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“Life is like riding a bicycle.

To keep your balance, you must keep moving.”

Albert Einstein





Introduction

The content of this thesis describes the work done during a six-month in-

ternship at Datalogic ADC, whose offices are located in Pasadena (CA). The

aim of my research was to use a specific type of neural network, called Au-

toencoder, for character recognition or validation purposes in an industrial

OCR system, contributing to the development and enhancement of Data-

logic’s software products employed in this field.

This type of network is particularly interesting as it allows to learn a

reduced dimensional encoding of a certain data collection, such as a dictio-

nary of symbols. Industrial OCR systems are used in real-time scenarios

such as assembly or quality control chains and it presents stringent require-

ments for robustness to input variability (e.g. character distortions, variable

lighting, incorrect positioning of objects) and processing times. In contrast

to the classic pattern matching-based character recognition methods, which

in these cases should pre-process and compare inputs with vast amount of

templates, the use of a neural network would allow us to not only recognize

characters, but also their possible variations in a limited amount of memory,

corresponding to the network’s parameters itself.

After a first phase of studying and testing the model on MNIST (a clas-

sic handwritten digt dataset used in literature as a benchmark), our work

focused on using Autoencoder in two different areas. First, a classifier based

on Denoising Autoencoder was created, initializing network parameters in

unsupervised manner and using them as a starting point to train a character

classifier with a supervised approach. Subsequently, we studied a method
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ii Introduction

to use Autoencoders as a second level classifier, or verifier, which can be

plugged-in any OCR (or other visual recognition tasks) pipeline to better

distinguish false activation from the correct ones, under conditions of un-

certainty at the primary classifier level due to the high variability of input

data.

Both architectures were evaluated on some real Datalogic’s customer

datasets and experimental results are presented in this work.
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Chapter 1

Deep Learning

Nowadays, companies are turning to Deep Learning to solve hard prob-

lems, like object or face recognition in images, object tracking, pose predic-

tion, image captioning, speech recognition, natural language processing and

many more. Deep Learning is essentially a sub field of Machine Learning

that studies statistical models called deep neural networks. These models

are able to learn complex and hierarchical representations from raw data,

unlike conventional, hand crafted Machine Learning models used for features

extraction.

Researchers have been studying Deep Learning since 1940-1960s, when

the first biologically inspired models, such as the Perceptron, have been

proposed. In 1960-1980s a second wave of research started, fueled by the

discovery of backpropagation algorithm, which is still used today as one

of the principal components and fundamental steps to actually let artifi-

cial neural networks learn. A notable contribution has been the invention

of Convolutional Neural Networks (CNN), moving away for the first time

from the classic fully-connected models and introducing a new notion of “lo-

cal” or “spatial” feature extraction (as opposed to the general ones learned

by fully-connected models) that has been particularly successful with image

and natural language processing. In 2006 newer and more articulated neural

network models have been proposed, such as recurrent neural network and

1



2 1. Deep Learning

Figure 1.1: Graphic representation of a biological neuron and its mathemat-

ical counterpart, the perceptron.

deep beliefs network, starting what is considered to be the modern era of

Deep Learning.

As today, Deep Learning is gaining more and more attention, winning

challenges even beyond its conventional applications area. Its success and

progress have been made possible by the increase of computational resources,

especially with the adoption of GPGPU to address the massively parallel

computations involved with large neural networks and big datasets, the in-

crease of available annotated data and the community-based involvement to

open source codes and frameworks used to build and share models among

people working in this field.

1.1 Artificial neural networks

Artificial neural networks are inspired by the structure of the cerebral

cortex, although they’re not comparable with the complexity of such biologi-

cal structures. In this section we will cover some of the principles upon most

of neural network models are built on.

1.1.1 The perceptron

The perceptron [1] is the building block of an artificial neural network.

It is a mathematical representation of a simplistic biological neuron, which

receives input signals from its dendrites and produces output signal along its

axon. In the computational model of a neuron, the signals that travel along
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the axons (e.g. x0) interact multiplicatively (e.g. w0x0) with the dendrites of

the other neuron based on the synaptic strength at that synapse (e.g. w0).

See Fig. 1.1 for reference.

The idea is that the synaptic strengths (the weights w) are learnable

and control the strength of influence (and its direction: excitory/positive

weight or inhibitory/negative weight) of one neuron on another. In the basic

model, the dendrites carry the signal to the cell body where they all get

summed. Thus, a perceptron k is essentially a unit performing a linear

mapping between the input x and a template w, adjusting the output with

a bias value bk:

yk =
∑
i

wixi + bk

If we define a linear activation function, for example:

g(yk) =

1 if yk > 0

0 else

we could build and train a single perceptron to obtain a linear classifier that

distinguish any input x based on its linear mapping yk value.

The difference in artificial neural networks is that the neuron can fire if

the final sum is above a certain threshold, sending a spike along its axon

based on the intensity of y. We model the firing rate of the neuron with an

activation function f , typically a non-linear function which output represents

the frequency of the spikes along the axon. Historically, a common choice

of activation function is the sigmoid function σ, since it takes a real-valued

input (the signal strength after the sum) and squashes it to range between

0 and 1, but different and better activation functions have been studied and

widely adopted for this purpose, such as hyperbolic tangent (or tanh) and

rectifier functions, ReLU and Softplus. Such non-linearity applied to the

linear mapping is what makes them different from a simple linear classifier

(which has been the typical application for perceptrons in Machine Learning)

and what makes neural networks so powerful when it comes to approximating

complex functions.
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Figure 1.2: Example of a 3-layer neural network structure.

1.1.2 Layer-wise structure

Like in the cerebral cortex, there can be several layers of interconnected

perceptrons. Neural networks are modeled as collections of neurons con-

nected in an acyclic graph, so that the outputs of some neurons can become

inputs to other neurons. These models are usually organized in layers of neu-

rons: a regular neural network will present 1 or more fully-connected layers

in which neurons of two adjacent layers are fully pairwise connected, but with

no connection among neurons of the same layer. A simple neural network is

shown in Fig. 1.2.

For naming conventions, we refer to the first layer as the input layer,

where each neurons represents a single feature of the input data that we

want to process. As an example, if we built a neural network to process

gray-scale images, each of these neurons will host a single pixel value of the

image, expressed as the pixel intensity (e.g. a real value between 0 and 1).

The layers in the middle are called hidden layers and each of the neurons in

these layers is trained to learn a template, a particular configuration of the

input features coming from the previous layer. Each subsequent hidden layer

is used to learn a hierarchical, higher level representation of the templates

learned in the previous one. In the end, we have a output layer. It is worth

to note that, unlike all layers, the output layer neurons typically don’t use an

activation function but a linear identity activation function, because they’re
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typically used to represent class scores for classification tasks (i.e. arbitrary

real values) or some kind of real-valued target for regression tasks.

1.1.3 Feed-forward step

We refer to a feed-forward computation as the processing of the input

data through all the hidden layers and the output layer. If we imagine an

artificial neural network as a black box, a feed-forward step would simply

involve giving an input to the neural network and receiving an output from

it.

One of the primary reasons for the layer-wise organization is that it makes

evaluating inputs very simple and efficient by combining all the dot products

and additions happening at each layer in matrix-vector operations. Usually,

all the weights in a layer are stored in a single matrix W having size N ×M ,

where N is the number of input values (i.e. the number of outputs/neurons

in the previous layer) and M is the number of neurons in this layer (i.e.

the number of templates this layer wants to learn). Therefore, the forward

pass of a single fully-connected layer will correspond to one vector-matrix

multiplication (considering a single input) followed by a bias offset and an

activation function, that is:

y = f(Wx + b)

By applying the forward step to each pair of layers in the network, using the

output from previous layer as input for the subsequent one, we will obtain

the final output of our network.

1.1.4 Optimization

In order to correctly train a network to perform some specialized task on

the input and give us meaningful output, we need to define a loss function

L, a function used to quantify how “similar” is the output of the neural

network with respect to our expectations. This function can be defined in



6 1. Deep Learning

Figure 1.3: SGD performed over a cost function with 1 parameter.

different ways and it strongly depends on what kind of computation the

neural network will address. As an example, for image classification tasks

the network will get an image as input and will output a score for each class,

based on the features extracted from that particular image: in this case, we

need a loss function that tells us how correct is the score assigned to each

class with respect to the one we expect for that input. The higher the value

of this function, the higher the loss.

After being able to evaluate the performance of our neural network, we

can now effectively train it on a dataset, which essentially translates into

adjusting weights and biases at each layer in order to obtain the desired

output. The loss function lets us quantify the quality of any particular set of

weights W at each layer, so the goal of training is to find a configuration of

those weights that minimizes the loss function, hence solving an optimization

problem.

Gradient descent with backpropagation

Adjusting the weights means finding a direction in the multi-dimensional

weights parameter space that would likely bring us to a weights configuration

that corresponds to a minimum for the loss function L. Using a method called

Stocastic Gradient Descent (SGD), we can compute the best direction along

which we should change our weights. By applying a small learning step to the

actual weights configuration (e.g. incrementing them by a small value), we
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can test what is mathematically guaranteed to be the direction of the steepest

descent, which is related to the gradient direction of L between the actual

configuration and the one we want to test. To compute this gradient, we will

need to compute the contribution to the value of L given by all the weights

and biases in our network, essentially by computing all the partial derivatives
δL
δw

and δL
δb

of every single w and b. Once the gradient for L is determined, the

weights are modified in the negative direction of its value, hopefully making

our loss function decrease. By iterating this operation several times over

the complete dataset, even if there’s no guarantee of convergence, SGD will

eventually lead us to a weights configuration that has minimum (either global

or local) cost for the loss function. A graphical explanation of this concept

in 1D is shown in 1.3.

