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Abstract

The low energy limit of String Theory can give rise to N = 1 supersymmetric effective
field theories which represent a very promising framework for Beyond the Standard Model
Physics. Moreover string compactifications naturally include mechanisms for sponta-
neous supersymmetry breaking in the hidden sector due to moduli stabilisation. Soft
supersymmetry breaking terms are then generated due to the gravitational interaction
between moduli and visible sector fields. This thesis focuses on Type IIB 4D models
within the so-called LARGE Volume Scenario for moduli stabilisation. In particular it
considers K3 fibred Calabi-Yau compactifications where the the Minimal Supersymmet-
ric Standard Model (MSSM) is supported on D7 branes wrapped around 4-cycles in the
geometric regime. String loop corrections to the Kähler potential play a crucial rôle for
moduli stabilisation and supersymmetry breaking. Moreover, this class of string com-
pactifications has been shown to be particularly suitable for realising cosmic inflation.
After a discussion on the form of the Kähler metric for visible sector matter fields, the
thesis determines the structure of resulting soft supersymmetry breaking terms for dif-
ferent brane set-ups. Finally, it analyses the main phenomenological bounds on hidden
sector and Standard Model superpartner mass spectra together with the requirement of
obtaining a correct Higgs mass. The final outcome is that this framework does not allow
for both successful inflationary model building and a visible sector which is given exactly
by the MSSM. Possible way-outs would require either a different inflationary mechanism
or a minimal extension of the MSSM (like the NMSSM).





Abstract (in Italiano)

Il limite di bassa energia della Teoria delle Stringhe può dare luogo a teorie di campo
effettive con supersimmetrie N = 1 che rappresentano uno scenario molto promettente
per la Fisica oltre il Modello Standard. Inoltre, le compattificazioni delle stringhe in-
cludono naturalmente meccanismi per la rottura spontanea della supersimmetria nel
settore nascosto a causa della stabilizzazione dei moduli. I termini che rompono la sim-
metria nel visibile (soft supersymmetry breaking terms) sono poi generati attraverso
l’interazione gravitazionale tra i moduli e il settore osservabile. La tesi è incentrata sui
modelli 4D per le stringhe Type IIB all’interno del cosiddetto LARGE Volume Scenario
per la stabilizzazione dei moduli. In particolare, considera compattificazioni di Calabi-
Yau di tipo K3 fibrato in cui il Minimal Supersymmetric Standard Model (MSSM) è sup-
portato su brane D7 avvolte su 4-cicli nel regime geometrico. Le correzioni di string loop
al potenziale di Kähler rivestono un ruolo cruciale per la stabilizzazione dei moduli e la
rottura della supersimmetria. Inoltre, questa classe di compattificazioni di stringa si è di-
mostrata particolarmente appropriata per la realizzazione dell’inflazione cosmica. Dopo
una discussione sulla forma della metrica di Kähler per i campi di materia del settore
visibile, la tesi determina la struttura dei soft supersymmetry breaking terms risultanti
per differenti sistemazioni delle brane. Infine, analizza i principali vincoli fenomenologici
sugli spettri di massa del settore nascosto e dei superpartner del Modello Standard, in-
sieme con il requisito dell’ottenimento di una massa dell’Higgs corretta. L’esito finale
indica che questa modellizzazione non permette contemporaneamente la presenza di una
buona descrizione dell’inflazione e di un settore visibile dato esattamente dall’MSSM.
Delle possibili vie d’uscita necessiterebbero o di un modello inflazionario differente o di
una estensione minimale dell’MSSM (come il NMSSM).
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Notation and Conventions

The reduced Planck system of units is employed, unless differently stated, i.e. the fun-
damental constants c, ~ and 8πG are set equal to 1:

c ≡ ~ ≡ 8πG ≡ 1.

Therefore the reduced Planck mass MP is equal to 1 too, while its value in physical units
reads:

MP =

√
~c

8πG
= 2.4 · 1018GeV/c2.

However, the use of physical units is accomplished by leaving c = ~ = 1, as customary
in the literature.

The Minkowski metric tensor, invariant under the Lorentz group, is defined with the
(+−−−) signature:

ηµν ≡


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ≡ ηµν ,

while the SL(2,C) invariant tensor is normalised as:

εαβ ≡
(

0 −1
+1 0

)
≡ −εαβ.

Einstein summation convention is always understood where logically admissible.
The Kähler potential and the superpotential for string-derived supergravity are de-

fined in reduced Planck mass units, i.e. they are considered dimensionless and physical
mass dimensions are restored via multiplications by MP .
For instance, the general string moduli Kähler potential and superpotential in the Ein-
stein frame read, in physical units:

K =

[
− ln

(
S + S̄

)
− ln

(
−i
∫
X

Ω ∧ Ω̄

)
− 2 ln

(
V +

ξ′

2

(
S + S̄

2

) 3
2

)]
M2

P ,

W =

[∫
X

G3 ∧ Ω +
∑
i

Aie
−a′i(τi+iψi)

]
M3

P .



Introduction

Quantum Field Theory and General Relativity are undoubtedly the most striking suc-
cesses of modern Physics. On their basis, the Standard Model of Particle Physics and
Cosmology provides outstanding experimental predictions.

However, it is well known that Theoretical Physics still lacks in providing a unified
description of the fundamental particles and interactions of Nature for high energy sce-
narios as well as a precise account of the details of the structure and evolution of Universe
in its entirety.
String Theory is one of the most promising research areas in the way towards a more
fundamental physical description. In its low energy limit - i.e. up to scales just some
orders of magnitude below the Planck scale - it can provide natural extensions of the
Standard Model able to account for both Particle Physics and Cosmology generalisa-
tions in a comprehensive scenario. The final purpose of String Phenomenology is then
the accomplishment of a fully realistic description of Nature up to huge scales of energy.

Typically, Standard Model generalisations arising from String Theory rely on an ex-
tension of the symmetries of the model including supersymmetry, i.e. a symmetry which
essentially involves the existence of a fermionic or bosonic partner with suitable couplings
for any of the bosons and fermions of the theory, respectively.
Generally, these string-derived supersymmetric models involve two sectors of particles:

• the observable sector, represented by the Standard Model particles and their super-
symmetric partners, plus possible further ’observable’ particle doublets. Because
of the breaking of supersymmetry - broken in the observable sector by the so-called
”soft breaking terms” - all of the supersymmetric partners are new particles yet to
be detected owing to their very large masses;

• the hidden sector, whose particles are responsible for the spontaneous breaking of
supersymmetry. These particles are very heavy and are ’hidden’ from observations
in the sense that they are all coupled to the observable sector with gravitational-
strength couplings.

In principle, such an enhanced particle spectrum can allow both to solve Particle Physics
problematic issues and to individuate suitable candidates for cosmologically relevant par-
ticles such as dark matter candidates and the inflaton field.
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Nevertheless, things are not easy because of the incredible vastness of phenomena
that a reliable model must account for. Moreover, the lack of observational evidences
from particle physics experiments - due to the large masses involved - and the uncertainty
in the details of several cosmological processes render the task even harder.

This thesis falls within the scope of the individuation of a possibly reliable Standard
Model supersymmetric extension by proposing the general analysis of a modelling arising
from Type IIB String Compactification in the LARGE Volume Scenario. The hidden
sector is represented by string moduli - i.e. low energy remnants of string theory - while
the observable sector is identified with the Minimal Supersymmetric Standard Model
particle content - i.e. the simplest Standard Model supersymmetric extension - assum-
ing it to be supported on D7 branes wrapping some of the Calabi-Yau volume 4-cycles.

More specifically, the set-up takes place within the well known context of compact-
ifications of Calabi-Yau manifolds with K3 Fibration Structure in the LARGE Volume
Scenario, including string loop corrections. Notoriously, Kähler moduli emerge naturally
as possible hidden sector fields and their mass spectrum is determined by studying their
stabilisation by both perturbative and non-perturbative corrections. Then, the possible
realisation of the Minimal Supersymmetric Standard Model on D7 branes wrapping large
- i.e. volume-controlling - Calabi-Yau 4-cycles is introduced and the observable sector
supersymmetry breaking terms are analysed. In particular, this fact essentially allows to
determine the expected Standard Model supersymmetric partner mass spectrum in such
a set-up and constitutes the original part of this thesis.

The whole analysis is performed in parallel with a modelling arising from string
compactifications on P[1,1,1,6,9], similar in many aspects as far the general spontaneous
supersymmetry breaking is concerned, but which departs significantly when taking into
account the realisation of the Minimal Supersymmetric Standard Model. Indeed, it must
be supported on a tiny 4-cycle in this case. The model is a widely studied topic in the
literature and served as a guide throughout the development of the thesis.

The outcomes of this work can be interesting as they help in pointing out some gen-
eral conclusions about the model taken under exam. An analysis of possible inflation
mechanisms based on the same general framework is present in the literature, so the
bounds set on hidden sector and soft breaking terms outlined here can help in having
a better viewpoint about the relationships between the Particle Physics and Cosmology
implications of such a kind of scenarios.

To summarise and help the reading, the thesis structure is synthetically outlined
below.

• Chapter 1 provides an essential introduction to supersymmetric extensions of the
Standard Model, outlining their main features and the general context they can
arise from.

• Chapter 2 summarises the main features of Type IIB String Compactifications in
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the LARGE Volume Scenario referring to the general characteristic of spontaneous
supersymmetry breaking in the hidden sector by Kähler moduli.

• Chapter 3 describes the stabilisation of Kähler moduli in three specific models.
Model I resumes the KKLT scenario in order to explain why different set-ups are
needed, Model II outlines the framework of string compactifications on P[1,1,1,6,9]

and Model III delineates the scenario of compactifications with K3 Fibration Struc-
ture. Particular attention is dedicated to the determination of mass spectra.

• Chapter 4 contains an overview on the structure of soft breaking terms coming
from moduli stabilisation and then describes the computation of such soft terms
arising both from D7 branes on blow-up 4-cycles - in relation to Models II and III
- and from D7 branes on large 4-cycles - in relation to Model III.

• Chapter 5 essentially analyses the mass spectra predicted by the previous models,
with particular attention to the necessary conditions which must hold in such a
way as to guarantee the realisation of a reliable Minimal Supersymmetric Standard
Model from D7 branes on large cycles.
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Chapter 1

Supersymmetric Standard Model

The Standard Model of particle physics is one of the principal achievements in modern
science for its outstandingly successful predictions.
However, despite of its accuracy in currently accessible observations, it lacks in providing
explanations to some crucial issues and therefore many extensions to a more fundamental
theory exist in which it is regarded as an effective model valid at low energies.
This Chapter provides a brief list of Standard Model main problems and overviews syn-
thetically the fundamental ideas which lie at the basis of its supersymmetric extensions,
outlining the reasons for which such problems would be solved and placing it into the
context of the general fundamental theory it is supposed to be embedded in, i.e. String
Theory.
The most instructive way to proceed is the gradual description in this order of:

• the introduction of supersymmetries in quantum field theories, addressing some of
the Standard Model problems;

• the extensions of global supersymmetries to local supersymmetries, i.e. supergrav-
ity, which complete the process of Standard Model generalisation;

• the arising of supersymmetric field theories as effective low energy models coming
from the fundamental context of String Theory, with the main implications in
supersymmetry breaking.

1.1 Standard Model Problems

The Standard Model turns out to come up against some primary issues whose fixing is
necessary in order to approach a more fundamental description of Nature.
An essential summary of them is outlined in the following list.

• The impossibility to provide a satisfactory description of Quantum Gravity. Indeed,
the gravitational interaction carried by the gravitational field gµν = gµν(x) can be

5



1 – Supersymmetric Standard Model

studied only at a classical level and is not included in the Standard Model because
it corresponds to a non-renormalisable theory. Therefore a unified description of
all of the fundamental interactions of Nature is not possible within the context
of the Standard Model. Far below the reduced Planck scale MP ' 2.4 · 1018 GeV,
however, a classical description of gravity is theoretically consistent.

• The ”Hierarchy Problem”, i.e. the presence of two totally different energy scales,
the electroweak scale MEW ∼102 GeV, fixed by the Higgs boson H scalar potential,
and the reduced Planck scale MP and, most importantly, the necessity to perform
a fine-tuning order by order in perturbation theory to prevent the electroweak
scale from taking values around the Planck scale because of quantum loop correc-
tions. Indeed there is no symmetry protecting the Higgs mass and the electroweak
symmetry breaking scalar potential has to be introduced by hand.

• The inability to give justifications for some of the Standard Model main structural
features. For instance, the existence in the Standard Model of three families of
leptons - i.e. electrons e, muons µ and tauons τ , with the corresponding neutrinos
νe, νµ and ντ - and three families of quarks - i.e. up u and down d, charm c and
strange s, top t and bottom b - and the presence of the general Standard Model
general gauge group - GSM = SU(3)c × SU(2)L × U(1)Y , with the corresponding
gauge fields, gluons g, W and B bosons - are not based on any first principles.

• The cosmological constant problem, indeed experimental observations indicate a
very small vacuum energy density for the Universe, thus requiring striking can-
cellations up to several orders of magnitude for the different contributions coming
from the different components after quantum corrections.

• Cosmology unsolved issues. Standard Cosmology provides a very efficient descrip-
tion of Universe in its entirety and its evolution, but still the Standard Model fails
in individuating a mechanism for baryon asymmetry as well as suitable particle
candidates for inflaton and dark matter.

Supersymmetric field theories offer an interesting possibility to overcome these diffi-
culties by leaving unaffected the Standard Model physics at low energies.
Indeed, within the more general framework of supergravity, supersymmetric models can
be theorised as generalisations to higher energies of the Standard Model, where the
Poincaré symmetry group is extended to include further transformations which establish
a symmetry between the bosons and the fermions of the theory.

1.2 Supersymmetry

The study of Supersymmetric Quantum Field Theory is an extremely wide subject.
In the following the essential theoretical features are briefly outlined and the Minimal

6



1.2 – Supersymmetry

Supersymmetric Standard Model is introduced on the grounds of the basic introductions
Ref. [1] and Ref. [2] as well as the classic Ref. [3]. The scope is placing into context this
thesis and fixing the nomenclature employed throughout this work.

1.2.1 Supersymmetry Algebra

Supersymmetry transformations are the most general extension of the Poincaré group in
Quantum Field Theory.
Indeed, a renowned result known as Haag- Lopuszański-Sohnius theorem essentially states
that, under very general conditions, the most general S-matrix symmetry group in a
quantum field theory is generated by Poincaré generators Mµν and Pµ, internal symme-
try group generators Ti and N couples of spinor generators (QA)α and (Q̄A)α̇ = ((QA)α)†,
A = 1,2, ..., N , which satisfy the general supersymmetry algebra. Spinor generators are
Grassmann-odd valued operators which give rise to a graded algebra.

The general supersymmetry algebra of course does not modify the Poincaré and in-
ternal symmetry group algebra. The extension of the Poincaré algebra for the generators
Qα reads: [

Qα,M
µν
]

= (σµν) β
α Qβ,

[
Qα, P

µ
]

= 0, (1.1)

and similarly for the conjugate Q̄α̇, and:{
Qα, Qβ

}
= 0,

{
Q̄α̇, Q̄β̇

}
= 0,{

Qα, Q̄β̇

}
= 2 (σµ)

αβ̇
Pµ,

(1.2)

where σµ = (12, σ
i), σ̄µ = (12,−σi), σi being the Pauli matrices, and σµν = i/4 · (σµσ̄ν −

σν σ̄µ).
It can be shown that chirality is preserved only in the presence of a single couple of
spinor generators, so the discussion is directly referred to N = 1.

1.2.2 Supermultiplets

The single-particle states of a supersymmetric theory fall into irreducible representations
of the supersymmetry algebra, called supermultiplets.

A first notable feature is that each supermultiplet contains both boson and fermion de-
grees of freedom in equal number, i.e. nB = nF , as can be inferred straightforwardly from
the spin-statistic theorem and the supersymmetry algebra. Then, bosons and fermions
of a supermultiplet are usually organised in couples of superpartners.

A second fundamental characteristic is the equality of masses among all of the parti-
cles of a supermultiplet. Indeed, the squared-mass operator Cm = P µPµ turns out to be
a Casimir operator for the supersymmetry algebra as well as for the Poincaré algebra.

7



1 – Supersymmetric Standard Model

The simplest supermultiplets with the same number of bosonic and fermionic degrees
of freedom turn out to be suitable for reliable generalisations of the Standard Model, as
outlined below. In particular, they are:

• chiral (or matter) supermultiplets, which describe a single Weyl fermion field, with
nF = 2, and two real scalar fields, or one complex scalar field, with nB = 2
(moreover, anti-chiral supermultiplets are similar but with reversed Weyl spinor
chirality);

• vector (or gauge) supermultiplets, which describe a massless vector field, with
nB = 2, and a massless Weyl fermion field, with nF = 2 (a massless spin-3/2
fermion gives a non-renormalisable theory);

• if supergravity is included, then the spin-2 massless graviton, with nB = 2, and
the massless spin-3/2 gravitino, with nF = 2, form the gravity supermultiplet.

There are other possible supermultiplets, but they are always reducible to combinations
of chiral and gauge supermultiplets if the theory is renormalisable.
The supersymmetry generators also commute with the generators of gauge transforma-
tions, therefore particles in the same supermultiplet are also in the same representation
of the gauge group.

Solution of the Hierarchy Problem

The fundamental features of supersymmetric multiplets allow to realise qualitatively the
main mechanism which lies at the basis of the supersymmetric solution to the Hierarchy
Problem.

The Higgs mass receives quantum corrections from the virtual effects of every par-
ticle which couples, directly or indirectly, to the Higgs field. It can be observed that
the problematic divergences which plague the Higgs mass differ in sign for bosons and
fermions. In the Standard Model, all particles give of course different contributions.

Within a supersymmetric context, though, the presence of a superpartner for any of
the Standard Model particles with suitable couplings and masses - precisely fixed by the
supersymmetry invariance requirements - entails a remarkable systematic cancellation of
the problematic divergences.
This mechanism provides a striking phenomenological solution of the Hierarchy Prob-
lem and constitutes one of the main reasons why supersymmetry is so interesting as a
possible theory to extend the Standard Model.

1.2.3 Supersymmetry Lagrangian

Although unnecessary, the most elegant and efficient way to build Lagrangians invariant
under the super-Poincaré symmetry group relies on the superfield formalism.
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1.2 – Supersymmetry

Basically, the fundamental feature is that chiral and vector supermultiplets can be
described by general fields, known as superfields, which are defined over a superspace,
i.e. the usual Minkowski space-time plus four Grassmann-odd valued extra-dimensions.
In particular chiral and vector superfields can be associated respectively to the triplets
Φ = (ϕ, ψ, F ) and V = (λ, V µ, D) which result from a Taylor expansion in the fermionic
dimensions, where ϕ and ψ are the scalar and Weyl spinor chiral supermultiplet fields
and V µ and λ are the vector and Weyl spinor vector supermultiplet fields, while F and
D are auxiliary fields which can always be integrated out.
In general, models with such supermultiplets are invariant under supergauge symmetries,
i.e. generalised gauge symmetries within supersymmetric models.

Then, typically the definition of three functions determines a general supersymmetric
Lagrangian:

• the Kähler potential K, a real function of chiral and antichiral superfields, i.e. a
vector superfield, with the possible inclusion of vector superfields in such a way as
to be supergauge invariant;

• the superpotential W , a holomorphic function of the chiral superfields, i.e. a chiral
superfield itself, invariant under supergauge symmetries;

• the gauge kinetic function fab, i.e. a dimensionless holomorphic function of the
chiral superfields, i.e. a chiral superfield itself, with the subscripts a, b running
over the gauge group.

As a matter of fact, given a set of chiral and vector superfields Φi, i = 1,2, ..., N , and Va,
a = 1,2, ..., n, the general supersymmetric Lagrangian can be written as:

Lsusy =
(
K(Φ, Φ̃)

)
D

+
((
fab (Φ)WaWb +W (Φ)

)
F

+ h.c.
)

(1.3)

where the subscripts D and F indicate the auxiliary-field parts of the vector and chiral
superfields involved and Wa is the generalised vector superfield strength tensor, con-
veniently setting Φ̃ī ≡ (Φ†e2gVaTa)ī to preserve supergauge invariance, being T a the
generators of the gauge group.

In particular, the general Lagrangian Lsusy turns out to describe the chiral and vector
supermultiplets dynamics and also contain terms depending on the associated auxiliary
fields. Integrating the latter out, scalar potentials are generated. A more detailed anal-
ysis allows to conclude that such scalar potentials are potential generators of supersym-
metry breaking.

1.2.4 Minimal Supersymmetric Standard Model

In a supersymmetric extension of the Standard Model, each of the known particles must
be in either a chiral or a vector supermultiplet.
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1 – Supersymmetric Standard Model

In principle, some of the known particles could be supposed to be the superpartners
of other known particles, but this possibility turns out to be forbidden by a multitude
of wrong implications. Therefore the Standard Model superpartners are all really new
particles undetected so far.

The simplest supersymmetry-invariant formulation of the Standard Model is known
as Minimal Supersymmetric Standard Model - MSSM for short - and essentially con-
sists in a formulation in which the particle content is represented only by the Standard
Model particles and their superpartners. Actually, two Higgs fields are necessary due to
phenomenological reasons.

MSSM Particle Content

The Minimal Supersymmetric Standard Model particle content can be organised into
two great classes.

• Chiral supermultiplets.
Standard Model spin-1/2 fermions, leptons and quarks, must reside in chiral su-
permultiplets because of chirality, therefore their superpartners are spin-0 scalars
known as sleptons and squarks.
Higgs fields must reside in chiral supermultiplets, too, and their superpartners are
called higgsinos. The neutral scalar coincident with the physical Standard Model
Higgs boson corresponds to a linear combination of the neutral components of these
Higgs fields.

• Vector supermultiplets.
Standard Model spin-1 gauge bosons must reside in vector supermultiplets and
their superpartners are spin-1/2 fermions referred to as gauginos.

The standard symbols and gauge representations are summarised in Tables 1.1 and 1.2.

MSSM Lagrangian

Indicating with H1, H2, Q, L, ū, d̄ and ē the chiral superfields corresponding to the chi-
ral supermultiplets in Table 1.1, grouping the doublets with obvious notation, and with
g, W and B the usual vector superfields corresponding to vector multiplets in Table
1.2, multiplied by the gauge group generators with obvious notation, it is immediate to
express the general Minimal Supersymmetric Standard Model Kähler potential, super-
potential and gauge kinetic function.
The following indices must be intended as follows: α, β = 1,2 represent SU(2)L weak
isospin indices, a = 1,2,3 is a color index lowered and raised in the 3 and 3̄ representa-
tions of SU(3)c and, if needed, i, j = 1,2,3 are family indices, in obvious notation.
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1.2 – Supersymmetry

Particle Names spin-0 spin-1/2 SU(3)c×SU(2)L×U(1)Y

squarks, quarks:

(u, d) = (u, d), (c, s), (t, b)

(ũL, d̃L) (uL, dL) (3,2,+1/6)

ũ∗R ūR (3̄,1,−2/3)

d̃∗R d̄R (3̄,1,+1/3)

sleptons, leptons:

e = e, µ, τ

(ν̃e, ẽL) (νe, eL) (1,2,−1/2)

ẽ∗R ēR (1̄,1,+1)

Higgses, higgsinos
(H+

1 , H
0
1 ) (H̃+

1 , H̃
0
1 ) (1,2,+1/2)

(H0
2 , H

+
2 ) (H̃0

2 , H̃
+
2 ) (1,2,−1/2)

Table 1.1. Chiral supermultiplets in the Minimal Supersymmetric Standard Model.
The spin-0 fields are complex scalars and the spin-1/2 fields are left-handed Weyl spinors.

Particle Names spin-1/2 spin-1 SU(3)c×SU(2)L×U(1)Y

gluino, gluon g̃ g (8,1, 0)

winos, W bosons W̃±, W̃ 0 W±, W 0 (1,3,0)

bino, B boson B̃0 B0 (1,1, 0)

Table 1.2. Vector supermultiplets in the Minimal Supersymmetric Standard
Model. The spin-1/2 fields are left-handed Weyl spinors and the spin-1 fields
are real vector fields.

Therefore, in the global supersymmetry framework, the Kähler potential KMSSM lead-
ing to a renormalisable theory and canonically normalised fields reads:

KMSSM = Q̄a,α
(
e2cQg

) b

a

(
e2gQW

) β

α

(
e2g′QB

)
Qb,β + ūa

(
e2cug

) b

a

(
e2g′uB

)
ub

+ d̄a
(
e2cdg

) b

a

(
e2g′dB

)
db + L̄α

(
e2g′LW

) β

α

(
e2gLB

)
Lβ + ē

(
e2g′eB

)
e

+ H̄α
1

(
e2g′H1

W ) β

α

(
e2gH1

B
)
H1, β + H̄α

2

(
e2g′H2

W ) β

α

(
e2gH2

B
)
H2, β,

(1.4)

and similarly, suitably labelling gauge groups and gauge couplings, the gauge kinetic
function fAB = fAδAB is diagonal, constant and such that:

RefMSSM
A =

1

4g2
A

. (1.5)
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1 – Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model superpotential WMSSM reads:

WMSSM = ūi,aY j
u,i Qj,a,αH1,βε

αβ − d̄i,aY j
d,i Qj,a,αH2,βε

αβ

− ēiY j
e,i Lj,αH2,βε

αβ + µH1,αH2,βε
αβ,

(1.6)

where Y j
u,i , Y j

d,i and Y j
e,i represent the well-known Yukawa couplings suitably organised

in matrix notation, while µ is the supersymmetric version of the Higgs boson mass in
the Standard Model.

A straightforward computation yields to the general - though extremely long and
complex - Minimal Supersymmetric Standard Model Lagrangian LMSSM, which can be
näıvely intended as follows:

LMSSM = LSM + LSM susy + LSM−SM susy
int , (1.7)

where LSM is the Standard Model Lagrangian, with kinetic terms and interactions,
LSM susy is the Standard Model superpartners Lagrangian, with kinetic terms and in-

teractions, and LSM−SM susy
int is the Lagrangian interaction term between Standard Model

particles and their superpartners. Of course the above expression is only qualitative
because actually the Higgs sector in supersymmetric extensions is different from its
Standard Model form as two Higgs fields are involved.

It is important to underline that in general the mass eigenstates of the Lagrangian
mix the Standard Model superpartners to give new particles. So, supersymmetry phe-
nomenology is expected to individuate the Standard Model particles and other new
particles defined via suitable linear combinations of superpartners.

Soft Supersymmetry Breaking

Of course the Lagrangian LMSSM cannot be the complete Lagrangian describing Nature
in vicinity of its ground state because no Standard Model superpartner has ever been
observed so far. If supersymmetry were unbroken, Standard Model particles and their
superpartners would have equal masses, so they both would be easily detectable.

The only way to account for this undisputed evidence is supposing that supersym-
metry is broken in the ground state which Nature has selected.
Therefore, a mechanism which breaks supersymmetry must exist and a further non-
supersymmetric term L /susy which entails a globally non-supersymmetric Lagrangian must
be included. An important clue as to the nature of supersymmetry breaking comes from
the solution to the Hierarchy Problem.

Unbroken supersymmetry guarantees the systematic cancellation of the problematic
divergent corrections to the Higgs mass. This fact relies on the exact correspondences
which are created by supermultiplets between boson and fermion masses and couplings.
Evidently, such relationships are generally not expected to be maintained also in the
presence of supersymmetry breaking terms.
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1.3 – Supergravity

However, if the supersymmetry breaking Lagrangian contains only supersymmetry break-
ing terms like mass terms and coupling parameters with positive mass dimension, quadratic
divergences are guaranteed to be absent by the same mechanism as in a supersymmetric
model due to the right relationships between dimensionless couplings. A supersymmetry
breaking Lagrangian of this kind is then called soft supersymmetry breaking Lagrangian.

Indicating generally the scalar fields and the gauginos of the model as φα and λa
respectively, the soft supersymmetry breaking Lagrangian can be written as:

Lsoft = − 1

2

(
m2
)
αβ̄
φαφ̄β̄ −

(
1

2
Maλaλa + h.c.

)
−
(

1

2
bαβφ

αφβ + h.c.

)
−
(

1

6
tαβγφ

αφβφγ + h.c.

)
,

(1.8)

where (m2)αβ̄ and Ma are scalar and gaugino masses, while bαβ and tαβγ are bilinear and
trilinear scalar couplings. Of course, soft masses take part to the effective superpartner
masses, provided a correct Lagrangian diagonalisation, and in general they actually turn
out to be the prevalent contribution since they must be larger.

Summing up, it is natural to conclude that the expected Lagrangian describing the
minimal Standard Model supersymmetric extension reads:

L = LMSSM + Lsoft. (1.9)

Although in principle an explicit breaking of supersymmetry looks arbitrary, more general
models which extend global supersymmetry to supergravity remarkably generate natu-
rally a soft supersymmetry breaking Lagrangian contribution in vicinity of the ground
state. This topic is outlined below and constitutes the fundamental idea at the basis of
the rest of this thesis.

1.3 Supergravity

Supergravity Field Theory is a quantum field theory invariant under local supersymmetry
transformations. It is an enormous topic and this Section, fully inspired by Ref. [4], is
only intended to give the main ideas which motivate its introduction within the context
of Standard Model extensions as low energy limits of String Theory.

1.3.1 Standard Model Supergravity Extension

Quantum Gravity and Supergravity

In short, it is well known that the natural way in which interactions are included within
the Standard Model is the promotion of a symmetry of the action from global - i.e.
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1 – Supersymmetric Standard Model

space-time independent - to local - i.e. space-time dependent - with the consequent
introduction of new fields to save the action invariance properties. In particular:

• local internal symmetries entail the presence of spin-1 gauge fields;

• local space-time symmetries, i.e. general coordinate transformations, entail the
presence of a spin-2 field, the graviton.

The requirement of invariance under general coordinate transformations corresponds to
the inclusion of General Relativity into the Standard Model, including gravitational in-
teractions in a natural way.
Unfortunately, this inclusion is highly problematic because such interactions are non-
renormalisable. Therefore the basic idea is that a consistent theory of gravity must be
finite order by order in perturbation theory.

Similarly to what happens with the systematic cancellations in global supersymme-
try, the basic purpose could be the embedding of locality within supersymmetry trans-
formations. Of course supersymmetry transformations are closely related to space-time
transformations, as it emerges from the supersymmetry algebra (1.1) and (1.2), so local
supersymmetry necessarily corresponds to generalised general coordinate transforma-
tions.
Evidently, in the presence of local supersymmetry, besides chiral and vector supermul-
tiplets, the gravity supermultiplet is involved too. The physical fields belonging to the
gravity supermultiplet are the graviton gµν = gµν(x), a massless spin-2 field with two
vector indices, and the gravitino Ψα

µ = Ψα
µ(x), a massless spin-3/2 field with a spinor and

a vector index.
Anyway, even though the general behaviour of gravitational divergences could be

somehow improved, still supergravity does not remove all of the infinities from the model.
This fact means that local supersymmetries cannot give a self-consistent solution to the
introduction of gravitation within the Standard Model. Nevertheless, within the context
of a more general theory such as String Theory, supergravity turns out to have a crucial
rôle.

Supergravity from String Theory

Supergravity extensions of the Standard Model are very interesting from a phenomeno-
logical point of view because they naturally emerge as effective low energy descriptions
of a more general model, String Theory, which is theorised as the correct description of
Nature at very high energies including quantum gravity and the other interactions with
matter.
Moreover, it turns out that several supergravity models coming from String Theory exist
which, in vicinity of their ground state, result in an effective description with a globally
Supersymmetric Standard Model Lagrangian plus soft supersymmetry breaking terms.
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1.3 – Supergravity

This property is modelled as the natural result of a spontaneous supersymmetry break-
ing, as introduced in the following Sections and studied in concrete models in the rest of
the thesis.

To conclude, the general idea can be summarised as follows and is schematised in
Figure 1.1:

• around the Planck scale MP , String Theory is (presumably) the correct fundamen-
tal description of Nature;

• below a string scale MS, of course smaller than MP , supergravity emerges as the
effective low energy limit of String Theory;

• below a supersymmetry breaking scale Msusy, the supersymmetric Standard Model
with explicit breaking of supersymmetry emerges as a low energy limit of super-
gravity.

Of course, within a String Theory context like this one, the non-renormalisability is no
longer a problem.

1.3.2 Supergravity Lagrangian

Lagrangians invariant under local supersymmetry transformations can be written via a
generalisation of the superfield formalism. More precisely, they are completely specified
by two functions of the involved superfields:

• the Kähler function G, which is a combination of the Kähler potential K = (Φ, Φ̄)
and the superpotential W = W (Φ):

G = K(Φ, Φ̃) + ln W̄ (Φ̄)W (Φ),

with K and W with the same properties as in global supersymmetry and the
additive invariance under Kähler transformations K ′ = K + F + F̄ , W ′ = e−FW ,
with F = F (Φ) an arbitrary function;

• the gauge kinetic function fab = fab(Φ), with the same properties as in global
supersymmetry.

A general supergravity Lagrangian describes a model with scalar and spinor fields com-
ing from chiral supermultiplets, spinor and vector fields coming from vector supermulti-
plets and the gravitino and the graviton fields arising from the gravity supermultiplet.
Moreover auxiliary F -fields and D-fields associated to chiral and vector supermultiplets
respectively emerge as in global supersymmetry theories.
Such a Lagrangian has in general non-canonical kinetic terms, which means that fields
must be normalised, and both renormalisable and non-renormalisable interaction terms.
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1 – Supersymmetric Standard Model

Such non-renormalisable terms are a consequence of the non renormalisability of super-
gravity. Evidently, all of the chiral and vector supermultiplet fields are coupled to the
graviton via an overall factor e = (−detgµν)

1/2.
Very detailed expressions are derived and commented exhaustively in Ref. [3].

As a final remark about notation, while for general discussions it is preferable to
deal with the Kähler function G, for practical calculations it is more convenient to deal
directly with the Kähler potential K and the superpotential W , fixing a gauge F .

Scalar Fields Contribution to Supergravity Lagrangians

The scalar field part of the general supergravity Lagrangian is reported in order to ex-
emplify the main characteristics o supergravity Lagrangians. Moreover, evidently it is
such a contribution which plays the fundamental rôle in spontaneous supersymmetry
breaking due to the scalar potential.

The general scalar kinetic terms and the associated scalar potential in a local super-
symmetry invariant model reads, with indices i, j̄ and a, b running over chiral superfields
and gauge group respectively:

e−1 Lscalar = Gij̄ ∂µ φ
i ∂µ φ̄j̄ − eG

(
GiG

ij̄Gj̄ − 3
)

− 1

2
Re
[
fab

(
(f−1)acφ̄ī(T c) j

ī
Gj

)(
(f−1)bdφ̄k̄(T d) l

k̄ Gl

)]
,

(1.10)

where subscripts in G indicate derivations with respect to the scalar fields and up-
per indices indicate the inversion operation, with obvious notation, while (T a) j

ī
are the

gauge group generators. Evidently, the overall factor e represents the ubiquitous gravita-
tional coupling, while the factor Gij̄ multiplying the pure kinetic terms indicate generally
non-canonically normalised fields. The scalar potential has a factor eG and a generally
non-constant gauge kinetic function, indicating the non-renormalisability of the theory.
Nevertheless, in the vicinity of the ground state it can give rise to scalar masses.

It is fundamental to specify that the scalar potential comes from the integration of
the chiral and vector supermultiplet auxiliary fields. Before being integrated out, they
appear in the general Lagrangian through the contributions, respectively:

LF = −VF = −Gij̄F
iF̄ j̄ + 3 eG,

LD = −VD = −1

2
Re
[
fabD

aDb
]
.

