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Abstract

Nella tesi viene studiata la dinamica stocastica di particelle non interagenti su network
con capacità di trasporto e immagazzinamento per nodo finite. L’argomento viene af-
frontato introducendo per il sistema un formalismo di seconda quantizzazione. Dopo
avere dimostrato l’effettiva conservazione del numero totale di particelle e che per il
sistema vale una relazione di bilancio dettagliato, vengono derivate le relazioni di On-
sager per il caso di un network con capacità di trasporto finita. Infine, viene ricavata
l’espressione esplicita della distribuzione stazionaria di probabilità per il caso di un net-
work con capacità finita di immagazzinamento per nodo.
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Introduction
The introduction of the statistical mechanics point of view to study the behaviour of
systems with a very large number of elements could be seen as one of the great con-
tributions of physics to scientific knowledge. Statistical mechanics models the dynamic
evolution of the macroscopic variables of the system, providing a connection between
the microscopic and the macroscopic dynamics. Although the price to obtain handable
and useful equations can be the unavoidable simplification of the problems at stake, the
advantage is the effectiveness in finding and explaining large scale and collective phe-
nomena. This kind of phenomena, due to the simplification procedure they come from,
reveals universal features depending on the topology and dimensionality of the system,
rather than on the specific nature of the microscopic processes occurring in it. Seeing
these considerations, the progress constituted by the introduction of graph theory into
statistical mechanics to represent the network of interaction occurring in the systems
results clear.

The origin of graph theory has to be dated back to a real world network, with the
Königsberg bridges problem solved by Euler in 1735. Although studied in the early
years of its history as a branch of mathematics, the concept of network began to be
applied with success in almost all the natural and human sciences, providing a way to
represent real world systems that entails the emergence of effects otherwise unaccount-
able. Moreover, graphs may also be regarded as a sort of more complicated lattices upon
which certain dynamics can have place; this is indeed the case e.g. of the random walks
on network, a topic which has a very broad ranges of research and applications.

In this thesis we study a system of many classicle particles performing random walks
on a network whose nodes have both a finite transportation capacity (FTC) and finite
storage capacity (FSC), meaning that only a finite number of particles can be sent from
one node to another connected node at a time and that up to a finite number of particle
can stack on the same node at the same time. The network we work with is a gen-
erally good network, being conncted and undirected and, once given, does not change
during the evolution of the system; it acts simply as a background upon which particles
move. Our main achievement is the development of a suitable field theory formalism to
describe this kind of double treshold classical systems. We take advantages of the opera-
torial commutation rules provided by the formalism to account of the non-commutativity
of particle exchanges on the network. Although in the presented models we assume par-
ticle conservation; however the extension of the theory to non conservative processes is
straightforward and the second quantization formalism, in order to work with variable
number of particles, seems to be even more convenient.
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Chapter 1

An overview of random walks on
networks

In this chapter we introduce the topics that constitute the background layer behind the
thesis: random walks and networks. We give a brief overview of the principal definitions
in graph theory and random walks and underline the main features of interest in the
subject made by the union of both: the random walks on graphs. Indeed, random walks
and graph theory are deeply related fields, since, as we shall see, many of the properties
of the random walk on a graph can be expressed using results of the spectral graph
analysis applied to the transition matrix of the process.

Throughout this chapter, we will follow mainly [1], [2], [3] and [4].

1.1 On networks
Usually represented by means of diagrams, networks are ensembles of points, called
nodes, connected by lines, or links. In order to introduce networks as formally defined
mathematical structures, we shall write in terms of graph, vertices and edges rather than
networks, nodes and links.

Let G be a finite set. The adjacency is a binary relation on G :

i←→ j,

with i ∈ V , j ∈ U and V, U ∈ G . Thus, adjacency relation defines a collection of ordered
pairs E ⊆ V ×U . If V ⊆ G is the set of identical elements called vertices and E ⊆ V ×V
is a collection of couple of elements called edges defined by adjancency relation, we iden-
tify the graph as G ≡ G(V,E), where V therefore denotes the set of vertices and E the
set of edges.
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The complement G of a graph G is the graph defined on the same set of vertices with
the set of edges defined as the edges not present in G.

Graphs can be naturally represented by matrices; to every graph one can associate an
adjancency operator A. Let F (V ) ≡ { f : V → R } be the vector space of real functions
on V and { e1, e2, . . . , eM } its canonical orthonormal basis, where |V | = M is the number
of vertices. The inner product of f and g ∈ F (V ) is defined as

(f, g) ≡
∑
i∈V

f(i)g(i).

The adjacency matrix A is a M ×M matrix which gives a representation , with respect
to the canonical basis, to the adjacency operator A defined by

(A f)(i) =
∑
(j,i)

f(j),

where f ∈ F (A) and (j, i) ∈ E. Once the nodes of G are enumerated, A and A are
uniquely defined up to permutation of rows and columns.

The connection degree of the i-th node is the number of links attached to it and it
is formally defined as

di ≡
M∑
j=1

Aij.

Prior to go further introducing the concept of Markov chains, we shall mention the
features of certain peculiar kind of networks one often works with:

• In a connected graph there are not isolated vertices i.e. nodes without links at-
tached to them, meaning that one can go from any node to any other node of the
network through existing links.

• In a simple graph there can be soley single edges between nodes; multiple edges
between a couple of nodes are forbidden, as well as nodes connected to themselves
in loops. Therefore, the adiancency matrix of a simple graph has all its diagonal
entries equal to 0: Ajj = 0.

• In an undirected graph the nodes are connected by links without any orientation
i.e. in a double direction; in the opposite case of an oriented network, one may e.g.
jump from j-th node to the k-th but the opposite move is not guaranteed. The
adjacency matrix of an undirected graph is simmetric: Aij = Aji.
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• In a weighted graph the elements of the adjacency matrix are real-valued functions
ω : E → R assigning to every link (i, j) a weight ωij. Connection degree of a
weighted graph is given by the sum of the weights of all the links it is attached to:

di =
M∑
j=1

ωij.

However, in a simple and non-weighted network, all the adjacency matrix entries
differing from 0 are equal to 1: Aij ∈ { 0, 1 }.

• In a regular graph all nodes have exactly the same number of links attached to
them, that means d1 = d2 = · · · = dM = d constant making the network similar to
a true lattice. Of course, such a network is also connected.

Concerning our work, we are going to deal with good networks, i.e. networks which are
simple, connected, undirected and non-weighted. In such a case, the adjacency matrix
A is symmetric and its elements are written as

Aij ≡ 1ij =

{
1 if (i, j) ∈ E,
0 otherwise.

1.2 On markov chains
A random walk may be represented as a Markov chain i.e. a stochastic processes whose
evolution depends solely on the present state and not on the past.
Given a probability space E, a measurable space X and a totally ordered set I, a stochas-
tic process is a collection of X-valued random variables on E labelled by I:

{ xt | xt ∈ X, t ∈ I } .

If the set X is finite the stochastic process is said to be finite, and the X-valued random
variables can take only a finite number of values. The index t is the time of the process,
that evolves assigning different values to xt and xt+1 from the set of states X according
to some probability distribution. The stochastic process assigns a transition probability
to every possible change of variable value. We write the transition probability for the
system to evolve from the state l to the state k as the element Pkl of the matrix P, called
transition matrix. We have a Markov chain if

Pkl = Pr(xt+1 = k|xt = l)

= Pr(xt+1 = k|xt = l, xt−1 = lt−1, . . . , xt0 = l0),
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A diagram depicting a small graph.
Despite having only ten nodes, it is
a valuable exemple of how a good
graph is: simple, connected, undi-
rected and non-weighted.

where k, l, lt−1, . . . , l0 ∈ X. As it seems from the former equality, the conditional prob-
abilities Pkl do not involve l0, . . . , lt−1, that represents the absence of memory of the
process. If the transition probabilities do not depend on t the Markov chain is said to be
homogeneous. If N is the number of possible states in X i.e. the number of states the
system can be found in, our transition matrix P therefore is, by construction, a N ×N
matrix that comes out to be a stochastic matrix, i.e. a matrix whose elements satisfy
the properties:

Pkl ≥ 0, ∀ k, s ∈ X, and
N∑
k=1

Pkl = 1.

We say that a state k is accessible from the state l if

∃n ≥ 1 ∈ N : (Pn)kl > 0.

The time evolution of a Markov chain described by the transition matrix is ruled by the
Chapman-Kolmogorov equation:

Pij =
N∑
k=1

(Pn−t)ik(Pt)kj, t ∈ { 1, 2, . . . , n1 } . (1.1)
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We will employ now on the Dirac notation, representing a column vector ~a with the ket
symbol |a〉 and a row ~b vector with the bra symbol 〈b| ·; the inner product in the vector
space is then represented by the braket contraction between ket and bra, as 〈b | a〉. The
probability distribution of xt can be arranged in a column vector as

|p(t)〉 ≡


p1(t)
p2(t)
...

pN(t)

 =


Pr(xt = l1)
Pr(xt = l2)

...
Pr(xt = lN)

 ,

and it evolves according to P as:

|p(t+ 1)〉 = P |p(t)〉 = Pt |p(0)〉 .

We say that a Markov chain is stationary if it is homogeneous while having the same
distribution ps for any t ∈ Z. In matrix notation this is equivalent to say that the
distribution ps is the right eigenvector of the transition matrix P with eigenvalue 1:

P |ps〉 = 1 |ps〉 .

Being P a stochastic matrix, it always has an eigenvalue 1. Indeed

N∑
i=1

Pij = 1 =⇒ 〈1|P = 〈1| ,

where 〈1| is a row vector with all entries equal to 1. Unfortunately, the positivity if the
right eigenvector is not guaranteed.

