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Abstract

A wide range of biological and empirical evidence supports the so called
"disease module” or “local” hypothesis. According to this hypothesis, within
the cell, functional similarity between molecular entities is associated to net-
work proximity and entities involved in the same disease are more likely to
interact with one another, in other words, the cellular components associ-
ated with a disease tend lie in the same neighbourhood of the network of
interactions between proteins.

In order to understand the molecular mechanisms underlying a complex
disease a central issue in current biomedical research is the identification of
the interactome modules related to the disorder, also called disease modules.
However, due to the incompleteness of interaction data and to the wild vari-
ability of genes associated to a disease, the identification of such modules
is not straightforward. Physical methods based on network diffusion effi-
ciently tackle this problem by simulating the behaviour of a random walker
on a network.

In the first part of this thesis, we review the theory underlying diffusive
process on network finding some interesting connection to clustering tech-
niques and to other physical processes described by Laplacian dynamics.

Then, we exploit a novel diffusion technique, recently proposed in liter-
ature, for detection of sub-modules of protein-protein interactions network
enriched in altered genes. Starting from a set of query nodes, such as the set
of altered genes in a cancer, the aim of the method is to find a set of other
genes related to the query set and forming with it a connected subnetwork.
We applied such technique, for the first time, to three different real cancer
datasets.

The pipeline is organized in two part. First, we select a set of source



genes and we associate to each of them an initial information which reflects
its "degree” of alteration, i.e. gene expression fold change or frequency of mu-
tation. The diffusion algorithm propagates such information within the net-
work and allow us to define a network-based ranking of the BioPlex nodes,
according to their proximity to the sources.

The enriched sub-modules identification is carried out by a network re-
sampling procedure, based on the minimization of an objective function,
starting from the network-based ranking list.

The application of this method allow us to retrieve some genes that in
literature are already associated to the cancer types under examination and
new genes, forming with them disease modules, that are likely to have a
role in the pathologies because of their proximity to the sources. We finally
assess, by a gene set enrichment analysis, the association of the detected disease

modules to known biological pathways.



Riassunto

Nella attuale ricerca biomedica esistono numerose evidenze sperimentali a
supporto della cosi detta ipotesi locale. Secondo questa ipotesi la similarita
funzionale tra entita molecolari all'interno della cellula é strettamente corre-
lata alla loro vicinanza sull’interattoma, il network delle interazioni tra pro-
teine. Entita coinvolte in una stessa malattia sono concentrate in zone con-
tigue della rete ed hanno percid una maggiore probabilita di interagire tra
loro.

Un passo fondamentale verso una comprensione sistematica dei mecca-
nismi alla radice di una malattia complessa ¢ costituito dalla identificazione
dei disease modules, cioe quei sottonetwork connessi dell’interattoma con un
alto numero di alterazioni correlate alla malattia. Tuttavia, I'incompletezza
del network, dovuta a limiti sperimentali, e I’elevata variabilita dei geni al-
terati rendono la soluzione di questo problema non banale.

I metodi fisici che sfruttano le proprieta dei processi diffusivi su network,
dei quali mi sono occupato in questo lavoro di tesi, sono tra quelli che, at-
tualmente, consentono di ottenere le migliori prestazioni.

Nella prima parte del mio lavoro, ho indagato la teoria relativa alla dif-
fusione ed ai random walk su network, trovando interessanti relazioni con
le tecniche di clustering e con altri modelli fisici la cui dinamica e descritta
dalla matrice laplaciana del network.

Ho poi implementato un tecnica basata sulla diffusione su rete, recen-
temente proposta in letteratura, applicandola a dati di espressione genica e
mutazioni somatiche di tre diverse tipologie di cancro.

Il metodo & organizzato in due parti. Nella prima parte, dopo aver se-
lezionato un sottoinsieme dei nodi dell’interattoma, associamo ad ognuno

di essi un’informazione iniziale che riflette il "grado" di alterazione del gene,
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per esempio la sua frequenza di mutazione o il fold change della espres-
sione genica. L'algoritmo di diffusione propaga l'informazione iniziale nel
network raggiungendo, dopo un transiente, lo stato stazionario. A questo
punto, la quantita di fluido in ciascun nodo ¢ utilizzata per costruire un rank-
ing dei geni. Nella seconda parte, i disease modules sono identificati mediante
una procedura di network resampling.

L’analisi condotta ci ha permesso di identificare un numero consistente di
geni gia noti nella letteratura relativa ai tre tipi di cancro studiati, nonché un
insieme di altri geni correlati a questi, attualmente non citati in letteratura,
che potrebbero essere interessanti candidati per ulteriori approfondimenti
in studi futuri. Attraverso una procedura di Gene Set Enrichment abbiamo
infine testato la correlazione dei moduli identificati con pathway biologici

noti.



Chapter 1

Introduction

1.1 Diffusion and Laplacian Dynamics on Network

In physics, biology, and social sciences, many systems of interest can be mod-
elled as network whose nodes represent the system components and links
the interactions among them. Two main branches of networks theory con-
cern, on the one hand, the characterization of their structural properties, on
the other hand, the study of dynamical processes defined on them. The con-
nection between the structure of a network and the behavior of dynamical
processes, such as the diffusion of a substance, is a cross-cutting and expand-
ing field of research. The general objectives are to characterize the dynamics
of a given system by changing the network topology and, conversely, the
extrapolation of certain structural characteristics of the network by means of
a particular dynamical system defined on the network itself [15] [24].

In addition to having a considerable theoretical interest, this field has
important practical implications, particularly in the biomedical field. In fact,
the advent of high-throughput experiments has provided a huge number of
large biological network databases, for example, the network of proteins in
the cell (PPI network) or the complete mapping of neuronal connections in
the brain, with the consequent need for increasingly effective techniques to
extract useful information.

Various methods that exploit the properties of dynamical systems de-
fined on a biological network have been introduced for the analysis and
integration of omics data. In particular, several variants of systems which
simulate the diffusion of a quantity within a network have been successfully

proposed for the identification of disease causal genes.
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The central idea is the following. An initial information, which reflects
its "degree” of alteration, is associated to each gene. The diffusion algorithm
propagates such information within the PPI network until it reaches a steady
state. The stationary distribution is than used to define a similarity measure
between genes.

Beyond their biological applications, the study of diffusive systems on
network is interesting from a more general point of view. In fact, they are
strictly related to the network laplacian matrix and to other physical sys-
tems like resistors and coupled oscillators networks. Moreover, the transient
states of the diffusive dynamics turned out to have a role in network cluster-

ing.

1.2 Biological Motivation of the Study

A central issue in current biomedical research is the identification of causal
genes underlying human disease.

In the last decades, various kinds of large-scale biological data have been
made available by high-throughput experiments. They contain useful infor-
mation for understanding how living systems work and have been proved
useful for developing new methods in disease diagnosis and treatment.

These data can be classified in two main groups. On the one hand we
have biological network data such as protein-protein interaction networks, gene
regulatory networks or metabolic pathways. They represent the patterns of
interaction among molecular entities in living systems and their study al-
lows the functional characterization of such entities.

On the other hand, we have data provided by genome wide studies such
as Gene Expression, Somatic Mutation and Methylation profiles. Such data
provide large lists of altered genes related to a query disorder or a biological
process.

Integration of genome-scale molecular information obtained by genome
wide studies and biological networks allows to tackle several issues in cur-
rent system biology.

Firstly, only a small fraction of genes among those obtained by high-
throughput experiments are truly relevant to the disease or the biological

process of interest. This is particularly true for tumours where altered genes
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vary wildly between patients. In order to get useful information from such
data we need to rank genes according to prior biological knowledge.

From a more general point of view, a central goal in systems biology is
the definition of the network regions associated to biological functions and
disease. In this problem given a set of molecular entities of interest, for ex-
ample the proteins associated to a partially known pathway, we want to find
other entities related to it.

1.2.1 Cancer Altered Gene Prioritization

Cancer, as well as neurological disorders and diabetes, is a complex or multi-
factorial medical condition. These conditions are referred to as multifactorial
because they are attributed to the combinatorial effects of genetic variation
at a number of different genes.

In cancer research high-throughput data are being increasingly used. In
order to get a better knowledge of such diseases researcher are profiling can-
cer at different layer of omic information (e.g. somatic mutation or gene ex-
pression).