Then, substituting the F - and D-terms coming from the field equations, discarding some
further irrelevant spinor-dependent contributions:

F i = eG/2Gij̄Gj̄, (1.11)

Da = (f−1)abφ̄ī(T b) j
ī
Gj, (1.12)

the total scalar potential V = VF + VD appearing above is generated.
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1.3.3 Spontaneous Supersymmetry Breaking

Of course the general condition for spontaneous supersymmetry breaking is that the
variation under a supersymmetry transformation of the vacuum expectation value of a
field χA is different from zero, i.e. 〈δχA〉 /= 0.
Generally, it turns out that the only variations under local supersymmetry transforma-
tions with a parameter ε which can acquire non-vanishing expectation values without
breaking Lorentz invariance are the variations of chiral spinor fields ψi and of gauginos
λa. They can be written as: 〈

δψi
〉

=
√

2
〈
F i
〉
ε,

〈δλa〉 = 2 〈Da〉 ε.

This fundamental result indicates that the basic condition for spontaneous supersymme-
try breaking to occur is that at least one of the auxiliary fields acquire a non-vanishing
vacuum expectation value.
This is a dynamical problem which is governed by the minimisation of the scalar potential
V = VF + VD:

∂ V

∂ φi
(φ)
∣∣∣
φi=〈φi〉

≡ 0.

Evidently, depending on the form of the scalar potential, some scalar fields can take
non-vanishing vacuum expectation values giving rise to the spontaneous breaking of su-
pergravity.
As a remark, clearly the vacuum energy density EΛ = 〈V 〉 can take a positive, negative
or vanishing value.

A fundamental consequence of the spontaneous breaking of supergravity is the so-
called super-Higgs effect. Indeed, via the study of the general form of the supergravity
Lagrangian, it can be shown that when certain scalar fields acquire non-vanishing expec-
tation values determining the breaking of supersymmetry, the gravitino becomes massive.
The mechanism very similar to the well known Higgs mechanism. Indeed, the two degrees
of freedom of the goldstino, i.e. a suitable linear combination of fermion superpartners
of the supersymmetry breaking scalar fields, are absorbed by the massless gravitino to
give a massive spin-3/2 particle, i.e. a massive gravitino.
In case of a F -term supersymmetry breaking, the resulting gravitino mass m3/2 in phys-
ical units turns out to be:

m3/2 = eG/2MP . (1.13)

In a ”gravity mediated” scenario like the one considered in the thesis, if supersymmetry
is broken by a vacuum expectation value 〈F 〉, then, in physical units, the supersymmetry
breaking scale is estimated as:

Msusy ∼
√
〈F 〉,
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1 – Supersymmetric Standard Model

while soft masses are expected to be roughly around:

msoft ∼
〈F 〉
MP

,

by dimensional analysis.
With D-term supersymmetry breaking, results are similar.

Hidden Sector Supersymmetry Breaking

The most striking feature of spontaneous supersymmetry breaking is the natural gener-
ation of soft terms which can occur.

Models based on String Theory typically predict a supergravity effective Lagrangian
description with a particle spectrum organised into two groups:

• the observable sector, which - suitably structuring the Higgs sector - consists of
the Standard Model particles and their superpartners, with the typical gauge and
Yukawa interactions, in the Minimal Supersymmetric Standard Model, plus possi-
ble further observable supermultiplets in more advanced extensions;

• the hidden sector, which consists of particles belonging to gauge-singlets under the
observable gauge group, with neither gauge interactions nor Yukawa couplings with
the observable sector and thus coupled to the latter only gravitationally and with
very weak couplings.

Generally - discarding for the sake of simplicity gauge fields, which can be introduced
straighforwardly - denoting as hI and Cα the unnormalised hidden and observable sector
fields respectively, with indices running accordingly, the Kähler potential and superpo-
tential of such models are such as to be essentially expandable as [5]:

K = KH

(
h, h̄
)

+ K̃αβ̄

(
h, h̄
)
CαC̄ β̄ +

[
1

2
Zαβ

(
h, h̄
)
CαCβ + h.c.

]
, (1.14)

W = WH (h) +
1

2
µαβ (h)CαCβ +

1

6
Yαβγ (h)CαCβCγ, (1.15)

where, recalling the expressions for KMSSM and WMSSM, the terms concerning observable
sector fields clearly give rise to possible supersymmetric Standard Model extensions, with
canonical normalisation and bilinear and trilinear couplings depending on hidden sector
fields, while KH and WH are typically non-canonical contributions which definitely ex-
tend the particle spectrum to the hidden sector.
Evidently, general observable sector terms are modelled as subleading contributions to
hidden sector terms KH and WH .

Remarkably, this structure with both a hidden and an observable sector gives rise
to a supergravity Lagrangian which undergoes a spontaneous supersymmetry breaking
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1.3 – Supergravity

in the hidden sector, thus making the gravitino massive, and generating in the mean-
while precisely the soft supersymmetry breaking terms in the visible sector as effective
by-products.
Then, although the observable sector does not participate directly to the breaking of su-
persymmetry, it undergoes its consequences indirectly with the natural generation of soft
terms. The way this striking mechanism takes place is a very active research area and is
taken under consideration in some particular frameworks in the following Chapters.

Because of its very weak interactions with observable fields, the hidden sector is dif-
ficultly detectable at present. Nevertheless, it has fundamental effects on the structure
of soft terms and in Cosmology. Indeed, it both determines the characteristic of su-
persymmetry breaking and has sensible effects in the evolution of Universe due to its
gravitational interactions.

Supersymmetric Standard Model + soft breaking terms,
Hidden sector

Supergravity

String Theory

0

MEW

Msusy

MS

MP

E

Figure 1.1. Schematic representation of the scenarios arising from the low energy limit
of possible String Theory models.
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Chapter 2

Moduli and String
Compactifications

Several attempts to extend the Standard Model have been studied in which supersym-
metries are present as general symmetries of Nature. Since supersymmetry has never
been tested on experimental grounds, it must be a broken symmetry of the theory at
least in the ground state.
String Theory provides mechanisms which can account account for this scenario in the
low energy limit. In detail, the way supersymmetry gets explicitly and/or spontaneously
broken at low energies can be studied according to the specific features that the under-
lying string theory eventually determines.
This Chapter is devoted to the introduction to some of the general characteristics of
Type IIB String Theory, which at low energies give origin to an interesting model for
the spontaneous breaking of supersymmetry in the hidden sector and the generation of
soft breaking terms. For its developing, Ref. [6] and Ref. [7] have been the fundamental
guide in order to have an account of the general framework of String Phenomenology.

2.1 Low Energy Limit of String Theory

Among string theories, the most important ones in the context of Standard Model exten-
sions are Heterotic String Theories and Type IIB String Theory, that are perturbatively
consistent and, roughly speaking, actually reproduce the Standard Model physics in their
low energy limit [6] [7].
More specifically, these low energy limits give origin to supersymmetric theories in which
supersymmetries turn out to be broken. Heterotic String Theories result in theories con-
taining non-Abelian gauge group symmetries, while at a first glance Type IIB strings do
not. Anyway, via the study of branes these symmetries can be found in the latter too.
As they are also technically easier to study, the main features deriving from low energy
Type IIB Strings are described below.
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Type IIB Strings are characterised by a string scale MS below which a ten dimen-
sional N = 2 supergravity emerges as an effective theory. This is known as the Type
IIB D = 10, N = 2 supergravity. The string scale MS is assumed to be smaller than the
reduced Planck scale MP = 2.4 · 1018 GeV but much larger than the electroweak scale
MEW ' 102 GeV. It is possible to equivalently consider the string length lS = 1/MS as
the physical scale of reference. Below the string scale, where only massless strings are
present, the more conventional notion of quantum field is recovered [8] [9]. In this situ-
ation, it can be shown that the universal ten dimensional action SD=10 in the Einstein
frame has a pure gravitational contribution of the kind [8] [9]:

Sgraviton
D=10 = −1

2
M8

S

∫
d10x g

1/2
D=10RD=10,

where gD=10 and RD=10 are the modulus of the determinant of the ten dimensional metric
of the space, gMN , M,N = 0,1, ...9, and the ten dimensional Ricci scalar respectively.
The ten dimensional space X10 is assumed to be factorised in a product:

X10 = R1,3 × Y6,

meaning that the line element can be written as:

ds2 = gµν dxµ dxν + gmn d ym d yn, µ, ν = 0,1,2,3, m, n = 4,5, · · · 9,

where Y6 is a six dimensional manifold known as Calabi-Yau manifold depending on the
string theory model and which is typically compactified at low energies.
The volume of the Calabi-Yau manifold is usually parametrised via a dimensionless
volume in string units V by the definition:

Vol (Y6) =

∫
Y6

d6y g
1/2
D=6 ≡ V l

6
S. (2.1)

Then, the four dimensional gravitational contribution to the universal action SD=4 can
be expressed both as:

Sgraviton
D=4 = −1

2
M8

S

∫
Y6

d6y

∫
d4x g

1/2
D=6g

1/2
D=4RD=4,

with obvious notation, and of course as the well known Einstein-Hilbert action:

Sgraviton
D=4 = SEH = −1

2
M2

P

∫
d4x g

1/2
D=4RD=4,

in such a way as to naturally identify M8
S

∫
Y6

d6y g
1/2
D=6 ∼ M2

P . So it is immediate to
conclude that the relation between the string and the Planck scale is:

MS ∼ V−1/2MP . (2.2)
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Of course the expected scenario is such that V & 1 because the volume of the Calabi-Yau
manifold is at least of the same order of magnitude as the reference string volume, but
anyway a very large value V � 1 is likely in a wide class of models, as investigated
e.g. in Ref. [10] and Ref. [11]. Experiments eventually suggest an upper bound around
V ∼ 1030 since present day LHC tests exclude the possibility that MS is smaller than
roughly around 1 TeV as no string presence has ever been observed around that scale so
far [12].

The ten dimensions are compactified below another scale MKK , known as Kaluza-
Klein scale, which emerges naturally when lengths are smaller than the Calabi-Yau char-
acteristic distances. It is possible to write roughly:

MKK ∼
1

R
∼ 1

Vol (Y6)1/6
,

in such a way as to relate the Kaluza-Klein scale to the Planck scale as:

MKK ∼ V−2/3MP . (2.3)

Of course, MKK is also expected to be smaller than MS because of the condition V & 1.
A detailed account of Calabi-Yau compactifications in Type IIB String Theory can

be found in Ref. [6], where the compactifications of Ref. [13] are taken under exam.
If the internal manifold is very simple (like a six-sphere), it can be shown that the
corresponding theory from the D = 10, N = 2 supergravity in four dimensions is a
D = 4, N = 8 supergravity model.
The D = 10, N = 2 supergravity bosonic spectrum can be readily summarised as follows
[8] [9]:

• Neveu-Schwarz fields (NS), with the metric tensor gMN , M,N = 0,1, ...,9, the
dilaton φ and the two-form B2;

• Ramond-Ramond fields (RR), with the zero-form C0, the two-form C2 and the
four-form C4;

while in D = 4 supergravity they are reorganised in different kinds of fields, as described
below.
Before proceeding further, it is important to notice that N = 8 supersymmetric theories
are not chiral, unlike the Standard Model, i.e. unlike what is expected as a property of
any reliable low energy model. Nevertheless, Calabi-Yau manifolds allow to break 1/4
of the supersymmetries that are present. Moreover, a particular projection known as
orientifold involution allows to reduce the eventual N = 2 supergravity to the actual
N = 1 supergravity which is theorised to be the correct supergravity model underlying
the Minimal Supersymmetric Standard Model and thus the ”effective” Standard Model
too.
A qualitative idea of the general set-up is represented in Fig. 2.1.
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0

MKK ∼ V−2/3MP

MS ∼ V−1/2MP

MP

E

D = 4 SUGRA (N = 1)

D = 10 Type IIB SUGRA (N = 2)

Figure 2.1. Typical energy scales for descriptions derived from String Theory:
(D = 4, N = 1) Supergravity Models emerge as the low energy limits of more
general (D = 10, N = 8) Supergravity Models, which in turn come from a general
String Theory.

2.2 4D String Moduli

Following the previous Section, it can be shown that Type IIB String Theory below the
scale MKK results in a D = 4, N = 1 supergravity model involving a special kind of
scalar fields, collectively indicated as ’moduli’.

In general, it is possible to define moduli as uncharged scalar fields which interact
with ordinary matter only gravitationally. This implies that they are expected to be
massive because, if massless, they would mediate unobserved long-range fifth-forces [14].
Moreover, it turns out that all the features of the corresponding effective field theory,
like the particle mass spectrum, the gauge and the Yukawa couplings, depend on the
vacuum expectation value of the moduli [4], since they generally represent the hidden
sector, as explained below. In order to avoid a lack of predictability of the low energy
four dimensional theory, it is therefore crucial to study moduli stabilisation, that is how
the moduli develop a potential which gives them a vacuum expectation value and a non-
zero mass.

The moduli of the supergravity effective theory are arranged in three general groups
[8] [9]:

• the axio-dilaton modulus S, defined as:

S = e−φ + iC0. (2.4)
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2.2 – 4D String Moduli

The field φ is commonly known as dilaton and its expectation value defines the
string coupling constant gS as e−〈φ〉 = 1/gS;

• Kähler moduli T i, also known as size moduli, which can be defined as, separating
the real and imaginary components:

T i = τ i + iψi, i = 1,2, ..., h1,1
+ , (2.5)

where τ i represent essentially the volumes of the 4-cycles Σ4,i, i.e. particular com-
pact sub-manifolds of the Calabi-Yau manifold depending on the metric tensor
gMN , in string length units:

τ i =
Vol (Σ4,i)

l4S
, (2.6)

while ψi are fields known as axions coming from the definition:

ψi =

∫
Σ4,i

C4, (2.7)

h1,1
+ being topological numbers (Hodge numbers) depending on the Calabi-Yau

manifold and on the particular orientifold projection. These fields have a shift
symmetry valid at perturbative level of the kind ψi → ψi + ζ i known as ’Peccei-
Quinn shift symmetry’;

• complex structure moduli Uα, also known as shape moduli, which are fields coming
from the metric tensor:

Uα = Uα[g], α = 1,2, ..., h2,1
− , (2.8)

h2,1
− being again other Hodge numbers.

In general, the fields S, τ i and Uα need to be massive, as explained before, but actually
axions ψi can turn out to be uncoupled directly to observable matter and therefore can
be massless.
Actually one more kind of fields arises from the previous bosonic spectrum:

Gj = bj[B2] + iScj[C2], j = 1,2, · · · , h1,1
− ,

h1,1
− being again other Hodge numbers. Generally these ones can be ignored for choices

of the orientifold projection which imply h1,1
− = 0.

For the further discussion it is fundamental to specify that the dimensionless volume
of the Calabi-Yau manifold V can be expressed as a function of Kähler moduli. In fact,
it is possible to write it as [8] [9]:

V =
1

6
kijktitjtk, i, j, k = 1,2, ..., h1,1

+ , (2.9)
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2 – Moduli and String Compactifications

where ti are the volumes of 2-cycles of the Calabi-Yau manifold, i.e. compact subman-
ifolds as well as 4-cycles, and kijk are intersection numbers, i.e. roughly speaking the
number of times in which the three 4-cycles τi, τj and τk intersect. These 4-cycles are
defined as:

τ i =
∂ V
∂ ti

=
1

2
kijktjtk, i = 1,2, ..., h1,1

+ , (2.10)

in such a way as to deduce the expression V = V (τ) after inverting (2.10) and inserting
it in (2.9).

To conclude this Section, it is important to evidence that moduli turn out to be
natural candidates for the hidden sector since:

• these fields have only gravitational interactions with the ones described in the
Standard Model and their supersymmetric partners, coherently with the previous
discussion and the analysis in this thesis;

• these fields spontaneously break supersymmetry, as will be described in more detail
in the rest of this and the following Chapters.

Such items indicate the plausibility of supersymmetric extensions of the Standard Model
coming along with moduli stabilisation and are taken into account in the thesis in order
to study some elementary proposals of a supersymmetric extensio of the Standard Model.

2.3 Supergravity Effective Theory

In this Section, the spontaneous breaking of supersymmetry by moduli is introduced.
Observable sector terms are interpreted as subleading contributions and therefore they
can be ignored when considering the breaking of supersymmetry in the hidden sector.

It can be shown that the general supergravity model involving the axio-dilaton,
Kähler moduli and complex structure moduli is described by the tree-level Kähler po-
tential [13] [15]:

K0 = − ln
(
S + S̄

)
− ln

(
−i
∫
Y6

Ω ∧ Ω̄

)
− 2 ln

[
V
(
T + T̄

)]
, (2.11)

where Ω = Ω(U) is a topological quantity whose details are irrelevant for the following
description because of its independence from Kähler moduli, as will be clear soon, and
by the tree-level superpotential:

W0 = 0,

when G-fields are not present. Actually the latter is a very trivial model and it cannot be
interesting because the scalar potential is manifestly vanishing. Anyway, if the possibility
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2.3 – Supergravity Effective Theory

to deal with ”background fluxes” G3 = F3 − iSH3 is taken into account, with F3 = dC2

and H3 = dB2, then it results that the superpotential becomes [16]:

W0 =

∫
Y6

G3(S) ∧ Ω(U).

As a matter of fact, it is worthwhile to simply consider:

W0 = W0 (S, U) . (2.12)

again because of the independence from Kähler moduli.
Now it is possible to write the scalar potential V 0

F generated by the auxiliary fields
and then to find its minimum.
Thanks to the well known formulae, the scalar potential generated by F-terms can be
written in general as:

VF = eK
(
KIJ̄DIWDJ̄W̄ − 3WW̄

)
, (2.13)

in the usual notation, indicating collectively as ΦI the moduli fields S, Uα and T i.
Then, since the tree-level Kähler metric KIJ̄ is block-diagonal and W0 is independent
from the Kähler moduli according to (2.11) and (2.12), the scalar potential V 0

F can be
conveniently arranged as:

V 0
F = K0SS̄F

SF̄ S̄ +K0αβ̄F
αF̄ β̄ + eK0W0W̄0

(
Kij̄

0 K0 iK0 j̄ − 3
)
, (2.14)

having explicited the auxiliary fields, which are generally defined as:

F I =
W

|W |
eK/2KIJ̄DJ̄W̄ , (2.15)

and writing α and i instead of Uα and T i for the sake of simplicity.
It is a well known result that for standard Kähler potentials of the kindK0 = −2 lnV

(
T + T̄

)
the relation Kij̄

0 K0 iK0 j̄ = 3 holds true, thus leading to the cancellation of the third
macro-addendum.

In fact, in a more general fashion, it is possible to consider K0(τ) = −p lnV(τ),
where p is a real number and the volume V is a homogeneous function1 of the real parts

1A function f : Rn → R is a homogeneous function of degree k, k ∈ R if it is verified that:

f(αx) = αkf(x) ∀x ∈ Rn,∀α ∈ R+.

Moreover, according to Euler Theorem, if the function f : Rn → R\{0} is continuosuly differentiable,
then it is homogeneous of degree k if and only if it is verified that:

x · ∂ f
∂ x

(x) = kf(x) ∀x ∈ Rn\{0}.
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2 – Moduli and String Compactifications

of Kähler moduli of degree k, with k a real number too. Typical values are p = 2 and
k = 3/2, as in the following models. Then, in the usual notation, it is immediate to show
that:

τ iK0 i = −1

2
pk, (2.16)

and, after a derivation with respect to τj, to conclude that:

K0 i = −2K j
0 i K0 j. (2.17)

Finally, a combination of these two results gives the important relation:

Kij
0 K0 iK0 j = pk, (2.18)

Therefore, a special cancellation occurs for the part depending explicitly on the Kähler
moduli and the scalar potential turns out to be simply given by:

V 0
F = K0SS̄F

SF̄ S̄ +K0αβ̄F
αF̄ β̄. (2.19)

This result is often referred to as ’No-Scale Structure’ [17].
Kähler metric and its inverse are symmetric and positive definite, then the scalar

potential V 0
F has a vanishing minimum corresponding the solutions 〈S〉 and 〈Uα〉 of the

system of equations (it is possible to prove that it always admits a solution [6] [7]):{
DSW0 (〈S〉, 〈Uα〉) = 0,

DαW0 (〈S〉, 〈Uα〉) = 0.
(2.20)

Indeed auxiliary fields associated to the fields S and Uα must be vanishing in the ground
state:

〈F S〉 = 0, 〈Fα〉 = 0. (2.21)

Evidently, this discussion shows that Kähler moduli T i are arbitrary because they un-
dergo a completely flat potential due to the No-Scale Structure.

2.4 Moduli Stabilisation

The fact that the ground state of the very generic model which has just been described
cannot fix the vacuum expectation values of Kähler moduli in any way implies that they
should be massless particles, while this property is in clear contrast with experimental
observations since their presence has never been observed so far.

Therefore it is necessary to conclude that in order to build a reliable model it is re-
quired to consider some perturbative and/or non-perturbative corrections to the Kähler
potential (2.11) and the superpotential (2.12) depending on Kähler moduli in such a way
as to make them have phenomenologically acceptable masses in the ground state of the
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2.4 – Moduli Stabilisation

theory. This topic goes specifically by the name of ”moduli stabilisation” and consti-
tutes a fundamental tool in order to reconcile theoretical predictions and experimental
evidences.

Starting from the Kähler potential (2.11) and the superpotential (2.12), as a matter
of fact it is possible to build more realistic models by adding corrections to them. Indeed,
the general forms of the Kähler potential and of the superpotential are [6] [7]:

K = K0 + δKp
(
T + T̄

)
+ δKnp

(
T, T̄

)
, (2.22)

W = W0 + δW np(T ), (2.23)

where the labels ’p’ and ’np’ denote perturbative and non-perturbative corrections re-
spectively (of course the superpotential is not corrected perturbatively). No explicit
dependences on S and Uα in both perturbative and non-perturbative corrections have
been included since the dilaton and the complex structure moduli are stabilised at tree-
level, and so they can be considered just as constants in the corrections to K0 and W0

after a very simple reasoning.
Indeed, a straighforward computation shows that the scalar potential VF can be conve-
niently written as:

VF = V 0
F

(
S, S̄;U, Ū

)
+ V Kähler

F

(
T, T̄

)
,

where:

V Kähler
F = eK

(
Kij̄DiWDj̄W̄ − 3WW̄

)
. (2.24)

Now, following the discussion of the previous Section, it is evident that V Kähler
F is not

exactly vanishing because of the newly introduced corrections. Its value is lifted from
zero by these corrections, so it is worthwhile to first minimise V 0

F with respect to S and
Uα:

∂ VF
∂ S

∼ ∂ V 0
F

∂ S
= 0,

∂ VF
∂ Uα

∼ ∂ V 0
F

∂ Uα
= 0,

obtaining the same results as before, i.e.:

〈F S〉 = 0, 〈Fα〉 = 0. (2.25)

and then to minimise VF , i.e. actually V Kähler
F , with respect to the Kähler moduli, of

course after evalutating it in 〈S〉 and 〈Uα〉.
The process of Kähler moduli stabilisation and especially its interplay with phe-

nomenology are comprehensively encoded by the diagonalisation and canonical normal-
isation of their Lagrangian, which are outlined below.
The addendum 〈KS,U〉, corresponding to the vacuum expectation value of the Kähler
potential terms depending on S and Uα, is not reported in the following. Indeed, it

comes into play only in a negligible overall scaling factor k = e〈KS,U〉/2 in the scalar
potential, S and Uα taking vacuum expectation values roughly around unity.
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Kähler Moduli Lagrangian

The effective functions to deal with are the Kähler potential and the superpotential
depending only on the Kähler moduli T i. Moreover, since the Kähler potential essentially
depends only on the real parts of the Kähler moduli, it is better to express all the
quantities as functions of the real and imaginary parts of T i = τ i + iψi.

The Kähler potential and the superpotential are then generally expressed as:

K = −2 lnV (τ) + δKp (τ) + δKnp (τ, ψ) , (2.26)

W = W0 + δW np (τ, ψ) , (2.27)

and generate the scalar potential VF :

VF = eK
(
Kij̄DiWDj̄W̄ − 3WW̄

)
, (2.28)

whose minimum determines the vacuum expectation values of the fields τ i and ψi re-
spectively and most importantly their masses. Now the notation is slightly different as
all quantities are referred only to Kähler moduli in this context.

The general Lagrangian describing Kähler moduli dynamics is derived and com-
mented below. The analysis is not referred to the most general potentials as possible,
even though such a description would be easily done in quite the same way, but a partic-
ular class of scalar potentials is taken into account in such a way as to fix the notation
for the rest of this work.
The scalar Lagrangian associated to a Kähler potential K and a superpotential W is
generically expressed in terms of moduli fields as:

e−1LKähler = Kij̄

(
T, T̄

)
∂µ T

i ∂µ T̄ j̄ − VF
(
T, T̄

)
,

which means, in terms of the fields τ i and ψi, ignoring tiny non-perturbative corrections
to K:

e−1LKähler = Kij̄ (τ) ∂µ τ
i ∂µ τ j̄ +Kij̄ (τ) ∂µ ψ

i ∂µ ψj̄ − VF (τ, ψ) . (2.29)

In order to determine a canonical Lagrangian which is appropriate for the description
of the ground state of the theory, it is necessary to parametrise the fluctuations of the
fields from their vacuum expectation values 〈τ i〉 and 〈ψi〉. It is customary to define:

τ i =
〈
τ i
〉

+ δτ i,

ψi =
〈
ψi
〉

+ δψi,

to get:

e−1LKähler = Kij̄ (δτ) ∂µ(δτ i) ∂µ(δτ j̄) +Kij̄ (δτ) ∂µ(δψi) ∂µ(δψj̄)− VF (δτ, δψ) .
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2.4 – Moduli Stabilisation

Then, an expansion in Taylor series up to the leading order around the ground state
gives the unnormalised bosonic kinetic Lagrangian:

LKähler
kin = 〈Kij〉 ∂µ

(
δτ i
)
∂µ
(
δτ j
)

+ 〈Kij〉 ∂µ
(
δψi
)
∂µ
(
δψj
)
− 〈VF 〉

− 1

2

〈
∂2 VF
∂ τ i ∂ τ j

〉
δτ iδτ j − 1

2

〈
∂2 VF

∂ ψi ∂ ψj

〉
δψiδψj −

〈
∂2 VF
∂ τ i ∂ ψj

〉
δτ iδψj,

with obvious notation, where the stationarity conditions of the scalar potential have been
taken into account. Of course the vielbein determinant is set e = 1 because around the
ground state the metric essentially becomes Minkowskian, i.e. gµν ≡ ηµν .
This is a general result which can be specialised to the models which will be described
below. If the scalar potential is such that the two following identities are verified:〈

∂2 VF
∂ ψi ∂ ψj

〉
=

〈
∂2 VF
∂ ψi 2

〉
δij,

〈
∂2 VF
∂ τ i ∂ ψj

〉
= 0,

then the Lagrangian can be written in the more simple form:

LKähler
kin = 〈Kij〉 ∂µ

(
δτ i
)
∂µ
(
δτ j
)

+ 〈Kij〉 ∂µ
(
δψi
)
∂µ
(
δψj
)
− 〈VF 〉

−
(
M2
)
ij
δτ iδτ j −

(
M ′2)

i

(
δψi
)2
,

(2.30)

where the unnormalised mass matrix is defined as:(
M2
)
ij
≡ 1

2

〈
∂2 VF
∂ τ i ∂ τ j

〉
, (2.31)

and equivalently axions unnormalised masses are:(
M ′2)

i
≡ 1

2

〈
∂2 VF
∂ ψi 2

〉
. (2.32)

In the hypothesis of stabilised real components of Kähler moduli, the Kähler metric
and the unnormalised mass matrix are both positive semi-definite (the former positive
definite) and symmetric. These conditions are more than enough for a very simple
diagonalisation of the Lagrangian.
Indeed, an immediate simultaneous diagonalisation of matrices 〈Kij〉 and (M2)ij can be
performed. Focusing on the terms concerning fields δτ i, it is worthwhile to define the
normalised mass matrix as: (

m2
)i
j
≡
〈
Kik
〉 (
M2
)
kj
. (2.33)

If the matrix (m2)
i
j is diagonalisable, writing its eigenvalues and eigenvectors as m2

l and

ui(l) respectively in such a way that:(
m2
)i
k
uk(l) = m2

l u
i
(l), (2.34)
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then it can be proved that matrices 〈Kij〉 and (M2)ij are simultaneously diagonalised as:(
P T
) m
i
〈Kmn〉P n

j = δij, (2.35)(
P T
) m
i

(
M2
)
mn
P n

j = m2
i δij, (2.36)

where P is the matrix whose columns are the eigenvectors of (m2)
i
j:

P k
l ≡ uk(l). (2.37)

In this way, it is possible to define canonically normalised τ -fields by setting:

δτ i ≡ 1√
2
P i
j ϕ

j. (2.38)

Moreover, thanks to the especially simple form of the axionic terms, it is immediate
to diagonalise the Lagrangian and individuate the normalised axions masses m′i of the
canonically normalised axionic fields θi.

In conclusion, the bosonic Lagrangian (2.30) is finally expressed as:

LKähler
kin = −〈VF 〉+

1

2
∂µ ϕ

i ∂µ ϕi +
1

2
∂µ θ

i ∂µ θi − 1

2
m2
i

(
ϕi
)2 − 1

2
m′2i

(
θi
)2
. (2.39)

This is the general kinetic term of the Lagrangian describing Kähler moduli dynamics
and will be one of the landmarks of the analysis that follows as it is the fundamental
tool in order to determine some of the basic features of hidden sector particles.

The analysis of moduli interactions is not undertaken in this work because moduli
are studied with particular interest in the determination of soft terms in vicinity of the
ground state of the theory.
However, such interactions can be studied by simply expanding all of the related terms in
the general supergravity Lagrangian and play an important rôle especially in cosmological
implications.
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Chapter 3

Kähler Moduli Stabilisation

In this Chapter some simple models of moduli stabilisation are described and commented
to help make it clear how some more advanced ones are progressively needed in order
not to conflict with naturalness and phenomenological issues. Two of the models under
analysis then lay the basis on which reliable Supersymmetric Standard Models can be
estabilished, as shown in Chapter 4.
The full mathematical derivation of the following results is reported in detail in Appendix
A, which constitutes a computational complement to the present Chapter.

3.1 Model I

A very simple possible model of moduli stabilisation goes by the name of KKLT scenario
[18]. It involves one single Kähler modulus T = τ + iψ and entails only non-perturbative
corrections to the superpotential.

The volume V in the presence of a single Kähler modulus is expressed as:

V (τ) = τ 3/2,

while non-perturbative corrections to the superpotential are expressed as exponentially
vanishing contributions.
More precisely, the Kähler potential is defined as:

K = −3 ln τ, (3.1)

coming from K = −2 ln τ 3/2, and the superpotential is written as:

W = W0 + Ae−a(τ+iψ), (3.2)

where W0 and A are complex numbers which is useful to express as:

W0 = |W0| eiθ, A = |A| eiα,
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3 – Kähler Moduli Stabilisation

while a is a positive real number. It is fundamental to notice that the basic assumption
of a very large volume V is accomplished by the logical condition:

aτ � 1, (3.3)

which is a characteristic feature of every large volume model, as will be evident in the
following.

3.1.1 Minimisation

According to (2.28), these very simple Kähler potential and superpotential give the as
much simple scalar potential:

VF =
4a |A|

3τ

[
a |A| e−2aτ +

3 |W0|
τ

cos (αs−θ−aψ) e−aτ +
3 |A|
τ

e−2aτ

]
. (3.4)

The individuation of its minimum can proceed as follows. As regards the axion ψ, it
is clear that its vacuum expectation value is simply:

〈ψ〉 =
α− θ
a

+ (2n+ 1)
π

a
, n ∈ Z. (3.5)

Then it is possible to write the scalar potential in the axion vacuum expectation value,
so that it now depends only on the variable τ :

VF =
4a |A|

3τ

[
a |A| e−2aτ − 3 |W0|

τ
e−aτ +

3 |A|
τ

e−2aτ

]
, (3.6)

and find its minimum straightforwardly.
The stationarity condition is of course:

∂ VF
∂ τ

=
4a |A|
3τ 3

[
3 (aτ + 2) |W0| e−aτ −

(
2a2τ 2 + 7aτ + 6

)
|A| e−2aτ

]
= 0,

and it can be solved by recalling the assumption (3.3) in a very rough way, which is
enough for the purposes of this work. In fact, after discarding subleading contributions
to the factors of the two macro-addenda above, the stationarity condition becomes:〈

∂ VF
∂ τ

〉
a〈τ〉�1∼ 4a2 |A|

3 〈τ〉2
e−a〈τ〉

[
3 |W0| − 2a 〈τ〉 |A| e−a〈τ〉

]
= 0,

which implies a vacuum expectation value 〈τ〉 such that:

a 〈τ〉 e−a〈τ〉 =
3

2

|W0|
|A|

. (3.7)
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0 τ

VF

Figure 3.1. Plot of the scalar potential VF = VF (τ).

A rough estimate is enough because the leading order solution is sufficient to evidence the
unnaturalness of this model. Indeed the conditions of large volume (3.3) and the solution
(3.7) are reconcilable if and only if the modulus of the unperturbed superpotential |W0| is
exponentially smaller than the modulus of the constant coefficient |A| of non-perturbative
corrections.

Anyway, it is very instructive to conclude the analysis of this model and to compute
the cosmological constant, to consider the supersymmetry breaking and to evaluate the
masses of the fields τ and ψ.
Indicating with the apex or subscript ’eff’ the results of calculations which results from
approximations by condition (3.3) of the same kind as the previous ones, it is easy to
get the vacuum energy density, in physical units:

〈
V eff
F

〉
= −3 |W0|2

〈V〉2
M4

P ≡ EΛ, (3.8)

which indicates an anti-de Sitter universe, and a vanishing auxiliary field vacuum expec-
tation value: 〈

F T
eff

〉
= 0, (3.9)

which means that in this model supersymmetry is not broken.

3.1.2 Moduli Masses

As concerns the computation of moduli masses, the starting point is the bosonic La-
grangian corresponding to the Kähler potential (3.1) and superpotential (3.2):

e−1LKähler = KT T̄ ∂µ T ∂
µ T̄ − VF (T, T̄ ).
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Its especially simple form allows a straightforward derivation of its canonically normalised
expression, which is performed explicitly for the sake of completeness.

Considering the real and complex components of the Kähler modulus T , it is necessary
to define:

τ = 〈τ〉+ δτ, ψ = 〈ψ〉+ δψ,

to get:

e−1LKähler =
3

4 (〈τ〉+ δτ)2

[
∂µ (δτ) ∂µ (δτ) + ∂µ (δψ) ∂µ (δψ)

]
− VF (δτ, δψ).

An expansion of the above expression around the ground state results in:

LKähler
kin =

3

4 〈τ〉2
∂µ (δτ) ∂µ (δτ) +

3

4 〈τ〉2
∂µ (δψ) ∂µ (δψ)

− 3a2 |W0|2

〈τ〉3
(δτ)2 − 3a2 |W0|2

〈τ〉3
(δψ)2 −

〈
V eff
F

〉
,

and, in physical units, defining canonically normalised fields as:

φ

MP

=

(
3

2 〈τ〉2

)1/2

δτ,
θφ
MP

=

(
3

2 〈τ〉2

)1/2

δψ,

the canonically normalised Lagrangian is determined:

LKähler
kin = −EΛ +

1

2
∂µ φ ∂

µ φ+
1

2
∂µ θφ ∂

µ θφ −
1

2
m2
φφ

2 − 1

2
m2
θφ
θ2
φ. (3.10)

where masses are given by:

m2
φ ≡ m2

θφ
≡ 4a2 |W0|2

〈τ〉
M2

P , (3.11)

The equality between masses is necessary because of the vanishing of the auxiliary field,
i.e. the unbroken supersymmetry.

