
Alma Mater Studiorum · Università di Bologna
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Introduction

The primary mathematical tool used in signal theory is the Fourier trans-

form. It is applied to a signal, in the time domain, to obtain from it a rep-

resentation in another form, in the frequency domain.

The theoretical domain of signal theory is very large. It involves the study

of functions, and the study of partial differential operators as well, to pass

through these two field it is necessary to introduce Wigner-Ville distribution

(which we name W-V for short).

W-V distribution first appeared in quantum mechanics and its use in the ap-

plications is based on the useful properties this distribution satisfies. In the

applications the positivity property is of interest because it removes interfer-

ences. Interferences are caused by the cross terms present in the formula, for

all (u, ξ) ∈ R2:

W (αf +βg)(u, ξ) = |α|2W (f)(u, ξ)+ |β|2W (g)(u, ξ)+αβW (f, g)(u, ξ)+αβW (g, f)(u, ξ),

which is obtained developing the expression for the W-V distribution W into

autoterms, the former two, and cross terms, the latter two. To guarantee the

positivity property is a complicate problem and it is resolved by averaging

the W-V distribution with smoothing kernels. As a byproduct, this smooth-

ing operation delocalize the support of the new averaged W-V distribution

resulting in a loss of resolution.

Time-frequency analysis has been developed mainly because of the need of

good resolution over the information we get from signals. This means to be

able to distinguish between closed events in time or frequency space. Simul-

taneously, that is in the time-frequency space, it is not possible to obtain

very good resolution above a fixed threshold. This due to the Uncertainty

iii



iv INTRODUCTION

Principle, it plays a role crucial in every area of Signal Analysis and it is a

constraint superimposed by the theory over all the arguments following in

this document.

In the following we will find instantaneous frequency, which is a mathemat-

ical concept which pretened to represent the sound intensity varying with

time, that we perceive hearing sounds for example. In giving a definition

of instantaneous frequency we adopted which one uses the analytic signal

associated to the signal.

The tool we will use to explore signals is the Windowed Fourier Transform

F g
win

f(u, ξ) defined in the time-frequency domain (u, ξ). In this new trans-

form the signal f has to be integrated against a reference function g, the

window. Firstly, is central the inversion formula, which provides a represen-

tation of a signal in terms of an integral expansion of vectors, in the discrete

case we have a sum expansion and the vector are referred to as Gabor frame.

In this context the smoothness and the decay of the signal affect these one of

its transform and vice versa. In order to quantify the information given by

the distribution of the transform coefficients we resort to modulation spaces

defining Banach spaces of functions with a given time-freqeuency behaviour

for which we can use operator theory. Ambiguity functions are also covered.

They are of relevant utility in the applications and we use them as cross-

correlation function between two signals in one pratical example.

The representation of a signal f whit the inversion formula is very redundant

and not useful for the discretized case. Our approach consists rather in using

frames. We will prove when the coefficients in the frame decomposition of

f are unique, and this will corresponds to the case of having a Riesz bases.

In the sampling-to-reconstruction process there is the need to recover any

signal f from its sampled values < f, ej >j∈J . This lead to the iterative

frame algorithms for implementing the reconstruction process of a signal f

when samples of the signal are received. As a corollary of this part we will

see how to implement an algorithm to reconstruct the signal and how its rate

of convergence is related to the frame bounds of the frame.
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The Wavelet Transform Fwave(f)(u, s) is introduced at the end. It has signed

the beginning of a new era in signal processing since the easier computability

with respect to the Windowed Fourier Transform. It is not a representation

in the time-frequency plane (u, ξ) of a signal f , but it retain a property of

localization thanks to the formula:

Fwave(f)(u, s) =

∫ ∞
−∞

f(t)
1√
s
ψ(
t− u
s

)dt =

∫ +∞

−∞
F (f(ξ))e−iuξFψ(sξ)dξ,

which implies that the frequency-support of the signal is restricted to

supp Fψ(sξ) =
1

s
supp Fψ.

Nevertheless the s parameter gives the Wavelet transform the capacity of

resizing the signal’s support of an s factor. This property of multiresolution

at different scales s links the Wavelet transform to Hoelder spaces.





Chapter 1

Fourier transforms

We will see that there is a sort of duality between a signal f and its

transform F (f) and all matters covered in the sequel stem from the operation

of Fourier transform. In particular, it is central the Uncertainty Principle.

1.1 Heisenberg’s indeterminacy

Consider f as a function in L2(Rd), this means it is a signal with finite

energy. It is well defined the following:

Definition 1.1. Fourier transform of f ∈ L2(R2) is

F (f)(ξ) :=

∫ ∞
−∞

f(t)e−iξtdt. (1.1)

We will use the definition above in the sequel. Nevertheless there exist

other equivalent forms for the Fourier transform. We will need the following

result by Riemann and Lebesgue:

1



2 1. Fourier transforms

Lemma 1.1. (Riemann-Lebesgue) If f ∈ L1(R) then Ff is uniformly con-

tinuous and

lim
ξ→±∞

|Ff(ξ)| = 0

.