These studies have revealed that the set of altered genes in cancer (some-
times referred to as cancer genome landscape, [37], fig.1.1) consists of a small
number of genes altered in a high percentage of tumors (for example the
oncogene TP53) and a large number of genes altered infrequently. Moreover,
combinations of involved genes change enormously between patients.
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FIGURE 1.1: Distribution of the number of mutations in cancer [1]
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This heterogeneity makes the identification of altered driver genes (genes
that contain mutations or are expressed aberrantly in a fashion that confers
a selective growth advantage to the tumor cells) from ones altered in a pas-
senger fashion (alteration occurring during the growth of normal cells that
have no effect on the cell growth) a challenging problem.

When a gene is altered in a high number of samples any statistic will in-
dicate that the gene is extremely likely to be a driver gene. However, less
mutated genes are more numerous. In these cases because of the high vari-
ability of the background rates of mutation among different patients, the
frequency of alteration is not a good measure of gene importance, especially

with the low number of samples available in actual cancer studies.

1.2.2 Complex Membership Issue and "Hot” Modules Iden-
tification

Within a living system, i.e cell, molecular entities rarely work alone. Many
times they interact with one another to carry out biological functions. Func-
tional similarity is associated to network proximity and entities involved in
the same disease are more likely to interact with one another. For this reason,
network proximity measures are valuable tools for prediction of molecular
species function and disease association.

In general, the complex membership issue, can be formulated as follow.
Given a set of query genes (or proteins), such as the mutated genes in a
cancer, we are interested in finding a set of other genes (or proteins) highly
related to these, possibly ranked according to their proximity to the query
complex.

More specifically, in cancer research one is interested in finding connected
network regions, usually referred to as "Hot Subnetwork" or "Disease mod-
ules" carrying the most important molecular alterations.

Cancer is a disease of pathways. In other words, there are relatively few
key pathways whose perturbation transforms a normal cell into a tumor cell.
Cancer can perturb each pathway employing many different combinations
of gene alterations. "Hot subnetworks" are likely to be related to such key
pathways.

This also explains the wild variability of alteration landscape in the same
cancer and shows the link between the gene prioritization issue and the
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search for altered subnetworks. An altered gene is more likely to be a tu-
mour driver if it is in the neighbourhood of other altered genes.

Both problems have been addressed integrating genome-wide molecular
profiles with biological networks.

1.3 QOutline of the Work

In the first part of this thesis, we review the theory underlying diffusive
process on network, finding some interesting connection to clustering tech-
niques and to other physical processes described by Laplacian dynamics.
Moreover, we review the existing network diffusion algorithms for disease
modules detection.

Then, we test a novel diffusion technique, recently proposed in literature,
for detection of sub-modules of PPI network enriched in altered genes. We
applied the algorithm to Somatic Mutation and Gene expression profiles of
three different cancer types: Acute Myeloid Leukemia, Colon adenocarci-
noma and Gastrointestinal Stromal tumour.

Finally, we discuss the results and we assess, by a gene set enrichment
analysis, the association of the detected disease modules to known biological
pathways.
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Chapter 2
Network Laplacian Dynamics

In this chapter we introduce the theory underlying the network diffusion
algorithms for omics data mining.

As a first step we define the Combinatorial Laplacian of a graph and other
matrices that are strictly related to it. Then, in order to have a better insight
into the their physical meaning we introduce some simple physical models,
focussing on random walk and diffusion processes. Finally, we show the
connections among these models and their link to a widely used clustering
algorithm, based on the Fiedler vector.

2.1 Definitions

2.1.1 Combinatorial Laplacian

Given a network G(V, E), directed or undirected, with n vertices and m links
there are two ways to represent it in a matrix form, the adjacency matrix and
the incidence matrix. The adjacency matrix, A, is a n x n square matrix that
has elements A;; = 1 if nodes i and j are neighbours and zero otherwise.
The incidence matrix, V is an m x n matrix in which rows represent links and
columns represent nodes. The j-th element of the I-th row is V;; = 1if [is an
incoming link of node j, while V;; = —1 if [ is an out-coming link of node j,
tig. 2.1.

If f(i) for i € V is a function defined on each node, the incidence matrix
associates at a given link, | € L, the difference of the values of f at the two

end-points of the link:

A = Z Vi fi (2.1)
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FIGURE 2.1: Directed graph with its Adjacency (A) and Incidence
(V) Matrix

Therefore, V can be considered as a kind of “discrete differential” operator
on the graph. It appears natural to define the analogous of the continuous

laplacian operator on a graph as follow:

0-0f — VT .Vf=Lf (2.2)

L is called Combinatorial Laplacian or simply Laplacian of the network. Note
that it is symmetric and that L = D — A:

dy —Q12

L=V'.V=D-A=|-ay dy ... (2.3)

where D is the diagonal degree matrix. Moreover, we have:

(LA)@) =D [f(i) = F(5)] (2.4)

g~
i.e., the laplacian of a function at a node i is the sum of the differences be-
tween the function at ¢ and the function at its neighbours [6].
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2.1.2 Diffusive Laplacians

A matrix closely related to the Combinatorial Laplacian is the Diffusive Lapla-
cian, L', representing the average difference between a node i and its neigh-
bours:

(L)) = 2= D> [F(6) = F()] (25)

ji
L' is related to the adjacency matrix and to the combinatorial laplacian by
the relation:

L'=D'L=D'D-A)=I-D'A (2.6)

Another related matrix is the Symmetric Diffusive Laplacian, L, [8] defined

as:
1 =7
L={ ——F i ]
o d()d(j)
0 : otherwise

It is related to L through the relation:
L=D:LD 2 (2.7)

and is similar to L’:
L=D:LD: (2.8)

2.2 Random Walk and Diffusion on Network

221 Simple Random Walk (RW)

A random walk on a network is defined as follow [22] [25]. Let G = (V, E)
be a network where V' is the set of n nodes and F is the set of m edges. We
are considering unweighted edges for simplicity. Let F be the probability of
starting at a node vy. If at the ¢-th time step we are at a node v;, we move to a
neighbouring site of v, with probability #W), where d(-) is the degree of the
node.

We denote by P, (i) the probability of being at ¢ at time ¢. The matrix of
transition probabilities (77) is given by:
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1 . .

- e
oL — ) a0 . J
0 : otherwise

Note that 77 = D'A — w = AD™', where D is the diagonal degree
matrix and A is the adjacency matrix of the network. Moreover, 7 is column
normalized. The evolution of the probability distribution for the random
walker is given by:

P(t + At) = wP(t) (2.9)

Starting from the initial distribution P, after a time t = kAt we have:
P(t = kAt) = w* Py (2.10)
The stationary distribution is given by:

5 d
Py =— (2.11)
2m
that is, P, is proportional to the degree vector, d, and does not depend on
the initial distribution ]30.

It is possible to define a new transition matrix as follow:
n = D2z D'/? (2.12)

7’ is symmetric and has the same eigenvalues and related eigenvectors of 7.
If 7 is an eigenvector of 7 with eigenvalue ), then ¢ = D'/?¥ is an eigenvec-

tor of 7 with the same eigenvalue.

2.2.2 Lazy Random Walk (LRW)

It is sometimes convenient to consider a variation of random walk, in which
in each step, with probability 1 — 3, we stay at the current vertex and only
with probability 5 we make the usual step of random walk. This variation is

called lazy random walk, the evolution is given by:

P(t + At) = frP(t) + (1 — B)IP(t) = 7P(t) (2.13)

with:



2.2. Random Walk and Diffusion on Network 17

7sz5 SR

It is possible to show that equations 2.9 and 2.13 have the same stationary

i {1—5 i=
7T2‘j:

distribution.

2.2.3 Continuous Time Random Walk (CTRW)

We want to perform the continuous time approximation of the evolution
equation [25]. In the limit At — 0 we expect that the probability of a walker
to change state tends to zero. Starting from eq. 2.13 and taking 3 = ByAt +
o(At), the transition probabilities become:

1— BoAt +o(At) :i=j

i (At = 0) = { T B0t + o(At)  : i

with the condition:
> wyt) =1 (2.14)

The probability of being at node 7 at time ¢ + At can be written as:

Pyt + At) = Pi(t)myBoAt + (1 — BoAt) Pi(t) (2.15)

which gives:

A At) — P
Pi(t+ Ati Pi(t) = 0o ; Pimi; — Py = By ; [ﬂ'ij — 5z'j] Pj(t) (2.16)

The Diffusive Laplacian is defined as:

and introducing the vectorial notation P(t) = (P,) fori = 1,2,...,n, in
the limit At — 0, we have:
dP(t)

— = —HL'P(1) (2.18)
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Since the eigenvalues of L’ are all positive except the null one, the sta-

tionary distribution, ﬁst, is unique and attractive.