It is customary to confront masses with physically notable quantities, such as the
mass m3/2 =

〈
eK/2 |W |

〉
of the gravitino. In physical units, it is explicitly given by:

m3/2 =
|W0|
〈τ〉3/2

(
1− 3

2a 〈τ〉

)
MP ,

therefore at leading order Kähler moduli masses read:

mφ = mθφ ' 2a 〈τ〉m3/2, (3.12)

which means that moduli masses are larger than the gravitino one.
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3.2 Systematics of Moduli Stabilisation

Some general considerations on moduli stabilisation are now in order as they will help in
finding the best way to solve the unnaturalness problem. The problem of the presence of
spontaneous supersymmetry breaking instead is not treated here but of course it must
be a necessary feature of any reliable model.
More specifically, the task is here to determine qualitatively the magnitude of perturba-
tive and non perturbative corrections to the scalar potential.

The scalar potential can be written after the expansion of covariant derivatives as:

VF = eK
(
Kij̄WiW̄j̄ +Kij̄WKiW̄j̄ +Kij̄W̄WiKj̄

)
+ eKW̄W

(
Kij̄KiKj̄ − 3

)
,

without any assumption on the number of Kähler moduli.
The first model which can be considered is the model with only non-perturbative

corrections, which are assumed to affect just the superpotential. Indeed non-perturbative
corrections are expected to be largely sub-dominant with respect to perturbative ones in
the Kähler potential, which will be considered below. This fact means that, in the usual
notation, the model is defined by:

K =K0,

W =W0 + δW np,

assuming that the general form of the correction is of the kind δW np ∼ Ae−aτ , neglecting
phases. Then, according to the above general expansion, the behaviour of the scalar
potential VF = eK

(
Kij̄WiW̄j̄ +Kij̄WKiW̄j̄ +Kij̄W̄WiKj̄

)
, in a very rough estimate, is

of the kind:

V np
F ∼ eK

(
τ 2 (δW np)2 + τW0δW

np
)
.

On the other hand, if only perturbative corrections are taken into account, then, the
model arises from:

K =K0 + δKp,

W =W0.

In this way, the scalar potential is VF = eKW 2
0

(
Kij̄KiKj̄ − 3

)
, again neglecting phases.

According to relations (2.16), (2.17) and (2.18), it is possible to write:

Kij̄KiKj̄ ∼ Kij̄
0

(
K0 iK0 j +K0 iδK

p
j̄

+K0 j̄δK
p
i

)
∼ kp+ τ

∂ δKp

∂ τ
,

so that, with the typical values p = 2 and k = 3/2, the scalar potential takes the form:

V p
F ∼ eKW 2

0 δK
p.

37



3 – Kähler Moduli Stabilisation

Now it is possible to compare the orders of magnitude of the two scalar potentials by
evaluating the ratio:

R =
V np
F

V p
F

∼ τ 2 (δW np)2 + τW0δW
np

W 2
0 δK

p
.

An unnatural condition, which emerges for example in the model above, is the one where:

W0 ∼ τδW np,

indeed this feature causes the ratio to be unnaturally large:

R ∼ W 2
0

W 2
0 δK

p
� 1.

A much more natural situation is the one where non-perturbative corrections are very
small, i.e.:

W0 � τδW np,

which allows for a more reliable hierarchy. As a matter of fact, the ratio becomes:

R ∼ τδW np

W0δKp
∼ A

W0

τe−aτ

δKp
∼ A

W0

τe−aτ

τ−n
R 1,

where a general dependence δKp ∼ τ−n is assumed for the sake of simplicity.
In models involving one single Kähler modulus the ratio is close to zero. On the other
hand, it is clear that in models involving two or more Kähler moduli the ratio can take
values around unity. For instance, if some ”big” fields τbig and ”small” fields τsmall are
taken into account, then it is natural imagine to deal with ratios of the kind:

R ∼ Asmall

W0

e−asmallτsmallτsmallτ
n
big ∼ 1.

This is a very interesting class of models because it does not deal with any ad hoc
assumption and therefore looks like a more reliable phenomenlogical description.

To conclude, the above discussion invites to look for a model with two Kähler moduli
at least and with both perturbative and non-perturbative corrections. Indeed such a
modelling should guarantee the absence of naturalness problems as well as the (hoped)
presence of spontaneous supersymmetry breaking.
Such ’natural’ models have been developed in Ref. [10] and go by the name of Large
Volume Scenarios, where the volume V turns out to be exponentially large. Actually,
more correctly, these ones should be called ’LARGE Volume Scenarios’ to distinguish
them from other similar scenarios where the volume is large altough not exponentially.
Two of the simplest examples of these scenarios are studied in detail below. They will
be referred to as Models II and III.
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3.3 Model II

The simplest model which deals with two Kähler moduli whose scalar potential is gener-
ated by both perturbative and non-perturbative corrections to the Kähler potential and
superpotential respectively comes from string compactification on P[1,1,1,6,9]. By calling
the fields as:

Tb = τb + iψb, Ts = τs + iψs,

the ’b’ and ’s’ subscripts indicating a ’big’ and a ’small’ modulus respectively, the volume
V is given by [19]:

V =
1

9
√

2

(
τ

3/2
b − τ 3/2

s

)
.

The geometry of this model can be imagined as a large volume, whose approximate value
corresponds to the volume τ

3/2
b of a large 4-cycle Σ4,b, where a small hole is present,

which is represented by a small 4-cycle Σ4,s of volume τ
3/2
s . This property means that

the fundamental assumption is:
τ

3/2
b � τ 3/2

s .

It is worthwhile to clarify that the notation adopted indicates explicitly the moduli T i

(notice upper indices) with lower subscripts as Tb and Ts: this will be the convention
from now on, except where explicitly declared as different.

The Kähler potential and the superpotential are expressed according to Ref. [10]1:

K = −2 ln

(
V (τb, τs) +

ξ′

2g
3/2
S

)
, (3.13)

W = W0 + Ase
−a′s(τs+iψs), (3.14)

where ξ′ is a real constant, generally positive, which characterises the so called α′ per-
turbative corrections to the Kähler potential, while, similarly to Model I, W0 and As are
complex numbers parametrised as:

W0 = |W0| eiθ, As = |As| eiαs ,

and a′s is a positive real number. The explicit correction to the superpotential does not
involve an analog contribution δW np = Abe

−a′b(τb+iψb) depending on τb and ψb because
it can be assumed to be largely subdominant as τb is expected to be some orders of
magnitude greater than τs. Nevertheless, it must be assumed that:

a′sτs � 1,

1This fundamental reference also contains a very detailed list of references which further motivate
the forms of the Kähler potential and the superpotential.
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since the volume of the blow-up cycle is greater than unity.
It is important to notice that by expliciting the perturbative correction to the Kähler
potential in a Taylor expansion as:

δKα′
= − ξ′

g
3/2
S V

+O

(
ξ′

g
3/2
S V

)2

,

it becomes clear that the form of the tree-level Kähler potential K0 = −2 lnV (τb, τs) is
the typical one allowing for No-Scale Structure.
It is fundamental to specify that the string coupling gS must be small - i.e. gS � 1 - as
the effective action is derived under the perturbative approximation2.

For the sake of symplictity, it is worthwhile to redefine the fields in such a way as to
absorb the annoying 9

√
2 factor by requiring the volume to be expressed as:

V = τ
3/2
b − τ 3/2

s . (3.15)

This redefinition can be improved by defining the constant parameters:

ξ ≡ 9
√

2
ξ′

2g
3/2
S

, as ≡
a′s(

9
√

2
)2/3

,

in order to let expressions look more plain.

Summing up, the model under analysis is the one described by the Kähler potential
and superpotential:

K = −2 ln
(
τ

3/2
b − τ 3/2

s + ξ
)
, (3.16)

W = W0 + Ase
−as(τs+iψs), (3.17)

with the assumptions of a large exponential argument and of a large volume τ
3/2
b with

respect to τ
3/2
s as well as to the constant ξ:

asτs � 1, (3.18)

τ
3/2
b � τ 3/2

s ∼ ξ, (3.19)

according to the previous discussion.

2In general, it must be at most of order 10−1.
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3.3.1 Minimisation

The scalar potential VF can be computed easily and, after the straightforward minimi-
sation with respect to the axion ψs, which takes the vacuum expectation value:

〈ψs〉 =
αs − θ
as

+ (2n+ 1)
π

as
, n ∈ Z, (3.20)

while the axion ψb remains arbitrary as there is no dependence on it, under the assump-
tions (3.18) and (3.19) its leading order effective expression is [20]:

V eff
F =

8

3

a2
sτ

1/2
s

τ
3/2
b

|As|2 e−2asτs − 4
asτs
τ 3
b

|As| |W0| e−asτs +
3

2

ξ

τ
9/2
b

|W0|2 . (3.21)

This potential determines the vacuum expectation values of the fields τb and τs:

〈τb〉3/2 =
3

4

〈τs〉
1
2

as

|W0|
|As|

eas〈τs〉
1− 1

as 〈τs〉

1− 1

4as 〈τs〉

, (3.22)

〈τs〉3/2 = ξ

(
1− 1

4as 〈τs〉

)2

(
1− 1

as 〈τs〉

) . (3.23)

These expressions of the vacuum expectation values are not explicit, however they are
what is needed in order to go on and interpret further results.
First of all, a Taylor expansion in 1/as 〈τs〉 readily gives:

〈τb〉3/2 =
3

4

〈τs〉
1
2

as

|W0|
|As|

eas〈τs〉
(

1 +O

(
1

as 〈τs〉

))
,

〈τs〉3/2 = ξ

(
1 +O

(
1

as 〈τs〉

))
,

so it is evident that the ’small Kähler modulus’ τs fixes its minimum close to the value of
ξ2/3, which means around unity, while the ’big Kähler modulus’ τb is exponentially large
if compared to the small one. It is important to notice that the expectation value of τb
is exponentially sensible to the string coupling.

Moreover, in a very qualitative approximation, the following relations hold true:

〈τb〉3/2 ' 〈V〉 ,

as 〈τs〉 ' ln 〈V〉 .
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τ
3/2
b

easτs

V eff
F

Figure 3.2. Detail of the of the scalar potential plot V eff
F = V eff

F (τ
3/2
b , easτs) in vicinity

of the minimum: it is worthwhile to express it as a function of τ
3/2
b and easτs because

in this way the two variables are roughly of the same order of magnitude in this zone.
Moreover this dilatation makes it more evident the presence of a minimum.

0 τb

V eff
F

Figure 3.3. Plot of the scalar potential V eff
F = V eff

F (τb) in the minimum
condition with respect to τs.

Despite their inaccuracy, it is useful to always keep them in mind in order to readily
interpret further results.

Results (3.22) and (3.23) allow to determine the vacuum energy density, in physical
units: 〈

V eff
F

〉
= −3

4

ξ |W0|2

as 〈τs〉 〈τb〉9/2
M4

P ≡ EΛ, (3.24)

which denotes an anti-de Sitter Universe, and to observe that this model truly breaks
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supersymmetry as the vacuum expectation values of the auxiliary fields are, in physical
units:〈

F b
eff

〉
=− 2

〈τb〉
1
2

|W0|

[
1 +
〈τs〉

3
2

〈τb〉
3
2

− ξ

〈τb〉
3
2

(
1 +

3

8as 〈τs〉
− 3

16a2
s 〈τs〉

2

)]
M2

P ,

〈F s
eff〉 =− 3

2

〈τs〉
as 〈τb〉

3
2

|W0|
[
1 +O

(
1

as 〈τs〉

)]
M2

P ,

(3.25)

up to order I in 〈τs〉3/2 / 〈τb〉3/2 and ξ/ 〈τb〉3/2.

3.3.2 Moduli Masses

The canonically normalised bosonic Lagrangian of the model can be written as shown in
Subsection 2.4.

The free unnormalised Lagrangian describing τ -field fluctuations around the ground
state is of course given by:

Lτ−fields
kin = 〈Kij〉 ∂µ

(
δτ i
)
∂µ
(
δτ j
)
−
(
M2
)
ij
δτ iδτ j.

Under assumptions (3.18) and (3.19), the normalised mass matrix can be shown to be:

(
m2

eff

)i
j

=
as 〈τs〉

1
2 ξ |W0|2

〈τb〉
9
2


−9 〈τs〉

1
2

(
1− 7

4
σ

)
6as 〈τs〉

1
2 〈τb〉

(
1− 5

4
σ + σ2

)
−6 〈τb〉

1
2

(
1− 5

4
σ +

1

4
σ2

)
4as 〈τb〉

3
2

(
1− 3

4
σ +

3

8
σ2 +

1

8
σ3

)
,

(3.26)

up to order I in 〈τs〉3/2 / 〈τb〉3/2 and ξ/ 〈τb〉3/2, where σ ≡ 1/as 〈τs〉.
As proven in Subsection 2.4, its eigenvalues correspond to the masses of canonically

normalised τ -fields. Denoting these newly introduced fields as χ and φ, at leading order
(see Section A.2 in the Appendix for accurate expressions) their masses are:

m2
χ '

81

8

ξ |W0|2

as 〈τs〉 〈τb〉9/2
, (3.27)

m2
φ '

4 a2
s 〈τs〉

1/2 ξ |W0|2

〈τb〉3
. (3.28)

It is important to notice that the field χ is by far much lighter than the field φ. In
particular, an important reference for the order of magnitude of these fields is given by
a comparison with the gravitino one, m3/2 =

〈
eK/2 |W |

〉
, as usual. The latter is given at

leading order by, in physical units:

m3/2 '
|W0|
〈τb〉

3
2

MP ,
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and, again at leading order, it is easy to observe that (3.22) also gives:

ln
MP

m3/2

' as 〈τs〉 .

Then it is evident that the mass of the field χ is heavily reduced with respect to the field
φ one because:

mχ '
9
√

2

4

(
ξ

〈V〉

) 1
2
(

ln
MP

m3/2

)− 1
2

m3/2, (3.29)

mφ ' 2 ln

(
MP

m3/2

)
m3/2. (3.30)

Indeed since the logarithm is not exponentially large unlike 〈V〉, these relationships mean
that only mφ is essentially of the same order of magnitude as m3/2, while mχ is lighter

by a factor roughly scaling as 〈V〉1/2.

On the other hand, the normalised eigenvectors ui(l) of the matrix (m2
eff)

i
j turn out

to be at leading order:

uiχ '


2
√

3

3
〈τb〉
√

3

as

 ,

uiφ '


√

6 〈τs〉3/4 〈τb〉1/4

2
√

6

3
〈τs〉1/4 〈τb〉3/4

 ,

where of course their normalisation is such that
〈
Keff
ij

〉
ui(l)u

j
(k) = δlk. Then, the change

of basis which gives a canonically normalised diagonal Lagrangian, in physical units, is:

(
δτb

δτs

)
'
√

2

2


2
√

3

3
〈τb〉

√
6 〈τs〉3/4 〈τb〉1/4

√
3

as

2
√

6

3
〈τs〉1/4 〈τb〉3/4


(
χ/MP

φ/MP

)
. (3.31)

It is important to underline that this change of basis shows that the ’big’ field τb fluc-
tuation is mainly projected into the light field χ, while the ’small’ field τs fluctuation is
predominantly aligned to the heavy field φ. Indeed the transformations can be written
very roughly as: 

δτb '
√

6

3
〈τb〉

χ

MP

,

δτs '
2
√

3

3
〈τs〉1/4 〈τb〉3/4

φ

MP

.

44



3.3 – Model II

Now only axions are left. The scalar potential is such that conditions cited in Section
2.3 are verified. In particular the axionic Lagrangian is:

Laxion
kin = 〈Kij〉 ∂µ

(
δψi
)
∂µ
(
δψj
)
−
(
M ′2)

i

(
δψi
)2
,

with the leading order expression for the only nonzero unnormalised axionic mass:(
M ′2)

s
' 3a2

sξ |W0|2

2 〈τb〉9/2
.

The diagonalisation and canonical normalisation of the Lagrangian are immediate. In-
deed it is sufficient to normalise the two fields by requiring canonical pure kinetic terms
and eventually discarding in the expression of the kinetic Lagrangian an irrelevant in-
teraction term. So the normalised fields θχ and θφ can be defined via the relations at
leading order: 

δψb '
√

6

3
〈τb〉

θχ
MP

,

δψs '
2
√

3

3
〈τs〉1/4 〈τb〉3/4

θφ
MP

,

(3.32)

which actually coincide with the leading order transformations of the Kähler moduli real
parts, thus justifying the notation.
The masses of canonically normalised axionic fields are then at leading order:

m2
θχ = 0, (3.33)

m2
θφ
' 4 a2

s 〈τs〉
1/2 ξ |W0|2

〈τb〉3
, (3.34)

i.e., in terms of the gravitino mass and in physical units:

mθχ = 0, (3.35)

mθφ ' 2 ln

(
MP

m3/2

)
m3/2. (3.36)

First of all, it is fundamental to notice that within this framework the fact that the field
θχ is massless does not give rise to a phenomenological inconsistency because, since it
appears neither in the Kähler potential nor in the superpotential, it does not have any
kind of interactions with every other field. Secondly, it is important to underline that
the fact that m2

θφ
is equal to m2

φ is verified at leading order.
In the end, the kinetic Lagrangian describing moduli dynamics within the Supersym-

metric Standard Model descending from the present construction is:

LKähler
kin =− EΛ +

1

2
∂µ χ∂

µ χ+
1

2
∂µ φ ∂

µ φ+
1

2
∂µ θχ ∂

µ θχ +
1

2
∂µ θφ ∂

µ θφ

− 1

2
m2
χχ

2 − 1

2
m2
φφ

2 − 1

2
m2
θφ
θ2
φ.

(3.37)
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This model was studied in detail in a multitude of papers, e.g. in Ref. [21], which
will be taken under exam for the computation of soft terms. This fact drives interest
towards more sophisticated models, one of which is the next one that will be analysed
in detail.

3.4 Model III: Leading Results

The present model comes from compactifications of Calabi-Yau manifolds with K3 Fi-
bration Structure [22], which in one of the simplest realisations gives a volume V :

V = λ1t1t
2
2 + λ2t

3
3,

in terms of three 2-cycles t1, t2 and t3, where it can be shown that t3 is negative, with
λ1 and λ2 model-dependent positive real numbers. Of course it is customary to express
everyithing in terms of the corresponding 4-cycles τ1, τ2 and τ3, which are related to
2-cycles by the relations: 

τ1 = λ1t
2
2,

τ2 = 2λ1t1t2,

τ3 = 3λ2t
2
3,

(3.38)

and their inverse: 
t1 = (4λ1)−

1
2 τ
− 1

2
1 τ2,

t2 = λ
− 1

2
1 τ

1
2

1 ,

t3 = − (3λ2)−
1
2 τ

1
2

3 .

(3.39)

Then the volume V can be written in the more familiar form:

V = α
(
τ

1/2
1 τ2 − γτ 3/2

3

)
, (3.40)

with:

α ≡ 1

(4λ1)1/2
, γ ≡ 2

3

(
λ1

3λ2

)1/2

.

Of course, the geometry associated to this model in the large volume scenario is again
such that a large compactification volume V contains a small 4-cycle of volume αγ τ

3/2
3 ,

V being given essentially by a product of the fields τ1 and τ2, V ' α τ
1/2
1 τ2.

In order to readily compare this situation to the one of Model II, it is worthwhile to
redefine the fields by absorbing the numerical constants α and γ and to replace the label
’3’ with the more familiar ’s’.
Then, the present model is easily seen to be a sort of generalisation of the previous one.
Indeed it deals with three Kähler moduli which can be conveniently labeled as:

T1 = τ1 + iψ1, T2 = τ2 + iψ2, Ts = τs + iψs,
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with the volume V expressed as:

V = τ
1/2
1 τ2 − τ 3/2

s , (3.41)

then making completely clear the analogy with Model II. Essentially the rôle of the field
τb is here replaced by the couple of fields τ1 and τ2 as:

τ
3/2
b = τ

1/2
1 τ2,

giving to the volume V a more sophisticated structure which can give rise to a variety
of additional phenomenlogical features, as will be shown in the following. Of course, the
rôle of the blow-up cycle is again assumed by the field τs.

In the end, under these premises, the Kähler potential and the superpotential are
expressed as:

K = −2 ln
(
τ

1/2
1 τ2 − τ 3/2

s + ξ
)
, (3.42)

W = W0 + Ase
−as(τs+iψs), (3.43)

where ξ is a real constant that characterises perturbative corrections to the Kähler po-
tential, while W0 and As are complex constants commonly written as:

W0 = |W0| eiθ, As = |As| eiαs ,

and as is a positive real number. It is important to notice that the tree-level Kähler
potential K0 = −2 lnV is the typical one allowing for No-Scale Structure.
Of course the constitutive assumptions underlying this construction can be explicited as:

asτs � 1, (3.44)

τ
1/2
1 τ2 � τ 3/2

s ∼ ξ, (3.45)

according to the well-known properties of the model, i.e. a large exponent asτs and a
large volume τ

1/2
1 τ2 compared to τ

3/2
s and ξ.

3.4.1 Minimisation

The scalar potential VF can be computed explicitly. Again, the vacuum expectation
value of the axion ψs is readily individuated in:

〈ψs〉 =
αs − θ
as

+ (2n+ 1)
π

as
, n ∈ Z, (3.46)
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while the axions ψ1 and ψ2 undergo a completely flat potential and thus remain unfixed.
Then, under assumptions (3.44) and (3.45), the leading order effective expression of the
scalar potential reads:

V eff
F ≡

8

3

a2
sτ

1/2
s(

τ
1/2
1 τ2

) |As|2 e−2asτs − 4
asτs(
τ

1/2
1 τ2

)2 |As| |W0| e−asτs +
3

2

ξ(
τ

1/2
1 τ2

)3 |W0|2 . (3.47)

This potential definitely makes it evident the close relationship which connects this model
with the previous one. Indeed the very same approximations lead in both cases to the
same scalar potential, provided that in the second case the rôle of the field τb is split
among two fields τ1 and τ2. In the end, expression (3.47) suggests the presence of a flat
direction given by a suitable combination of τ1 and τ2. This fact is manifestly confirmed
by calculations.

An immediate consequence of the form of the scalar potential V eff
F is that of course

it gives the fields τ1, τ2 and τs vacuum expectation values such that:

〈τ1〉1/2 〈τ2〉 =
3

4

〈τs〉
1
2

as

|W0|
|As|

eas〈τs〉
1− 1

as 〈τs〉

1− 1

4as 〈τs〉

, (3.48)

〈τs〉3/2 = ξ

(
1− 1

4as 〈τs〉

)2

(
1− 1

as 〈τs〉

) , (3.49)

coherently with solutions (3.22) and (3.23).
Evidently the very same considerations that are listed in Section 3.3.1 are similarly valid
in the present situation provided the identification 〈τb〉3/2 = 〈τ1〉1/2 〈τ2〉. In particular,
the vacuum energy density turns out to be, in physical units:〈

V eff
F

〉
= −3

4

ξ |W0|2

as 〈τs〉 〈τ1〉
3
2 〈τ2〉3

M4
P ≡ EΛ. (3.50)

On the other hand, auxiliary fields expectation values are, in physical units:〈
F 1

eff

〉
=− 2

〈τ1〉
1
2

〈τ2〉
|W0|

[
1− 1

2

〈τs〉
3
2

〈τ1〉
1
2 〈τ2〉

(
1− 3

4as 〈τs〉
− 27

16a2
s 〈τs〉

2

)
+

1

2

ξ

〈τb〉
3
2

]
M2

P ,

〈
F 2

eff

〉
=− 2

〈τ1〉
1
2

|W0|

[
1− 1

2

〈τs〉
3
2

〈τ1〉
1
2 〈τ2〉

(
1− 3

4as 〈τs〉
− 27

16a2
s 〈τs〉

2

)
+

1

2

ξ

〈τb〉
3
2

]
M2

P ,

〈F s
eff〉 =− 3

2

〈τs〉
as 〈τ1〉1/2 〈τ1〉

|W0|
[
1 +O

(
1

as 〈τs〉

)]
M2

P ,

(3.51)
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up to order I in 〈τs〉3/2 / 〈τ1〉1/2 〈τ2〉 and ξ/ 〈τ1〉1/2 〈τ2〉 and thus indicate again the breaking
of supersymmetry.

3.4.2 Moduli Masses

The guide to determine the kinetic Lagrangian describing the dynamics of Kähler moduli
is of course the procedure outlined in Subsection 2.4.

The well-known free unnormalised Lagrangian describing τ -fields fluctuations about
the ground state is:

Lτ−fields
kin = 〈Kij〉 ∂µ

(
δτ i
)
∂µ
(
δτ j
)
−
(
M2
)
ij
δτ iδτ j.

Under assumptions (3.44) and (3.45), the normalised mass matrix up to order I in

〈τs〉3/2 / 〈τ1〉1/2 〈τ2〉 and ξ/ 〈τ1〉1/2 〈τ2〉 can be written as:

(
m2

eff

)i
j

=

(
(m2

eff)
i′

j′ (m2
eff)

i′

s

(m2
eff)

s
j′ (m2

eff)
s
s

)
, i′, j′ = 1,2, (3.52)

where primed indices run over apices and subscripts 1 and 2 only, with:

(
m2

eff

)i′
j′

=
as 〈τs〉 ξ |W0|2

〈τ1〉
3
2 〈τ2〉3


−3

(
1− 7

4
σ

)
−6
〈τ1〉
〈τ2〉

(
1− 7

4
σ

)
−3
〈τ2〉
〈τ1〉

(
1− 7

4
σ

)
−6

(
1− 7

4
σ

)
 ,

(
m2

eff

)i′
s

=
as 〈τs〉 ξ |W0|2

〈τ1〉
3
2 〈τ2〉3


6as 〈τ1〉

(
1− 5

4
σ + σ2

)
6as 〈τ2〉

(
1− 5

4
σ + σ2

)
 ,

(
m2

eff

)s
j′

=
as 〈τs〉 ξ |W0|2

〈τ1〉
3
2 〈τ2〉3

(
−2

〈τ2〉
〈τ1〉

1
2 〈τs〉

1
2

(
1− 5

4
σ +

1

4
σ2

)
, −4

〈τ1〉
1
2

〈τ2〉
1
2

(
1− 5

4
σ +

1

4
σ2

))
,

(
m2

eff

)s
s

=
as 〈τs〉 ξ |W0|2

〈τ1〉
3
2 〈τ2〉3

(
4
as 〈τ1〉

1
2 〈τ2〉

〈τs〉
1
2

(
1− 3

4
σ +

3

8
σ2 +

1

8
σ3

))
.

This way of writing is coherent with Model III being a proper generalisation of Model
II. Comparing the expression (3.52) to its analogue (3.26) it is evident that the row and
the column b are splitted into rows and columns 1 and 2 in a natural way, indeed the
’components’ of matrix (3.52) can be seen as direct ’extensions’ of the elements of matrix
(3.26) respectively:(

m2
eff

)b
b
;
(
m2

eff

)i′
j′
,

(
m2

eff

)b
s
;
(
m2

eff

)i′
s
,

(
m2

eff

)s
b
;
(
m2

eff

)s
j′

49



3 – Kähler Moduli Stabilisation

Of course the element (m2
eff)

s
s is the same provided the substitution 〈τb〉3/2 = 〈τ1〉1/2 〈τ2〉.

This property implies the fact that rows 1 and 2 as well as columns 1 and 2 are linearly
dependent, thus entailing the existence of a vanishing eigenvalue, i.e. a vanishing mass,
which is the physical manifestation of a flat direction in the scalar potential.

Now, calling ζ, χ and φ the canonically normalised τ -fields, according to Subsec-
tion 2.4, their masses at leading order (see Section A.2.2 in the Appendix for detailed
expressions) are:

m2
ζ = 0, (3.53)

m2
χ '

81

8

ξ |W0|2

as 〈τs〉 〈τ1〉3/2 〈τ2〉3
, (3.54)

m2
φ '

4 a2
s 〈τs〉

1/2 ξ |W0|2

〈τ1〉 〈τ2〉2
. (3.55)

As expected, there are now three fields of which one, the newly introduced ζ, is massless,
while the other two, χ and φ, obtain the same masses as in Model II. Therefore all of
the considerations on m2

χ and m2
φ are valid for this situation too. In particular, since the

gravitino mass m3/2 =
〈
eK/2 |W |

〉
is given at leading order by, in physical units:

m3/2 '
|W0|

〈τ1〉
1
2 〈τ2〉

MP ,

and, thanks to (3.48), is such that:

ln
MP

m3/2

' as 〈τs〉 ,

the orders of magnitude of the masses of canonically normalised fields are, in physical
units:

mζ = 0, (3.56)

mχ '
9
√

2

4

(
ξ

〈V〉

) 1
2
(

ln
MP

m3/2

)− 1
2

m3/2, (3.57)

mφ ' 2 ln

(
MP

m3/2

)
m3/2. (3.58)

Following the well-known reasoning, the change of basis which allows to diagonalise
the moduli Lagrangian is carried by the matrix whose columns are the properly nor-
malised eigenvectors of (m2

eff)
i
j. Then, at leading order and in physical units, the defining
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relation of fields ζ, χ and φ is accomplished by:


δτ1

δτ2

δτs

 '
√

2

2



−2
√

6

3
〈τ1〉

2
√

3

3
〈τ1〉

√
6
〈τ1〉3/4 〈τs〉3/4

〈τ2〉1/2
√

6

3
〈τ2〉

2
√

3

3
〈τ2〉

√
6
〈τ2〉1/2 〈τs〉3/4

〈τ1〉1/4

0

√
3

as

2
√

6

3
〈τ1〉1/4 〈τ2〉1/2 〈τs〉1/4




ζ/MP

χ/MP

φ/MP

 .

(3.59)
This definition is enlightening as it shows how the original Kähler fields fluctuations δτ1,
δτ2 and δτs combine to give the new fields. As a matter of fact, roughly speaking, δτ1

and δτ2 mix themselves and give the massless field ζ and the light field χ:
δτ1 ' −

2
√

3

3
〈τ1〉

ζ

MP

+

√
6

3
〈τ2〉

χ

MP

,

δτ2 ' +

√
3

3
〈τ1〉

ζ

MP

+

√
6

3
〈τ2〉

χ

MP

.

These features are coherent with δτb essentially projected into χ in Model II, indeed
the present situation is analogous but for the presence of an additive degree of freedom
represented by the massless field ζ. Finally, δτs is substantially aligned with the heavy
field φ:

δτs '
2
√

3

3
〈τ1〉1/4 〈τ2〉1/2 〈τs〉1/4

φ

MP

, (3.60)

again in accordance with Model II.
As concerns axionic fields, the situation is once again similar to the previous one. Of

course the scalar potential (3.47) satisfies conditions cited in Section 2.4, then the kinetic
axionic Lagrangian reads:

Laxion
kin = 〈Kij〉 ∂µ

(
δψi
)
∂µ
(
δψj
)
−
(
M ′2)

i

(
δψi
)2
,

with one only unnormalised axionic mass, which is at leading order:

(
M ′2)

s
' 3a2

sξ |W0|2

2 〈τ1〉3/2 〈τ2〉3
.

Then the redefinition of the axionic fields as in the leading order expressions for their
corresponding real parts allows for a simple diagonalisation and canonical normalisation
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of the Lagrangian, up to some irrelevant couplings:

δψ1 ' −
2
√

3

3
〈τ1〉

θζ
MP

+

√
6

3
〈τ2〉

θχ
MP

,

δψ2 ' +

√
3

3
〈τ1〉

θζ
MP

+

√
6

3
〈τ2〉

θχ
MP

,

δψs ' +
2
√

3

3
〈τ1〉1/4 〈τ2〉1/2 〈τs〉1/4

θφ
MP

,

(3.61)

as can be argued by direct substitution. Of course the same features on the projection
between the old and the new fields hold true as for the real parts of Kähler moduli.
Canonically normalised axionic masses at leading order turn out to be:

m2
θζ

= 0, (3.62)

m2
θχ = 0, (3.63)

m2
θφ
' 4 a2

s 〈τs〉
1/2 ξ |W0|2

〈τ1〉 〈τ2〉2
, (3.64)

which means essentially that the axionic partners of ζ and χ are massless while θφ has a
mass of the same order of magnitude as φ. In particular, in physical units they can be
written as:

mθζ = 0, (3.65)

mθχ = 0, (3.66)

mθφ ' 2 ln

(
MP

m3/2

)
m3/2. (3.67)

Of course the fact that the axions θζ and θχ are massless does not give rise to a problem
since in this model they are non-interacting as they appear neither in the Kähler poten-
tial nor in the superpotential.

To conclude, the kinetic Lagrangian describing canonically normalised Kähler moduli
descending from the Kähler potential (3.42) and superpotential (3.43) reads:

LKähler
kin =− EΛ +

1

2
∂µ ζ ∂

µ ζ +
1

2
∂µ χ∂

µ χ+
1

2
∂µ φ ∂

µ φ+
1

2
∂µ θζ ∂

µ θζ

+
1

2
∂µ θχ ∂

µ θχ +
1

2
∂µ θφ ∂

µ θφ −
1

2
m2
χχ

2 − 1

2
m2
φφ

2 − 1

2
m2
θφ
θ2
φ.

(3.68)

A simple argument is sufficient to conclude that such a Lagrangian cannot be suitable
in order to modelise the hidden sector in the Supersymmetric Standard Model. Indeed,
interacting massless fields like ζ are forbidden because then they should give rise to
interactions for which there is no reason why they have never been observed so far.

The next step must then be the search for possible corrections neglected so far that
lift the scalar potential V eff

F in such a way as to make the field ζ massive.
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3.5 Model III: Subleading Corrections

In order to study possible subleading corrections to the scalar potential VF that make
all Kähler moduli massive, a crucial observation is that there exists a change of variables
that greatly simplifies the calculations.

In a generalisation of Model III, it is reasonable to expect that the Kähler potential
K and the superpotential W receive furhter corrections as:

Ktot = K + δKp, (3.69)

Wtot = W + δW np, (3.70)

in such a way as to get a corrected total scalar potential of the kind:

V tot
F = VF + δVF , (3.71)

where VF is the original scalar potential and δVF is a subleading correction, i.e. with:∣∣V tot
F

∣∣ ∼ |VF | � |δVF | .
The notation adpoted is chosen in order to keep it evident that K and W are not un-
perturbed potentials, but they are the contributions which have already been studied in
Model III and that are part of the total potentials Ktot and Wtot as the main contribu-
tions to the total scalar potential.

In order to minimise V tot
F , the great difference between the orders of magnitude of its

two contributions suggests that it is possible to first consider the leading contribution
VF only and then to study the contribution of δVF as a residual correction to VF which
slightly lifts it. A crucial observation offers the possibility to make the calculations quite
easy.

Indeed, after the usual approximation that leads to the effective form of the scalar
potential V eff

F and eventually considering further conditions concerning the newly in-
troduced corrections to get the effective contribution δV eff

F , it is possible to define the
effective total scalar potential:

V tot, eff
F = V eff

F + δV eff
F . (3.72)

Then, defining the approximate volume:

V ′ ≡ τ
1/2
1 τ2, (3.73)

and changing the former triplet3 of variables, (τ1, τ2, τs), to the new one, (τ1,V ′, τs), it
becomes clear that the scalar potential V eff

F can be written as a function of only V ′ and
τs:

V eff
F ≡

8

3

a2
sτ

1/2
s

V ′
|As|2 e−2asτs − 4

asτs

V ′2
|As| |W0| e−asτs +

3

2

ξ

V ′3
|W0|2 , (3.74)

3Of course there is an axionic dependence, which here is left implicit.
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in such a way that the vacuum expectation values for V ′, as a substitute of the product
τ

1/2
1 τ2, and τs are at leading order:

〈V ′〉 ' 3

4

〈τs〉
1
2

as

|W0|
|As|

eas〈τs〉
1− 1

as 〈τs〉

1− 1

4as 〈τs〉

, (3.75)

〈τs〉3/2 ' ξ

(
1− 1

4as 〈τs〉

)2

(
1− 1

as 〈τs〉

) . (3.76)

It is worthwhile to specify that if δV eff
F does not depend on τs, then the expression (3.75)

is exact since it comes from the condition of vanishing derivative of the scalar potential
with respect to the blow-up cycle.
The change of variables allows to take advantage of the solutions (3.75) and (3.76) in a
very simple way. As a matter of fact, now it is possible to take into account the correction
δVF by considering the whole potential V tot

F computed in the vacuum expectation values
〈V ′〉 and 〈τs〉:

V tot, eff
F (τ1, 〈V ′〉 , 〈τs〉) =

〈
V eff
F

〉
+ δ Veff

F (τ1, 〈V ′〉 , 〈τs〉), (3.77)

and to simply minimise it with respect to τ1. Once it is evaluated in the vacuum ex-
pectation value 〈τ1〉, the contribution δVF definitely allows the computation of Kähler
moduli masses.