1.3 Mixing them up: random walks on networks
Let G ≡ G(V,E) be a simple, connected, undirected and unweighted graph with M
nodes and m links. Consider a random walk on this good graph. Supposing to lie, at
the start, on the node i, to whom we may assign the label v0 writing i = v0. We sup-
pose then to randomly choose one of the nodes adjacent to v0, with d(v0) different but
equally probable choices, and jump on it, say the j-th node, giving to it the label j = v1.
Then, as a second time step, we can choose at random another node adjacent to j and
so on. . . If at the t-th step we are at the node labelled vt, we move to a node adjacent
to it with probability 1

d(vt)
. Clearly, this sequence of random nodes { vt | t = 0, 1, 2, . . . }

constructed in this way is a Markov chain.

The node v0 may be fixed, but may be drawn from some initial distribution |p0〉 ≡
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|p(t0 = 0)〉 instead. Our random walk induces on the nodes a probability distribution
that we represent as a column vector with components pi(t):

|p(t)〉 =


p1(t)
p2(t)
...

pM(t)

 =


Pr(vt = 1)
Pr(vt = 2)

...
Pr(vt = M)

 .

Being M the number of nodes of the network, the transition matrix is now a M ×M
matrix whose elements are the transition probabilities between different nodes. Dealing
with a good graph, at every time step the random walker choose a link of the node to
go trough with equal probability. Thus

Pij = πij =
1ij
dj
,

making the transition matrix P to be related to the adjancency matrix A of the underlying
graph by the relation

P = D−1A, (1.2)

where D is a diagonal matrix having the connections ordinately deployed in its entries
as:

D ≡


d1 0

d2

. . .
0 dM


Thanks to Kolmogorov equation, the evolution of the system is given by

|p(t)〉 = Pt |p(0)〉 .

It follows that the probability ptij that, starting at j, we reach the i-th node in t time
stepsis given by the (i, j)-entry of the transition matrix:

ptij = (Pt)ij.

The probability distributions at different time |p0〉, |p1〉, . . . are of course generally differ-
ent. We say that the distribution |p0〉 is stationary, or a steady state, if |pt〉 = |p0〉 ≡ |ps〉
for all t ≥ 0. A steady distribution, induced by a random walk on the good graph
G(V,E) reads

|ps〉 =
1

2m


d1

d2
...
dM

 ,
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with |E| = m. It is immediate to see that

M∑
j=1

πijp
j
s =

M∑
j=1

1ij
dj

dj
2m

=
di

2m
=⇒ P |ps〉 = |ps〉 .

The steady state satisfies a detailed balance condition:

πij p
j
s = πji p

i
s, ∀ i, j ∈ V, (1.3)

meaning that the frequency of the passage j → i is equal to that of the i → j one. In
Markovian terms this is equivalent to the time-reversibility of the stochastic process and
in terms of the graphs to the non-weighted connected nature of it. In our work this latter
consideration plays an important role to determine the behaviour of an unknown steady
state, and therefore we discuss detailed balance in a section dedicated. If the system
is in a steady state and we are sitting on an edge and the random walk just passed
through it, then the expected number of steps before it passes through it in the same
direction again is 2m. There is a similar facts for nodes: if we are sitting on the node
i and the random walk has just visited this node, then the expected number of steps
before it returns to it is 2m

di
. I G is regular, the return time is justM , the number of nodes.

One of the most important feature of the stationary distribution is that if the graph
G is connected and non-bipartite, then the distribution of vt tends to a stationary distri-
bution as t → ∞. In order to show this feature, we shall outline the analogies between
the spectral properties of the transition matrix and the underlying graph.

Let G(V,E) be a graph with |V | = M and |E| = m. The Laplacian of G is defined
to be the matrix whose elements are

Lij ≡


di if i = j,

−1 if i and j are adjacent,
0 otherwise.

so that we can write L ≡ D − A, that is

L =


d1 0

d2

. . .
0 dM

−


0 11j

0
. . .

1Mj 0

 =


d1 −11j

d2

. . .
−1Mj dM

 .

We now define the rescaled Laplacian LR as

LR ≡ D−
1
2 LD−

1
2 ,
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that means

LR = D−
1
2 (D − A)D−

1
2 = I −D−

1
2AD−

1
2 =


1 − 11j√

didj

1
. . .

− 1Mj√
dMdj

1

 .

Being, by construction, D and A symmetric matrices, both L and LR are symmetric
too. Thus, LR has always M real eigenvalues. These M eigenvalues, say λi, are always
non-negative: λi ≥ 0 for all i. In fact, taking an eigenvector |k〉 with eigenvalue λk:

〈k|LR |k〉 = λk 〈k | k〉
〈k|D−

1
2LD−

1
2 |k〉 = λk 〈k | k〉

〈vk|L |vk〉 = λk 〈k|D
1
2D

1
2 |k〉 ,

where |vk〉 ≡ D−
1
2 |k〉 and 〈vk| ≡ 〈vk|D−

1
2 . Thus, we can write:

λk =
〈vk|L |vk〉
〈k|D 1

2D
1
2 |k〉

=

∑
ij

{
vki (diδij)v

k
j − vki (1ij)v

k
j

}∑
i

(
vki
)2
di

=

∑
i

(
vki
)2
di
∑

ij 2vki v
k
j∑

i

(
vki
)2
di

=

∑
ij 2
(
vki
)2
di −

∑
ij

(
vki − vkj

)2∑
i

(
vki
)2
di

=

∑
ij

(
vki − vkj

)2∑
i

(
vki
)2
di

≥ 0,

proving that λk ≥ 0 for any k. Furthermore λk = 0 is a possible solution, making vi to
be constant: ∑

ij

(
vki − vkj

)2
= 0 =⇒ vki = vkj , ∀(i, j).

Keeping this in mind, we shall re-lebel our real eigenvalues in a non-decreasing order as

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λM−1,

and write the spectral decomposition

LR =
M−1∑
k=0

|k〉 〈k| .
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It is an easly calculation to prove that

M−1∑
k=0

λk ≤M,

with the equality holding if and only if the graph G has no isolated vertices. Due to this
and the fact that λ0 = 0, another series of disequalities holds:

(M − 1)λ1 ≤
M−1∑
i=1

λi ≤M,

that implies that

λ1 ≤
M

M − 1
.

Having that
(a− b)2 ≤ 2 (a2 + b2), ∀ a, b ∈ R,

means that, summing over the node indeces’ couples:∑
(ij)

(
vki − vkj

)2 ≤ 2
∑
(ij)

[(
vki
)2

+
(
vkj
)2]

= 2
∑
ij

1ij
(
vki
)2

= 2
∑
i

(
vki
)2
di,

and thus

λk =

∑
ij

(
vki − vkj

)2∑
i

(
vki
)2
di

≤ 2,

meaning that λk ∈ [0, 2] ∀k ≥ 1 and λ0 = 0 or, summing up the results:
λk ∈ R ∀k ∈ { 0, 1, 2, . . . ,M − 1 }
0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λM−1 ≤ 2

λ1 ≤ M
M−1

.

Given that P = AD−1, we can write

P = D
1
2 (I −LR)D−

1
2 =⇒ L = I −D−

1
2PD

1
2 ,

and try to gather information about P eigenvalues:

〈k|LR |k〉 ≡ 〈k| (I −D−
1
2 PD

1
2 ) |k〉 = λk 〈k | k〉

⇐⇒ 〈k|D−
1
2 PD

1
2 |k〉 = (1− λk) 〈k | k〉

⇐⇒ 〈k|D−
1
2 PD

1
2 |k〉 = (1− λk) 〈k|D−

1
2D

1
2 |k〉 ,
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recognizing that it be can written that |ψk〉 ≡ D
1
2 |k〉 and 〈χk| ≡ 〈k|D−

1
2 we thus obtain

the equality 〈
χk
∣∣P ∣∣ψk〉 =

(
1− λk

) 〈
χk
∣∣ψk〉 ,

meaning that P has M real eigenvalues, just as LR. Named φk, they appear to satisfy
the relations: 

φk = 1− λk ∈ R,
λk ≤ 2 =⇒ |φk| ≤ 1,

1 = φ0 ≥ φ1 ≥ φ2 ≥ · · · ≥ φM−1.

Since P is not symmetric its right and left eigenvalues are not just one the trasposted
conjugated of the other, and the spectral decomposition reads

P =
M−1∑
i=0

φi |ψi〉 〈χi| .

The eigenvalue φ0 = 1 is particulary valuable to us, corresponding to λ0 = 0 and to the
steady state for the random walk of a single particle. Indeed, when the M ×M matrix
P acts on a M -dimensional vector space (e.g. the vector space of the positions occupied
by a single particle undergoing a rondom walk on the network) the components of |ψ0〉,
the quantities

ψ0
i ≡ 〈i |ψ0〉 ,

where the vectors 〈i| are the row vector with the i-th entry equal to 1 and the others
equal to 0 are the single probabilities of the steady distribution. We can then make use
of the normalization condition to write:

M−1∑
i=0

ψ0
i =

M−1∑
i=0

〈i |ψ0〉 = 1, (1.4)

which, in turn, implies that we can write the ψ0
i probabilities as

ψ0
k =

dk
2m

.

We are now ready to demonstrate that if the network is both connected and non-bipartite
any given probability distribution will converge to the steady one in the long time limit.
The two mentioned conditions are verified by checking the Laplacian eigenvalues λk:

1. λ1 > 0 if the network is connected;

2. |λM−1| < 2 if it is non-bipartite.
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While, concerning the eigenvalues pf the transition matrix P, the two hypotesis are
satisfied if

|φi| < 1, ∀ i > 0.

Indeed, given any initial state |f(0)〉 at time t = 0:

|f(t)〉 = Pt |f(0)〉

=
M−1∑
k=0

φtk |ψk〉 〈χk | f(0)〉

= |ψ0〉 〈χ0 | f(0)〉+
M−1∑
k=1

φtk |ψk〉 〈χk | f(0)〉 .