Observation 1. It should be proved that the definition (1.1) is well-defined

in L2(R). Observe that the integral in the definition above is not defined

pointwise, and furthermore, it does not associate to an L1 function an L1

function. For an example take the function eikt /∈ L1(R), for k > 0. Or

for example take f(t) = sin(t)
t

/∈ L1(R), the integral of this function doesn’t

converge, it can be shown simply using the contrapositive of lemma 1.1 and

the fact that f is equal to F (1
2
χ

[−1,1]
). But both the functions are in L2(R).

Now we give a formula which says us how to move between these spaces

with the Fourier integral operator. We give the inversion formula for the

Fourier operator (1.1) defined above:

Theorem 1.1. If f ∈ L2(R):

f(t) =
1

2π

∫ ∞
−∞

F (f)(ξ)eitξdξ

It will be needed this:

Theorem 1.2. (Plancherel formula) If f ∈ L2(R) then the operator F :

L2(R)→ L2(R) is unitary, this is equivalent to:

‖f‖L2 = ‖F (f)‖L2

and this:

Theorem 1.3. (Parseval formula) If f ∈ L2(R) then:

‖ff‖L2 =
1

2π
‖F (f)Ff‖L2
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It is useful to consider σ2
t and σ2

ξ , the standard deviation respectively of

a signal f and its spectrum F (f):

Definition 1.2.

σt
2 :=

∫∞
−∞(t− u)2|f(t)|2dt = ‖σu‖2L2

σξ
2 := 1

2π

∫∞
−∞(ξ − ω)2|F (f)(ξ)|2dξ = ‖σω‖2L2

(1.2)

We are ready to state the uncertainty principle. Its usual formulation is:

”a realizable signal occupies a region of area at least a fixed constant in the

time-frequency plane”.

Theorem 1.4. (Heisenberg’s principle) Given a normalized function f ∈
L2(R) then the following inequality holds:

σ2
t σ

2
ξ ≥

1

4

Proof. Consider A to be the following:

A =

∫ ∞
−∞

f(t)e−iξtdt.

We define F to be the following positive function:

F (µ) :=
∫ +∞
−∞ |

1√
2π

(µξA− d
dξ
A)|2dξ =

=
∫ +∞
−∞

1√
2π

(µξA− d
dξ
A) 1√

2π
(µξf − d

dξ
A)dξ

= µ2 1
2π

∫ +∞
−∞ (ξ|A|)2dξ + µ 1

2π

∫ +∞
−∞ t(A d

dξ
f + A d

dξ
A)dt+ 1

2π

∫ +∞
−∞ |

d
dξ
A|2dξ

≥ 0

We rewrite it applying integration by parts and using the hypothesis ‖f‖ =

2π (|f | must vanish at infinity):

= µ2σ2
ξ + 1

2π
µ([ξ|A|]∞−∞ −

∫ +∞
−∞ |A|dt) + 1

2π

∫ +∞
−∞ |

d
dξ
A|2dξ

= µ2σ2
ξ + 1

2π
µ(0− 2π) + 1

2π

∫ +∞
−∞ |

d
dξ
A|2dξ

(1.3)
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Observe that

A′ =
d

dξ
A = −i

∫ ∞
−∞

tf(t)e−iξtdt.

Substituting it in (1.3) and using reverse Parseval theorem 1.3:

= µ2σ2
ξ −µ +

∫ +∞
−∞ |A

′|2dξ
= µ2σ2

ξ −µ + 1
2π

∫ +∞
−∞ |F (tf)|2dξ

= µ2σ2
ξ −µ +

∫ +∞
−∞ |tf |

2dt.

(1.4)

We have obtained a polynomial with no real root. By using the discriminant

formula, Heisenberg holds:

1− 4σ2
t σ

2
ξ ≤ 0

and

σ2
t σ

2
ξ ≥ 1

4

1.2 Instantaneous frequency

To analyze the time-frequency behaviour of a signal we first consider

the instantenous frequency. This concept is undefinable in the sense of the

Heisenberg indeterminacy’s principle. In fact, consider a signal f , defined in a

small interval It around a fixed instant of time t, of width ε. We associate to it

f ·g where g is a smooth cut-off function (a function zero everywhere outside

an interval) and we Fourier transform it. Then invoking the Heisenberg

principle 1.4, we have:

σ2
ξ ≥

1

4σ2
t

≈ 1

4ε
.

Which implies that for small ε we can not say that f has frequencies concen-

trated in a fixed bandwidth in ξ. Nevertheless, for many purposes is sufficient

what we can do. So let us start with the following:
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Definition 1.3. The instantaneous frequency is the derivative of the am-

plitude related to a signal. So if f = a(t) cos(ϕ(t)) then the instantenous

frequency is

ω(t) = ϕ′(t).

We will give in theorem 2.2 in the next chapter a fundamental result on

instantaneous frequency which well shown the connection to the Windowed

Fourier Transform. In fact, in order to achieve better satisfying results, the

structure of a signal is well investigated by the use of the following Win-

dowed Fourier Transform introduced below, which is our second new type of

transform.
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Chapter 2

Windowed Fourier Transform

Previously, we have considered eiξt as a function with which we weighted

the signal in the definition of Fourier transform (1.1). Now we consider the

weights g(t − u)eiξt. Furthermore, we obtain better approximations about

the integral of the signal f considering the change of variable t→ (t− u), a

translation u in time under the integral sign.