2.24 Open Source/Sink Model

Equation 2.18 describes a closed isolated system in which starting from any
initial probability distribution the dynamics relaxes to the same stationary
solution, P,,. Introducing a souce/sink perturbation [4] it is possible to trans-
form the closed system in an open one, described by the equation:

-

d¢ t hnd - —ou —
% + L'g(t) = 119" — o I7 - ¢ (2.19)
where ¢° = (¢9,...,¢?) is the source vector, in which the ratio ZZ_S weights
J
the relative importance of the sources, and 7% = (79" ... 72"} is the sink

out
7

vector, with 79 = 1 if i is a sink and 7" = 0 otherwise. v; and 7, are two
constants.

The system is open in the sense that the probability conservation is no
longer guaranteed. We changed the variable from P(t) to ¢(t) to highlight
this fact. ¢(t) can be interpreted as an hypotetical fluid diffusing on the net-
work with laplacian dynamics. ¢(t = 0) is the initial distribution of fluid in
the nodes. Some nodes are selected to serve as sources, where the fluid is
pumped in at a constant rate.

At sink nodes the system loses fluid at constant first order rate. Rewriting
the previous equation as:

%Sﬁt) + (L 4 I 7™) - §(t) — 116" =0 (2.20)

we get the stationary solution:

Gst = (L' + 7 I7) 1y 8" (2.21)

Note that (Est depends on the source vector but not on the initial distribution
of the fluid.
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2.2.5 Random Walk with Restart (RWR)

In the random walk described above the walkers, at each time step can only
move from the current node to one of its neighbors. In the random ralk with
restart they may also choose to teleport to the start node with a given proba-
bility. If we call (1 — «) the restart probability the evolution equation is:

P(t+ At) = awP(t) + (1 — )P, (2.22)

The stationary solution of eq.2.22 is given by:

Py=I—-ar)'(1-a)F (2.23)

Note that the stationary distribution depends on the initial distribution P.
Moreover, for large networks the inversion of (I — ar) is computationally
expensive. Computing P, iteratively using equation 2.22 is less expensive
for large networks and converges to the solution 2.23.

Connection between RWR and the Source/Sink Model

Starting from equation 2.20 we assume a sink at each node and v; = 7, = v,

getting:
do(t , . .
% + (L' +~I) - ¢(t) —v¢" =0 (2.24)
remembering that L' = I — 7 and defining o = ﬁ:
do(t - - 1 . 1 —
WO 4147 —m)- 60 498 = 1 m)- 60+ =% @29

Rescaling time:

do(t')
dt’
For discrete time step it is easy to see that the previous equation becomes

——(I-an)-¢+(1—-a)d (2.26)

formally equivalent to the RWR evolution equation 2.22:

Bt + At) = amwd(t) + (1 — o) (2.27)
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Remark: P, in 2.22 is the probability distribution of the walker to be at
a given node at time ¢ = 0 while ¢° in 2.27 gives the incoming flow rate at
each node.

In order to interpret ¢ as a starting probability distribution it has to sat-
isfy the normalization condition. Moreover, the total amount of fluid (prob-
ability) in the system must be conserved. This condition is satisfied by equa-
tion 2.25 due to the assumption 7, = ~,. In fact, at the steady state the
incoming flow and the outgoing flow of the system 2.20 must be equal:

" Z¢? = szﬁt e Z¢? = Zdﬁt (2.28)

2.2.6 Diffusion or Heat Kernel

The so called diffusion or heat kernel can be derived starting from the contin-
uous time random walk evolution equation. An equation equivalent to 2.18
holds for the transition matrix 7 (¢):

dr(t)
dt

7(t) is the propagator from ¢’ = 0 to ¢’ = t. If we assume 7(0) = I, we get:

= —BoL - w(t) = (t) = m(0)e H (2.29)

m(t) = e Polt (2.30)

7(t) defines a global similarity metric between the nodes in the network.
Note that 5 = [yt is a parameter that controls the magnitude of the diffusion.
If P(0) is the distribution of particles at time ¢ = 0, at time ¢ = ¢ we have:

P(t) = P(0)e Folt (2.31)

In a network where each node has the same connectivity degree, d, for
instance an infinite regular lattice, the Diffusive Laplacian, L' = (D — A)D™!,
is proportional to the combinatorial Laplacian, L = D — A, and equation 2.30

can be rewritten as:

K(t) =e 7L (2.32)

where ' = fytd!. Since the matrix L is symmetric K is also symmetric and
can be interpreted a kernel function on the network.
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Random Walk <4—Simple Random Walk

With Restart
‘ :
Discrete Lazy Random Walk
time step i
Source/Sink Continouos Time
Hydrodinamical [<— Random Walk
Model

FIGURE 2.2: Connection between various kind of random walk and
Source/Sink Model.

2.2.7 Fick’s Law, Transient States and Network Clustering

Suppose we have a substance on the vertices of the network G(V, E) and that
it moves along each edge with a rate r;;(t) = C[¢:(t) — ¢;(t)], where ¢;(t) is
the amount of such substance on the vertex 7 at time ¢, therefore we have:

a0dt) —OZAU [6:(t) — 5(0)] (2.33)

that can be rewritten as:
d¢z
= —CZ Aigdi(t) + C D Ayd(1) = C Y (Ayy — diski)d;  (234)
J J
that in matrix form is:

% = C(A - D)g(t) = ~CLg(t) (235)

Note that:

>0 -cy

J

Z k,)@] =0 (2.36)

that is, the total amount of the substance on the network is conserved.
Moreover, equation 2.35 is equivalent to the evolution of the probability

distribution of a continuous time random walk, eq. 2.18, only on regular

networks for which D = ¢I, where ¢ is the coordination number [26]. In
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order to derive the Fick’s law as random walk master equation we have to take
in account an ‘edge centric’ random walk in which the probability for the
random walker to change node is proportional to the node degree [25].

Transient States

Let us consider the eigenvalue problem for the laplacian L:
Lv; = \v; (2.37)

where ); are the eigenvalues and v; the related eigenvectors, it can be shown
that the smallest eigenvalue is Ay = 0 and that 0 < A\ < Ay < - < Ay,
The smallest non-zero eigenvalue is called Fiedler number and the related
eigenvector Fiedler vector [13].

If we write ¢;(t) and ¢;(0) as linear combinations of the eigenvectors of L

we have:

o) = Z a;(t); (2.38)

$(0) = > a;(0)7; (2.39)

i

From equation 2.35 and 2.38 we have:

da;(t
ailt) _ _ oyt (2.40)
dt
which has the solution:
a;(t) = e ita;(0) (2.41)
Equation 2.38 can be rewritten as:
¢(t) = ao(O)e_CAOtl_fo + a1(0)6_0>\1t171 + Ce (242)

If the graph is connected then \; > 0 for all 7 > 0 and the stationary solution
of equation 2.35 for ¢ — oo is unique and is proportional to the eigenvector
with null eigenvalue, v = (1,1,...,1)%.

The components of the solution along the eigenvectors with positive eigen-
values are transient states since they tend to zero as t approaches infinity. The
decay time constant of the component along the eigenvector v; is propor-
tional to the inverse of ;.
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Relation to Spectral Network Clustering

Most networks display community structure, that is, their vertices are or-
ganised into groups, called clusters or modules. Detecting clusters is of great
importance in network theory since it allows for a classification of vertices,
according to their structural position in the modules.

A common clustering technique is the Spectral Method [26]. Given a net-
work, we are interested in finding a bipartition such that the number of links
between the identified subnetworks is minimum, in other words, we look for

a bipartition which minimizes the cut size, R:
1
R=>" 54 (2.43)
0,J

where i and j refer to nodes in different subnetworks. It can be shown
that such bipartition is given by the sign of the components of the Fiedler
vector,i.e., each node is assigned to a different subnetwork according to the
positive or negative sign of the corresponding component. Moreover, the
norm of the second eigenvalue \; is a measure of the network connectivity,
usually called algebraic connectivity, the bigger A\, the more connected the
graph.

FIGURE 2.3: Network communities. A minimum cut bipartition di-

vides the network in two part cutting the minimum number of links.

If a substance diffuses on the network starting from the black node,

according to Fick’s law, after a time of the order of 1/ Ay, the amount

of fluid will be higher in the nodes which belong to the same compo-
nent of the starting node.

Let us translate this result in the language of Fick’s law. From equation

2.42 we can see that the component of the solution of Fick’s law along the
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Fiedler vector is the more lasting transient state. Thus, minimum cut bi-
partition can be interpreted as follows. Starting with the substance in one
node, i, and let it to diffuse within the network, after some time, the nodes
in the two minimum cut subnetworks will have, respectively, an higher and
a lower content of substance with respect to the stationary distribution 2.3.
Starting from this observation, the spectral clustering method could be
generalized considering the successive eigenvectors and using time as a pa-

rameter which regulates the size and the number of clusters.