Being |φi| < 1 if i > 0 and 〈χ0 | f(0)〉 =
∑M

i=1 fi(0) = 1, it follows immediatly that

lim
t→∞
|f(t)〉 = |ψ0〉 . (1.5)

This result can be regarded to be very important, as it guarantees the relaxation to
steady stade by employing just the spectral properties of the graph.

Moreover, it is possible to relate the relaxing time scale to the second higher eigenvalue
of the transition matrix. Indeed:

ε ≡ |ps − f(t)|

=

∥∥∥∥|ψ0〉 −
(
|ψ0〉 〈χ0 | f(0)〉+

M−1∑
k=1

φtk |ψk〉 〈χk | f(0)〉
)∥∥∥∥

=

∥∥∥∥M−1∑
k=1

φtkf(χk) |ψk〉
∥∥∥∥ ≤ φtmax

∥∥∥∥M−1∑
k=1

f(χk) |ψk〉
∥∥∥∥

≤ φtmax ' e−φmaxt,

where φmax ≡ max{|φi| : i > 1}. We can thus extimate the relaxing time scale as

τrelax ∼ lnφmax.
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Chapter 2

On the 1-FTC+q-FSC model

Here we show and discuss the main properties of our stochastic dynamical model on a
particular double treshold network, i.e. a network where every node can send just one
particle per time step (1-FTC) and up to q particles can stack on a node at once (q-FSC).
We approach the problem of N particles randomly walking across such a network in an
operatorial way, adopting a second quantization formalism to describe movements of the
particle on the network as annihilation-creation processes among nodes. We introduce
a suitable ansatz to write a stationary state that satisfy an eigenvalue equation unless
boundary troubles arose, and derive the corresponding steady probability distribution.
Finally, we demonstrate that our dynamics does conserve the overall number of particles.

2.1 Foundations of the model
The network state |~n〉 of N particles deployed along the M nodes of the network is
defined as the tensor product of M base states:

|~n〉 ≡ |n1 n2 . . . nk . . . nM〉 ≡ |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nk〉 ⊗ · · · ⊗ |nM〉 .

The particles-across-nodes configuration ~n can be quantum-mechanically regarded as a
vector lying in a M -dimensional space and having a fixed lenght equal to N :

M∑
i=1

ni = N =⇒ |~n| = N,

from this time one we shall account for this by writing that ~n ∈ Γ, where

Γ ≡

{
~n ∈ ZM

∣∣∣∣∣
M∑
i=1

= N

}
.
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The inner product between base states satisfies the orthogonality relation

〈~m | ~n〉 ≡ δ~n~m, ∀~n, ~m ∈ Γ,

while the completeness relation, also known as decomposition of unity, reads:∑
~n∈Γ

|~n〉 〈~n| · = I .

In order to project any generic state |ϕ〉 on the multiparticle state |~m〉, one has to write:

〈projection ofϕ state on ~m〉 ≡ 〈~m | ϕ〉 ≡ pϕ(~m).

The expectation value for a generic observable-operator O while our sistem is in the state
φt is defined to be 〈

O
〉
φt
≡
∑
~n∈Γ

〈~n| O |φt〉

=
∑
~n∈Γ

∑
~m∈Γ

〈~n| O |~m〉 〈~m | φt〉

=
∑
~n∈Γ

∑
~m∈Γ

〈~n| O |~m〉 pφt(~m).

Supposing that any node of the network could send just one particle per time step (1-
FTC) and that no more than q particles could stack on each node at a time (q-FSC), we
define the peculiar creation and destruction operator Ci and Bj by their action on the
multiparticle vectors |~n〉:

Bj |~n〉 = θ(nj) |~n− 1j〉 ≡ θ(nj) |n1, n2, . . . , nj−1, nj − 1, nj+1, . . . , nM〉 ,
Ci |~n〉 = θ(q − ni) |~n+ 1i〉 ≡ θ(q − ni) |n1, n2, . . . , ni−1, ni + 1, ni+1 . . . , nM〉 .

The commutator operation between Ci and Bj reads:[
Ci,Bj

]
|~n〉 ≡ Ci Bj |~n〉 − Bj Ci |~n〉

= Ci θ(nj) |~n− 1j〉 − Bj θ(q − ni) |~n+ 1i〉

=

{
θ(q − ni)θ(nj) |~n+ 1i − 1j〉 − θ(q − ni)θ(nj) |~n+ 1i − 1j〉 = 0 if i 6= j

θ(nj)θ(q − nj + 1) |~n〉 − θ(nj + 1)θ(q − nj) |~n〉 if i = j

= δij

{
θ(nj)θ(q − nj + 1)− θ(nj + 1)θ(q − nj)

}
|~n〉

=⇒
[
Ci,Bj

]
|~n〉 = δij

{
θ(nj)θ(q − nj + 1)− θ(nj + 1)θ(q − nj)

}
|~n〉 .
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We remark that, being Γ a subspace of ZM , we haven’t prevented by axiom the
nodes’ occupation numbers nk to reach values greater than q as well as to go down
below 0 assuming negative values. These situations will be ruled out by our dynamics.
Nevertheless, one could assume from the start to work with physical states (i.e. states
~n : nk ∈ [0, q]∀k ∈ { 1, 2, . . . ,M }) from the very start. If so, the above commutator
between Ci and Bj reduces to[

Ci,Bj
]
|~n〉 = δij

{
θ(nj)− θ(q − nj)

}
|~n〉 .

2.2 The Liouville dynamical equation
Let P be the transition matrix i.e. the stochastic NΓ × NΓ matrix so that its matrix
elements return the conditioned probabilities after a ∆t finite time step:[

P(∆t)
]
~n,~m

= 〈~n|P(∆t) |~m〉 = p(~n | ~m; ∆t),

where ∑
~n∈Γ

[
P(∆t)

]
~n,~m

= 1,
[
P(∆t)

]
~n,~m
≥ 0.

The action of P on a generic state |ψ(t)〉 is understood to be the finite time step ∆t
evolution

P(∆t) |ψ(t)〉 = |ψ(t+ ∆t)〉 .
Since want our dynamical equation to take the quantum-mechanical shape

∂

∂t
|ψ(t)〉 = L |ψ(t)〉 ,

it follows that, after finite emount of time ∆t,

|ψ(t+ ∆t)〉 = exp
[
L∆t

]
|ψ(t)〉 .

This leads to the exponential representation of P by means of the Liouville operator:

P(∆t) = exp
[
L∆t

]
,

meaning that, in order to let P be truly stochastic, L has to be a Laplacian operator, i.e.∑
~m∈Γ

〈~m| L |~n〉 = 0 ⇐⇒
∑
~m∈Γ

〈~m|P |~n〉 = 1.

We define our Liouville continuous time evolution operator as

L ≡ 1

M

M∑
i=1

M∑
j=1

πij Ci Bj −
1

M

M∑
i=1

M∑
j=1

πijΘ
q
ij,
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where the operators Θq
ij are defined by their action on multiparticle network states:

Θq
ij |~n〉 = θ(nj)θ(q − ni) |~n〉 .

Is this chosen Liouville operator really Laplacian? Or, to write it differently, are we
allowed to write the relation ∑

~m∈Γ

〈~m| L |~n〉 = 0 ?

Let us check the answer by performing some simple computations:∑
~m∈Γ

〈~m| L |~n〉

=
1

M

∑
ij

πij
∑
~m∈Γ

〈~m| Ci Bj |~n〉 −
1

M

∑
ij

πij
∑
~m∈Γ

〈~m|Θq
ij |~n〉

=
1

M

∑
ij

πijθ(nj)θ(q − ni)
∑
~m∈Γ

〈~m |~n+ 1i − 1j〉+

− 1

M

∑
ij

πijθ(nj)θ(q − ni)
∑
~m∈Γ

〈~m |~n〉

=
1

M

∑
ij

πijθ(nj)θ(q − ni)
∑
~m∈Γ

δ ~m~n+1j−1i
− 1

M

∑
ij

πijθ(nj)θ(q − ni)
∑
~m∈Γ

δ ~m~n

=
1

M

∑
ij

πijθ(mj + 1)θ(q −mi + 1)− 1

M

∑
ij

πijθ(mj)θ(q −mi)

=
1

M

M∑
i=1

M∑
j=1

πij

{
θ(nj + 1)θ(q − ni + 1)− θ(nj)θ(q − ni)

}
.

To ask the question whether the latter quantity is equal to 0 or not is the same thing as
to ask if the two double summations are equal:∑

ij

πijθ(nj + 1)θ(q − ni + 1) =
∑
ij

πijθ(nj)θ(q − ni) ?

The answer is that they comes out to be equal if we take into account the effect that
our dynamical bonds rule out the possibility for non-physical states to be dynamically
created. An explanation follows: although at a first glance it may seem that the LHS
could be equal or greater than the RHS (more relaxed θ conditions meaning more non-
zero terms in the summation), every one of those term is balanced by one in the opposite
site, being them equal to πij or 0. Actually, if the k-th node has no particles at all, it
means it is impossible to steal a particle from it making both correspective terms equal
to 0; the term on the RHS because of θ(nk = 0) = 0 and the one on the LHS because
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it would otherwise admitt a non-physical state our dynamics doesn’t allow to exist. An
analogue remark could be done for the opposite case of already full nodes (e.g. nl = q):
the RHS term vanishes being θ(q − nl) equal to 0, while the LHS term is related to a
non-physical (and thus not allowed) state.

We have thus shown that the Liouville operator is a Laplacian one; this automatically
makes P to be a stochastic matrix:∑

~m∈Γ

[
L
]
~m,~n
≡
∑
~m∈Γ

〈~m| L |~n〉 = 0 =⇒
∑
~m∈Γ

[
P
]
~m,~n

= 1.