3.5.1 Non-perturbative Corrections

The most natural attempt to modelise a suitable hidden sector by keeping the gen-
eral features depicted in Model III consists in taking into account more detailed non-
perturbative corrections to the superpotential (3.43). Indeed the scalar potential which
has been studied so far derives from:

Wtot = W0 +
∑
i=1,2,s

Ai e
−ai(τi+iψi),

that is commonly approximated as:

W = W0 + Ase
−as(τs+iψs),

because of the hierarchy between fields values around the ground state, which evidently
entails the predominance of corrections depending on the blow-up cycle.
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Nevertheless, the field ζ is substantially a combination of fluctuations around the ground
state of fields τ1 and τ2, then it is presumable that non-perturbative corrections to the
superpotential as:

δW np =
∑
i′=1,2

Ai′ e
−ai′ (τi′+iψi′ ),

under the obvious conditions:

|Ai′ | e−ai′τi′
τi′�τs� |As| e−asτs , i′ = 1,2,

lift the scalar potential in such a way as to make the field ζ massive.
For the sake of simplicity, the following calculations involve non-perturbative correc-

tions depending only on τ1, neglecting once again those depending on τ2. This choice can
be motivated somehow by assuming that the field τ1 takes a vacuum expectation value
smaller than that of τ2, thus entailing, thanks to the exponential damping:

|A2| e−a2τ2
τ2>τ1� |A1| e−a1τ1 .

Anyway, beyond this reasoning, the simpler model involving τ1 will be enough to show
how these kinds of superpotentials without any else modifications to Model III give
unacceptable results. Stated differently, the following description can be seen as an
instructive example to make it clear that non-perturbative corrections alone are not suf-
ficient to properly improve and complete Model III.

To sum up, the Kähler potential and the superpotential under exam are:

Ktot = −2 ln
(
τ

1/2
1 τ2 − τ 3/2

s + ξ
)
, (3.78)

Wtot = W0 + Ase
−as(τs+iψs) + A1e

−a1(τ1+iψ1), (3.79)

with the same notation and conventions as before, where of course a1 is a positive real
number and A1 is a complex constant commonly expressed as:

A1 = |A1| eiα1 ,

with the further obvious condition:

a1τ1 � asτs. (3.80)

Minimisation

It is possible to compute the scalar potential explicitly and it is convenient to write it
as:

V tot
F = VF + δVF ,
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where VF is the scalar potential which appears in Model III, i.e. discarding the newly
introduced corrections, while δVF is the contribution coming from these ones and is such
that: ∣∣V tot

F

∣∣ ∼ |VF | � |δVF | .
Under conditions (3.44), (3.45) and (3.80) it is possible to identify the effective contri-
butions to the total scalar potential:

V tot, eff
F = V eff

F + δV eff
F ,

where V eff
F is the well known potential in (3.47), including the minimisation with respect

to ψs, while:

δV eff
F =

4a1

τ 2
2

|A1| e−a1τ1

[
a1τ1 |A1| e−a1τ1 −

(
|W0|+ 2asτs |As| e−asτs

)]
, (3.81)

after a typical minimisation with respect to the axion ψ1 in:

〈ψ1〉 =
α1 − θ
a1

+ (2n+ 1)
π

a1

, n ∈ Z, (3.82)

Expression 3.81 requires particular attention: as a matter of fact, since τ1 is larger than τs,
the first term in brackets is expected to be negligible with respect to the other one unless
the constant |A1| is exponentially large. This fact suggests that the vacuum expectation
values coming from this model will probably require some unnatural features for some
of its parameters. Otherwise the first addendum should be neglected, thus entailing the
lack of a stabilisation for the modulus.

Anyway, following the discussion at the beginning of Subsection 3.5, it is convenient
to find the minimum of V tot, eff

F by first considering the leading contribution V eff
F only and

then to consider the slight lifting by δV eff
F .

Changing the variables from (τ1, τ2, τs) to (τ1,V ′, τs), V eff
F gives V ′ and τs the leading order

vacuum expectation values (3.75) and (3.76) respectively. Then, setting the variables V ′
and τs in these configurations, the total scalar potential takes the effective form:

V tot, eff
F (τ1, 〈V ′〉 , 〈τs〉) =

〈
V eff
F

〉
+ δV eff

F (τ1, 〈V ′〉), (3.83)

where, discarding the term proportional to e−a1τ1e−as〈τs〉:

δV eff
F '

4a1τ1 |A1| e−a1τ1

〈V ′〉2

[
a1τ1 |A1| e−a1τ1 − |W0|

]
. (3.84)

Then, it is immediate to conclude that the vacuum expectation value 〈τ1〉 of the field τ1

is such that:

a1 〈τ1〉 e−a1〈τ1〉 =
|W0|
2 |A1|

. (3.85)

56



3.5 – Model III: Subleading Corrections

As expected, this result allows to conclude that the introduction of perturbative
corrections only to the superpotential is not satisfactory. In fact, (3.85) shows clearly
that the latter would require an exponentially large value of |A1|, which would mean again
a lack of naturalness in the model. Moreover it seems evident that the introduction of a
further non-perturbative correction to the superpotential depending on τ2 cannot solve
this problem.

Then, the discussion of the present Section can only help in looking for the presence
of different kinds of corrections. Fortunately they actually do exist, as explained in the
following.

3.5.2 Perturbative Corrections

It is now well known that the Kähler potential K receives corrections from string loops
besides α′-corrections, although unfortunately their exact form for a generic Calabi-Yau
manifold compactification is unknown. Nevertheless, it it possible to argue that their
general structure for Model III can be expressed as [23] [24]:

δKp = δKKK + δKW, (3.86)

where δKKK are called ’Kaluza-Klein string loop corrections’:

δKKK =
gS C1

τ1

+
gS C2

τ2

, (3.87)

at leading order, while δKW are called ’winding string loop corrections’:

δKW =
CW
τ1τ2

, (3.88)

again at leading order, with C1, C2 and CW real numbers depending on the complex
structure moduli, i.e. real numerical constants within the context of low-energy Kähler
moduli stabilisation, which can be generally taken to be around unity.

Expressions (3.87) and (3.88) require to pay attention. Indeed, in the hypoteshis
where very roughly τ1 ∼ τ2:

• first of all it is evident that, in the absence of particular conditions on the constants
C1, C2 and CW , Kaluza-Klein corrections are larger than winding ones in the large
volume scenario: ∣∣δKKK

∣∣� ∣∣δKW
∣∣;

• next, the most striking feature is actually the fact that Kaluza-Klein corrections
are more significant than α′-ones, which at leading order can be written as:

δKα′
= − ξ

τ
1/2
1 τ2

,
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in such a way that: ∣∣δKKK
∣∣� ∣∣δKα′∣∣.

This relationship in turn seems to entail the inaccuracy of Model III because, before
considering α′-corrections and the following problems, Kaluza-Klein should have
been taken into account.

In the end, according to this reasoning, the most natural way to proceed is the one
in which perturbative corrections are progressively introduced, if needed, in the order:
δKKK, then δKα′

and in the end δKW.
Actually, a result referred to as ’Extended No-Scale Structure’ [24] shows that Kaluza-

Klein corrections to a tree-level Kähler potential lead to a vanishing leading order cor-
rection to the scalar potential. More precisely, in the context of Calabi-Yau manifold
compactification leading to N = 1, D = 1 supergravity its general statement can be
summarised as follows:

”Let the Kähler potential and superpotential of a system be:

K = K0 + δK,

W = W0,

where K0 is the tree-level Kähler potential, δK is a loop correction and W0 the well-
known constant superpotential. If the correction δK to K0 is a homogeneous function
in the 2-cycle volumes of degree n, then the scalar potential at leading order is:

VF ' −
n (n+ 2)

4

|W0|2

V2 δK, (3.89)

assuming that K0 is such as to give rise to the usual No-Scale Structure.”
In the case under exam, recalling the definitions (3.38) of the fields τ1 and τ2 as functions
of the 2-cycles t1 and t2, Kaluza-Klein and winding corrections are homogeneous functions
of the 2-cycles of orders nKK = −2 and nW = −4 respectively:

δKKK =
gS C1

τ1

+
gS C2

τ2

=
C ′1
t22

+
C ′2
t1t2

, nKK = −2,

δKW =
CW
τ1τ2

=
C ′W
t1t32

, nW = −4,

conveniently fixing the constants C ′1, C ′2 and C ′W .
Therefore, in a model with only Kaluza-Klein corrections, their first non-vanishing

contribution is expected to be scaled somehow by the factors g2
SC

2
1/τ

2
1 and g2

SC
2
2/τ

2
2 , i.e.

turns out to be subleading with respect to the contribution coming from α′ corrections,
which is scaled by factors as ξ/τ

1/2
1 τ2, and roughly of the same order as the contribution

descending from winding corrections, which is again weighted by CW/τ1τ2.
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3.5 – Model III: Subleading Corrections

This fact means that for the sake of symplicty it is reasonable to study at first α′ cor-
rections, while at a deeper level of accuracy both Kaluza-Klein and winding corrections
must be taken into account.

In the end, the model which correctly generalises Model III is described by the Kähler
potential and the superpotential:

Ktot = −2 ln
(
τ

1/2
1 τ2 − τ 3/2

s + ξ
)

+
c1

τ1

+
c2

τ2

+
CW
τ1τ2

, (3.90)

Wtot = W0 + Ase
−as(τs+iψs), (3.91)

with the same notation and assumptions as in Model III, where the effective parameters
c1 and c2 have been defined as c1 = gS C1 and c2 = gS C2 for the sake of simplicity, plus
the evident additional conditions:∣∣∣∣c1

τ1

∣∣∣∣ ∼ ∣∣∣∣c2

τ2

∣∣∣∣� 1,

∣∣∣∣CWτ1τ2

∣∣∣∣� 1 (3.92)

and more specifically the hierarchy in the large volume scenario:∣∣∣∣c1

τ1

∣∣∣∣ ∼ ∣∣∣∣c2

τ2

∣∣∣∣� τ
3/2
s

τ
1/2
1 τ2

∼ ξ

τ
1/2
1 τ2

�
∣∣∣∣CWτ1τ2

∣∣∣∣ ∼ c2
1

τ 2
1

∼ c2
2

τ 2
2

. (3.93)

Actually, these several relationships are only indicative and disregard the (generally)
slight modifications which would emerge by considering the effects of a small string
coupling gS around gS ∼ 10−1, but will be assumed for a linear description without loss
of generality because:

• if the compactification volume is huge, these relationships are generally true at the
needed level of approximation;

• if the compactification volume is large but not enormous, some anisotropies between
τ1 and τ2 can emerge and must be treated carefully. Nevertheless, in the cases of
interest, the slight changes in the above hierarchies do not affect the relevant parts
of the discussion, as can be observed by direct inspection following the general
outline discussion in Chapter 5.

Minimisation

The total scalar potential can be computed explicitly and it can be expressed in the
familiar form:

V tot
F = VF + δVF ,
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3 – Kähler Moduli Stabilisation

where VF is the exact scalar potential of Model III, i.e. without string loop corrections,
and δVF is the contribution coming from these ones. This fact means that computa-
tions confirm the discussion based on the Extended No-Scale Structure as string loop
corrections turn out to introduce only subleading corrections beacuse:∣∣V tot

F

∣∣ ∼ |VF | � |δVF | .
Under conditions (3.44), (3.45), (3.92) and (3.93) it is then worthwhile to identify the
effective contributions to the total scalar potential as:

V tot, eff
F = V eff

F + δV eff
F ,

where of course V eff
F is the well known potential of Model III expressed in (3.47), including

the minimisation with respect to ψs, while:

δV eff
F =

1

2

|W0|2

τ1τ 2
2

(
2
c2

1

τ 2
1

− 4
CW
τ1τ2

+
c2

2

τ 2
2

)
. (3.94)

According to the arguments described in Subsection 3.5, in order to minimise V tot, eff
F

it is convenient to first change the variables as (τ1, τ2, τs) → (τ1,V ′ = τ
1/2
1 τ2, τs) and

to individuate the minimum of the leading contribution V eff
F only, getting the leading

order vacuum expectation values (3.75) and (3.76) for V ′ and τs respectively, and then
to study the effects caused by the slight lifting of δV eff

F as the total scalar potential takes
the effective form:

V tot, eff
F (τ1, 〈V ′〉 , 〈τs〉) =

〈
V eff
F

〉
+ δ Veff

F (τ1, 〈V ′〉), (3.95)

where:

δV eff
F =

1

2

|W0|2

〈V ′〉2

(
2
c2

1

τ 2
1

− 4
CW

τ
1/2
1 〈V ′〉

+
c2

2τ1

〈V ′〉2

)
. (3.96)

Its minimum is readily individuated in the point 〈τ1〉 such that:

〈τ1〉3/2 =
CW
c2

2

[
|CW |
CW

(
1 + 4

c2
1c

2
2

C2
W

)1/2

− 1

]
〈V ′〉 , (3.97)

thus confirming the fact that 〈τ1〉, 〈τ2〉 and 〈V〉2/3 are roughly of the same order of
magnitude:

〈τ1〉 ∼ 〈τ2〉 ∼ 〈V〉2/3 .
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3.5 – Model III: Subleading Corrections

0 τ1

δV eff
F

Figure 3.4. Plots of the correction to the scalar potential δV eff
F = δV eff

F (τ1), solid and
dotted lines indicating positive and negative CW respectively.

Moduli Masses

According to Subsection 2.4, the kinetic term for Kähler moduli unnormalised Lagrangian
is now:

LKähler
kin =

〈
Ktot
ij

〉
∂µ
(
δτ i
)
∂µ
(
δτ j
)

+
〈
Ktot
ij

〉
∂µ
(
δψi
)
∂µ
(
δψj
)

−
〈
V tot
F

〉
−
(
M2

tot

)
ij
δτ iδτ j −

(
M ′2

tot

)
i

(
δψi
)2
,

(3.98)

with of course: (
M2

tot

)
ij
≡ 1

2

〈
∂2 V tot

F

∂ τ i ∂ τ j

〉
,

(
M ′2

tot

)
i
≡ 1

2

〈
∂2 V tot

F

∂ (ψi)2

〉
,

then, the normalised mass matrix can be defined as:(
m2

tot

)i
j

=
〈
Kil

tot

〉 (
M2

tot

)
lj
. (3.99)

Nevertheless, considering the effective form of the interesting quantities, the diag-
onalisation of the Lagrangian is immediate as the axionic dependence is the same as
before and most importantly the normalised mass matrix receives corrections from the
introduction of string loop corrections which affect in a sensible way only the field ζ,
which is massless in Model III. Indeed it is possible to roughly write:〈

Kij
tot

〉
=
〈
Kij
〉 [

1 +O

(
c1

〈τ1〉
,
c2

〈τ2〉

)]
,

(
M2

tot

)
ij

=
(
M2
)
ij

[
1 +
〈τ1〉

1
2 〈τ2〉
ξ

O

(
c2

1

〈τ1〉2
,
c2

2

〈τ2〉2
,

CW
〈τ1〉 〈τ2〉

)]
,
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in such a way that, very roughly:

(
m2

tot

)i
j

=
(
m2
)i
j

[
1 +
〈τ1〉

1
2 〈τ2〉
ξ

O

(
c2

1

〈τ1〉2
,
c2

2

〈τ2〉2
,

CW
〈τ1〉 〈τ2〉

)]
.

This fact means that the leading order expressions (3.54) and (3.55) of m2
χ and m2

φ are
not affected by string loop corrections. Moreover, the leading order expression of the
change of basis (3.59) results to be the same too. Then, the only leading order expression
which turns out to be modified is the vanishing mass m2

ζ of the field ζ, while all of the
rest of the diagonalisation is unaltered but at subleading order.

More specifically, the leading order correction δLKähler
kin to the normalised scalar La-

grangian (3.68) which makes it result into the Lagrangian (3.98) comes from the expan-
sion of the new contribution δV eff

F (τ1) around the vacuum expectation value 〈τ1〉 after
fixing V ′ and τs in their ground states:

δLKähler
kin ' −

〈
δV eff

F

〉
− 1

2

∂2 δV eff
F

∂ 〈τ1〉2
(δτ1)2 .

The vacuum energy density is modified almost irrelevantly as:

Etot
Λ = EΛ +

〈
δV eff

F

〉
.

As regards masses, since it is possible to write the relative variation of the field V ′ as:

δ V ′

V ′
=

1

2

δτ1

τ1

+
δτ2

τ2

the following relationship holds true according to (3.59) in vicinity of the minimum of
V ′ [25]:

δ V ′

〈V ′〉
=

√
6

2
χ.

Of course the Lagrangian correction must be taken into account under the condition of
fixed V ′, i.e. of fixed χ, which in turn entails the leading order equality:

δτ1 ' −
2
√

3

3
〈τ1〉 ζ.

In the end, the mass of the field ζ turns out to be at leading order:

m2
ζ '

4

3
〈τ1〉2

∂2 δV eff
F

∂ 〈τ1〉2
,

i.e.:

m2
ζ '

8 |W0|2

〈τ1〉
5
3 〈τ2〉

10
3

(
C2
W

16c1

)2
3 CW
|CW |

[
CW
|CW |

(
1 + 4

c2
1c

2
2

C2
W

)1/2
+ 1

] 1
3 (

1 + 4
c2

1c
2
2

C2
W

)1/2

. (3.100)
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The mass mζ is smaller than mχ and mφ. Indeed, under the assumption in which
c2

1, c2
2 and CW are not different by several orders of magnitude, in terms of the gravitino

mass in physical units it can be written as:

mζ '
(

γ

〈V〉

) 2
3

m3/2, (3.101)

γ being a factor around unity with resulting from (3.100). Then, mζ is reduced with

respect to m3/2 by a very large factor scaling as 〈V〉2/3.

Summing up, the canonically normalised kinetic term for the Kähler moduli La-
grangian in the properly corrected Model III describes four interacting massive particles,
ζ, χ, φ and θφ, and two massless non-interacting particles, θζ and θχ:

LKähler
kin =− Etot

Λ +
1

2
∂µ ζ ∂

µ ζ +
1

2
∂µ χ∂

µ χ+
1

2
∂µ φ ∂

µ φ

+
1

2
∂µ θζ ∂

µ θζ +
1

2
∂µ θχ ∂

µ θχ +
1

2
∂µ θφ ∂

µ θφ

− 1

2
m2
ζζ

2 − 1

2
m2
χχ

2 − 1

2
m2
φφ

2 − 1

2
m2
θφ
θ2
φ,

(3.102)

thus being suitable for a phenomenologically reliable introduction of soft terms.

Compactification Volume Anisotropy

The fact that Kaluza-Klein parameters are proportional to the string coupling can in-
duce a slight anisotropy in the compactification volume, which has been ignored above,
if gS ∼ 10−1.

In fact, considering the general condition in which c2
1c

2
2 � C2

W , the vacuum expecta-
tion value of the field τ1 reads, if CW is positive:

〈τ1〉3/2
∣∣
CW>0

c21c
2
2�C2

W' 2
c2

1

CW
〈V ′〉 , (3.103)

or, if CW is negative:

〈τ1〉3/2
∣∣
CW<0

c21c
2
2�C2

W' 2
|CW |
c2

2

〈V ′〉 . (3.104)

In the latter situations, the mass is simply, respectively:

m2
ζ

∣∣
CW>0

c21c
2
2�C2

W' 4 |W0|2

〈V ′〉
10
3

(
C2
W

4c1

) 2
3

, (3.105)

and:

m2
ζ

∣∣
CW<0

c21c
2
2�C2

W' 4 |W0|2

〈V ′〉
10
3

(
c2 |CW |

4

) 2
3

. (3.106)
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3 – Kähler Moduli Stabilisation

When the compactification volume is very large, e.g. a typical 〈V ′〉 ∼ 1014, the
anisotropy is evidently irrelevant as it does not affect sensibly the conditions (3.92) and
(3.93) and the following analysis.
Anyway, for situations where the vacuum expectation value 〈V ′〉 is large but not huge,
e.g. a possible 〈V ′〉 ∼ 104, the relative difference between 〈τ1〉 and 〈τ2〉 requires care in
the analysis of perturbative corrections to the scalar potential. Nonetheless, no problems
arise in the following modellings.

3.6 Energy Density Uplift

The modelling of a fully realistic scenario requires an approximately Minkowski minimum
for a reliable description of present epoch Universe.
The vacuum energy density corresponding to Kähler moduli scalar potential is the leading
contribution to the overall Universe vacuum energy density since the arising of Minimal
Supersymmetric Standard Model fields is embedded as the manifestation of perturbations
to hidden sector Kähler potential and superpotential, as outlined in Chapter 4.

The negative value set by perturbative and non-perturbative effects considered so far
is in fact generally uplifted to almost Minkowskian values by several phenomena which
affect the action.
They can emerge from various effects such as anti-D3 branes in warped throats [18],
magnetised D7 branes [26][27][28], dilaton-dependent non-perturbative effects [29][30] or
the effect of D-terms [31].
Anyway, in general, their presence can be accounted for by adding a further contribution
Vup to the total F -term scalar potential of the kind [32]:

Vup =
D

Vγ
, (3.107)

where D is a positive term with suitable mass dimension and γ is a parameter taking a
value depending on the details of the uplift mechanism, typically in the range 1 ≤ γ ≤ 3.
In this way, the total scalar potential reads:

V = V tot
F + Vup, (3.108)

with the coefficient D taking a suitable value in such a way as to get an approximately
Minkowski minimum.

As a final remark, it is fundamental to notice that the uplift potential generally must
scale as V−3 in vicinity of the ground state. Then, at leading order it does not affect
soft breaking terms, which generally scale with smaller powers of the inverse volume, as
emerges for instance in Chapter 4.
The uplift mechanism is quite complicated and goes beyond the scope of this thesis, so
it must be kept present that it exists but from now on it will not be described further.
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Chapter 4

Soft Terms from Moduli
Stabilisation

In a physical model with properly stabilised moduli it is possible to introduce fields
belonging to the Standard Model as well as their supersymmetric partners in such a way
as to describe a reliable Minimal Supersymmetric Standard Model in the low energy
limit of the theory.
This modelling can be realised by adding suitable corrective terms to the moduli Kähler
potential and superpotential, thus getting the description of particles and interactions in
addition to modular ones. In other words, small fluctuations about the moduli vacuum
configuration turn out to generate chiral matter as well as its interactions.
Notably, the introduction of phenomenologically suitable small perturbations to moduli
Kähler potential and superpotential turn out to naturally entail the presence of soft
terms.
The present Chapter is dedicated to the description of soft breaking term structure within
moduli stabilisation and to the computation of soft terms arising - on the basis of Models
II and III of Chapter 3 - with D7 branes wrapping Calabi-Yau 4-cycles.

4.1 Structure of Soft Terms

First of all, it is important to fix the notation for the scalar fields which are taken into
account in what follows. Hidden sector fields, i.e. the axio-dilaton S, complex structure
moduli Uα′

and Kähler moduli T i, are denoted collectively as ΦI , while observable mat-
ter fields, i.e. Higgses, squarks and sleptons, are indicated as Cα. In other words, capital
latin letters I, J, ... run over moduli and lower case greek letters α, β, ... run over matter
fields. Globally, italic capital latin letters I,J , ... run over both of the two families of
fields.
For the sake of simplicity, gauge fields Λa are neglected for the moment. However, lower
case latin letters a, b, ... are used to label gauge group indices.

65



4 – Soft Terms from Moduli Stabilisation

In general, the Kähler potential K and superpotentialW for a Supersymmetric Stan-
dard Model where the hidden sector is represented by moduli can be expressed as:

K = K
(
Φ, Φ̄

)
+ K̃αβ̄

(
Φ, Φ̄

)
CαC̄ β̄ +

[
1

2
Zαβ

(
Φ, Φ̄

)
CαCβ + h.c.

]
, (4.1)

W = W (Φ) +
1

2
µαβ (S, U)CαCβ +

1

6
Yαβγ (S, U)CαCβCγ, (4.2)

where K and W are the well known moduli Kähler potential and superpotential, while
K̃αβ̄, Zαβ, µαβ and Yαβγ are the functions which parametrise observable field fluctuations.

K̃αβ̄ is called Kähler matter metric, while Yαβγ represent the unnormalised Yukawa cou-
plings and Zαβ and µαβ are referred to as Z- and µ-parameters.
Typically, these functions come from the string theory which underlies the model under
exam - as they depend on hidden sector fields - but are highly difficult or even impossible
to compute explicitly. Nevertheless, some situations allow their determination through
alternative approaches such as scaling arguments or geometrical intuitions. Of course,
µαβ and Yαβγ cannot depend on Kähler moduli T i because of the shift symmetry.

4.1.1 General Soft Term Lagrangian

Kähler potentials and superpotentials of the form (4.1) and (4.2) determine of course the
complete Lagrangian describing a Supersymmetric Standard Model. Evidently, its fea-
tures depend on the fields involved and on the structure of the above defining functions.
In particular, the structure of soft terms comes from the expansion of the total scalar
potential:

VF = eK
(
KIJ̄DIWDJ̄ W̄ − 3WW̄

)
. (4.3)

Indeed, this one can be written in the moduli ground state neglecting non-renormalisable
terms, thus considering the dynamics of matter fields only, as:

VF ' VF + Vsoft, (4.4)

where VF is the usual scalar potential concerning moduli, i.e. making them massive,
while Vsoft is the soft term scalar potential. For the sake of simplicity, in this Chapter
from now on all of the quantities depending on moduli are to be intended as evaluated
in moduli vacuum expectation values, even if this item is not explicited by the angled
brackets employed so far.

More specifically, the soft term scalar potential can be written in the form:

Vsoft =
(
m′2
)
αβ̄
CαC̄ β̄ +

[(
1

2
B′αβC

αCβ +
1

6
A′αβγC

αCβCγ

)
+ h.c.

]
, (4.5)

where the unnormalised soft parameters are [5]:
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• the unnormalised scalar masses (m′2)αβ̄:(
m′2
)
αβ̄
≡
(
m2

3/2 + VF
)
K̃αβ̄

−
[
∂ ī ∂j K̃αβ̄ −

(
∂ ī K̃αγ̄

)
K̃ γ̄δ

(
∂j K̃δβ̄

)]
F̄ īF j;

(4.6)

• the unnormalised trilinear couplings A′αβγ:

A′αβγ ≡
W̄

|W |
eK/2F i

{
YαβγKi + ∂i Yαβγ

−
[
YδβγK̃

δρ̄ ∂i K̃ρ̄α + (α↔ β) + (γ ↔ β)
]}

;

(4.7)

• the unnormalised bilinear couplings B′αβ: cc

B′αβ ≡
W̄

|W |
eK/2

{
F i
[
Kiµαβ + ∂i µαβ

−
(
µδβK̃

δρ̄ ∂i K̃ρ̄α + (α↔ β)
)]
−m3/2µαβ

}
+
(
2m2

3/2 + VF
)
Zαβ −m3/2F̄

ī ∂ ī Zαβ

+m3/2F
i

{
∂i Zαβ −

[
ZδβK̃

δρ̄ ∂i K̃ρ̄α + (α↔ β)

]}
− F̄ īF j

{
∂ ī ∂j Zαβ −

[
K̃δρ̄

(
∂i K̃ρ̄α

)(
∂ ī Zδβ

)
+ (α↔ β)

]}
.

(4.8)

Actually, the soft scalar potential should contain one more term, i.e. the mass term
should be given by (m2

0 +m′2)αβ̄, (m2
0)αβ̄ being an additional parameter. Nevertheless,

since (m2
0)αβ̄ is vanishing whenever µαβ is zero, and this fact is always true in the situ-

ations under exam, it is not reported. The same could be said for some of the addenda
of B′αβ, but in this case they are all explicited in order to comprehensively analyse the
calculation of the Bµ̃-term (defined below) in the following.

It is worthwhile to underline that the previous expressions come from more general
ones in which all sums on Kähler moduli are generalised to sums on all kinds of moduli.
Anyway, in the ground state Kähler moduli are the only ones with non-vanishing auxil-
iary fields.
This reasoning is accomplished because the exact form of the auxiliary fields is:

F I =
W
|W|

eK/2KIJ̄DJ̄ W̄ ,
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but the leading order expressions for modular auxiliary fields read:

F I ' W

|W |
eK/2KIJ̄DJ̄W̄ , (4.9)

being the additive terms associated to observable matter largely subdominant with re-
spect to modular ones.

In order to make it easier to compare the results of the computations with other com-
putations as well as with phenomenological issues and experimental bounds, soft terms
are generally expressed in terms of the gravitino mass. Explicitly, this one is:

m3/2 = eK/2 |W| ,

but, again, its leading order expression is:

m3/2 ' eK/2 |W | . (4.10)

To conclude, the general soft term Lagrangian is reported for completeness.
Of course, the soft scalar potential (4.5) does not describe canonically normalised fields,
which means that also its masses and couplings are not normalised.
As a matter of fact, according to expressions (4.1) and (4.2) the soft scalar Lagrangian
Lscalar

soft , which contains the pure kinetic terms for all of the fields appearing in the soft
scalar potential and the soft scalar potential is not canonically normalised:

Lscalar
soft = K̃αβ̄ ∂µC

α ∂µ C̄ β̄ − Vsoft. (4.11)

Evidently, the canonical normalisation takes place in the same way as does for Kähler
moduli, i.e. suitably diagonalising the kinetic term:

Lsoft scalar
kin = K̃αβ̄ ∂µC

α ∂µ C̄ β̄ −
(
m′2
)
αβ̄
CαC̄ β̄, (4.12)

by a simultaneous diagonalisation and normalisation of matrices K̃αβ̄ and (m′2)αβ̄. Ac-
tually bilinear couplings would render this reasoning technically more complicated, but
they are not considered because in general they are assumed to affect only Higgs fields,
as explained below.

4.1.2 Soft Terms for Diagonal Matter Metric

In a multitude of situations it is reasonable to deal with a diagonal Kähler matter metric,
as shown below, i.e. with a matter metric which can be expressed as:

K̃αβ̄ = K̃αδαβ̄. (4.13)
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This fact allows to deal with much simpler soft terms as scalar fields are normalised
straightforwardly. Indeed, in this case the pure kinetic term of the soft term Lagrangian
reads:

Lsoft scalar
pure kin = K̃α ∂µC

α ∂µ C̄ ᾱ,

then canonically normalised observable scalar fields are evidently defined as:

φα ≡ (K̃α)1/2Cα. (4.14)

Moreover, specialising the computation to the Minimal Supersymmetric Standard
Model two further assumptions are in order.
First of all, the B-coupling is only relevant for the Higgses. Then, it is possible to set:

Zαβ ≡ Z (δαH1δβH2 + δαH2δβH1) . (4.15)

Secondly, the µ-term in the superpotential is expected to be vanishing [33]. However, it
is instructive for the computation of the B-terms to consider:

µαβ ≡ µ (δαH1δβH2 + δαH2δβH1) , (4.16)

before finally setting µ = 0.
Under these assumptions, it is easy to show that the canonically normalised soft

scalar potential can be written as:

Vsoft = m2
αφ

αφ̄ᾱ +

[(
1

6
Aαβγyαβγφ

αφβφγ +Bµ̃H1H2

)
+ h.c.

]
, (4.17)

where the soft parameters are identified as:

• the normalised scalar masses m2
α:

m2
α ≡

(
m2

3/2 + VF
)
− F̄ īF j ∂ ī ∂j

(
ln K̃α

)
; (4.18)

• the normalised trilinear parameters Aαβγ:

Aαβγ ≡ F i
[
Ki + ∂i ln (Yαβγ)− ∂i ln

(
K̃αK̃βK̃γ

)]
; (4.19)

• the normalised Bµ̃-term:

Bµ̃ ≡
(
K̃H1K̃H2

)− 1
2

{
W̄

|W |
eK/2µ

[
−m3/2

+ F i
(
Ki + ∂i lnµ− ∂i ln

(
K̃H1K̃H2

))]
+
(
2m2

3/2 + VF
)
Z −m3/2F̄

ī ∂ ī Z

+m3/2F
i
[
∂i Z − Z ∂i ln

(
K̃H1K̃H2

)]
− F̄ īF j

[
∂ ī ∂j Z − (∂ ī Z) ∂j ln

(
K̃H1K̃H2

)]}
;

(4.20)
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where the physical Yukawa couplings are defined as:

yαβγ ≡
W̄

|W |
eK/2(

K̃αK̃βK̃γ

) 1
2

Yαβγ, (4.21)

while the rescaled µ-parameter reads:

µ̃ ≡
(
K̃H1K̃H2

)−1/2
[
W̄

|W |
eK/2µ+m3/2Z − F̄ ī ∂ ī Z

]
. (4.22)

The µ̃-term turns out to correspond to Higgsino masses [2].
It is important to notice that the definition of B holds true provided the assumptions

(4.15) and (4.16) and assuming a diagonal Higgs sector for the Kähler matter metric,
without any further assumption on the rest of K̃αβ̄. In particular, under these conditions
the relation is:

B′αβ =
(
K̃H1K̃H2

)1/2

Bµ̃ (δαH1δβH2 + δαH2δβH1) .

Canonical Normalisation

In many situations with general Kähler matter metrics, unnormalised masses matrices
turn out to assume especially simple expressions which allow a straighforward recon-
cilement to the situations with diagonal Kähler matter metrics. This is precisely what
happens in the models considered below.
In particular, if the Kähler matter metric K̃αβ̄ of the model is such that:

• the unnormalised mass matrix can be written as:

m′2αβ̄ = m2
αK̃αβ̄; (4.23)

• unnormalised trilinear couplings are such that:

A′αβγ =
W̄

|W |
eK/2YαβγAαβγ; (4.24)

• the Kähler matter is diagonal in the MSSM-Higgs sector and conditions (4.15) and
(4.16) hold true;

then the soft scalar Lagrangian can be written as:

Lscalar
soft = K̃α′β̄′ ∂µC

α′
∂µ C̄ β̄′

+ K̃Hi ∂µH
′
i ∂

µ H̄ ′i −m2
α′K̃α′β̄′Cα′

C̄ β̄′ −m2
Hi
K̃HiH

′
iH̄
′
i

−
[(

1

6

W̄

|W |
eK/2AαβγYαβγC

αCβCγ +Bµ̃
(
K̃H1K̃H2

) 1
2
H ′1H

′
2

)
+ h.c.

]
,
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primed indices α′, β̄′ running over all of the scalar fields but the unnormalised Higgses
H ′1 and H ′2.
Since K̃αβ̄ is hermitian, it is possible to find a unitary matrix (Q)ᾱ

′

β̄′ such that:

(Q†) γ′

α′ K̃γ′δ̄′ (Q)δ̄
′

β̄′ = K̃α′δα′β̄′ , (4.25)

K̃α being Kähler matter metric eigenvalues. Then, it is possible to redefine the fields as:C̄
ᾱ′ ≡ (Q)ᾱ

′

β̄′C̄
′β̄′
,

Cα′ ≡ C ′β
′
(Q†) α′

β′ ,
(4.26)

getting the yet unnormalised Lagrangian:

Lscalar
soft = K̃α′ ∂µC

′α′
∂µ C̄ ′ᾱ

′
+ K̃Hi ∂µH

′
i ∂

µ H̄ ′i −m2
α′K̃α′Cα′

C̄ ᾱ′ −m2
Hi
K̃HiH

′
iH̄
′
i

−
[(

1

6

W̄

|W |
eK/2AαβγY

′
αβγC

′αC ′βC ′γ +Bµ̃
(
K̃H1K̃H2

) 1
2
H ′1H

′
2

)
+ h.c.