2.3 Other Laplacian Physical Systems on Network

2.3.1 Network of Coupled Oscillators

It is possible to give a physical interpretation of the combinatorial laplacian
considering a network in which nodes are rigid spheres and links are springs
[14] [6].

k(i-1) k(i) K(i+1)

O~0000~-O~0000-@-0000~-O~0000~-O

m(i-1) m(i) m(i+1)

FIGURE 2.4: 1-d armonic oscillators chain

For sake of simplicity, let us consider the 1-dimensional chain of coupled
oscillators, fig. 2.4, in which the sphere ¢ has mass m; and the spring 7 has
elastic constant k;, the equation of motion for the i-th sphere is given by:

where:

F(Uz) = Fl - -FH—I = —k:(uz - Ui_1> - /{Z(UZ - ui+1) = —/{ZZ Lij’LLj (245)
J

which in matrix form is: N
i=——Li (2.46)

m
The equation of motion for a vibrating string can be derived as the con-
tinuous limit for N — oo and Az — 0, where N is the number of sphere and
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Az is the distance between two sphere:

i = v’ (2.47)

As we can see the laplacian matrix is the discrete analogous of the second

derivatives.

2.3.2 Electric networks

We conclude the chapter showing the relation between resistor network and

random walks.

The Dirichlet problem on Network

The continuous Laplace’s equation is given by:
Au=0 (2.48)

where A = V? is the continuous laplacian operator. A function u that
satisties Laplace’s equation is called harmonic. Such functions have a mean
value property: the value u(z,y) equals the average of the values over any
circle centred at u(z,y). The converse is also true: a function satisfying the
mean value property is harmonic [12].

If we take the mean value property from the continuous case as the def-
inition of an harmonic function in the discrete case, it turns out that a func-
tion, u(i), defined on the nodes of a graph is harmonic, if for every nodes :
holds:

i) = 225 Sou() (2.49)

that can be rewritten as:
Lu=0 (2.50)

where L is the combinatorial laplacian, or as:
L'u=0 (2.51)

where L' = I, — D' A is the diffusive laplacian. A function satisfying the

previous equation at every nodes must be constant. A non-constant function
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on a finite connected graph cannot be harmonic at every node. This fact also
holds in the continuous case.

An interesting problem for application consists in finding the solutions
to Laplace equation satisfying a boundary condition. In general, given a
partial differential equation (PDE) and a domain, D, with boundary, D, the
Dirichlet problem is the problem of finding a function satisfying the PDE
inside the region and taking prescribed values on the boundary.

Starting from a network G(V, L) we may consider the induced subgraph
G(V') onasubset V! C V, considering 0V = V/V’ as the boundary of G(V")
on which the constraint u(i) = h(7) is enforced.

The discrete Dirichlet problem for the Laplace equation on a graph, G,
can be defined as the problem of finding a harmonic function, u, on G(V”),
such that u = hon OV

It is possible to reinterpret this problem and find a solution in terms of
random walk on a network with adsorbing states, i.e. states that once entered
cannot be left.

Let us assume that P is the transition matrix for a random walk an the
network G, that the nodes in 0V are absorbing states and n, = ||0V/|| is the
number of such states. Reordering the states so that the adsorbing states

come first, P can be rewritten in the form:

1 0
P [R nT] (2.52)

where 1 in the n,-by-n, identity matrix, w7 is the transition probability
matrix (row-normalized) for a simple random walk restricted to the graph
G(V') and R is the matrix of probabilities of going to adsorbing states from
all the non-adsorbing states.

If u(7) is a function defined on the nodes of G that satisfies:

u(i) = Z Piju(j) (2.53)

on the nodes of G(V’), then u has the mean value property and thus is
harmonic. This means that the right eigenfunction of eigenvalue 1 of the
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Markov chain with transition matrix P:

Pu=u (2.54)

is the solution for the discrete Dirichlet problem. If we write u = [up, u D]T,

where up and up, are, respectively, the solution for boundary and non-

boundary nodes, we have:

up . 1 0 up
up B R = T up
and the solutions up for non-boundary nodes is given by:

up = (1 —7") 'Rup (2.55)

The element B;; of the matrix B = (1 — «7) "' R gives the probability that

a chain starting at a non-boundary point ¢« will end up in an absorbing state

7.
Resistor Network and Random Walk

Let us consider a general resistor network [12] and assign to each link a re-
sistance, R;;. The conductance is thus given by C;; = 1/R;;. Let us define a

random walk on such network with transition probabilities:

C,
> Cij

by = (2.56)
Since the network is eulerian, i.e. the in-degree of each vertex is equal to its
out-degree, the stationary distribution, ¢ = ¢P, is unique and its elements
are given by:

Ci

¢i = $.C (2.57)

Since C;; = C};, at the stationary solution holds the detailed balance condition:

OiPij = ¢ Py (2.58)

If we put a potential difference of 1 volt between two points, A and B, of
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the network such that v4 = 1 and v = 0, it is possible to give an interpreta-

tion of the electric potential at each node in terms of probabilistic quantities.

MW MW

Ry Ry
o—— R3 § —o
a b
R» Rs
MW MW

FIGURE 2.5: Resistor Network

The current, J;;, through R, is related to the potential difference between
the end points of the resistor by Ohm’s law:

Jij = (UZ' — vj)Ci- (259)
The Kirchoft’s current Law requires that:

Z Jij =0— v Z Cij = Z CZ‘]’U]' (260)
J J J

that can be rewritten as:

v; = Z %: v = Z Pijv; (2.61)
J J

that is equivalent to say that v(¢) is harmonic at all points with the exception

of i = A, B, ie. itis the solution of the Dirichlet problem with boundary

conditions v4 = 1 and vg = 0.

As a consequence of the random walk interpretation of the Dirichlet prob-
lem the voltage at a point ¢ in the network can be seen as the probability that
a walker starting from 7 will and up in A before reaching B.

Currents can also be interpreted in a probabilistic fashion. Let us suppose
that the electric particles enter the network at point A and leave the network
at point B. A walker starts at A and make a random walk through the nodes

until he reaches B. Let w; be the probability of finding the walker at node i.
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For non-adsorbing nodes, we have:
w; =Y Pjw; (2.62)
J
From R;; = R;; it follows that C;P;; = C; P;; and thus:
C; wi Py

this means that #* is harmonic and thus is the voltage at node : when we put

w.

ve = ¢+ and vp = 0. The currents J;; are given by:

vi — ;)

Rij

The net number of times a walker passes a link can be interpreted as the
current flowing between the end nodes of the link.
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Chapter 3

Network Diffusion Based Methods

for Omics Data Mining

Network diffusion methods exploits the global structure of a network by
simulating the behaviour of a random walker. They have been introduced
in graph theory to rank nodes based on their relative importance (centrality
measure) [27].

Since genome-scale biological networks have become available many tech-
niques have been proposed to mine these networks for functional assign-
ment of molecular entities, disease and functional pathway discovery and
community detection.

As we said above, functional similarity between molecular entities in a
living system is related to network proximity. For this reason, the defini-
tion of network proximity measures plays a central role in biological network
mining [28] [3].

The shortest-path distance (SP) is the simplest and most commonly used
of such measures between two nodes on a graph. However, it has several
drawbacks. Firstly, it is extremely sensitive to the insertion or deletion of
single links. In biological applications, the connectivity information is de-
rived from empirical data, and as such is subject to noise. For example, it
has been hypothesized that PPI networks obtained by high throughput ex-
periments may contain a significant number of false positive and negative
interactions [11].

Moreover, nodes connected to each other via multiple paths are more
likely to be functionally related than nodes that are connected via a single
path [28] and the SP distance does not consider the global structure of the

network, i.e. multiple paths between pairs of nodes.
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For this reasons a more robust proximity measure, which involve aver-
aging over many paths, is more suitable [32].

Random walks and diffusion on network are a good starting point for
the definition of similarity measures that overcome this problems and sev-
eral approaches based on them have been successfully proposed in many
applications, ranging from gene prioritization to pathway detection.

In the first section of this chapter we review the most important meth-
ods reported in literature and their applications focusing ourselves on their
physical meaning and connections. Then, we introduce the algorithm used

in the next chapter for cancer datasets analysis.

3.1 Diffusion Methods and Biological Network

The most famous diffusion-based measure on network is PageRank [27] which
was introduced for the ranking of web pages. The PageRank vector is the
stationary distribution of a RWR (equation 2.22) in which the initial proba-
bility distribution, Py, is uniform. In other words, it allows random walkers
to “teleport” to nodes different from their neighbours with a given constant
probability.