2.3 Back to the classical master equation
The Liouville dynamical equation for the time evolution of the state |φ(t)〉 is understood
to be:

∂

∂t
|φ(t)〉 = L |φ(t)〉

=
1

M

M∑
i=1

M∑
j=1

πij Ci Bj |φ(t)〉 − 1

M

M∑
i=1

M∑
j=1

πijΘ
q
ij |φ(t)〉 .
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Projecting both sides on the multiparticle state |~n〉, then exploiting the decomposition
of unity, we write:

∂

∂t
〈~n | φ(t)〉 =

1

M

M∑
i=1

M∑
j=1

πij 〈~n| Ci Bj |φ(t)〉 − 1

M

M∑
i=1

M∑
j=1

πij 〈~n|Θq
ij |φ(t)〉

⇐⇒ ∂

∂t
pφ(~n) =

1

M

M∑
i=1

M∑
j=1

πij
∑
~m∈Γ

〈~n| Ci Bj |~m〉 〈~m | φ(t)〉+

− 1

M

M∑
i=1

M∑
j=1

πij
∑
~m∈Γ

〈~n|Θq
ij |~m〉 〈~m | φ(t)〉

=
1

M

∑
ij

πij
∑
~m

θ(mj)θ(q −mi) 〈~n | ~m+ 1i − 1j〉 pφ(~m)+

− 1

M

∑
ij

πij
∑
~m

θ(mj)θ(q −mi) 〈~n | ~m〉 pφ(~m)

=
1

M

∑
ij

πij
∑
~m

θ(mj)θ(q −mi)δ
~n
~m+1i−1j

pφ(~m)+

− 1

M

∑
ij

πij
∑
~m

θ(mj)θ(q −mi)δ
~n
~mpφ(~m)

=
1

M

∑
ij

πijθ(nj + 1)θ(q − ni + 1)pφ(~n− 1i + 1j)+

− 1

M

∑
ij

πijθ(nj)θ(q − ni)pφ(~n).

Finally, the obtained master equation reads:

∂

∂t
pφ(t) =

1

M

M∑
i=1

M∑
j=1

πijθ(nj + 1)θ(q − ni + 1)pφ(~n− 1i + 1j)+

− 1

M

M∑
i=1

M∑
j=1

πijθ(nj)θ(q − ni)pφ(~n).

2.4 The steady state and the eigenvalues equation
Let the steady state |Ψq

s〉 be defined by this ansatz:

|Ψq
s〉 ≡

∑
~n∈Γ

C−1
N (ψ)

M∏
k=1

ψnkk C
nk
k |0〉 .
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If we remember that, ∀k ∈ {1, 2, . . . ,M},

Cnkk |0〉 = Ck Ck . . . Ck︸ ︷︷ ︸
nk times

|0〉 θ(q)θ(q − 1k)θ(q − 2k) . . . θ(q − (nk − 1)) |0 0 . . . nk . . . 0〉

= θ(q − nk + 1) |. . . nk . . . 〉 ,

we’ll recognize that, adding a Ci operator to the i-th node:

Ci
M∏
k=1

ψnkk C
nk
k |0〉 = Ci

M⊗
k=1

ψnkk θ(q − nk + 1) |nk〉

=
⊗
k 6=i

ψnkk θ(q − nk + 1) |nk〉 ⊗ ψnii θ(q − ni)θ(q − ni + 1) |ni + 1〉

=
⊗
k 6=i

ψnkk θ(q − nk + 1) |nk〉 ⊗ ψnii θ(q − ni) |ni + 1〉 ;

while, adding a Bj to the j-th node:

Bj
M∏
k=1

ψnkk C
nk
k |0〉 = Bj

M⊗
k=1

ψnkk θ(q − nk + 1) |nk〉

=
⊗
k 6=j

ψnkk θ(q − nk + 1) |nk〉 ⊗ ψ
nj
j θ(q − nj + 1)θ(nj) |nj − 1〉 .

Knowing that
∂

∂t
|Ψq

s〉 = L |Ψq
s〉 = 0 ⇐⇒ Lin |Ψq

s〉 = Lout |Ψq
s〉 ,
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let us compute and compare both LHS and RHS of the latest equality:

LHS = Lin |Ψq
s〉 ≡

1

M

∑
ij

πij Ci Bj |Ψq
s〉

=
1

M

∑
ij

πij
∑
~n∈Γ

C−1
N

M∏
k=1

ψnkk θ(q − nk + 1) Ci Bj |~n〉

=
1

M

∑
ij

πij
∑
~n∈Γ

C−1
N

M∏
k=1

ψnkk θ(q − nk + 1)θ(q − ni)θ(nj) |~n− 1j + 1i〉

=
1

M

∑
ij

πij
∑
~n∈Γ

C−1
N

∏
k 6=i,j

ψnkk θ(q − nk + 1)×

× ψnii θ(q − ni + 1)θ(q − ni)ψ
nj
j θ(q − nj + 1)θ(nj) |~n− 1j + 1i〉

=
1

M

∑
ij

πij
ψj
ψi

∑
~n∈Γ

C−1
N

∏
k 6=i,j

ψnkk θ(q − nk + 1)×

× ψni+1
i θ(q − ni + 1)θ(q − ni)ψ

nj−1
j θ(nj)θ(q − nj + 1)θ(q − nj + 2) |~n− 1j + 1i〉

=
1

M

∑
ij

πij
ψj
ψi
θ(nj)θ(q − nj + 1)×

×
∑
~n∈Γ

C−1
N ψni+1

i θ(q − ni)ψ
nj−1
j θ(q − nj + 2)

∏
k 6=i,j

ψnkk θ(q − nk + 1) |~n− 1j + 1i〉

=
1

M

∑
ij

πijθ(nj)θ(q − nj + 1)
ψj
ψi
|Φq

s〉 ,

where

|Φq
s〉 =

∑
~n∈Γ

C−1
N ψni+1

i ψ
nj−1
j θ(q − ni)θ(q − nj + 2)

∏
k 6=i,j

ψnkk θ(q − nk + 1) |~n− 1j + 1i〉 .
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On the other hand:

RHS = Lout |Ψq
s〉 ≡

1

M

∑
ij

πijΘ
q
ij |Ψq

s〉

=
1

M

∑
ij

πij
∑
~n∈Γ

C−1
N

M∏
k=1

ψnkk θ(q − nk + 1)Θq
ij |~n〉

=
1

M

∑
ij

πijθ(nj)θ(q − ni)
∑
~n∈Γ

C−1
N

M∏
k=1

ψnkk θ(q − nk + 1) |~n〉︸ ︷︷ ︸
≡|Ψqs〉

=
1

M

∑
ij

πijθ(nj)θ(q − ni) |Ψq
s〉 .

So, we have found LHS and RHS to be:

Lin |Ψq
s〉 =

1

M

∑
ij

πijθ(nj)θ(q − nj + 1)
ψj
ψi
|Φq

s〉 ,

Lout |Ψq
s〉 =

1

M

∑
ij

πijθ(nj)θ(q − ni) |Ψq
s〉 .

It may be easily noticed that:

• if the various θ(nj), θ(q− ni) and θ(q− nj + 1) don’t cause any trouble, then both
LHS and RHS are equal to |Ψq

s〉 with eigenvalue 1;

• |Φq
s〉 = |Ψq

s〉 being, by construction, summed over all ~n ∈ Γ.

2.5 The steady distribution
Let pqs(~n) be the steady distribution, i.e. the projection of the steady state |Ψq

s〉 on the
state ~n. According to our model’s formalism:

pqs(~n) ≡ 〈~n |Ψq
s〉

=
∑
~m

C−1
N

M∏
k=1

ψmkk θ(q −mk + 1) 〈~n | ~m〉

=
∑
~m

C−1
N

M∏
k=1

ψmkk θ(q −mk + 1)δ~n~m

pqs(~n) = C−1
N

M∏
k=1

ψnkk θ(q − nk + 1).
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Of course, a good steady distribution has to be, before all else, a physical one. Henceforth,
we require the node occupation numbers of a steady distribution to be physical, i.e. non-
negative: ni ≥ 0 for any i. We may thus re-define pqs(~n) as

pqs(~n) :

{
pqs(~n) = 〈~n | Ψq

s〉 ,
nk ≥ 0, ∀ k ∈ { 1, 2, . . . ,M } .

It will prove to be useful to know how one can correlate the steady distributions for
configurations differing solely by the exchange of one particle. We recommend however
to pay attention to the requisite for the steady distribution to be physical, e.g. by means
of an-added-by-hand θ(nk) in the case of particle subtraction from the node k-th. Thus,
the distribution for the configuration ~m − 1a is correlated to that for the configuration
~m as:

pqs(~m− 1a) ≡ θ(ma) 〈~m− 1a | Ψq
s〉

= θ(ma)
∑
~n

C−1
N

M∏
k=1

ψnkk θ(q − nk + 1) 〈~m− 1a | ~n〉

= θ(ma)
∑
~n

C−1
N

M∏
k=1

ψnkk θ(q − nk + 1)δ~n~m−1a

= θ(ma)C
−1
N

∏
k 6=a

ψmkk θ(q −mk + 1)ψma−1
a θ(q − (ma − 1) + 1)︸ ︷︷ ︸

=θ(q−ma+2)

=
θ(ma)

ψaθ(q −ma + 1)
C−1
N

M∏
k=1

ψmkk θ(q −mk + 1)

=
1

ψa θ(q −ma + 1)
pqs(~m),

where we have used the equality

θ(q −ma + 2)θ(q −ma + 1) = θ(q −ma + 1).
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In opposite case i.e. if we add a particle to the a-node:

pqs(~m+ 1a) ≡ 〈~m+ 1a | Ψq
s〉 =

∑
~n

C−1
N

M∏
k=1

ψnkk θ(q − nk + 1) 〈~m+ 1a | ~n〉

=
∑
~n

C−1
N

M∏
k=1

ψnkk θ(q − nk + 1)δ~n~m+1a

= C−1
N

∏
k 6=a

ψmkk θ(q −mk + 1)ψma+1
a θ(q − (mk + 1) + 1)

= C−1
N

∏
k 6=a

ψmkk θ(q −mk + 1)ψmaa ψa θ(q −ma)

= ψa θ(q −ma)C
−1
N

M∏
k=1

ψmkk θ(q −mk + 1) = ψa θ(q −ma) p
q
s(~m),

where it has been exploited the equality

θ(q −ma) = θ(q −ma) θ(q −ma + 1).