Computing L gradient is a highly expensive operation, especially if we

consider that a neural network could have up to millions of parameters,

and special algorithms have been developed to make it both efficient and

analytically correct. The widely adopted algorithm to compute gradients is

called backpropagation and it computes local gradients at each operational

gate in the network and then performs a backward pass, starting from the

last gate, that recursively applies the so called chain rule to combine the

local gradients all the way up to the input layer. A detailed explanation of

backpropagation can be found in [11].

Also, several gradient descent algorithms have been proposed and an

overview can be found at [10]. Choosing one algorithm or another leads to dif-

ferent outcomes and performances for the optimization problem. Moreover,

learning step hyper-parameter is crucial to correctly search for the minimum

in the parameter space: a learning step too small will make the algorithm

converge slower, while a learning step too big could let us never reach a

minimum.
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1.1.5 Representational power

Neural networks can be trained to model very complex functions. The

Universal approximation theorem [12] states that given any continuous func-

tion f(x) and some ε > 0, there exists a neural network g(x) with one hidden

layer (with a reasonable choice of non-linearity) such that

∀x, |f(x)− g(x)| < ε

. As a result of this theorem, we can assume that any neural network with

at least one hidden layer can approximate any continuous function. In prac-

tice, though, it has been shown empirically that a neural network with more

hidden layers typically works better than one with a single hidden layer, ap-

proximating complex functions even better and in a hierarchical way that

better fits real-world problems.

1.2 Autoencoders

An Autoencoder (AE) is a particular model of artificial neural network

used to learn an efficent coding. This architecture aims to find a “compact”

representation for a set of data in an unsupervised manner (i.e. using unla-

beled data), with the main purpose of performing dimensionality reduction

of such datasets.

1.2.1 Single layer Autoencoder

Architecturally, the simplest form of an Autoencoder is a feed-forward,

non-recurrent neural network having an input layer, an output layer and a

single fully-connected hidden layer that will learn the code. Unlike a common

neural network, the output layer has the same number of nodes as the input

layer and the encoding is learned at the hidden layer by training the network

to reconstruct (almost) perfectly their original input. The hidden layer has
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Figure 1.4: Structure of a single layer Autoencoder.

typically less neurons than the input/output1, so that dimensionality of data

is reduced and the AE learns interesting features (otherwise, it could end up

learning the identity function, which doesn’t generalize well).

An Autoencoder can be decomposed in two main parts:

• encoder: the set of layers used to produce the encoding of the input

data, i.e. the input layer and the hidden layer;

• decoder: the set of layers used to decode the input back to its original

dimensionality, i.e. the hidden layer and the output layer.

The encoding step can be formalized mathematically in this way:

y = f(Wx + b)

which is basically the forward pass of the input through the hidden layer

used to produce the encoding y. The decoding step is the following:

z = f(W′y + b′)

where z is the reconstruction of the original input x, while W′ and b′ are

respectively the weights and biases used for the decoding step using the

1In case the number of neurons at the hidden layer is greater than the input/output

layers, it will be referred as a sparse Autoencoder.
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encoding y as input. Thus, we have two different sets of weights and biases for

the hidden layer, one for the encoding phase and the other for the decoding

phase. In order to obtain a reconstruction from these two forward steps,

W, b, W′ and b′ should be optimized such that the reconstruction error is

minimized. This lead us to define the loss function as the squared error of

the reconstruction:

L(x, z) = ‖x− z‖2

so that, while training the network, the weights will be adjusted in order

to minimize the AE’s reconstruction error over a given dataset. Here we are

simply measuring the squared distance between the input and the reconstruc-

tion vectors, but other cost function can be used, depending on the dataset

and the application.

Since the coding learned is a lossy compression of the datasets, it can be

seen as good compression for the training samples, and hopefully for other

similar inputs as well, but not for arbitrary inputs. That is the sense in which

an AE generalizes: it gives low reconstruction error on input samples having

a distribution of values similar to the one in the training dataset, but high

reconstruction error on samples unseen during the training.

1.2.2 Denoising Autoencoders

Authors in [6] says that in order to force the hidden layer to learn more

robust features and avoid learning the identity function, we can train the AE

to reconstruct the input from a corrupted version of it.

The Denoising Autoencoder (DAE) is a stochastic version of the Autoen-

coder. Intuitively, a Denoising Autoencoder does two things: it encodes the

input and undo the effect of a corruption process stochastically applied to

the input. A good encoding is expected to capture stable structures in the

form of dependencies and regularities characteristic of the (unknown) distri-

bution of its observed input. For high dimensional redundant input (such

as images), such structure are likely to depend on evidence gathered from
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Figure 1.5: A graphical explanation of the training method for Denoising Au-

toencoders. Here the encoding function is denoted with fθ and the decoding

function with gθ′ .

a combination of many input dimensions: they should be recoverable from

partial observations only.

Training with noise

If we apply noise to x with a stochastic mapping, we will obtain a cor-

rupted version x̃ ∼ qD(x̃|x). Using it as a training example forces the AE to

learn a more clever mapping: if we keep minimizing the cost function L(x, z)

(i.e. on the original version of the input) the AE will learn a code able to

remove the stochastic noise, leading to a more robust encoding.

Although the kind and amount of noise to be applied should be accurately

chosen with respect to the value distribution of the dataset we are interested

in, some general corruption methods are:

• Additive isotropic Gaussian noise: x values are altered according to a

normal distribution N (µ, σ2) having µ = 0;

• Zero-masking noise: a fraction v of the elements of x (chosen at random

for each sample) is forced to 0;

• Salt-n-pepper noise: a fraction v of the elements of x (chosen at random

for each sample) is set to their minimum or maximum possible value,

according to a fair coin flip.

Especially if we are interested in a classification objective, training a neu-

ral network with noisy input (i.e. jitter) enhances generalization of the tem-
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plates learned, because it act as an augmentation of the original training set

with additional, stochastic distorted samples. Together with some other kind

of data preparation, like a ad-hoc augmentation (e.g. stretch, rotate or scale

image samples), this method can help the network to learn an encoding of

the input dataset that better fits its distribution of data and can be also used

to initialize a classifier network for supervised learning. In fact, initializing

weights in a greedy, layer-wise manner with an unsupervised learning method

and then refining them during the supervised training has been shown to yeld

significantly better local minima than random initialization of deep neural

networks [13] and achieve better generalization [14].

Motivations for a denoising approach

The denoising approach is advocated and investigated as a training crite-

rion to learn useful features that will constitute a more robust representation

of data. As we will see later, corruption and denoising procedure is applied

not only to the original input, but also recursively to intermediate represen-

tation while training deep Autoencoders.

One intuitive, geometric interpretation of this approach is given under

the manifold assumption, which states that natural high-dimensional data

concentrates close to a non-linear low-dimensional manifold (which is the

same assumption used for PCA). While training with a denoising approach,

we are learning a stochastic operator p(X |X̃ ) which maps a corrupted X̃ to

its original form X . Corrupted examples are more likely to be outside and

far from the manifold than the uncorrupted ones. Thus, p(X |X̃ ) learns a

mapping that tends to go from lower probability points X̃ to high probability

points X . Moreover, when the noise is large X̃ is farther from the manifold

and p(X |X̃ ) should learn to project back to it also very far points.

The Denoising Autoencoder can be seen as a way to define and learn

a manifold, having its encoding fθ(X ) = Y as a mapping of the input to

a point on the coordinate system of the lower-dimensional manifold. More

interpretations of how Denoising Autoencoders work are given in [6].
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Figure 1.6: Manifold learning perspective of Denoising Autoencoders.

Stochastic operator p(X |X̃ ) is used to “project back” on the manifold the

corrupted samples x̃.

1.2.3 Stacked autoencoders

Deep neural networks use a cascade of layers of nonlinear processing units,

instead of a single hidden layer. Each layer uses the output from the previous

layer as input. In this way, the nets learn multiple levels of representations

that correspond to different levels of abstraction: the levels form a hierarchy

of concepts automatically learned from the dataset.

Guiding the training of intermediate levels of representation using un-

supervised learning, which can be performed locally at each level, has been

one of the major breakthrough in the deep learning community: using this

method, it has been possible for the first time2 to train efficiently deep ar-

chitectures (e.g. more than 2 or 3 layers) that outperformed their respective

shallow counterpart in many different applications. Algorithms using stacked

Restricted Boltzman Machine (called Deep Belief Networks) and Autoen-

coders for this purpose have been introduced in [4] and [5].

More specifically, Autoencoders can be stacked in a greedy, layer-wise

fashion in order to create a hierarchical coding of features extracted from a

2Except for neural networks extracting spatial features, as Convolutional Neural Net-

works.
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Figure 1.7: General architecture of a deep Autoencoder.

particular dataset. These features can then be used to initialize the weights

of a deep neural network for supervised learning tasks (e.g. classification).