The resulting transform F
win
f we obtain so has the property that the inter-

secting supports of the functions under integral sign will give a more concen-

trated information about the signal f . This is the idea behind the following

definition:

Definition 2.1. Let L2(R) 3 g be an even and symmetric function with

||g|| = 1 (g is our window). The Windowed Fourier Transfor is the:

Fwin(f)(u, ξ) :=

∫ ∞
−∞

f(t)g(t− u)e−iξtdt. (2.1)

Observation 2. We now give an example of computation of the Windowed

Fourier Transform of a sinusoidal signal f , with a characteristic function as

7



8 2. Windowed Fourier Transform

window g. We will discuss about it in example 2.1. In the figure below is

shown the plot of the transform obtained sliding the window along the time

axis. We obtain very good results here, following Mallat:

freq=5;

n=24;

spec=.1;

t=[0:spec:n];

A=[];

m=length(t);

ampiezza=.3;

M=2*m;

s=zeros(1,M-amp-2);

for (i=m:1:M-1)

s=[s(1:i-amp-1),fun((i-amp:1:(i+amp))),zeros(1,M+m-i-amp-1)];

ss=fft(s);

A=[A;ss];

end
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subplot(2,1,1);plot(t,f(t,freq),t,g(t,n/2*ones(1,m),...

...ampiezza));axis tight;

for i=1:1:m

subplot(2,1,2);colormap(1-gray(256));imagesc(t,(1:1:3*m-1),...

...[abs(A(1:i,:));zeros(m-i,3*m-1)]’);axis tight;

end

Next we define what is called an Heisenberg box.

Definition 2.2. We consider a fixed (u, ξ) point in the time-frequency plane,

the Heisenberg box is a rectangle with edges the time spread and the fre-

quency spread defined by (1.2).

These boxes are important because they define the area where the (sup-

port of the) window is concentrated. So boxes far from each other leave

gaps in the time-frequency plane, we have that in these gaps the signal can

not be well approximated by a system of functions (exempli gratia: taking

the set {eiξtg(t− u)}
(u,ξ)

, where we can take g(t) = e−t
2
, will gives birth to

Gabor systems), so that we cannot expect that it forms, in a certain way, an

acceptable frame. We will speak about these concepts below in chapter 3.

In literature the product of the frequency spread by the time spread corre-

sponds to the resolution.

Observation 3. Scaling the window g by a dilation g(t/s)/
√
s, we obtain a

new Heisenberg box with the same area. In fact we have from definitions
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(1.2) by properties of the window g:

σ2
t =

∫∞
−∞ t

2|g(t)eiξt|2dt =
∫∞
−∞ t

2|g(t)|2dt =

= s
∫∞
−∞( t

s
)2|g( t

s
) 1√

s
|2d t

s

= 1
s2

∫∞
−∞ t

2|g( t
s
) 1√

s
|2dt

=: 1
s2

∫∞
−∞ t

2|gs(t)|2dt
σ2
ω = 1

2π

∫∞
−∞(ω − ξ)2|

∫∞
−∞ g(t)eiξ(t+u)e−iω(t+u)dt|2dω =

= 1
2π

∫∞
−∞ ω

2|e−iu(ω−ξ)Fω−ξ(g)|2dω =

= 1
2π

∫∞
−∞ ω

2|e−iu(ω−ξ)Fω−ξ(g)|2dω =

= 1
2π

∫∞
−∞ ω

2|Fω(g)|2dω =

= 1
s2π

∫∞
−∞(sω)2|

√
sFsω(g)|2d(sω)

= s2

2π

∫∞
−∞(ω)2|F ( 1√

s
g( t

s
))|2d(ω)

=: s2

2π

∫∞
−∞(ω)2|F (gs(t))|2d(ω)

(2.2)

So the product σ2
t σ

2
ω (the area of the Heisenberg box) is always the same (i.e.

it is constant around the time-frequency plane). Note that the resolution in

time and frequency respectively depends on s instead. This fact leaves open

the way to Wavelet which we will explore in the last chapter.

2.1 Ambiguity function

In the applications, an analogue invariance property, like that of the area

of the Heisenberg boxes above, is obtained by considering ambiguity func-

tions.

Definition 2.3. An ambiguity function is the following:

Ag(u, ξ) :=

∫ ∞
−∞

g(τ + u/2)g∗(τ − u/2)e−iτξdτ (2.3)

We note with ∗ the complex conjugate. The definition above is expressed

in the time domain. We prove here also the equivalence with the other

equivalent form in the frequency domain:
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Theorem 2.1.

Ag(u, ξ) :=

=
∫∞
−∞ g(τ + u/2)g∗(τ − u/2)e−iτξdτ =

=
∫∞
−∞ g(τ + u/2)g∗(τ − u/2)e−i

ξ
2
(τ+u

2
)e−i

ξ
2
(τ−u

2
)dτ =

= 1
2π

∫∞
−∞F (g(τ + u

2
)e−i

ξ
2
(τ+u

2
))(ω)F (g(τ − u

2
)ei

ξ
2
(τ−u

2
))∗(ω)dω =

= 1
2π

∫∞
−∞F (g(τ)e−i

ξ
2
τ )(ω)F (g(τ)ei

ξ
2
τ )∗(ω)eiω(

u
2
+u

2
)dω =

= 1
2π

∫∞
−∞F (g)(ω + ξ/2)F (g)∗(ω − ξ/2)eiuωdω =: Ax̂(u, ξ)

(2.4)

Proof.