We thus have obtained the equalities

pqs(~n+ 1a) = ψa θ(q − na) pqs(~n),

pqs(~n− 1b) =
θ(nb)

ψb θ(q − nb + 1)
pqs(~n);

that let us to write the important relation

pqs(~n+ 1a − 1b) =
ψa
ψb

θ(nb)θ(q − na)
θ(q − nb + 1)

pqs(~n).

Being pqs(~n) a steady distribution, it must be ∂tpqs(~n) = 0. Imposing this on the master
equation, we obtain the equality

M∑
i=1

M∑
j=1

πij
ψj
ψi
θ(ni)θ(nj + 1)θ(q − nj) =

M∑
i=1

M∑
j=1

θ(nj)θ(q − ni).

In facts, if ∂tpqs(~n) = 0, one then has:
1

M

∑
ij

πijθ(nj + 1)θ(q − ni + 1)pqs(~n− 1i + 1j) =
1

M

∑
ij

πijθ(nj)θ(q − ni)pqs(~n)

⇐⇒
∑
ij

πijθ(nj + 1)θ(q − ni + 1)
ψj
ψi

θ(ni)θ(q − nj)
θ(q − ni + 1)

pqs(~n) =
∑
ij

πijθ(nj)θ(q − ni)pqs(~n)

⇐⇒
∑
ij

πijθ(ni)θ(nj + 1)θ(q − nj)
ψj
ψi

=
∑
ij

πijθ(nj)θ(q − ni).
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It is an easy task to notice that, if those θs don’t cause troubles, the terms

1

ψi

M∑
j=1

πijψj = 1,

are equal to 1, meaning that LHS = RHS = M .

2.6 On particles number conservation
The number operator N

We shall compute the commutator between L and the operator number of particles N ,
which is defined as

N ≡
M∑
k=1

A†kAk .

If the commutator vanishes, our dynamics will conserve the total number of particles.
Indeed, if O is any observable in our theory:

d

dt
O ≡ d

dt

〈
O
〉
φt
≡ d

dt
〈φt| O |φt〉

=
d

dt
〈φ0| eL

†tOeLt |φ0〉

= 〈φ0| L†eL
†tOeLt |φ0〉+

+ 〈φ0| eL
†t∂O
∂t
eLt |φ0〉+ 〈φ0| eL

†tOLeLt |φ0〉

=

〈
∂

∂t
O
〉
φt

+ 〈φt| OL |φt〉 − 〈φt| LO |φt〉

d

dt
O ≡

〈
∂

∂t
O
〉
φt

+ 〈φt|
[
L,O

]
|φt〉 .

Thus, being ∂tN = 0 and L = Lin − Lout, we get

d

dt
N = 0 ⇐⇒

[
L,N

]
= 0 ⇐⇒

[
Lin,N

]
=
[
Lout,N

]
.

So, let us to compute and compare the commutators
[
Lin,N

]
and

[
Lout,N

]
.

Commutator of Lin and N

Knowing that, if E, F , G and H are operators applied to a generic state,

[EF,GH] = E[F,G]H + EG[F,H] + [E,G]HF +G[E,H]F,
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we can write: [
Lin,N

]
|~n〉 =

∑
ij

πij
∑
k

[
Ci Bj,A†kAk

]
|~n〉

=
∑
ij

πij
∑
k

{
Ci
[
Bj,A†k

]
Ak + CiA†

[
Bj,Ak

]
+

+
[
Ci,A†

]
Ak Bj +A†k

[
Ci,Ak

]
Bj
}
|~n〉 .

Commutators between Ci, Bj and A†k reads:[
Ci,A†j

]
|~n〉 ≡ CiA†j |~n〉 − A†j Ci |~n〉

= Ci |~n+ 1j〉 − A†j θ(q − ni) |~n+ 1i〉

= δij

{
θ(q − nj − 1)− θ(q − nj)

}
|~n+ 2j〉 ;[

Bi,A†i
]
|~n〉 ≡ BiA†j |~n〉 − A†i Bi |~n〉

= Bi |~n+ 1i〉 − A†j θ(ni) |~n− 1j〉

= δij

{
θ(nj + 1)− θ(nj)

}
|~n〉 ;

and those concerning Ak reads:[
Ci,Aj

]
|~n〉 ≡ CiAj |~n〉 − Aj Ci |~n〉

= nj Ci |~n− nj〉 θ(q − ni)Ak |~n+ 1i〉

= δij

{
njθ(q − nj + 1)− [nj + 1]θ(q − nj)

}
|~n〉 ;[

Bi,Aj
]
|~n〉 ≡ BiAj |~n〉 − Aj Bi |~n〉

= nj Bi |~n− 1j〉 − θ(ni)Aj |~n− 1i〉

= δij

{
njθ(nj − 1)− [nj − 1]θ(nj)

}
|~n− 2j〉 .
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Thus: [
Lin,N

]
|~n〉 =

∑
ij

πij
∑
k

{
nk Ci

[
Bj,A†k

]
|~n− 1k〉+

+ CiA†k
[
Bj,Ak

]
|~n〉+

+ θ(nj)nk
[
Ci,A†k

]
|~n− 1j − 1k〉+

+ θ(nj)A†k
[
Ci,Ak

]}
=
∑

ijπij
∑
k

{
nkδjk

{
θ(nj)− θ(nj − 1)

}
Ci |~n− 1j〉+

+ δjk
{
njθ(nj − 1)− [nj − 1]θ(nj)

}
CiA†k |~n− 2j〉+

+ nkθ(nj)δik
{
θ(q − ni)− θ(q − ni + 1)

}
|~n+ 1i − 1j〉+

+ θ(nj)δik
{
niθ(q − ni + 1)− [ni + 1]θ(q − ni)

}
A†k |~n− 1j〉

}
=
∑
ij

πij

{
njθ(q − ni)

{
θ(nj)− θ(nj − 1)

}
+

+ θ(q − ni)
{
njθ(nj − 1)− [nj − 1]θ(nj)

}
+

+ niθ(nj)
{
θ(q − ni)− θ(q − ni + 1)

}
+

+ θ(nj)
{
niθ(q − ni + 1)− [ni + 1]θ(q − ni)

}}
|~n+ 1i − 1j〉

=
∑
ij

πij

{
njθ(q − ni)θ(nj)− njθ(q − ni)θ(nj − 1)+

njθ(q − ni)θ(nj − 1)− njθ(nj)θ(q − ni) + θ(nj)θ(q − ni)+
niθ(q − ni)θ(nj)− niθ(q − ni + 1)θ(nj)+

niθ(nj)θ(q − ni + 1)− niθ(q − ni)θ(nj)− θ(q − ni)θ(nj)
}
|~n+ 1i − 1j〉

= 0.

So it has been obtained that
[
Lin,N

]
= 0. Let us see the other commutator.

Commutator of Lout and N

I choose to split Θq
ij operator, in order to make calculations easier:

Θq
ij ≡ Θq

i Θj :

{
Θq
i |~n〉 = θ(q − ni) |~n〉 ,

Θj |~n〉 = θ(nj) |~n〉 ,
∀i, j ∈ { 1, 2, . . . ,M } .
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The commutator between Lout and the particle number operator now reads:[
Lout,N

]
=
∑
ij

πij
∑
k

[
Θq
iΘj,A†kAk

]
|~n〉

=
∑
ij

πij
∑
k

{
Θq
i

[
Θj,A†k

]
Ak +Θq

i A†k
[
Θj,Ak

]
+

+
[
Θq
i ,A†k

]
Ak Θj +A†k

[
Θq
i ,Ak

]
Θj

}
;

Commutators between Θq
i , Θj and A†k give the results:[

Θq
i ,A†k

]
|~n〉 ≡ Θq

i A†k |~n〉 − A†k Θq
i |~n〉

= Θq
i |~n+ 1k〉 − θ(q − ni)A†k |~n〉

= δik

{
θ(q − ni − 1)− θ(q − ni) |~n+ 1i〉

}
;[

Θj,A†k
]
|~n〉 ≡ Θj A†k |~n〉 − A†k Θj |~n〉

= Θj |~n+ 1k〉 − θ(nj)A†k |~n〉

= δjk

{
θ(nj + 1)− θ(nj)

}
|~n+ 1j〉 ;

while those involving Ak are:[
Θq
i ,Ak

]
|~n〉 ≡ Θq

i Ak |~n〉 − Ak Θq
i |~n〉

= Θq
ink |~n− 1k〉 − θ(q − ni)Ak |~n〉

= δik

{
θ(q − ni − 1)− θ(q − ni)ni |~n−+1i〉

}
;[

Θj,Ak
]
|~n〉 ≡ Θj Ak |~n〉 − Ak Θj |~n〉

= nkΘj |~n− 1k〉 − θ(nj)Ak |~n〉

= δjk

{
θ(nj − 1)− θ(nj)

}
nj |~n− 1j〉 .
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Hence, commutator between Lout and N comes out to be:[
Lout,N

]
=
∑
ij

πij
∑
k

{
nkΘ

q
i

[
Θj,A†k

]
|~n− 1k〉+

Θq
i A†k

[
Θj,Ak

]
|~n〉+

θ(nj)nk
[
Θq
i ,A†k

]
|~n− 1k〉+

θ(nj)A†k
[
Θq
i ,Ak

]
|~n〉
}

=
∑
ij

πij
∑
k

{
nkδjk

{
θ(nj)− θ(nj − 1)

}
Θq
i |~n〉+

+ njδjk
{
θ(nj − 1)− θ(nj)

}
Θq
i A† |~n− 1j〉+

θ(nj)nkδik
{
θ(q − ni)− θ(q − ni + 1)

}
|~n〉+

θ(nj)niδik
{
θ(q − ni + 1)− θ(q − ni)

}
A†k |~n− 1i〉

}
=
∑
ij

πij

{
njθ(q − ni)

{
θ(nj)− θ(nj − 1)

}
+ θ(q − ni)nj

{
θ(nj − 1)− θ(nj)

}
+

+ niθ(nj)
{
θ(q − ni)− θ(q − ni + 1)

]
+ niθ(nj)

{
θ(q − n+1)− θ(q − ni)

}}
|~n〉

= 0.