Architecture

A Stacked (or deep) Autoencoder (SAE) it’s built using progressively

smaller AEs, each of them having an input/output size equal to the hidden

layer size of the previous one. The encoding at a certain layer is used as the

input of the next autoencoder, until we reach the smallest encoding layer.

In the same way, the decoding phase starts from the innermost layer and its

reconstruction is used as the input of the next decoding step, until we reach

the original dimensionality of data. Fig. 1.7 shows a high level representation

of this model.

Formally, for n SAEs, indexed from 1 to n, if we denote the encoding

function at AEi (i.e. the i-th Autoencoder) with hi(x) = y and the re-

construction as ri(y) , the encoding of the original input x throughout the

network at AEi will be:

ei = hi(hi−1(...h2(h1(x))...))

while its reconstruction will be:
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Figure 1.8: Stacking denoising autoencoders. After training a first level

denoising autoencoder, its learnt encoding function fθ is used on clean input

(left). The resulting representation is used to train a second level denoising

autoencoder (middle) to learn a second level encoding function f
(2)
θ . The

procedure is iterated on all successive levels.

y = r1(r2(...ri−1(ri(ei))...))

Pre-Training

Training this architecture in a greedy, layer-wise fashion means essentially

training the network one AE at a time. It is commonly referred to as pre-

training for the weights initialization purpose explained above.

Starting from the first layer, we train the hidden layer to find an efficient

coding of the dataset, minimizing the reconstruction error over the original

inputs. For the next AE, we will use the same dataset but with h1(x) as

the input, thus learning a coding for the encoding of such data coming from

the previous layer and minimizing the reconstruction error of the encodings.

The procedure is iterated until the innermost coding has been learned.

The training process is the very same for Stacked Denoising Autoencoders

(SDAE), with the only difference that corruption is applied on the input

(either the original one or an encoding from a previous level) while training

each AE. See Fig. 1.8 for a graphical explanation.
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Fine-tuning

The fine-tuning training strategy consists in updating the weights of a

Stacked Autoencoder all at once at each training epoch. After computing

a complete forward pass in the network, the reconstruction error is back

propagated through all the layers and all the weights are updated at once,

as if they belong to a single model, in order to minimize the reconstruction

error.

This strategy is commonly found in Deep Learning and, coupled with

pre-traing, it can be used to greatly improve the performance of a Stacked

Autoencoder.

1.3 Experiments with (S)DAE

The neural network implementations presented throughout this work are

built using TensorFlow3 and they have the following common features:

• The non-linear activation chosen for neurons is a rectifier, specifically

a smooth approximation of the ReLU function called Softplus [23];

• The weights are initialized using the Xavier method [18];

• The gradient descent strategy chosen is Adam optimizer [20];

• At each training epoch, the dataset is processed in mini-batches of 128

images at a time.

Other hyper-parameters such as number of training epochs, number of layers

and neurons per layer, learning rate for gradient descent algorithm and the

amount and type of noise applied are chosen accordingly to the experiments

requirements and goal.

3TensorFlow is an open source software library developed by Google and intended for

building Machine Learning and Deep Learning models.
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Figure 1.9: Training without (left) and with Gaussian noise (right) effect on

features learned (starting from the same weights initialization).

Figure 1.10: Average RMS per pixel over the MNIST dataset while training

with increasing noise.
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1.3.1 Increasing noise in DAE

In order to look at how the features learned change with different level

of corruption applied at the input, as a first experiment we trained a single

layer DAE on the MNIST dataset using Gaussian noise, increasing the noise

level at each experiment.

For this experiment we used a 500 neurons hidden layer, trained for 50

epochs at a learning rate of 0.0001. As Fig. 1.9 shows, features of the MNIST

dataset learned at each neuron seems to become sharper as noise increases.

While the templates learned seems to be more robust, increasing noise tends

also to give a higher average reconstruction error on the training samples

(here expressed as RMS per pixel at each training epoch), as depicted in Fig.

1.10.

1.3.2 Pre-training only vs. fine-tuning

In this experiment we wanted to investigate the effect of different training

strategies on a SDAE, with or without the application of fine-tuning phase

in the training strategy.

We implemented the SDAE architecture shown in Fig. 1.11 and trained

it over the MNIST dataset. The number of neurons at each layer and the

number of layers are chosen based on the related work presented in [3]. At

first, we looked at how the input reconstruction looks like at each SDAE level

before and after the fine-tuning phase. The hyper-parameters used for this

test are the following:

• 30 training epochs for both pre-training at each level and fine-tuning;

• learning rate was set to 0.001;

• in this case, no corruption has been applied while training4.

4For visualization purpose, training with noise has the only effect of introducing more

noise in the reconstructions.
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Figure 1.11: SDAE architecture trained using MNIST. The number below

each layer indicates the number of neurons.

Figure 1.12: Reconstructions for 5 digits from the MNIST dataset. Images

on the left are from pre-training only strategy and the ones on the right uses

both pre-training and fine-tuning. At each image, columns from left to right

are: original input, reconstruction obtained using Lev. 1, Lev. 2, Lev. 3,

Lev. 4 encoding layer.



20 1. Deep Learning

The first (left) set of reconstructions in Fig. 1.12 shows essentially what

is the effect of pre-training on the SAE: the higher the number of neurons

(as at the outermost layers), the better the reconstruction obtained because

of a better approximation of the input in the learned code. Using the first

layer encoding only (i.e. the largest in terms of neurons), we obtain a near

perfect reconstruction of the input. As the input is encoded down to lower

dimensionality (i.e. being processed by the innermost layers), the reconstruc-

tion becomes more and more different from the input, but more general as

well: this reflects how the hierarchical, low dimensional code learned by the

Autoencoder embrace all the variability of data for a specific set of samples

in the whole dataset.

The second (right) set of reconstructions shows how the weights are modi-

fied by the fine-tuning phase, leading to a poorer reconstruction at outermost

layers, due to all-at-once weights adjustments introduced, but improving con-

sistently the reconstructions obtained with a complete forward pass of the

neural network.



Chapter 2

Autoencoders for digit

classification

Optical character recognition (OCR) aims to convert images of typed,

handwritten or printed text into machine-encoded text. At industrial level,

a very common OCR application is to read printed labels on products, usually

employing a fixed camera that takes pictures at a high rate of such products

while moving on conveyor belts. The automaton of this process is critical,

in order to make tasks as product dispatching or product checking more

efficient. The key ideas behind the design of such systems is the reading

throughput (i.e. how many picture per second it can read) and its reliability

(i.e. how accurately it can recognize characters). Moreover, systems typically

need to be trained only for a little amount of time and using as few samples

as possible, while keeping a robust detection over unpredictable condition

and variations of characters, due to mispositioned, out of focus products,

light variation or degradation of printing quality over time.

21
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2.1 Background and state-of-the-art solutions

2.1.1 Computer Vision perspective

Classical approaches for character recognition involve hand-built and highly-

tuned modules to perform some form of template matching on the images

taken by the camera, either comparing single font templates or certain fea-

tures extracted from the input. Depending on the application, these modules

perform three main processing steps:

• Pre-processing and segmentation;

• Recognition process;

• Post-processing of acquired data.

Pre-processing techniques, such as de-skewing, binarization, aspect ratio nor-

malization and scaling, are used to remove noise and variation in order to

better match templates of characters. Segmentation is then applied to iso-

late symbols regions in the input image and recognition step is performed

over these sub-images. The basic and most common OCR algorithms for

character recognition are based on pattern matching techniques, comparing

an image to a stored template on a pixel-by-pixel basis, even though this

technique only works with printed characters and has very little tolerance

on variations of templates. More recent and flexible techniques [15] rely on

extraction of higher level features instead of image samples, such as His-

togram Of Gradients (HOG) descriptors, and performing a correlation to

decide whether the input represents a certain symbol or not. In the end, the

post-processing phase is used to detect words out of character groups and

construct the desired output.

2.1.2 Deep Learning perspective

Deep and convolutional neural network models have a long history of

application in visual recognition tasks. The first successful applications of
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convolutional networks to read zip codes, digits, etc. were developed by

Yann LeCun and the best known is the LeNet architecture. Since 2012 the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [21], which

evaluates algorithms for object detection and image classification at large

scale, has always seen winning teams that developed advanced neural net-

works architectures, such as AlexNet, GoogLeNet, VGGNet and ResNet.

These architectures are de-facto standards today which proves the huge im-

pact that this technology has in Computer Vision field.

OCR can be seen as an instance of a visual recognition problem and it has

been extensively explored in the field of Machine Learning and Deep Learn-

ing. MNIST [16] is a very well known database of handwritten digits and it

has been widely adopted as a standard benchmark to evaluate performances

of new algorithms for digit/character classification. The lowest error rate

achieved so far in the task of digit classification from this dataset is 0.23%

[17], reaching a near-human performance with a particular architecture that

uses a “committee” of 35 deep convolutional neural networks.

2.2 Autoencoder-based OCR

Finding a compact, efficient “coding” for a dictionary of symbols, includ-

ing a certain degree of variability, it is an interesting aspect that motivated

the use of Deep Autoencoders (or Stacked Autoencoders, SAE) for OCR

applications as well. Embedded devices and other products for automatic

data-capture based on this technology would benefit from such compactness

of the coding learned, avoiding the necessity of storing a lots of templates and

replacing them only with the classifier weights, which are also more robust

to symbols variation.