]
,

suitably redefining Y ′αβγ in such a way that:

YαβγAαβγ(Q
†) α
δ (Q†) β

ε (Q†) γ
ζ ≡ Y ′δεζAδεζ .

In the end, it is easy to define the canonically normalised fields as:

φα
′ ≡ (K̃α′)1/2C ′α

′
, (4.27)

Hi ≡ (K̃Hi)
1/2H ′i, (4.28)

and the canonically normalised Yukawa couplings as in (4.21), obtaining the correct
canonically normalised Lagrangian:

Lscalar
soft = ∂µ φ

α ∂µ φ̄ᾱ −m2
αφ

αφ̄ᾱ −
[(

1

6
Aαβγyαβγφ

αφβφγ +Bµ̃H1H2

)
+ h.c.

]
, (4.29)

which is exactly the soft scalar Lagrangian for diagonal Kähler matter metrics.
However, although this reasoning allows the presence of very general Kähler mat-

ter metrics, there are strict experimental bounds connected to flavour-changing neutral
currents which require very small off-diagonal elements, i.e. as a matter of fact tend to
reduce the problem to diagonal matrices in any case.

Gaugino Masses

If gauge fields are taken into account, their properties are entirely encoded in the gauge
kinetic function:

fab = fab (Φ) , (4.30)
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for which the same considerations about modular dependence apply as before.
Assuming a diagonal gauge kinetic function for the sake of simplicity,

fab = faδab,

it can be shown that, being Λa the unnormalised gauginos, canonically normalised gaug-
ino fields are:

λa ≡ (Re {fa})1/2 Λa, (4.31)

and their normalised masses are:

Ma ≡
1

2Re {fa}
F i ∂i fa, (4.32)

in such a way that gaugino mass terms in the soft Lagrangian is written as:

Lgaugino
mass = −1

2
(Maλaλa + h.c.) . (4.33)

4.2 MSSM on D7 Branes

In the context of moduli stabilisation in the Large Volume Scenario, one interesting fea-
ture is the possibility to study the arising of Supersymmetric Standard Models coming
from D7 branes wrapping 4-cycles. Indeed, Standard Model fields and their supersym-
metric partners can be modelled to come from the compactification of strings belonging
to D7 branes that wrap one or several of the 4-cycles which form the volume V [8] [9].
Of course, the characteristics of the wrapping - i.e. in particular, dealing with D7 branes
only, which of the 4-cycles are wrapped - determine the properties of the corresponding
Supersymmetric Standard Model, such as the soft breaking terms.
The gauge kinetic function fa = fa (Φ) can be determined explicitly in Large Volume Sce-
narios. Instead, unfortunately, the exact expressions of functions such as K̃αβ = K̃αβ (Φ)
and Zαβ = Zαβ (Φ) are unknown in most of the situations because of the extreme com-
plexity of computations. In the following, two interesting scenarios related to Models
II and III are described in which some physical intuitions allow to understand their be-
haviour.
Unless differently stated, the discussion is referred to the Minimal Supersymmetric Stan-
dard Model.

4.2.1 Gauge Kinetic Function

In the Large Volume Scenarios of interest, the effective expression of the gauge kinetic
function for D7 branes wrapping the 4-cycles corresponding to the Kähler modulus T i

reads [21]:

fi =
T i

2π
,
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gauge group indices being associated to the cycle in whose branes the corresponding
string modes exist. Specifically, the gauge couplings corresponding to such gauge kinetic
functions are then:

gi =

(
2π

τ i

)1/2

,

so gauge fields can only be supported on D7 branes wrapping 4-cycles which are not too
large, otherwise this equality would imply extremely small couplings, unlike the Standard
Model ones.

To conclude, gauge fields can generally arise from D7 branes wrapping blow-up 4-
cycles, i.e.:

fs =
Ts
2π
. (4.34)

However, if the overall volume happens not to take huge values, then it is admissible to
build models with gauge fields coming from D7 branes on large 4-cycles, i.e.:

f1 =
T1

2π
, (4.35)

f2 =
T2

2π
. (4.36)

4.2.2 Kähler Matter Metric for D7s on Blow-ups

The exact form of Kähler matter metrics arising from compactifications of D7 branes
wrapping blow-up cycles is generally unkown. Nevertheless, some physical arguments
allow to derive their leading order expressions, as shown in detail for instance in Ref.
[33]. For the sake of completeness, here is reported the guideline of its discussion referred
to Models II and III.

In scenarios in which the Standard Model is supported on a small cycle, associated
to the field τs, within a very large bulk volume V , on the one hand the leading order
expression of the Kähler potential reads, according to Chapter 2:

K ' −2 lnV ,

while on the other hand, assuming a diagonal Kähler matter metric for the sake of
simplicity, the physically normalised Yukawa couplings are, according to 4.21:

yαβγ =
W̄

|W |
eK/2(

K̃αK̃βK̃γ

) 1
2

Yαβγ.

Since the Standard Model arises from branes wrapping the tiny volume of the blow-
up cycle, by a locality principle all of the physical properties of the fields must be
independent from the very large overall volume V , while of course the unnormalised
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Yukawa couplings Yαβγ are also independent from Kähler moduli.
Therefore at leading order the diagonal Kähler matter metric is expected to be of the
kind:

K̃α '
k̃α (τs)

V2/3
,

where k̃α is a unknown function of the axio-dilaton, the complex structure moduli and
the small modulus. For the sake of brevity, only Kähler moduli dependence is reported.
It can be proved that the function k̃α can be expanded in a power series in τs as:

k̃α ' τ 1/3
s kα,

for models in which all of the D7 branes wrap the same cycle.
Summing up, in a logical generalisation to non-diagonal situations, the effective

Kähler matter metrics of this kind can be expressed for Model II as:

K̃αβ̄ ≡
τ

1/3
s

τb
kαβ̄, (4.37)

and for Model III as:

K̃αβ̄ ≡
τ

1/3
s

τ
1/3
1 τ

2/3
2

kαβ̄. (4.38)

The assumption of the very same functional dependence for all of the elements of Kähler
matter metric is likely to involve the equality of soft parameters for all of the scalar
fields. This property is confirmed in what follows.

4.2.3 Kähler Matter Metric for D7s on Large Cycles

In situations in which the large volume is structured as a combination of more than
one cycle, e.g. in Model III, this structuring makes it reasonable to build the Standard
Model on D7 branes wrapping the large volume cycle or part of it in quite an interesting
way. Indeed a larger variety of fields can arise from compactifications of this kind, thus
allowing for a possible diversification of soft breaking terms.
Following an idea of Ref. [34] and neglecting the blow-up cycle, the large volume (3.40)
of Model III can be näıvely modelled as the torus shown in Figure 4.1.
The Standard Model can be realised on D7 branes wrapping the cycle τ1 (case i), the
cycle τ2 (case ii) or both of them (case iii). Depending on which brane fields come from,
their features turn out to be different as different is the Kähler matter metric they are
referred to.
Of course it is reasonable to assume that there is no dependence on τs if the Standard
Model is built on such kind of branes by a locality principle. Indeed, a small volume is
expected not to affect the global behaviour of functions depending on the much larger
structure it is included in.
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t2

t1

τ2

τ ′2

t′2

τ1

Figure 4.1. Volume structure graphical representation, V = λ1t1t
2
2 = ατ

1/2
1 τ2: t1,

t2 and t′2 are the sides of the parallelepiped V, while τ1 (in green), τ2 and τ ′2 (both
in yellow) are its faces areas. t2 and t′2 as well as τ2 and τ ′2 are equivalent but are
distinguished for future convenience.

Classification of D7 Fields on Large Cycles

In order to study Kähler matter metric dependences, it is necessary to individuate the
general expressions which govern them in the general context of the wrapping by D7
branes. This Paragraph is devoted to this aim and is completely inspired by Ref. [35],
from which the starting point general formulae are drawn.

Chiral fields in D7 branes are classifiable in three classes depending on their geometric
origin (see Fig. 4.2 for a schematic representation):

• A-fields, which originate from general vector supermultiplets in higher dimensions.
They come from massless modes of the gauge multiplets inside the D7 branes
volume;

• Φ-fields, which originate from general scalar multiplet in higher dimensions. They
correspond to massless modes coming from scalars in the transverse space;

• I-fields, which originate from the intersection of different branes. They correspond
to massless fields coming from the exchange of open strings between intersecting
D7 branes.

Considering three different sets of D7 branes D7i, i = 1,2,3, each wrapping a 4-torus
transverse to the i-th complex plane, it can be shown that the Kähler matter metrics
dependences on Kähler moduli are, respectively:

A− fields : K̃(D7iD7i)
j

=
1

2τk
, i /= j /= k,

Φ− fields : K̃(D7iD7i)
i

=
gS
2
,

I − fields : K̃(D7iD7j) =

(
gS
4τk

)1/2

, i /= j /= k,

(4.39)
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A
Φ

I

Figure 4.2. Representation of different matter fields from D7-branes wrapping:
blue planes are D7 branes wrapping some cycle, while red lines are the possible
string modes A, Φ and I.

where the subscripts D7i, i = 1,2,3, indicate the three types of D7 branes where the
string extremities lie while the further subindices j, j = 1,2,3, indicate the complex
plane the string is orthogonal to.

Kähler Matter Metric

Employing the results (4.39), it is possible to determine the expressions for Kähler mat-
ter metrics corresponding to the possible ways the Standard Model can be built in.

i. D7 branes wrapping τ1.
For D7 branes wrapping τ1, the only possible fields are one kind of A-fields, called
A′, and one kind of Φ-fields, called Φ′ (see Fig. 4.3).

t2
t1

τ2

τ ′2

t′2

τ1

A′

Φ′

Figure 4.3. case i: graphical representation of D7 branes wrapping τ1.

The corresponding Kähler matter metrics read:

K̃A′ = K̃(D71D71)
2

=
1

2τ2

,

K̃Φ′ = K̃(D71D71)
1

=
gS
2
.

(4.40)
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ii. D7 branes wrapping τ2.
For D7 branes wrapping τ2, the possible fields are two kinds of A-fields, A′′ and A′′′,
and one kind of Φ-fields, called Φ′′ (see Fig. 4.4).

t2

t1

τ2

τ ′2

t′2

τ1

A′′
A′′′

Φ′′

Figure 4.4. case ii: graphical representation of D7 branes wrapping τ2.

The corresponding Kähler matter metrics are:

K̃A′′ = K̃(D72D72)
2′

=
1

2τ1

,

K̃A′′′ = K̃(D72D72)
1

=
1

2τ2

,

K̃Φ′′ = K̃(D72D72)
2

=
gS
2
.

(4.41)

iii. D7 branes wrapping both τ1 and τ2.
For D7 branes wrapping both τ1 and τ2, of course all of the previous fields are possible
as well as I fields (see Fig. 4.5).

t2
t1

τ2

τ ′2

t′2

τ1 A
′

Φ′

A′′
A′′′

Φ′′

I

Figure 4.5. case iii: graphical representation of D7 branes wrapping both τ1 and τ2.

Then Kähler matter metrics are (4.40), (4.41) and:

K̃I = K̃(D71D72) =

(
gS
4τ2

)1/2

. (4.42)
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Evidently, the last situation is the most general one as it includes the former two as
special cases.

To sum up and adapt the notation to the previous one, it is possible to conclude that,
in Model III, the most general possible prototype of Supersymmetric Standard Model
can arise from observable fields coming from D7 branes wrapping both τ1 and τ2.
These observable fields can be associated to a block-diagonal Kähler matter metric:

K̃αβ̄ =



K̃A′B̄′

K̃A′′B̄′′

K̃A′′′B̄′′′

K̃Φ′ψ̄′

K̃Φ′′ψ̄′′

K̃IJ̄


, (4.43)

in which every block corresponds to one or more fields of the kinds described above,
indices A′, A′′, A′′′, Φ′, Φ′′ and I running accordingly.
Specifically, according to expressions (4.40), (4.41) and (4.42), the blocks can be arranged
in the form:

K̃A′B̄′ =
1

τ2

kA′B̄′ , K̃A′′B̄′′ =
1

τ1

kA′′B̄′′ , K̃A′′′B̄′′′ =
1

τ2

kA′′′B̄′′′ ,

K̃Φ′ψ̄′ = kΦ′ψ̄′ , K̃Φ′′ψ̄′′ = kΦ′′ψ̄′′ ,

K̃IJ̄ =
1

τ
1/2
2

kIJ̄ ,

(4.44)

after absorbing numerical constants such as gS in the constant matrix elements. The
restriction to special cases such as D7 branes wrapping only τ1 or τ2 is straightforward.

4.2.4 Giudice-Masiero Term

The function Zαβ is generally unknown and very hard to compute. In the Minimal Super-
symmetric Standard Model, assuming for the sake of simplicity to deal with a diagonal
matter metric at least in the Higgs sector and setting Zαβ = Z (δαH1δβH2 + δαH2δβH1), Z
can be assumed to scale as (K̃H1K̃H2)1/2 [34], i.e. in a general Model II:

Z =
τλzs
τ pzb

z, (4.45)

and in a general Model III:

Z =
τλzs

τn1z
1 τn2z

2

, (4.46)

being λz, pz, n1z and n2z the arithmetic means of the corresponding exponents for the
fields H1 and H2.
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4.3 Soft Terms in Model II

Model II offers the instructive possibility to easily compute soft terms for the Minimal
Supersymmetric Standard Model arising from D7 branes wrapping the small cycle τs.
Kähler matter metric is expressed as:

K̃αβ̄ ≡
τλs
τ pb
kαβ̄, (4.47)

where the exponents λ and p are not explicited in order to evidence the special cancel-
lations which occur when they (especially p) assume their correct values λ = 1/3 and
p = 1.
The following computation is performed also in Ref. [21], which served as one of the
main inspirations of the thesis.

4.3.1 F-terms and Gravitino Mass

Auxiliary fields and the gravitino mass can be computed easily according to the standard
definitions (4.9) and (4.10), recalling the vacuum expectation values (3.22) and (3.23)
and the assumptions (3.18) and (3.19).

In reduced Planck units, auxiliary fields read, up to leading order, which turns out
to be sufficient for the present purpose:

F b = −2
|W0|
τ

1/2
b

[
1 +O

(
τ

3/2
s

τ
3/2
b

,
ξ

τ
3/2
b

)]
, (4.48)

F s = −3

2

|W0|
asτ

3/2
b

[
1 +O

(
1

asτs

)]
. (4.49)

while the gravitino mass, again up to leading order, can be expressed as:

m3/2 =
|W0|
τ

3/2
b

[
1 +O

(
τ

3
2
s

τ
3
2
b

,
ξ

τ
3
2
b

)]
. (4.50)

Moreover, one further identity holds true. In fact, it is possible to write at leading order:

asτs = ln

(
1

m3/2

)[
1− ln m̄

lnm3/2

]
, (4.51)

where m̄ is a quantity with the dimensions of a mass:

m̄ =
4

3
asτs
|As|
τ

3/2
s

[
1 +O

(
1

asτs

)]
.
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This simple expression allows to conclude that the correction by the ratio of logarithms
is subdominant with respect e.g. to the one by O(1/asτs). Indeed the mass m̄ turns out
to be around unity, then, evidently:

ln m̄
m̄∼1∼ 0.

Combining the previous expressions, it is easy to express the auxiliary fields in terms
of the gravitino mass. In fact, the following equalities hold true up to leading order:

F b = −2τbm3/2

[
1 +O

(
τ

3/2
s

τ
3/2
b

,
ξ

τ
3/2
b

)]
, (4.52)

F s = −3

2
τs

m3/2

ln

(
1

m3/2

) [1 +O

(
1

asτs

)]
. (4.53)

These expressions are interesting because if in the soft terms the dependence on the field
F b turns out to be cancelled - and this cancellation is precisely accomplished by the
correct value p = 1, as shown below - then their natural scale is set to m3/2 divided by
a factor ln(MP/m3/2) in physical units.

4.3.2 Diagonal Kähler Matter Metric

For the sake of simplicity, the first case under exam is the one with a diagonal Kähler
matter metric.
In order to have a more instructive computation in view of Model III, it can be taken of
the form:

K̃α =
τλαs
τ pαb

kα, (4.54)

with general exponents λα and pα, and similarly the Z-term is taken as:

Z =
τλzs
τ pzb

z. (4.55)

with a general exponent pz.
Scalar masses (4.18), trilinear parameters (4.19) and the Bµ̃-term (4.20) (assuming

µ = 0) under assumptions (3.18) and (3.19) read:

m2
α =

[
1− pα

(
1 +O

(
τ

3/2
s

τ
3/2
b

,
ξ

τ
3/2
b

))]
m2

3/2

+ VF +
9λα
16

m2
3/2

ln2
(
1/m3/2

)[1 +O

(
1

asτs

)]
,

(4.56)
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Aαβγ = 3m3/2

[
1 +O

(
τ

3/2
s

τ
3/2
b

,
ξ

τ
3/2
b

)
− pα + pβ + pγ

3

(
1 +O

(
τ

3/2
s

τ
3/2
b

,
ξ

τ
3/2
b

))]

+
3

4
(λα + λβ + λγ)

m3/2

ln
(
1/m3/2

)[1 +O

(
1

asτs

)]
,

(4.57)

Bµ̃ =
z

(kH1kH2)
1
2

τ
pH1

+pH2
2

−pz
b

τ
λH1

+λH2
2

−λz
s

{
2m2

3/2

[
1− 1

2
(pH1 + pH2)

(
1 +O

(
τ

3/2
s

τ
3/2
b

,
ξ

τ
3/2
b

))

− 1

2
pz (pz + 1− (pH1 + pH2))

(
1 +O

(
τ

3/2
s

τ
3/2
b

,
ξ

τ
3/2
b

))]
+ VF

+
3

4

m2
3/2

ln
(
1/m3/2

)((λH1 + λH2) (1− pz)

− 2λz

(
pH1 + pH2

2
− pz

))[
1 +O

(
1

asτs

)]

+
9λz
16

[λH1 + λH2 − (λz − 1)]
m2

3/2

ln2
(
1/m3/2

)[1 +O

(
1

asτs

)]}
.

(4.58)

Moreover, gaugino masses are (absorbing an overall phase into gauginos):

Ma =
3

4

m3/2

ln

(
1

m3/2

) [1 +O

(
1

asτs

)]
. (4.59)

In the end, physical Yukawa couplings and the µ̃-term read:

yαβγ = e−iθ

 τ
(pα+pβ+pγ−3)
b

τ
(λα+λβ+λγ)
s kαkβkγ

 1
2

Yαβγ

[
1 +O

(
τ

3/2
s

τ
3/2
b

,
ξ

τ
3/2
b

)]
, (4.60)

µ̃ =
z

(kH1kH2)
1
2

τ
pH1

+pH2
2

−pz
b

τ
λH1

+λH2
2

−λz
s

{
m3/2

[
1− pz

(
1 +O

(
τ

3/2
s

τ
3/2
b

,
ξ

τ
3/2
b

))]

+
3λz
4

m3/2

ln
(
1/m3/2

) (1 +O

(
τ

3/2
s

τ
3/2
b

,
ξ

τ
3/2
b

))} (4.61)

Despite the seeming complexity of these expressions in a hypothetical general case,
in the model under exam, assuming the known dependence for Z, the fact that pα ≡ 1
simplifies surprisingly the results because it provides a cancellation of the leading terms.
The remaining contributions from the cancelled terms are weighted by factors scaling
with the inverse volume and thus turn out to be subdominant with respect to the terms
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which are scaled by the logarithm of MP/m3/2 in physical units.
As a matter of fact, choosing the overall values λ = 1/3 and p = 1, up to the leading

order the soft terms are, in physical units:

mα '
√

3

4

m3/2

ln
(
MP/m3/2

) , (4.62)

Ma '
3

4

m3/2

ln
(
MP/m3/2

) , (4.63)

Aαβγ '
3

4

m3/2

ln
(
MP/m3/2

) , (4.64)

Bµ̃ ' z

4 (kH1kH2)
1
2

(
m3/2

ln
(
MP/m3/2

))2

, (4.65)

with:

yαβγ ' e−iθ
Yαβγ

τ
1
2
s (kαkβkγ)

1
2

, (4.66)

µ̃ ' z

4 (kH1kH2)
1
2

m3/2

ln
(
MP/m3/2

) . (4.67)

As was pointed out before, for all of the soft masses, i.e. for Higgses, squarks, sleptons
and gauginos, the reference value is:

m̃soft '
m3/2

ln
(
MP/m3/2

) , (4.68)

which means that they turn out to be suppressed by a factor ln(MP/m3/2) compared to
gravitino mass m3/2.

4.3.3 General Kähler Matter Metric

The previous results allow to discuss easily what happens for more general situations.
Assuming for the moment the possibility to have a general Kähler matter metric of the
kind (4.47), where actually the Higgs sector is still assumed to be diagonal with conditions
(4.15) and (4.16), as a matter of fact, previous results turn out to be unaltered.

Indeed it is possible to write, defining λs = λ and λb = −p:

K̃αβ̄ =
(∏
l=s,b

τλll

)
kαβ̄,

in such a way as to have:

∂i K̃αβ̄ =
λi
2τi

K̃αβ̄, ∂j ∂i K̃αβ̄ = − λi
4τiτj

(δij − λj) K̃αβ̄,
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and:

∂i ln K̃αβ̄ =
λi
2τi

, ∂j ∂i ln K̃αβ̄ = − λi
4τ 2
i

δij.

Then, unnormalised scalar masses (4.6) and trilinear couplings (4.7) turn out to be
expressible as:

m′2αβ̄ =
[
m2

3/2 + VF − F̄ īF j ∂ ī ∂j ln K̃αᾱ

]
K̃αβ̄,

A′αβγ =
W̄

|W |
eK/2YαβγF

i
[
Ki + ∂i ln (Yαβγ)− ∂i ln

(
K̃αᾱK̃ββ̄K̃γγ̄

)]
,

by taking advantage of the possibility to write e.g. λi/2τi = ∂i ln K̃αᾱ.
In other words, these expressions can be eventually written as:

m′2αβ̄ = m2
αK̃αβ̄, (4.69)

A′αβγ =
W̄

|W |
eK/2YαβγAαβγ, (4.70)

thus making it clear that the general situation can always be brought back to the one
with a diagonal Kähler matter metric without loss of generality by simply performing
the canonical normalisation of the Lagrangian.

4.4 Soft Terms in Model III

Model III is suitable for the study of Supersymmetric Standard Models arising from D7
branes wrapping some of the cycles associated to the corresponding Calabi-Yau manifold.
According to Subsections 4.2.2 and 4.2.3, it is worthwhile to analyse a general Kähler
matter metric expressed as:

K̃αβ̄ =
τ
λαβ̄
s

τ
n1αβ̄

1 τ
n2αβ̄

2

kαβ̄. (4.71)

Nevertheless, below it is shown that under very general assumptions, i.e. a block-diagonal
matrix, the very same results can be inferred from a simpler diagonal Kähler matter
metric.

4.4.1 F-terms and Gravitino Mass

Auxiliary fields vacuum expectation values as well as the gravitino mass can be computed
following the standard definitions (4.9) and (4.10), recalling the vacuum expectation
values (3.48) and (3.49) and the assumptions (3.44) and (3.45).

In reduced Planck units, auxiliary fields read, up to leading order corrections:

F 1
tot = −2

τ
1
2

1

τ2

|W0|

[
1− 1

2

c1

τ1

+
1

2

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
, (4.72)
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F 2
tot = −2

1

τ
1
2

1

|W0|

[
1 +

1

2

c1

τ1

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
, (4.73)

F s
tot = − 3

2asτ
1
2

1 τ2

|W0|

[
1 +O

(
1

asτs

)]
, (4.74)

while the gravitino mass can be written, up to leading order corrections, as:

m3/2 =
|W0|

τ
1
2

1 τ2

[
1 +

1

2

c1

τ1

+
1

2

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
. (4.75)

Furthermore, the following identity holds true at leading order:

asτs = ln

(
1

m3/2

)[
1− ln m̄

lnm3/2

]
, (4.76)

where, again, m̄ is the quantity with the dimensions of a mass:

m̄ =
4

3
asτs
|As|
τ

3/2
s

[
1 +O

(
1

asτs

)]
,

with, evidently:

ln m̄
m̄∼1∼ 0.

In conclusion, arranging the previous expressions allows to write the auxiliary fields
eventually expliciting their dependence on the gravitino mass as:

F 1
tot = −2τ1m3/2

[
1− c1

τ1

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
, (4.77)

F 2
tot = −2τ2m3/2

[
1− 1

2

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
, (4.78)

F s
tot = −3

2
τs

m3/2

ln
(
1/m3/2

)[1 +O

(
1

asτs

)]
. (4.79)

It is important to compare the structure of these expressions with their analogues (4.52)
and (4.53) of Model II. By introducing string loop corrections, in the absence of an anal-
ogous mechanism to the Extended No-Scale Structure cancellation for auxiliary fields,
these ones get Kaluza-Klein contributions which are in a delicate interplay with inverse
volume and blow-up cycle corrections.
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4.4.2 Diagonal Kähler Matter Metric

Now that auxiliary fields are determined and their structure is clear, the computation of
soft terms is straightforward.
In particular for a diagonal Kähler matter metric of the kind:

K̃α =
τλαs

τn1α
1 τn2α

2

kα, (4.80)

and a Z-term:

Z =
τλzs

τn1z
1 τn2z

2

z, (4.81)

expressions (4.18), (4.19) and (4.20) give the following scalar masses, trilinear parameters
and Bµ̃-term:

m2
α = (1− n1α − n2α)m2

3/2 + VF

+ 2n1αm
2
3/2

[
c1

τ1

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]

+ n2αm
2
3/2

[
c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]

+
9λα
16

m2
3/2

ln2
(
1/m3/2

)[1 +O

(
1

asτs

)]
,

(4.82)

Aαβγ = 3m3/2

[
1− 1

3
(n1α + n1β + n1γ)

− 1

3
(n2α + n2β + n2γ) +O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]

+ (n1α + n1β + n1γ)m3/2

[
c1

τ1

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]

+
1

2
(n2α + n2β + n2γ)m3/2

[
c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]

+
3

4
(λα + λβ + λγ)

m3/2

ln
(
1/m3/2

)[1 +O

(
1

asτs

)]
,

(4.83)
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Bµ̃ =
Z(

K̃H1K̃H2

) 1
2

{
2m2

3/2

[
1− 1

2
(1 + n1z + n2z) (n1z + n2z)

− 1

2
(1− n1z − n2z)

(
(n1H1 + n1H2) + (n2H1 + n2H2)

)]
+ VF

+m2
3/2

[
2n1z

(
1 + n1z + n2z −

1

2
(n2H1 + n2H2)

)

+ (n1H1 + n1H2) (1− 2n1z − n2z)

][
c1

τ1

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]

+m2
3/2

[
n2z

(
1 + n1z + n2z −

1

2
(n1H1 + n1H2)

)

+
1

2
(n2H1 + n2H2) (1− 2n2z − n1z)

][
c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]

+
3

4

m2
3/2

ln
(
1/m3/2

)[(λH1 + λH2) (1− (n1z + n2z)) + 2λz (n1z + n2z)

− λz ((n1H1 + n1H2) + (n2H1 + n2H2))

] [
1 +O

(
1

asτs

)]

− 9λz
16

m2
3/2

ln2
(
1/m3/2

) (λz − 1− (λH1 + λH2))

[
1 +O

(
1

asτs

)]}
.

(4.84)

The latter expressions are extremely long and articulated, but are structured in such a
way as to evidence the hierarchies between the various contributions.
According to 4.32, gaugino masses take different values depending on which cycle gauge
fields arise from, the apexes in brackets accounting for it in obvious notation:

Ma =



M
(1)
a = m3/2

[
1− c1

τ1

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
,

M
(2)
a = m3/2

[
1− 1

2

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
,

M
(s)
a =

3

4

m3/2

ln
(
1/m3/2

) [1 +O

(
1

asτs

)]
.

(4.85)
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Finally, physical Yukawa couplings (4.21) and the µ̃-parameter (4.22) read:

yαβγ = e−iθ
τ
n1α+n1β+n1γ

2
− 1

2
1 τ

n2α+n2β+n2γ
2

−1

2

τ
λα+λβ+λγ

2
s (kαkβkγ)

1
2

·

[
1 +

1

2

c1

τ1

+
1

2

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
Yαβγ,

(4.86)

µ̃ =
Z(

K̃H1K̃H2

) 1
2

{
m3/2

[
1− n1z − n2z

+ n1z

(
c1

τ1

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

))
+
n2z

2

(
c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

))]

+
3λz
4

m3/2

ln
(
1/m3/2

) [1 +O

(
1

asτs

)]}
.

(4.87)

D7s on Blow-ups

The Minimal Supersymmetric Standard Model can be supported on D7 branes wrapping
the blow-up cycle, in the same way as for Model II. According to (4.38), the values for
the exponents which determine the Kähler matter metric are:

n1α ≡ 1/3, n2α ≡ 2/3, λα ≡ 1/3, (4.88)

the same values holding for the Z-term too, as argued in Subsection 4.2.4.
The corresponding soft terms undergo the same kind of cancellations which charac-

terises Model II. Indeed soft terms are up to leading order in physical units:

mα '
√

3

4

m3/2

ln
(
MP/m3/2

) , (4.89)

Ma '
3

4

m3/2

ln
(
MP/m3/2

) , (4.90)

Aαβγ '
3

4

m3/2

ln
(
MP/m3/2

) , (4.91)

Bµ̃ ' z

4 (kH1kH2)
1
2

(
m3/2

ln
(
MP/m3/2

))2

, (4.92)

with:

yαβγ ' e−iθ
Yαβγ

τ
1
2
s (kαkβkγ)

1
2

, (4.93)
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µ̃ ' z

4 (kH1kH2)
1
2

m3/2

ln
(
MP/m3/2

) . (4.94)

Although these parameters receive generally non-vanishing Kaluza-Klein corrections,
since they turn out to be subleading contributions, the soft terms essentially correspond
to the ones of Model II. In particular, they are universally of order m̃soft.

D7s on Large Cycles

If the Standard Model is estabilished on D7 branes wrapping the large cycles, soft terms
show an interesting diversification which gives rise to a more complicated phenomenology.
According to Subsection 4.2.3, the most general situation as possible in Model III shows
the presence of different kinds of fields, each of which associated to special exponents of
the Kähler matter metric:

A− fields :


A′ : n1A′ = 0, n2A′ = 1, λA′ = 0,

A′′ : n1A′′ = 1, n2A′′ = 0, λA′′ = 0,

A′′′ : n1A′′′ = 0, n2A′′′ = 1, λA′′′ = 0,

(4.95)

Φ− fields :


Φ′ : n1Φ′ = 0, n2Φ′ = 0, λΦ′ = 0,

Φ′′ : n1Φ′′ = 0, n2Φ′′ = 0, λΦ′′ = 0,
(4.96)

I − fields : I : n1I = 0, n2I = 1/2, λI = 0. (4.97)

The Z-term is assumed to be scaled as the geometrical mean of the Kähler matter metric
elements correponding to Higgs fields (see Subsection 4.2.4).
Evidently, as regards the computation of soft terms, A′′′-fields can be treated as A′-fields
as well as Φ′- and Φ′′-fields can be studied globally as Φ-fields.
Then, the possible kinds of scalar fields are N0 = 4, which means that the expected
parameters are:

• 4 different scalar masses, one for each kind of field:

Nsc.masses = N0
N0=4
= 4;

• 20 different trilinear couplings, i.e. the number of possible matchings of 3 elements
among the possible N0 families of fields:

Ntril. couplings =

(
N0 + 3− 1

3

)
N0=4
= 20;
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• 10 possible B-terms, corresponding to the number of possible couples of 2 Higgses -
in the Minimal Supersymmetric Standard Model - with both of the Higgses possibly
belonging to any of the N0 families:

NB−terms =

(
N0 + 2− 1

2

)
N0=4
= 10.

Under these premises, soft breaking terms can be finally determined and classified ac-
cording to their order of magnitude.

Scalar masses can be sorted into two families as two different orders of magnitude
can emerge. Indeed, A-fields turn out to have masses scaled by the factors

√
|c1|/τ1 or√

|c2|/τ2 with respect to m3/2, being:

m2
A′ = m2

3/2

[
c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
+ VF , (4.98)

m2
A′′ = 2m2

3/2

[
c1

τ1

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
+ VF , (4.99)

while Φ- and I-fields are heavier as they have masses comparable to the gravitino mass:

m2
Φ = m2

3/2 + VF , (4.100)

m2
I =

1

2
m2

3/2

[
1 +

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
+ VF . (4.101)

It is worthwhile to notice that the sign of c1 and c2 is crucial. If negative, such parameters
would severely complicate the expansions which have lead to the observable matter fields
expressions. Therefore, if not otherwise claimed, they are to be considered positive.

Trilinear terms can be divided into two classes too, weak and strong parameters. As
a matter of fact, interactions among only A-scalars turn out to be scaled as c1/τ1 and/or
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c2/τ2 with respect to the scale m3/2, i.e. couplings are weak:

AA′A′A′ =
3

2
m3/2

[
c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2
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, (4.102)

AA′A′A′′ = m3/2

[
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+
c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
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1 τ2
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, (4.103)

AA′A′′A′′ = 2m3/2

[
c1

τ1

+
1

4

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2
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ξ

τ
1
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1 τ2
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, (4.104)

AA′′A′′A′′ = 3m3/2

[
c1

τ1

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
, (4.105)

instead, all of the parameters involving at least one among Φ- or I-fields are of the same
order of magnitude as m3/2. In particular, terms which involve two A-fields are:

AA′A′Φ = m3/2

[
1 +

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
, (4.106)

AA′′A′′Φ = m3/2

[
1 + 2

c1

τ1
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τ

3
2
s

τ
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1 τ2

,
ξ

τ
1
2

1 τ2
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, (4.107)

AA′A′′Φ = m3/2

[
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τ1

+
1

2

c2

τ2

+O

(
τ

3
2
s

τ
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1 τ2

,
ξ

τ
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1 τ2
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, (4.108)

AA′A′I =
1

2
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+O

(
τ

3
2
s

τ
1
2

1 τ2
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ξ
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, (4.109)

AA′′A′′I =
1

2
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, (4.110)
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, (4.111)

while those involving one only A-field read:

AA′ΦΦ = 2m3/2

[
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, (4.112)

AA′′ΦΦ = 2m3/2
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, (4.113)
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AA′ΦI =
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, (4.115)
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Finally, terms involving only Φ- and I-fields are:

AΦΦΦ = 3m3/2
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, (4.118)

AΦΦI =
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, (4.120)
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. (4.121)

The coupling Bµ̃ is characterised by an analogous structure. If the Higgses are both
A-fields, it is scaled by the factors c1/τ1 and/or c2/τ2, indeed it can take the values, with
obvious notation:

Bµ̃
∣∣
{A′,A′} = η ·

[
VF +m2

3/2

(
c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

))]
, (4.122)

Bµ̃
∣∣
{A′,A′′} = η ·

[
VF +m2

3/2

(
c1

τ1

+
1

2

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

))]
, (4.123)

Bµ̃
∣∣
{A′′,A′′} = η ·

[
VF + 2m2

3/2

(
c1

τ1

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

))]
, (4.124)
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otherwise, when one only A-field is present, it can be:

Bµ̃
∣∣
{A′,Φ} = η ·

[
VF +

3

4
m2

3/2

(
1 +

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

))]
, (4.125)

Bµ̃
∣∣
{A′′,Φ} = η ·

[
VF +

3

4
m2

3/2

(
1 + 2

c1

τ1

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

))]
, (4.126)

Bµ̃
∣∣
{A′,I} = η ·

[
VF +

5

16
m2

3/2

(
1 + 3

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

))]
, (4.127)

Bµ̃
∣∣
{A′′,I} = η ·

[
VF +

5

16
m2

3/2

(
1 + 4

c1

τ1

+
c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

))]
, (4.128)

and when only Φ- and I-fields are involved it can read:

Bµ̃
∣∣
{Φ,Φ} = η ·

[
VF + 2m2

3/2

]
, (4.129)

Bµ̃
∣∣
{Φ,I} = η ·

[
VF +

21

16
m2

3/2

(
1 +

1

3

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

))]
, (4.130)

Bµ̃
∣∣
{I,I} = η ·

[
VF +

3

4
m2

3/2

(
1 +

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

))]
. (4.131)

Of course the overall coefficient η is defined as:

η =
z

(kH1kH2)
1
2

.