See that in the calculations (2.4) above we have used the Plancherel the-

orem 1.2. Observe that we did not use the Ambiguity function with an

auxiliary window as in the Windowed Fourier transform. Furthermore we

note that it is complex-valued and it do not constitute a probability density.

Instead if we take two different functions f ∈ L2(R) and g ∈ L2(R) instead

of only g in the definition of Ambiguity function, namely:

A(f, g)(u, ξ) :=

∫ ∞
−∞

f(τ + u/2)g(τ − u/2)e−iτξdτ, (2.5)

we obtain the cross-ambiguity function, which is used as a cross-correlation

function.

Observation 4. We look at the norm of the values of the ambiguity function as

a kind of dependence of the signal energy on time and frequency. Supposing

we have a radar emitting signals, we would determine the spacial values (by

means of distance d and velocity v) of an object. To achieve this we use

the echo signal produced by the object and so we measure it with a receiver.

Consequently we have a returned signal reflected by the object incoming with

a delay t0 = 2d/c in time and a Doppler shift ξ0 = −2ξv/c, where c is the

speed of light. So the echo signal is

fret(t) = f(t− t0)e−iξ0(t−t0)
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and its spectrum:

F (fret)(τ) =

∫ +∞

−∞
fret(t)e

−iτtdt.

If our receiver is an optimal receiver with frequency characteristics F (ξ), then

the incoming signal we have to treat is∫ +∞

−∞
F (ξ)F (fret)(ξ)e

−iτξdτ,

which is the (Woodward) Ambiguity function (it can be shown with a bit

of computations that it coincides with our Ambiguity A defined in (2.3)).

Observe that the incoming signal is a function of the time delay t0 and the

Doppler shift ξ0.

To determine the distance d and the velocity v we have to determine t0 and ξ0.

In doing this we must to take into account this property (1): that |Af(u, ξ)|
takes on the maximum value ‖f‖2 at the origin (0, 0) in the (u, ξ)-plane.

So we necessarly have to determine experimentally the time-frequency values

for which the following Ambiguity function

Af(t− t0, ξ − ξ0)

takes its maximum to use the property (1). The explanations of the role of

the ambiguity function compared to the antenna pattern of the radar are not

pursued here for brevity.

We obtain the following property that the volume of ambiguity is con-

stant:
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Observation 5.

1
2π

∫∞
−∞

∫∞
−∞ |Af(u, ξ)|2dudξ =

= 1
2π

∫∞
−∞

∫∞
−∞ |

∫∞
−∞ g(τ + u/2)g∗(τ − u/2)e−iτξdτ |2dudξ =

= 1
2π

∫∞
−∞

∫∞
−∞

∫∞
−∞ g(τ + u/2)g∗(τ − u/2)e−iτξdτ∫∞

−∞ g
∗(τ ′ + u/2)g(τ ′ − u/2)eiτ

′ξdτ ′dudξ =

= 1
2π

∫∞
−∞

∫∞
−∞

∫∞
−∞

∫∞
−∞ e

i(τ ′−τ)ξg(τ + u/2)g∗(τ − u/2)

g∗(τ ′ + u/2)g(τ ′ − u/2)dξdτdτ ′du =

=
∫∞
−∞

∫∞
−∞

1
2π

∫∞
−∞ e

iτ ′ξF (g(τ + u/2)g∗(τ − u/2)

g∗(τ ′ + u/2)g(τ ′ − u/2))(ξ)dξdτ ′du =

=
∫∞
−∞

∫∞
−∞ g(τ ′ + u/2)g∗(τ ′ − u/2)g∗(τ ′ + u/2)g(τ ′ − u/2)dτ ′du =

=
∫∞
−∞ g

∗(x)g(x)dx
∫∞
−∞ g(y)g∗(y)dy =

= ||g||2

= 1

(2.6)

which is another instance of the uncertainty property; in the sense that the

’amount of ambiguity’ is constant as the energy of the signal g is.

Here we state, as promise some chapters ago, a result showing the con-

nection between instantaneous frequency and Windowed Fourier Transform:

Theorem 2.2. Consider f = a(t)cos(t), g a normalized window and its

rescaled gs = 1√
s
g( t

s
). If ξ ≥ 0:

Fwin(f)(u, ξ) =

√
s

2
a(u)ei[ϕ(u)−ξu](ĝ(s[ξ − ϕ′(u)]) + εu,ξ),

where the Windowed Fourier transform is calculated with respect to gs, instead

of g.

We have that the corrective terms satisfy:

|εu,ξ| ≤ εa,1 + εa,2 + εϕ,2 + sup
|ω|≥sϕ′(u)

|ĝ(ω)|
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with: 
εa,1 ≤ s|a′(u)|

|a(u)|

εa,2 ≤ sup
|t−u|≤ s

2

s2|a′′(u)|
|a(u)|

εϕ,2 ≤ sup
|t−u|≤ s

2

s2|ϕ′′(t)|, if s|a′(u)|
|a(u)| ≤ 1.

