010, Rasia et al. 2012).
Some approximations come from the deprojection of the weak lensing mass
due to the triaxiality of the potential and the possible presence of substructures
(Sereno and Ettori 2015). Regarding the assumptions and approximations of
the hydrostatic equilibrium of the X-ray mass measurements these are corre-
lated to the presence of temperature inhomogeneities, presence of clumps of
matter in the outskirts and mainly from non-thermal terms of pressure. The
bias is estimated to be of the order of 25 ∼ 35 % (Piffaretti and Valdarnini
2008). Many authors proposed and tested the difference between the observa-
tional results and measurements of simulations with non-thermal components
from AGN feedback, gas sloshing, contribution of turbulence and bulk motion
of the gas (e.g. Vazza et al. 2012, Biffi et al. 2016, Martizzi and Agrusa 2016). In
other papers authors explored the contribution to the resolution of this prob-
lem adding a bulk motion of the gas in numerical simulations (Ettori et al. 2013;
Rasia et al. 2014). In order to recover some of these problems the combined in-
formation from the different data sets in different wavelengths enables us to
recover the triaxial structure and the orientation of the cluster and to quantify
the non-thermal contributions to the pressure. In this framework a characteri-
zation of a flattened gravitational potential and the study, in this potential, the
gas rotation may be useful to set some constraints for cosmological simulations.



Chapter 2

Models of clusters with
rotating intracluster medium

2.1 Flattened NFW Density-Potential Pairs

The spherically averaged dark-matter halos found in cosmological dark-matter-
only N-body simulations are well described by the Navarro et al. (1996) (here-
after NFW) profile

ρ(r) =
ρ0

r
rs

(1 + r
rs

)2
, (2.1)

where rs is the scale radius and ρ0 is a reference value of dark-matter den-
sity. At a given redshift z the density of the universe is

ρcrit(z) =
3H(z)2

8πG
, (2.2)

where G is the gravitational constant and

H(z) = H0 ×
[
ΩΛ + Ωm(1 + z)3

]1/2
, (2.3)

is the Hubble parameter at redshift z for an assumed flat Universe (Ωtot = 1).
The cosmological assumptions are ΩΛ = 0.7 and Ωm = 0.3 and ρcrit(0) is
1.9× 10−29 h2 g/cm3 where h2 is the dimensionless Hubble constant 1.

The NFW profile is singular (although the potential and mass converge near
the center), and possess a characteristic scale where the profile changes shape.
Near the scale radius rs, the profiles are almost isothermal (ρ ∝ r−2).
The NFW profile is considered as a “universal” profile: it depicts well dark-
matter halos over a wide range of masses as is it probed by cosmological N-
body simulations (e.g. Navarro et al. 1996, Solanes et al. 1997 , Ghigna et al.
1998, Jing and Suto 2000, Klypin et al. 2002, Navarro 2004 and much more).

1The Hubble Law found by Edwin Hubble in 1929 describes that the Doppler shift of the galax-
ies increases linearly with the distance:

vr = H0D (2.4)
where vr is the recession velocity and D is the distance of the object studied.

13
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In this work we consider high-mass halos with virial mass of M200 = 1015M�
such that ρcrit is:

ρcrit =
1

200

3M200

4πr3
200

, (2.5)

where the virial radius is r200 is such that the average density within r200 is
200 ρcrit. N-body simulations and galaxy clusters observations (e.g. Ettori
et al. 2010) indicate that there is an anticorrelation between the masses of dark-
matter halos and their concentration (c200), more massive halos tend to be less
concentrated than smaller ones.
Concentration is defined as the ratio of the virial radius, r200, and the scale
radius rs:

c200 =
r200

rs
. (2.6)

For instance Dolag et al. (2004) find

log10[c200(1 + z)] = A+B log10

(
M200

1015M�

)
, (2.7)

with A= 0.6 and B =−0.4. For a fixed halo mass M200 = 1015M� we obtain
a concentration value of 3.98 (equation 2.7), while the virial radius is about 2
Mpc and resolving equation (2.6) we obtain a value for the scale radius of 519
kpc.
Concentration, scale radius and M200 fully determine a spherical NFW halo.
From the Poisson equation

∇2Φ = 4πGρ, (2.8)

using the density distribution (2.1), we obtain the gravitational potential of the
NFW model

Φ = −4πGρ0 r
2
s

ln(1 + r/rs)

r/rs
. (2.9)

Dark-matter halos are not spherically symmetric (e.g. Despali et al. 2017) so
we build axisymmetric models with the profile similar to the NFW one. Other
authors have studied gas and dark matter distribution in non-spherical poten-
tial: Salvador-Solé et al. (2012) studied the dark matter halos in triaxial poten-
tial, Rojas-Niño et al. 2016 showed how can be created a 3D positive density-
potential of discs and Panou and Delikaraoglou 2012 presented how a gravita-
tional potential could be expanded in triaxial ellipsoidal harmonics.
Here we construct axisymmetric NFW model following Ciotti and Bertin (2005)
that presented a method to expand homeoidal potential from an ellipsoidal
density distribution.
We start presenting the 3D radius of the ellipsoid m given by

m2 =
x2

a2
+
y2

b2
+
z2

c2
(2.10)

using Cartesian x, y, z. The parameters a, b and c are the semi-axes defined as
a > b > c. This equation can be rewritten as

m2 =
x2

a2
+

y2

a2(1− ε)2
+

z2

a2(1− η)2
, (2.11)
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where we defined the two parameters ε ≡ 1− b/a and η ≡ 1− c/a.
This expansion is a general form of a triaxial ellipsoid. Axisymmetric distribu-
tion are obtained for ε = 0 or η = 0 or η = ε. The prolate case is when ε = η < 1
and the oblate is when ε = 0 and 0 < η < 1. The homeoidal inner potential can
be defined as (Chandrasekhar 1969):

Φ(x) = −πabcρ0G

∫ ∞
0

∆̃ϕ(x, ε, η)

∆(τ)
dτ, (2.12)

where x is the position vector,

∆(τ) =
√

(a2 + τ)(b2 + τ)(c2 + τ), (2.13)

∆̃ϕ = 2

∫ ∞
m(x,τ)

ρ̃(m)mdm, (2.14)

and

m(x, τ)2 =
x2

(a2 + τ)
+

y2

(b2 + τ)
+

z2

(c2 + τ)
. (2.15)

∆(τ) that is a ellipsoid radius such that ∆ =
√
a2 + b2 + c2 for τ = 0 and

∆ → ∞ for τ → ∞. ∆̃ϕ is the integral of the density on the three dimensional
ellipsoidal radius to infinite.
To expand the potential we made it adimensional by rescaling for the density
(ρ0) and for the Poisson equation (4πρ0Ga

2), and subsituing ε = 1 − b/a and
η = 1− c/a. Thus the potential is

Φ̃ = −(1− ε)(1− η)
a

4

∫ ∞
0

∆̃ϕ(x, ε, η)

∆(τ)
dτ. (2.16)

Now equations of ρ̃(m) and Φ̃(m) can be expanded in Taylor series in order to
show how the flattening will affect the spherical distribution and this will be
the starting point to reproduce the expansion

ρ̃(m) = ρ̃(r̃) +
εỹ2 + ηz̃2

r̃
ρ̃′(r̃) +O(ε2 + η2); (2.17)

where

ρ̃′ =
dρ

dm
when ε = η = 0. (2.18)

From equation (2.17) we can obtain the maximum flattening of our models (the
maximum value of η and ε for which ρ is everywhere positive). The negative
density is related to ρ′ because it is the only term in the equation that, under
particular values of η and ε, could become negative. If this occurs ρ̃ becomes
negative and this is unphysical.
The Taylor expansion of equation (2.16) for η � 1 and ε� 1

Φ̃ = Φ̃0(r̃) + (ε+ η)[Φ̃1(r̃)− Φ̃0(r̃)] + (εỹ2 + ηz̃2)Φ̃2(r̃) +O(ε2 + η2), (2.19)
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where:

Φ̃i(r̃) =



−1

r̃

∫ r̃

0

ρ̃(m)m2 dm −
∫ ∞
r̃

ρ̃(m)m dm , (i = 0);

− 1

3r̃3

∫ r̃

0

ρ̃(m)m4 dm − 1

3

∫ ∞
r̃

ρ̃(m)m dm , (i = 1);

1

r̃5

∫ r̃

0

ρ̃(m)m4 dm . (i = 2).

(2.20)

Substituting in the equation (2.20) the values of ρ from equation (2.1) and m
from equation (2.11) we get:

Φ̃0(r) = −1

s

[
ln(s+ 1)

(s+ 1)
− 1

]
− 1

(s+ 1)
, (2.21)

where s = r/rs.
The second term of the expansions is

Φ̃1(r) = − 1

3s3

[
3s ln(s+ 1)

s+ 1
+

3 ln(s+ 1)

s+ 1
+

s3

2s2 + 2
− 3s2

2s+ 2
− 2s

s+ 1
+

1

s+ 1
− 1

]
− 1

3(s+ 1)
,

(2.22)
the third one is

Φ̃2(r) =
1

s5

[
3s ln(s+ 1)

s+ 1
+

3 ln(s+ 1)

s+ 1
+

s3

2s2 + 2
− 3s2

2s+ 2
− 2s

s+ 1
+

1

s+ 1
− 1

]
.

(2.23)
These terms must be inserted in the general equation (2.20) to obtain the gen-
eral form of the gravitational potential for oblate and prolate models.
While replacing in the equation (2.17) the equation (2.1) we obtain the general
equation of the density expansion:

ρexp =
1

s(1 + s)2
− ηz2 + εy2

s

1

s2(1 + s)2
− 2

s(s+ 1)3
. (2.24)

For the oblate case, we use

m2 =
x2 + y2

a2
+

z2

a2(1− η)2
, (2.25)

given by equation (2.10) with ε = 0 and b2 = a2(1 − η)2. So choosing R =√
x2 + y2 and z = z and substituting in Eq: (2.25):

m2
obl(r, z) =

R2

a2
+
z2

b2
. (2.26)

The potential is

Φobl(R, z) = Φ0(R) + η[Φ1(R)− Φ0(R)] + ηz2 Φ2(R) +O(η2); (2.27)

and the density is

ρobl(R, z) = ρ0

[
1

s(1 + s)2
− ηz2

s

1

s2(1 + s)2
− 2

s(s+ 1)3

]
. (2.28)
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For the prolate case, instead, we have

m2 =
x2

a2
+

z2 + y2

a2(1− ε)2
, (2.29)

given by equation (2.10) with c2 = b2 = a2(1 − ε)2 substituing z′ = x and
R′ =

√
y2 + z2 we have:

m2
pro(R

′, z′) =
z′2

a2
+
R′2

b2
; (2.30)

and

Φpro(R
′, z′) = Φ0(R′) + ε[Φ1(R′)− Φ0(R′)] + ηR′

2
Φ2(R′) +O(ε2). (2.31)

The density profile is

ρpro(R
′, z′) = ρ0

[
1

s(1 + s)2
− εR′2

s

1

s2(1 + s)2
− 2

s(s+ 1)3

]
. (2.32)

In equation (2.32) we used s = R′/rs and ρ0 is the physical normalization2.

2.2 Dark-Matter Distribution

In this subsection, we present examples of flattened NFW dark matter potential
computed with maximum flattening in both the oblate and the prolate cases
introduced in section (2.1).

A spherical NFW dark matter distribution is presented in figure (2.1) where
are highlighted the isodensity contours that are associated with isopotential re-
gions. A high value of ε and η in the potential may create regions of negative
dark matter density. We show dark matter maps with a high value of flattening
η ≡ 0.5 and ε ≡ 0.5 to display the presence of negative density.

The figure (2.2) shows the dark matter density distribution maps for an
oblate and prolate potential. As it can be seen there are some structures on the
edges of the isodensity contours and that are associated with the negative val-
ues of the density distribution due to the second term of the expansion ( dρ/dm
in equation 2.17).
The grey color in the maps in figure (2.2) is associated with the region where
there are areas of negative density. The broken isodensity contours highlight
regions where the density is negative.
These models are therefore unphysical.

Figure (2.3) presents a zoom of the maps (2.2) in different color scale in
a squared region of 500 kpc radius in correspondence of the areas where we
found a negative values of the dark-matter density. In these maps the broken
lines of the isodensity contours are more evident than in the maps (2.2).
In chapter 3 will be presented models of gravitational potentials and dark mat-
ter distributions flattened but physical, so everywhere positive.

2The ρ0 is the same as the spherical NFW.
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Figure 2.1: Map of dark-matter density in the meridional plane of a spherical
NFW, with parameters M200 ≡ 1015M�, C200 ≡ 3.98 and rs ≡ 519 kpc. The
map is shown in physical scale with R and z that are expressed in kpc, the
contours that are highlighted are referred to the logarithmic isodensity of dark
matter in g cm−3 scale.

Figure 2.2: Dark-matter density map in the meridional plane in oblate (left)
and prolate (right) expansion. The maps are created using the same physical
parameters used to create the other dark-matter distribution. The maps are in
logarithmic scale of g cm−3. The grey region is where there is negative density
defined with the broken contours lines.
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Figure 2.3: Zoom of the dark-matter density maps (2.2). The isodensity value
are highlighted and the areas where we found negative density are more evi-
dent.

2.3 Hydrodynamics equations

In this section, we report the hydrodynamics equations that we used to build
models of rotating ICM.
Euler’s equation describes how velocity, pressure and density of a fluid are
related under the effect of gravitational potential.

∂u

∂t
+ u· ∇u +

∇P
ρ

= −∇Φ, (2.33)

where u is the gas velocity, Φ is the gravitational potential, ρ is the gas density
and P is the pressure.

We consider stationary models (that are independent of time) in which the
only non-zero component of the velocity is the azimuthal component uϕ is
defined as

uϕ(R) = ΩR, (2.34)

where Ω is the angular velocity and depends only on radius. For the geometry
of our model we use the Euler’s equation in cylindrical coordinates (R, ϕ and
z) that describes an axisymmetric gas system in rotation under effect of the
gravitational potential

1

ρ

∂P

∂z
(R, z) = −∂Φ

∂z
(R, z), (2.35)

1

ρ

∂P

∂R
(R, z) = −∂Φ

∂R
(R, z) + ΩR. (2.36)
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The potential Φ is assumed to be axisymmetric. It is useful to define the effec-
tive potential

Φeff (R, z) ≡ Φ(R, z)−
∫ R

Ω2(R′)R′ dR′, (2.37)

that is a mathematical representation of how we can describe the effect of the
rotation component to the stability of the gas. From the Poincaré-Wavre the-
orem (Tassoul 2007) we know that a cylindrical rotation pattern is a necessary
and sufficient condition to have a barotropic stratification of density and pres-
sure, so the isodensity and the isobaric surfaces coincide with the surfaces of
constant effective potential Φeff and we have P=P(ρ).
For the gravitational potential Φ(R, z) we adopt the flattened axisymmetric
NFW that is described in details in section (2.1).

2.4 Polytropic Distribution of the ICM

The gas distribution can be described as polytropic distribution, so:

P

P0
=

(
ρ

ρ0

)γ̃
, (2.38)

where P0 ≡ P (x0), ρ0 ≡ ρ(x0) and x0 is a reference position and γ̃ is the poly-
tropic index.
To obtain the distribution of pressure and density in terms of effective poten-
tial, we substitute in equation (2.35) the equation (2.38) and we get:

γ
kBT0

µmp

ργ̃−1

ργ̃−1
0

∇ρ = −ρ∇Φeff (R, z), (2.39)

where T0 ≡ T (x0). Using Φeff,0 ≡ Φeff (x0) and ∇Φeff = (dΦeff/dρ)∇ρ we
obtain: ∫ ρ(x)/ρ

1

γ̃
kBT0

µmp
ρ′γ̃−2dρ′ = −

∫ Φeff (x)

Φeff,0

dΦ′eff (2.40)

where we have ρ′ = ρ/ρ0.
If γ̃ 6= 1, we can write the solution of equation (2.40)

ρ(R, z) = ρ0

[
1 +

γ̃ − 1

γ̃

µmp

kBT0
(φeff,0 − φeff )

] 1
γ̃−1

(2.41)

that is the density distribution in the non-isothermal case. The isothermal case
is defined by γ̃ = 1 and the equation (2.41) is rewritten in this way:

kBT0

µmp

∇ρ
ρ

= −∇Φeff (R, z), (2.42)

and the density distibution

ρ(R, z) = ρ0e
−[Φeff (R,z)−Φeff,0](µmp/kBT0). (2.43)

By construction the isothermal models have a position-indipendent tempera-
ture. For the non-isothermal models instead we have

T

T0
=

(
ρ

ρ0

)γ̃−1

. (2.44)
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2.5 Composite Polytropic Distribution

In cool-core clusters there is a complex interplay between cooling and heating
phenomena (see Hudson et al. (2010) and in section 1.3.1). We assume a sta-
tionary model with an increasing temperature in the innermost regions and a
decreasing temperature in the outer part. We build these models as composite
polytropic gas distribution (Nipoti et al. 2015)

P

P0
=

(
ρ

ρ0

)γ̃in
if ρ > ρ0, (2.45)

P

P0
=

(
ρ

ρ0

)γ̃out
if ρ < ρ0. (2.46)

Thus, the density profiles are:

ρinner(R, z) = ρ0

[
1− (γ̃in − 1)

µmpΦeff
γ̃inkBT0

] 1
γ̃in−1

ρ > ρ0; (2.47)

ρouter(R, z) = ρ0

[
1− (γ̃out − 1)

µmpΦeff
γ̃outkBT0

] 1
γ̃out−1

ρ < ρ0. (2.48)

The different behaviour of the distribution depends only on γ̃in and γ̃out.

2.6 Velocity Pattern

The velocity patterns that we used are:

u2
ϕ(s) = u2

0

[
ln(1 + s)

s
− 1

1 + s

]
, (2.49)

u2
ϕ(s) = u2

0

s2

(1 + s)4
, (2.50)

where s = r/r0 is a normalized radius and r0 is shown in table (2.1) for each
models that we used.
The velocity pattern showed in equations (2.49, 2.50) were presented in the pa-
per of Bianconi et al. (2013). Recently a paper from Baldi et al. (2017) obtained
from numerical simulations of galaxy clusters a test for gas and dark-matter
rotation. Baldi et al. (2017) also added another velocity profile that we do not
use

u2
ϕ = u2

0

s2

(1 + s2)2
. (2.51)

We decided to use the velocity profiles presented in Bianconi et al. (2013) leav-
ing the r0, a characteristic radius, as it was already set while for each model we
have choosen a proper v0 for fitting the ellipticity profiles.
The properties of the velocity laws that we used are summarized in table (2.1).
We adopted the rotation law VP2 (2.50) with two different velocity maximum

to test the best fit with the data. In table (3.1) are shown the different velocity
values and physical parameters of all models.
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Table 2.1: Table of velocity profiles parameters

Eq. Velocity Profile r0 vObl0 vPro0

[kpc] [km/s] [km/s]
2.49 VP1 170 336 1456
2.50 VP2A 120 705 2841
2.50 VP2B 120 1000 2800

For our models we want to reproduce the universal gas fraction that is defined
as the ratio between the gas mass and the total mass of the cluster:

fgas ≡
Mgas

M200
. (2.52)

We imposed our models to have a reproduce a baryon fraction as observation-
ally inferred (Eckert et al. 2011):

fgas(< r200) = (0.15± 0.01)

(
kBT

10 keV

)0.478

, (2.53)

where T is the gas temperature. M200 is the total mass inside r200, from the
relation taken by Arnaud et al. (2005):

M200 = A200

(
kBT

5 keV

)α
, (2.54)

where:
A200 = 2.74× 1014M�, (2.55)

and α = 1.49. In our models we put M200 = 1015M� at redshift 0.1. Us-
ing equation (2.54) we get a 8.7 × 107K temperature for the ICM and from
equation (2.53) we get a gas fraction of 0.13, so we fix fgas = 0.13 for all our
models. The value of gas fraction that we get from equations (2.53) and (2.54) is
in agreement with the values obtained by Kravtsov et al. (2006) and Maughan
et al. (2008).