In this section we give a detailed review of network-diffusion based meth-
ods for omics data mining. Such methods diffuse the initial information
about molecular entities on a given biological network (mainly the PPI net-
work) allowing the definition of global similarity measures

It is possible to arrange the methods described in literature in three main
groups based on the diffusion process involved. The first group comprises
techniques based on discrete time random walk with restart (RWR) and its
variants such as the so called Network Propagation Algorithm (NPA) [18],
[7], [16], [36] . Methods based on continuous time laplacian dynamics are in
the second group [29],[35], [21] while the third group comprises Heat Kernel
Methods [18]. As we have seen in the previous chapter the main goals of these
methods are gene prioritization and identification of sub-modules, related to
a given disease or a biological function, of biological interaction networks.
In what follows we give a review of the main methods of the three groups

and their applications.
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FIGURE 3.1: Connection between random walk models on networks
and algorithms for the analysis of biological network.

RWR Techniques

This techniques are the direct generalization of the PageRank centrality. They
have been introduced in the biological network context for protein structure
prediction [38], pathway discovery and prediction of complex membership.

Can et.al [7], given a set of query protein on the PPI network, are inter-
ested in finding a set of other proteins ranked according to the probability
of being related to the main complex. To achieve the task they use a random
walk with restart defined as follow:

Py =arnP,+(1—a)P, (3.1)

where P is a vector with P} = 0 for all its entries except for a given number,
s, of query nodes where it takes the value 1/s. As we have seen above, such
a random walk converges to the stationary distribution P, of eq. 2.23. Such
distribution gives, for each node in the network, a global proximity measure
to the query complex.

The same method can be used for the prioritization of candidate disease
genes. For many disease it is possible to identify the chromosomal region in
which unknown disease genes are located, but the regions could contain up
to hundreds of candidate genes and it is often difficult to identify the correct
disease gene by inspection of the list of genes within the interval. Kohler el
al.[18] group diseases into families. For a given disease, starting from a set
of known genes in its family, they use as a similarity measure the stationary
distribution of equation 3.1. The initial vector Py is constructed such that
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equal probabilities are assigned to the nodes representing known disease
genes, with the sum of the probabilities equal to 1.

This method focus on prioritizing independent genes; however, in many
cases, mutations at different loci could lead to the same disease. This genetic
heterogeneity may reflect an underlying molecular mechanism in which the
disease-causing genes form some kind of a functional module. Using a sim-
ilar method, Vananu et al. [36] suggest a way to reveal the protein modules
that are affected in a given disease. They use as starting distribution a prior
knowledge function, Y (v), which reflects the probability of gene v to be re-
lated to the query disease and propagate the information on the network.
They choose to normalize the transition matrix, 7, by the degrees of its end-
points, since the latter relate to the probability of observing an edge between
the same end-points in a random network with the same node degrees.

Several other application have been proposed such as: identification of
biomarkers [30],[33] the study of virus-host molecular interactions and strat-
ification of tumour mutations [16], identification of differentially enriched

modules [5].

Continuous Time Source/Sink Laplacian Dynamics

An alternative global similarity measure between pairs of nodes can be de-

fined using a continuous diffusion process, strictly related to RWR, on the
interaction network [29].

Such a model considers the diffusion of a fluid on a network and is de-
scribed by the equation:
dep(t)

SO = —La(t) — ym™ - (1) + 6°6(1) 62)

where 0 is the step-function. Initially, all nodes contain no fluid. At¢ =0
fluid is pumped into the source or query nodes at a constant rate and diffuses
through the graph. Each node loses fluid at a constant first-order rate. After
some time, the system reaches a stable state in which the amount of fluid in
each node is constant. The better connected a node is to the query nodes, the
more fluid it will contain at equilibrium. The final distribution of fluid in the
network (¢4, equation 2.21) gives a global similarity measure.

Hotnet [35] and Hotnet2 [21] use this measure for cancer pathway dis-

covery. Hotnet starting from somatic mutation profiles (i.e. cancer mutated
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genes as fluid sources) diffuses the information on the protein-protein inter-
action network and uses the similarity between nodes for the identification
of "hot modules", i.e. connected subnetworks enriched in mutatated genes.
A major drawback of Hotnet is due to the presence of high mutatated genes
such as T'P53. Such genes propagate their initial information to their neigh-
boring nodes resulting in subnetworks containing many genes of poor bi-
ological interest. To overcome this drawback Hotnet2 introduce a modified
version of the diffusion model in which the transition matrix is normalized

by the degree of the nodes.

Diffusion Kernel Methods

Given a set of objects (z1,22,...,) € X a kernel is a symmetic function that,
given two objects x; and z;, returns a real number characterizing their simi-
larity:

E:XxX—R (3.3)
with:

k(l’i, l'j) = k(l’j, xl)

If X is the set of nodes of a graph, the kernel k(z;,z;) defines a global
similarity measure between them [31]. The adjacency matrix of a network
gives information only on local similarity. It expresses whether two entities
are neighbors or not. A natural way of constructing a kernel from network
local information is suggested by physical process of diffusion [19]. As we
have seen, the transition matrix of a CTRW evolves in time according to
equation 2.30. If we take L = H = D — A we have:

K(t)=ePH (3.4)

K (t) is symmetric and defines a kernel on the graph called Heat or Diffu-
sion Kernel. While in RWR and Laplacian Dynamics methods the similar-
ity measure is given by the stationary distribution of the diffusion process,
here the magnitude of the diffusion is controlled by the parameter 3. Heat
Kernel methods and its variants have been used for gene prioritization [18],

biomarker signature discovery [9] [10] .
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3.2 Diffusion Gene Prioritization and Detection of

Disease Altered Subnetworks

In this section we introduce the method utilized in the next chapter for pri-
oritization of altered cancer genes and detection of significantly altered sub-
network of PPI network. The method has been developed by Bersanelli et
al. [5] for identification of differentially enriched modules, i.e. given two
classes of sample the method aims to find those connected subnetworks that
are altered in a different manner in the two classes. We use it in a slightly
different fashion in that our data belong to a single class.

The interactions are modelled by a network G(V, E). The edges, E, repre-
sent protein-protein interactions, the vertices, I/, represent genes associated
to individual proteins. A is the adjacency matrix of the network.

We associate to each gene initial information, described by the vector
2. Tt is possible to consider different types of initial quantities, for example
gene expression fold change or frequency of mutation in a set of samples.
The pipeline is organized in two main steps. For the first step, the initial
information is propagated in the network G according to a random walk

with restart:

i =ar'z, + (1 — o)z’ (3.5)

where 7' is the symmetric transition matrix defined by = D~Y/27 D/2 =
D~Y2AD~1/2,in which each edge weight has been normalized by the prod-
uct of the degrees of its end points. The parameter «, as we noted above,
controls the relative importance of initial information (z,) with respect to
network information. According to the connection between equation 3.5 and
the source/sink model we refer to the non-zero elements of x° as “source”
nodes. After some time steps, the process converges to a stationary distri-
bution, x*, that define a global similarity metric on the interaction network
i.e. the quantities x} rate each node according to its proximity to the source
nodes.

In order to highlight the "local hypothesis", i.e. the increased probability
of interaction of two genes involved in the same disease, Bersanelli et al.
introduce the network smoothed index (NSI) for the gene ¢ as follow:
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Sources Stationary Distribution

\I\ ?\

FIGURE 3.2: Network Propagation Algorithm. Each node receives
a quantity of fluid in relation to ist proximity do the sources and the
topology of the network.

Si(a®) = (3.6)

)+ €

Note that S; is proportional to the gain of information of the node i. The
parameter ¢ weighs the relative importance of xo with respect to x*. For € >
1 only x* matters. A reasonable setting can be found in order to prioritize
both sources and nodes in proximity to them. The setting depends on the
amount of biological signal and has to be tuned depending on the problem
under study.

As we have seen in section 3.1 a drawback of diffusion methods is the
presence of hubs, i.e. nodes with high connectivity that assume high S be-
cause of the topology of the network. In order to overcome this problem two
methods have been implemented. If node i is a hub, it has a high value of
S; independently of the distribution of the sources. Permuting the sources
and propagating the information, we get a new value for the NSI, S?. It is
possible to define an empirical p-value, p;, as the fraction of permutations
with S equal or greater than the real S;.

k
where k is the number of permutations, S} is the permutated NSI for the

pi = (3.7)

node ¢ and the j-th permutation.
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At this point we can mitigate the effect of topology weighing the real S,
with the logarithm of p;:

Spi(®) = —logio(p:)Si(x°) (3.8)

Since p; lies in [0, 1], —log(p;) lies in [0, co].