Gaugino masses turn out to be around m3/2, with subleading terms depending on the
cycle gauge fields come from. Indeed they are:

M (1)
a = m3/2

[
1− c1

τ1

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
, (4.132)

M (2)
a = m3/2

[
1− 1

2

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
. (4.133)

Physical Yukawa coupings show a more complex hierarchy. Writing them as:

yαβγ = τ
n1α+n1β+n1γ

2
− 1

2
1 τ

n2α+n2β+n2γ
2

−1

2 τ
−
λα+λβ+λγ

2
s y′αβγ,
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with:

y′αβγ ≡
e−iθ

(kαkβkγ)
1
2

[
1 +

1

2

c1

τ1

+
1

2

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
Yαβγ,

for A-fields only, they are roughly of the same order of magnitude as unnormalised
couplings as they are:

yA′A′A′ = τ
−1/2
1 τ

1/2
2 y′A′A′A′ , (4.134)

yA′A′A′′ = y′A′A′A′′ , (4.135)

yA′A′′A′′ = τ
1/2
1 τ

−1/2
2 y′A′A′′A′′ , (4.136)

yA′′A′′A′′ = τ1τ
−1
2 y′A′′A′′A′′ , (4.137)

otherwise they turn out to be scaled. Couplings which involve two A-fields read:

yA′A′Φ = τ
−1/2
1 y′A′A′Φ, (4.138)

yA′′A′′Φ = τ
1/2
1 τ−1

2 y′A′′A′′Φ, (4.139)

yA′A′′Φ = τ
−1/2
2 y′A′A′′Φ, (4.140)

yA′A′I = τ
−1/2
1 τ

1/4
2 y′A′A′I , (4.141)

yA′′A′′I = τ
1/2
1 τ

−3/4
2 y′A′′A′′I , (4.142)

yA′A′′I = τ
−1/4
2 y′A′A′′I , (4.143)

while those involving one only A-field are:

yA′ΦΦ = τ
−1/2
1 τ

−1/2
2 y′A′ΦΦ, (4.144)

yA′′ΦΦ = τ−1
2 y′A′′ΦΦ, (4.145)

yA′ΦI = τ
−1/2
1 τ

−1/4
2 y′A′ΦI , (4.146)

yA′′ΦI = τ
−3/4
2 y′A′′ΦI , (4.147)

yA′II = τ
−1/2
1 y′A′II , (4.148)

yA′′II = τ
−1/2
2 y′A′′II , (4.149)
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and those involving only Φ- and I-fields:

yΦΦΦ = τ
−1/2
1 τ−1

2 y′ΦΦΦ, (4.150)

yΦΦI = τ
−1/2
1 τ

−3/4
2 y′ΦΦI , (4.151)

yΦII = τ
−1/2
1 τ

−1/2
2 y′ΦII , (4.152)

yIII = τ
−1/2
1 τ

−1/4
2 y′III . (4.153)

This particular structure affects sensibly the effective couplings tαβγ = yαβγAαβγ between
triplets of scalars. The analysis of such couplings is left to Chapter 5 referred to the
specific situations.

Finally, the parameter µ̃ is again suppressed as c1/τ1 and/or c2/τ2 if only A-fields are
involved, as:

µ̃
∣∣
{A′,A′} = η ·

m3/2

2

[
c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
, (4.154)

µ̃
∣∣
{A′,A′′} = η ·

m3/2

2

[
c1

τ1

+
1

2

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
, (4.155)

µ̃
∣∣
{A′′,A′′} = η ·m3/2

[
c1

τ1

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
, (4.156)

otherwise it is around m3/2. Indeed for a single A-field it can be:

µ̃
∣∣
{A′,Φ} = η ·

m3/2

2

[
1 +

1

2

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
, (4.157)

µ̃
∣∣
{A′′,Φ} = η ·

m3/2

2

[
1 +

c1

τ1

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
, (4.158)

µ̃
∣∣
{A′,I} = η ·

m3/2

4

[
1 +

3

2

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
, (4.159)

µ̃
∣∣
{A′′,I} = η ·

m3/2

4

[
1 + 2

c1

τ1

+
1

2

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
, (4.160)
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and for Φ- and I-fields it can read:

µ̃
∣∣
{Φ,Φ} = η ·m3/2, (4.161)

µ̃
∣∣
{Φ,I} = η · 3

4
m3/2

[
1 +

1

6

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
, (4.162)

µ̃
∣∣
{I,I} = η ·

m3/2

2

[
1 +

1

2

c2

τ2

+O

(
τ

3
2
s

τ
1
2

1 τ2

,
ξ

τ
1
2

1 τ2

)]
. (4.163)

These possibilities are coherent with what happens to the term Bµ̃.

In conclusion, this framework gives rise to soft terms of three possible orders of
magnitude, restoring the angled brackets for vacuum expectation values and in physical
units:

• soft masses of A-fields undergo leading order cancellations which set their values
around the scale:

m′soft '
(

κ

〈V〉

)1/3

m3/2, (4.164)

κ being a constant standing roughly for both |c1|3/2 and |c2|3/2;

• soft couplings involving only A-fields undergo significant cancellations which set
their values around the scale:

m′′soft '
(

κ

〈V〉

)2/3

m3/2; (4.165)

• soft terms which concern Φ- and/or I-fields and gaugino masses at leading order
are around the scale of the gravitino mass:

m′′′soft ' m3/2. (4.166)

4.4.3 General Kähler Matter Metric

The general model takes into account a general Kähler matter metric which is block-
diagonal, where every block corresponds to a different group of scalar fields, i.e. to a
special dependence on Kähler moduli. In particular:

• for D7 branes wrapping the blow-up cycle, the block is just one, i.e. the metric is
a general non-diagonal matrix, where every element shares the same dependence
as the others, as in Subsection 4.2.2;
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• for D7 branes on large cycles, there is a block for every of the families of fields
which are involved, as described in Subsection 4.2.3 by the relations (4.44).

It is assumed that the necessary conditions hold for a diagonal Higgs sector.
Under these premises, the Kähler matter metric can be conveniently written by ex-

pliciting the exponents of every block after choosing e.g. those coming from diagonal
elements as the representative ones:

K̃αβ̄ =
τλαᾱs

τn1αᾱ
1 τn2αᾱ

2

kαβ̄. (4.167)

Setting λsα ≡ λαᾱ, λ1α ≡ −n1αᾱ and λ2α ≡ −n2αᾱ, it is useful to express it as:

K̃αβ̄ =

( ∏
l=1,2,s

τ
λlα
l

)
kαβ̄.

Indeed this form allows to write the simple relations:

∂i K̃αβ̄ =
λiα
2τi

K̃αβ̄, ∂j ∂i K̃αβ̄ = − λiα
4τiτj

(δij − λjα) K̃αβ̄,

and: (
∂i ln K̃αβ̄

)
K̃αβ̄ =

λiα
2τi

K̃αβ̄,
(
∂j ∂i ln K̃αβ̄

)
K̃αβ̄ = −λiα

4τ 2
i

δijK̃αβ̄,

which turn out to be extremely important in bringing the problem back to the one with
a diagonal Kähler matter metric.
Indeed it is easy to show that, taking advantage of this way of writing, unnormalised
scalar masses (4.6) and unnormalised trilinear couplings (4.7) can be expressed as:(

m′2
)
αβ̄

=
[(
m2

3/2 + VF
)
− F̄ īF j ∂ ī ∂j ln K̃αᾱ

]
K̃αβ̄,

A′αβγ =
W̄

|W |
eK/2YαβγF

i
[
Ki + ∂i lnYαβγ − ∂i ln

(
K̃αβ̄K̃ββ̄K̃γγ̄

)]
,

i.e., more clearly: (
m′2
)
αβ̄

= m2
αK̃αβ̄, (4.168)

A′αβγ =
W̄

|W |
eK/2YαβγAαβγ, (4.169)

where m2
α and Aαβγ are precisely the values computed before for a diagonal Kähler matter

metric.
This fact proves that the model with a general Kähler matter metric can always be
reduced to the one with a diagonal matrix without loss of generality.
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Chapter 5

Hidden Sector and Soft Term
Analysis

This Chapter is intended to provide an analysis of the main predictions of Models II and
III with the Minimal Supersymmetric Standard Model supported on Calabi-Yau blow-up
or large cycles. Particular attention is devoted to the latter construction since it is the
most consistent part of the thesis.
The Chapter is structured as follows. At first, the main experimental and phenomeno-
logical bounds which constrain the values of hidden sector masses and soft terms are
summarised and briefly commented. Then, an instructive account of the reliability of
modellings with the Minimal Supersymmetric Standard Model supported on the blow-
up cycles as in Model II and III is reported for the sake of completeness, although it is
present in the literature dedicated to Model II. Finally, a critical analysis of the general
predictions arising from the construction of Model III with the Minimal Supersymmetric
Standard Model supported on large cycles is performed.

Note on the Expression of Masses and Couplings

This thesis is focused on the investigation on possible frameworks which account for reli-
able modellings of the hidden sector and the corresponding soft terms and does not claim
the prediction of accurate parameters for detailed comparisons with real experimental
data. It is purposed to determine just the orders of magnitude of masses and couplings
involved.
Then, in the general hypothesis of no fine-tuned parameters W0, as, ξ, C1, C2 and CW ,
they are all considered to be roughly around unity. In this way, in order to render the
physical analysis easier, it is legitimate to express all of the factors scaling with 〈V〉
via a ratio between the gravitino mass m3/2 and the reduced Planck mass MP . Indeed,
at leading order the relationship holds true m3/2/MP ' |W0| / 〈V〉. Moreover, physical
units are employed.
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5 – Hidden Sector and Soft Term Analysis

5.1 Phenomenological Bounds

A reliable Supersymmetric Standard Model which arises from low energy supergravity
with spontaneous supersymmetry breaking in a hidden sector must describe the evolution
of the Universe in its entirety from Big Bang to present day observations. This ambitious
task sets constraints to the modelling coming from both Particle Physics and Cosmology.

The main bounds on the hidden sector and soft breaking terms are summarised and
briefly commented below.

• The Cosmological Moduli Problem (CMP) generally requires very heavy moduli
with masses around at least the 102 TeV scale [36] [37], which can be defined as
the reference smallest hidden sector mass scale:

mmin
mod ∼ 105 GeV. (5.1)

Indeed, it can be argued that string moduli expectation values after inflation are
around the Planck scale and, if not sufficiently heavy, they could either decay
after the Big Bang nucleosynthesis, thus spoiling its subtle but very successful
predictions, or be still present in nowadays Universe, overclosing it. Some solutions
to this problem have been proposed in the literature (for instance in Ref. [38]).

• The Hierarchy Problem is solved naturally in supersymmetric extensions of the
Standard Model if soft masses are roughly around the 1 TeV scale [2] [39]:

msoft ∼ 103 GeV.

However, this is not a very restrictive bound, as shown e.g. in Ref. [40]. There,
High-Scale Supersymmetric Models, i.e. in which all supersymmetric particles have
masses around a common scale msoft unrelated to the weak scale, are shown to be
acceptable from this point of view as long as the soft mass scale is smaller than
around 1011 GeV, which thus can be identified as the reference largest soft term
scale:

mmax
soft ∼ 1011 GeV. (5.2)

• The magnitude of Standard Model gauge couplings gSM requires that, if τSM is
the modulus on whose cycle the Minimal Supersymmetric Standard Model is sup-
ported, then its vacuum expectation value must be generally of order:

〈τSM〉 ∼ 102. (5.3)

A wide variety of further conditions emerge from Particle Physics and Cosmology impli-
cations, both model dependent and model independent. However, for a general overview
on a reliable Supersymmetric Standard Model, the three bounds listed above are typically
the most selective ones which String Phenomenology must tackle.
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5.2 – MSSM on Blow-up Cycle

5.2 MSSM on Blow-up Cycle

Models II and III allow the possibility to build the Minimal Supersymmetric Standard
Model on the blow-up cycle, controlled by the modulus τs. In the natural hypothesis of
no fine-tuned parameters, a reasonable value of the overall volume vacuum expectation
value, essentially controlled by τb and τ

1/2
1 τ2 respectively, is set by both the conditions

of soft masses around msoft ∼ 1 TeV and gauge couplings around gSM ∼ 10−1 to values
roughly of order:

〈V〉 ∼ 1013.

Then, the string scale MS and the Kaluza-Klein scale MKK can be estimated as:

MS ∼ 1012 GeV, (5.4)

MKK ∼ 109 GeV. (5.5)

In more intuitive terms, such modellings require a gravitino mass roughly around:

m3/2 ∼ 105 GeV. (5.6)

In both models the physical analysis of the mass spectrum and soft couplings is very
similar, as emerges from Chapters 3 and 4 analysis. Then it is convenient to treat both
of them together.

5.2.1 Hidden Sector

In Model II and in Model III, the hidden sector is represented by string moduli. Actually
it is only the Kähler moduli to cause the spontaneous breaking of supersymmetry.

In both cases, Kähler moduli give origin to principally three groups of real scalar
fields:

• the Kähler modulus controlling the blow-up cycle determines the presence of two
heavy real scalar fields φ and θφ with masses around the 104 TeV scale:

mφ ' 2 ln

(
MP

m3/2

)
m3/2 ∼ 104 TeV, (5.7)

mθφ ' 2 ln

(
MP

m3/2

)
m3/2 ∼ 104 TeV, (5.8)

according to (3.30) and (3.36) as well as (3.58) and (3.67);

• the Kähler moduli controlling the overall volume give rise with their real parts to
light real scalar fields, ζ - actually present only in Model III - and χ, with masses
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around 1 MeV or even lighter:

mχ ∼

(
m3/2/MP

ln
(
MP/m3/2

))1/2

m3/2 ∼ 1 MeV, (5.9)

mζ ∼
(
m3/2

MP

)2/3

m3/2 ∼ 0.1 MeV, (5.10)

according to (3.29) as well as (3.57) and (3.101), and to massless non-interacting
scalar fields, θζ - only in Model III - and θχ:

mθχ = 0 GeV, (5.11)

mθζ = 0 GeV, (5.12)

according to (3.35) as well as (3.66) and (3.65).

The axio-dilaton and complex structure moduli fields, which have been ignored so far
as a consequence of No-Scale Structure, in vicinity of the ground state can be canonically
normalised and, in the large volume scenario, in a very rough estimate have masses
around the scale:

mS ∼ m′α ∼ g2
Sm3/2 ∼ 1 TeV, (5.13)

as shown in Ref. [11].

5.2.2 Soft Terms

Soft breaking term masses turn out to be exatcly identical in both models at leading
order.
Indeed, according to expressions (4.62) and (4.63) as well as (4.89) and (4.90), soft scalar
masses and gaugino masses are universally given by, respectively:

mα '
√

3

4

m3/2

ln
(
MP/m3/2

) ∼ 1 TeV, (5.14)

Ma '
3

4

m3/2

ln
(
MP/m3/2

) ∼ 1 TeV. (5.15)

Differences between the two models emerge only in subleading corrections.
All of the effective soft couplings, neglecting an overall phase and assuming the un-

normalised Yukawa couplings to around unity, turn out to take values around the 1 TeV
scale:

tαβγ = yαβγAαβγ ∼
m3/2

ln
(
MP/m3/2

)Yαβγ ∼ 1 TeV Yαβγ, (5.16)

Bµ̃ ∼
m2

3/2

ln2
(
MP/m3/2

) ∼ (1 TeV)2 , (5.17)
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according to (4.64), (4.65), (4.66) and (4.91), (4.92), (4.93), while the µ̃-parameter reads:

µ̃ ∼
m3/2

ln
(
MP/m3/2

) ∼ 1 TeV, (5.18)

according to (4.67) and (4.94).

5.2.3 Mass Spectrum Analysis

The reciprocal hierarchies between masses are exemplified in Fig. 5.1.
As regards the hidden sector, the previous analysis readily evidences the dangerous

presence of very light interacting moduli, thus giving rise to the Cosmological Moduli
Problem. More specifically, the situation can be summarised as follows.

• The axio-dilaton S and complex structure moduli Uα′
are interacting moduli with

masses smaller than 100 TeV, then in principle they could give rise to the Cosmo-
logical Moduli Problem. In spite of this, however, Ref. [20] and Ref. [11] show that
the scalar potential which governs their dynamics provides a trapping mechanism
thanks to which they ’prefer’ to essentially sit at their minima, thus avoiding any
cosmological problem.

• Heavy moduli φ and θφ have masses around the 104 TeV scale, i.e. far above
100 TeV, and are therefore free from the Cosmological Moduli Problem.

• Light moduli ζ and χ have very small masses, around or smaller than 1 MeV.
This is a serious problem, indeed such fields would dramatically give origin to the
Cosmological Moduli Problem. A possible solution to this inconsistency could be
the dilution by a low-energy period of thermal inflation, as investigated e.g. in Ref.
[38].

• Massless moduli θζ and θχ are free from cosmological problems as they are non-
interacting fields.

As concerns the soft breaking terms, instead, the models seem to be quite reliable.
Indeed, as a matter of fact:

• sleptons, squarks, Higgses and gauginos have all masses around 1 TeV and thus
could both explain why they have never been observed so far, of course except for
a Higgs field, and at the same time save naturally the hierarchy problem solution
without fine tuning;

• soft couplings and the µ̃-term are all around 1 TeV too.
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A peculiar characteristic of such models is the ’small’ hiearchy between the gravitino
mass m3/2 and all the soft breaking terms by the factor lnMP/m3/2, which allows the
gravitino to be at least one order of magnitude or more heavier than Standard Model
superpartners.

To conclude, these modellings are very attractive because of their general apparent
naturalness, indeed they could possibily be in agreement with both Standard Cosmology
and predict reliable Beyond the Standard Model Physics without the need of fine-tuned
parameters.
The only but fatal exception is the unavoidable presence of the Cosmological Moduli
Problem associated to the moduli controlling the overall compactification volume. This
issue actually seems to require very particular mechanisms in order to avoid inconsis-
tencies, thus appearently spoiling the models of their naturalness, unless the discovery
of further motivations to describe early post-inflation Universe in such a way as to solve
the Cosmological Moduli Problem.

Further discussion and more accurate explanations can be found in the guiding Ref.
[20] and Ref. [21].
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Figure 5.1. Typical mass scales for hidden sector fields and Standard Model supersym-
metric partners in Models II and III, with the Minimal Supersymmetric Standard Model
supported on the blow-up cycle, in realisations with m3/2 ' 105 GeV and no fine-tuned
parameters. Curly brackets indicate a family of degenerate fields. The graph scale is
logarithmic and only aims at providing a general idea of the reciprocal hierarchies.
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5.3 Remarks about MSSM on Large Cycles

The study of Model III in Chapters 3 and 4 with the Minimal Supersymmetric Standard
Model supported on large cycles evidences a fine structure in the particle mass spectrum
and a large variety of soft term couplings.
The most general construction would be the one with the Minimal Supersymmetric
Standard Model supported on both of the cycles associated to the fields τ1 and τ2.
However, in this case a subtle unnaturalness feature can emerge.

As a matter of fact, the Kaluza-Klein parameters c1 and c2 are proportional to the
string coupling gS, while the winding parameter CW is not, being actually c1 = gS C1

and c2 = gS C2. Then, in a likely situation with a string coupling gS around gS ∼ 10−1,
according to the minimum conditions (3.103) and (3.104), a slight anisotropy in the
compactification volume which has been ignored so far actually becomes relevant due to
the necessary smallness of the wrapped cycle volumes, needed in such realisations.
More precisely, the two following situations do emerge assuming the natural values |C1| ∼
|C2| ∼ |CW | ∼ 1 with a small compactification volume.

• If CW is positive, then the vacuum expectation value of the field τ1 approximately
reads:

〈τ1〉3/2
∣∣
CW>0

' 2 g2
S

C2
1

CW
〈V ′〉 .

Then the Minimal Supersymmetric Standard Model can be supported naturally
only on the cycle controlled by the Kähler modulus τ1. Indeed, the vacuum expec-
tation value of this field is set straightforwardly around 〈τ1〉 ∼ 102 by the Standard
Model gauge coupling condition. This fact in turn entails the vacuum expectation
value 〈τ2〉 ∼ 104, with a compactification volume set around the value 〈V〉 ∼ 105.
Evidently, the arising of the Standard Model fields from the cycle controlled by τ2

is forbidden.
In such a delicate set-up, a direct inspection shows that the study of the scalar
potential as outlined in Chapter 3 is still valid because the relevant conditions un-
der which it fixes its minimum and determines the field ζ mass are satisfied, thus
confirming the validity of the related analysis.

• If CW is negative, then the vacuum expectation value of the field τ1 approximately
reads:

〈τ1〉3/2
∣∣
CW<0

' 2
|CW |
g2
SC

2
2

〈V ′〉 .

Then, reversing the previous situation, the Minimal Supersymmetric Standard
Model can be supported naturally only on the cycle controlled by the field τ2.
Its vacuum expectation value is set of course around 〈τ2〉 ∼ 102 by the Standard
Model gauge coupling condition. This estimate in turn entails the vacuum ex-
pectation value 〈τ1〉 ∼ 104, with a compactification volume set around the value

104
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〈V〉 ∼ 104. Evidently, such a set-up forbids the arising of the Standard Model fields
from the cycle controlled by τ1.
Again, in such a modelling, a direct analysis shows the validity of the scalar po-
tential analysis overviewed in Chapter 3.

The Minimal Supersymmetric Standard Model can be built on both of the cycles, instead,
only provided a slight but precise tuning such that gS |C1| ∼ gS |C2| ∼ |CW |. Indeed,
according to (3.97), it is only in this situation that the condition:

〈τ1〉3/2 =
CW
c2

2

[
|CW |
CW

(
1 + 4

c2
1c

2
2

C2
W

)1/2

− 1

]
〈V ′〉 ,

allows to consider 〈τ1〉 ∼ 〈τ2〉 ∼ 102. Once more, this case is treatable according to the
standard approach.

5.4 MSSM on τ1

Assuming natural parameters as discussed above, the Minimal Supersymmetric Standard
Model is supported on the cycle associated to the Kähler modulus τ1 if the vacuum
expectation values of the fields τ1 and τ2 read respectively 〈τ1〉 ∼ 102 and 〈τ2〉 ∼ 104.
This set-up is accomplished with a compactification volume 〈V〉 ∼ 105, with positive
winding string loop corrections.
In physical terms, this construction sets the string scale MS and the Kaluza-Klein scale
MKK roughly around the very huge values:

MS ∼ 1016 GeV, (5.19)

MKK ∼ 1015 GeV. (5.20)

The gravitino mass is instead set at the very large scale:

m3/2 ∼ 1013 GeV. (5.21)

The corresponding hidden sector and Standard Model superpartners mass spectrum and
soft couplings are outlined below.
In order to render the discussion easier to read, all of the quantities are expressed as
functions of physically intuitively meaningful quantities such as m3/2 and MP . Due
to the relevant anisotropy in the overall volume, sometimes the string coupling gS is
needed to be explicited and the volume-controlling fields vacuum expectation values are
expressed as 〈τ1〉 ∼ (MP/m3/2)2/5 and 〈τ2〉 ∼ (MP/m3/2)4/5.
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5.4.1 Hidden Sector

In Model III, the hidden sector is properly represented by Kähler moduli. Moreover, also
the axio-dilaton and complex structure moduli are present.

Kähler moduli can be separated into massive interacting and massless non-interacting
real scalar fields:

• interacting real scalars coming from Kähler moduli divide into very heavy fields, φ
and θφ, with masses:

mφ ' 2 ln

(
MP

m3/2

)
m3/2 ∼ 1014 GeV, (5.22)

mθφ ' 2 ln

(
MP

m3/2

)
m3/2 ∼ 1014 GeV, (5.23)

according to (3.58) and (3.67), and lighter fields χ and ζ, with masses:

mχ ∼

(
m3/2/MP

ln
(
MP/m3/2

))1/2

m3/2 ∼ 1010 GeV, (5.24)

mζ ∼
(
m3/2

MP

)2/3

g
−1/3
S m3/2 ∼ 1010 GeV, (5.25)

according to (3.57) and (3.101);

• massless non-interacting scalar fields, θχ and θζ :

mθχ = 0 GeV, (5.26)

mθζ = 0 GeV, (5.27)

according to (3.66) and (3.65).

The axio-dilaton and complex structure moduli fields, instead, as shown in Ref. [11]
have masses roughly around the scale:

mS ∼ m′α ∼ g2
Sm3/2 ∼ 1011 GeV. (5.28)

5.4.2 Soft Terms

In this modelling, Standard Model scalar superpartners can be only of the kind A′ and
Φ′. Moreover, only one kind of gaugino fields is present. These particles can be very
heavy due to the the eventual absence of suppression factors with respect to the gravitino
mass.
More specifically, soft breaking scalars and gauginos turn out to take values among two
possible orders of magnitude. As a matter of fact, according to expressions (4.98), (4.100)
and (4.132):
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• A′-field masses are roughly estimated as:

mA′ ∼ g
1/2
S(

MP/m3/2

)2/5
m3/2 ∼ 1010 GeV; (5.29)

• Φ′-field and gaugino masses are close to the gravitino mass:

mΦ ' m3/2 ∼ 1013 GeV, (5.30)

Ma ' m3/2 ∼ 1013 GeV. (5.31)

Soft couplings show a fine structure, where suppressions turn out to depend on the
family of the fields involved.
Explicitly, they can be estimated from the detailed expressions in Chapter 4 as follows:

• all of the effective trilinear couplings tαβγ = Aαβγyαβγ turn out to be remarkably
suppressed with respect to the scale m3/2. In order of intensity from the strongest
to the weakest one, they organise as follows:

tA′A′Φ ∼
m3/2(

MP/m3/2

) 1
5

∼ 1012 GeV YA′A′Φ, (5.32)

tA′ΦΦ ∼
m3/2(

MP/m3/2

) 3
5

∼ 1010 GeV YA′ΦΦ, (5.33)

tA′A′A′ ∼
gSm3/2(

MP/m3/2

) 3
5

∼ 109 GeV YA′A′A′ , (5.34)

tΦΦΦ ∼
m3/2(

MP/m3/2

) ∼ 108 GeV YΦΦΦ; (5.35)

• the Higgs bilinear coupling turns out to be of two possible orders of magnitude. If
the Higgses are both A′-fields, it is suppressed with respect to m2

3/2, otherwise it is
of the same order of magnitude:

Bµ̃
∣∣
{A′,A′} ∼

gSm
2
3/2(

MP/m3/2

) 4
5

∼
(
1010 GeV

)2
, (5.36)

Bµ̃
∣∣
{A′,Φ} ∼ m2

3/2 ∼
(
1013 GeV

)2
, (5.37)

Bµ̃
∣∣
{Φ,Φ} ∼ m2

3/2 ∼
(
1013 GeV

)2
; (5.38)
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The behaviour of the µ̃-term is similar to the one of the Bµ̃-coupling. If the Higgs fields
are A′-fields, it is suppressed with respect to the gravitino mass, otherwise it is around
m3/2:

µ̃
∣∣
{A′,A′} ∼

gSm3/2(
MP/m3/2

) 4
5

∼ 108 GeV, (5.39)

µ̃
∣∣
{A′,Φ′} ∼ m3/2 ∼ 1013 GeV, (5.40)

µ̃
∣∣
{Φ′,Φ′} ∼ m3/2 ∼ 1013 GeV. (5.41)

5.4.3 Mass Spectrum Analysis

The reciprocal hierarchies between hidden sector and Standard Model superpartner
masses are represented in Figure 5.2.

It is evident that Model III with the Minimal Supersymmetric Standard Model sup-
ported on large cycles with natural parameters is not reliable due to the large masses of
some of the Standard Model superpartners.
More specifically, in this modelling:

• the hidden sector would be safe from the Cosmological Moduli Problem, being its
interacting fields heavier than the critical minimum mass mmin

mod;

• superpartners whose masses are not suppressed with respect to the gravitino mass
m3/2, i.e. the scalars Φ′-fields and gauginos, are slightly heavier than the the max-
imum allowed scale mmax

soft , thus rendering this construction unacceptable. Instead,
A′-fields would be passable.

To sum up, the situation described so far cannot be taken as a basic version of a final
generalisation of the Standard Model, even though because of only a few orders of mag-
nitude in some superpartner masses.
Then, it is easy to understand that a very small degree of fine tuning could allow to
build an acceptable Minimal Supersymmetric Standard Model. This issue is argued in
the following Sections.
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0

MEW

MKK

MS

MP

E [GeV]

102

mmin
soft 103

mmin
mod 105

mmax
soft 1011

1015

1016

1018

hidden sector
Standard Model
superpartners

mθζ , mθχ

mχ

mφ, mθφ

mS, {mUα}α

mζ
{mA′}A′

m3/2, {mΦ′}Φ′ , {Ma}a , {µ̃}

µ̃A′A′

Figure 5.2. Typical mass scales for hidden sector fields and Standard Model supersym-
metric partners in Model III with the MSSM supported on the τ1 cycle and natural
parameters. Curly brackets indicate a family of degenerate fields. The graph scale is
logarithmic and only aims at providing a general idea of the reciprocal hierarchies.
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5.5 Fine-Tuned MSSM on τ1

An acceptable Minimal Supersymmetric Standard Model can be supported on the τ1

cycle if the constant part of the superpotential |W0| is sufficiently small. Indeed, if it is
set, following the conventions employed so far:

|W0| ∼ 10−n,

with n ≥ 2, then the gravitino and consequently the heaviest Standard Model superpart-
ners turn out to be as light as to give rise to a reliable model. Such a small value of |W0|
is possible though not very likely in a realistic theory within the well known ’landscape’
model [41].
In other words, assuming all of the other parameters to be naturally around unity, the
only fine tuning of |W0| allows to accomplish for an interesting Standard Model extension
to supersymmetry.

In the following, the model arising with a sample value |W0| ∼ 10−3 is described and
commented in order to analyse the reliability of such constructions.
The vacuum expectation values of the fields τ1 and τ2 must be taken respectively as
〈τ1〉 ∼ 102 and 〈τ2〉 ∼ 104, with a compactification volume 〈V〉 ∼ 105.
In this framework, the string scale MS and the Kaluza-Klein scale MKK do not depend
on |W0| and thus are fixed roughly around the huge values:

MS ∼ 1016 GeV, (5.42)

MKK ∼ 1015 GeV. (5.43)

The gravitino mass is instead suppressed down to the large but not huge scale:

m3/2 ∼ 1010 GeV. (5.44)

In such a modelling, all of the quantities are expressed as functions of physically mean-
ingful quantities such as m3/2 and MP , with the inclusion of |W0|. In particular, the
compactification volume scales as 〈V〉 ∼ |W0|MP/m3/2, while the volume-controlling
fields vacuum expectation values are expressed as 〈τ1〉 ∼ (|W0|MP/m3/2)2/5 and 〈τ2〉 ∼
(|W0|MP/m3/2)4/5.
The trace of the computation is exactly the same as in the previous Section, so it is
reported more synthetically.

5.5.1 Hidden Sector

Kähler moduli turn out to be separated into massive interacting and massless non-
interacting scalar real fields:
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• interacting scalar fields are divided into very heavy fields, φ and θφ, with masses:

mφ ' 2 ln

(
MP

m3/2

)
m3/2 ∼ 1011 GeV, (5.45)

mθφ ' 2 ln

(
MP

m3/2

)
m3/2 ∼ 1011 GeV, (5.46)

and lighter fields χ and ζ, with masses:

mχ ∼

(
m3/2/ (|W0|MP )

ln
(
MP/m3/2

) )1/2

m3/2 ∼ 107 GeV, (5.47)

mζ ∼
(

m3/2

|W0|MP

)2/3

g
−1/3
S m3/2 ∼ 107 GeV; (5.48)

• massless non-interacting scalar fields, θχ and θζ :

mθχ = 0 GeV, (5.49)

mθζ = 0 GeV. (5.50)

The axio-dilaton and complex structure moduli fields, instead, have masses roughly
around the scale:

mS ∼ m′α ∼ g2
Sm3/2 ∼ 108 GeV. (5.51)

5.5.2 Soft Terms

The Minimal Supersymmetric Standard Model soft breaking terms have masses among
two possible orders of magnitude:

• A′-field masses are roughly estimated as:

mA′ ∼ g
1/2
S(

|W0|MP/m3/2

)2/5
m3/2 ∼ 107 GeV; (5.52)

• Φ′-field and gaugino masses are around the gravitino mass:

mΦ ' m3/2 ∼ 1010 GeV, (5.53)

Ma ' m3/2 ∼ 1010 GeV. (5.54)

Of course the fine-tuning of the superpotential constant term does not alter the structure
of soft breaking terms.

Soft coupling fine structure takes the following form:
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• the effective trilinear couplings tαβγ = Aαβγyαβγ in order of intensity from the
strongest to the weakest one organise as:

tA′A′Φ ∼
m3/2(

|W0|MP/m3/2

) 1
5

∼ 109 GeV YA′A′Φ, (5.55)

tA′ΦΦ ∼
m3/2(

|W0|MP/m3/2

) 3
5

∼ 107 GeV YA′ΦΦ, (5.56)

tΦΦΦ ∼
m3/2(

|W0|MP/m3/2

) ∼ 104 GeV YΦΦΦ, (5.57)

tA′A′A′ ∼
gSm3/2(

|W0|MP/m3/2

) 3
5

∼ 103 GeV YA′A′A′ ; (5.58)

• the Higgs bilinear coupling can be:

Bµ̃
∣∣
{A′,A′} ∼

gSm
2
3/2(

|W0|MP/m3/2

) 4
5

∼
(
107 GeV

)2
, (5.59)

Bµ̃
∣∣
{A′,Φ} ∼ m2

3/2 ∼
(
1010 GeV

)2
, (5.60)

Bµ̃
∣∣
{Φ,Φ} ∼ m2

3/2 ∼
(
1010 GeV

)2
. (5.61)

The µ̃-term can read:

µ̃
∣∣
{A′,A′} ∼

gSm3/2(
|W0|MP/m3/2

) 4
5

∼ 105 GeV, (5.62)

µ̃
∣∣
{A′,Φ′} ∼ m3/2 ∼ 1010 GeV, (5.63)

µ̃
∣∣
{Φ′,Φ′} ∼ m3/2 ∼ 1010 GeV. (5.64)

5.5.3 Mass Spectrum and Coupling Analysis

The hidden sector and Standard Model superpartner mass spectrum is schematised in
Figure 5.3 with the sample value |W0| ∼ 10−3.

Evidently, Model III with the Minimal Supersymmetric Standard Model supported
on the τ1 cycle with natural parameters but the passably tuned |W0| turns out to be
generally reliable as it neither gives rise cosmological inconsitencies nor spoils the Hier-
archy Problem supersymmetry solution.
In detail, the following items hold true:

• the hidden sector is safe from the Cosmological Moduli Problem, being its interact-
ing fields heavier than the critical minimum mass mmin

mod. The smallest value which
allows the lightest interacting moduli masses to be acceptable is |W0|min ∼ 10−5;
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• superpartners whose masses are not suppressed with respect to the gravitino mass
m3/2, i.e. the scalar Φ′-fields and gauginos, are lighter than the the maximum
Hierarchy Problem-free scale mmax

soft as well as of course A′-fields. The biggest
value which allows the heaviest interacting superpartners to be sufficiently light
is |W0|max ∼ 10−2.