(2.7)

Proof. By definition

Fwin(f)(u, ξ) =
∫ +∞
−∞ a(t)cos(ϕ(t))gs(t− u)e−iξtdt

which we rewrite as a sum of two terms:

=
∫ +∞
−∞ (1

2
a(t)eiϕ(t)gs(t− u)e−iξt + 1

2
a(t)e−iϕ(t)gs(t− u)e−iξt)dt (2.8)

Reminding Taylor series expansion, we have here

a(u+ t) = a(u) + a′(u)t+
α(t)

2
t2 ,with |α(t)| ≤ sup

[u,u+t]

|a′′|

and

ϕ(u+ t) = ϕ(u) + ϕ′(u)t+
β(t)

2
t2 ,with |β(t)| ≤ sup

[u,u+t]

|ϕ′′|.

By the first summand in (2.8), which we name as I(ϕ), we obtain:

I(ϕ) =
∫ +∞
−∞

1
2
a(t+ u)eiϕ(t+u)gs(t)e

−iξtdt.

Multiplying it by 2e−i(ϕ(u)−ξu) we get:

=
∫ +∞
−∞ a(u)eitϕ

′(u)ei
t2

2
β(t)e−iξtgs(t)dt+

+
∫ +∞
−∞ a′(u)teitϕ

′(u)ei
t2

2
β(t)e−iξtgs(t)dt+

+
∫ +∞
−∞

α(t)
2
t2e−i(ξt+ϕ(u)−ϕ(u+t))dt.
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Now using first order Taylor expansion another time yields:

ei
β(t)
2
t2 = 1 +

β(t)

2
t2γ(t) with |γ(t)| ≤ 1,

and finally observing that:

∫ +∞
−∞ gs(t)e

−it(ξ−ϕ′(u))dt =
√
sĝ(s[ξ − ϕ′(u)]),

we have that:

|I(ϕ)−
√
s
2
a(u)ei(ϕ(u)−ξu)ĝ(ξ − ϕ′(u))| ≤

√
s|a(u)|
4

(ε+a,1 + εa,2 + εϕ,2) (2.9)

with 
ε+a,1 = 2|a′(u)|

|a(u)| |
∫∞
−∞ t

gs(t)√
s
e−it(ξ−ϕ

′(u))dt|

εa,2 =
∫∞
−∞ t

2|α(t)| |gs(t)|√
s
dt

εϕ,2 =
∫∞
−∞ t

2|β(t)| |gs(t)|√
s
dt+ |a′(u)|

|a(u)|

∫∞
−∞ |t

3||β(t)| |gs(t)|√
s
dt.

(2.10)

Similarly for I(−ϕ), we obtain:

|I(−ϕ)| ≤
√
s|a(u)|
2
|ĝ(ξ − ϕ′(u))|+

√
s|a(u)|
4

(ε−a,1 + εa,2 + εϕ,2). (2.11)

with

ε−a,1 =
2|a′(u)|
|a(u)|

|
∫ ∞
−∞

t
gs(t)√
s
e−it(ξ+ϕ

′(u))dt|.

By inequalities (2.9) and (2.11) we obtain:

I(ϕ) + I(−ϕ) =

√
s

2
a(u)e(i(ϕ(u)−ξu)) +

ε+a,1 + ε−a,1
2

+ εa,2 + εϕ,2 + sup
|ω|≥s|ϕ′(u)|

|ĝ(ω)|,

which is exactly the statement because

|ĝ(s[ξ + ϕ′(u)])| ≤ sup
|ω|≥s|ϕ′(u)|

|ĝ(ω)|
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in the case

ξ ≥ 0 and ϕ′(u) ≥ 0

Finally, we prove the upper bounds of the statement, we set: εa,1 =
ε+a,1+ε

−
a,1

2
,

since we can suppose supp g = [−1
2
, 1
2
], we get:

∫ +∞

−∞
|t|n |gs(t)|√

s
dt = sn

∫ 1
2

− 1
2

|t|n|g(t)|dt ≤ sn

2n
.

Applying the property for n = 1 gives the estimate

εa,1 ≤
s|a′(u)|
|a(u)|

.

Let’s finally verify the upper bounds (2.7). The formers two are simple

consequence of the fact that the Taylor remainder in each formula satisfy the

property:

sup
|t|≤ s

2

|α(t) ≤ sup
|t−u|≤ s

2

|a′′(t)| , sup
|t|≤ s

2

|α(t) ≤ sup
|t−u|≤ s

2

|a′′(t)|.

Finally, in (2.10) above, replacing |β(t)| by its upper bound and considering

s|a′(u)||a(u)|−1 ≤ 1 gives:

εϕ,2 ≤
1

2
(1 +

s|a′(u)|
|a(u)|

) sup
|t−u|≤ s

2

s2|ϕ′′(t)| ≤ sup
|t−u|≤ s

2

s2|ϕ′′(t)|

2.2 The inversion formula

The Windowed Fourier Transform fulfills the inversion formula as the

Fourier Transform of the last chapter. First of all, Windowed Fourier Trans-

form satisfies the following orthogonality relation.

Theorem 2.1. Let f1, f2, g1, g2 ∈ L2(R), then Fwinj(f)(u, ξ) ∈ L2(R) for
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j = 1, 2, and:

< F
g1

win (f1),F
g2

win (f2) >L2=
1

2π
< f1, f2 >L2 < g1, g2 >L2 ,

where F
gj

win is applied to gj.