The network smoothed index prioritizes PPI network nodes. The second
step of the pipeline aims to find those regions in the network with the highest
content of information. Starting from the list of genes, ranked according to

Sp or AS, we define a function € of the top n entities of such list:
Q(n) = Sp™(n) - A, - Sp(n) (3.9)

where the matrix A,, is the adjacency matrix of the subnetwork generated by
the top n entities of the ranking. 2(n) is the sum of the products between the
NSI of connected nodes. A node not connected to any one of the other n — 1
entities does not contribute to the sum. It the top ranked genes are related to
one or more biological pathways we expect a high number of links among
them. In what follows we describe a method to quantify the significance of
the pattern of connection among the top n entities. Given a permutation, o of
the labels of the nodes (or equivalently, a random resampling of the existing
connections which conserve the same degree distribution), we define the
function:

Qu(n) = Sp™(n) - A7 - Sp(n) (3.10)

where A7 is the adjacency matrix after the permutation of the labels.
Taking k£ permutations, it is possible to define a Network Resampling p-
value as the fraction of time the objective function of a permutation, €2, (n),

is greater or equal to the real network objective function, Q(n) :

| G=1,....k|Q,(n) >Qn) | +1

pnr(n) = el (3.11)

As long as pyr(n) is of the order of 1 it means that a resampling of the con-
nections among the first n top genes of the list do not change too much the
strength of the subnetwork. Increasing n, it is reasonable to expect a sensi-
ble decrease of pyr(n) when top-scoring genes that are not connected to the
previous n — 1 ones enter the top of the list.
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FIGURE 3.3: Resampling procedure carried out with 1000 permuta-
tions [4].
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Chapter 4
Application to Cancer Datasets

In this chapter we describe the application of the network propagation tech-
nique introduced above to three different cancer datasets. At the beginning,
we summarize some useful biological concepts in order to clarify the aims of
the method. Then, we discuss the pre-processing of the data and the model
parameters setting. Finally, we discuss the results testing the identified sub-
modules with Gene Pathway Enrichment Analysis.

4.1 Biological Concepts

4.1.1 Molecular Interactions Networks

As we said above, in the cell, proteins are organized in complex structures
to perform biological functions. For this reason, the mapping of interactions
between molecular entities in the cell is a major step in order to understand
how such structures work.

Depending on the the molecular entities involved and the cell process un-
der examination it is possible to build several types of such mappings. Some
examples are signaling networks, metabolic networks, Gene regulatory networks
and PPI networks.

The diffusion methods described above can, in principle, be applied to all
of these networks. In our applications we used protein-protein interaction
network because it was the most suitable for our purposes. In what follow
we review the main features of PPI networks.

Protein-Protein Interaction Networks (PPI Network) model individual
proteins as vertices, and their interaction relationships as undirected edges.

Sometimes, nodes represent, rather than the proteins themselves, the related
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genes, i.e. coding genes are considered to have a one-to-one relationship
with proteins.

In general what is meant by protein-protein interaction is a physical contact
between two proteins occurring in the cell. The contact must be specific,
that is, with molecular docking, and not accidental. Moreover, excluded from
the interaction network are those interactions that a protein undergoes in
generic functions such as its production, folding and degradation [11].

The interactome is the complete map of protein-protein interactions in a
cell. In humans’ cell there are almost 20, 000 coding genes, i.e. the nodes of
the interactome, and the estimated number of interaction between proteins,
i.e. links, is ~ 650,000. Actual PPI networks has between 6,000 to 13, 000
nodes and 25, 000 to 150, 000 links.

From a graph theory point of view PPI networks are undirected graph,
i.e. their adjacency matrix is symmetric, and are connected, which means
that there are no independent components.

The degree distribution of a network, P(k), gives the probability that
a selected node has £ links. PPI-networks, as the most part of biological
networks, are scale-free, i.e. their degree distribution approximates a power
law:

P(k) ~ k™7 (4.1)

where £ is the node degree. The name scale-free is due to the scale invariance
of the distribution. Scaling the argument, k, causes a proportional scaling of
the distribution P:

P(ck) ~ck™ =c¢ k™7 = ¢ 7P(k) (4.2)

Due to this fact there is not a typical node in the network that can be used
to characterize the rest of the network. This is in strong contrast to random
networks, for which P(k) is a Poissonian distribution, and the degree of all
nodes is in the vicinity of the average degree, which could be considered
typical.

In networks with a power-law degree distribution there are a few nodes,
called hubs, with a large number of links while, most of the nodes are poorly
connected. The value of the exponent, v, determines several properties of
the network. The more important the role of the hubs is in the network, the
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smaller is the value of 7 [2].
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FIGURE 4.1: Protein—protein interactions in yeast. Note the pres-
ence of a few highly connected nodes, hubs, that hold the network
together, and many poorly connected nodes. [17]

PPI networks have several drawbacks. Firstly, they represent protein in-
teraction as static links, while physical contacts between proteins in general
are not permanent and varying upon time. Secondly, they do not take into
account the spatial distribution of the proteins in the cell.

Moreover, from an experimental point of view, the main drawback is the
presence of an high number of both false positives and negatives [11]. As
we mentioned above, due to this fact, the measure of proximity between two

nodes must be chosen carefully in order to reduce the experimental noise.

4.1.2 Cancer Somatic Mutation and Gene Expression Profiles
Tumor Somatic Mutations Profile

Cancer origin and evolution are strictly related to Darwinian evolution oc-
curring in the origins of species. Tumors can be considered to be the outcome
of a process of evolution occurring among cell populations of human tissues.

The two constituent processes of evolution are: the continuous acquisition of
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heritable genetic variation in individual cells by random mutation and nat-
ural selection acting on the phenotypic diversity within the environments
provided by the tissues of an organism [34].

Cells that have acquired deleterious mutations are removed by natural
selection while, cells altered in a fashion that increases their capability to
proliferate more effectively than their neighbors,i.e have a selective advan-

tage, become more numerous.

Chemotherapy-
resistant
recurrence

Intrinsic ¢
mutation processes Environmental
and lifestyle exposures

Early clonal Benign  Early invasive Late invasive

Fertilized egg  Gestation Infancy Childhood Adulthood expansion tumour cancer cancer

Mutator
phenotype

O Passenger mutation G
hemotherapy E===——m
¢ Driver mutation

Chemotherapy
resistance mutation 1-10 or more
driver mutations:

10s-1,000s of mitoses 10s-100s of mitoses 10s-100,000 or more
depending on the organ depending on the cancer passenger mutations

FIGURE 4.2: The lineage of mitotic cell divisions from the fertilized

egg to a single cell within a cancer showing the timing of the so-

matic mutations acquired by the cancer cell and the processes that
contribute to them. [34]

Within an adult human cell genome there are thousands of mutation, fig-
ure 4.2. These comprise many genetic alterations, such as single-nucleotide
substitutions, insertions, deletions, rearrangements, copy-number alterations,
epigenetic alterations and so on. The overwhelming majority of these alter-
ations are believed to have phenotypes with limited abnormal growth po-
tential and are invisible or manifest themselves as benign growths. These
alterations are called passenger alterations [23].

Only on a few occasions a cell acquires a set of sufficiently advantageous
mutations that allows it to proliferate autonomously and invade tissues.
These are the alterations that cause the cancer and are called driver alter-
ations or simply tumor drivers, figure 4.3.

Because driver events are critical to cancer progression, their discovery
is the primary goal of genome-wide cancer sequencing. In these studies,
the genome of a sample of cancerous cells is compared to the genome of a
sample of non-cancerous cells, sometimes called germ-line cells, of the same
patient. The mutation between the two samples are called Tumor Somatic
Mutation.
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FIGURE 4.3: Dynamics of cancer progression. Cancer progression is
driven by the accumulation of a small number of genetic alterations.

These few driver alterations reside in a cancer genome beside thou-
sands of passengers mutations. [23]

o

Sequencing of various cancer tissues at a genome level have found that
individual cancers contain tens of thousands of somatic alterations, fig. 1.1.
There are few genes altered frequently and a larger amount of genes altered
much less frequently [37] [34]. Moreover, genes involved in a disease change
wildly between samples. Most of this somatic mutation are passenger while
a few of them are tumour drivers. As we have seen, a major challenge in
system biology is the identification of tumour drivers from passengers.
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FIGURE 4.4: Distribution of the number of mutations in various
kinds of cancer [1]

Tumor Gene Expression Profiles

Gene expression (GE) in the process by which the information contained in
a gene is used to synthesize a gene product. While all cells in an organism
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contain the entire genome, only a small fraction of genes is expressed at a
given time. The level of expression varies upon time and depends on the
cell type. Since the thousands of genes expressed in a particular cell de-
termine what that cell can do GE is the most fundamental level at which the
genotype gives rise to the phenotype and hence plays a central role in cancer
development.