Summing up, a fundamental conclusion is pointed out. A possibly natural set of
conditions for the realisation of the minimal supersymmetric extension of the Standard
Model supported on the τ1 cycle in Model III framework is that:

• all perturbative and non-perturbative parameters in the supergravity modelling of
the hidden sector are natural, i.e. around unity, in such a way that the vacuum
expectation value of the field supporting the Minimal Supersymmetric Standard
Model is compatible with Standard Model gauge couplings;

• the constant contribution to the superpotential, |W0|, is tuned within the accept-
able but unlikely range from |W0|min ∼ 10−5 to |W0|max ∼ 10−2.

Of course, a model satisfying such quite natural conditions is not necessarily reliable.
Indeed, depending on the Inflation modelling and on the parameter choice for the Mini-
mal Supersymmetric Standard Model parameters, many Cosmology and Particle Physics
implications can arise and carry out further bounds.
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Figure 5.3. Typical mass scales for hidden sector fields and Standard Model su-
persymmetric partners in Model III with the MSSM supported on the τ1 cycle and
the fine-tuned parameter |W0| ∼ 10−3. Curly brackets indicate a family of degen-
erate fields. The graph scale is logarithmic and only aims at providing a general
idea of the reciprocal hierarchies.
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5.6 Fine-Tuned MSSM on τ2

Assuming natural parameters as discussed above, in principle the Minimal Supersym-
metric Standard Model can be supported on the cycle associated to the Kähler modulus
τ2 when the vacuum expectation values of the fields τ1 and τ2 read respectively 〈τ2〉 ∼ 104

and 〈τ2〉 ∼ 102, with a compactification volume 〈V〉 ∼ 104 and a negative winding string
loop correction.
In physical terms, the string scale MS and the Kaluza-Klein scale MKK can be estimated
around the enormous values:

MS ∼ 1016 GeV, (5.65)

MKK ∼ 1015 GeV. (5.66)

Unfortunately, the gravitino mass is set very close to the scale MKK , being m3/2 ∼
1014 GeV with some Standard Model superpartners with a similar mass. This situation
is forbidden by internal consistency reasons, as pointed out in Ref. [42], which places the

constraint |W0| � 〈V〉1/3 in the Large Volume scenario framework, i.e., in other words,
m3/2 �MKK .

Then, actually it would be correct to say that the Minimal Supersymmetric Standard
Model can be supported on the τ2 cycle only if the constant term in the superpotential is
sufficiently small. After the previous discussion, evidently the fine tuning of |W0| must
be also such that the gravitino mass is below the largest allowed scale for soft terms.

In the following, the model corresponding to the sample value |W0| ∼ 10−4 is outlined
and commented. The gravitino mass is thus set at the large but acceptable scale:

m3/2 ∼ 1010 GeV. (5.67)

Again, the computation closely mirrors the previous ones and so only the main results
are listed for the sake of brevity.

Hidden Sector

The fine structure of hidden sector mass spectrum is outlined below, with a sample value
|W0| ∼ 10−4.
The hidden sector in constituted by the axio-dilaton and complex structure moduli fields,
with masses around the scale mS ∼ m′α ∼ g2

Sm3/2 ∼ 108 GeV, massless non-interacting
Kähler moduli and the potentially dangerous massive Kähler moduli.
The latter turn out to be divided into heavy fields, φ and θφ, with masses:

mφ ' 2 ln

(
MP

m3/2

)
m3/2 ∼ 1011 GeV, (5.68)

mθφ ' 2 ln

(
MP

m3/2

)
m3/2 ∼ 1011 GeV, (5.69)
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and light fields χ and ζ, with masses:

mχ ∼

(
m3/2/ (|W0|MP )

ln
(
MP/m3/2

) )1/2

m3/2 ∼ 107 GeV, (5.70)

mζ ∼
(

m3/2

|W0|MP

)2/3

g
1/3
S m3/2 ∼ 107 GeV. (5.71)

Soft Terms

Soft breaking terms are A′′ and A′′′ scalar fields, with masses:

mA′′ ∼
m3/2(

|W0|MP/m3/2

)1/2
∼ 107 GeV, (5.72)

mA′′′ ∼
g

1/2
S m3/2(

|W0|MP/m3/2

)1/4
∼ 108 GeV, (5.73)

and Φ′′ scalar fields and gauginos with masses:

mΦ ' m3/2 ∼ 1010 GeV, (5.74)

Ma ' m3/2 ∼ 1010 GeV. (5.75)

Once again, a split between very heavy and heavy Standard Model superpartners is
characteristic.

On the other hand, soft couplings turn out to be organised as follows:

• the effective trilinear couplings tαβγ = Aαβγyαβγ in order of intensity from the
strongest to the weakest one organise as:

tA′′A′′Φ′′ ∼ m3/2 ∼ 1010 GeV YA′′A′′Φ′′ , (5.76)

tA′′A′′′Φ′′ ∼
m3/2(

|W0|MP/m3/2

)1/4
∼ 109 GeV YA′′A′′′Φ′′ , (5.77)

tA′′A′′A′′′ ∼
gSm3/2(

|W0|MP/m3/2

)1/4
∼ 108 GeV YA′′A′′A′′′ , (5.78)

tA′′A′′A′′ ∼
m3/2(

|W0|MP/m3/2

)1/2
∼ 107 GeV YA′′A′′A′′ , (5.79)

tA′′′A′′′Φ′′ ∼
m3/2(

|W0|MP/m3/2

)1/2
∼ 107 GeV YA′′′A′′′Φ′′ , (5.80)

116



5.6 – Fine-Tuned MSSM on τ2

tA′′Φ′′Φ′′ ∼
m3/2(

|W0|MP/m3/2

)1/2
∼ 107 GeV YA′′Φ′′Φ′′ , (5.81)

tA′′′Φ′′Φ′′ ∼
m3/2(

|W0|MP/m3/2

)3/4
∼ 107 GeV YA′′′Φ′′Φ′′ , (5.82)

tA′′A′′′A′′′ ∼
gSm3/2(

|W0|MP/m3/2

)1/2
∼ 106 GeV YA′′A′′′A′′′ , (5.83)

tA′′′A′′′A′′′ ∼
gSm3/2(

|W0|MP/m3/2

)3/4
∼ 106 GeV YA′′A′′′A′′′ , (5.84)

tΦ′′Φ′′Φ′′ ∼
m3/2

|W0|MP/m3/2

∼ 105 GeV YΦ′′Φ′′Φ′′ , (5.85)

(5.86)

• the Higgs bilinear coupling can be:

Bµ̃
∣∣
{A′′,Φ′′} ∼ m2

3/2 ∼
(
1010 GeV

)2
, (5.87)

Bµ̃
∣∣
{A′′′,Φ′′} ∼ m2

3/2 ∼
(
1010 GeV

)2
, (5.88)

Bµ̃
∣∣
{Φ′′,Φ′′} ∼ m2

3/2 ∼
(
1010 GeV

)2
, (5.89)

Bµ̃
∣∣
{A′′,A′′′} ∼

gSm
2
3/2(

|W0|MP/m3/2

)1/2
∼
(
108 GeV

)2
, (5.90)

Bµ̃
∣∣
{A′′′,A′′′} ∼

gSm
2
3/2(

|W0|MP/m3/2

)1/2
∼
(
108 GeV

)2
, (5.91)

Bµ̃
∣∣
{A′′,A′′} ∼

m2
3/2

|W0|MP/m3/2

∼
(
108 GeV

)2
. (5.92)

The µ̃-term can read:

µ̃
∣∣
{A′′,Φ′′} ∼ m3/2 ∼ 1010 GeV, (5.93)

µ̃
∣∣
{A′′′,Φ′′} ∼ m3/2 ∼ 1010 GeV, (5.94)

µ̃
∣∣
{Φ′′,Φ′′} ∼ m3/2 ∼ 1010 GeV, (5.95)

µ̃
∣∣
{A′′,A′′′} ∼

gSm3/2(
|W0|MP/m3/2

)1/2
∼ 107 GeV, (5.96)
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µ̃
∣∣
{A′′′,A′′′} ∼

gSm3/2(
|W0|MP/m3/2

)1/2
∼ 107 GeV, (5.97)

µ̃
∣∣
{A′′,A′′} ∼

m3/2

|W0|MP/m3/2

∼ 105 GeV. (5.98)

Mass Spectrum Analysis

The hidden sector and Standard Model superpartner mass hierarchies are schematised
in Fig. 5.4 with the sample value |W0| ∼ 10−4.

As for the previous construction, Model III with the Minimal Supersymmetric Stan-
dard Model supported on the τ2 cycle with natural parameters but the passably tuned
|W0| is acceptable because:

• the hidden sector is safe from the Cosmological Moduli Problem as long as |W0| is
larger than |W0|min ∼ 10−6;

• the heaviest superpartners are lighter than the maximum admitted scale as long
as |W0| is smaller than |W0|max ∼ 10−3.

Then, a possibly natural set of conditions for the realisation of a supersymmetric exten-
sion of the Standard Model supported on the τ2 cycle in Model III framework reads:

• all perturbative and non-perturbative parameters in the supergravity modelling of
the hidden sector are natural and compatible with Standard Model gauge couplings;

• the constant contribution to the superpotential, |W0|, is tuned within the accept-
able but unlikely range from |W0|min ∼ 10−6 to |W0|max ∼ 10−3.
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Figure 5.4. Typical mass scales for hidden sector fields and Standard Model su-
persymmetric partners in Model III with the MSSM supported on the τ2 cycle and
the fine-tuned parameter |W0| ∼ 10−4. Curly brackets indicate a family of degen-
erate fields. The graph scale is logarithmic and only aims at providing a general
idea of the reciprocal hierarchies.
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5.7 Fine-Tuned MSSM on both τ1 and τ2

The last possibility to extend the Standard Model to a supersymmetric version within
Model III is to consider fields coming from both of the large cycles. Independently of
the sign of winding string loop corrections, such a set-up requires fine-tuned string loop
corrections in such a way that, approximately, gS |C1| ∼ gS |C2| ∼ |CW |, as shown before.
Under these conditions, the necessity of Standard Model gauge couplings around gSM ∼
10−1, sets inevitably the Calabi-Yau compactification volume vacuum expectation value
to a quite small value:

〈V〉 ∼ 103,

with the desidered 〈τ1〉 ∼ 〈τ2〉 ∼ 102.
The string scale MS and Kaluza-Klein scale MKK are estimated respectively around

the extremely large values:
MS ∼ 1017 GeV, (5.99)

MKK ∼ 1016 GeV. (5.100)

Similarly to the model arising on the only τ2 cycle, the gravitino mass m3/2 is incredibly
large, i.e. m3/2 ∼ 1015 GeV, since there are some Standard Model superpartners with
a mass around the same order of magnitude. Moreover they would be too close to the
Kaluza-Klein scale and thus must be avoided.
Then, a fine tuning of the constant part of the superpotential is necessary. In the
following, a modelling with the value |W0| ∼ 10−5, i.e. with a gravitino mass of order:

m3/2 ∼ 1010 GeV, (5.101)

is briefly overviewed.

Hidden Sector

As usual, the critical massive and interacting Kähler moduli can be grouped into heavy
fields, φ and θφ, with masses:

mφ ' 2 ln

(
MP

m3/2

)
m3/2 ∼ 1011 GeV, (5.102)

mθφ ' 2 ln

(
MP

m3/2

)
m3/2 ∼ 1011 GeV, (5.103)

and light fields, χ and ζ, with masses:

mχ ∼

(
m3/2/ (|W0|MP )

ln
(
MP/m3/2

) )1/2

m3/2 ∼ 107 GeV, (5.104)

mζ ∼
(

m3/2

|W0|MP

)2/3

m3/2 ∼ 107 GeV. (5.105)
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Soft Terms

As usual, soft breaking terms can turn out to have masses either suppressed with respect
to the gravino mass or of the same order of magnitude as m3/2. A′-, A′′- and A′′′- scalars
have suppressed masses all of order:

mA ∼
(

m3/2

|W0|MP

)1/3

m3/2 ∼ 108 GeV, (5.106)

while Φ′-, Φ′′- and I-fields around m3/2:

mΦ ' m3/2 ∼ 1010 GeV, (5.107)

mI ∼
√

2

2
m3/2 ∼ 1010 GeV. (5.108)

Gaugino masses are around 1010 GeV too:

Ma ' m3/2 ∼ 1010 GeV. (5.109)

Of course soft couplings show a fine structure. In spite of this, however, the small
value of the ratio m3/2/MP tends to smooth the hierachies.
Considerably, suppressions turn out to depend only on the family of the fields involved
and not on the specific fields, i.e. the factors are the same for all of the three kinds of
A-fields and the two kinds of Φ-fields.
In detail:

• remarkably, all of the effective trilinear couplings tαβγ = Aαβγyαβγ turn out to be
suppressed with respect to the scale m3/2. In order of intensity from the strongest
to the weakest, they organise as follows:

tAAI ∼
(

m3/2

|W0|MP

)1/6

m3/2 ∼ 109 GeV YAAI , (5.110)

tAII ∼
(

m3/2

|W0|MP

)1/3

m3/2 ∼ 109 GeV YAII , (5.111)

tAAΦ ∼
(

m3/2

|W0|MP

)1/3

m3/2 ∼ 109 GeV YAAΦ, (5.112)

tAΦI ∼
(

m3/2

|W0|MP

)1/2

m3/2 ∼ 108 GeV YAΦI , (5.113)

tIII ∼
(

m3/2

|W0|MP

)1/2

m3/2 ∼ 108 GeV YAII , (5.114)
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tAAA ∼
(

m3/2

|W0|MP

)2/3

m3/2 ∼ 107 GeV YAAA, (5.115)

tAΦΦ ∼
(

m3/2

|W0|MP

)2/3

m3/2 ∼ 107 GeV YAΦΦ, (5.116)

tΦII ∼
(

m3/2

|W0|MP

)2/3

m3/2 ∼ 107 GeV YΦII , (5.117)

tΦΦI ∼
(

m3/2

|W0|MP

)5/6

m3/2 ∼ 107 GeV YΦΦI , (5.118)

tΦΦΦ ∼
(
m3/2

MP

)
m3/2 ∼ 106 GeV YΦΦΦ; (5.119)

• the bilinear coupling between the Higgs fields turns out to be of two possible orders
of magnitude. If the Higgses are both A-fields, it is suppressed with respect to m2

3/2

as:

Bµ̃
∣∣
{A,A} ∼

(
m3/2

|W0|MP

)2/3

m2
3/2 ∼

(
108 GeV

)2
, (5.120)

otherwise, it is around m2
3/2:

Bµ̃
∣∣
{A,Φ} ∼ m2

3/2 ∼
(
1010 GeV

)2
, (5.121)

Bµ̃
∣∣
{A,I} ∼ m2

3/2 ∼
(
1010 GeV

)2
, (5.122)

Bµ̃
∣∣
{Φ,Φ} ∼ m2

3/2 ∼
(
1010 GeV

)2
, (5.123)

Bµ̃
∣∣
{Φ,I} ∼ m2

3/2 ∼
(
1010 GeV

)2
, (5.124)

Bµ̃
∣∣
{I,I} ∼ m2

3/2 ∼
(
1010 GeV

)2
. (5.125)

The µ̃-term has a similar behaviour. If the Higgses are A-fields, it is suppressed with
respect to the gravitino mass:

µ̃
∣∣
{A,A} ∼

(
m3/2

|W0|MP

)2/3

m3/2 ∼ 108 GeV, (5.126)
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otherwise it is around the gravitino mass m3/2:

µ̃
∣∣
{A,Φ} ∼ m3/2 ∼ 1010 GeV, (5.127)

µ̃
∣∣
{A,I} ∼ m3/2 ∼ 1010 GeV, (5.128)

µ̃
∣∣
{Φ,Φ} ∼ m3/2 ∼ 1010 GeV, (5.129)

µ̃
∣∣
{Φ,I} ∼ m3/2 ∼ 1010 GeV, (5.130)

µ̃
∣∣
{I,I} ∼ m3/2 ∼ 1010 GeV. (5.131)

Mass Spectrum Analysis

The hidden sector and Standard Model superpartners mass spectra are represented in
Fig. 5.5 with the sample value |W0| ∼ 10−5.

Model III with the Minimal Supersymmetric Standard Model supported on both of
the large cycles with slightly fine-tuned string loop corrections and fine-tuned |W0| is
somehow reliable because:

• the hidden sector is safe from the Cosmological Moduli Problem as long as |W0| is
larger than |W0|min ∼ 10−8;

• the heaviest superpartners are lighter than the maximum admitted scale as long
as |W0| is smaller than |W0|max ∼ 10−4.

Then, a possibly natural set of conditions for the realisation of a supersymmetric exten-
sion of the Standard Model supported on both of the large cycles in Model III framework
reads:

• all perturbative and non-perturbative parameters in the supergravity modelling
of the hidden sector but the string loop ones are natural and compatible with
Standard Model gauge couplings;

• string loop correction parameters are tuned in such a way that gS |C1| ∼ gS |C2| ∼
|CW | ∼ 1;

• the constant contribution to the superpotential, |W0|, is tuned within the accept-
able but unlikely range from |W0|min ∼ 10−8 to |W0|max ∼ 10−4.
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Figure 5.5. Typical mass scales for hidden sector fields and Standard Model supersym-
metric partners in Model III with the MSSM supported on both of the large cycles. The
basic assumptions are fine-tuned string loop parameters gS |C1| ∼ gS |C2| ∼ |CW | ∼ 1
and a fine-tuned constant superpotential parameter |W0| ∼ 10−5. Curly brackets in-
dicate a family of degenerate fields. The graph scale is logarithmic and only aims at
providing a general idea of the reciprocal hierarchies.
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5.8 Supersymmetry Breaking and Inflation

The modelling of a fully realistic scenario for the description of Nature is the ultimate
aim of String Phenomenology. This accomplishment definitely relies on the realisation
of a Model with consistent predictions in both the Theoretical Particle Physics and Cos-
mology fields, with special care about the mechanism of spontaneous supersymmetry
breaking and inflation respectively.

Although the scenarios developed in this thesis related to Model III can eventually
give rise to a set up able to describe current Particle Physics observations in a coherent
way, as Figures 5.3, 5.4 and 5.5 account for, no mechanism of cosmological inflation has
been considered.
Nevertheless, Ref. [22] and Ref. [43] show that the framework of Model III can be devel-
oped to realise a coherent inflationary scenario where essentially the lightest interacting
Kähler modulus takes over the rôle of the inflaton field.
This possibility is very attractive but unfortunately it is incompatible with the Mini-
mal Supersymmetric Standard Model scenario analysed in this Chapter. Indeed such a
description of inflation requires the values:

|W0|I ∼ 1, 〈V〉I ∼ 104,

thus ruling out the fine-tuned modellings with the Minimal Supersymmetric Standard
Model supported on branes associated to large cycles. In turn, the other only possibly
suitable scenario without fine-tuned parameters, depicted in Figure 5.2, is ruled out by
the presence of soft breaking terms which are much heavier than the largest consistent
scale.

These considerations show how the deep interplay between spontaneous supersymme-
try breaking and cosmological implications can set severe constraints on model building.
Indeed, they show that within Model III it is impossible to describe a scenario which
coherently accounts for the Minimal Supersymmetric Standard Model phenomenology
and cosmological inflation with the right Higgs mass.

In the final analysis, two possible conclusions towards a fully realistic scenario within
Model III are highlighted:

• the right particle content modelling is the one associated to the fine-tuned Minimal
Supersymmetric Standard Model on large cycles, but the inflaton field arises from
a different mechanism yet to be discovered;

• inflation is correctly described with the assumption of the lightest Kähler modulus
as the inflaton field, with a particle content arising naturally only on the cycle
controlled by τ1 generalised to include further supermultiplets besides the Standard
Model particle-superpartner ones. A concrete but very simple proposal of such a
relisation consists in dealing with the Next-to Minimal Supersymmetric Standard
Model - NMSSM for short - in which a further chiral supermultiplet is included.
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Indeed, such a modelling involves less severe constraints on soft breaking scalar
term masses, as evidenced in Ref. [44].

Of course, these conclusions are just simple proposals, but more complicated frameworks
than Model III could be needed in order to realise a realistic description of Nature.
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Conclusions

Type IIB String Theory represents a plausible candidate to extend the Standard Model.
In principle it can provide a coherent and unified description of Nature far above the
electroweak scale and account for both Particle Physics and Cosmology issues.

The subject of Kähler moduli stabilisation plays a crucial rôle within this context as
Kähler moduli are serious hidden sector candidates. The thesis gives a summary of some
interesting general models and evidences the most delicate points in LARGE Volume
Scenario set-ups.
As a matter of fact, many kinds of phenomena must be taken into account in order to
properly describe the mechanisms of moduli stabilisation. Therefore the study of all of
the possible effects is a primary issue.
Moreover, the lightest interacting Kähler moduli are typically in a very delicate position.
Indeed their masses turn out to be highly suppressed with respect to the gravitino mass,
so models often have to face the Cosmological Moduli Problem. In the most optimistic
cases, this problem at least sets precise constraints on model building. On the other
hand, other moduli are generally problem-free.
Finally, the characteristics of moduli stabilisation affect soft supersymmetry breaking
terms in a critical way. This fact is evidenced in this work and it emerges from the de-
scription of the general features of extended Standard Model realisations on both small
and large cycles.

The accomplishment of the Minimal Supersymmetric Standard Model on D7 branes
wrapping large cycles actually constitutes the main object of the thesis. Besides, also D7
branes on tiny cycles are considered for pedagogical reasons. Such a topic is discussed
in the second part of the thesis.
As a matter of fact, the deep interplay between the hidden sector and soft supersymme-
try breaking terms becomes even more manifest in the attempts of modelling a realistic
scenario.
On the one hand, it is well known that Large Volume Scenarios with branes on blow-up
cycles generally origin models which are interesting from the particle physics point of
view - being the mass spectrum slightly above the electroweak scale - but undergoing the
unavoidable presence of the Cosmological Moduli Problem - being the lightest Kähler
moduli too light.
On the other hand, Large Volume Scenario set-ups with branes on volume-controlling
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cycles offer the possibility of different kinds of Standard Model supersymmetric exten-
sions. These ones are of particular interest with respect to the individuation of a fully
realistic model, at the day of writing the thesis, as some inflation scenarios in a generally
compatible framework have been proposed in the literature.

Unfortunately, the computations carried out in this thesis prove that a coherent de-
scription of both soft breaking terms and the inflation mechanism introduced before is
not realised. However, two clear possible indications are pointed out in the search for a
realistic model. Either the inflation description is to be modified, or such an inflation
scenario is to be embedded within a further enhanced supersymmetric extension of the
Standard Model.
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Appendix A

Moduli Stabilisation: Calculations

This Appendix contains the explicit calculations which lead to the individuation of the
vacuum expectation values of Kähler moduli in the models that have been taken into
account and to the determination of moduli masses. It must be intended as a mathemat-
ical complement to Chapter 3, to which is left every phenomenological consideration.
Moreover, the computation auxiliary fields is reported as a complement to Chapter 4.

A.1 Model II

Model II deals with two Kähler moduli Tb = τb + iψb and Ts = τs + iψs whose Kähler
potential and superpotential are:

K = −2 ln
(
τ

3/2
b − τ 3/2

s + ξ
)
, (A.1)

W = W0 + Ase
−as(τs+iψs), (A.2)

under the assumptions:

(∗) :

{
asτs � 1,

τ
3/2
b � τ

3/2
s ∼ ξ,

(A.3)

according to the previous discussion.

A.1.1 Minimisation

Now a straightforward computation gives the exact Kähler metric:

Kij̄ =
3

8(τ
3/2
b − τ 3/2

s + ξ)2


2τ

3/2
b + τ

3/2
s − ξ

τ
1/2
b

−3τ
1/2
b τ

1/2
s

−3τ
1/2
b τ

1/2
s

τ
3/2
b + 2τ

3/2
s + ξ

τ
1/2
s

 , (A.4)
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with the first and second rows and columns referred to τb and τs respectively, and its
inverse:

Kij̄ =
8

3

τ
3/2
b − τ 3/2

s + ξ

2(τ
3/2
b − τ 3/2

s )− ξ

τ 1/2
b (τ

3/2
b + 2τ

3/2
s + ξ) 3τbτs

3τbτs τ
1/2
s (2τ

3/2
b + τ

3/2
s − ξ)

 . (A.5)

The exact scalar potential is then:

VF =
1

2(τ
3
2
b − τ

3
2
s )− ξ

8

3 (τ
3
2
b − τ

3
2
s + ξ)2

{
9

8
ξ |W0|2

+ cos (αs − θ − asψs)
[
3asτs(τ

3
2
b − τ

3
2
s + ξ) +

9

4
ξ

]
|As| |W0| e−asτs

+
[
(τ

3
2
b − τ

3
2
s + ξ)

(
2τ

3
2
b τ

1
2
s a

2
s + 3asτs − a2

sτ
1
2
s (τ

3
2
s − ξ)

)
+

9

8
ξ
]
|As|2 e−2asτs

}
.

(A.6)

Recalling that τ
3/2
b � τ

3/2
s ∼ ξ, it is very easy to minimise the potential with respect to

the axion ψs, which takes a vacuum expectation value such that cos (αs−θ−a 〈ψ〉) = −1:

〈ψs〉 =
αs − θ
as

+ (2n+ 1)
π

as
, n ∈ Z. (A.7)

Unfortunately, even though it now depends on two variables only, the scalar potential is
still way too complex to be minimised exactly.
Anyway, under assumptions (A.3) it is possible to greatly simplify its expression. Indeed
conditions (A.3) indicate the validity of a Taylor expansion of the scalar potential up to

order I in the parameters τ
3/2
s /τ

3/2
b and ξ/τ

3/2
b . Moreover, it is coherent with the same

conditions to discard all of the terms proportional to expressions like (τ
3/2
s /τ

3/2
b ) e−asτs

and (ξ/τ
3/2
b ) e−asτs . Finally the condition asτs � 1 allows further considerations use-

ful in order to individuate the leading contribution to the factors of |As|2 e−2asτs and
|As| |W0| e−asτs .
Taking these considerations into account, the scalar potential can be approximated as:

VF
(∗)∼ V eff

F ,

in such a way as to allow the definition of the ’effective’ scalar potential V eff
F :

V eff
F ≡

8

3

a2
sτ

1/2
s

τ
3/2
b

|As|2 e−2asτs − 4
asτs
τ 3
b

|As| |W0| e−asτs +
3

2

ξ

τ
9/2
b

|W0|2 . (A.8)
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Its derivatives are then immediately computed to be:

∂ V eff
F

∂ τb
=− 4

a2
sτ

1/2
s

τ
5/2
b

|As|2 e−2asτs + 12
asτs
τ 4
b

|As| |W0| e−asτs −
27

4

ξ

τ
11/2
b

|W0|2 ,

∂ V eff
F

∂ τs
=

4

3

a2
sτ
−1/2
s

τ
3/2
b

(1− 4asτs) |As|2 e−2asτs − 4
as
τ 3
b

(1− asτs) |As| |W0| e−asτs ,
(A.9)

so that the stationarity conditions:
∂ V eff

F

∂ τb
(〈τb〉 , 〈τs〉) = 0,

∂ V eff
F

∂ τs
(〈τb〉 , 〈τs〉) = 0,

(A.10)

are solved quite easily. As a matter of fact, the second equation of (A.10) readily gives:

〈τb〉3/2 =
3

4

〈τs〉
1
2

as

|W0|
|As|

eas〈τs〉
1− 1

as 〈τs〉

1− 1

4as 〈τs〉

, (A.11)

and once that this value is substituted into the first one of (A.10), it gives:

〈τs〉3/2 = ξ

(
1− 1

4as 〈τs〉

)2

(
1− 1

as 〈τs〉

) . (A.12)

It is fundamental to notice that these results are coherent with the approximations which
allowed to the define V eff

F . Indeed around the ground state it is evident that the terms
which have been discarded behave as:

τ
3/2
s

τ
3/2
b

e−asτs
(∗)∼ O

(
τ

3/2
s

τ
3/2
b

)2

,
ξ

τ
3/2
b

e−asτs
(∗)∼ O

(
ξ

τ
3/2
b

)2

.

This observation will be crucial in what follows.

F-terms

Auxiliary fields can be computed straightforwardly. Their exact expressions read:

F b = − 4 τb

2τ
3
2
b − 2τ

3
2
s − ξ

[
|W0|+ (1 + 2asτs) |As| e−asτse−i(αs−θ−asψs)

]
, (A.13)

131



A – Moduli Stabilisation: Calculations

F s =− 1

3
(

2τ
3
2
b − 2τ

3
2
s − ξ

){12τs |W0|

+
[
8asτ

1
2
s

(
2τ

3
2
b + τ

3
2
s − ξ

)
+ 12τs

]
|As| e−asτse−i(αs−θ−asψs)

}
,

(A.14)

Then, under conditions (A.3), the effective auxiliary fields vacuum expectation values
can be written as:〈

F b
eff

〉
= −2

|W0|
〈τb〉

1
2

[
1 +
〈τs〉

3
2

〈τb〉
3
2

− ξ

〈τb〉
3
2

(
1 +

3

8as 〈τs〉
− 3

16a2
s 〈τs〉

2

)]
, (A.15)

〈F s
eff〉 = −3

2

|W0|
as 〈τb〉3/2

[
1 +

∞∑
n=1

1

(4as 〈τs〉)n

]
. (A.16)

A.1.2 Moduli Masses

Mass Matrix

It is possible to go on by writing the Hessian matrix of V eff
F and to determine its vacuum

expectation value. The second derivatives read:

∂2 V eff
F

∂ τ 2
b

= 10
a2
sτ

1/2
s

τ
7/2
b

|As|2 e−2asτs − 48
asτs
τ 5
b

|As| |W0| e−asτs +
297

8

ξ

τ
13/2
b

|W0|2 ,

∂2 V eff
F

∂ τb ∂ τs
= −2

a2
s

τ
5/2
b τ

1/2
s

(1− 4asτs) |As|2 e−2asτs + 12
as
τ 4
b

(1− asτs) |As| |W0| e−asτs ,

∂2 V eff
F

∂ τ 2
s

=
4a2

s

τ 3
b

|As| e−asτs
[
− τ

3/2
b

6τ
3/2
s

(
1 + 8asτs − 16a2

sτ
2
s

)
|As| e−asτs + (2− asτs) |W0|

]
.

By noticing from (A.11) and (A.12) that the following equalities hold true:

a2
s 〈τs〉

1/2 〈τb〉3 |As|2 e−2as〈τs〉 =
9

16
ξ |W0|2

(
1− 1

as 〈τs〉

)
,

as 〈τs〉 〈τb〉3/2 |As| |W0| e−as〈τs〉 =
3

4
ξ |W0|2

(
1− 1

4as 〈τs〉

)
,

a straightforward computation allows then to write the vacuum expectation value of the
Hessian matrix or, equivalently, the unnormalised mass matrix (M2

eff)ij =
〈
V eff
ij

〉
/2:

(
M2

eff

)
ij

=
3

2

ξ |W0|2

〈τb〉13/2


9

4

(
1 +

1

2
σ

)
−3

2
as 〈τb〉

(
1− 5

4
σ +

1

4
σ2

)
−3

2
as 〈τb〉

(
1− 5

4
σ +

1

4
σ2

)
a2
s 〈τb〉

2

(
1− 3

4
σ +

3

8
σ2 +

1

8
σ3

)
 ,

(A.17)
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where the parameter σ is defined as σ = 1/as 〈τs〉.
In order to compute the normalised mass matrix and its eigenvalues and eigenvectors,
some approximations are needed. According to (A.3) and thus following the same ap-
proximations which lead to the effective scalar potential, the simplest though non-trivial
condition which can be assumed is that terms of order II or greater in 〈τs〉3/2 / 〈τb〉3/2

and ξ/ 〈τb〉3/2 are negligible.
The inverse Kähler metric vacuum expectation value 〈Kij〉 can then be expanded up to

order I in 〈τs〉3/2 / 〈τb〉3/2 and ξ/ 〈τb〉3/2 as:〈
Kij
〉 (∗)∼

〈
Kij

eff

〉
,

where:

〈
Kij

eff

〉
≡


4

3
〈τb〉2

(
1 + 2

〈τs〉
3
2

〈τb〉
3
2

+ 2
ξ

〈τb〉
3
2

)
4 〈τs〉 〈τb〉

(
1 +

3

2

ξ

〈τb〉
3
2

)

4 〈τs〉 〈τb〉

(
1 +

3

2

ξ

〈τb〉
3
2

)
8

3
〈τs〉1/2 〈τb〉3/2

(
1 +

1

2

〈τs〉
3
2

〈τb〉
3
2

+
1

2

ξ

〈τb〉
3
2

)
 .

(A.18)

Then, since (M2
eff)ij is by itself proportional to a factor ξ/ 〈τb〉3/2 the computation is

straightforward, so the normalised mass matrix (m2)
i
j, after the very same approxima-

tions as above and following the same notation,(
m2
)i
j

=
〈
Kik
〉 (
M2
)
kj

(∗)∼
〈
Kik

eff

〉 (
M2

eff

)
kj

(∗)∼
(
m2

eff

)i
j
,

takes the effective form:

(
m2

eff

)i
j
≡ as 〈τs〉

1
2 ξ |W0|2

〈τb〉
9
2


−9 〈τs〉

1
2

(
1− 7

4
σ

)
6as 〈τs〉

1
2 〈τb〉

(
1− 5

4
σ + σ2

)
−6 〈τb〉

1
2

(
1− 5

4
σ +

1

4
σ2

)
4as 〈τb〉

3
2

(
1− 3

4
σ +

3

8
σ2 +

1

8
σ3

)
,

(A.19)
which must be diagonalised in order to determine the diagonalised kinetic bosonic La-
grangian.

Canonically Normalised Fields and Masses

The eigenvalues m2
(l) and eigenvectors ui(l) of (m2

eff)
i
j can be computed directly.

Under the same approximations as before, i.e. up to order I in 〈τs〉3/2 / 〈τb〉3/2 and

ξ/ 〈τb〉3/2, on the one hand normalised masses turn out to be:

m2
χ

(∗)∼ 81

8

ξ |W0|2

as 〈τs〉 〈τb〉9/2
, (A.20)

133



A – Moduli Stabilisation: Calculations

m2
φ

(∗)∼ 4a2
s 〈τs〉

1/2 ξ |W0|2

〈τb〉3

[
1− 3

4as 〈τs〉
+

3

8a2
s 〈τs〉

2 +
1

8a3
s 〈τs〉

3

]
, (A.21)

while on the other hand unnormalised eigenvectors vi(l) can be written as:

viχ
(∗)∼

 2

3
as 〈τb〉

[
1 +

1

2as 〈τs〉
+

3

4a2
s 〈τs〉

2 −
9

4as 〈τs〉
〈τs〉3/2

〈τb〉3/2

(
1− 5

4as 〈τs〉

)]
1

 , (A.22)

viφ
(∗)∼

 3

2

〈τs〉
1
2

〈τb〉
1
2

[
1 +

5

4as 〈τs〉
+

3

16a2
s 〈τs〉

2

]
1

 , (A.23)

and can be normalised as ui(l) ≡ N(l)v
i
(l) in such a way as to have:〈

Keff
ij

〉
ui(l)u

j
(k) = δlk.

The leading order of these expressions is enough for further discussions. Indeed it was
shown in a general way that the bosonic Lagrangian can always be diagonalised by
following the procedure which has just been described. The eigenvectors matrix turns
out to be:

P i
j '


2
√

3

3
〈τb〉

√
6 〈τs〉3/4 〈τb〉1/4

√
3

as

2
√

6

3
〈τs〉1/4 〈τb〉3/4

 , (A.24)

and allows to define the canonically normalised τ -fields via the relation:

(
δτb
δτs

)
'
√

2

2


2
√

3

3
〈τb〉

√
3

as

√
6 〈τs〉3/4 〈τb〉1/4

2
√

6

3
〈τs〉1/4 〈τb〉3/4


(
χ
φ

)
, (A.25)

where of course δτb and δτs are the fields fluctuations from the ground state.
As regards the axionic fields, the effective scalar potential (A.6) is exactly of the kind
analysed in Section 2.4, which means that1:〈

∂2 VF
∂ ψi ∂ ψj

〉
=

〈
∂2 VF
∂ ψi 2

〉
δij,

〈
∂2 VF
∂ τ i ∂ ψj

〉
= 0.