We can therefore claim that, in our theory, the dynamics does indeed let the overall
number of particles N be conserved:[

Lin,N
]

= 0 =
[
Lout,N

]
=⇒

[
L,N

]
= 0.
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Chapter 3

On detailed balance property

In this chapter we introduce detailed balance and give an explicit check of the satisfac-
tion of detailed balance condition of our double threshold model.

In the simple case of single particle random walk on a good network (i.e. a network
being simple, connected, undirected and non-weighted) every link of a given node has
an equal probability to be passed through, dependant only on the connection degree of
the departure node. Such a situation provides a first example of detailed balance, since
when the steady state is achieved we have

πjpj = πjipi,

meaning an equilibrium condition for every link; i.e. sitting on a link we have the same
probability to see the particle passing in a direction or in the other, and we are therefore
not able to distinguish a forward time-directed process from a backwards one.

In the context provided by our model, however, what we have to check is a balance
term by term in the links among two network states that differs by the exchange of a
particle among adjacent nodes. Hence, the detailed balance condition in the network
state space reads 〈

Lin
〉
~m,~n

pqs(~n) =
〈
Lin
〉
~n,~m

pqs(~m);

where

Lin ≡M−1
∑
ij

πij Ci Bj,

πij =
1ij
ψj
,

|~m〉 = |~n+ 1a − 1b〉 .
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Calculations for the LHS read:

LHS =
〈
MLin

〉
~m,~n

pqs(~n)

≡ 〈~n+ 1a − 1b|
∑
ij

πij Ci Bj |~n〉 pqs(~n)

=
∑
ij

πij 〈~n+ 1a − 1b | ~n+ 1i − 1j〉 θ(q − ni)θ(nj)pqs(~n)

=
∑
ij

πijδaiδbjθ(q − ni)θ(nj) 〈~n+ 1a − 1b | ~n+ 1a − 1b〉 pqs(~n)

= πabθ(q − na)θ(nb)pqs(~n) =
1ab
ψb
θ(q − na)θ(nb)pqs(~n).

While, those for the RHS are:

RHS =
〈
MLin

〉
~n,~m

pqs(~m)

≡ 〈~n|
∑
ij

πij Ci Bj |~n+ 1a − 1b〉 pqs(~n+ 1a − 1b)

=
∑
ij

πij 〈~n | ~n+ 1a + 1i − 1b − 1j〉 θ(q − ni)θ(nj)pqs(~n+ 1a − 1b)

=
∑
ij

πijδajδbiθ(q − ni)θ(nj)pqs(~n+ 1a − 1b)

= πbaθ(q − nb + 1)θ(na + 1)pqs(~n+ 1a − 1b).

Knowing that, as a steady distribution

◦ nk ≥ 0 =⇒ θ(nk + 1) = 1, ∀k ∈ { 1, 2, . . . ,M } ,

◦ pqs(~n+ 1a − 1b) =
ψa
ψb

θ(nb)θ(q − na)
θ(q − nb + 1)

pqs(~n).

we thus write:

RHS = πbaθ(q − nb + 1)θ(na + 1)pqs(~n+ 1a − 1b)

= πbaθ(q − nb + 1)
ψa
ψb

θ(nb)θ(q − na)
θ(q − nb + 1)

pqs(~n)

=
1ba
ψa

ψa
ψb
θ(nb)θ(q − na) pqs(~n) =

1ab
ψb
θ(q − na) pqs(~n).

It has been found that both sides of the supposed-so equality are actually identical:

LHS =
1ab
ψb

θ(q − na)θ(nb) pqs(~n),

RHS =
1ab
ψb

θ(q − na)θ(nb) pqs(~n).
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Hence, a detailed balance condition holds:〈
Lin
〉
~m,~n

pqs(~n) =
〈
Lin
〉
~n,~m

pqs(~m).

This is a very remarkable result, since it means that imposing double treshold bonds
to the overall dynamics does not cause an alteration of the microscopic equilibrium of
fluxes link by link.
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Chapter 4

Towards a h-FTC generalization

Up to this point, we have dealt with situations involving a very limited transportation
capacity on the nodes, assuming that only single particles could be transferred in a unit
time. Still, it is possible to add further realism to the transport capacity of our model
allowing the nodes to send more than one particle at a time, up to a certain number
that will be regarded as the new transport threshold. Hence, a double generic threshold
dynamical model is proposed. This ultimately leads to a generalization of the results of
the previous two sections, being still theoretically possible to obtain an explicit factorized
steady distribution that satisfy a microscopic detailed balance condition. Howhever, the
problem of the count of the microstates could likely reveal itself to be unsurmountable.

4.1 A new dynamics
In order to account for a more generous transport capacity of the network’s nodes, say
h ∈ N, one can replace Bk destruction operators with new ones defined by this peculiar
action on multiparticle states, that is:

Dj |~n〉 ≡ ϑh(nj) |~n− 1j〉 ,

where

ϑh(nj) ≡

{
nj if nj ≤ h,

h if nj > h.

This choice lets us write the evolution operator as

Lh ≡ 1

hM

M∑
i=1

M∑
j=1

πij CiDj +
1

hM

M∑
i=1

M∑
j=1

πijΘ
q,h
ij ;

where a new Θq,h
ij operator has replaced the old one to act accordingly to

Θq,h
ij |~n〉 = θ(q − ni)ϑh(nj) |~n〉 ,
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leading to the master equation for the evolution of pϕ(~n) distribution:

∂

∂t
〈~n |ϕt〉 =

1

hM

∑
ij

〈~n| CiDj |ϕt〉 −
1

hM

∑
ij

〈~n|Θq,h
ij |ϕt〉

⇐⇒ ∂tφϕ(~n) =
1

hM

∑
ij

πij
∑
~m∈Γ

〈~n| CiDj |~m〉 pϕ(~m)+

− 1

hM

∑
ij

πij
∑
~m∈Γ

〈~n|Θq,h
ij |~m〉 pϕ(~m)

=
1

hM

∑
ij

πij
∑
~m

ϑh(mj)θ(q −mi) 〈~n | ~m+ 1i − 1j〉 pϕ(~m)+

− 1

hM

∑
ij

πij
∑
~m

ϑh(mj)θ(q −mi) 〈~n | ~m〉 pϕ(~m)

=
1

hM

∑
ij

πij
∑
~m

ϑh(mj)θ(q −mi) δ
~n
~m+1i−1j

pϕ(~m)+

− 1

hM

∑
ij

πij
∑
~m

ϑh(mj)θ(q −mi) δ
~n
~m pϕ(~m);

that is
∂

∂t
pϕ(~n) =

1

hM

∑
ij

πijϑh(nj + 1)θ(q − ni + 1)pφ(~n− 1i + 1j)+

+
1

hM

∑
ij

πijϑh(nj)θ(q − ni)pφ(~n).

4.2 A new steady distribution
How may I write the steady distribution in this general h-FTC case? Supposing that the
steady state |Ψq

s〉 can be defined to be:

|Ψq
s〉 ≡

∑
~n∈Γ

C−1
N (ψ)

M∏
k=1

ψnkk
fh(nk)

Ck |0〉 ,

the factorizing function fh being deifned as:

fh(ni) =

{
ni! if ni ≤ h,

h!hni−h if ni > h.
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Adding an operator Dl to the l-th node leads to:

Dl
M∏
k=1

ψnkk
fh(nk)

Cnkk |0〉 = Dj
M⊗
k=1

ψnkk
fh(nk)

θ(q − nk + 1) |nk〉

=
⊗
k 6=l

ψnkk
fh(nk)

θ(q − nk + 1) |nk〉 ⊗
ψnll
fh(nl)

θ(q − nl + 1)ϑh(nl) |nl − 1〉 ,

and, thanks to the properties of the fh functions

fh(nk + 1) = ϑh(nk + 1)fh(nk) =⇒ 1

fh(nk − 1)
=
ϑh(nk)

fh(nk)
,

the eigenvalues equations for Lin |Ψq
s〉 and Lout |Ψq

s〉 read

Lin |Ψq
s〉 =

1

hM

∑
ij

πijϑh(ni + 1)θ(q − nj + 1)
ψj
ψi
|Ψq

s〉 ,

Lout |Ψq
s〉 =

1

hM

∑
ij

πijϑh(nj)θ(q − ni) |Ψq
s〉 .

The steady distribution appears indeed to be

pq,hs (~m) ≡ 〈~m |Ψq
s〉 = C−1

N

M∏
k=1

ψmkk
fh(mk)

θ(q −mk + 1),

while adding a particle to the i-th node whilst destroying a particle on the j-th node
makes the stationary distribution shift as:

pq,hs (~n+ 1i − 1j) =
ψi
ψj

θ(q − ni)
ϑh(ni + 1)

ϑh(nj)

θ(q − nj + 1)
pq,hs (~n).