Once a stack of encoders has been built and trained, its highest level out-

put representation can be used as input to a stand-alone supervised learning

algorithm: a logistic regression layer can be added on top of the encoders,

yielding a deep neural network amenable to supervised learning. The parame-
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Figure 2.1: Modified architecture of SDAE used to build a MNIST classifier

ters of all layers can then be simultaneously fine-tuned using a gradient-based

procedure such as Stochastic Gradient Descent. In this way, we can build

a classifier using the unsupervised features encoded in the SAE. Authors in

[7] managed to test such classifier over the MNIST dataset using a stack of

Denoising Autoencoders, reaching an average error rate on the MNIST test

dataset of 1.28%.

We wanted to investigate the same Stacked Denoising Autoencoder (SDAE)

architecture in order to train it first on the MNIST dataset and then with a

real one. Starting from the SDAE intermediate, lower dimensionality repre-

sentation of such datasets, we will train a classifier and study its performance

in both cases.

2.3 Experimental setup

2.3.1 MNIST classifier

Using the SDAE implementation presented in 1.3.2, we re-arranged it as

explained in the previous section in order to train a classifier in a supervised

manner, starting from the coding learned during pre-training.

Fig. 2.1 shows the new classifier architecture, obtained by removing the
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decoder part of the SDAE and adding a 10 neurons wide layer that will be

used as a Softmax classifier [22]. This classifier will be trained using the

raw output of the highest, innermost level features learned by the SDAE in

order to map them to digit labels associated to each sample. This is possible

because class score at each neuron in the innermost layer are intrepreted by

Softmax function as unnomralized log probabilities of classes and, thus, this

layer is trained by minimizing the negative log likelihood of the correct class

(using the cross entropy loss function) for each input sample.

Training strategies and hyper-parameters impact

In the context of this experiment, we wanted to explore two different

strategies used to train the classifier:

• AE pre-training → classifier fine-tuning

• AE fine-tuning → classifier fine-tuning

Note that, for classifying purpose, no fine-tuning has to be performed on the

original architecture after pre-training: such strategy would further optimize

the weights to lower the reconstruction error even more, but in this case it

has to be applied only while training the classifier layer, in order to achieve

a lower classification error, thus a different objective function. Interest in

these two strategies is motivated by the fact that pre-training is a pretty

slow computation when the number of hidden layer is high, due to the fact

that each individual layer requires to be trained independently for several

iterations (i.e. training epochs). While the first strategy is the classic training

method for such architectures, as explained above, the second strategy is an

attempt to train the network as a whole during the reconstruction training

phase, thus using a fairly lower number of iterations, and then adjusting

its weights for the classification task. Using a fixed amount of iteration

while training the Softmax classifier layer, we can then compare the classifier

accuracy of one strategy to the other.
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Figure 2.2: Classification accuracy on the MNIST Test dataset using a

SDAE-based classifier. Comparison between a classic pre-training strategy

(top) and fine-tune only strategy (bottom).

We used 150 training epochs to train each part of the network for both

strategies (i.e. 150 epochs per-layer / whole-network, 150 epochs for the

classifier), using a learning rate of 0.001, 0.0001 and 0.00001 for the SDAE

training and an additional factor of 0.1 applied to the learning rate when

training the classifier layer. Moverover, an increasing level of Gaussian noise

has been applied, to see if it really improves the classification performances,

letting the network generalize better while learning the coding.

Fig. 2.2 shows the outcomes of such strategies for each combination of

hyper-parameters value. From the strategy point of view, the classic training
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approach leads to a higher accuracy in almost every case, yet the fine-tune

only strategy is still comparable in terms of accuracy. This let us imagine

a plausible application of such strategy in contexts where a relatively small

percentage of accuracy can be sacrificed in favor of a much faster training.

For what it concerns the learning rate, higher learning rates converges

earlier to a good accuracy as expected, but lower ones should let us reach a

better local minima on a long run (recall that the number of training epochs

here is fixed). A good strategy in this case, probably already implemented

in TensorFlow optimization routines, could be using a large learning rate

at first and then lowering it down gradually while approaching a minimum

region while optimizing weights.

In the end, from the noise level point of view, in the classic training

approach it effectively leads to slightly better classification accuracy as the

noise increase: when the amount of noise is set to σ = 0.3 and σ = 0.4 it

seems to effectively increase the accuracy rate with respect to other cases.

The best performance in terms of accuracy reached here has an error

of 1.36% on the 10.000 samples MNIST test set, which is very close to the

results reported in [7] with the same architecture.

2.3.2 A real-world case

After training the MNIST classifier, we had a nearly complete Tensor-

Flow implementation of a general classifier based on a Stacked Denoising

Autoencoder. The next step for my work at Datalogic was testing this ar-

chitecture on one of their clients’ dataset, in order to compare what is the

classification performance of this neural network with respect to their best

performing product, the computer vision based library HOG-OCR [15].

Dataset description

The dataset chosen, whose company name cannot be mentioned here

due to NDA, is one of the hardest datasets among Datalogic’s clients: it

is composed by 640x480 pixels gray-scale pictures of snacks boxes with the
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Figure 2.3: Abstract model of pictures in the dataset.

expiration date and the lot code printed on top of it. Box are marked with

such informations using a dot-matrix printer in a rectangle shaped white area

(see Fig. 2.3 for reference). The complete dataset is composed by several

folders, each one containing pictures taken from the same day of production,

for a total amount of 39078 pictures. The images were originally unlabeled.

This client needs a fast and reliable solution in order to correctly read

out such informations from pictures with an accuracy of 99.9%. What is

most challenging about this dataset is that printed characters present a high

degree of variation over time:

• they appear stretched in and out in both horizontal and vertical axis;

• they present a certain degree of rotation clockwise and counter-clockwise;

• text position, with respect to the intended area on the box and on the

picture itself, continuously changes over time.

HOG-OCR performance

Currently, HOG-OCR uses a sliding window approach to extract a corre-

lation map of the input image. The correlation has to be done using every

character template, including their variation, for each location in the image.
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Figure 2.4: Digit samples from the synthetic dataset.

This means it has to store lots of templates to work properly on datasets

with high variability like this one. HOG-OCR best performance in recogni-

tion mode on the complete dataset is around 57% (at image level) using 37

templates from the first 5 folders.

The amount of variability makes it really hard for HOG-OCR to process

the dataset, so the goal is to replace the HOG-OCR underlying classifier with

a more robust and efficient one.

Using a synthetic dataset

A common requirement in Datalogic’s applications is a limited time to

train the classifier: this means that, in high variability conditions, it is pos-

sible that not all the variations of samples are covered by those collected.

In general, training any type of Deep Learning model requires a lot of data.

In Datalogic’s applications, they typically do not have enough data available

(mainly because they cannot expect their customers to label an very large

amount of training data.

Datalogic overcomes the limited amount of training data by augmenting

the data with synthetic samples, in order to obtain a dataset with a similar

value distribution as the ones in the real, unseen data. For this particular

dataset, each sample is labeled as one of the following classes: background,

dot, 0, 1, 2, 3, 5, 6, 7, 8, 9. Starting from the same character sam-

ples used to train HOG-OCR on the same problem, they’ve generated a

synthetic dataset for an amount of 17590 synthetic samples, by applying

transformations to the original samples (rotation, scaling, affine or perspec-

tive transformations, etc.). The key to obtain good performances from this

approach is to have a training dataset that covers all possible variation of

the samples in the real dataset. An example for each digit in the synthetic
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Figure 2.5: Background class samples.

dataset is presented in Fig. 2.4.

The background label in the synthetic dataset needs further attention:

it contains samples generated to be either all white patches or presenting

partially occluded digits. The idea when generating this class was to cap-

ture patches in the real images with uniform coloration and the concept of

“spaces” between digits, which is known to generate lots of False Positives.

Fig. 2.5 shows some background samples extracted from the dataset.

It is important to note that this background class doesn’t generalize very

well for other background elements in the client’s dataset (e.g. barcodes, qr

codes, box borders, other printed elements or drawings on the box), as we

will see later, but it will be used anyway for a first evaluation of our solution.

Moreover, in the context of a real Datalogic application, background typically

changes very often and, even if those elements were considered while building

the synthetic dataset, some general way to handle unseen input elements

(typically resulting in a False Positive detection) has to be considered.

Training

The synthetic dataset is splitted into 3 parts: training (10554 samples),

validation (3518 samples) and test (3518 samples). Training dataset is used

to train the neural network, while validation and test sets are generated by

samples that are not present in the training dataset. Validation and training

sets are used as a stopping criterion while training the classifier layer: when

it reaches a desired accuracy on the validation set (99.9%) and on training
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set (99.99%), the classifier training is stopped and the final accuracy on

test dataset is then computed. Each training epoch consists in a complete

processing of the training dataset, divided in mini-batches (i.e. groups of 128

images) randomly ordered at each epoch.

Dropout regularization

Moreover, during classifier training, dropout [19] regularization has been

applied with a 50% of probability to shut down neurons at each inner encod-

ing, in order to reduce overfitting by training only a partition of the network

at a time, thus making the network temporary “smaller”. As the authors

says, “it provides a way of approximately combining exponentially many dif-

ferent neural network architectures efficiently”, similarly to the impractical

technique of averaging multiple models (“ensemble”), which shows better

performance in most machine learning tasks (e.g. ensemble training is the

intuition behind random forests or gradient boosting decision trees). Train-

ing a neural network with dropout can be seen as training a collection of 2n

thinned networks with parameters sharing, where each thinned network gets

trained very rarely, or not at all.