2.7 Surface Brightness and Cooling Function

The X-ray surface brightness of an edge-on axisymmetric galaxy cluster can be
computed using:

Σ(R, z) = 2

∫ ∞
R

Ė(R′, z)R′ dR′√
R′2 −R2

, (2.56)

where
Ė =

dE

dt
= neniΛ(T,Z), (2.57)

is the cooling rate. Λ is the cooling function that describes how the astrophysi-
cal gas emits photons due to different emission processes, depending on metal-
licity Z and temperature T . For simplicity we use the notation Λ(T ), omit-
ting the explicit dependence of Z. For the hot ICM the dominant process is
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Table 2.2: Parameters of the cooling function expansion from Tozzi et al.
(2000). The physical units for C1 is 10−22 ergs cm3 s−1 keV −α, for C2 is
10−22 ergs cm3 s−1 keV −β and for C3 is 10−22 ergs cm3 s−1.

Metallicity Z� C1 C2 C3

0 1.19× 10−4 6.3× 10−2 1.9× 10−2

0.1 2.8× 10−3 5.8× 10−2 4.0× 10−2

0.3 8.6× 10−3 5.8× 10−2 6.3× 10−2

Bremsstrahlung. In this process electrons in motion are decelerated by inter-
acting with nuclei and protons.

In the relevant range of temperatures (107 ∼ 108 K) the gas is almost com-
pletely ionized.
The most used tabulated cooling function is the Sutherland and Dopita (1993)
that cover a wide range of temperatures (104 − 108.5) and it is computed for
different metallicities. Λ is calculated by integrating the emission from all pro-
cesses weighted by the energy of the photons:

Λ(T,Zi) =

∫ ∞
0

E dE
dα

dE
(E, T, Zi), (2.58)

where dα/dE is the energy-dependent line or continuum power (based on
which process we are considering) and Zi is the metallicity. The cooling func-
tion in the range 106 − 108 K for three different abundances is presented in fig-
ure (2.4), this is taken from Peterson and Fabian 2006. In our work, we adopted
the functional from Tozzi et al. (2000) that is an analytic approximation

Λ̃ = Λneni, (2.59)

where ni is the ions number density and ne is electrons number density. Λ̃ is a
polynomial expansion for an analytic form of the equation:

Λ̃ = C1(kBT )α + C2(kBT )β + C3, (2.60)

where we adopted α = −1.7 and β = 0.5. The values of Ci, reported in ta-
ble (2.2), allow reproducing the Sutherland and Dopita (1993) cooling function
above kBT = 0.03 keV . We remind that for high energy astrophysics is com-
mon use identify the temperature in keV using the Boltzmann’s constant3 in
the eV K−1 (8.617 × 105) to convert the temperature from kelvin into energy
(eV).

3kB = 1.38 × 10−16 erg K−1 in cgs units.
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Figure 2.4: Cooling function taken from Peterson and Fabian (2006) from 106 to
108 K (top line of solar abundance, middle line for 0.3Z� and bottom line for
pure hydrogen and helium plasma). The cooling function represented is the
form tabulated by Sutherland and Dopita 1993.



Chapter 3

Instrinsic properties of the
models

3.1 Galaxy Cluster modelling

In this work we study three families of physical models: isothermal, non-
isothermal and cool core.
We assumed the metallicity of the intercluster medium set to 0.3Z� and con-
stant in the cluster (a more realistic representation would be using a power law
metal distribution that tends to be lower in the outskirt areas while in the cen-
ter is much higher, e.g. De Grandi and Molendi 2001).
In this chapter we show the physical properties of the models both for dark
matter and gas.

3.1.1 Dark Matter maps and profiles

The everywhere-positive dark matter density distribution, that we discussed
in the section (2.1), is presented in figure (3.1) with the maximum value of flat-
tening possible ε ≡ 1− b/a ≡ 0.3864 . We found the same value for both oblate
and prolate expansion because they derive from the same equations with a
different choice of coordinates (R, z) (equations: 2.27, 2.31). The physical pa-
rameters of the potential, that determine a unique NFW potential, are rs ≡ 519
kpc (from equation 2.1), c200 ≡ 3.98 (from equation 2.7) and M200 ≡ 1015M�.

The two maps figure:(3.1) show the dark-matter density distribution in oblate
(left) (equation 2.28) and prolate (right) (equation 2.32) models using the maxi-
mum value of η in the first case and ε in the second one. It is evident that there
is a drop in the inner part creating a sort of “peanut” shape. We show also the
radial profile.

In figures (3.2) and (3.3) show the logarithmic density profiles of the oblate
and prolate models normalized by the value of ρcritic ∼ 10−29 × h2 g cm−3

(2.51), and the radius is normalized by the NFW scale radius (rs). There is evi-
1For assumed Ω = 1 ΛCDM cosmology.

25
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Figure 3.1: Dark-matter density maps in the meridional plane with maximim
flattening (ε = 0.38 and η = 0.38). The isodensity contours are highlighted. The
maps are in physical scale and the left panel is the oblate distribution while the
right is the prolate one, the contours are the isodensity in g cm−3.
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Figure 3.2: Radial density profile at z = 0 in the oblate case. The radius is
normalized by the scale radius rs and the density in the y-axis is normalized by
a ρcritic value (2.5). For comparison, the profile of the corresponding spherical
NFW model is also shown.

dence that the oblate and the prolate cases tend to have slightly higher profile
than the spherical NFW, especially in the inner part of the profile. In the prolate
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Figure 3.3: Radial density profile at z = 0 in the prolate case. The radius is
normalized by the scale radius rs and the density in the y-axis is normalized by
a ρcritic value (2.5).For comparison, the profile of the corresponding spherical
NFW model is also shown.

case there is evidence of a steep drop in the outer radii of the cluster and it is
associated with the shape of the expansion of the gravitational potential. This
can be seen also in the oblate dark matter profile in the z direction.

In figures (3.4) and (3.5) the radial total mass profiles of dark-matter in the
oblate and prolate cases compared with the analytic spherical mass profile of
the NFW are shown. The analytic spherical mass is calculated as

M(r) = 4πρ0r
3
s

[
ln(1 + r/rs)−

r/rs
1 + r/rs

]
. (3.1)

The dark matter mass integrated in cylindrical coordinates is

M(r) = 4π

∫ r(R,z)

0

ρ(R, z)RdRdz (3.2)

where ρ(R, z) is for the oblate case equation (2.28) and for the prolate case
equation (2.32).
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Figure 3.4: Radial dark-matter mass profile of the oblate halo. The red line
is the analytic spherical mass of the corresponding spherical NFW halo and
the green one is the computed oblate mass value obtained from dark-matter
density equation (2.28).
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Figure 3.5: Radial dark-matter mass profile of the prolate halo. The red line is
the analytic spherical mass of the corresponding spherical NFW halo and the
green one is the computed prolate value obtained from dark-matter density
equation (2.32).

3.1.2 Physical parameters

We set other physical values:

• in the isothermal models we assumed a constant temperature of T=8.7×
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107 Kelvin (7.5 keV ).

• For the non-isothermal models we assumed a temperature Tx0 = 8.7×107

K, where x0 is the reference start of the grid (see appendix A.1, for further
details) where we computed the temperature distribution using equation
(2.44). In these models we adopted the polytropic index γ̃in = 1.14 (equa-
tion 2.38).

• For cool core models we adopted the temperature and polytropic index
from Nipoti et al. (2015) with three different temperatures (T1 = 6.9 keV ,
T2 = 7.1 keV and T3 = 6.79 keV ) and three different inner polytropic
indices (γ̃in,1 = 0.49, γ̃in,2 = 0.56 and γ̃in,3 = 0.43) while the outer poly-
tropic index is γ̃out = 1.14 for all models (see equations 2.45 and 2.46).

All models are built to have a baryon fraction 0.13. We obtained these val-
ues starting from the density values from Bianconi et al. (2013) and calculating
the gas mass at r200 we compared it with the total mass of dark-matter inside
the same radius to verify our gas fraction and then we obtained a corrective
factor for the initial gas density and we rescaled our models.
We calculated the gas mass and the dark matter mass inside r200 in cylindrical
coordinates:

Mgas = 4π

∫ r200

0

ρgas(R, z)RdRdz, (3.3)

M200 = 4π

∫ r200

0

ρDM (R, z)RdRdz; (3.4)

so the gas fraction was obtained:

fgas =
Mgas

M200
. (3.5)

In figure (3.6) we show the temperature profile at z = 0 in the non-isothermal
and cool core models.

We use the same rotation laws for prolate case and oblate case and we
changed the main parameter v0 to fit the observations of isophotal flattening
taken from Lau et al. (2012) and Fang et al. (2009).
The functional form of the rotation laws is the same as what was done in Bian-
coni et al. (2013) but the different shape of the potential lead the necessity of
changing the v0 parameter. In figure (3.7) we show the velocity profiles (equa-
tions 2.49 and 2.50) with the v0 used to maximize the fit. Between the oblate
and prolate rotation laws there is a difference of ∼ 400 km/s at the characteris-
tic radius r0.

3.1.3 Gas maps and profiles

This subsection is dedicated to showing baryon maps and profiles. We present
the gas density maps with VP1 velocity profile.
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Figure 3.6: Radial temperature profiles at z = 0 in non-isothermal (left) and
cool core models (right). The parameters are shown in table (3.1).
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are shown in table (3.1).
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Figure 3.8: Gas density for isothermal (top), non-isothermal (mid), cool core
(bottom) oblate (left) and prolate (right) VP1 models
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The maps in figure (3.8) are really similar between them. We can see that
the different geometry of the gravitational potential is evident in the gas dis-
tribution. We can note that the isothermal maps show a lower extension of
distribution than what is observed in the non-isothermal and cool core mod-
els.
In figures (3.9) and (3.10) we present the density profiles for every oblate and
prolate models towards the R and z direction.

The profiles presented in figures (3.9) and (3.10) are really similar due to
the gas density in the starting point of the grid of the models. The differences
between the gas density for the rotating models are of the order of ∼ 10%. For
the prolate models we can see that non-rotating models have a higher density
both at z = 0 and R = 0, this derives from the high impact of the velocity
profile that changes in a significantly way the gas distribution. The differences
between non-rotating and rotating models in the prolate case is of the order of
∼ 35%.
In the cool-core models we can note that there is the typical double trend of the
gas distribution, where until a radius of 130 kpc the profile is almost flat while
at larger radii it starts to drop.
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Figure 3.9: Gas density profile for oblate isothermal (top), non-isothermal
(middle) and cool core (bottom) at z = 0 (left) and R = 0 (rigth).
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isothermal (middle) and cool core (bottom) at z = 0 (left) and R = 0 (right).



CHAPTER 3. INSTRINSIC PROPERTIES OF THE MODELS 35
Ta

bl
e

3.
1:

Ta
bl

e
of

ph
ys

ic
al

pa
ra

m
et

er
s

of
al

lm
od

el
s

th
at

w
e

an
al

yz
ed

an
d

th
ei

r
re

la
ti

ve
re

fe
re

nc
es

to
th

e
fig

ur
e.

W
e

se
tt

he
m

et
al

lic
y

of
al

lo
ur

m
od

el
s

to
0
.3
Z
�

.n
0

is
th

e
re

fe
re

nc
e

de
ns

it
y,
γ̃
in

an
d
γ̃
o
u
t

ar
e

th
e

po
ly

tr
op

ic
in

di
ce

s,
T

0
is

th
e

re
fe

re
nc

e
te

m
pe

ra
tu

re
an

d
v 0

is
th

e
pe

ak
ve

lo
ci

ty
of

th
e

ve
lo

ci
ty

pa
tt

er
ns

.
D

is
tr

ib
ut

io
n

Po
te

nt
ia

l
N

am
e

Fi
gu

re
n

0
γ̃
in

γ̃
o
u
t

T
0

Ve
lo

ci
ty

pa
tt

er
n

v 0
[c
m
−

3
]

[K
]

[k
m
/
s]

Is
ot

he
rm

al
O

bl
IO

N
R

4.
5

9
.8

9
×

1
0
−

3
1

1
8.

7
×

1
07

N
R

0
Pr

o
IP

N
R

4.
5

1
.3

4
×

1
0
−

2
1

1
8.

7
×

1
07

N
R

0

N
on

Is
ot

he
rm

al
O

bl
N

IO
N

R
4.

5
2
.0

9
×

1
0
−

2
1.

14
1.

14
8.

7
×

1
07

N
R

0
Pr

o
N

IP
N

R
4.

5
2
.4

9
×

1
0
−

2
1.

14
1.

14
8.

7
×

1
07

N
R

0

C
oo

lC
or

e
O

bl
C

C
O

N
R

4.
5

4
.5

3
×

1
0
−

2
0.

49
1.

14
8.

0
×

1
07

N
R

0
Pr

o
C

C
PN

R
4.

5
5
.5

0
×

1
0
−

2
0.

49
1.

14
8.

0
×

1
07

N
R

0

Is
ot

he
rm

al
O

bl
IO

V
P1

4.
6

1
.0

9
×

1
0
−

2
1

1
8.

7
×

1
07

V
P1

33
6

O
bl

IO
V

P2
A

4.
6

1
.0

0
×

1
0
−

2
1

1
8.

7
×

1
07

V
P2

A
70

5.
5

O
bl

IO
V

P2
B

4.
6

1
.0

6
×

1
0
−

2
1

1
8.

7
×

1
07

V
P2

B
10

00

N
on

Is
ot

he
rm

al
O

bl
N

IO
V

P1
4.

7
2
.5

2
×

1
0
−

2
1.

14
1.

14
8.

7
×

1
07

V
P1

33
6

O
bl

N
IO

V
P2

A
4.

7
2
.4

7
×

1
0
−

2
1.

14
1.

14
8.

7
×

1
07

V
P2

A
70

5.
5

O
bl

N
IO

V
P2

B
4.

7
2
.3

4
×

1
0
−

2
1.

14
1.

14
8.

7
×

1
07

V
P2

B
10

00

C
oo

lC
or

e
O

bl
C

C
O

V
P1

4.
8

1
.0

4
×

1
0
−

2
0.

49
1.

14
8.

0
×

1
07

V
P1

33
6

O
bl

C
C

O
V

P2
A

4.
8

9
.4

4
×

1
0
−

3
0.

56
1.

14
8.

2
×

1
07

V
P2

A
70

5.
5

O
bl

C
C

O
V

P2
B

4.
8

1
.1

0
×

1
0
−

2
0.

43
1.

14
7.

8
×

1
07

V
P2

B
10

00

Is
ot

he
rm

al
Pr

o
IP

V
P1

4.
6

5
.5

4
×

1
0
−

3
1

1
8.

7
×

1
07

V
P1

13
44

Pr
o

IP
V

P2
A

4.
6

5
.0

5
×

1
0
−

3
1

1
8.

7
×

1
07

V
P2

A
24

56
Pr

o
IP

V
P2

B
4.

6
1
.8

2
×

1
0
−

3
1

1
8.

7
×

1
07

V
P2

B
27

00

N
on

Is
ot

he
rm

al
Pr

o
N

IP
V

P1
4.

7
7
.4

9
×

1
0
−

3
1.

14
1.

14
8.

7
×

1
07

V
P1

14
56

Pr
o

N
IP

V
P2

A
4.

7
8
.0

2
×

1
0
−

3
1.

14
1.

14
8.

7
×

1
07

V
P2

A
28

41
Pr

o
N

IP
V

P2
B

4.
7

8
.1

3
×

1
0
−

3
1.

14
1.

14
8.

7
×

1
07

V
P2

B
28

00

C
oo

lC
or

e
Pr

o
C

C
PV

P1
4.

8
5
.6

4
×

1
0
−

3
0.

49
1.

14
8.

0
×

1
07

V
P1

14
56

Pr
o

C
C

PV
P2

A
4.

8
6
.5

4
×

1
0
−

3
0.

56
1.

14
8.

2
×

1
07

V
P2

A
28

41
Pr

o
C

C
PV

P2
B

4.
8

8
.2

7
×

1
0
−

3
0.

43
1.

14
7.

8
×

1
07

V
P2

B
28

00



CHAPTER 3. INSTRINSIC PROPERTIES OF THE MODELS 36



Chapter 4

Photometric Observables

4.1 Measuring the shape of the isophotes

In this chapter we will present the photometric observables of the ICM models
like X-ray surface brightness maps and profiles. We will study in detail the
flattening of the isophotes.
The X-ray surface brightness maps are the observables that can be used to de-
fine the shape of the gas distribution and, at least for non-rotating ICM, the
shape of potential, like was discussed in many papers like Binney and Strimpel
(1978), Fabricant et al. (1984) and Buote and Tsai (1995).
The intracluster medium emits X-ray photons mainly via Bremsstrahlung radi-
ation, depending on the density, temperature and metallicity of the gas (Sarazin
1988). We want to study the flattening of the X-ray isophotes because we want
to make our models as much as possible similar to real clusters comparing
them with observational data from the papers of Fang et al. (2009) and Lau
et al. (2012).
We explore individually each model (both rotating and non-rotating models)
to evaluate how much the rotation effect is visible and important in the flatten-
ing of the isophotes. Before exploring the analysis of the models we present
a brief description of the methods to evaluate the isophotes ellipticity and the
method that we used.

4.1.1 Ellipticity Profile

The method we adopted for calculating the ellipticity of the isophotes of the
surface brightness distribution is based on the computation of the inertia ma-
trix. By diagonalizing this object, we can obtain the moments associated with
the axes of the distribution.

Starting with the calculus of the inertia matrix, different choices are possi-
ble for the selection of the region where calculating the inertia moments, for
instance we can choose a circular or elliptical annulus.
The method works best if the surface brightness is almost constant inside the
selected region (Dubinski and Carlberg 1991), but using simple shapes for se-
lection, like circles and ellipses, this is not always true, especially in the inner

37
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parts of the distribution.
We will then compare the model isophotes ellipticity with the values observed
in many X-ray observations (e.g. Fang et al. 2009, Lau et al. 2012).
To measure the ellipticity of the isophotes, we use the method that is described
in the paper of Lau et al. (2012) (that is an application of the original method
provided by Dubinski and Carlberg 1991 for dark matter halos in N-body sim-
ulations). The method consists in selecting a circular annulus in the X-ray sur-
face brightness and, in that region, calculate the inertia moments. The method
used in Lau et al. (2012) adopted a “fitting shape” of the selection. The se-
lected region started from a circular annulus then the evaluation of the first
flattening is used to change the selection turning it into an ellipse with the
computed ellipticity, that should have better agreement with the real shape of
the isophotes. The procedure is then iterated until εi ≤ 10−4εi−1, where εi is
the current estimate of the ellipticity and εi−1 is the previous estimate. There
are other methods to evaluate the ellipticity of the isophotes. In the analysis
of observed galaxy clusters a method that is often used is based on the evalu-
ation of the fit between the surface brightness isophotes and a general shape
(for instance using a toy-ellipse using the IDL procedure ellfit). Thanks to
this comparison we can obtain the value of the flattening, the axial ratio and
the angle of the distribution.
However, for consistency in this work we used the method explained in Lau
et al. (2012) because we compare our models to their observational data.