The condition for the probability distribution to be stationary, applied to the previously
obtained master equation, reads:

M∑
i=1

M∑
j=1

πij
ψj
ψi
θ(q − nj)ϑh(ni) =

M∑
i=1

M∑
j=1

πijθ(q − ni)ϑh(nj).

4.3 Does a detailed balance relation hold?
The detailed balance condition〈

Lhin
〉
~m~n
pqs(~n) =

〈
Lhin
〉
~n~m

pqs(~m),
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where

Lhin ≡
1

hM

M∑
i=1

M∑
j=1

πij CiDj,

πij =
1ij
ψj
,

|~m〉 ≡ |~n+ 1a − 1b〉 ,

is checked and satisfied:

LHS =
〈
hMLhin

〉
~m~n
pqs(~n) =

1ab
ψb
θ(q − na)ϑh(nb) pqs(~n);

RHS =
〈
hMLhin

〉
~n~m

pqs(~m) =
1ab
ψb
θ(q − na)ϑh(nb) pqs(~n).

meaning that we still have a microscropic detailed balance on links.
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Chapter 5

On the Onsager relations for the
1-FTC model

The Onsager relations may be derived from the hypotheses of the detailed balance, either
by using the Einsten theory of fluctuations or alternatively the Boltzmann equation. In
fact, it is shown in this chapter that similar relations follow directly from the Master
equation for a time homogeneous Markov system with a finite number of states. We
consider the case of the 1-FTC stochastic model of N particles that perfom random
walks on a network whose nodes can send only one particle at a time, still allowing
for any number of particles to stack on the same node. Using a quadratic approximate
form of entropy, we derive the Onsager relations by expressing the time evolution of the
system in terms of the fluctuations around the equilibrium values of certain observable
physical quantities.

5.1 The quadratic approximate form of the entropy
The master equation obtained from the 1-FTC model [2] reads

∂tp
φ =

M∑
i=1

M∑
j=1

πijθ(nj + 1)θ(ni)p
φ(~n+ 1j − 1i)−

M∑
k=1

M∑
j=1

πkjθ(nj)p
φ(~n)

=
M∑
i=1

M∑
j=1

[
πijθ(nj + 1)θ(ni)p

φ(~n+ 1j − 1i)− πijθ(nj)pφ(~n)
]
,

where

~n ∈

{
~n ∈ ZM

∣∣∣∣∣
M∑
i=1

= N

}
.
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Let θ be any observable generically dependant on time. The average value of θ when
computed on the probability distribution pφ is〈

θ
〉
pφ

=
∑
~n∈Γ

∑
~m∈Γ

〈~n| θ |~m〉 pφ(~m),

e.g. in order to know the amount of the average number of particle stacking on the j-th
node at time t one would have to write:〈

nj(t)
〉
pφ

=
∑
~n∈Γ

nj(~n, t)pφ(~n, t).

But how does the average value of a generic observable evolve with time?

The Gibbs entropy, in this case, reads [2] [9] [11]

SG
[
p
]

= −
∑
~n∈Γ

p(~n, t) ln
[
p(~n, t)

]
.

If our system is near to equilibrium we can write:

p(~n) = peq(~n) + δ(~n),

δ(~n)

p(~n)
� 1, ∑

~n∈Γ

p(~n) = 1⇒
∑
~n∈Γ

δ(~n) = 0.

Once written in the near-to-equilibrium distribution in this way, we shall expand the
entropy SG around equilibrium distribution peq in powers of δ~n up to the second order,
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aiming to achieve a quadratic form:

SG
[
p
]

= −
∑
~n

(
peq + δ~n

)
ln
(
peq + δ~n

)
︸ ︷︷ ︸

=ln peq+
δ~n
peq
−
δ2
~n
p2eq

+ 1
3!

δ3
~n
p3eq
−...

= −
∑
~n

(
peq + δ~n

)(
ln peq +

δ~n
peq
− δ2

~n

2p2
eq

+ . . .

)
= −

∑
~n

(
peq ln peq + δ~n + δ~n +

δ2
~n

peq
− δ2

~n

2peq
− δ3

~n

2peq
+ . . .

)

' −
∑
~n

[
peq ln peq + δ~n ln peq + δ~n +

δ2
~n

2peq

]
= −Nmspeq ln peq − ln peq

∑
~n

δ~n︸ ︷︷ ︸
=0

−
∑
~n

δ~n︸ ︷︷ ︸
=0

− 1

2peq

∑
~n∈Γ

δ2
~n

=

{
Nmspeq ln peq +

1

2peq

∑
~n

δ2
~n

}
≡ SII

a

[
δ~n
]
.

It may be easilty noticed that this approximate expression of SII
a is concave, thus showing

a relative maximum. This is perfectly consistent with the system’s tendency to reach
equilibrium.

5.2 The Onsager relations
If qA(~n) if the extact value of the observable QA when the system is in the configuration
~n, its average value reads 〈

qA
〉

=
∑
~n∈Γ

QA(~n)p(~n).

Being p(~n) = peq + δ(~n) we can write the fluctuation of qA around its equilibrium value
as

yA =
∑
~n∈Γ

QA(~n)δ(~n).

So, in order to write the variations of yA with time as a function of the values qA in a
relatively simple manner, we would like to reduce the summations

∑
ij πijθ(ni)θ(nj + 1)

and
∑

ij πijθ(nj) in a symmetric form. Is it possible? It appears to be so as we recall
that, being near to equilibrium, we are free to require distribution p(~n) we are working
with
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1. to be physical;

2. to satisfy detailed balance relations among links.

From the first property, it follows that nk ≥ 0 =⇒ θ(nk + 1) ≥ 0 for any k. Thus, we
have to obtain a symmetry between the terms

∑
ij πijθ(ni) and

∑
ji θ(ni), that we can

rewrite, after a proper reallocation of indexes, as∑
ij

πijθ(ni), and
∑
ji

πjiθ(ni).

Now the request for detailed balance property come in play, allowing us to write, term
by term, the detailed balance relation

πijθ(ni)

πjiθ(ni)
=
πij
πji

=
pi
pj

=
di
dj
,

that allows us to perform the transformation

πij −→ π̃ij =
(
D−

1
2πD

1
2

)
ij

=
1ij
dj

√
dj
di

=
1ij√
didj

,

wich makes the new matrix π̃ to be symmetric: π̃ji = π̃ij. Hence, we can write the
evolution of fluctuations whit time as

d

dt
yA =

d

dt

〈
qA
〉

=
∑
ij

δ(~n)π̃ij

{
qA(~n)− qA(~n− 1i + 1j)

}
.

We now wants the approximated entropy SII
a to take the shape

d

dt
SII
a =

∑
A

γA
∂

∂t
yA,

i.e. to be proportional to the time derivatives of the fluctuations yA of the observables
qA. The proportionality constant γA will be called thermodynamic forces. We thus write

d

dt
SII
a =

∑
A

∑
~n∈Γ

γAqA(~n)
d

dt
δ(~n).

But, since the approximated entropy is

SII
a = −NΓpeq ln peq −

1

2peq

∑
~n∈Γ

δ(~n)2,
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then its time derivative reads

d

dt
SII
a = − 1

peq

∑
~n∈Γ

δ(~n)
d

dt
δ(~n),

and we therefore obtain the equality

− 1

peq

∑
~n∈Γ

δ(~n)
d

dt
δ(~n) =

∑
A

∑
~n∈Γ

γAqA(~n)
d

dt
δ(~n);

that lets us write the δ(~n) as functions of the thermodynamic forces γA:

δ(~n) = −peq
∑
A

γAqA(~n) + λ,

λ being a constant determined by the condition
∑

~n δ(~n) = 0. Thus, the evolution
equation of the thermodynamic forces results to be:

d

dt
yA =

∑
ij

δ(~n)π̃ij

{
qA(~n)− qA(~n− 1i + 1j)

}
=
∑
ij

peq
∑
B

γBqB(~n)π̃ijθ(nj)
{
qA(~n− 1i + 1j)− qA(~n)

}
=
∑
B

γBL B,A,

where

L B,A = peq

M∑
i=1

M∑
j=1

π̃ij

{
qB(~n)qA(~n− 1i + 1j)− qB(~n)qA(~n)

}
.

Being π̃ij symmetric, so are the L A,B functions:

L A,B = peq

M∑
i=1

M∑
j=1

π̃ij

{
qA(~n)qB(~n− 1i + 1j)− qA(~n)qB(~n)

}
= L B,A.

I finally record that the equilibrium distribution peq is the 1-FTC steady distribution ps
[2]:

peq(~n) = ps(~n) = C−1
N

M∏
i=1

ψnii .
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Chapter 6

Derivation of the steady distribution
for the q-FSC model via entropic
principles

In this chapter we show how to derive the explicit form of the steady distribution ps in
the case of the single treshold q-FSC model. This will be achieved trough a request for
the Gibbs entropy to be at its relative maximum when the system is at its equilibrium
steady state. Besides, the network state ~n∗ which maximizes the Boltzmann entropy will
be given.

The troubles in dealing with our complete double treshold model 1-FTC+q-FSC lie
in the fact that one should distinguish between the probability of the microstate of the
system, defined by the location of each particle, from the probability of the network state
~n. In other words, a usually great number of microstates does correspond to a single
network state ~n. The task of computing that number of corresponding microstates in
the case of th double treshold model seems to be a rather impossible one to perform.
Nevertheless, this could be done more easily if one accepts to treat a simplified model
having the high q treshold only i.e. a node can store up to q particles only, but the
transport capacity of the network is regarded as infinite, thus allowing each node to send
any number of its particles at a time.