2.3.3 Hyper-parameters optimization

According to results obtained in 2.3.1, we kept a similar network archi-

tecture to solve a character classifying problem on the synthetic dataset. A

hyper-parameters optimization has been performed, adjusting network size

and learning rate so that the desired accuracy is met and classifier training

converges in a reasonable time for the reference dataset.

We obtained a configuration able to reach 99.9% of accuracy on the val-

idation set in around 30 classifier’s training iterations. Our best performing

classifier embodiment for this dataset was the following, at this point:

• Architecture: 4-layer SDAE (800, 500, 300, 100 neurons)

• Classifier: Softmax multinomial logistic regression layer (11-classes)



32 2. Autoencoders for digit classification

Figure 2.6: Graphical explanation of Fully Connected (FC) to Convolutional

(CONV) layer conversion for a 2-layer network.

• Training epochs: 150 (fixed during pre-training, max 3000 during

classifier training)

• Learning rate: 0.0001 (SDAE pre-training), 0.00001 (Classifier fine-

tuning)

2.4 Testing on real images

Now that we have trained our classifier on the client’s dataset, let’s apply

it on the whole images.

Since there’s no ROI to search within for characters, we need to process

the entire image at each possible sample location, classifying that input po-

sition. Following this approach, we should have computed a full forward step

of SDAE-C at each position of the original image.
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2.4.1 From fully connected to convolutional layers

In order to test this classifier and recognize digits on real (bigger) images

in an efficient way, I managed to convert the encoding forward function of

the SDAE from fully connected to convolutional.

Each neuron of any hidden layer can be seen as a convolutional filter

[9]. The forward pass from one layer to another gives exactly the same

output using both fully connected and convolutional way to compute it,

but this conversion allows us to “slide” the entire classifier network very

efficiently across many spatial positions in a larger image, in a single forward

pass. A graphical explanation is given in 2.6. Using this approach with

a trained SDAE-C, the whole convolutional forward pass lead us from the

original 480x640x1 input image to a 440x624x11 volume output, which is

the prediction on each of the 11 labels for every single input crop evaluated

by the convolutional forward pass. This volume is given by the convolution

applied on the bigger image, whose size can be predicted at each convolution

layer in this way:

input : W1 ×H1 ×D1

output : W2 ×H2 ×D2

W2 = (W1 − Fw)/S + 1

H2 = (H1 − Fh)/S + 1

D2 = K

where Wx×Hx×Dx is the input/output volume (width, height, depth), K is

the num. of filters, S is the convolution stride, Fh and Fw are, respectively,

filter height and width.

2.4.2 Classifier evaluation

After computing the convolutional forward step of the entire image, which

results in a mapping of label scores assigned by the classifier at each input
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Data: M = 〈x, y, h〉 where x, y are position in the input image and h

are the labels score at that position;

Result: List of classifier activations;

detections = {};
foreach x, y do

foreach h do

j = argmax(M [x, y, h]);

if M [x, y, h]j ≥ threshold and 〈x, y〉 is a local maxima then

insert {〈x, y〉 = j} in detections;

end

end

end

return detections;

Algorithm 1: Extract a list of detections from classifier output. (Note: h

is a vector of 11 class scores at each location)

image location, Algorithm 1 is used to extract a list of detections from the

input image, based on the classifier score values.

Accuracy

The number of True Positives (TPs), False Negatives (FNs) and False Pos-

itives (FPs) is obtained comparing the classifier output with the groundtruth

information on each image. Specifically, for each detection we compare the

area of the sample found by the classifier with the one from the groundtruth

label. If the detection overlaps with the groundtruth label for at least 50% of

their areas, it is then considered a TP. Algorithm 2 describes this procedure

and it is used to count the number of TP, FP and FN in the image.

The goal here is to obtain a configuration of the network able to get

99.9% of digit recognition rate in real images and as few FP as possible,

since they could be filtered at a successive stage using some spacing model

and knowledge-based search.
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Data: detections: list of detections from the classifier in the form of

〈x, y〉 = j; groundtruth labels on the input image;

Result: Number of FP, FN, TP

fp, fn, tp := 0;

foreach label j do

foreach groundtruth location with label j do

count := 0;

foreach d in detections do
if d is labeled as j and d have an overlapping patch area of

at least 50% with the groundtruth one then

count++;

end

end

if count > 0 then

tp++;

else

fn++;

end

fp := number of detection with label j that aren’t TP;

end

end

return fp, fn, tp;
Algorithm 2: Compute the number of TP, FP and FN in an image based

on classifier output and groundtruth info.
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2.5 Experimental setup

In order to test the classifier, we’ve used a set of 16 labeled images from

the client’s original dataset, chosen among separate folders to embrace most

of the characters and background variations. This subset of images can

be considered a good test candidate under the observation that each folder

presents very similar features in terms of character distortion and background

variation.

The number of labeled samples on each image varies between 8 and 9

digits belonging to one of these classes: 0, 1, 2, 3, 5, 6, 7, 8, 9. When a

sample is correctly recognized, we will count it as TP. The rest of the images

locations (i.e. crops) should be classified as one of the two background classes,

that is background or dot1. For any input location classified as a digit that

doesn’t match with a labeled sample in the image, it will be counted as a FP

detection. Since no ROI is defined, the whole image will be processed by the

classifier at each input location.

In the next section we will first evaluate how different noise levels affects

classifier performance, by means of digit recognition rate (i.e. how many

labeled samples have been correctly classified) and number of FP detection

for the whole subset of images. Then, we will propose some solutions to

improve its performances.

2.5.1 Basic SDAE-C performance

Noise impact

The following table shows how noise at different scales affect the classi-

fier performance on the real dataset, in terms of number of digit recognition

rate and number of FP per image, as explained above. Results are intended

for the subset of 16 test images extracted from the real dataset previously

introduced. For each configuration, at different noise levels, results are av-

eraged over 5 separate classifiers, trained from scratch using 150 epochs of

1dot class consists of dots samples that can be found between digits in test images.
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Figure 2.7: Comparison between features learned at first layer of the SDAE-

C using σ = 0.2 (left) and σ = 0.4 (right). Using more noise during training

let the feature be more general but more noisy as well, which makes them

fire the neurons even with fewer constraints on the input features, but also

increases the chance of wrong activations.

pre-training at each SDAE layer:

Noise (σ) Avg. Digit recognition rate Avg. FN (142 total) Avg. FP per image

0.0 97.888% 3 98.86

0.1 97.888% 3 237.06

0.2 98.308% 2.4 515.90

0.3 98.591% 2 1016.85

0.4 98.591% 2 1339.36

0.5 98.591% 2 1534.51

We can see that, on the average, increasing noise tends to improve the

accuracy in terms of a higher digit recognition rate on these images, but the

number of FP per image increases at a much faster rate. Observing acti-

vations from each test image, FPs are due to two main factors: (1) natural

input similarities with features learned by the autoencoder and (2) more noisy

templates learned by the SDAE, which have the bad side of generalizing also

fuzzy/noisy patterns to wrong classes (see Fig. 2.7 for a close-up compari-

son of features learned at first layer neurons with low and high noise). On
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the other hand, FNs are mostly due to particular character distortion that

haven’t been taken in account in synthetic samples.

The best configuration in this case was obtained using σ = 0.2, result-

ing in 140/142 correct detection. When applying no noise on training sam-

ples, none of the classifier configurations obtained was able to get more than

139/142 correct detection, which again demonstrates the noise role in im-

proving generalization over unseen variation of samples. Fig. 2.8 shows

what features neurons at first layer have learned in one of these runs. It’s

pretty evident that, at the first hidden layer, the network is learning several

templates for samples in the dataset, as already observed for the MNIST

case.

Effect of background class

Fig. 2.9 shows activation maps for each label on one of the 16 client

images, where all characters have been correctly detected (FN = 0). Looking

at the figures, we can see that activations for class 0 and 5 happens more

often than others on picture elements as barcodes, qr-code and other printed

elements. This means that, when the classifier is processing those elements,

it better approximates them as 0 or 5 samples, instead of labeling them

as background. This happens because, as explained before, there are no

samples of such elements in the dataset used to train the network and they

are therefore associated to the class that better fits them, according to what

neural network has learned. Besides, background class seems to approximate

pretty well the model expressed for non-character images in this application

and can be therefore used as a starting point to build a more robust dataset.

2.5.2 Increasing SDAE-C performance

New stopping criterion

One way to help the network generalize better on character inputs is to

include the test set accuracy, together with the validation one, as a stopping
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Figure 2.8: Weights visualization of 200 neurons at the first layer of the

SDAE-C (trained using noise level σ = 0.2).
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Figure 2.9: Activation maps for each label obtained with a SDAE-C trained

at noise level σ = 0.4. The images are referred to labels in this order (left to

right, top to bottom): 0, 1, 2, 3, 5, 6, 7, 8, 9, dot, background. Last figure

is left only as a reference for activations positions.
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criterion when training the classifier. Precisely, training has been stopped

when 99.9% of accuracy was reached in both datasets, instead of using vali-

dation set alone. Before applying the new stopping criterion, observed aver-

age accuracy reached on the test dataset at the end of training was always

between 99.7% and 99.8% for all runs. This approach has the benefit of

fine-tuning weights in order to reach a configuration that is more robust on

a wider range of samples, but it also needs more training epochs to meet

this requirement: this is commonly known to cause overfitting, that is keep

updating weights without learning anything meaningful and reducing the

classifier overall accuracy (i.e. it generates more FPs).