Proof. Suppose for instance that g1, g2 are in L1 ∩ L∞ ⊆ L2. So we have

fjgj(· − u) ∈ L2. Therefore by Parseval formula theorem 1.3 we obtain∫ +∞

−∞

∫ +∞

−∞
F

g1

win (f1)F
g2

win (f2)dξdt =

=

∫ +∞

−∞
(

∫ +∞

−∞
F (f1(t)g1(t− u)F (f2(t)g2(t− u))dξ)dt

= 2π

∫ +∞

−∞
(

∫ +∞

−∞
f1(t)f2(t)g1g1(t− u)g2(t− u)dt)du

next, applying Fubini to the products f1f2 ∈ L1
t and g1g2 ∈ L1

ξ :

< F
g1

win (f1),F
g2

win (f2) >L2 = 2π
∫ +∞
−∞ f1f2(

∫ +∞
−∞ (g2(t− u)g1(t− u)du)dt

= 2π < f1, f2 >L2< g1, g2 >L2

Finally we extend the relation, as usually, to gj ∈ L2 by density argument.

Fixing g1 ∈ L1 ∩ L∞, the mapping g2 −→< F
g1

win (f1),F
g2

win (f2) >L2 is a

linear functional that coincides with 1
2π
< f1, f2 >L2< g2, g1 >L2 over L1∩L∞,

a dense subspace of L2. It is therefore bounded and so it extends to all g2 ∈
L2. So now, considering arbitrary f1, f2 and g2 in L2, the linear functional

g1 ←−< F
g1

win (f1),F
g2

win (f2) >L2 equals 1
2π

< f1, f2 >L2 < g1, g2 >L2 on

L1 ∩ L∞ and extends to all g1 ∈ L2. So the orthogonality relations are

established on all L2(R).

Observation 6. It is a corollary that

‖f‖2 =
1

2π
‖Fwin(f)‖2
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for all f ∈ L2 (which is the isometry property of the Windowed Fourier

Transform). So it follows that f is completely determined by its windowed

Fourier transform Fwin(f). But furthermore, the implication

Fwin(f) =< f(·), eiξ ·g(· − u) >= 0 ∀u, ξ ∈ R2 ⇒ f = 0

is equivalent to say that for each fixed g ∈ L2 the set

{eiξtg(t− u) : (u, ξ) ∈ R2}

spans a dense subspace of L2. The matter of how recover f from Fwin(f) is

shown in the next theorem:

Theorem 2.2. (Reconstruction formula) We suppose that f is in L2(R). Then

f =
1

2π

∫ +∞

−∞

∫ +∞

−∞
Fwin(f)(t, ξ)g(t− u)eitξdξdu.

Proof. Observe that

F (f)(u, ξ) = e−iuξ
∫ +∞

−∞
f(t)g(t− u)eiξ(u−t)dt

= (e−iuξ)f ? [g(−t)eiξt]

= (e−iuξ)f ? [g(t)eiξt]

where the convolution is a function of the u variable and by its property g is

even, so g(−t) = g(t). So its Fourier transform is

ˆF (f)(ω) = f̂(ω + ξ)ĝ(ω).

Consider that the Fourier transform of g(t−u) with respect to u is ĝ(−ω)e−itξ.

We have finally, by Parseval theorem 1.3 applied to the integral formula in
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the statement of our theorem:

1

2π

∫ +∞

−∞

∫ +∞

−∞
F (f)(u, ξ)g(t− u)eitξdudξ

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
f̂(ω + ξ)|ĝ(ω)|2eit(ω+ξ)dωdξ.

But f̂ ∈ L1 , so we can apply Fubini’s theorem to reverse the integration

order. From the formula we obtain, using the inverse Fourier transform

theorem 1.1, which we recall is:

f(t) =
1

2π

∫ +∞

−∞
f̂(ω + ξ)eit(ω+ξ)dξ

which results in

=

∫ +∞

−∞
f(t)|ĝ(ω)|2dt.

But since we have ∫ +∞

−∞
|ĝ|2dω = 1

it finally results the statement above. For a more general f̂ ∈ L2(R) a density

argument is used and the proof is complete.

The key ingredient in this proof is the Parseval formula. in fact we can

prove a more general result:

Theorem 2.3. We suppose that g, γ are in L2(R) and < g, γ >6= 0. Then

for all f ∈ L2

f(t) =
1

2π < g, γ >

∫ +∞

−∞

∫ +∞

−∞
Fwin(f)(u, ξ)γ(t− u)eitξdξdu. (2.12)

Proof. Since Fwin(f) ∈ L2 by observation 6, the integral

f̃ :=
1

2π < γ, g >

∫ +∞

−∞

∫ +∞

−∞
Fwin(f)(u, ξ)γ(t− u)eiξtdu

is well-defined in L2 as we will see in the observation 8.
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Consider g function on R with values in the Banach space L2, then f =∫ +∞
−∞ g(u)du, operator-valued integral, for us means that

< f, h >=

∫ +∞

−∞
< g(u), h > du for all h ∈ L2∗.

If the mapping

h −→
∫ +∞

−∞
< g(u), h > du

is a bounded (conjugate-)linear function on L2 (where the (conjugate-) is

applied on h), then the mapping defines a unique element f ∈ (L2∗)
∗
. Al-

though in general we can only say that the integral < f, h > is in the bidual

(L2∗)
∗
. But this problem don’t worry us, because we the spaces we deal with

are all reflexive Banach spaces, L2 included. Using the orthogonality relation

theorem 2.1 it yelds

< f̃, h >=
1

2π < γ, g >

∫ +∞

−∞

∫ +∞

−∞
Fwin(f)(u, ξ)< h, γ(t− u)eiξt >dudξ

=
1

2π < γ, g >

∫ +∞

−∞

∫ +∞

−∞
< F

g

win (f),F
γ

win (h) >=< f, h > .