6.1 Computing microstates
The Gibbs entropy, functional of the probability distribution p(~n), is defined as

SG
[
p(~n)

]
≡ −

∑
~n∈Γ

p(~n) ln

[
p(~n)

ω(~n)

]
,

43



ω(~n) being the number of microstates correspondig to the configuration state ~n of the
network system. If our network has M nodes, N particles and a maximum storage
capacity q on each node, then the maximum theoretical storage capacity of the whole
network is qM and the overall number of holes (i.e. nodes’ slots left empty by particles)
will be

N ≡ qM −N.

Knowing that N is fixed, we shall adopt an antiparticle point of view by writing the state
|~n〉 = |n1, n2, . . . , nM〉 as |n1, n2, . . . , nM〉 and considering ω(~n) instead of ω(~n), where
ω(~n) is the number of microstates corresponding to the network state ~n from the holes
point of view, given the equalities:

nj + nj = q, ∀j, and
M∑
j=1

nj = N = qM −N.

So, how could we arrange our qM −N antiparticles along N nodes? Concerning the first
node (any label choice is as good as another, of course), one has qM−N different choices
to deploy a first antiparticles, qM −N − 1 choices to pick up and deploy a second one,
qM − N − 2 with the third antiparticle and so on, up to the n1-th antiparticle, havig
qM −N − n1 + 1 different ways to choose it among the remnants antiparticles. So, the
compute for the first node:

#first node =
(qM −N)(qM −N − 1)(qM −N − 2) . . . (qM −N − n1 + 1)

n1!

=
(qM −N)(qM −N − 1) . . . (qM −N − n1 + 1)(qM −N − n1)!

n1! (qM −N − n1)!

=
(qM −N)!

n1! (qM −N − n1)!
.

Dealing with the second node, one has (qM −N − n1) different ways to choose the first
antiparticle, (qM−N−n1 +1) ways to choose a second one, up to (qM−N−n1−n2 +1)
possible choices regarding th n2-th antiparticle. By doing similar calculations to those
of the first node, one obtains

#second node =
(qM −N − n1)!

n2! (qM −N − n1 − n2)!
.

Doing calculations for a generic k-th node, will give

#k-th node =

(
qM −N −

∑k−1
i=1 ni!

)
!

nk!
(
qM −N −

∑k
i=1 ni!

)
!
,
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up to the last M -th node where, given that
∑M

i=1 = qM −N and that 0! = 1, one has:

#M -th node =

(
qM −N −

∑M−1
i=1 ni!

)
!

nM !
(
qM −N −

∑M
i=1 ni!

)
!

=

(
qM −N −

∑M−1
i=1 ni!

)
!

nM !
.

Finally, by multiplying all the single node calculations one obtains

ω(~n) = #first node#second node . . .#k-th node . . .#M -th node

=
(qM −N)!

n1! (qM −N − n1)!
· (qM −N − n1)!

n2! (qM −N − n1 − n2)!
·

. . .

(
qM −N −

∑k−1
i=1 ni!

)
!

nk!
(
qM −N −

∑k
i=1 ni!

)
!
. . .

(
qM −N −

∑M−1
i=1 ni!

)
!

nM !
.

With M − 1 pairs of factors that delete themselves out (the first half-denominator of
every term against the numerator of the next one), the compute of the hole microstates
comes out to be

ω(~n) =
(qM −N)!

n1!n2! . . . nM !
,

giving to Gibbs entropy the explicit form:

SG
[
p(~n)

]
= −

∑
~n∈Γ

p(~n) ln

[
p(~n)

(qM −N)!

M∏
i=1

ni!

]
.

6.2 Variational calculus for steady distribution
After having added Lagrange multiplier βi in order to fix the average number of antipar-
ticles on each i-th node, one obtains the functional

SG
[
p(~n)

]
= −

∑
~n∈Γ

p(~n) ln

[
p(~n)

(qM −N)!

M∏
i=1

ni!

]
+

M∑
i=1

βi
∑
~n∈Γ

nip(~n),

then, being δ(qM −N)! = 0 and given that∑
~n∈Γ

p(~n) = 1 =⇒
∑
~n∈Γ

δp(~n) = 0,

the stationarity of SG functional along with variations δp(~n) reads:

δSG
[
p(~n)

]
=
∑
~n∈Γ

δp(~n)

{
ln
[
p(~n)

]
+ ln

[
n1!n2! . . . nM !

]
+

M∑
i=1

βini

}
= 0,
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and implies that, since this has to happen ∀ δp(~n) variations:

ln

[
ps(~n)

M∏
i=1

ni!

]
= −

M∑
i=1

β ni

⇔ ps(~n) ∝ e−
∑
i βini∏
i ni!

=

∏
i e
−βini∏
i ni!

=
M∏
i=1

e−βini!

ni!
.

So, ps(~n) is factorized as

ps(~n) =
M∏
i=1

pis(ni),

where the single-node antiparticle distributions pis are, ∀i ∈ { 1, 2, . . . ,M },

pis(ni) ∝
e−βini

ni
= Ki

e−βini

ni
.

whith Ki being a proportionality constant, to fix whom one can use the normalization
request

q∑
ni=0

pis(ni) = 1,

that makes Ki to be

K−1
i =

q∑
k=0

e−kβk

k!
.

Finally, given that ni = q − ni, one recovers the single-node particle distribution

pis(ni) = Ki
eβi(ni−q)

(q − ni)!
.

6.3 Notes about the average number of antiparticles
Since we know that, if θ is any observable generally dependant on time, its average value
on the probability distribution pφ is〈

θ
〉
pφ

=
∑
~n∈Γ

∑
~m∈Γ

〈~n| θ |~m〉 pφ(~m),

in order to know the average number of particles stackingon the j-th node when the
system is in the steady state, one has to write:〈

nj
〉

Ψqs
≡
∑
~n∈Γ

〈~n| Nj |Ψq
s〉 =

∑
~n∈Γ

∑
~m∈Γ

〈~n| aja†j |~m〉 pqs(~m)

=
∑
~n∈Γ

∑
~m∈Γ

nj δ
~m
~n p

q
s(~m) =

∑
~n∈Γ

nj p
q
s(~n).
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On that account, having written the operator number of antiparticles living on the j-th
node as

Nj ≡ q − a†jaj,
it seems to be perfectly reasonable (and consistent to our formalism), for the sake of our
entropic derivation, to have considered the average number of antiparticles on node j as〈

Nj
〉

Ψqs
=
∑
~n∈Γ

nj p
q
s(~n).

6.4 On Boltzmann entropy maximization
Given the Boltzmann entropy

SB
[
p(~n)

]
≡ − ln

[
p(~n)

]
,

is straightforward to verify if there is a multiparticle configuration ~n∗ which, in a steady
probability distribution, maximizes SB. We have to perform a derivative with respect to
the vector ~n and check the configuration ~n∗ that makes it to be equal to 0:

~n∗ :
∂

∂~n
ln
[
ps(~n)

]∣∣∣
~n=~n∗

= 0.

But, being the steady distribution factorized node-by-node as

p(~n) =
M∏
i=1

pi(ni),

all we have to do is a collection of M derivatives, all of them have to be put equal to 0:

∂

∂ni
ln

{
Ki
e−βini

ni!

}∣∣∣∣∣
ni=ni∗

= 0, ∀i ∈
{

1, 2, . . . ,M}.

So, remembering the Stirling approximate form

lnni! ' ni lnni − ni,

we shall write:
∂

∂ni

{
lnKi − βini − lnni!

}∣∣∣
ni=ni∗

= 0

⇐⇒ ∂

∂ni

{
lnKi − βini − ni lnni + ni

}∣∣∣
ni=ni∗

= 0

⇐⇒ −βi − lnni
∗ = 0

⇐⇒ ni
∗ ∝ e−βi

=⇒ ni
∗ = Ce−βi .
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We can fix the normalizing constant C requiring that
∑

i ni
∗ = qM −N :

M∑
i=1

ni =
M∑
i=1

Ce−βi = C
M∑
i=1

e−βi = qM −N =⇒ C =
qM −N∑M
k=1 e

−βk
.

We therefore obtains
ni
∗ =

qM −N∑M
k=1 e

−βk
e−βi ,

or, going back to a particle-centred point of view:

n∗i = q − qM −N∑M
k=1 e

−βk
e−βi . (6.1)

Thaks to the extreme cases:

lim
βi→0

ni = q − C, and lim
βi→∞

ni = q,

we shall give to the Lagrange multiplier βi a meaning similar to that of an attractive
node potential.
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Conclusive remarks
The random walks on network may perhaps simulate some universal properties of trans-
portation systems from biology to social systems. The application of physical methods
to study the dynamical and statistical properties of random walks can help us to explore
universal features relevant to understand stationary solutions or the rising of critical
statistical states as traffic congestion.

In this thesis we studied the dynamics of N non-interacting particles on a simple, con-
nected, undirected and non-weighted network using a field theory approach. The network
state has been described by means of Fock-like states and the dynamics has been repre-
sented using suitable ladder operators.

We succeeded in demonstrate that, despite the overall dynamics have been heavily con-
ditioned by the presence of a threshold in the nodes’ transport capacity and one in the
nodes’ storage capacity, a condition of microscopic detailed balance still hold, allowing
for the existence of an equilibrium steady distribution. Moreover, in the context of a
model with only a finite transport threshold, we showed that the condition of proximity
to equilibrium and the detailed balance make possible to write down the Onsager rela-
tions. Finally, in the opposite case of a model with only the finite storage capacity in
play, we succeeded in computing the number of microstates corresponding to a nework
state; this allowed us to write, exploiting a principle of maximum entropy at equilibrium,
the explicit form of the factorized steady distribution, whence it can be easily seen the
rise of the probability to have a congested node.
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