4.1.2 Ellipticity Using Inertia Moments

In this subsection, we will provide a brief exposition of the method we used to
measure the ellipticity profile of the X-ray isophotes of the models. Let us con-
sider a surface brightness map Σ in a Cartesian system of coordinates (xi,xj).
To obtain the value of ellipticity we built the inertia tensor where each element
of the matrix can be expressed as:

Iij =
∑
α

Σαxα,ixα,j , (4.1)

where the objects Iij are called moments of inertia about the correspond-
ing axes, Σα is the weight (the surface brightness) in a region, defined by α,
calculated in the direction i and j.

The tensor is symmetrical so we have

Iik = Iki. (4.2)

Then the Inertia tensor is (Landau and Lifshitz 1969)

I ≡
(
Ixx Ixz
Izx Izz

)
,

where we called xi = x and xj = z. To compute the inertia matrix we use
the eigenvalues λ: we sum all the components in the selected region and we
compute the elements of the matrix obtaining

I − λI ≡
(
Ixx − λ Ixz
Izx Izz − λ

)
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where I is the identity matrix; calculating the determinant of the above matrix
we get the eigenvalues λ = λi and λ = λj so the ellipticity is:

ε =


1−

√
λi
λj
, if λi < λj ;

1−
√
λj
λi
, if λj < λi.

(4.3)

We are free to choose along what axis we can calculate the inertia moments.
We have the choice between a horizontal and vertical selection based on the
geometry of the model taken in account. To select the best region to extract the
eigenvalues we can choose a radius, for example r500, and we compute the Ixx
and Izz within a circular aperture of radius r500 then:

Ixx > Izz ⇒ Horizontal Selection; (4.4)

Ixx < Izz ⇒ V ertical Selection. (4.5)

Horizontal Selection Vertical Selection

Figure 4.1: In this graph we show how we select the elliptic annuli region
where we evaluate the ellipticity of the isophotes in the prolate non-rotating
case. It is evident that the selection in the horizontal direction tends to take
in account too many contributes with different weights making the evaluation
worse.

In figure (4.2) we can note the big difference between the effect of the hor-
izontal and vertical selection. In the figure (4.2) the ellipticity measured with
the horizontal selection is almost increasing until 0.3 r500 where it goes over the
limits of the observational points (above 0.28). While for the vertical selection
we measure a growth starting from 0.04 r500 and the values are comparable
with the observational points (between 0.15 and 0.20).
For all the rotating models we adopted the horizontal selection while for the
prolate non-rotating case, we needed to choose the vertical selection because
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Figure 4.2: Results of method for different selection of the prolate isothermal
non-rotating model with R (red line) and z (green line), horizontal and vertical
selections as shown in figure 4.1.

the flattening of the surface brightness isophotes are in mainly in that direction.
We show in figure (4.1) the effect of the choice in the horizontal and vertical ori-
entation in the X-ray map for a prolate non-rotating model, it is evident that the
different portions of surface brightness regions selected with the radial choice
(left figure) will lead a better measurement.

4.1.3 Test for evaluating the ellipticity

In order to test the reliability of our method for evaluating the ellipticity we
decided to make a toy model distribution (figure 4.3) with a fixed and known
flattening and we expected that the values obtained with the measurements
will have good agreement with what we set.
We created a toy model distribution with know axial ratio starting from the
definition of the ellipsoidal radius m

m = R2 +
z2

(1− ε)2
, (4.6)

where we set ε ≡ 0.3. This is the radius where is stratified the power law
distribution chosen for the toy model

Σ(m) =

(
m

m0

)−1

, (4.7)

m0 is an arbitrary constant and we have chosen a power law for semplicity.
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Figure 4.3: This is the surface brightness of a toy model with flattening of ε =
0.3 in physical scale.

In figure (4.3) we show the surface brightness distribution of the toy-model
we used the horizontal method for evaluating the inertia moments inside el-
liptical coronae and obtaining the eigenvalues of the axes for obtaining the
ellipticity.
In figure (4.4) we can see the ellipticity profile until r500 = 1345 kpc. The very
inner parts of the profile in figure (4.4), the first ∼ 30 kpc, show larger discrep-
ancies probably due to the way we compute the inertia moments or from how
we built the main physical parameters where we may suffer from characteriz-
ing the shape of the innermost part of the distribution. Using a more refined
grid (see A.1 for a description) or a more precise method to select the regions
to compute the inertia moments would have constrained better the inner part,
leaving unchanged what we observe in the remaining plot. In fact starting
from 0.06 r500 the profile is in good agreement with what we expect, excepting
for fluctuations of the measurements that are inside 10% ∼ 15% of the value.
But for our purposes this method is reliable enough.

For the model with fixed flattening of 0.3 we measure, with our method, a
mean value of 0.27 (as can be seen in figure 4.4).
We assumed the standard deviation as error for each measurement. We are
aware that the shape of the profile is not so clear but it suffers from the way
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Figure 4.4: Ellipticity profile of the toy model until r500. The horizontal line is
the average value and the shadowed band indicates the standard deviation.

the selection is made but it reproduces the observed values with a sufficient
approximation for our purpose. This method is what we used for evaluating
the ellipticity profiles in all cluster models in the next section (4.2).
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4.2 Photometry of the cluster models

In this section, we present the surface brightness maps for every model, rotat-
ing, non-rotating, oblate and prolate. For more information about the models
check the table (3.1) where are presented the temperature, velocity profile val-
ues and density value of the starting point of the grid.
We also show the surface brightness profiles and ellipticity profiles of every
model compared to the observational data.
The observations are taken from two different instruments: CHANDRA (Fang
et al. 2009) and ROSAT PSPC (Buote and Canizares 1996); the second per-
formed the analysis at the outer radii of clusters while the first one, using a
follow-up method, examined the innermost parts of a sample of clusters ob-
taining a full coverage of the structure. The ellipticity profiles are normalized
to r500 = 1345 kpc to be consistent with the work of Lau et al. (2012).

4.2.1 Surface Brightness Maps

We present the surface brightness maps of the different models we built. We
separated the models in rotating and non-rotating showing the main differ-
ences and the peculiarities of the surface brightness maps.

For rotating models we adopted the velocity profiles from Bianconi et al.
(2013) in the formulation shown in equations (2.49) and (2.50) with the param-
eters of initial velocity (v0) changed to better reproduce the observation. All
the physical parameters are shown in table (3.1).
We recall the velocity parameters reported in table (4.1), those are the param-

Velocity Pattern r0 vObl0 vPro0

VP [kpc] [km/s] [km/s]

1 170 336 1456
2A 120 705.5 2841
2B 120 1000 2800

Table 4.1: Velocity pattern parameters for oblate and prolate models

eters of the rotation profiles that were used in the oblate models and prolate
models.

4.2.2 Non-Rotating Models

We start presenting the surface brightness maps of the non-rotating models
(isothermal, non-isothermal and cool core) both oblate and prolate. We are
interested in showing this type of maps because they represent a direct observ-
able of the shape of the gravitational potential in the absence of rotation.
The physical parameters used to create these models are shown in table (3.1).

We can note in figure (4.5) that the isothermal models (4.5, top) tend to have
a flatter shape both in oblate and prolate potential while the non-isothermal
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(4.5, middle) and cool core models (4.5, bottom) are more similar and more
rounder shape, even without the support of rotation.

4.2.3 Isothermal Rotating Models

In this subsection we will discuss about the surface brightness maps of the
isothermal models both prolate and oblate.

In the maps (4.6) we can notice that the prolate models show a peaked shape
in the region of R ∼ 150 kpc in correspondence of the peak of the velocity pro-
file. This peculiarity of the prolate models is not so evident in the oblate models
that have a less peaked shape.

4.2.4 Non-Isothermal Rotating Models

In figure (4.7) we present the non-isothermal rotating models. Like what was
already evident in the isothermal models, the prolate models have a peaked
shape in correspondence of the peak of rotation profile and like was already
known from non-rotating models, the non-isothermal, have a larger extension
of brightness surface.

4.2.5 Cool Core Rotating Models

In the cool core models, figure (4.8) the differences with the non-isothermal
models are really few and we find the same characteristic analyzed in the pre-
vious models.

4.3 Surface Brightness Profiles

The surface brightness of the models is a fundamental parameter in our work,
so we decided to reproduce the profiles of this quantity in both radial and
azimuthal direction.

In the figures (4.9) and (4.10) we show the surface brightness profiles for all
models starting with the oblate (figure 4.9) and the prolate (figure 4.10).
We can say that in the oblate models the non-isothermal and isothermal mod-
els are similar and comparable (both rotating and non-rotating), this derives
from the small differences in the density profiles, where we presented in sec-
tion (3.1.3). The cool-core models present the typical double-trend in the inner
part and in the outer (after 130 kpc) region of the cluster that is observed also
in the density profiles.
As already discussed for the density profiles, the prolate models present a
higher surface brightness in the non-rotating case. Comparing oblate and pro-
late surface brightness profiles we can notice that the oblate models tend to
have a higher profile, about an order of magnitude, compared the other mod-
els.
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model < εobl > < εpro >

INR 0.11± 0.014 0.13± 0.012
NINR 0.11± 0.015 0.12± 0.015
CCNR 0.14± 0.013 0.13± 0.015

Table 4.2: Mean ellipticity value for the non rotating models (isothermal, non-
isothermal and cool core)

4.4 Ellipticity Profiles

The analysis of the ellipticity profile of the isophotes is the main term of com-
parison between our models and the real observations. We worked to obtain
the maximum correspondence between the models observables and what was
observed in Lau et al. 2012.

4.4.1 Non-Rotating Models

In figure (4.12) we can easily note that, even without the support of a rotation
velocity, at 0.1 r500 there is quite good agreement with the observational data
due to the flattening of the potential.
We measure the mean ellipticity for the models, reported in table (4.2), where
we also show the fluctuations of the values.

The ellipticity profiles of both oblate and prolate models are very similar in
this case and it is in line with what expected because they were built under the
same assumptions.
These models tend to be quite reliable in reproducing the ellipticity observed
even without inserting a motion of the gas. This is predictable because the flat-
tening of the potential leads a flattening in the density distribution. On average
at radii larger than 0.1 r500 we find a better fit of the observational data for al-
most every model, while in the innermost part of the profile our models show
a lower trend: this can be related to a bad evaluation of the inertia moments in
the innermost regions (see the analysis in section 4.1.1), like what happens at
small radii, or due to a physical effect of growth of the shape of the gas distri-
bution that creates less flattened isophotes in the inner part.

4.4.2 Isothermal Rotating Models

In the panel (4.12) are shown the isothermal rotating models oblate (left) and
prolate (right) with the different velocity profile VP1 (top), VP2A (middle) and
VP2B (bottom). Analyzing the fitting of the models with the observational
points we can say that the oblate models show a growing trend distancing
from the centre of the cluster and there is no correlation between the shape
of the velocity profile and the ellipticity profile. This effect has been evident
since from the analysis of the surface brightness maps of these models. For the
prolate models instead there is a greater impact of the velocity profile. In fact
the velocity pattern 2 (equation 2.50) creates a higher peak (R ∼ 0.1 r500 ∼ 150
kpc) that is evident even in the ellipticity analysis. The first velocity pattern
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model < εobl > < εpro >

IVP1 0.15± 0.015 0.12± 0.016
IVP2A 0.16± 0.015 0.17± 0.02
IVP2B 0.18± 0.014 0.14± 0.02

Table 4.3: Mean ellipticity value for the rotating isothermal models.

model < εobl > < εpro >

NIVP1 0.14± 0.016 0.11± 0.016
NIVP2A 0.15± 0.017 0.16± 0.02
NIVP2B 0.17± 0.015 0.16± 0.02

Table 4.4: Mean ellipticity value for the rotating non-isothermal models.

(VP1, equation 2.49) for the prolate model instead shows a lower agreement
with the observational points and increasing the initial velocity (v0) would not
have changed anything.
In table (4.3) we show the mean ellipticity for the models with the fluctuations.

4.4.3 Non-Isothermal Rotating Models

The results of the non-isothermal models are really similar to the isothermal
models because the ellipticity profile is really similar (figure 4.13).
In all models we measure an increasing value of the ellipticity in the region
of R ∼ 0.1 r500 consistent with the effect of the rotation pattern imposed. The
results of the ellipticity are presented in table (4.4). We measure mean values
that are comparable with previous work (ε ∼ 0.18, Vikhlinin et al. 2009).

4.4.4 Cool Core Rotating Models

The considerations about these cool core models are equivalent to the ones that
we have already exposed for non-isothermal models (figure 4.14). We report
the mean ellipticity in table (4.5).

The effect of rotation is particularly important in the increasing of the flat-
tening of the isophotes.

model < εobl > < εpro >

CCVP1 0.14± 0.016 0.16± 0.019
CCVP2A 0.15± 0.016 0.16± 0.02
CCVP2B 0.16± 0.019 0.14± 0.02

Table 4.5: Mean ellipticity value for the rotating cool core models.
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4.5 Photometric Results

Here we summarize the results of the comparison between the observational
points and the ellipticity measurements and the surface brightness profiles that
we made on our models. The surface brightness maps, for the rotating models,
suffer from the shape of the velocity profiles creating a distortion of the bright-
ness distribution in the inner radii (below ∼ 150 kpc) that is only dependent
on the choice of r0 of the velocity profile.
The ellipticity measurements are comparable, inside the errors and fluctuations
that are evident in the evaluation method (see in details section 4.1.1), with the
observational values. This is a strong proof of the goodness and reliability of
our models.

• The surface brightness maps of the non rotating models are useful to see
the effect of the gravitational potential and how the gas is stratified. For
the rotating models it is interesting to study how the velocity profiles
modify the distribution creating a peculiar peak in the maps in the region
of R ∼ 150 kpc.

• The surface brightness profile, that was analyzed both along R and z,
show that generally the non-rotating models have a higher surface bright-
ness value than the rotating ones. For the prolate models we do not see
high discrepancies along R and z profiles in all models.

• The flattened gravitational potential that we made gives an initial flatten-
ing of the gas distribution that leads to an isophotal flattening observable
in X-ray measurements. Under the right choice of selection for the region
to extract the ellipticity we do not measure great differences between the
oblate or prolate non-rotating models and between the different physical
assumptions (isothermal, non-isothermal and cool core). We measure a
mean ellipticity value for all models of < ε >∼ 0.14 that is lower than
what was found in Lau et al. (2012) (< ε >∼ 0.25) but is comparable with
what was found in Vikhlinin et al. (2009) (< ε >∼ 0.18).

• For rotating oblate models we need a lower velocity at the peak of the
profile, below 1000 km/s (see table (4.1)), than what was found in Bian-
coni et al. (2013) to achieve ellipticity profiles comparable to those of ob-
served clusters. The computed mean ellipticity is higher than what was
found for the non-rotating models and the cool core models show an even
higher value (< ε >∼ 0.15 for the isothermal and non isothermal while
< ε >∼ 0.18 for the cool core) that is comparable with the previous re-
sults from Vikhlinin et al. (2009).

• For rotating prolate models we found that a higher velocity profile is
needed, of the order of 2400 km/s (see table 4.1), to have our measure-
ments comparable with the real observations. Like was already found for
the oblate models, the differences between the different physical models
are almost negligible.
For the prolate models the mean value is lower for the cool core model
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(< ε >∼ 0.15) than in the oblate cool cores but it is higher for the non-
isothermal models (< ε >∼ 0.17). All of them are still comparable with
the observational data and with previous works (Vikhlinin et al. 2009).
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Figure 4.5: Surface brightness maps of the non-rotating oblate model (left) and
prolate (right). Top isothermal models, middle non-isothermal and bottom
cool core. The parameters are shown in table (3.1).
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Figure 4.6: Surface brightness maps of the isothermal rotating oblate models
(left) and prolate (right). In this graphs we have at the top the model with VP1,
at the middle the models with VP2A and at the bottom the VP2B models.
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Figure 4.7: Surface brightness maps of the non-isothermal rotating oblate mod-
els (left) and prolate (right). In this graphs we have at the top the model with
VP1, at the middle the models with VP2A and at the bottom the VP2B models.



CHAPTER 4. PHOTOMETRIC OBSERVABLES 52

Figure 4.8: Surface brightness maps of the cool core rotating oblate models
(left) and prolate (right). In this graphs we have at the top the model with VP1,
at the middle the models with VP2A and at the bottom the VP2B models .
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Figure 4.9: Surface brightness profile for isothermal (top), non-isothermal
(mid), cool core (bottom) oblate models along R (left) and z (right)
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Figure 4.10: Surface brightness profile for isothermal (top), non-isothermal
(middle), cool core (bottom) prolate models along R (left) and z (right)
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Figure 4.11: Ellipticity profile of the isothermal (top), non-isothermal (mid) and
cool core (bottom) non rotating oblate (left) and prolate (right) models in order
of r500 and with observational points of Chandra and Rosat from Lau et al.
(2012).
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Figure 4.12: Ellipticity profile of the isothermal VP1 (top), VP2A (mid) and
VP2B (bottom) non rotating oblate (left) and prolate (right) models in order of
r500 and with observational points of Chandra and Rosat from Lau et al. (2012).
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Figure 4.13: Ellipticity profile of the non-isothermal VP1 (top), VP2A (mid) and
VP2B (bottom) non rotating oblate (left) and prolate (right) models in order of
r500 and with observational points of Chandra and Rosat from Lau et al. (2012).
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Figure 4.14: Ellipticity profile of the cool core VP1 (top), VP2A (mid) and VP2B
(bottom) non rotating oblate (left) and prolate (right) models in order of r500

and with observational points of Chandra and Rosat from Lau et al. (2012).



Chapter 5

X-Ray Spectroscopy

In this last chapter, we want to analyze mock observations of our cluster mod-
els to obtain a perspective of what will be available with ATHENA. We use the
specifics of the high resolution microcalorimeter that will be on board of the
next big project in X-ray astronomy regarding ESA, ATHENA.

5.1 ATHENA Instruments

The Advanced Telescope for High-ENergy Astrophysics (ATHENA) is the Euro-
pean future for X-ray observations after the mission of XMM-Newton (XMM).
This satellite is scheduled to be launched in L2

1 in 2028 and it has many sci-
entific scopes like the search and census of supermassive black holes (SMBH)
and map the structures of the X-ray emitting gas in galaxy clusters (informa-
tion from http://www.the-athena-x-ray-observatory.eu/).
The telescope will have a 12 meters focal length and an effective area of about
15000 cm2 at 1 keV and the main instruments on board will be a Wide Field
Imager (WFI) that will be used for imaging and high-time resolution of bright
sources and the X-ray Integral Field Unit (X-IFU) that will be a high-resolution
cryogenic microcalorimeter fundamental for high quality spectroscopy.
Another characteristic feature of the X-IFU will be the big hexagonal pointing
field of view (FOV) with a diameter of approximately 5 arcmin in the energy
range 0.2− 12 keV. The high-resolution spectroscopy is a fundamental goal for
galaxy cluster astrophysics because it will confirm and test many aspects of
gas motion, for example, the effect of turbulence, the interplay between AGN2

feedback and turbulence, the formation of radio halos and mini-halos due to
energetic loss of the turbulence. In our study, the possibility of having such
good energy resolution will allow the analysis of the rotation pattern of the
ICM and the coherent motion of the gas in clusters.
Summary technical characteristics of the ATHENA telescope:

1L2 is the Lagrangian point in the Three Body Sistem Sun-Earth-Moon it is a gravitational un-
stable region due to the gravitational field produced by these three objects, in fact the motion of the
satellite, in this case, is fundamental to correct the orbit and contrast the effect of the gravitational
instability. In that gravitational point will be set the James Webb Space telescope (the successor of
Hubble Space Telescope) and Euclid Space Telescope (EUCLID).