So f̃ = f , and the inversion formula is proved.

Definition 2.4. We call γ the reconstruction function.

Observation 7. The inversion formula (2.12) shows that f can be expressed

as a continuous superposition of time-frequency shifts with the Windowed

Fourier Transform as weight function. In this sense, (2.12) is similar to the

inversion formula for the Fourier transform, that is, f(t) = 1
2π

∫ +∞
−∞ f̂(ξ)eiξtdξ.

However, in Fourier inversion the elementary functions eiξt are not in L2,

whereas in theorem 2.3, the elementary functions γ(t − u)eiξt are instead

particularly nice functions in L2, in fact they are used as the starting point

for the reconstruction of a signal f . We will speak about this in chapter 3.

Observation 8. The integral (2.12) in the theorem above is a superposition
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of time-frequency shifts of the form:

f =

∫ +∞

−∞

∫ +∞

−∞
F (u, ξ)g(t− u)eiξtdudξ. (2.13)

Let us now specify well this integral in the more general setting of Banach

spaces. For example, if F ∈ L2(R), then the (conjugate-)linear functional

l(h) =

∫ +∞

−∞

∫ +∞

−∞
F (u, ξ)< h, g(· − u)eiξ· >dudξ

is a bounded functional on L2. To see this, we apply the Cauchy-Schwartz

inequality and use that (it follows from the orthogonality relations above)

‖Fwin(f)‖L2 = ‖f‖2‖g‖2,

where the Windowed Fourier transform is applied with g. So the following

holds

|l(h)| ≤ ‖F‖2‖Fwin(h)‖2 = ‖F‖2‖g‖2‖h‖2. (2.14)

This means that l defines a unique function

f =

∫ +∞

−∞
F (u, ξ)g(t− u)eiξtdudξ ∈ L2

with norm ‖f‖2 ≤ ‖f‖2‖g‖2 and satisfying l(h) =< f, h >.

We show now how the integral (2.13) gives a relation for the Windowed

Fourier transform. Let Ag be the linear operator defined by

AgF =

∫ +∞

−∞

∫ +∞

−∞
F (u, ξ)g(t− u)eiξtdudξ.

By the estimate (2.14), Ag is a bounded operator from L2 onto L2. Moreover,

by

< AgF, h >=

∫ +∞

−∞

∫ +∞

−∞
F (u, ξ) < g(t− u)e−iξt, h > dudξ

< F,Fwin(h) >=< F ∗
win(F ), h >,
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with h ∈ L2 and F ∈ L2, so Ag is exactly the adjoint operator (the conjugate

transpose is the same as the inverse) of the Windowed Fourier transform

viewed as an operator from L2 to L2. Thus indeed F ∗
win = Ag, where the

Windowed transform is computed by g.

Thus the inversion formula reads as

1

< γ, g >
F

γ

win

∗
F

g

win = I

This inversion formula will lead to important results about modulations

spaces. The definition of these spaces is based over an extension of the

inversion formula as:

{f ∈ S (R)′|(
∫ +∞

−∞
(

∫ +∞

−∞
|Fwingf(u, ξ)|pγ(u, ξ)pdu)

q
p )

1
q <∞},

where g ∈ S (R) and 1 ≤ p, q ≤ ∞. Modulation spaces are spaces of func-

tions that are better suited to describe the action of the Windowed Fourier

transform, and they give a general framework for the definition of admissible

window. In the applications is important to choose a Window such that both

g and ĝ decay very rapidly, that is, for example for Schwartz functions or

C∞0 functions.

For completeness we show an:

Example 2.1. One signal processing application known as signal segmenta-

tion amounts to using a characteristic function as window. We have that

{χ
[0,1]

(t− k)e2πint}k,n

is an orthonormal bases in L2(R). Indeed, if g = χ[0,1], the Fwin(f) re-

spect to g provides an accurate picture of the temporal behaviour of f since

Fwin(f)(u, 0) =
∫
u+[0,1]

f(t)dt is the average value of f in a neighborhood of

u. But on the frequency side, since Fχ
[0,1]

(ξ) = 1−e−iξ

iξ
decays slowly and is

not even in L1. This gives a bad frequency localization and the Windowed
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Fourier transform

F
g

win (f)(u, ξ) = F
ĝ

win (f̂)(ξ,−u)eiξu

provides a completely inadequate frequency resolution.



24 2. Windowed Fourier Transform



Chapter 3

Frames

In this chapter we start considering sequences {ej : j ∈ J} in a separable

Hilbert space H which we call frame

Definition 3.1. We call {ej : j ∈ J} a frame in case there exist positive

constants A,B > 0 such that

A‖f‖2 ≤
∑
j∈J

| < f, ej > |2 ≤ B‖f‖2, for all f ∈H . (3.1)

If the frame bounds A,B satisfying (3.1) are equals then {ej : j ∈ J} is

called a tight frame. We will see that in case of tight frames, both the frame

and its dual defined in (3.4) coincide.