More pre-training epochs

Also, more pre-training at each layer means better coding of the full dic-

tionary of samples in the training dataset. Keep improving the reconstruction

ability of the Autoencoder let it learn stronger features and confuse less fuzzy

patterns with characters, reducing the amount of FPs.

Role of dropout

As a final note, dropout regularization alone helps reducing FPs with a

factor of around 2 or 3.

2.5.3 SDAE-C final considerations

We performed further experiments using more training epochs (250 in-

stead of 150) and the new stopping criterion explained above, reaching several

different configurations of the network able to recognize 100% of the charac-

ters in the chosen subset of 16 images using the given dataset, most of them

obtained when training the Stacked Autoencoder with a denoising approach.

However, the weak point of this classifier solution is the high rate of False

Positives as the noise increase. In this kind of OCR application, high vari-

ability of input is known to be cause of FP detections and, even if they can
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be filtered using some spacing model as in the strategies used in HOG-OCR

library [15], hundreds of FPs like in case of this dataset would made a post-

processing phase of such detections very expensive, due to the high amount

of data that need to be processed.

Since elimination of False Positive is a very common issue in Datalogic’s

tools (and in HOG-OCR as well) our work started focusing more on this kind

of application for Autencoders. We will present now a solution to decrease

the number of False Positive at a classifier output, first by applying it on the

best embodiment of our SDAE-C and, in the next chapter, proposing it as a

complete stand-alone solution.

2.5.4 Additional Autoencoder to deal with FPs

One of the major contribution of this thesis is the idea of using the orig-

inal Autoencoder used to train the classifier as a verifier to get rid of False

Positives. This approach is based on the observation that an Autoencoder is

trained to reconstruct at its best something that he has seen while training,

while reconstructing the best approximation of what it knows if it’s some-

thing it has never seen. The idea is the following:

1. Save the weights of the original SDAE (right before the classifier layer

training starts);

2. After using the classifier on a real image and the detection list is pro-

duced, reload the weights of the original SDAE;

3. For each detection in the list, make the original SDAE reconstruct the

locations in the real image corresponding to each detection;

4. By looking at a reconstruction, it’s possible to tell whether it is a good

detection (i.e. reconstruction cost is low) or a bad one (i.e. reconstruc-

tion cost is high)

The point of using the original Autoencoder implementation as a second

stage classifier is novel to us and particularly interesting because it could also
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be used as plug-in for any other classifying pipelines, beside the one proposed

in this work.

2.5.5 Improved SDAE-C performance

We performed again the experiment in 2.5.1, this time applying AEVs to

the SDAE-C classification output. In this case, we simply found empirically

a threshold value based on the average reconstruction error (observed while

training the SDAE) large enough so that all the TPs are kept for all the

character labels.

The following table shows the classifier performance after using this ap-

proach. For each configuration, at different noise levels, results are averaged

over 10 separate classifiers, trained from scratch using improved training

strategies explained in 2.5.2 in order to reach a better digit recognition rate:

Noise (σ) Avg. Digit recognition rate Avg. FN (142 total) Avg. FP per image

0.0 98.38% 2.3 105.58

0.1 99.22% 1.1 117.96

0.2 98.87% 1.6 134.33

0.3 99.50% 0.7 135.33

0.4 99.64% 0.5 152.18

0.5 99.29% 1 157.84

By applying an Autoencoder Verifier (AEV) to the output list of detec-

tions, we were able to reduce dramatically the number of FPs generally by

a factor of 3, effectively removing most of the background false activations

(e.g. almost 0 FPs on barcodes and other non-characters samples for all the

16 images). From these results we can also see also the benefits of the new

stopping criterion and increased amount of training epochs at pre-training,

obtaining more configurations able to reach 100% of digit recognition rate on

the 16-image dataset.

Still, noise improves generalization at character level, but we have to keep

in mind that FP rate is really high in this case without AEVs application,
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due to both noise effect on templates and overfitting introduced with the new

stopping criterion for classifier level training.

Defining when the reconstruction can be considered good or bad is not an

easy task. This simple solution is found to be effective on the task of reducing

FPs at a classifier output, but not at removing all them: the fact that there

are still a hundred of FPs means that those ones have a reconstruction cost

below the threshold and are therefore considered good detections.

From a single AEV to class-specific ones

By measuring the average reconstruction error over dataset’s sample with

the Autoencoder Verifier, we noticed also that each label had a different aver-

age reconstruction error value, which means that the SDAE doesn’t learn to

reconstruct all the samples with the same level of accuracy. This is expected,

since a single network is trained to learn the coding for several different classes

and thus there’s a high chance to be imbalanced on the amount of features

learned per class of character.

This suggested the idea of training several different AEV for each label

instead of a single one, having in mind the goal of obtaining a smaller network

highly specialized in learning a code for a specific class of sample, leading

to a smaller reconstruction error and, thus, a higher accuracy in defining

a threshold value that can be later used to tell if the input to the AEV is

effectively something it has learned or not.

At this purpose, a set of single layer AEVs have been trained to be tested

on the SDAE-C architecture.

2.6 Performance on complete folders

Using our best configuration obtained for the 16-image test set (100%

recognition rate and the lowest average of FPs per image), we wanted to

test the accuracy of our classifier on some of the complete folders of the

client’s real dataset, in order to see what’s SDAE-C performance on a bigger
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number of images and in presence of variation of data along the same day of

production.

Labeling real images and classifier accuracy

Since the client’s dataset was not already fully labeled at the time these

experiments were performed, we dumped HOG-OCR detections from every

correctly labeled image to extract the groundtruth information for the im-

ages in real dataset’s folders. We then applied SDAE-C classification over

the complete images and used groundtruth to test the SDAE-C accuracy at

character level on this wider set of real images. For 7 folders, the classifier

reached 100% of character recognition except one where it scored 99.95%

(4 FNs in the whole folder). For all other folders, the accuracy was lower:

typically this was due to same characters being missed over and over again

throughout the images in the same folder, which means that those particular

distortions of the sample were not covered in the synthetic dataset.

Without any detection filtering, the average number of FPs per image

with this classifier configuration was in the order of one thousand. We will

now see how AEVs could help reducing such FPs using different cutoff levels.

AEVs application

Using the synthetic dataset, we trained a single layer (shallow) AEV for

each digit class and extracted the average reconstruction error at the end

of training. The average itself can’t be considered a good threshold, since

there will be samples uncovered in the synthetic dataset that will result in a

higher reconstruction cost than the ones observed while training. Therefore,

we started looking at how the recognition rate changed while adding a +0.5

tolerance (ranging from 0.0 to 9.5) at each run to every AEV’s base thresh-

old value, in order to compare the TP rate and the average number of FP

per image during each experiment, as the tolerance on reconstruction error

increases. The goal is to find a common level of tolerance to be applied to

each base value threshold to keep all the TPs and reject more FPs as possi-
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Figure 2.10: ROC curve to show TPs rate over average FPs per image at

dataset’s folder level. Starting from first, each successive point on the curve

indicates an increment of 0.5 on the threshold used to discard FPs.

ble. Each experiment refers to the SDAE classification + AEV verification

outcome performed over a folder of the client’s dataset (we’ve chosen to test

only the 7 best performing folders).

Fig. 2.10 shows the ROC2 curve obtained in such folders, showing the

True Positive rate over number of average False Positives obtained per image,

as the level of tolerance applied to the threshold increases. As we said,

without any filtering the SDAE classifier in this configuration produced an

average of around 1000 FP per image: after using AEVs, we’re able to get

the maximum TP rate on almost every experiment with a tolerance of 9.5

and to reduce to less than 90 average FP per image in the worst case scenario

(experiment 5) and to 12 in the best one (experiment 4).

As expected, AEVs work better when the samples in the image are well

covered in the training dataset (e.g. experiment 4), using a relatively low

tolerance on the digits mean reconstruction error, while they need a higher

2Receiver Operating Characteristic
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tolerance (throwing less FPs away) for other folders.

2.7 Conclusions

Even if using SDAE-C has been shown to reach a satisfying character

recognition rate in conditions of high variability of samples to be recognized,

the high number of False Positives make it really hard to be used in prac-

tice in a real Datalogic’s applications. In this case, improving the synthetic

dataset generation is the primary key to get the classifier generalize better

and achieve better performances. Nonetheless, in conditions of lower vari-

ability of samples, SDAE-C is still suitable to be used as a robust classifier.

The AEV approach showed some promising results in the task of reducing

the number of FPs at the classifier output. An improved general strategy

based on AEVs is discussed and tested in the next chapter.