Gene expression profiling is the measurement of the expression of thou-
sands of genes at once. In cancer, the comparison between gene expression
profiles of cancerous and germ-line cells allows us to identify those genes
whose expression is altered, that is, those genes the are likely to give a selec-

tive growth advantage to tumor cells.

4.2 Materials and Methods

4.2.1 Cancer Datasets

We have applied the pipeline described in section 3.2 to the identification of
molecular interaction subnetworks enriched in altered genes to three types
of cancer: Colon adenocarcinoma (COAD), Gastrointestinal Stromal tumor
(GIST) and Acute Myeloid Leukaemia (AML). For the last two types of tu-
mors we analysed whole exom somatic mutation and gene expression pro-
files while for COAD tumour only SM profiles were available. The Colon
Adenocarcinoma dataset was downloaded from The Cancer Genome At-
las website http:// tcga-data.nci.nih.gov/docs/publications/tcga while GIST and
Acute Myeloid Leukaemia datasets have been made available from the De-
partment of Experimental, Diagnostic and Specialty Medicine (DIMES) of
the University of Bologna.

The three datasets report different kind of information. COAD and GIST
datasets, for both SM and GE profiles, consist of a sample-per-gene matrix,
i.e. each column of the matrix contains alteration data of a set of genes of a
sample.

Somatic Mutations for each patient are represented as a profile of binary

" indicates a gene for which mutation

(1,0) states on genes, in which a 'l
has occurred in the tumour genome relative to the germ-line genome in the

person with the tumor.
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Gene Expression is represented as a profile of real-valued states on genes,
in which the real numbers indicate the CPM (Count per Million) or TPM
(Transcripts per Million) for each gene.

For what concerns leukaemia datasets, they provide only the mean quan-
tities over a set of samples. Somatic mutations are represented as a vector,
fsu, associating to each tested gene a frequency of mutation over a set of
78 samples. In a similar fashion, gene expression profile provide the mean
fold-change for each gene and an associated adjusted p-value which gives

the significance of the measure.

4.2.2 Network Propagation Source Vectors

In order to perform network propagation we built, for each dataset, a "source
vector" of length equal to the number of nodes in the interaction network.
Such vector assigns to each gene (node) a value proportional to the relative
importance of the gene. In the language of the source/sink model the vector
components are the inflow rates.

Since the biological aims were slightly different for the three datasets we
have pre-processed each of them in a different manner.

As regards COAD and Leukaemia somatic mutation data we were inter-
ested in finding those sub-modules of PPI network enriched in genes altered
with respect to the germ-line. For this purpose we used as sources the vec-
tor of the frequencies of mutation, fgy,. In the COAD case, starting from
the sample-per-gene matrix, we have calculated the relative frequency of gene
mutation within the set of samples summing up the columns and dividing
by the number of samples.

In leukaemia gene expression data, in order to give a greater initial score
to genes with a lower p-value, i.e. with a higher significance, we built the
source vector, g; g, according to the following statistics:

gi = — |F0z| log<Pi) (4.3)

where g; is the final score of gene i, F'C; is the fold-change and P, i the p-
value. Such definition ensures that genes with a high fold change in ex-
pression and a low p-value score very highly and vice versa. We built two
different source vectors for up-regulated (go) and down-regulated (g™
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genes since the propagation method does not allows us to distinguish be-
tween them.

GIST dataset contained information related to four different cancer molec-
ular subtypes. Table 4.1 summarizes the dataset features.

Molecular Subtypes | GE samples | SM samples
KIT 7 9
PDGFRA 5 6
Quadruplo - 11 12
SDH 2 2

TABLE 4.1: GIST samples per molecular subtype

We were interested in finding those modules differentially enriched for
each couple of subtypes. The algorithm allows us to tackle this task in two
different manners: calculating a single-class statistics or propagating the in-
formation for each subtypes and calculating the difference between the prop-
agated quantities.

In order to have comparable results for the three dataset we chose to
built a differential single-class statistics as follows. As regards GE data, we
calculated the fold-change F'C for each couple of tumor subtypes:

(4.4)

FC;j = logo {GE(Z)}

GE())

where i, j are the tumor subtypes, GE is the gene expression level ex-
pressed in TPM.

For what concerns SM, we built a source vector for each couple of sub-
types assigning a value 1 to those genes for which a mutation has occurred
in a subtype relative to the other and zero to the others.

4.2.3 Network Datasets

We considered interaction data provided by BioPlex dataset of Protein-Protein
interactions.

The BioPlex network is a map of human protein interactions identified
using high-throughput affinity-purification mass spectrometry. The version

we used in our analysis was downloaded from http://bioplex.hms.harvard.edu
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on 10/02/2017 and includes 10961 proteins and 56553 interactions among
them.

Bioplex network has a giant component comprising 10,901 nodes and
56,519 interaction. The remaining 60 proteins are separated into 27 smaller
components with two to four nodes. Far what concerns our applications we
will refer only to the giant component.

The giant component of PPI network has a significantly smaller number
of nodes and edges in comparison to a random network. The degree distri-
bution follows a power law behaviour typical of scale-free networks, with
an exponent of 1.947 [20].

4.24 Network Propagation and Parameters Setting

We applied the network propagation algorithm, equation 3.5, iteratively un-

til convergence, i.e. until is met the condition:
|Tp41 — 2] <ty (4.5)

where ¢, is the convergence threshold. We set it to 10° in line with previous
studies [5] [35].

The parameter «, as we have seen in the previous chapter, controls the
magnitude of the diffusion that is, it controls how much information tends
to be spread through the network versus how much is retained in the source
vertices. The role of network topology is emphasized for o < 0.5.

The optimal value of « is network dependent. Previous studies showed
that « in the range [0.5,0.7] determined consistent results. We decided to
set it to 0.7 in order to maximize the importance of the topology. Moreover,
a = 0.7is a a good trade-off between computational cost, which increases as
a approaches 1, and the magnitude of the diffusion.

The parameter ¢ in equation 3.6, weights the relative importance of final
state of a node, x*, with respect to its initial state x¢. Small values empha-
size the local hypothesis, while large values emphasize only the stationary
distribution state.

Bersanelli at Al. [5] analysed the performance of the network smooth-
ing index on simulated biological dataset. They find that when the biolog-
ical signal is particularly high, i.e. modules are composed of highly altered
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genes, the best performances are obtained for high values of ¢, while when
the modules are composed of a mixture of genes with strong and low varia-
tion, the NSI perform better for smaller values of e.

Since we did not know in advance how the modules of our dataset were
composed we chose ¢ in order to prioritize both sources and entities in net-
work proximity to them. In figures 4.5 and 4.6 we report the scatter plots
of the values of the initial quantities (X,) versus S, calculated for different
values of the parameter ¢, in leukemia dataset ( The scatter plots for the GIST
dataset are reported in Appendix)

We chose € such that the gene i with the highest network-free score (f%,,)
has approximately the same S, of the gene, j, that has an initial network-free
score, f%,, = 0, and assumes the highest S, after the propagation. As shown
in fig. 4.7 the dimension of the sub modules do not depend on e.
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FIGURE 4.5: Scatter plot with fsnr = X0 values versus S, calcu-
lated on Leukemia Somatic Mutation data for different values of the
parameter e.

At this point, we have to cut the list of genes ranked bysS,, in order to
identify the most significant submodules. We performed the network resam-
pling procedure described at the end of the previous chapter with a number
of permutation kyr = 500 and kyr = 1000. The graphs in fig.4.8 show the

network resampling p-value (pnr) calculated for each rank (n). Vertical lines
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FIGURE 4.6: Scatter plots with g = X0 values versus S, calcu-

lated on leukemia GE data for different values of the parameter e.

Up-requlated genes, fig.(a), and Down-requlated genes fig.(b), were
analysed separately.

indicate the top ranking genes selected to be part of the corresponding gene

modules.
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FIGURE 4.7: Network resampling p-value (pn r) versus the number
n of top list entities for kxyr = 500, varying e. As we can see the
dimension of the submudules depends weakly on the value of €

4.3 Results

In this section we discuss in detail the results obtained applying the prop-
agation algorithm to Acute Myeloid Leukemia dataset. We summarize the
properties of the detected disease modules and we assess their association to
leukemia by data mining of literature and by gene set enrichment analysis.