1The notation might be misleading: here V eff
F is intended as still dependent on ψs, as it turns out to

be when directly approximating (A.6) before minimizing with respect to the axions.
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In particular, the effective axionic unnormalised masses are, after the usual approxima-
tion:

(
M ′2

eff

)
i

=
1

2

〈
∂2 V eff

F

∂ ψi 2

〉
=


0

3a2
sξ |W0|2

4 〈τb〉
9
2

(
1− 1

4as 〈τs〉

)
 .

The canonical normalisation of the Lagrangian is immediate: it is sufficient to normalise
the two fields by requiring canonical pure kinetic terms, eventually discarding an irrele-
vant mixing term. More precisely, the normalised fields θχ and θφ can be defined via the
relations:

δψb '
√

6

3
〈τb〉 θχ, (A.26)

δψs '
2
√

3

3
〈τs〉1/4 〈τb〉3/4 θφ, (A.27)

and the masses of canonically normalised axionic fields are then at leading order:

m2
θχ = 0, (A.28)

m2
θφ
' 4 a2

s 〈τs〉
1/2 ξ |W0|2

〈τb〉3
. (A.29)

A.2 Model III: Leading Results

Model III describes three Kähler moduli T1 = τ1 + iψ1, T2 = τ2 + iψ2 and Ts = τs + iψs
with the Kähler potential and the superpotential respectively expressed as:

K = −2 ln
(
τ

1/2
1 τ2 − τ 3/2

s + ξ
)
, (A.30)

W = W0 + Ase
−as(τs+iψs), (A.31)

under the assumptions:

(?) :

{
asτs � 1,

τ
1/2
1 τ2 � τ

3/2
s ∼ ξ,

(A.32)

according to the well-known features.
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A.2.1 Minimisation

Refering the first, second and third columns and rows to τ1, τ2 and τs respectively, a
straightforward computation gives the exact Kähler metric:

Kij̄ =
1

(τ
1
2

1 τ2 − τ
3
2
s + ξ)2



τ2

(
2τ

1
2

1 τ2 − τ
3
2
s + ξ

)
8τ

3
2

1

τ
3
2
s − ξ

4τ
1
2

1

−3τ2τ
1
2
s

8τ
1
2

1

τ
3
2
s − ξ

4τ
1
2

1

τ1

2
−3

4
τ

1
2

1 τ
1
2
s

−3τ2τ
1
2
s

8τ
1
2

1

−3

4
τ

1
2

1 τ
1
2
s

3
(
τ

1
2

1 τ2 + 2τ
3
2
s + ξ

)
8τ

1
2
s


,

(A.33)
and its inverse:

Kij̄ =

(
Ki′j̄′ Ki′s̄

Ksj̄′ Kss̄

)
, (A.34)

primed indices standing only for rows and columns 1 and 2, with:

Ki′j̄′ =
τ

1
2

1 τ2 − τ
3
2
s + ξ

2(τ
1
2

1 τ2 − τ
3
2
s )− ξ


8 τ 2

1 4 τ
1
2

1

(
2τ

3
2
s + ξ

)
4 τ

1
2

1

(
2τ

3
2
s + ξ

) 2 τ2

[
2
(
τ

1
2

1 τ2 + τ
3
2
s

)
+ ξ
]

τ
1
2

1

 ,

Ki′s̄ =
τ

1
2

1 τ2 − τ
3
2
s + ξ

2(τ
1
2

1 τ2 − τ
3
2
s )− ξ

8τ1τs

8τ2τs

 ,

Kss̄ =
τ

1
2

1 τ2 − τ
3
2
s + ξ

2(τ
1
2

1 τ2 − τ
3
2
s )− ξ

· 8

3
τ

1
2
s

(
2τ

1
2

1 τ2 + τ
3
2
s − ξ

)
,

being Ki′s̄ = K s̄i′ as the metric is symmetric.
Therefore, the exact scalar potential can be computed and results:

VF = k
(
v

(1)
F + v

(2)
F + v

(3)
F

)
, (A.35)

where the following elements have been defined for the sake of clarity:

k ≡ 1

3
(
τ

1
2

1 τ2 + τ
3
2
s − ξ

)2 (
2τ

1
2

1 τ2 − 2τ
3
2
s − ξ

) ,
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v
(1)
F ≡ −

[
8a2

sξ
2τ

1
2
s + 8asτ

1
2
s

(
τ

3
2
s − τ

1
2

1 τ2

)(
3τ

1
2
s + as

(
2τ

1
2

1 τ2 + τ
3
2
s

))
− ξ

(
9 + 24asτs + 8a2

s

(
τ

1
2

1 τ2τ
1
2
s + 2τ 2

s

))]
|As|2 e−2asτs ,

v
(2)
F ≡ 6 cos (αs−θ−asψs)

[
3ξ + 4asτsξ + 4asτ

1
2

1 τ2τs − 4asτ
5
2
s

]
|As| |W0| e−asτs ,

v
(3)
F ≡ 9ξ |W0|2 .

As usual, the minimisation of the scalar potential takes place if the axion ψs takes a
vacuum expectation value such that:

〈ψs〉 =
αs − θ
as

+ (2n+ 1)
π

as
, n ∈ Z. (A.36)

Again, the exact scalar potential is still way too complicated to be treated directly.
Under conditions (A.32) it is reasonable to perform a Taylor expansion of the scalar

potential up to order I in the parameters τ
3/2
s /τ

1/2
1 τ2 and ξ/τ

1/2
1 τ2. Moreover, it is

coherent with the same conditions to neglect all of the terms proportional to expressions
like (τ

3/2
s /τ

1/2
1 τ2) e−asτs and (ξ/τ

1/2
1 τ2) e−asτs . The outcome of these approximations is:

VF
(?)∼ V eff

F

where the effective scalar potential is defined as:

V eff
F ≡

8

3

a2
sτ

1/2
s

τ
1/2
1 τ2

|As|2 e−2asτs − 4
asτs(
τ

1/2
1 τ2

)2 |As| |W0| e−asτs +
3

2

ξ(
τ

1/2
1 τ2

)3 |W0|2 . (A.37)

Subsequent calculations then confirm the presence of a flat directions according to the
fact that the scalar potential (A.37) is exactly equal to (A.8) but for the expression of

one variable as a product of two, i.e. τ
3/2
b = τ

1/2
1 τ2.

The scalar potential derivatives are:

∂ V eff
F

∂ τ1

=− 4

3

a2
sτ

1/2
s

τ
3/2
1 τ2

|As|2 e−2asτs + 4
asτs
τ 2

1 τ
2
2

|As| |W0| e−asτs −
9

4

ξ

τ
5/2
1 τ 3

2

|W0|2 ,

∂ V eff
F

∂ τ2

=− 8

3

a2
sτ

1/2
s

τ
1/2
1 τ 2

2

|As|2 e−2asτs + 8
asτs
τ1τ 3

2

|As| |W0| e−asτs −
9

2

ξ

τ
3/2
1 τ 4

2

|W0|2 ,

∂ V eff
F

∂ τs
=

4

3

a2
sτ
−1/2
s

τ
1/2
1 τ2

(1− 4asτs) |As|2 e−2asτs − 4
as
τ1τ 2

2

(1− asτs) |As| |W0| e−asτs .

(A.38)
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It is then immediate to notice that the stationarity conditions:

∂ V eff
F

∂ τ1

(〈τ1〉 , 〈τ2〉 , 〈τs〉) = 0,

∂ V eff
F

∂ τ2

(〈τ1〉 , 〈τ2〉 , 〈τs〉) = 0,

∂ V eff
F

∂ τs
(〈τ1〉 , 〈τ2〉 , 〈τs〉) = 0,

(A.39)

are directly reducible to their analogue (A.10) in Model II. Indeed it is possible to observe
that the following identities hold true:

∂ V eff
F

∂ τb

(
τb = τ

1
2

1 τ2, τs

)
≡ 1

3

(
τ1

τ2

)2
3 ∂ V eff

F

∂ τ1

(τ1, τ2, τs) ≡
2

3

(
τ2

τ1

)1
3 ∂ V eff

F

∂ τ2

(τ1, τ2, τs) ,

∂ V eff
F

∂ τs

(
τb = τ

1
2

1 τ2, τs

)
≡ ∂ V eff

F

∂ τs
(τ1, τ2, τs) ,

where the left-hand sides of both expressions refer to the derivatives (A.9) of the scalar
potential of Model II. This fact means that the system of equations (A.39) admits the
solutions:

〈τ1〉1/2 〈τ2〉 =
3

4

〈τs〉
1
2

as

|W0|
|As|

eas〈τs〉
1− 1

as 〈τs〉

1− 1

4as 〈τs〉

, (A.40)

〈τs〉3/2 = ξ

(
1− 1

4as 〈τs〉

)2

(
1− 1

as 〈τs〉

) , (A.41)

as expected.

F-terms

The exact expressions of the auxiliary fields can be easily shown to be:

F 1 = − 4τ1

2τ
1
2

1 τ2 − 2τ
3
2
s − ξ

[
|W0|+ (1 + 2asτs) |As| e−asτse−i(αs−θ−asψs)

]
, (A.42)

F 2 = − 4τ2

2τ
1
2

1 τ2 − 2τ
3
2
s − ξ

[
|W0|+ (1 + 2asτs) |As| e−asτse−i(αs−θ−asψs)

]
, (A.43)
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F s =− 1

3
(

2τ
1
2

1 τ2 − 2τ
3
2
s − ξ

){12τs |W0|

+
[
8asτ

1
2
s

(
2τ

1
2

1 τ2 + τ
3
2
s − ξ

)
+ 12τs

]
|As| e−asτse−i(αs−θ−asψs)

}
.

(A.44)

Following the conditions (A.32), it is then possible to determine their effective vacuum
expectation values:

〈
F 1

eff

〉
=− 2

〈τ1〉
1
2

〈τ2〉
|W0|

[
1 +

1

2

ξ

〈τ1〉
1
2 〈τ2〉

− 1

2

〈τs〉
3
2

〈τ1〉
1
2 〈τ2〉

(
1− 3

4as 〈τs〉
− 27

16a2
s 〈τs〉

2

)]
,

(A.45)

〈
F 2

eff

〉
=− 2

1

〈τ1〉
1
2

|W0|

[
1 +

1

2

ξ

〈τ1〉
1
2 〈τ2〉

− 1

2

〈τs〉
3
2

〈τ1〉
1
2 〈τ2〉

(
1− 3

4as 〈τs〉
− 27

16a2
s 〈τs〉

2

)]
,

(A.46)

〈F s
eff〉 = − 3

2as 〈τ1〉
1
2 〈τ2〉

|W0|

[
1 +

∞∑
n=1

1

(4as 〈τs〉)n

]
. (A.47)

A.2.2 Moduli Masses

Mass Matrix

The second derivatives of V eff
F read, in a close resemblance to their analogue in Model II:

∂2 V eff
F

∂ τ 2
1

= 2
a2
sτ

1
2
s

τ
5
2

1 τ2

|As|2 e−2asτs − 8
asτs
τ 3

1 τ
2
2

|As| |W0| e−asτs +
45

8

ξ

τ
7
2

1 τ
3
2

|W0|2 ,

∂2 V eff
F

∂ τ1 ∂ τ2

=
4

3

a2
sτ

1
2
s

τ
3
2

1 τ
2
2

|As|2 e−2asτs − 8
asτs
τ 2

1 τ
3
2

|As| |W0| e−asτs +
27

4

ξ

τ
5
2

1 τ
4
2

|W0|2 ,

∂2 V eff
F

∂ τ1 ∂ τs
= −2

3

a2
s

τ
3
2

1 τ2τ
1
2
s

(1− 4asτs) |As|2 e−2asτs + 4
as
τ 2

1 τ
2
2

(1− asτs) |As| |W0| e−asτs ,

∂2 V eff
F

∂ τ 2
2

=
16

3

a2
sτ

1
2
s

τ
1
2

1 τ
3
2

|As|2 e−2asτs − 24
asτs
τ1τ 4

2

|As| |W0| e−asτs + 18
ξ

τ
3
2

1 τ
5
2

|W0|2 ,

∂2 V eff
F

∂ τ2 ∂ τs
= −4

3

a2
s

τ
1
2

1 τ
2
2 τ

1
2
s

(1− 4asτs) |As|2 e−2asτs + 8
as
τ1τ 3

2

(1− asτs) |As| |W0| e−asτs ,

139



A – Moduli Stabilisation: Calculations

∂2 V eff
F

∂ τ 2
s

=
4a2

s

τ1τ 2
2

|As| e−asτs
[
− τ

1
2

1 τ2

6τ
3/2
s

(
1 + 8asτs − 16a2

sτ
2
s

)
|As| e−asτs + (2− asτs) |W0|

]
.

Indeed, observing as before thanks to solutions (A.40) and (A.41) that:

a2
s 〈τs〉

1/2 〈τ1〉 〈τ1〉2 |As|2 e−2as〈τs〉 =
9

16
ξ |W0|2

(
1− 1

as 〈τs〉

)
,

as 〈τs〉 〈τ1〉
1
2 〈τ2〉 |As| |W0| e−as〈τs〉 =

3

4
ξ |W0|2

(
1− 1

4as 〈τs〉

)
,

the unnormalised mass matrix (M2
eff)ij =

〈
V eff
ij

〉
/2 can be written for the sake of sim-

plicity as: (
M2

eff

)
ij

=

(
(M2

eff)i′j′ (M2
eff)i′s

(M2
eff)sj′ (M2

eff)ss

)
, (A.48)

with:

(
M2

eff

)
i′j′

=
3

2

ξ |W0|2

〈τ1〉
7
2 〈τ2〉3


1

4

(
1 +

1

2
σ

)
1

2

〈τ1〉
〈τ2〉

(
1 +

1

2
σ

)
1

2

〈τ1〉
〈τ2〉

(
1 +

1

2
σ

)
〈τ1〉2

〈τ2〉2

(
1 +

1

2
σ

)
 ,

(
M2

eff

)
i′s

=
3

2

ξ |W0|2

〈τ1〉
7
2 〈τ2〉3


−1

2
as 〈τ1〉

(
1− 5

4
σ +

1

4
σ2

)
−as 〈τ1〉2

〈τ2〉

(
1− 5

4
σ + σ2

)
 ,

(
M2

eff

)
ss

=
3

2

ξ |W0|2

〈τ1〉
7
2 〈τ2〉3

· as 〈τ1〉2
(

1− 3

4
σ +

3

8
σ2 +

1

8
σ3

)
,

being (M2
eff)sj′ = (M2

eff)j′s as the matrix is symmetric.
It is evident that this matrix has a vanishing eigenvalue. Indeed its first two rows are
linearly dependent as well as it two first columns (and are proportional to their analogue
in the ’b’ rows and columns in Model II):(

M2
eff

)
2j

= 2
〈τ1〉
〈τ2〉

(
M2

eff

)
1j
,

(
M2

eff

)
i2

= 2
〈τ1〉
〈τ2〉

(
M2

eff

)
i1
.

The inverse Kähler metric up to order I in in 〈τs〉3/2 / 〈τ1〉1/2 〈τ2〉 and ξ/ 〈τ1〉1/2 〈τ2〉
takes the effective form:

〈
Kij
〉 (?)∼

〈
Kij

eff

〉
=


〈
Ki′j′

eff

〉 〈
Ki′s

eff

〉〈
Ksj′

eff

〉 〈
Kss

eff

〉
 , (A.49)
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with, being
〈
Ksj′

eff

〉
=
〈
Kj′s

eff

〉
as the matrix is symmetric:
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)
2 〈τ2〉2

(
1 +

〈τs〉
3
2

〈τ1〉
1
2 〈τ2〉

+
ξ

〈τ1〉
1
2 〈τ2〉

)
 ,

〈
Ki′s

eff

〉
=


4 〈τ1〉 〈τs〉

(
1 +

1

2

ξ

〈τ1〉
1
2 〈τ2〉

)

4 〈τ2〉 〈τs〉

(
1 +

1

2

ξ

〈τ1〉
1
2 〈τ2〉

)
 ,

〈
Kss

eff

〉
=

8

3
〈τ1〉

1
2 〈τ2〉 〈τs〉

1
2

(
1 +

1

2

〈τs〉
3
2

〈τ1〉
1
2 〈τ2〉

)
.

Then, after the same approximations as above, the normalised mass matrix (m2)
i
j

can be expressed as:(
m2
)i
j

=
〈
Kik
〉 (
M2
)
kj

(?)∼
〈
Kik

eff

〉 (
M2

eff

)
kj

(?)∼
(
m2

eff

)i
j
,

where, again: (
m2

eff

)i
j

=

(
(m2

eff)
i′

j′ (m2
eff)

i′

s

(m2
eff)

s
j′ (m2

eff)
s
s

)
, (A.50)

with:

(
m2

eff

)i′
j′

=
as 〈τs〉 ξ |W0|2

〈τ1〉
3
2 〈τ2〉3


−3

(
1− 7

4
σ

)
−6
〈τ1〉
〈τ2〉

(
1− 7

4
σ

)
−3
〈τ2〉
〈τ1〉

(
1− 7

4
σ

)
−6

(
1− 7

4
σ

)
 ,

(
m2

eff

)i′
s

=
as 〈τs〉 ξ |W0|2

〈τ1〉
3
2 〈τ2〉3


6as 〈τ1〉

(
1− 5

4
σ + σ2

)
6as 〈τ2〉

(
1− 5

4
σ + σ2

)
 ,

(
m2

eff

)s
j′

=
as 〈τs〉 ξ |W0|2

〈τ1〉
3
2 〈τ2〉3

(
−2

〈τ2〉
〈τ1〉

1
2 〈τs〉

1
2

(
1− 5

4
σ +

1

4
σ2

)
, −4

〈τ1〉
1
2

〈τ2〉
1
2

(
1− 5

4
σ +

1

4
σ2

))
,

(
m2

eff

)s
s

=
as 〈τs〉 ξ |W0|2

〈τ1〉
3
2 〈τ2〉3

(
4
as 〈τ1〉

1
2 〈τ2〉

〈τs〉
1
2

(
1− 3

4
σ +

3

8
σ2 +

1

8
σ3

))
.

Of course the first two rows and columns are again linearly dependent.
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Canonically Normalised Fields and Masses

The eigenvalues m2
(l) and eigenvectors ui(l) of (m2

eff)
i
j can be computed directly.

Under the well-known conditions (A.32), up to order I in 〈τs〉3/2 / 〈τ1〉1/2 〈τ2〉 and ξ/ 〈τ1〉1/2 〈τ2〉
normalised masses turn out to be:

m2
ζ = 0, (A.51)

m2
χ

(?)∼ 81

8

ξ |W0|2

as 〈τs〉 〈τ1〉3/2 〈τ2〉3
, (A.52)

m2
φ

(?)∼ 4a2
s 〈τs〉

1/2 ξ |W0|2

〈τ1〉 〈τ2〉2

[
1− 3

4as 〈τs〉
+

3

8a2
s 〈τs〉

2 +
1

8a3
s 〈τs〉

3

]
. (A.53)

Unnormalised eigenvectors vi(l) are then:

viζ =


−2
〈τ1〉
〈τ2〉
1

0

 , (A.54)

viχ
(?)∼



2

3
as 〈τ1〉

[
1− 11

12as 〈τs〉
+

5

12a2
s 〈τs〉

2 +
9

4as 〈τs〉
〈τs〉3/2

〈τb〉3/2

]
2

3
as 〈τ2〉

[
1− 11

12as 〈τs〉
+

5

12a2
s 〈τs〉

2 +
9

4as 〈τs〉
〈τs〉3/2

〈τb〉3/2

]
1


, (A.55)

viφ
(?)∼



3

2

〈τ1〉
1
2 〈τs〉

1
2

〈τ2〉

[
1− 1

2as 〈τs〉
+

1

4a2
s 〈τs〉

2 +
1

4a3
s 〈τs〉

3 +O

(
1

as 〈τs〉

)4
]

3

2

〈τs〉
1
2

〈τ1〉
1
2

[
1− 1

2as 〈τs〉
+

1

4a2
s 〈τs〉

2 +
1

4a3
s 〈τs〉

3 +O

(
1

as 〈τs〉

)4
]

1


. (A.56)

They must be normalised as ui(l) ≡ N(l)v
i
(l) in such a way as to have:〈

Keff
ij

〉
ui(l)u

j
(k) = δlk.

Again, the leading order is sufficient in order to determine the change of basis which diag-
onalises the scalar Lagrangian. It is easy to show that properly normalised eigenvectors
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at leading order are:

uiζ '


−2
√

6

3
〈τ1〉

√
6

3
〈τ2〉

0


, (A.57)

uiχ '



2
√

3

3
〈τ1〉

2
√

3

3
〈τ2〉

√
3

as


, (A.58)

uiφ '



√
6
〈τ1〉3/4 〈τs〉3/4

〈τ2〉1/2

√
6
〈τ2〉1/2 〈τs〉3/4

〈τ1〉1/4

2
√

6

3
〈τ1〉1/4 〈τ2〉1/2 〈τs〉1/4


. (A.59)

Finally, as concerns axions, computations are very similar to their corresponding in
Model II. The presence of one more field is in fact irrelevant as this field is obviously
massless.

A.3 Model III: Non-perturbative Corrections

Considering non-perturbative corrections to Model III, an exemplary model comes from
the Kähler potential and the superpotential:

Ktot = −2 ln
(
τ

1/2
1 τ2 − τ 3/2

s + ξ
)
, (A.60)

Wtot = W0 + Ase
−as(τs+iψs) + A1e

−a1(τ1+iψ1), (A.61)

under the assumptions:

(M) :

{
a1τ1 � asτs � 1,

τ
1/2
1 τ2 � τ

3/2
s ∼ ξ.

(A.62)
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A.3.1 Minimisation

The exact scalar potential can be conveniently written as the sum of two contributions:

V tot
F = VF + δVF , (A.63)

where VF is equal to the exact scalar potential (A.35) of Model III, while δVF is:

δVF = k
(
δv

(1)
F + δv

(2)
F + δv

(3)
F

)
, (A.64)

with k as given in Section A.2 and:

δv
(1)
F = 3

[
8a1τ1 (a1τ1 + 1)

(
τ

1
2

1 τ2 − τ
3
2
s

)
+ ξ

(
8a2

1τ
2
1 + 8a1τ1 + 3

)]
|A1|2 e−2a1τ1 ,

δv
(2)
F = 6 cos (α1 − αs − a1ψ1 + asψs)

[
4
(
τ

1
2

1 τ2 − τ
3
2
s

)
(asτs + a1τ1 + 2a1τ1asτs)

+ ξ (8a1τ1asτs + 4a1τ1 + 4asτs + 3)

]
|A1| |As| e−a1τ1e−asτs ,

δv
(3)
F = 6 cos (α1 − θ − a1ψ1)

[
4a1τ

3
2

1 τ2 − 4a1τ1τ
3
2
s + 4a1τ1ξ + 3ξ

]
|A1| |W0| e−a1τ1 .

Taking into account the conditions (A.62) it is possible to identify the effective con-
tributions to the total scalar potential:

VF
(M)∼ V eff

F ,

δVF
(M)∼ δV eff

F ,

where of course V eff
F corresponds to the potential in (A.37) under the same approxima-

tions, including the minimisation with respect to ψs, while:

δV eff
F =

4a1τ1 |A1| e−a1τ1

τ1τ 2
2

[
a1τ1 |A1| e−a1τ1

+ cos (α1−θ−a1ψ1)
(
|W0|+ 2asτs |As| e−asτs

)]
,

(A.65)

discarding all but the leading terms in all of the three factors of |A1|, |W0| and |As|
because of the extremely small overall scaling by e−a1τ1 .

According to Subsection 3.5, it is reasonable to first minimise V eff
F after the change

of the variables (τ1, τ2, τs) to (τ1,V ′, τs) with:

τ2 = τ
−1/2
1 V ′,
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getting the leading order vacuum expectation values (3.75) and (3.76) for V ′ and τs, and
then to consider δVF as a residual correction evaluated in this ground state. The usual
reasoning on phases enables to conclude that the vacuum expectation value of the axion
ψ1 is such that:

〈ψ1〉 =
α1 − θ
a1

+ (2n+ 1)
π

a1

, n ∈ Z, (A.66)

in such a way as to have actually:

δV eff
F

(M)∼ 4a1τ1 |A1| e−a1τ1

〈V ′〉2

[
a1τ1 |A1| e−a1τ1 − |W0|

]
.

Then, the latter is readily minimised in the point 〈τ1〉 such that:

a1 〈τ1〉 e−a1〈τ1〉 =
|W0|
2 |A1|

. (A.67)

A.4 Model III: Perturbative Corrections

The introduction of further perturbative corrections in Model III involves the Kähler
potential and the superpotential:

Ktot = −2 ln
(
τ

1/2
1 τ2 − τ 3/2

s + ξ
)

+
c1

τ1

+
c2

τ2

+
CW
τ1τ2

, (A.68)

Wtot = W0 + Ase
−as(τs+iψs). (A.69)

under the assumptions:

(•) :



asτs � 1,

τ
1/2
1 τ2 � τ

3/2
s ∼ ξ,∣∣∣∣c1

τ1

∣∣∣∣ ∼ ∣∣∣∣c2

τ2

∣∣∣∣� 1,∣∣∣∣CWτ1τ2

∣∣∣∣� 1,

(A.70)

with the useful hierarchy between orders of magnitude in the large volume scenario:∣∣∣∣c1

τ1

∣∣∣∣ ∼ ∣∣∣∣c2

τ2

∣∣∣∣� τ
3/2
s

τ
1/2
1 τ2

∼ ξ

τ
1/2
1 τ2

�
∣∣∣∣CWτ1τ2

∣∣∣∣ ∼ c2
1

τ 2
1

∼ c2
2

τ 2
2

. (A.71)
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A.4.1 Minimisation

The exact scalar potential can be computed exactly and it results in an overwhelm-
ingly long expression, which is not reported here explictily for the sake of brevity. It is
worthwhile to arrange it as the sum of four contributions, respectively proportional to
|As|2 e−2asτs , |As| |W0| e−asτs and the last two to |W0|2, multiplied by an overall factor:

V tot
F = d

(
v

(1)
F + v

(2)
F + v

(3)
F + v

(4)
F

)
, (A.72)

where, expliciting the leading order corrections for the sake of clarity in following expla-
nations:

d−1 = 12 τ
11/2
1 τ 8

2

[
1 +

c1

τ1

+O

(
τ

3/2
s

τ
1/2
1 τ2

,
ξ

τ
1/2
1 τ2

)]
,

v
(1)
F = 32 a2

sτ
1/2
s τ 5

1 τ
7
2 |As|

2 e−2asτs

[
1 + 2

c1

τ1

+
c2

τ2

+O

(
τ

3/2
s

τ
1/2
1 τ2

,
ξ

τ
1/2
1 τ2

)]
,

v
(2)
F = −48 asτsτ

9/2
1 τ 6

2 |As| |W0| e−asτs
[

1 +
c1

τ1

+O

(
τ

3/2
s

τ
1/2
1 τ2

,
ξ

τ
1/2
1 τ2

)]
,

v
(3)
F = 18ξτ 4

1 τ
5
2 |W0|2

[
1− c2

τ2

+O

(
c2

1

τ 2
1

,
c2

2

τ 2
2

,
CW
τ1τ2

)]
,

v
(4)
F = 6 τ

9
2

1 τ
6
2 |W0|2

[
2
c2

1

τ 2
1

+
c2

2

τ 2
2

− 4
CW
τ1τ2

+ O

(
c3

1

τ 3
1

,
c3

2

τ 3
2

,
c2

1c2

τ 2
1 τ2

,
c1c

2
2

τ1τ 2
2

,
c1CW
τ 2

1 τ2

,
c2CW
τ1τ 2

2

)]
,

subleading terms being expressed according to the large volume scenario hierarchy as in
(A.71).

The effective form for the scalar potential can be inferred by taking into account
conditions (A.70) and following a generalisation of the usual approximations which lead
e.g. to the effective scalar potential in Models II and III.
It is manifest that the leading order expression of the scalar potential corresponds to
the well known one (A.37) which is found in the absence of string loop corrections, thus
confirming the discussion about the Extended No-Scale Structure. Therefore, a Taylor
expansion of expression (A.72) can be done assuming the well known behaviour:

e−asτs
(•)∼ O

(
τ

3/2
s

τ
1/2
1 τ2

)
(•)∼ O

(
ξ

τ
1/2
1 τ2

)
.
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In this way, it becomes evident that the scalar potential can be approximated at a first
attempt as:

V tot
F

(•)∼ 8

3

a2
sτ

1/2
s

τ
1/2
1 τ2

|As|2 e−2asτs

[
1 +

c1

τ1

+
c2

τ2

]
− 4

asτs
τ1τ 2

2

|As| |W0| e−asτs

+
3

2

ξ

τ
3/2
1 τ 3

2

|W0|2
[

1− c1

τ1

− c2

τ2

+
1

3

τ
1/2
1 τ2

ξ

(
2
c2

1

τ 2
1

+
c2

2

τ 2
2

− 4
CW
τ1τ2

)]
,

where corrections to the addenda are of two possible orders of magnitude, as evidently:

τ
1/2
1 τ2

ξ

c2
1

τ 2
1

∼ τ
1/2
1 τ2

ξ

c2
2

τ 2
2

∼ τ
1/2
1 τ2

ξ

∣∣∣∣CWτ1τ2

∣∣∣∣� ∣∣∣∣c1

τ1

∣∣∣∣ ∼ ∣∣∣∣c2

τ2

∣∣∣∣ .
This fact means that the leading correction to the scalar potential introduced by string
loop corrections is scaled by factors which do not depend on ξ and which are proportional
to c2

1/τ
2
1 , c2

2/τ
2
2 and CW/τ1τ2.

In the end, discarding the subleading corrections, it is possible to write the effective
total scalar potential as:

V tot
F

(•)∼ V tot, eff
F = V eff

F + δV eff
F , (A.73)

where V eff
F is the well known scalar potential (A.37), while the correction is:

δV eff
F =

1

2

|W0|2

τ1τ 2
2

(
2
c2

1

τ 2
1

− 4
CW
τ1τ2

+
c2

2

τ 2
2

)
. (A.74)

Following Subsection 3.5, it is convenient to first minimise V eff
F after the change of

variables from (τ1, τ2, τs) to (τ1,V ′, τs), getting the leading order vacuum expectation
values (3.75) and (3.76) for V ′ and τs, and then to consider the scalar potential lifting
δVF in this ground state, in such a way as to have :

δV eff
F =

1

2

|W0|2

〈V ′〉2

(
2
c2

1

τ 2
1

− 4
CW

τ
1/2
1 〈V ′〉

+
c2

2τ1

〈V ′〉2

)
. (A.75)

Its minimum is found straighforwardly in the point 〈τ1〉 such that:

〈τ1〉3/2 =
CW
c2

2

[
|CW |
CW

(
1 + 4

c2
1c

2
2

C2
W

)1/2

− 1

]
〈V ′〉 . (A.76)

F-terms

Auxiliary fields can be determined and, in the absence of a mechanism analogous to the
Extended No-Scale cancellation, turn out to get leading corrections from Kaluza-Klein
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terms.
Again, their explicit expressions are extremely long, so they are reported as:

F 1
tot =

f 1

k
, (A.77)

F 2
tot =

f 2

k
, (A.78)

F s
tot =

f s

k
, (A.79)

where the leading terms are:

k = 2τ
7/2
1 τ 5

2

[
1 + 2

c1

τ1

+
c2

τ2

− τ
3/2
s

τ
1/2
1 τ2

− 1

2

ξ

τ
1/2
1 τ2

+O

(
c2

1

τ 2
1

,
c2

2

τ 2
2

,
CW
τ1τ2

)]
,

f 1 =− 4τ 4
1 τ

4
2

{
|W0|

[
1 +

3

2

c1

τ1

+
3

2

c2

τ2

+O

(
c2

1

τ 2
1

,
c2

2

τ 2
2

,
CW
τ1τ2

)]

+ 2asτs |As| e−asτse−i(αs−θ−asψs)
[
1 +

1

2asτs
+O

(
c1

τ1

,
c2

τ2

)]}
,

f 2 =− 4τ 3
1 τ

5
2

{
|W0|

[
1 +

5

2

c1

τ1

+
c2

τ2

+O

(
c2

1

τ 2
1

,
c2

2

τ 2
2

,
CW
τ1τ2

)]

+ 2asτs |As| e−asτse−i(αs−θ−asψs)
[
1 +

1

2asτs
+O

(
c1

τ1

,
c2

τ2

)]}
,

f s =− 4τsτ
3
1 τ

4
2

{
|W0|

[
1 +

3

2

c1

τ1

+
1

2

c2

τ2

+O

(
c2

1

τ 2
1

,
c2

2

τ 2
2

,
CW
τ1τ2

)]

+
4

3
asτs

τ
1
2

1 τ2

τ
3
2
s

|As| e−asτse−i(αs−θ−asψs)
[

1 +
5

2

c1

τ1

+
3

2

c2

τ2

+
1

2

τ
3
2
s

τ
1
2

1 τ2

(
1 +

3

2asτs

)
− 1

2

ξ

τ
1/2
1 τ2

+O

(
c2

1

τ 2
1

,
c2

2

τ 2
2

,
CW
τ1τ2

)]}
.

Then, more clearly, the auxiliary fields can be expressed as:

F 1
tot =− 2

τ
1
2

1

τ2

{
|W0|

[
1− 1

2

c1

τ1

+
1

2

c2

τ2

+
τ

3/2
s

τ
1/2
1 τ2

+
1

2

ξ

τ
1/2
1 τ2

+O

(
c2

1

τ 2
1

,
c2

2

τ 2
2

,
CW
τ1τ2

)]

+ 2asτs |As| e−asτse−i(αs−θ−asψs)
[
1 +

1

2asτs
+O

(
c1

τ1

,
c2

τ2

)]}
,
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F 2
tot =− 2

1

τ
1
2

1

{
|W0|

[
1 +

1

2

c1

τ1

+
τ

3/2
s

τ
1/2
1 τ2

+
1

2

ξ

τ
1/2
1 τ2

+O

(
c2

1

τ 2
1

,
c2

2

τ 2
2

,
CW
τ1τ2

)]

+ 2asτs |As| e−asτse−i(αs−θ−asψs)
[
1 +

1

2asτs
+O

(
c1

τ1

,
c2

τ2

)]}
,

F s
tot =− 2

τs

τ
1
2

1 τ2

{
|W0|

[
1− 1

2

c1

τ1

− 1

2

c2

τ2

+
τ

3/2
s

τ
1/2
1 τ2

+
1

2

ξ

τ
1/2
1 τ2

+O

(
c2

1

τ 2
1

,
c2

2

τ 2
2

,
CW
τ1τ2

)]

+
4

3
asτs

τ
1/2
1 τ2

τ
3/2
s

|As| e−asτs
[

1 +
1

2

c1

τ1

+
1

2

c2

τ2

+
3

2

τ
3
2
s

τ
1
2

1 τ2

(
1 +

1

2asτs

)
+O

(
c2

1

τ 2
1

,
c2

2

τ 2
2

,
CW
τ1τ2

)]
e−i(αs−θ−asψs)

}
.

Finally, the effective vacuum expectation values of the auxiliary fields are:

〈
F 1

tot, eff

〉
=− 2

〈τ1〉
1
2

〈τ2〉
|W0|

[
1− 1

2

c1

〈τ1〉
+

1

2

c2

〈τ2〉
+

1

2

ξ

〈τ1〉
1
2 〈τ2〉

− 1

2

〈τs〉
3
2

〈τ1〉
1
2 〈τ2〉

(
1− 3

4as 〈τs〉
− 27

16a2
s 〈τs〉
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