Notes on timing

The time needed to train the SDAE-C on the synthetic dataset is around

7.5 minutes ( 6.6 minutes to pre-train all layers and 57 second to reach the

desired accuracy while training the classifier) using TensorFlow with GPU

acceleration on a machine equipped with Intel Xeon (R) CPU E5-1620 v3

3.50 Ghz x 8 and NVidia GTX 1080 GPU.

A convolutional forward pass performed to process an 640x480 image

takes around 0.7028 s with such configuration. The latter timing, in particu-

lar, doesn’t make SDAE-C suitable to be applied in a real-time application,

which highlights the needing of a more efficient implementation or some

technique to avoid processing the entire image (e.g. some ROI identification

strategy).
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Chapter 3

Autoencoders as second level

classifier

The high number of FPs motivated also the idea of using the SDAE

architecture as a second stage verifier and add it to the classifier output,

in order to reduce (or eliminate) false activations and improve the classifier

output.

The key aspect of such approach is Autoencoders ability to reconstruct

the things they “have seen” during training: if we input the AEs with some-

thing it has never seen, it will try to reconstruct something he knows, giving

a higher reconstruction error. A meaningful way to measure this reconstruc-

tion error is the RMS error per pixel intensities: the lower the error, the

higher its reconstruction accuracy.

3.1 Training a SDAE for each class

Using a smaller network, we can use several SDAEs, here called Autoen-

coder Verifiers (AEV), to verify the classification output of any classifier, if

we know classes and have access to a reasonable number of samples of any

given class.

We perform the following steps:

49
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1. Learn a separate AEV for each class (characters, for instance);

2. Verify that a detection of, say, an “A”, is really an “A” by inputting

the crop of the character to the AEV and compare the output to the

input, measuring its reconstruction error.

The training procedure is the usual one explained so far to train a SDAEs to

reconstruct its input, with the only difference that we train multiple, smaller

SDAEs for each class instead of training a single big network for the complete

dataset. The reason of using smaller networks is twofold: (1) each AEV will

learn a single class of the complete dataset, so the number of features that

has to be coded is way lower than the classifier case, and (2) we have to

apply such AEVs several times for a single real image in a limited amount

of time, in order to verify all the detections on it - a smaller network means

fewer operations needed to compute the encoding/decoding forward pass.

A layer-by-layer pre-training is performed using samples from a single

class, applying a small scale of noise (σ = 0.1) to enhance features learned by

each AEV, followed by fine-tuning of the entire network to further optimize

the weights. At this point, each AEV is fully trained and it is supposed

to reconstruct accurately (i.e. with a low RMS error) each input that has

a similar distribution of values along its features as the ones it has “seen”

while training.

3.2 Define the reconstruction threshold

As already explained in the previous chapter, typical applications have

to deal with high variability of samples. All possible distortions, variations

and corruptions of samples usually could not be taken in account even if we

augment the original dataset, due to the limited amount of training data.

This means that not only wrong samples, but also samples belonging to

a specific class unseen while training that particular AEV will result in a

higher reconstruction error, with respect to the average one observed during

training.
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Thus, we need a way to estimate a threshold, based on the reconstruction

error observed while training, that would likely keep all the correct samples

(even the ones unseen while training) and possibly reject all the others or

most of them. One could simply think about the average RMS of the last

training iteration as a possible threshold, but this isn’t an accurate choice:

while a RMS error below the average it’s a clear sign of a correct classification,

a sample that results in an error above the average wouldn’t necessarily be

a wrong one.

3.2.1 Modeling reconstruction error with a Normal dis-

tribution

We could model the reconstruction error observed while training each

AEV with a normal distribution, centered on the average RMS error of the

last training epoch: reconstruction error of data observed while training will

fall in a given range around the average that can be easily estimated while

training by computing the standard deviation σ along with the average RMS

error for the observed dataset. This let us set a higher threshold for AEVj

(Autoencoder Verifier for class j) using the upper limit of the computed

distribution:

tj = µj + 3σj

This let us also take in account correct samples that result in a reconstruction

error above the average, but still in the range of observed data.

Still, this is not a really useful threshold because of the issue explained

before: a correct, unobserved sample could still be rejected if its reconstruc-

tion is higher, as it is likely to be since AEV is heavily tuned on training

samples.

3.2.2 Verification dataset to define threshold

In order to define a meaningful threshold for the verification step, we can

use unobserved data from a verification dataset. We simply apply our trained
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Figure 3.1: An example of OCR pipeline with the additional verification step,

performed by Autoencoder Verifiers on the classifier output.

AEVs on such dataset and compute a new µj and σj for each class j, which

will form a distribution having a reconstruction error range that will better

reflect data observed in the real application.

Nevertheless, even if this approach gives us a good approximation of the

RMS error threshold to be used to discern correctly labeled samples from,

it will be based only on variation of the data in the training and validation

dataset. The only way to ensure that these thresholds are good enough to

represents the distribution relative to the reconstruction errors and obtain

good performances is to use a training and verification dataset that covers

most of the possible variations of samples in the real dataset.

3.3 Using AEVs to verify classifier outputs

Now, we have a set of trained AEVs for each class of samples, with an

associated threshold value that can be used to distinguish between samples

that doesn’t belong to a certain class, based on their reconstruction error.
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Figure 3.2: Difference in RMS error between a correctly labeled sample and

one that we would like to reject. The different outcomes using two AEVs are

shown for each sample.

Since these objects can are trained separately from the classifier (and it

would be even better to use two different synthetic dataset), AEVs can be

plugged-in to a generic OCR system pipeline to prune/verify a character de-

tection of the classifier output. More specifically, given a list of n detections,

in the form of triplets 〈x, y, h〉 where x, y are coordinates in the input image

and h is the label assigned by the classifier, we verify each labeled detection

by re-submitting the input to the Autoencoder Verifier trained for that class

(see Fig. 3.1).

The approach is as follows:

1. Given coordinates in the processed input image of a labeled character

detection to be verified, crop an area around the activation area in the

original input image;

2. Use the cropped image as an input to the trained AEV for that specific

label j;
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3. Compute the RMS error between reconstructed output z and input x

in this way:

erms =

√
1

N

∑
i,j

(zij − xij)2

4. If erms ≤ tj, accept the activation as correctly labeled, otherwise discard

it as a FP.

This approach is based on the observation that if the input to the AEV

wasn’t really, say, an “A”, the AEVA would not be able to reconstruct the

input faithfully - it will reconstruct the best approximation of what the input

should be if it was supposed to be an “A”, thus giving a quite large RMS error.

This error should be even higher than the one computed out of unobserved,

correct samples from the validation dataset used for AEVA. Fig. 3.2 shows

some output examples when using this approach on correctly labeled samples

or wrong ones.

3.4 Experimental setup

A set of smaller networks has been trained using a newly generated syn-

thetic dataset. At this time, the dataset is divided in two parts: the training

dataset and the verification one, that will be used to compute the reconstruc-

tion error thresholds for each class as explained above.

For all AEV configurations tested, layer-by-layer pre-training and fine-

tuning phases are carried on for 150 epochs each, applying Gaussian noise

with scale σ = 0.1. The learning rate is set to 0.001.

3.4.1 Visualize reconstruction errors on a real image

As a first experiment, we wanted to see if the application of a single AEV,

trained only on a specific class, effectively leads to a smaller reconstruction

error at desired samples location when applied to an input image.
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Figure 3.3: Visualization of the reconstruction error obtained using a AEV

trained on class “0” at each location in a real input image.

Fig. 3.3 shows the reconstruction error on the vertical z-axis (using a

logarithmic scale) obtained by applying a AEV trained on the label “0” on

a real image from the client’s dataset. The horizontal xy-plane corresponds

to the pixel locations in such image at which the reconstruction process has

been applied. The lowest reconstruction error peaks are highlighted by the

red circles: those are exactly the locations in the original image where the

sample 0 is found.

3.4.2 Shallow vs. deep architecture

Using this visualization technique, we proceeded to test if a shallow archi-

tecture (i.e. with a single hidden layer) would achieve the same performances

of a deep one, which is supposed to learn a more robust and hierarchical code

for the input dataset. Specifically two sets of AEVs have been trained:

• Shallow: 1-layer DAE with a 100 neuron hidden layer;

• Deep: 3-layer SDAEs with hidden layer sizes of 100, 50 and 25 neurons;

In fact, it has been observed empirically that the deep AEVs lead to

a better performance in terms of lower reconstruction error (during both
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training and tests) on TP locations of real images and, in some cases, higher

reconstruction costs on all other locations. This is exactly the behavior we

need in order to make this approach work the best, clearly separating the

good samples from the misread ones.

3.4.3 Practical application of AEVs

In order to get a low reconstruction error for TPs, we need the sample

in the cropped area to be in a “similar” position with respect to the ones

used to train a specific AEV. If we consider the x, y1 location of a detection

produced by the classifier, when cropping the area it could happen that the

patch produced has the sample in a different position (misplaced or partially

occluded) with respect to the samples in the training set. Moreover, other

characters or background parts could appear on the patch extracted: any

type of variation in terms pixel values with respect to the samples observed

during training will alter the RMS error, raising its value to the point that

even correct detections can be discarded.