2Active Galactic Nuclei

59
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Instrument WFI X-IFU
Detector type Si APS (DEPFET) Micro-calorimeter/TES

Operating temperature 210 K 50 mK
Detector size (mm) 102.4× 102.4 31.2× 31.2
Energy range (keV ) 0.2− 15 0.2− 12

Energy resolution (FWHM ) 70 eV @ 1 keV 2.5 eV < 7 keV
Field of view (arcmim) 40′ 5′

Table 5.1: Main technical parameters of ATHENA from the site of ESA, under
the assuption of circular FOV. In table is reported the diameter of the FOV in
arcmin.

5.2 X-Ray Observations

X-ray spectroscopy is a tool for understanding the physics that rules the emis-
sion from intracluster plasma. The high temperature of the gas ionizes most of
the chemical species present and the emission line spectrum is characterized by
the presence of the Fe XXV (6.7 keV, also called He-like iron lines) and Fe XXVI
( 6.9 keV) emission lines. Typical emission of 6.7 keV is fundamental to obtain
information about redshift (so we can obtain the distance of the cluster) and
the inner motion of the gas that generates a Doppler shift of the studied line.
We are interested in studying the effects of the gas motion on both the centroid
shift (e.g. Liu et al. 2015, Liu et al. 2016) and the broadening (e.g. Inogamov
and Sunyaev 2003) of the emission lines associated to the ionized metals of
the ICM. In the next section (5.3), we analyze the Doppler shift of the 6.7 keV
line for rotating models with different rotation laws comparing the observed
results with the theoretical prediction. In section (5.4) we analyze the effect of
the line broadening due to the velocity dispersion in the line of sight and the
centroid shift.

5.3 Mock Spectra

We analyze the mock spectra created with XSPEC (Arnaud 1996), using mod-
els that reproduce the free-free continuum emission and line emission of the
elements typical of astrophysical plasma: apec and bapec. The apec3 model
reproduces the emission spectrum from collisionally-ionized diffuse gas based
only on temperature, metallicity and redshift. The bapec 4 model, instead, re-
produces a velocity and thermally-broadened emission spectrum from collisionally-
ionized diffuse gas. In figure (5.1) we show the theoretical apec and bapec
spectra of a 6 keV thermal plasma with 0.3 solar metallicity at a 0.1 redshift ob-
served with the X-IFU calorimeter in a 100 ksec of observation. In the right fig-
ure, the bapec spectra, is evident the broadening of the 6.7 keV line imposed
to the model (∼ 150 km/s). This mock data are convolved with the spectral
response of the detector and with the absorption of the column density of hy-
drogen of our galaxy and without considering the background contribution.

3https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSmodelApec.html
4https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSmodelBapec.html
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Figure 5.1: Simulated spectrum of the apec model (left) and bapec (right)
with 100 ksec between 2 and 7 keV.

We consider our cluster at a redshift of 0.1, with a 1.68 ratio between arcsec-
onds and kpc. We consider five circular regions in the median plane of the
cluster with radius of 15 arcsec (25 kpc), 30 arcsec (53 kpc), 59 arcsec (100 kpc),
1.18 arcmin (127 kpc) and 2.01 arcmin (210 kpc) and located at 200, 500, 700,
1100 and 1600 kpc from the cluster’s center. We selected these regions with
those extensions to collect a good number of source counts (between 5000 and
10000) with a typical X-IFU exposure of 100 ksec. We divided our regions in 32,
25, 22, 17 and 10 cylindrical blocks assuming that in every single box there is
a constant density, constant temperature and gas velocity. We considered sep-
arately the blue-shifted (approaching) regions (denoted as B) and red-shifted
(receding) regions (denoted as R) to account for the different response of the
models at various energies. We projected the density onto the sky plane in or-
der to obtain the normalization constant for the models. Then, we evaluate the
line-of-sight component of the rotational velocity, being this the factor respon-
sible of the Doppler shift of the emission line centre. For the fit we added a
component of interstellar medium absorption of our galaxy due to the column
density of hydrogen in the line-of-sight fixed at a value of 0.05 × 1022 atoms
per cm2 using the model tbabs5.
In the tables we report the values used to fit the models and the results at 3σ
for every model and every region where we calculated the Doppler shift.
For the fitting parameters we adopted the emission-weighted value of the tem-
perature (5.1) and for the velocity (5.2) in the centre of the cylindrical block:

TEW =

∫
neTidV∫
nedV

; (5.1)

vEW =

∫
nevidV∫
nedV

; (5.2)

5https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node251.html tbabs
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where i identifies the block where the values are calculated and V is the vol-
ume of the cylindrical block.
The velocity pattern of the gas motion make the 6.7 keV line (fluorescent He-
like iron line) shift like there is a blue-redshift effect and thanks to the energy
resolution of 2.5 eV, achievable with ATHENA, this could be detected.

∆E

E
=

∆z

1 + z
= zpec ≈

v

c
, (5.3)

2.5 eV

6700 eV
=

∆z

1 + 0.1
⇒ ∆z =

1.1× 2.5 eV

6700 eV
≈ 4× 10−4. (5.4)

In equation (5.4) we present the maximum shift detectable with the energy res-
olution of ATHENA. Considering that we are interested in the properties 6.7
keV emission line we analyze the simulated spectra between 2 to 7 keV. The
best-fit parameters are obtained minimizing the C-Statistic (Cash 1979). We de-
cided to analyze all models for each type of cluster (isothermal, non-isothermal
and cool core) and verify if there are differences between the three velocity pro-
files (VP1, VP2A and VP2B) in the spectroscopic analysis and particularly in the
case of VP2A and VP2B where the physical parameters are really similar and
the analysis of ellipticity showed almost the same results.
We quote the input parameters of the models and the best-fit values in ap-
pendix (B.1). Starting with the oblate isothermal models we explore the fitting
parameters and their errors with a confidence of 3σ. For every model and re-
gion we used the metal abundance set to 0.3 Z� but we do not report this value
in table.
The fit response of the models is always comparable with the parameters that
we imposed within the statistical uncertainties that are always present. The
results obtained for the regions at 1100 and 1600 kpc are the most inaccurate
ones because of the low flux associated with these regions, but they are still
consistent with the input parameters. We reproduce the Doppler shift dia-
grams showing the theoretical deviations of the shift and the observed shift
of our models. We expect that going from the region at 200 kpc to the one at
1600 kpc we should measure a decreasing deviation from 0.1, that is the red-
shift of the clusters. We expect also that in the study of the shift we can find
the velocity profile that we imposed at our gas. In the figures (5.2, 5.3, 5.4) we
show the Doppler shift obtained with the mock observations compared with
the theoretical behaviour of the shift for each model at different distance from
the cluster’s centre.
We start showing the oblate models that have a less important rotation, due to
their flatter potential, and it made the Doppler shift less important than what
we can spot in the prolate models. We present coupled oblate and prolate mod-
els with the same velocity profiles in order to show how much the rotation ve-
locity affects the shifts.
We can say that the higher velocity of the prolate models tends to have a major
effect in the shift of the lines, reaching a ∆z ∼ 2× 10−3, especially in the inner
regions (1,2 and 3). We can see also that the line shift of the various models
strongly depends on the shape of the velocity profile in fact, as you can see for
example in figure (5.2, top), the VP1 (2.49) shows a flatter trend in all radii and
it is obtained by the centroid shift measurement.
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For the outer regions (4,5) sometimes the low statistic, caused by the low sur-
face brightness, creates higher fluctuations of the parameters of the fit.
We find that for the oblate models we have an energy shift ∆E of ∼ 4 eV for
the VP1 and about 5 eV for the VP2 (A and B) for the inner regions (1,2 and 3)
while the regions 4 and 5 present a lower shift in the order of ∼ 2 eV that is
the limit of energy resolution of X-IFU. While for the prolate models we find a
mean ∆E between 14 and 15 eV for the innermost regions and an energy shift
for the outer regions consistent with 3 ∼ 4 eV.
As shown in figure (5.1), the Doppler shift of the Fe line can be resolved signifi-
cantly from Athena-XIFU, allowing to constrain the velocity profile of the ICM.
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Figure 5.2: Doppler shift diagrams for the isothermal oblate (left) and prolate
(right) models. The tables with the results of the fit are B.1-B.10 (Top), B.2-B.11
(middle) and B.3-B.12 (bottom). The blue lines are the expected values from
the models while the red points are the results of the fit. The black line at 0.1 is
the redshift of the cluster. We remind that the errors are at a level of confidence
of 3σ.
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Figure 5.3: Doppler shift diagrams for the non-isothermal oblate (left) and pro-
late (right) models. The tables with the results of the fit are B.4-B.13 (Top),
B.5-B.14 (middle) and B.6-B.15 (bottom). The blue lines are the expected values
from the models while the red points are the results of the fit. The black line
at 0.1 is the redshift of the cluster We remind that the errors are at a level of
confidence of 3σ.
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Figure 5.4: Doppler shift diagrams for the cool core oblate (left) and prolate
(right) models. The tables with the results of the fit are B.7-B.16 (Top), B.8-B.17
(middle) and B.9-B.18 (bottom). The blue lines are the expected values from
the models while the red points are the results of the fit. The black line at 0.1 is
the redshift of the cluster We remind that the errors are at a level of confidence
of 3σ.
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5.4 BAPEC Model Fitting

After the analysis of the pure centroid shift of the lines in the section (5.3) we
want to study the effect of the velocity dispersion of the gas in the line of sight.
To estimate this parameter we studied how much the velocity changes in the
direction on the line-of-sight and at different radii of the cluster.
Like was done in the previous study we selected the same five regions with the
same extensions. We studied the broadening using the bapec model of Xspec
analysis tool inserting the same physical parameters of the apec modelling
and adding the emission-weighted velocity dispersion (5.5) of the lines due to
the gas motion.

σ2
EW =

∫
ne(vi − v)2dV∫

nedV
. (5.5)

The v is the averaged velocity in the cylinder. In appendix (C.1) we show the
parameters fitted with Xspec with a confidence of 3σ. We report the normal-
ization parameter6 (N ) in the order of [10−4], like was already done in the apec
fit, but here it is not reported in the tables. The abundance is set for all models
to 0.3Z� and we report only the results of the fit.
We present the results of the Doppler shifts and the broadening profiles. We
start presenting the broadening profiles where we compare the measured broad-
ening with the expected value from the models.

After having presented all Doppler shifts and broadening profiles we can
say that, differently from the apec models we find that the broadening alters
the measurement of the shifts, in fact we have fluctuations in all models in the
order of 10−4 that are consistent with the magnitude order of the correction of
the centroid shift.
We can say that all models in the Doppler shift present a good fit with the pre-
dictions of the models, excluding the measurements of the last points (regions
4 and 5) that are affected by the low normalization of the models like was al-
ready evident in the apec results.
Like was already evident in the Doppler shift analysis of the apec fits the shape
of the velocity profiles are obtained back from the observations in both broad-
ening and shifts profiles.
The VP1 profile, like what was found in the previous section, is almost flat and
especially for the oblate models with a lower rotation velocity the broadening
is really small, lower than 150 km/s. For the prolate models instead we can
reach a broadening of over 1000 km/s in the inner regions (1 and 2) due to the
high velocity peak and to the steep velocity profile.
For the first velocity profile we are aware that the fluctuations of the values
are bigger than the other profiles and the profile itself is not always well repro-
duced by the observed measurements.

6The normalization parameter of the apec and bapec is defined as:

N =
10−14

4π[DA(1 + z)]2

∫
nenHdV (5.6)

where DA is the diameter angular distance to the source (cm),z is the redshift of the source, dV is
the cylindrical volume (in our case) and ne and nH are the densities of electrons and H (cm−3).
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Figure 5.5: Broadening profiles of the isothermal oblate (left) and prolate (right)
models in the order of VP1 (top, table of values C.1-C.10), VP2A (middle, ta-
ble of values C.2-C.11) and VP2B (bottom, table of values C.3-C.12). The lines
are the expected values obtained from the models while the red points are the
values from the fit with error of 3σ.
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Figure 5.6: Broadening profiles of the non-isothermal oblate (left) and prolate
(right) models in the order of VP1 (top, table of values C.4-C.13), VP2A (mid-
dle, table of values C.5-C.14) and VP2B (bottom, table of values C.6-C.15). The
lines are the expected values obtained from the models while the red points are
the values from the fit with error of 3σ.
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Figure 5.7: Broadening profiles of the cool core oblate (left) and prolate (right)
models in the order of VP1 (top, table of values C.7-C.16), VP2A (middle, ta-
ble of values C.8-C.17) and VP2B (bottom, table of values C.9-C.18). The lines
are the expected values obtained from the models while the red points are the
values from the fit with error of 3σ.
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Figure 5.8: Doppler shift of the isothermal oblate (left) and prolate (right) mod-
els in the order of VP1 (top, table of values C.1-C.10), VP2A (middle, table of
values C.2-C.11) and VP2B (bottom, table of values C.3-C.12). The lines are the
expected values obtained from the models while the red points are the values
from the fit with error of 3σ.
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Figure 5.9: Doppler shift of the non isothermal oblate (left) and prolate (right)
models in the order of VP1 (top, table of values C.4-C.13), VP2A (middle, ta-
ble of values C.5-C.14) and VP2B (bottom, table of values C.6-C.15). The lines
are the expected values obtained from the models while the red points are the
values from the fit with error of 3σ.
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Figure 5.10: Doppler shift of the cool core oblate (left) and prolate (right) mod-
els in the order of VP1 (top, table of values C.7-C.16), VP2A (middle, table of
values C.8-C.17) and VP2B (bottom, table of values C.9-C.18). The lines are the
expected values obtained from the models while the red points are the values
from the fit with error of 3σ.
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5.5 Spectroscopic Results

In the last section of this chapter we discuss the main results of the spectro-
scopic analysis that we performed.
We selected five regions in the median plane of the cluster and with sufficient
spatial extension in order to have a good amount of counts, nevertheless we
found out that in the outer regions (at 1100 and 1600 kpc) the fit in some mod-
els is unstable and the uncertainties are higher. We obtain the following results:

• the velocity creates a centroid shift that is consistent with what is found
in the work of Liu et al. 2015, 2016 in the order of few eV . The oblate
centroid shifts are lower and in the order of ∆E = 4 ∼ 6 eV for the
inner regions, denoted as 1-2-3, while in the outer regions (4-5) the energy
shift is in the order of 2 ∼ 3 eV just above the limit resolution of X-IFU.
While for the prolate models we measure a Doppler shift in the order of
∆E = 14 ∼ 16 eV . Performing the five regions lead us to reproduce the
velocity profile toward the radius in a good range of confidence (3σ);

• the analysis with the line broadening along the line of sight gives us an-
other proxy to measure the motion and obtain information on how steep
is the velocity profile. We can spot that the models with the velocity pro-
file 1 (VP1) are shallower and almost flat profile both in the Doppler shift
diagrams and in broadening profiles. While the VP2 profiles have a more
delineated shape verifiable both in Doppler shifts and broadening;

• the steep profile and the high rotation velocity of the VP2 prolate create a
line broadening in the order of 1000 km/s that is particularly high but we
are aware of the low reliability of this result because it is strongly affected
by the choice of the parameters obtained by the ellipticity comparison,
see section (4.5).



Chapter 6

Conclusions

6.1 Discussion

We built models of gas in motion in flattened axisymmetric potential. The dark
matter halos that we built are comparable to the real observed halos. Our dark
matter halos are not extreme cases, those could have an axial ratio of 0.3 ∼ 0.4
with correspondent flattening of 0.7 ∼ 0.6. In our cases the axial ratio is 0.6
with a ellipticity of ∼ 0.4. The flattening of isophotes is directly connected
with the shape of the gravitational potential but the presence of baryonic mat-
ter tends to reduce the flattening as observed in simulations and observations
(Bryan et al. 2013; Kazantzidis et al. 2004). Thus our halo models should be
realistic representation of halos expected in ΛCDM.
The rotation has a direct impact on the distribution of the gas modifying the ef-
fect of potential. The velocity parameters that we adopted in the work aimed to
reproduce the observed isophotal flattening from the work of Lau et al. (2012).
Last but not least, the spectroscopic results are a good test for the possibilities
available with ATHENA. The low Doppler shift of the oblate models could be
considered as lower limit test for the energy resolution of the instruments. The
big field of view of the X-IFU could permit also high quality observations even
in the range of low surface brightness, like the case of the regions above r500.
In the next subsections we briefly discuss the main results of the work.

6.1.1 Photometric Results

In the various models we studied, one of the main comparable observable is
the flattening of the isophotes that can be considered as direct evaluation of
the shape of the dark matter halo at least for non-rotating models. The method
to evaluate the ellipticity was based on the selection of elliptic coronae and
computing the inertia moments of the surface brightness in that region (see in
detail section 4.1.1). Thanks to this method we could study the models and
make comparison between the models and the observative data to understand
which model fits better.

• For non rotating models we obtain a mean ellipticity through the full
dimension of the cluster that is lower but comparable to the observed
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values. This is due to the flattening of the potential that tends to mod-
ify and flatten the gas density distribution and consequently the surface
brightness distribution.

• For rotating models we differ oblate from prolate case. The oblate case
needed a lower velocity support, with a maximum of ∼ 1000 km/s for
reproducing the observed flattening. The prolate case instead needed a
higher velocity component above 2400 km/s. All models fit the observed
data at larger radii than 0.1 r500. At inner radii we find a lower elliptic-
ity and this can be associated with different causes, for instance the way
we compute the inertia moments, that in the innermost regions may af-
fect the evaluation. Other possible explanation of this bad sampling can
be associated with the way we characterize the physical parameters in
the inner regions where the isophotes may be less flattened than what
we find in outer radii. The shape of the gas distribution and surface
brightness is strongly connected with the shape of the rotation profile
imposed. The drop of the surface brightness in the innermost part, be-
low 300 kpc, that is evident in all models, especially in prolate models, is
a direct consequence with the shape of the velocity profile. This feature
is not observed in real observations and may be corrected with presence
of low-scale turbulence and with a rotation profile that is not so strongly
dependent on the radius.

• The surface brightness profiles of all rotating models do not show many
differences (under 10% for the rotating models, higher than 20% compar-
ing rotating to the non-rotating case) because the choice of reproducing
a fixed gas fraction lead the models to have a similar gas density in the
innermost grid points and consequently all models have almost the same
values, see table (3.1).

6.1.2 X-ray Spectroscopic Results

The goal of 2.5 eV for X-IFU calorimeter is a big challenge for X-ray astro-
physics and our models could be considered as good tests for the calorimeter.
The oblate models in fact, have an energy shift of 5 eV that is enough to provide
a good measurements of the shift. We performed measurements in multiple re-
gions in order to test also, under the assumption of a standard observation of
100 ksec, the great field of view and the possibility to obtain good amount of
counts even in low brightness regime, as can be considered the region in the
proximity of r500. The choice of reproducing the gas motion both receding and
approaching was made to test at different energy range the models’ response.
We summarize some of the most interesting results of the spectroscopic analy-
sis:

• for the oblate models, due to their low rotation velocity (as we already
discussed in section 6.1.1), we measure a low shift of the lines and, espe-
cially for the outer regions mainly due to the low normalization, we find
big fluctuations of temperature and metallicity from the fitting parame-
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ters value.

• For the prolate models the high rotation velocity produced a sensible cen-
troid shift of the lines, of the order of 15 eV and the higher normalization
parameters tends to minimize the parameters fluctuations making the
analysis more stable.

• The choice of performing 5 regions at different radii of the cluster let us
determine not only the shift evolution in radius but also shape of the
velocity profile of the gas that could be used to discriminate one model
from the other.