4.3.1 Acute Myeloid Leukemia Results

We applied the network propagation starting from three different source
vectors: fsu, gip™ and gi. As we said above, varying the parameter € we
tuned the overlap between network-free and network-based gene rankings.

In figures 4.11 and 4.11 are reported the disease modules identified in SM
and GE datasets carrying out the network resampling procedure to the list of

genes ranked in decreasing order with a number of permutation kyr = 500.
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FIGURE 4.8: Network resampling p-value (pygr) versus the num-

ber n of top list entities for Down-regulated (a) and up-requlated (b)

genes in leukemia. For Down-requlated genes we chose € = 5 while

for up-requlated ¢ = 0.8. kngr = 500. The dashed vertical lines
indicate the selected number of nodes.

As expected genes ranked according to S, form bigger and more con-
nected modules than genes ranked according to network-free quantities, see
figure A 4.

In the three dataset we identified a total of 59 disease modules that have
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FIGURE 4.9: Network resampling p-value (pn r) versus the number
n of top list entities in leukemia SM. kngr = 500. We chose € = 0.25.
The dashed vertical line indicates the selected number of nodes.
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FIGURE 4.10: GE up-regulated genes data. Comparison between
the first 175 genes ranked by Sy, fig. (a), and by the network-free
statistics g iy, As aspected, top ranking genes ordered by the network
based quantity are more connected and form bigger networks than

genes ordered by the network-free quantity

size between 2 and 112 nodes. Only 16 modules were composed of more

than 4 nodes. In table 4.2 we report the number of modules per size interval
in GE Up/Down regulated and SM data. For each dataset we find one main
disease module with more than 10 connected nodes (112 for GE Up-regulated,
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AML GE Up | GE Down | SM
number of modules 16 24 19
2<n<3 8 20 14
4<n<5hH 4 2 0
5<n <10 3 1 4
n > 10 1 1 1

TABLE 4.2: Overview of the module size in the SM, GE up-regulated
and GE down-regulated dataset, n is the number of nodes in the mod-
ule.

11 for GE down-regulated and 15 for SM). A total of 219 different genes occur
in the 16 modules with more than 4 nodes. Only a few genes are shared
among identified modules from different datasets.

Both SM and GE modules contain an high number of genes that are
highly cited in cancer and leukemia literature, some of which were specif-
ically prioritised using network-based quantities, table 4.3. For example,
FBXW?7 and RORC are two genes related to leukemia that had a very low
initial score and are high ranked due to their proximity to sources.

Moreover, a number of new genes, that is, genes that are not related to
leukemia, have been identified. This genes are likely to have a role in the
pathologies because of their proximity to the sources and could be interest-
ing candidates for further studies.

In order to identify the cellular pathway regulated by identified genes we
carried out set enrichment analysis. The results are summarized in the next

section.

4.3.2 Pathway Enrichment Analysis

In order to check our results pathway analysis was carried out using the
Gene Set Enrichment Analysis approach on the identified submodules.

Gene Set Enrichment is a statistical test based on the Hypergeometric distri-
bution. Let us recall the basic definitions. If NV is the total number of genes in
the network and K is the number of genes in a given pathway, that we call
S, then, if we have a module of n genes, the Hypergeometric distribution
gives the probability of finding & genes of our module in the pathway S by
pure chance:
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gene citations | citations in leukemia
TP53 13437 1385
FBXW7 641 117
CUL9 8 1
RORC 679 16
EPHA7 175 6
MYCBP2 47 3
EPHA10 20 1
AGAP1 22 1
FAM111A 14 -
PCDHA3 3 -
HNF4A 1025 1
PCDHA12 1 -
CTNNA3 80 1
PCDHA10 1 -

TABLE 4.3: Overview of SM main module genes literature citations.
We report the total number of citations and the number of citations
in leukemia literature.

() Ci)
()

A statistical test based on this distribution is performed to asses the sta-

P(X =k) = (4.6)

tistical significance of the overlap between genes from a known pathway
and a submodule identified by our algorithm. Since multiple comparisons
are done the p-value must be adjusted for false discovery rate.

A central role in pathway enrichment is played by the definition of the
metabolic pathways. Pathway collections structure, content and function-
ality usually vary in different sources and Gene Set Enrichment results are
strongly affected by the choice of the source database.

In order to overcome this problem we implemented a Python script able
to perform Pathway Enrichment Analysis on the three most famous databases
at the same time: Gene Ontology (GO), KEGG and REACTOME.

Our findings show that a significant number of the detected enriched
modules are related to a biological process involved in cancer genesis and
evolution. We focused our analysis on the 16 biggest modules. We report
the outcome of the analysis or the main three modules in figures 4.13, 4.14,
4.15. In table 4.4 we report the main pathways related to the others modules.
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FIGURE 4.11: Enriched Modules identified by the algorithm using
as source vector the list of Up-Regulated genes in Acute Myeloid
Leukemia GE. The network resampling procedure suggests to con-
sider the first 175 genes of the S, ranking list. As we can see there
are 16 different modules (8 of them contain more than 3 nodes). The
main module (red nodes) contains 112 genes. A huge number of them
were specifically prioritized by the network propagation algorithm.
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FIGURE 4.12: Enriched Modules identified by the algorithm using

as source vector the list of mutated genes in Acute Myeloid Leukemia.

The network resampling procedure suggests to consider the first 150

genes of the S, ranking list. As we can see there are 19 different

modules ( 5 of them contain more than 3 nodes). The main module
(red nodes) contains 15 genes.
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FIGURE 4.13: Gene Set Enrichment Analysis carried out on the
main enriched module in AML GE up-regulated genes dataset
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FIGURE 4.14: Gene Set Enrichment Analysis carried out on the
main enriched module in AML GE down-regulated genes dataset
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TABLE 4.4: Biological pathways associated to the detected enriched
modules for SM and GE AML datasets.
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Conclusions

The definition of a network region involved in a pathology is a challenging
issue due to the complexity of biological networks. Several approaches have
been proposed to tackle this challenge. The most effective ones exploit the
behavior of a random walker, i.e., the diffusion of a substance within the
protein-protein interactions network.

We have reviewed the theory underlying such processes that turn out to
be related to the network laplacian matrix. This relation allowed us to out-
line many interesting links to other physical systems defined on a network.
In particular, we have found that Fick’s law on network is strictly related to
the behavior of a system of coupled oscillator, while its connection to ran-
dom walk is not straightforward as in the continuous case. Also, we have
found an interesting connection between the transient states of diffusion and
spectral clustering. Further investigation of this topic can lead to a better in-
sight into diffusion techniques especially for what concerns their application
to network community detection.

Then, we have exploited a novel diffusion technique, recently proposed
in literature, for detection of protein-protein interactions network enriched
in altered genes. Starting from a set of query nodes, such as the set of altered
genes in a cancer, the aim of the method is to find a set of other genes related
to the query set and forming with it a connected subnetwork.

We have applied such technique, for the first time, to three datasets con-
taining Somatic Mutation and Gene expression profiles of different types of
cancer: Acute Myeloid Leukemia (AML), Gastrointestinal Stromal Tumor
(GIST) and Colon Adenocarcinoma (COAD).
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We have discussed in detail the results relative to AML. Our findings
show that the algorithm is able to prioritize genes that are strictly related
to the pathology and provides several other genes that are likely to have a
role in the pathologies, that is, genes that lie in network proximity to genes
already associated to AML or in regions of the PPI network enriched in al-
tered genes.

Moreover, the method allowed us to detect several connected compo-
nents for each dataset that are likely to be associated with the pathobiologi-
cal processes underlying the disease.

A deep investigation of biology underlying the identified disease mod-
ules was beyond the scope of this thesis. Nevertheless, we assessed, by
gene set enrichment analysis, their relation to known biological pathways
contained in three different database (Gene Ontology, KEGG and Reactome)
finding correlations to a significant number of cancer related pathways.

In future work it could be interesting to investigate the structure of the
single detected modules, for example by means of centrality and clustering
measures, and the relations among them as parts of the interactome to asses

causal relationships between alterations and pathobiological processes.
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A.1 AML GE-Down Results
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FIGURE A.1: Enriched Modules identified by the algorithm starting

from the list of down-Regulated genes in AML GE. The network re-

sampling procedure suggests to consider the first 145 genes of the S,

ranking list. As we can see there are 24 different modules (4 of them

contain more than 3 nodes). The main module (red nodes) contains
11 genes.
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A.2 GIST Results
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FIGURE A.2: Enriched Modules identified by the algorithm start-

ing from the list of up and down-Regulated genes in the comparison

between KIT and Q- GIST GE . The network resampling procedure
suggests to consider the first 200 genes of the S, ranking list.
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