Since we could not quantify the detection displacement compared to the

size and features of samples in our training datasets, we perform the AEV

reconstruction on more than a single crop, each of them being generated from

positions surrounding the original detection coordinates of the input image,

essentially processing a bigger crop. The surrounding area is determined

by adding a fraction of the training samples’ height and width around the

original detection coordinates. Each pixel in the enlarged area will result in

an additional patch to evaluate, as if we were “sliding” the AEV all over this

area. Specifically, given a fraction 0 < f < 1 (e.g. f = 0.5) and training

samples width w and height h, we can easily determine the number of crops

as:

C = bfhwc

1Typically, this location corresponds to the top-left pixel of the detected sample, but

it could also be in other parts (e.g. located in the center of the activation).
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Figure 3.4: The green rectangle is the original crop, generated from the

detection coordinates. The red rectangle is the area around the original

detection, given f = 0.5. Each pixel in this area will result in a new crop to

evaluate. The whole image is the total area extracted from the input that

will be processed.
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Figure 3.5: Encoding (above) and decoding (bottom) steps performed over

the wider crop area using a convolutional approach.

Fig. 3.4 visually explains how the crops are determined. After recon-

structing and evaluating RMS on each of these crops, only the minimum

reconstruction error is kept and compared to the threshold to accordingly

reject a detection or not.

3.4.4 From multiple fully-connected reconstructions to

a single 2D convolution

In order to improve performances of these evaluations over the extracted

patch area, an approach similar to the one explained in 2.4.1 is used to per-

form a single 2D convolution forward pass for both encoding and decoding

transformations, instead of reconstructing each crop independently in a sin-

gle AEV forward step. In particular, the encoding phase is obtained exactly

as explained in 2.4.1, with the only difference that the convolution is per-

formed only on the patch area instead of the whole image. For the decoding

phase, the convolution is performed starting from the volume obtained at

the innermost encoding layer and decoding it back to the higher dimensional
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representations of the upper layers. In the end, we will have a volume rep-

resenting all the (1D) reconstructions of the crops evaluated in the patch

area: we can compute each RMS error with respect to the specific crop used

as input and, in the end, keep only the lowest one and compare it with the

associated threshold. See Fig. 3.5 for a graphical explanation of this specific

procedure.

3.5 Integration with HOG-OCR

To test the impact of this approach, we wanted to test AEVs on HOG-

OCR to see if it was really possible to improve its classifying performances

by further inspecting its detection.

HOG-OCR has the following stages of computations:

1. Detect individual characters throughout the image, including many FP

detections;

2. Estimate the most likely locations of text lines in the image;

3. Form the most likely words, using character detections at each esti-

mated line.

We’ve chosen to apply a set of AEVs right after the word creation stage,

to disambiguate confusable characters. The word-search stage may produce

not just a single detected string, but more than one option. In these cases, for

each character or group of potential characters, a cloud of detections in the

image space is created. Each cloud could contain one or more different char-

acters detections, very close to each other and with a similar classifier score

(which it what makes them confusable). AEVs can be applied to determine

which detection is correct among the different option when the classifier score

isn’t accurate enough. Considering other stages in the HOG-OCR pipeline

where AEVs could be applied to, the word-creation stage is the most effi-

cient, in the sense that AEV approach only used on a few characters when

the original algorithm is unable to disambiguate two or more alternatives.
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Verification strategy

After the word creation stage, we dumped the detection clouds produced

at line level by HOG-OCR and performed two different verification tasks:

• for each cloud with multiple candidate detections, we re-process the

detection input using the corresponding AEVs and keep only the de-

tections that gives the lowest reconstruction error;

• for each cloud with a single labeled detection, verify it using the corre-

sponding AEV. If the reconstruction error is below the threshold, keep

it as a correct detection; otherwise, try every other AEV and keep the

label of one that gives the lowest reconstruction error: if it is below the

the threshold, we keep it as a good detection, otherwise reject it as a

FP.

3.5.1 Final results

We tried to use AEvs trained over 3 different datasets to verify the words

found by HOG-OCR executed in recognition mode. The datasets have been

completely labeled using again HOG-OCR in validation mode and dumping

groundtruth informations for all the images in the dataset, this time after ac-

curately selecting more characters templates in order to improve the original

accuracy of the underlying classifier when needed.

Snacks dataset

We first wanted to apply AEVs to HOG-OCR detections obtained for the

challenging dataset we used so far throughout the whole work, here referred

to as Snacks to distinguish it from the other datasets.

We run HOG-OCR in recognition mode and extracted the list of clouds

generated at each image under usual condition (i.e. with the original samples

used to train the classifier). Fig. 3.6 shows HOG-OCR recognition mode

performance at Image level before and after applying AEV for each dataset’s
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Figure 3.6: Recognition rate using HOG-OCR on Snacks dataset with and

without AEVs application on detections. Results are referred to line level

accuracy (above) and at image level (bottom).
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Figure 3.7: Overal recognition rate using HOG-OCR on Snacks, Markers and

Flour complete datasets with and without AEVs application on detections.

Results are referred to image level (line level is also reported for Snacks).

folder. It is clear that this approach increases the overall recognition rate,

helping the library to better choose among confusable characters.

Other datasets

After the Snack experiment, we wanted to make a test also on other

datasets to see if HOG-OCR could benefit of AEV strategy to improve its

performances under different conditions.

We then trained more sets of AEVs to be applied to two more datasets,

here referred as Markers and Flour. Due to NDA, we cannot give much

informations about which company this datasets come from nor show any

image, but they shows features and application requirements similar to the

Snacks dataset. For Markers in particular, the recognition rate observed

with HOG-OCR is above 99%, which means it presents a lower degree of

variability on the real images. This case is especially interesting because we

can see if AEVs could improve characters detection even when the classifier

performance is already satisfying.

As Fig. 3.7 depicts, there’s a clear advantage given by the application

of such Verification steps. For Snacks, the recognition rate is increasing

from 54.31% to 83.91% (+29.6%) at Image level recognition rate and from
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69.92% to 88.97% (+19.05%) at Line level. For Markers, it is increasing from

76.78% to 95.07% accuracy (+18.29%), while for Flour it goes from 99.57%

to 99.88% (+0.31%). The latter outcome, in particular, confirms that AEV

strategy could be used for increasing classifying performances even when

they are already satisfying, reaching a higher degree of accuracy by removing

ambiguities when multiple characters are detected in the same position due

to false activations.

Notes on timing

However, the current TensorFlow implementation of the verification step

is not fast enough to compute. The timing and amount of operations for the

verification step depends on these factors:

• the size of the Autoencoders (number of layers and number of neurons

at each layer);

• the padding area around the original detection, used as the convolu-

tional reconstruction input.

These parameters have to be carefully estimated with respect to the spe-

cific dataset that we want to process, in order to minimize them and keep

a good verification rate. For a single reconstruction on these experiments,

it requires around 0.014 s on the CPU (Intel Xeon (R) CPU E5-1620 v3

3.50 Ghz x 8) and 0.0018 s using GPU (NVIDIA GTX 1080) acceleration:

considering that HOG-OCR performs a full recognition of an entire image in

less than 0.01 s on most of the datasets, such AEV timings would add a con-

sistent overhead in the computation, having to be performed several times

for each multiple activation in groups of ambiguous detections. Moreover,

we have to consider an additional overhead to compute the RMS error on

each reconstruction resulting from the verification step: the number of RMS

to compute depends on the size of the widened detection area used in the

convolution step.
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3.5.2 Conclusions

When launched in Recognition mode, HOG-OCR underlying classifier

confuses character by assigning a higher score to inputs that matches the

pattern of training templates, due to either actual similarities with non-

character inputs or highly distorted/partial characters. Using AEVs as a

second stage classifier, let us confuse less characters, reduce uncertainty of

first stage classification output and increase the overall system accuracy.

It’s easy to see the benefits of the verification step applied to an uncertain

classifier for a group of activations: as long as a correct activation is present

in the classifier output, AEV’s verification step is likely to help select it as

the correct one, if the AEVs are well trained.



Chapter 4

Future directions

4.1 Stacked Denoising Autoencoder Classi-

fier (SDAE-C)

Showing a promising accuracy reached during training, SDAE-C architec-

ture proved to be a robust classifier that can bring high level of generalization

in classification tasks if correctly trained. Because of a non-optimal synthetic

dataset and high variability of data in the scenario where it has been tested,

even if it showed a good degree of digit recognition rate, the FP rate was so

high that makes it unfeasible to be used in a real application. By the way,

further investigation in less extreme cases should make the SDAE-C show

better results and better overall accuracy.

Due of its nature, the key to obtain good performances using this classi-

fier is to carefully build a dataset that covers most of the possible variation of

samples to be recognized (which already has been proved by generating a syn-

thetic dataset), but also some good approximation of negative/background

samples order to increase the classifier accuracy and output less FPs.
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4.2 Autoencoder Verifiers (AEV)

AEV approach showed some impressive results on the task of improving

the best performing Datalogic OCR library on most of the challenging sets

provided by their customers. This is a general approach that can be poten-

tially applied to any classifier, providing the necessary output informations.

Since in industrial inspection there is often a stringent requirement for

high accuracy, the use of an AEV can significantly improve the performance

of an inspection system, as we have found with OCR, even for other kind of

tasks. For example, in industrial pick-and-place applications, a robot must

localize and identify one of n possible types of parts on the conveyor belt

(and estimate it’s pose/orientation) in order to pick it up and place it at the

proper destination. As with the OCR application described above, the AEV

method could be applied to avoid mis-identification of pick-and-place parts.

An ad-hoc implementation of such algorithms in pure C/C++, eventu-

ally taking advantage of careful parallelization, could improve timing perfor-

mances of AEVs, and SDAE-C as well, and make it possible to include such

strategies in a state-of-the-art classification pipeline.
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