• Analyzing the line broadening in the line of sight we can understand
the velocity of the models and the impact of the velocity in the charac-
terization of the rotation profiles. Another compelling aspect that was
interesting to analyze is the combined effect of the Doppler shift and
the broadening of the line. In fact the presence of the broadening made
the evaluation of the Doppler shift less accurate than in the case without
broadening, see section (5.5) for details.

6.2 Future Work

This is only the starting point of the modelling of gas rotation in deep poten-
tial wells. One of the first upgrades that could be done is adding a turbulence
influence (e.g. Brunetti and Jones 2014, Ettori 2014) in the pressure of the gas
that could change some features in the surface brightness and in X-ray spectro-
scopic observations.
The turbulence will affect the broadening of the lines of the ICM and may affect
the measurements of the Doppler shift of Fe lines.
The resolution of some not-observed features that we found in the brightness
surface and gas maps is another important step for improving the work that we
started. For example a core in the velocity rotation or another shape of velocity
rotation, maybe the one presented in equation (2.51) from Baldi et al. 2017, can
avoid the formation of the peaked structure in the brightness map that is not
observed in real galaxy clusters. Another important step may be the correction
of the evaluation of the gas mass inside r200 using an ellipsoidal shape correc-
tion, this may change the gas fraction and the starting density values that were
chosen to reproduce a 0.13 gas fraction.
The ellipticity profiles that we found are in good agreement with the observa-
tional data from 0.1 r500 and may be a good improvement modelling our mod-
els in the innermost parts (under∼ 150 kpc) in order to have a better agreement
even at smaller radii.
All these prospects of the work are addressed to characterize the gravitational
potential and its influence in the gas equilibrium in order to provide other tools
to resolve the hydrostatic bias in numerical simulations and observations.
Finally, it would be useful to compare the ICM shape obtained with high-
resolution Sunyaev-Zel’dovich imaging. This is a potentially powerful means
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of extending this analysis to higher redshifts, because of the redshift indepen-
dence of the Sunyaev-Zel’dovich effect.
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Appendix

A.1 Grid costruction

In this appendix we show how we built the numerical grid where we costructed
our models.
We have chosen a logarthmic grid because we wanted an higher resolution in
the inner part of the cluster. In particular, due to the axisymmetry of our mod-
els, we constructed our grid in cylindrical coordinates (R,z).
We used 256 (Ngrid) grid points for each component (R,z) with a integer index
i. Under this assumption we obtain a grid of 256 × 256 points. We determine
the grid composition using a logarithmic increment step:

XM = log10(RMax), (A.1)

and
Xm = log10(Rmin); (A.2)

where we used RMax ≡ 2066 kpc and Rmin ≡ 1 kpc obtaining XM ≡ 3.31 and
Xm ≡ 0.
Xm and XM are needed to determine the grid step:

∆X =
XM −Xm

Ngrid−1
. (A.3)

Thanks to the formulation of ∆X and for i = 0→ Ngrid−1 we built:

Xi = Xm + i×∆X, (A.4)

and:
Ri = zi = 10Xi . (A.5)

In figure (A.1) we show the different refinement of the grid due to the loga-
rithmic sampling in the inner part (below ∼ 1000 kpc) and in the outer part of
the point distribution.
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Figure A.1: The grid used in the modelling.
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In these appendices we report the fitting value and the results of the simulated
spectra with the software Xspec through the apec and bapec models. Galaxy
cluster models are studied with a fixed metallicity of 0.3 Z� and we estimated
the errors with a confidence range of 3σ.

B.1 Apec Fitting Parameters

In the apec fitting we studied only the centroid shift of the line to evalutate
how much the rotation changes the position of centroid of the line. The results
of this study are in section (5.3). We report for each region denoted as 1,2,3,4
and 5 in correspondence of the distance of the centre of the cluster (200, 500,
700, 1100, 1600 kpc) and we denote the R the region for the receding motion
(redshift) and B for approaching motion (blueshift).
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Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 7.49+0.24
−0.18 7.5 0.32+0.03

−0.02 0.100602+1×10−6

−6×10−6 0.1006 13+0.08
−0.08 13

1B 7.51+0.21
−0.21 7.5 0.30+0.02

−0.01 0.09941+3×10−5

−1×10−5 0.0994 12.7+0.1
−0.1 13

2R 7.36+0.76
−0.69 7.5 0.28+0.06

−0.05 0.10054+8.4×10−5

−2.4×10−5 0.10060 1.72+0.03
−0.02 1.8

2B 8.31+1.09
−0.74 7.5 0.31+0.07

−0.06 0.09942+1.5×10−5

−3.1×10−5 0.0994 1.76+0.03
−0.03 1.8

3R 8.10+0.49
−0.65 7.5 0.34+0.03

−0.07 0.10057+4.0×10−5

−3.5×10−5 0.10057 1.01+0.01
−0.03 1

3B 8.18+0.61
−0.56 7.5 0.30+0.05

−0.04 0.09941+1.6×10−5

−1.9×10−5 0.09943 0.98+0.02
−0.03 1

4R 7.51+1.56
−0.69 7.5 0.27+0.05

−0.09 0.100552+5.7×10−5

−1.2×10−4 0.10054 0.69+0.01
−0.01 0.686

4B 7.94+1.03
−0.87 7.5 0.37+0.09

−0.08 0.09952+1.4×10−5

−6.8×10−5 0.09946 0.67+0.02
−0.09 0.686

5R 7.80+0.95
−0.96 7.5 0.29+0.08

−0.07 0.10049+1.2×10−4

−4×10−5 0.10051 0.43+0.01
−0.01 0.43

5B 7.33+1.00
−0.84 7.5 0.30+0.09

−0.07 0.09945+4.3×10−5

−7.9×10−5 0.09949 0.44+0.02
−0.02 0.43

Table B.1: Table of the parameters of the model IOVP1 for APEC with tem-
peratures in keV, metallicity in solar scale, density and redshift as the value
obtained by the best fit model and the values that was set.

Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 7.66+0.21
−0.21 7.5 0.29+0.01

−0.01 0.10057+1.6×10−5

−8.3×10−6 0.10058 12.9+0.08
−0.08 13

1B 7.38+0.21
−0.20 7.5 0.29+0.01

−0.01 0.09941+1.1×10−5

−2.9×10−5 0.09942 12.8+0.11
−0.12 13

2R 7.75+0.74
−0.71 7.5 0.36+0.07

−0.06 0.10033+4.2×10−5

−6.2×10−5 0.10036 1.78+0.02
−0.02 1.8

2B 6.93+0.95
−0.64 7.5 0.28+0.04

−0.07 0.09972+5.9×10−5

−2×10−5 0.09964 1.84+0.03
−0.03 1.8

3R 8.31+0.59
−0.74 7.5 0.29+0.06

−0.03 0.100267+4.4×10−5

−3.4×10−6 0.10029 0.97+0.33
−0.37 1.01

3B 7.09+0.56
−0.47 7.5 0.27+0.04

−0.04 0.09966+6.1×10−5

−3.5×10−6 0.09971 1.01+0.02
−0.02 1.01

4R 7.83+1.05
−0.93 7.5 0.26+0.08

−0.06 0.100163+2.3×10−5

−8.7×10−5 0.1002 0.68+0.19
−0.18 0.67

4B 7.12+0.96
−0.58 7.5 0.33+0.08

−0.07 0.09978+2.9×10−5

−5.2×10−5 0.0998 0.68+0.03
−0.03 0.67

5R 7.16+1.02
−0.90 7.5 0.30+0.09

−0.07 0.100156+1.3×10−5

−9.9×10−5 0.10016 0.42+0.02
−0.02 0.42

5B 7.02+1.27
−0.78 7.5 0.18+0.10

−0.05 0.09981+9.6×10−5

−8.0×10−5 0.09984 0.42+0.01
−0.02 0.42

Table B.2: Table of the parameters of the model IOVP2A , same as B.1.
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Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 7.41+0.21
−0.2 7.5 0.30+0.01

−0.01 0.100678+9.0×10−6

−8.5×10−8 0.10068 12.9+0.07
−0.07 13.2

1B 7.64+0.05
−0.11 7.5 0.29+0.009

−0.01 0.09931+2.1×10−5

−3.8×10−6 0.09932 13+0.02
−0.02 13.2

2R 8.57+0.65
−1 7.5 0.34+0.06

−0.07 0.100457+4.8×10−5

−1.29×10−5 0.10043 2.33+0.03
−0.03 2.37

2B 7.92+0.77
−0.86 7.5 0.34+0.06

−0.08 0.09956+4.1×10−5

−1.4×10−5 0.09957 2.30+0.03
−0.03 2.37

3R 7.68+0.57
−0.55 7.5 0.27+0.04

−0.04 0.100384+1.2×10−5

−3.9×10−5 0.10034 1.81+0.02
−0.02 1.89

3B 8.15+0.35
−0.60 7.5 0.29+0.05

−0.04 0.09965+3.04×10−6

−4.08×10−6 0.09966 1.72+0.04
−0.05 1.89

4R 7.2+0.82
−0.9 7.5 0.34+0.07

−0.08 0.100292+3.16×10−5

−3.9×10−5 0.10024 0.64+0.02
−0.02 0.67

4B 7.62+0.8
−1.15 7.5 0.27+0.07

−0.06 0.09979+6.2×10−5

9.6×10−6 0.09976 0.67+0.02
−0.01 0.67

5R 6.13+1.16
−0.59 7.5 0.30+0.11

−0.06 0.100204+6.22×10−6

−2.8×10−5 0.100197 0.45+0.01
−0.01 0.42

5B 9.01+2.29
−1.02 7.5 0.40+0.08

−0.15 0.09986+1.7×10−5

−1.3×10−4 0.09981 0.40+0.01
−0.01 0.42

Table B.3: Table of the parameters of the model IOVP2B for APEC, same as B.1.

Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 5.90+0.04
−0.08 5.91 0.30+0.008

−0.006 0.10061+5.4×10−6

−4.57×10−6 0.100612 65.8+0.12
−0.11 66.4

1B 5.88+0.06
−0.06 5.91 0.29+0.006

−0.007 0.09937+1.3×10−5

−4.4×10−6 0.09939 66.1+0.18
−0.17 66.4

2R 4.70+0.17
−0.28 4.73 0.33+0.02

−0.05 0.100604+2.34×10−5

−3.3×10−5 0.100609 2.89+0.04
−0.04 2.82

2B 4.67+0.24
−0.22 4.73 0.26+0.03

−0.03 0.09937+1.9×10−5

−3.6×10−5 0.099391 2.74+0.05
−0.07 2.82

3R 4.08+0.16
−0.16 4.23 0.26+0.03

−0.02 0.100573+2.7×10−5

−1.5×10−5 0.10059 2.59+0.09
−0.03 2.6

3B 4.25+0.23
−0.15 4.23 0.31+0.03

−0.03 0.0994+2.1×10−5

−9.8×10−6 0.09941 2.6+0.04
−0.03 2.6

4R 3.36+0.41
−0.33 3.47 0.26+0.09

−0.08 0.100535+9.08×10−5

−6.6×10−5 0.100549 0.34+0.04
−0.01 0.32

4B 3.65+0.49
−0.41 3.47 0.23+0.11

−0.06 0.09939+3.5×10−5

−2.3×10−5 0.099451 0.32+0.02
−0.01 0.32

5R 2.92+0.70
−0.64 2.95 0.24+0.26

−0.15 0.10119+7.9×10−4

−6.7×10−4 0.10051 0.07+0.02
−0.01 0.06

5B 2.94+0.62
−0.57 2.95 0.30+0.33

−0.11 0.099437+2.1×10−4

−1.3×10−4 0.09949 0.07+0.007
−0.006 0.06

Table B.4: Table of the parameters of the model NIOVP1 for APEC, same as B.1.
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Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 5.92+0.06
−0.06 5.94 0.30+0.007

−0.007 0.100601+5.0×10−6

−7.8×10−6 0.1006 66.8+0.32
−0.32 67.5

1B 5.98+0.06
−0.06 5.94 0.30+0.007

−0.007 0.09940+7.6×10−7

−5.8×10−6 0.0994 66.7+0.3
−0.30 67.5

2R 4.81+0.24
−0.22 4.75 0.29+0.035

−0.03 0.10038+2.3×10−5

−0.7×10−5 0.10039 2.75+0.04
−0.04 2.8

2B 4.75+0.25
−0.21 4.75 0.3+0.036

−0.03 0.09958+1.7×10−5

−0.8×10−5 0.09961 2.83+0.04
−0.04 2.8

3R 4.23+0.21
−0.13 4.24 0.33+0.02

−0.05 0.100308+6.8×10−6

−1.2×10−5 0.10031 2.57+0.03
−0.03 2.6

3B 4.21+0.17
−0.15 4.24 0.30+0.03

−0.03 0.09968+1.9×10−5

−3.9×10−6 0.09969 2.58+0.4
−0.3 2.6

4R 3.86+0.36
−0.46 3.47 0.40+0.10

−0.13 0.100234+3.5×10−5

−4×10−4 0.10022 0.29+0.01
−0.01 0.31

4B 3.9+0.48
−0.41 3.47 0.41+0.13

−0.10 0.099874+6.3×10−5

−7.9×10−5 0.09978 0.28+0.02
−0.02 0.31

5R 2.94+0.95
−0.67 2.94 0.14+0.23

−0.12 0.10195+2.2×10−4

−5.1×10−4 0.10016 0.06+0.02
−0.01 0.06

5B 2.26+0.46
−0.31 2.94 0.32+0.22

−0.14 0.09989+3.1×10−4

−1.9×10−4 0.09984 0.07+0.008
−0.008 0.06

Table B.5: Table of the parameters of the model NIOVP2A for APEC, same as
B.1.

Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 5.96+0.06
−0.06 5.96 0.29+0.007

−0.007 0.100705+5.9×10−6

−5.3×10−6 0.10071 63.9+0.23
−0.23 64.7

1B 5.99+0.06
−0.06 5.96 0.30+0.007

−0.007 0.09929+5.6×10−6

−2.7×10−7 0.09929 63.6+0.19
−0.19 64.7

2R 4.8+0.23
−0.24 4.78 0.31+0.03

−0.03 0.10047+1.0×10−5

−1.2×10−5 0.10046 5.70+0.06
−0.07 5.72

2B 4.47+0.20
−0.22 4.78 0.29+0.03

−0.03 0.09952+2.5×10−5

−1.06×10−5 0.09954 5.72+0.04
−0.06 5.72

3R 4.15+0.16
−0.15 4.28 0.29+0.03

−0.03 0.100363+2.3×10−5

−1.3×10−5 0.10037 2.83+0.08
−0.08 2.83

3B 4.18+0.17
−0.15 4.28 0.32+0.03

−0.03 0.09963+2.1×10−5

−9.9×10−6 0.09963 2.81+0.04
−0.04 2.83

4R 3.98+0.61
−0.36 3.51 0.28+0.08

−0.11 0.100242+7.4×10−5

−1.3×10−4 0.10026 0.29+0.007
−0.03 0.32

4B 3.48+0.39
−0.40 3.51 0.36+0.09

−0.11 0.09977+3.9×10−5

−1.3×10−4 0.09974 0.3+0.01
−0.01 0.32

5R 3.01+0.73
−0.55 2.98 0.34+0.38

−0.17 0.100206+5.6×10−5

−4×10−4 0.10020 0.06+0.01
−0.01 0.01

5B 2.97+0.88
−0.61 2.98 0.26+0.24

−0.15 0.09977+1×10−4

−1.9×10−4 0.0998 0.06+0.02
−0.01 0.06

Table B.6: Table of the parameters of the model NIOVP2B for APEC, same as
B.1.
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Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 5.35+0.03
−0.03 5.36 0.30+0.005

−0.005 0.100608+7.6×10−6

−1.8×10−5 0.10061 12.1+0.52
−0.52 12.1

1B 5.35+0.03
−0.03 5.36 0.30+0.005

−0.005 0.09938+3.4×10−6

−7.39×10−6 0.09939 12+0.53
−0.52 12.1

2R 4.33+0.21
−0.17 4.18 0.32+0.03

−0.03 0.100604+4.8×10−7

−2.0×10−6 0.10061 2.97+0.03
−0.04 3.1

2B 4.19+0.14
−0.15 4.18 0.33+0.03

−0.03 0.09937+1.4×10−5

+6×10−6 0.09939 3.11+0.04
−0.04 3.1

3R 3.83+0.10
−0.26 3.68 0.26+0.03

−0.02 0.100593+1.0×10−5

−3.6×10−5 0.10059 2.53+0.03
−0.03 2.69

3B 3.75+0.15
−0.15 3.68 0.30+0.03

−0.02 0.099437+4.2×10−6

−1.4×10−5 0.09941 2.58+0.03
−0.03 2.69

4R 2.91+0.45
−0.34 2.91 0.29+0.1

−0.13 0.100498+2.2×10−4

−4.1×10−5 0.10055 0.17+0.01
−0.01 0.18

4B 2.90+0.36
−0.41 2.91 0.30+0.15

−0.10 0.09946+1.2×10−4

−6.8×10−5 0.09945 0.18+0.01
−0.02 0.18

5R 2.07+0.97
−0.49 2.36 0.18+0.32

−0.15 0.101428+4.4×10−4

−1.3×10−4 0.10051 0.02+0.012
−0.008 0.02

5B 2.99+1.71
−0.75 2.36 0.32+0.53

−0.22 0.099396+3.3×10−4

−2.2×10−4 0.09949 0.019+0.006
−0.003 0.02

Table B.7: Table of the parameters of the model CCOVP1 for APEC, same as B.1.

Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 5.56+0.01
−0.01 5.57 0.30+0.001

−0.001 0.100601+1.1×10−6

−1.09×10−6 0.1006 9.99+1
−1 10

1B 5.56+0.05
−0.04 5.57 0.29+0.005

−0.005 0.09939+7.4×10−6

−3.0×10−6 0.0994 9.99+0.31
−0.31 10

2R 4.33+0.2
−0.16 4.38 0.26+0.03

−0.028 0.10044+1.58×10−5

−2.9×10−5 0.10039 3.04+0.04
−0.05 3

2B 4.47+0.21
−0.18 4.38 0.3+0.03

−0.03 0.09965+2.36×10−6

−7×10−5 0.09961 2.96+0.04
−0.04 3

3R 3.76+0.15
−0.15 3.88 0.25+0.03

−0.03 0.100306+9.9×10−6

−3.00×10−5 0.10031 2.83+0.04
−0.04 2.75

3B 3.96+0.15
−0.16 3.88 0.31+0.03

−0.03 0.09972+6.9×10−6

−5.22×10−5 0.09969 2.65+0.04
−0.03 2.75

4R 3.10+0.59
−0.25 3.10 0.3+0.19

−0.06 0.100223+8.29×10−5

−1.9×10−4 0.10022 0.25+0.01
−0.01 0.21

4B 2.66+0.31
−0.22 3.10 0.3+0.13

−0.07 0.09978+8.13×10−5

−2×10−4 0.09978 0.24+0.01
−0.01 0.21

5R 2.53+0.64
−0.67 2.55 0.30+0.40

−0.19 0.09994+3.5×10−4

−2.6×10−4 0.10017 0.03+0.01
−0.004 0.03

5B 2.35+0.93
−0.42 2.55 0.20+0.29

−0.12 0.099714+6.1×10−4

−7.0×10−4 0.09983 0.03+0.01
−0.004 0.03

Table B.8: Table of the parameters of the model CCOVP2A for APEC, same as
B.1.
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Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 5.30+0.03
−0.03 5.30 0.29+0.004

−0.004 0.100719+1.7×10−6

−3.95×10−6 0.10072 13.0+0.53
−0.52 13.1

1B 5.28+0.03
−0.03 5.30 0.290.005

−0.004 0.09928+7.2×10−6

−4.4×10−6 0.09928 13.0+0.25
−0.25 13.1

2R 4.09+0.14
−0.15 4.12 0.31+0.029

−0.03 0.10049+1.8×10−5

−2.8×10−5 0.10047 6.87+0.09
−0.05 6.93

2B 4.37+0.16
−0.21 4.12 0.3+0.032

−0.034 0.09958+5.24×10−5

−1.5×10−5 0.09953 6.94+0.08
−0.08 6.93

3R 3.62+0.19
−0.11 3.62 0.30+0.05

−0.02 0.100377+2.3×10−5

−3.4×10−5 0.10038 2.57+0.03
−0.04 2.65

3B 3.53+0.14
−0.14 3.62 0.27+0.03

−0.03 0.09959+4.9×10−5

−6.1×10−8 0.09962 2.67+0.04
−0.03 2.65

4R 2.72+0.26
−0.4 2.84 0.29+0.10

−0.13 0.10049+1.0×10−4

−2.3×10−4 0.10026 0.17+0.01
−0.01 0.16

4B 2.83+0.40
−0.37 2.84 0.30+0.09

−0.17 0.09970+1.8×10−4

−2.5×10−4 0.09974 0.16+0.02
−0.02 0.16

5R 2.06+0.85
−0.50 2.28 0.42+0.78

−0.25 0.100278+4.4×10−4

−4.1×10−4 0.10020 0.017+0.008
−0.007 0.01

5B 2.28+1.12
−0.48 2.28 0.290.45

−0.2 0.100028+2.1×10−4

−6.3×10−4 0.09980 0.0015+0.005
−0.005 0.01

Table B.9: Table of the parameters of the model CCOVP2B for APEC, same as
B.1.

Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 7.73+0.36
−0.35 7.5 0.30+0.03

−0.03 0.10213+4.6×10−6

−7.2×10−6 0.10213 5.06+0.08
−0.08 5.13

1B 7.30+0.33
−0.32 7.5 0.29+0.03

−0.02 0.09786+1.87×10−5

−2.7×10−7 0.09787 5.15+0.04
−0.04 5.13

2R 8.2+1.15
−1.16 7.5 0.39+0.07

−0.12 0.1021+1.74×10−5

−1.2×10−4 0.1020 1.39+0.02
−0.01 1.42

2B 6.66+0.96
−0.69 7.5 0.27+0.07

−0.06 0.979+5.8×10−6

−7.17×10−6 0.098 1.45+0.02
−0.02 1.42

3R 7.73+0.52
−0.83 7.5 0.29+0.05

−0.05 0.102005+4.6×10−5

−2.3×10−5 0.10201 1.33+0.02
−0.02 1.32

3B 7.49+0.61
−0.67 7.5 0.29+0.04

−0.06 0.09799+1.4×10−5

−7.8×10−5 0.09799 1.35+0.02
−0.02 1.32

4R 7.47+0.83
−1.02 7.5 0.28+0.07

−0.08 0.10184+5.2×10−5

−1.2×10−4 0.1018 0.61+0.02
−0.01 0.63

4B 7.65+0.95
−0.87 7.5 0.33+0.08

−0.07 0.09819+8.5×10−5

−4.4×10−5 0.0982 0.62+0.02
−0.02 0.63

5R 6.84+0.80
−0.80 7.5 0.18+0.07

−0.05 0.101642+3.2×10−5

−3.4×10−5 0.10179 0.49+0.02
−0.01 0.47

5B 7.56+1.32
−0.92 7.5 0.31+0.10

−0.08 0.098163+8.8×10−5

−1.0×10−5 0.09821 0.45+0.01
−0.01 0.47

Table B.10: Table of the parameters of the model IPVP1 for APEC, same as B.1.
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Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 7.66+0.28
−0.28 7.5 0.29+0.02

−0.02 0.1019+5.4×10−6

−1.0×10−5 0.1019 7.12+0.06
−0.05 7.18

1B 7.56+0.27
−0.28 7.5 0.30+0.02

−0.02 0.098091+1.4×10−5

−9.6×10−6 0.0981 7.14+0.09
−0.09 7.18

2R 7.51+1.23
−0.79 7.5 0.297+0.05

−0.10 0.10121+7.1×10−5

−4.33×10−5 0.1012 1.55+0.02
−0.01 1.54

2B 8.5+0.86
−1.49 7.5 0.29+0.09

−0.076 0.09880+6.86×10−5

−5.36×10−5 0.0988 1.48+0.02
−0.01 1.54

3R 6.73+0.93
−0.42 7.5 0.30+0.05

−0.05 0.100942+2.7×10−5

−1.9×10−5 0.10095 1.23+0.02
−0.02 1.28

3B 7.20+0.70
−0.64 7.5 0.27+0.05

−0.05 0.09902+5.1×10−5

−1.3×10−5 0.09905 1.19+0.02
−0.02 1.28

4R 6.14+0.8
−0.7 7.5 0.26+0.08

−0.67 0.100605+1.3×10−4

−2.28×10−5 0.10069 0.55+0.02
−0.01 0.54

4B 6.84+1.17
−0.77 7.5 0.25+0.08

−0.07 0.09932+7.4×10−5

−2.24×10−5 0.09931 0.51+0.03
−0.02 0.54

5R 8.73+1.84
−1.04 7.5 0.37+0.14

−0.10 0.100637+3.8×10−5

−1.3×10−4 0.10055 0.33+0.01
−0.01 0.33

5B 7.44+1.7
−2.0 7.5 0.28+0.12

−0.11 0.09938+7.4×10−5

−1.4×10−4 0.09945 0.33+0.02
−0.02 0.33

Table B.11: Table of the parameters of the model IPVP2A for APEC , same as
B.1.

Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 7.30+0.27
−0.27 7.5 0.29+0.02

−0.02 0.101794+1.9×10−5

−7.4×10−6 0.1018 7.43+0.51
−0.53 7.42

1B 7.29+0.30
−0.28 7.5 0.31+0.02

−0.02 0.098194+1.2×10−5

−2.4×10−6 0.0982 7.44+0.10
−0.10 7.42

2R 8.25+0.87
−1.2 7.5 0.38+0.1

−0.089 0.100857+3.3×10−5

−2.6×10−5 0.10085 1.53+0.01
−0.03 1.55

2B 7.14+0.53
−1.43 7.5 0.28+0.058

−0.096 0.09980+2.5×10−5

−9.4×10−5 0.09915 1.52+0.01
−0.01 1.55

3R 7.51+0.77
−0.63 7.5 0.29+0.06

−0.05 0.100905+1.4×10−5

−3.1×10−5 0.100904 1.21+0.02
−0.03 1.27

3B 6.91+0.51
−0.42 7.5 0.30+0.05

−0.04 0.099100+1.94×10−5

−2.3×10−5 0.099096 1.30+0.02
−0.02 1.27

4R 7.1+0.78
−1.12 7.5 0.28+0.07

−0.09 0.100599+2.16×10−5

−1.52×10−5 0.10049 0.47+0.01
−0.01 0.46

4B 8.9+1.27
−1.7 7.5 0.27+0.08

−0.11 0.09947+2.7×10−5

−1.0×10−4 0.09951 0.44+0.01
−0.01 0.46

5R 7.34+1.42
−0.99 7.5 0.43+0.09

−0.16 0.100590+3.0×10−5

−1.5×10−4 0.10052 0.33+0.01
−0.01 0.33

5B 7.48+1.06
−1.62 7.5 0.29+0.09

−0.11 0.099470+5.8×10−5

−1.1×10−4 0.09948 0.32+0.01
−0.01 0.33

Table B.12: Table of the parameters of the model IPVP2B for APEC, same as B.1.
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Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 5.92+0.14
−0.14 6.11 0.29+0.01

−0.01 0.102213+3.1×10−8

−1.2×10−5 0.10221 12.8+0.06
−0.07 12.7

1B 6.19+0.15
−0.15 6.11 0.29+0.01

−0.01 0.09779+9.2×10−6

−4.7×10−6 0.09779 12.5+0.08
−0.08 12.7

2R 4.95+0.4
−0.37 5.13 0.26+0.06

−0.05 0.10216+3.12×10−5

−9.393.12×10−5 0.1021 1.79+0.03
−0.03 1.7

2B 5.12+0.31
−0.50 5.13 0.29+0.035

−0.08 0.0979+2.27×10−6

−4.65×10−5 0.0979 1.68+0.03
−0.02 1.7

3R 4.42+0.30
−0.24 4.72 0.33+0.03

−0.05 0.102117+2.1×10−6

−2.9×10−5 0.102107 1.03+0.5
−0.45 1.03

3B 5.09+0.30
−0.29 4.72 0.34+0.04

−0.04 0.097876+3.0×10−5

−3.0×10−6 0.097893 0.99+0.02
−0.02 1.03

4R 4.14+0.6
−0.32 4.14 0.3+0.1

−0.06 0.10190+2.92×10−5

−1×10−4 0.1019 0.46+0.01
−0.01 0.46

4B 4.49+0.57
−0.49 4.14 0.28+0.09

−0.075 0.0981+3.37×10−5

−2.72×10−5 0.0981 0.44+0.02
−0.02 0.46

5R 2.97+0.41
−0.43 3.76 0.18+0.12

−0.07 0.101826+1.3×10−4

−1.3×10−4 0.10185 0.26+0.04
−0.02 0.21

5B 3.90+0.71
−0.48 3.76 0.25+0.15

−0.09 0.098177+1.1×10−4

−9.1×10−5 0.09815 0.21+0.02
−0.02 0.21

Table B.13: Table of the parameters of the model NIPVP1 for APEC, same as
B.1.

Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 6.31+0.12
−0.12 6.28 0.30+0.01

−0.01 0.101955+8.2×10−6

−5.7×10−6 0.10195 18.9+0.09
−0.06 19.1

1B 6.16+0.12
−0.12 6.28 0.29+0.01

−0.01 0.0980459+8.9×10−6

−3.8×10−6 0.09805 19+0.12
−0.12 19.1

2R 5.37+0.42
−0.37 5.19 0.29+0.05

−0.04 0.1011+7.84×10−5

−4.96×10−5 0.1012 1.56+0.02
−0.02 1.6

2B 5.05+0.45
−0.37 5.19 0.26+0.05

−0.046 0.09882+8.4×10−5

−1.89×10−5 0.0988 1.62+0.03
−0.03 1.6

3R 5.02+0.31
−0.29 4.71 0.33+0.04

−0.04 0.101033+2.9×10−5

−2.95×10−5 0.10102 1.09+0.02
−0.02 1.1

3B 4.59+0.28
−0.26 4.71 0.28+0.04

−0.04 0.0990142+2.5×10−5

−2.5×10−5 0.09898 1.12+0.05
−0.05 1.1

4R 3.97+0.61
−0.45 4.00 0.29+0.11

−0.087 0.10068+1.9×10−5

−1.01×10−5 0.1007 0.3+0.03
−0.02 0.29

4B 4.00+0.79
−0.41 4.00 0.3+0.14

−0.08 0.09929+1.9×10−5

−5.2×10−5 0.0993 0.25+0.01
−0.01 0.29

5R 3.28+0.86
−0.57 3.54 0.20+0.17

−0.11 0.100571+2.4×10−4

−1.9×10−4 0.10056 0.10+0.01
−0.01 0.099

5B 3.23+0.60
−0.53 3.54 0.29+0.16

−0.13 0.09944+3.1×10−4

−1.5×10−4 0.09944 0.11+0.009
−0.008 0.099

Table B.14: Table of the parameters of the model NIPVP2A for APEC, same as
B.1.
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Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 6.26+0.07
−0.19 6.27 0.28+0.01

−0.009 0.101939+1.3×10−6

−1.03×10−6 0.10194 19.3+0.09
−0.09 19.3

1B 6.26+0.12
−0.11 6.27 0.31+0.01

−0.01 0.098061+4.1×10−7

−6.3×10−6 0.09806 19.1+0.10
−0.05 19.3

2R 5.58+0.46
−0.33 5.18 0.36+0.07

−0.04 0.10124+5.6×10−5

−1.6×10−5 0.1012 2.62+0.05
−0.04 2.61

2B 5.33+0.35
−0.47 5.18 0.32+0.04

−0.06 0.0988+3.9×10−5

+3.9×10−6 0.0988 2.56+0.05
−0.05 2.61

3R 4.68+0.30
−0.28 4.70 0.29+0.04

−0.04 0.100994+5.4×10−5

−2.0×10−5 0.10102 1.59+0.03
−0.02 1.6

3B 4.95+0.33
−0.30 4.70 0.30+0.04

−0.04 0.0986+6.2×10−5

−5.2×10−5 0.09898 1.58+0.03
−0.02 1.6

4R 3.78+0.43
−0.53 4.00 0.23+0.07

−0.09 0.1007+1.1×10−4

−6.3×10−5 0.10072 0.31+0.02
−0.01 0.29

4B 4.27+0.49
−0.67 4.00 0.31+0.09

−0.11 0.09937+7.8×10−5

−6.5×10−5 0.09928 0.3+0.02
−0.02 0.29

5R 3.40+0.85
−0.61 3.53 0.17+0.16

−0.10 0.100418+2.3×10−4

−2.4×10−4 0.100558 0.10+0.01
−0.01 0.09

5B 3.24+0.82
−0.50 3.53 0.37+0.22

−0.16 0.099507+8.5×10−5

−1.1×10−4 0.099442 0.099+0.01
−0.01 0.09

Table B.15: Table of the parameters of the model NIPVP2B for APEC , same as
B.1.

Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 5.44+0.10
−0.08 5.56 0.29+0.01

−0.01 0.102206+4.6×10−6

−3.1×10−6 0.10221 21.3+0.15
−0.13 21.3

1B 5.52+0.10
−0.11 5.56 0.30+0.01

−0.01 0.097795+1.5×10−5

−8.4×10−6 0.09779 21.3+0.17
−0.16 21.3

2R 4.58+0.48
−0.24 4.58 0.35+0.036

−0.08 0.10209+3.8×10−5

−5.9×10−5 0.10219 2.45+5.5
−1.4 1.83

2B 4.73+0.35
−0.33 4.58 0.31+0.05

−0.05 0.0977+2.2×10−5

−1.6×10−5 0.0978 1.78+0.03
−0.03 1.83

3R 3.61+2.33
−1.26 4.16 0.22+0.25

−0.14 0.102102+1.5×10−4

−1.2×10−4 0.10211 1.18+0.02
−0.02 1.2

3B 4.10+0.19
−0.18 4.16 0.32+0.04

−0.04 0.09781+5.1×10−5

−1.67×10−5 0.09789 1.1+0.02
−0.05 1.2

4R 3.61+0.43
−0.36 3.56 0.22+0.09

−0.06 0.1018+5.7×10−5

−1.2×10−5 0.1019 0.37+0.02
−0.03 0.36

4B 3.55+0.25
−0.54 3.56 0.29+0.06

−0.11 0.0981+1.7×10−4

−1.5×10−4 0.0981 0.35+0.01
−0.01 0.36

5R 3.42+0.53
−0.46 3.17 0.46+0.23

−0.16 0.101887+1.1×10−4

−1.0×10−4 0.10185 0.1+0.01
−0.008 0.13

5B 3.16+0.68
−0.31 3.17 0.59+0.19

−0.23 0.098164+2.3×10−4

−4.3×10−5 0.09815 0.11+0.003
−0.007 0.13

Table B.16: Table of the parameters of the model CCPVP1 for APEC , same as
B.1.
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Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 5.86+0.10
−0.1 5.91 0.29+0.01

−0.01 0.101973+4.5×10−6

−2.5×10−6 0.10197 26.1+0.12
−0.11 26.9

1B 5.97+0.10
−0.1 5.91 0.29+0.01

−0.01 0.098104+1.4×10−6

−8.1×10−6 0.0981 26.9+0.11
−0.11 26.9

2R 4.6+0.3
−0.3 4.82 0.34+0.06

−0.04 0.10119+3.5×10−5

−2.0×10−5 0.10128 1.62+0.03
−0.03 1.64

2B 4.82+0.31
−0.34 4.82 0.29+0.04

−0.05 0.0987+6.64×10−5

−1.13×10−5 0.0988 1.63+0.02
−0.02 1.64

3R 4.41+0.27
−0.22 4.34 0.30+0.05

−0.03 0.101023+1.3×10−5

−3.4×10−5 0.10104 1.3+0.03
−0.03 1.3

3B 4.33+0.15
−0.34 4.34 0.30+0.05

−0.03 0.098960+2.3×10−6

−4.3×10−5 0.09896 1.28+0.02
−0.02 1.3

4R 3.89+0.72
−0.55 3.62 0.216+0.12

−0.08 0.10069+3.9×10−4

−7.9×10−5 0.10073 0.24+0.01
−0.01 0.2

4B 3.61+0.37
−0.5 3.62 0.29+0.10

−0.11 0.09926+6.43×10−5

−3.08×10−5 0.09927 0.24+0.02
−0.01 0.2

5R 3.34+0.86
−0.71 3.15 0.33+0.34

−0.13 0.100841+9.3×10−5

−3.1×10−4 0.10056 0.068+0.006
−0.006 0.065

5B 3.88+1.18
−0.98 3.15 0.29+0.17

−0.24 0.099446+4.4×10−4

−3.7×10−4 0.09944 0.060+0.011
−0.007 0.065

Table B.17: Table of the parameters of the model CCPVP2A for APEC, same as
B.1.

Region Tobs TFit Zobs zobs zfit N0, obs N0, fit

keV keV Z� [10−4] cm−5 [10−4] cm−5

1R 5.62+0.08
−0.07 5.58 0.31+0.009

−0.009 0.101909+5.3×10−6

−6.4×10−6 0.10191 39.2+0.16
−0.15 39.3

1B 5.53+0.08
−0.08 5.58 0.29+0.009

−0.009 0.9808+5.4×10−6

−1.2×10−6 0.09809 39.1+0.19
−0.26 39.3

2R 4.23+0.21
−0.32 4.47 0.29+0.04

−0.04 0.1011+4.0×10−6

−2.6×10−5 0.1012 3.28+0.03
−0.03 3.3

2B 4.65+0.27
−0.33 4.47 0.24+0.03

−0.04 0.0988+2.1×10−5

−4.9×10−5 0.0988 3.31+0.03
−0.02 3.3

3R 3.95+0.21
−0.19 3.99 0.28+0.04

−0.04 0.10102+1.1×10−5

−3.4×10−5 0.10101 1.55+0.04
−0.05 1.53

3B 3.92+0.20
−0.18 3.99 0.34+0.04

−0.04 0.099+1.9×10−6

−4.1×10−5 0.09899 1.490.05
−0.03 1.53

4R 3.00+0.54
−0.32 3.26 0.23+0.08

−0.14 0.1009+3.9×10−4

−4.2×10−5 0.1007 0.18+0.02
−0.01 0.17

4B 3.25+0.35
−0.57 3.26 0.42+0.18

−0.11 0.0992+6.8×10−5

−9.1×10−5 0.0993 0.16+0.001
0.02 0.17

5R 2.54+1.1
−0.57 2.76 0.19+0.25

−0.14 0.10028+5.2×10−4

−5.5×10−4 0.10054 0.0046+0.006
−0.014 0.0036

5B 2.74+0.55
−0.71 2.76 0.29+0.23

−0.19 0.09953+2.5×10−4

−2.5×10−4 0.09946 0.0035+0.0005
−0.0004 0.0036

Table B.18: Table of the parameters of the model CCPVP2B for APEC , same as
B.1.
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Appendix

C.1 Bapec Fitting parameters

In this section we present the fitting value of the bapec models. We are inter-
ested in the centroid shift of the 6.7 keV line and the line broadening due to
the dispersion of velocity in the line of sight. All errors are executed with a
confidence range of 3σ. The main results are presented in section (5.4). We use
the same convention of naming the regions as what it is done in the appendix
(B.1). The metallicity is set to 0.3Z� and it is not reported in table and the nor-
malization parameter N is in [10−4] scale and it is not reported in table unlike
what we did in appendix (B.1).

91



APPENDIX C. APPENDIX 92

Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 7.5+0.12
−0.12 7.5 0.30+0.01

−0.01 0.100602+2.13×10−5

−2.09×10−5 0.10061 104+16
−33 84 13+0.06

−0.05 13

1B 7.5+0.12
−0.12 7.5 0.29+0.01

−0.01 0.099401+2.01×10−5

−2.05×10−5 0.09939 65+23
−16 84 13.1+0.05

−0.06 13

2R 7.36+0.22
−0.42 7.5 0.37+0.02

−0.04 0.100587+1.3×10−4

−7.2×10−5 0.10059 0.05+32
−0.005 78 1.78+0.02

−0.03 1.88

2B 8.36+0.59
−0.49 7.5 0.27+0.04

−0.03 0.09938+9×10−5

−1×10−4 0.0994 100+37
−41 78 1.78+0.03

−0.02 1.88

3R 7.35+0.35
−0.33 7.5 0.35+0.03

−0.03 0.100625+7.59×10−5

−3.9×10−5 0.10057 62+26
−39 73 1.02+0.02

−0.02 1

3B 8.12+0.36
−0.37 7.5 0.25+0.03

−0.02 0.09944+9.71×10−5

−6.7×10−5 0.09943 88+31
−31 73 0.99+0.02

−0.02 1

4R 6.57+0.58
−0.36 7.5 0.28+0.04

−0.04 0.100598+6×10−5

−1×10−4 0.10054 0.26+57
−0.26 41 0.7+0.02

−0.02 0.68

4B 7.5+0.46
−0.59 7.5 0.3+0.03

−0.05 0.09946+1×10−4

−1×10−4 0.09946 41+56
−41 41 0.69+0.01

−0.01 0.68

5R 7.27+0.50
−0.54 7.5 0.39+0.06

−0.05 0.10053+7.67×10−5

−7.7×10−5 0.10051 0.04+61
−0.04 7 0.43+0.006

−0.004 0.43

5B 7.060.62
−0.61 7.5 0.25+0.04

−0.04 0.09955+6.8×10−5

−1.8×10−4 0.09949 66+42
−66 7 0.44+0.01

−0.01 0.43

Table C.1: Table of the parameters of the IOVP1 model for bapec with temper-
atures in keV, thermal broadening in km/s, density and redshift as the value
obtained by the best fit model and the values that was set.

Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 7.67+0.13
−0.13 7.5 0.28+0.01

−0.01 0.10065+7.6×10−5

−7.3×10−5 0.10058 320+19
−17 310 13+0.08

−0.08 13.4

1B 7.39+0.13
−0.13 7.5 0.30+0.01

−0.01 0.09949+5.8×10−5

−7.3×10−5 0.09942 296+15
−16 310 12.9+0.08

−0.08 13.4

2R 7.19+0.49
−0.50 7.5 0.27+0.04

−0.03 0.10034+1×10−4

−1×10−4 0.10036 175+50
−40 188 1.87+0.02

−0.02 1.88

2B 7.62+0.47
−0.46 7.5 0.30+0.04

−0.04 0.09962+9×10−5

−1×10−4 0.09964 126+30
−29 188 1.89+0.03

−0.03 1.88

3R 7.62+0.33
−0.32 7.5 0.29+0.02

−0.02 0.100220+9.7×10−5

−9.14×10−5 0.10029 144+29
−23 143 0.99+0.02

−0.02 1.0

3B 7.92+0.34
−0.37 7.5 0.27+0.03

−0.02 0.099790+4.76×10−5

−1.2×10−4 0.09971 103+25
−31 143 1+0.02

−0.02 1.0

4R 7.99+0.29
−0.57 7.5 0.33+0.04

−0.04 0.10021+9×10−5

−7×10−5 0.10020 0.02+66
−0.03 61 0.64+0.007

−0.009 0.67

4B 7.15+0.54
−0.49 7.5 0.25+0.04

−0.03 0.09982+7×10−5

−1×10−4 0.0998 70+57
−42 61 0.68+0.01

−0.01 0.67

5R 6.84+0.43
−0.35 7.5 0.29+0.05

−0.04 0.100276+1×10−4

−6.70×10−5 0.10016 0.008−0.008
+32 9 0.41+0.01

−0.009 0.42

5B 7.16+0.58
−0.68 7.5 0.31+0.05

−0.04 0.099794+9.3×10−5

−9.1×10−5 0.09984 0.003−0.003
+64 9 0.43+0.007

−0.007 0.42

Table C.2: Table of the parameters of the IOVP2A model for bapec, same as
C.1.
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Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 7.52+0.13
−0.13 7.5 0.29+0.01

−0.01 0.100604+1×10−4

−7.7×10−5 0.10068 385+26
−24 400 13+0.08

−0.08 13.2

1B 7.49+0.13
−0.13 7.5 0.29+0.01

−0.01 0.099288+8.3×10−5

−1.1×10−4 0.09932 400+23
−24 400 13.2+0.08

−0.08 13.2

2R 7.31+0.32
−0.31 7.5 0.29+0.02

−0.02 0.10052+2×10−4

−1.7×10−4 0.10041 367+54
−48 317.858 2.34+0.03

−0.03 2.37

2B 7.53+0.31
−0.30 7.5 0.32+0.03

−0.0 0.099484+1.8×10−4

−1.1×10−4 0.09959 298+40
−37 317 2.31+0.03

−0.03 2.37

3R 7.74+0.35
−0.34 7.5 0.32+0.03

−0.03 0.100330+1.2×10−4

−7.2×10−5 0.10034 167+28
−27 170 1.87+0.03

−0.03 1.89

3B 7.10+0.33
−0.33 7.5 0.25+0.02

−0.02 0.099544+1.4×10−4

−8.6×10−5 0.09966 164+39
−20 170 1.91+0.01

−0.02 1.89

4R 6.14+0.31
−0.34 7.5 0.29+0.03

−0.03 0.100274+7.6×10−5

−9.9×10−5 0.10024 93+27
−33 72 0.7+0.01

−0.01 0.67

4B 7.79+0.49
−0.47 7.5 0.27+,0.04

−0.03 0.0997971+1.3×10−4

−1.2×10−4 0.09976 94+54
−47 72 0.67+0.01

−0.01 0.67

5R 7.5+0.72
−0.47 7.5 0.30+0.08

−0.03 0.100193+7.8×10−5

−1.3×10−4 0.10019 0.96+52
−0.59 10 0.41+0.006

−0.007 0.42

5B 7.49+0.43
−0.78 7.5 0.29+0.05

−0.05 0.099814+8.1×10−5

−1.4×10−4 0.09981 0.65+74
−0.5 10 0.42+0.01

−0.007 0.42

Table C.3: Table of the parameters of the IOVP2B model for bapec, same as
C.1.

Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 5.91+0.036
−0.03 5.91 0.29+0.004

−0.004 0.10061+1.02×10−5

−6.2×10−6 0.10061 78+7
−10 90 65.9+0.11

−0.10 66.6

1B 5.90+0.03
−0.03 5.91 0.30+0.004

−0.004 0.099387+7.9×10−6

−8.9×10−6 0.09939 86+5
−6 90 66.5+0.20

−0.20 66.6

2R 4.86+0.14
−0.13 4.73 0.29+0.02

−0.02 0.100607+4×10−5

−4×10−5 0.100607 75+19
−19 81 2.89+0.05

−0.05 2.89

2B 4.74+0.19
−0.09 4.73 0.29+0.01

−0.03 0.09947+4×10−5

−6×10−5 0.09940 78+21
−15 81 2.83+0.02

−0.02 2.89

3R 4.09+0.09
−0.09 4.23 0.26+0.019

−0.01 0.1006+4.3×10−5

−4.1×10−5 0.10059 106+24
−42 80 2.56+0.02

−0.02 2.6

3B 4.16+0.09
−0.09 4.23 0.29+0.02

−0.01 0.099391+5.8×10−5

−5.9×10−5 0.09941 120+18
−17 80 2.62+0.02

−0.02 2.6

4R 3.7+0.24
−0.24 3.47 0.33+0.07

−0.05 0.100654+9×10−5

−1×10−4 0.10054 87+38
−33 50 0.3+0.01

−0.01 0.32

4B 3.5+0.21
−0.17 3.47 0.18+0.03

−0.03 0.09954+1×10−4

−1×10−4 0.09946 0.007+0.007
−32 50 0.32+0.009

−0.008 0.32

5R 3.17+0.48
−0.35 2.95 0.38+0.15

−0.11 0.10093+5.5×10−4

−5.6×10−4 0.10051 158+133
−86 8 0.056+0.006

−0.006 0.06

5B 2.54+0.42
−0.16 2.95 0.29+0.076

−0.12 0.099534+1.4×10−4

−1.9×10−4 0.09949 0.12+63
−0.11 8 0.071+0.004

−0.003 0.06

Table C.4: Table of the parameters of the NIOVP1 model for bapec, same as
C.1.
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Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 5.99+0.04
−0.045.94 0.30+0.004

−0.004 0.10064+3.09×10−5

−3.7×10−5 0.1006 373+8
−8 370 66.9+0.20

−0.20 67.5

1B 5.92+0.04
−0.035.94 0.29+0.004

−0.004 9.9418+3.21×10−5

−3.7×10−5 0.0994 379+8
−8 370 67.1+0.20

−0.20 67.5

2R 4.91+0.14
−0.144.75 0.31+0.02

−0.02 0.100411+9×10−5

−1×10−4 0.10039 241+30
−27 214 2.84+0.05

−0.05 2.8

2B 4.54+0.13
−0.134.75 0.26+0.02

−0.01 0.09954+7×10−5

−1×10−4 0.09961 183+26
−24 214 2.76+0.04

−0.04 2.8

3R 4.21+0.10
−0.094.24 0.25+0.01

−0.01 0.10028+8×10−5

−5.4×10−5 0.10031 139+17
−17 171 2.54+0.04

−0.04 2.65

3B 4.42+0.13
−0.124.24 0.30+0.02

−0.02 9.9798+7.9×10−5

−9.6×10−5 0.09969 200+26
−24 171 2.7+0.04

−0.04 2.65

4R 3.43+0.18
−0.163.47 0.26+0.05

−0.04 0.10005+1×10−4

−3×10−4 0.10022 89+78
−89 76 0.33+0.01

−0.01 0.31

4B 3.76+0.20
−0.193.47 0.28+0.04

−0.03 0.09988+1×10−4

−9×10−5 0.09978 89+39
−35 76 0.29+0.01

−0.01 0.31

5R 3.15+0.44
−0.282.94 0.38+0.13

−0.10 0.10028+1.1×10−4

−1.8×10−4 0.10016 0.0002+32
−0.0002 10.5 0.06+0.003

−0.003 0.006

5B 2.9+0.38
−0.32 2.94 0.22+0.11

−0.07 9.9978+4×10−4

−4×10−4 0.09984 79+120
−79 10.5 0.006+0.008

−0.007 0.006

Table C.5: Table of the parameters of the NIOVP2A model for bapec , same as
C.1.

Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 5.88+0.04
−0.045.96 0.29+0.004

−0.004 0.100657+4.9×10−5

−4.01×10−5 0.10071 472+12
−11 470 65.2+0.20

−0.20 64.7

1B 5.98+0.04
−0.045.96 0.29+0.005

−0.005 0.099284+4.7×10−5

−4.5×10−5 0.09929 486+12
−12 470 63.9+0.20

−0.205 64.7

2R 4.66+0.09
−0.094.71 0.30+0.01

−0.01 0.100578+1.6×10−4

−1.7×10−4 0.100449 358+28
−26 365 5.72+0.06

−0.06 5.72

2B 4.53+0.09
−0.094.71 0.26+0.01

−0.01 0.099565+2.1×10−4

−1.8×10−4 0.099551 353+32
−29 365 5.88+0.07

−0.07 5.72

3R 4.37+0.12
−0.104.28 0.30+0.02

−0.02 0.10044+6.2×10−5

−9.5×10−5 0.10037 187+17
−22 202 2.73+0.04

−0.04 2.83

3B 4.27+0.09
−0.104.28 0.29+0.02

−0.01 0.0998+1.7×10−5

−1.5×10−4 0.09963 196+22
−20 202 2.80+0.05

−0.04 2.83

4R 3.55+0.21
−0.203.51 0.32+0.05

−0.04 0.100301+1.8×10−4

−8.7×10−5 0.10026 99+38
−39 90 0.31+0.01

−0.01 0.32

4B 3.76+0.23
−0.203.51 0.23+0.04

−0.03 0.099777+1.1×10−4

−7.3×10−5 0.09974 1.42+61
−1.42 90 0.32+0.01

−0.007 0.32

5R 3.94+0.65
−0.492.98 0.46+0.17

−0.13 0.10026+1.1×10−4

−2.5×10−4 0.1002 48+72
−48 12 0.05+0.006

−0.005 0.06

5B 3.40+0.45
−0.292.98 0.51+0.17

−0.14 0.099520+4.4×10−4

−4.3×10−4 0.0998 125+263
−88 12 0.05+0.005

−0.005 0.06

Table C.6: Table of the parameters of the NIOVP2B model for bapec , same as
C.1.
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Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 5.37+0.02
−0.025.36 0.29+0.003

−0.003 0.10061+6.6×10−6

−5.1×10−6 0.100612 91+4
−4 87 19.1+0.31

−0.31 12.1

1B 5.35+0.02
−0.025.36 0.30+0.003

−0.003 0.099380+3.3×10−6

−1×10−5 0.09938 78+4
−5 87 19.1+0.32

−0.34 12.1

2R 4.2+0.09
−0.09 4.18 0.30+0.02

−0.01 0.10064+6×10−5

−3×10−5 0.10061 107+17
−14 83 3.06+0.05

−0.05 3.1

2B 4.18+0.09
−0.094.18 0.31+0.02

−0.01 0.0994+3×10−5

−7×10−5 0.0994 104+18
−20 83 3.06+0.05

−0.05 3.1

3R 3.52+0.08
−0.083.68 0.28+0.02

−0.01 0.10056+7×10−5

−8×10−5 0.10059 62+16
−17 80 2.67+0.005

−0.05 2.69

3B 3.59+0.08
−0.083.68 0.31+0.02

−0.02 0.099442+6.07×10−5

−4×10−5 0.099408 75+17
−15 80 2.62+0.002

−0.02 2.69

4R 3.0+0.14
−0.32 2.91 0.40+0.13

−0.06 0.10051+1×10−4

−1×10−4 0.10055 0.08+74
−0.09 53 0.16+0.01

−0.007 0.18

4B 3.25+0.25
−0.242.91 0.51+0.12

−0.09 0.09957+1×10−4

−2×10−4 0.0995 93+43
−63 53 0.14+0.01

−0.01 0.18

5R 2.18+0.40
−0.232.36 0.52+0.22

−0.21 0.10065+2×10−4

−2.7×10−4 0.100516 0.22+88
−0.22 9 0.021+0.002

−0.003 0.02

5B 1.99+0.43
−0.312.36 0.23+0.20

−0.10 0.09958+4.1×10−4

−1.4×10−4 0.099484 12+334
−12 9 0.025+0.008

−0.006 0.02

Table C.7: Table of the parameters of the CCOVP1 model for bapec, same as
C.1.

Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 5.58+0.03
−0.035.57 0.29+0.003

−0.003 0.10061+2.9×10−5

−2.9×10−5 0.1006 398+7
−7 390 9.9+0.25

−0.25 10

1B 5.54+0.03
−0.035.57 0.29+0.003

−0.003 0.099403+2.3×10−5

−3.5×10−5 0.0994 385+6
−7 390 10+0.25

−0.25 10

2R 4.76+0.13
−0.134.38 0.32+0.02

−0.02 0.10032+5×10−5

−1×10−4 0.10039 192+21
−21 218 2.8+0.04

−0.04 3.0

2B 4.20+0.09
−0.094.38 0.30+0.02

−0.01 0.09958+1.5×10−4

−1.4×10−4 0.09961 178+23
−21 218 3.04+0.05

−0.05 3.0

3R 3.88+0.09
−0.093.88 0.31+0.02

−0.02 0.10026+6.2×10−5

−1.1×10−4 0.10031 206+23
−23 176 2.75+0.05

−0.04 2.75

3B 3.77+0.09
−0.093.88 0.27+0.02

−0.01 0.09968+1.6×10−4

−1.1×10−4 0.09969 176+42
−37 176 2.76+0.05

−0.05 2.75

4R 3.12+0.22
−0.223.10 0.32+0.09

−0.06 0.1002+1×10−4

−1×10−4 0.10022 32+61
−32 79 0.2+0.01

−0.01 0.21

4B 3.22+0.26
−0.263.10 0.41+0.12

−0.10 0.0994+5×10−4

−5×10−4 0.09978 297+161
−170 79 0.19+0.01

−0.01 0.21

5R 2.57+0.38
−0.262.55 0.62+0.26

−0.19 0.100258+2×10−4

−2.2×10−4 0.10017 87+91
−87 11 0.02+0.004

−0.003 0.003

5B 2.72+0.42
−0.372.55 0.32+0.18

−0.13 0.099785+8×10−4

−1.0×10−3 0.09983 0.001+128
−0.001 11 0.02+0.002

−0.003 0.003

Table C.8: Table of the parameters of the CCOVP2A model for bapec, same as
C.1.
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Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 5.30+0.02
−0.025.30 0.30+0.003

−0.003 0.10069+2.5×10−5

−2.1×10−5 0.10072 378+6
−5 383 12.9+0.33

−0.33 13.1

1B 5.28+0.02
−0.025.30 0.29+0.003

−0.003 0.0992462+3.4×10−5

−1.6×10−5 0.09928 383+6
−5 383 13.1+0.32

−0.34 13.1

2R 4.09+0.06
−0.064.06 0.30+0.014

−0.01 0.10046+9.6×10−5

−1.1×10−4 0.100459 401+27
−26 381 6.86+0.08

−0.08 6.93

2B 4.00+0.06
−0.064.06 0.29+0.014

−0.01 0.099411+1.2×10−4

−8.8×10−5 0.099541 393+27
−24 381 6.95+0.08

−0.08 6.93

3R 3.55+0.09
−0.083.62 0.28+0.02

−0.02 0.10045+6.6×10−5

−1×10−43 0.100382 226+20
−30 213 2.64+0.05

−0.04 2.65

3B 3.53+0.09
−0.083.62 0.28+0.02

−0.02 0.099607+1×10−4

−7.3×10−5 0.099618 200+30
−27 213 2.65+0.05

−0.05 2.65

4R 2.66+0.20
−0.202.84 0.16+0.05

−0.04 0.10027+2.8×10−4

−1.8×10−4 0.100268 1.9+115
−1.9 97 0.18+0.01

−0.01 0.16

4B 2.77+0.22
−0.152.84 0.35+0.08

−0.06 0.099544+2.4×10−4

−1×10−45 0.099732 148+51
−42 97 0.15+0.01

−0.01 0.16

5R 2.28+0.50
−0.242.28 0.30+0.27

−0.10 0.10031+2.7×10−4

−1.3×10−4 0.100202 0.29+87
−0.07 13 0.0019+0.002

−0.002 0.001

5B 2.21+0.40
−0.322.28 0.47+0.38

−0.15 0.0999491+1.3×10−4

−2.2×10−4 0.099798 0.0006+32
−0.0006 13 0.0015+0.001

−0.001 0.001

Table C.9: Table of the parameters of the CCOVP2B model for bapec, same as
C.1.

Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 7.12+0.21
−0.20 7.5 0.28+0.01

−0.01 0.10203+6.5×10−5

−3.2×10−5 0.10213 291+14
−14 303 5.2+0.05

−0.05 5.13

1B 7.62+0.21
−0.21 7.5 0.30+0.01

−0.01 0.097859+3.1×10−5

−6.7×10−5 0.09787 297+15
−16 303 5.13+0.05

−0.05 5.31

2R 6.7+0.63
−0.42 7.5 0.32+0.06

−0.05 0.102476+5×10−4

−5×10−4 0.1020 582+221
−205 243 1.41+0.02

−0.02 1.4

2B 7.34+0.63
−0.53 7.5 0.35+0.06

−0.05 0.0977+2×10−4

−1×10−4 0.098 250+57
−48 243 1.39+0.02

−0.02 1.4

3R 8.01+0.43
−0.42 7.5 0.29+0.04

−0.03 0.1022+1.9×10−4

−1.6×10−4 0.10201 255+50
−43 240 1.30+0.02

−0.02 1.32

3B 7.75+0.42
−0.40 7.5 0.31+0.04

−0.03 0.09816+1.5×10−4

−1×10−4 0.09799 259+44
−40 240 1.33+0.02

−0.04 1.32

4R 8.44+0.6
−0.59 7.5 0.29+0.05

−0.05 0.1018+8×10−5

−2×10−4 0.1018 127+42
−52 135 0.63+0.02

−0.01 0.59

4B 7.42+0.23
−0.23 7.5 0.23+0.02

−0.02 0.0981+2×10−4

−1×10−4 0.0982 212+55
−59 135 0.64+0.005

−0.004 0.59

5R 7.24+0.55
−0.50 7.5 0.28+0.04

−0.04 0.1017+8.9×10−5

−7.5×10−5 0.10179 1.02+64
−0.03 23 0.47+0.01

−0.01 0.47

5B 6.98+0.53
−0.40 7.5 0.32+0.05

−0.04 0.098205+8.7×10−5

−8.5×10−5 0.09821 66+38
−66 23 0.49+0.01

−0.01 0.47

Table C.10: Table of the parameters of the IPVP1 model for bapec, same as C.1.
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Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 7.20+0.18
−0.18 7.5 0.29+0.01

−0.01 0.10225+3.1×10−4

−2.6×10−4 0.1019 931+83
−89 977 7.2+0.06

−0.06 7.18

1B 7.39+0.18
−0.18 7.5 0.30+0.01

−0.01 9.8158+2.5×10−4

−3.5×10−4 0.0981 843+72
−72 977 7.18+0.06

−0.06 7.18

2R 8.52+1.28
−0.62 7.5 0.29+0.07

−0.05 0.10202+6.7×10−4

−7.4×10−4 0.1012 546+157
−126 613 1.47+0.02

−0.01 1.54

2B 6.65+0.55
−0.42 7.5 0.24+0.04

−0.04 0.0982+3×10−4

−3×10−4 0.0988 404+96
−74 613 1.53+0.02

−0.01 1.54

3R 7.02+0.44
−0.39 7.5 0.33+0.05

−0.04 0.10110+6.4×10−4

−7×10−4 0.100959 790+322
−189 468 1.19+0.02

−0.06 1.28

3B 8.34+0.79
−0.42 7.5 0.38+0.04

−0.04 9.8937+2.8×10−4

−3×10−4 0.099041 405+71
−63 468 1.24+0.02

−0.02 1.28

4R 8.14+0.83
−0.61 7.5 0.35+0.06

−0.05 0.1007+1×10−4

−1×10−4 0.1006 173+46
−47 199 0.58+0.02

−0.01 0.6

4B 6.55+0.5
−0.44 7.5 0.21+0.04

−0.03 0.0992+2×10−4

−2×10−4 0.0994 190+73
−65 199 0.64+0.02

−0.02 0.6

5R 7.5+0.74
−0.56 7.5 0.30+0.08

−0.03 0.10055+1.8×10−4

−7.8×10−5 0.100554 28+67
−28 28.1980.34+0.008

−0.01 0.33

5B 6.69+0.71
−0.47 7.5 0.28+0.06

−0.04 9.9587+7.3×10−5

−1.5×10−4 0.099446 0.007+64
−0.00728.1980.33+0.006

−0.006 0.33

Table C.11: Table of the parameters of the IPVP2A model for bapec, same as
C.1.

Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 7.63+0.18
−0.17 7.5 0.31+0.01

−0.01 0.10207+3.9×10−4

−2.7×10−4 0.1018 1073+83
−90 1027 7.41+0.06

−0.06 7.42

1B 7.58+0.18
−0.18 7.5 0.30+0.02

−0.01 0.097948+3×10−4

−2.4×10−4 0.0982 1173+131
−115 1027 7.34+0.06

−0.06 7.42

2R 6.81+0.40
−0.29 7.5 0.28+0.03

−0.03 0.101209+1.0×10−3

−9.3×10−4 0.1011 763+534
−248 827 1.56+0.03

−0.03 1.53

2B 8.06+0.40
−0.40 7.5 0.31+0.04

−0.03 0.09886+1.2×10−4

−1.1×10−4 0.0989 942+344
−286 827 1.47+0.02

−0.02 1.53

3R 7.77+0.44
−0.42 7.5 0.33+0.04

−0.04 0.101249+2.6×10−4

−2.4×10−4 0.1009 363+78
−62 442 1.24+0.02

−0.02 1.27

3B 7.85+0.43
−0.43 7.5 0.33+0.04

−0.04 0.0988516+3.4×10−4

−4.1×10−4 0.0991 511+106
−110 442 1.24+0.02

−0.02 1.27

4R 7.29+0.62
−0.70 7.5 0.27+0.05

−0.04 0.10053+1×10−4

−1.4×10−4 0.10065 145+43
−42 187 0.50+0.01

−0.01 0.49

4B 8.40+0.87
−0.64 7.5 0.27+0.05

−0.05 0.0991800+1.7×10−4

−2×10−4 0.09935 172+56
−49 187 0.47+0.01

−0.01 0.49

5R 7.80+0.74
−0.73 7.5 0.21+0.06

−0.05 0.10040+1.6×10−4

−1.4×10−4 0.10052 1.01+457
−1.01 26 0.32+0.01

−0.01 0.33

5B 6.89+0.53
−0.28 7.5 0.43+0.07

−0.06 0.0994417+9.2×10−5

−1.1×10−4 0.09948 69+50
−63 26 0.33+0.006

−0.006 0.33

Table C.12: Table of the parameters of the IPVP2B model for bapec, same as
C.1.
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Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 6.07+0.09
−0.096.11 0.28+0.01

−0.009 0.10227+4.4×10−5

−3.7×10−5 0.10221 319+10
−11 325 12.1+0.08

−0.09 12.7

1B 6.11+0.09
−0.096.11 0.30+0.01

−0.01 0.097794+4.1×10−5

−4.1×10−5 0.09778 302+11
−10 325 12.6+0.08

−0.08 12.7

2R 4.78+0.22
−0.225.13 0.32+0.03

−0.03 0.1024+1×10−4

−1×10−4 0.1021 245+37
−33 275 1.71+0.03

−0.03 1.73

2B 5.65+0.32
−0.305.13 0.26+0.03

−0.03 0.0975+2×10−4

−2×10−4 0.0979 260+92
−59 275 1.7+0.03

−0.03 1.73

3R 4.57+0.17
−0.164.72 0.35+0.03

−0.02 0.10219+1.4×10−4

−1.7×10−4 0.1021 335+41
−38 280 1.03+0.02

−0.02 1.03

3B 4.62+0.17
−0.164.72 0.26+0.02

−0.02 0.097609+1.8×10−4

−1.6×10−4 0.0979 298+50
−42 280 0.98+0.02

−0.02 1.03

4R 3.86+0.23
−0.194.14 0.32+0.05

−0.04 0.1018+7×10−5

−2×10−4 0.1019 126+34
−37 160 0.48+0.02

−0.02 0.46

4B 4.31+0.21
−0.234.14 0.330.05

−0.05 0.098+1×10−4

1×10−4 0.0981 161+64
−47 160 0.44+0.02

−0.01 0.46

5R 3.40+0.29
−0.223.76 0.27+0.06

−0.05 0.101905+1.3×10−4

−1.1×10−4 0.10185 56+42
−56 27 0.22+0.01

−0.01 0.21

5B 3.66+0.22
−0.313.76 0.27+0.05

−0.06 0.098068+1.1×10−4

−1.1×10−4 0.09815 10+68
−10 27 0.22+0.01

−0.01 0.21

Table C.13: Table of the parameters of the NIPVP1 model for bapec, same as
C.1.

Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 6.27+0.08
−0.086.28 0.29+0.01

−0.01 0.101811+1.4×10−4

−1.9×10−4 0.10195 1060+56
−57 1120 19+0.11

−0.11 19.1

1B 6.18+0.07
−0.076.28 0.30+0.01

−0.01 0.0981678+1.8×10−4

−2.×10−4 0.09805 1062+55
−51 1120 19.1+0.11

−0.11 19.1

2R 6.42+0.34
−0.295.19 0.32+0.04

−0.03 0.1016+4×10−4

−3×10−4 0.1012 558+100
−84 628 1.64+0.03

−0.03 1.61

2B 4.95+0.24
−0.215.19 0.30+0.03

−0.03 0.09801+4.1×10−4

−5.5×10−4 0.0987 690+128
−109 628 1.66+0.04

−0.03 1.61

3R 4.62+0.18
−0.184.71 0.24∗0.02

−0.02 0.101108+2.9×10−4

−2.6×10−4 0.10102 580+171
−132 541 1.13+0.02

−0.02 1.18

3B 4.18+0.13
−0.134.71 0.31+0.03

−0.02 0.099099+2.4×10−4

−2.1×10−4 0.09898 438+63
−52 541 1.19+0.03

−0.03 1.18

4R 4.09+0.21
−0.234.00 0.39+0.05

−0.04 0.10087+4.1×10−4

−3.8×10−4 0.1007 205+44
−58 235 0.2+0.003

−0.003 0.30

4B 3.78+0.27
−0.274.00 0.21+0.06

−0.04 0.09925+3×10−4

−4×10−4 0.0993 242+104
−85 235 0.31+0.02

−0.01 0.30

5R 3.78∗0.41
−0.343.54 0.34+0.10

−0.07 0.100734+1×10−4

−1.4×10−4 0.10056 0.02+63
−0.0001 31 0.009+0.007

−0.0070.0099

5B 3.75+0.36
−0.333.54 0.410.11

−0.09 0.099478+1.3×10−4

−1.2×10−4 0.09944 0.008−64
−0.008 31 0.009+0.007

−0.0070.0099

Table C.14: Table of the parameters of the NIPVP2A model for bapec, same as
C.1.
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Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 6.36+0.07
−0.086.27 0.29+0.01

−0.01 0.10201+1.7×10−4

−1.9×10−4 0.10194 1066+48
−53 1100 19.2+0.11

−0.11 19.3

1B 6.12+0.13
−0.136.27 0.29+0.01

−0.01 0.09805+2.8×10−4

−3.3×10−4 0.09806 1122+102
−98 1100 19.5+0.20

−0.19 19.3

2R 5.10+0.27
−0.265.12 0.29+0.04

−0.04 0.10097+4.8×10−4

−5.4×10−4 0.10123 655+167
−130 976 2.65+0.08

−0.08 2.6

2B 5.23+0.28
−0.275.12 0.30+0.046

−0.04 0.09866+8.1×10−4

−7.5×10−4 0.09877 928+235
−220 976 2.58+0.08

−0.07 2.6

3R 4.76+0.18
−0.184.70 0.34+0.03

−0.03 0.10098+2.9×10−4

−2.8×10−4 0.10102 579+106
−89 539 1.59+0.03

−0.03 1.6

3B 4.71+0.18
−0.184.70 0.28+0.030

−0.02 0.09916+3.9×10−4

−3.4×10−4 0.09898 582+87
−66 539 1.6+0.03

−0.03 1.6

4R 3.80+0.25
−0.243.99 0.28+0.06

−0.05 0.10105+3.9×10−4

−3.5×10−4 0.10072 320+95
−83 235 0.29+0.01

−0.01 0.29

4B 4.10+0.30
−0.233.99 0.35+0.06

−0.05 0.09891+2.9×10−4

−2.3×10−4 0.09928 264+55
−55 235 0.29+0.01

−0.01 0.29

5R 3.20+0.27
−0.253.53 0.30+0.082

−0.06 0.10069+1×10−4

−1.1×10−4 0.100558 0.01+32
−0.001 32 0.1+0.004

−0.004 0.009

5B 3.09+0.26
−0.233.53 0.38+0.094

−0.07 0.09944+8.09×10−5

−1.7×10−4 0.099442 0.004+53
−0.0004 32 0.1+0.005

−0.008 0.009

Table C.15: Table of the parameters of the NIPVP2B model for bapec, same as
C.1.

Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 5.43+0.06
−0.065.56 0.29+0.008

−0.007 0.10216+3.04×10−5

−3.1×10−5 0.10221 325+8
−8 329 21.5+0.14

−0.12 21.3

1B 5.63+0.07
−0.065.56 0.30+0.008

−0.007 0.09780+3.1×10−5

−2.8×10−5 0.09779 320+8
−7 329 21.1+0.10

−0.12 21.3

2R 4.58+0.21
−0.184.58 0.27+0.03

−0.02 0.1021+1×10−4

−4×10−4 0.1021 309+62
−51 284 1.82+0.04

−0.04 1.83

2B 4.760.22
−0.214.58 0.27+0.03

−0.03 0.0976+1×10−4

−1×10−4 0.0979 261+45
−38 284 1.79+0.04

−0.04 1.83

3R 4.20+0.13
−0.124.16 0.28+0.02

−0.02 0.1021+1.6×10−4

−1×10−4 0.10211 256+44
−35 291 1.27+0.03

−0.03 1.29

3B 4.16+0.13
−0.124.16 0.28+0.02

−0.02 0.098076+1.7×10−4

−1.4×10−4 0.09789 306+43
−36 291 1.19+0.03

−0.03 1.29

4R 3.88+0.27
−0.243.56 0.32+0.06

−0.05 0.1018+1×10−4

−2×10−4 0.1019 149+44
−44 168 0.34+0.01

−0.01 0.36

4B 4.17+0.34
−0.283.56 0.35+0.06

−0.05 0.098+1×10−4

−2×10−4 0.0981 119+44
−42 168 0.32+0.01

−0.01 0.36

5R 2.87+0.31
−0.233.17 0.21+0.07

−0.05 0.1022+2.3×10−4

−4.8×10−4 0.10185 154+79
−68 28 0.14+0.01

−0.01 0.13

5B 3.35+0.33
−0.263.17 0.28+0.09

−0.07 0.097965+1.6×10−4

−2.5×10−4 0.09815 46+70
−46 28 0.12+0.01

−0.009 0.13

Table C.16: Table of the parameters of the CCPVP1 model for bapec, same as
C.1.
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Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 5.90+0.06
−0.065.91 0.29+0.008

−0.008 0.102115+2×10−4

−1.5×10−4 0.10197 1235+47
−54 1187 26.8+0.10

−0.10 26.9

1B 5.79+0.06
−0.065.91 0.26+0.008

−0.008 0.098379+1.6×10−4

−1.5×10−4 0.09803 1071+49
−46 1187 27.2+0.13

−0.13 26.9

2R 5.03+0.22
−0.214.82 0.29+0.03

−0.03 0.1013+5×10−4

−5×10−4 0.1012 698+149
−160 699 1.67+0.04

0.03 1.64

2B 4.63+0.20
−0.194.82 0.35+0.03

−0.03 0.0987+4×10−4

−4×10−4 0.0988 664104
−100 699 1.63+0.03

−0.03 1.64

3R 4.26+0.16
−0.134.34 0.28+0.02

−0.02 0.10132+2.5×10−4

−4.3×10−4 0.10104 613+87
−88 557 1.26+0.03

−0.03 1.3

3B 4.51+0.18
−0.174.34 0.25+0.02

−0.02 0.099088+4.3×10−4

−4.1×10−4 0.09896 611+91
−84 557 1.29+0.03

−0.03 1.3

4R 3.52+0.29
−0.343.62 0.29+0.08

−0.06 0.1013+3×10−4

−3×10−4 0.1007 248+87
−66 244 0.24+0.02

−0.01 0.23

4B 3.93+0.36
−0.323.62 0.23+0.10

−0.06 0.0991+1×10−3

−3×10−4 0.0993 225+319
−95 244 0.22+0.01

−0.01 0.23

5R 3.26+0.61
−0.343.15 0.38+0.16

−0.11 0.100095+3.5×10−4

−2.1×10−4 0.100562 144+78
−67 33 0.05+0.007

−0.007 0.06

5B 3.79+0.61
−0.513.15 0.51+0.16

−0.12 0.099368+1.2×10−4

−1.4×10−4 0.099438 0.52+69
−0.063 33 0.06+0.003

−0.002 0.06

Table C.17: Table of the parameters of the CCPVP2A model for bapec, same
as C.1.

Region Tobs TFit Zobs zobs zfit σobs σfit N0, obs N0, fit

keV keV Z� km/s km/s cm−5 cm−5

1R 5.53+0.05
−0.055.58 0.29+0.006

−0.006 0.10179+9.3×10−5

−1.6×10−4 0.10191 1073+37
−39 1092 39.3+0.15

−0.15 39.3

1B 5.60+0.05
−0.055.58 0.29+0.006

−0.006 0.09797+1.2×10−4

−1.3×10−4 0.09809 1078+38
−38 1092 39.2+0.16

−0.16 39.3

2R 4.52+0.12
−0.124.41 0.30+0.02

−0.02 0.10104+3.5×10−4

−3.6×10−4 0.10121 1048+120
−105 992 3.29+0.05

−0.05 3.34

2B 4.53+0.12
−0.124.41 0.30+0.02

−0.02 0.09877+3.2×10−4

−4.2×10−4 0.09879 944+90
−99 992 3.30+0.05

−0.05 3.34

3R 3.97+0.13
−0.133.99 0.28+0.03

−0.03 0.10074+6×10−4

−5.6×10−4 0.10101 588+117
−92 550 1.57+0.03

−0.03 1.6

3B 3.87+0.12
−0.123.99 0.32+0.03

−0.02 0.099001+2.2×10−4

−2.1×10−4 0.09899 381+71
−58 550 1.62+0.04

−0.03 1.6

4R 3.14+0.26
−0.233.26 0.33+0.08

−0.07 0.10102+3.2×10−4

−3.1×10−4 0.1007 247+88
−68 244 0.16+0.01

−0.01 0.17

4B 2.89+0.20
−0.213.26 0.15+0.05

−0.03 0.098334+3.1×10−4

−2.3×10−4 0.0993 94+86
−44 244 0.21+0.01

−0.007 0.17

5R 1.79+0.16
−0.192.76 0.52+0.23

−0.17 0.10052+3×10−4

−3.4×10−4 0.100542 241+109
−172 32 0.04+0.01

−0.007 0.003

5B 2.7+0.24
−0.35 2.76 0.45+0.13

−0.17 0.099602+2.6×10−4

−1.3×10−4 0.099458 0.0005+64
−0.0005 32 0.03+0.006

−0.002 0.003

Table C.18: Table of the parameters of the CCPVP2B model for bapec, same as
C.1.
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