When we considered the Windowed Fourier transform (2.1) for the Inversion

formula in theorem 2.3, we used it to write f as a continuous expansion of f

with respect to the uncountable system of functions

{γ(t− u)eiξt : (u, ξ) ∈ R2}.

Since L2 is a separable Hilbert space, only a countable subset of them suf-

25
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fice to represent every signal f ∈ L2. In fact the representation of f by

the Inversion formula is highly redundant, hence in the case the supports

{supp < γ( · − ui)eiξi ·, h >}, overlap when (ui, ξi) varies in a countable

subset of R× R. This because the coefficients

{F g

win
(f)(ui, ξi)}(ui,ξi)

in the Inversion formula are almost equal and so they represent the same

time-frequency behaviour of f varying (ui, ξi).

The formal idea behind this is that requiring to have a frame is less than

requiring the invertibility of the Windowed Fourier transform operator.

We now give an interesting geometrical interpretation of the formula (3.1).

We cover the time-frequency plane by a lattice (αn, βk) with (n, k) ∈ Z×Z.

Our window function g has support essentially concentrated in a rectangle

R over the lattice. Its size by the uncertainty principle can not be larger

than a costant. So we have a covering of the time-frequency plane given

by R + (αZ, βZ), which is a countable set of shifted rectangles in time and

frequency. If the product αβ > 1, then the rectangles R do not overlap

leaving gaps. The signal in the gaps can not be approximated, so giving a

set of vectors {ej, j ∈ J} which do not constitute a frame. This is a theorem

and is formulated as:

Theorem 3.1. If {g(t−αn)eiβnt} is a (Gabor) frame in L2(R), then αβ ≤ 1.

The converse is not necessarily true. This is the case also when the signal

is oversampled but f is not completely determined by its frame coefficients

< f, ej >. We can take for example G (g = χ, α = 2, β) = {χ[0,1](t−2n)eikβt};
they do not form a frame because the functions with supports in

⋃
k∈Z

[2k +

1, 2k + 2) are not even in the span of G (χ, 2, β). We conclude this brief

introduction with an example of frame:

Example 3.1. Take an orthonormal bases {g1, g2, g3} in a three dimensional

Hilbert space H. Considering a cube the corresponding tetrahedron can be
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given by the coordinates

(1, 1, 1), (1,−1, 1), (−1,−1, 1), (1,−1,−1).

Considering the following rotation matrix
1√
3

1√
3

1√
3

− 1√
6

√
2
3
− 1√

6

− 1√
2

0 1√
2

 ,

applying it to the tetrahedron above we obtain the following four vectors:

φ1 = g1,φ2 = −g1
3
−
√

2

3
g2 +

√
2

3
g3,

φ3 = −g1
3
−
√

2

3
g2 −

√
2

3
g3,φ4 = −g1

3
+

2
√

2

3
g2.

By simple computations we obtain that
∑
| < f, φn > |2 = 4

3
‖f‖2. So they

form a tight frame with bounds A = B = 4/3.

Observation 9. Here is an example of computation made using Mallat code.

It is a representation of the Windowed Fourier coefficients of signal, a (com-

pressed for logistic necessity) piece of music taken as input (its time profile

the graph immediately above, in blue). The logarithm of the coefficients of

the spectrogram log(F )f are calculated using a Hanning windowed, tipically

used in musical recordings.

3.1 Riesz bases

We call

|F (f)(u, ξ)|2

the energy of f in a time-frequency box centered at (u, ξ).

A way to collect both the property that the sampling operation is continuous
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on L2 (stability) and that f is uniquely determined by the samples of the

Windowed Fourier transform (completeness) is considering:

A‖f‖22 ≤
∑
k

∑
n

|F (f)(k, n)|2 ≤ B‖f‖22

fulfilled for all f ∈ L2. This is more or less to say that the energy of the signal

f is preserved under discretization. Observe that the samples of the Win-

dowed Fourier transform are just inner products of f with a given collection

of functions:

F (f)(k, n) =< f, g(h− k)einh >= e−ikn < f, g(h− k)ein(h−k) > .

We have that f is unique under the representation of the Windowed Fourier

coefficients if {g(h − k)ein(h−k) : k, n ∈ Z} spans a dense subspace of L2.

How this is realized will be the content of proposition 3.3, which states when

the particular case of uniqueness of the coefficients in the Windowed Fourier

expansion of f happens. We will use different types of operators in the sequel.
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Definition 3.2. Consider {ej : j ∈ J} ⊆ H subset and {cj}j∈J a finite

sequence .

• The analysis operator C is given by

Cf = {< f, ej >: j ∈ J}

• The synthesis operator D is defined by Dc =
∑
cjej ∈ H

• The frame operator S is defined on H by

S(f) =
∑

< f, ej > ej

Proposition 3.1. Given {ej : j ∈ J} a frame for H, the following holds:

a) C is bounded from H into `2(J) with closed range.

b) The operators C and D are adjoint to each other; that is, D = C∗. Con-

sequently, D extends to a bounded operator from `2(J) into H and satisfies

‖
∑

cjej‖ ≤
√
B‖c‖`2 .

c) The frame operator S = C∗C = DD∗ (here ∗ is the involution operator)

maps H onto H and is a positive invertible operator satisfying AIH ≤ S ≤ BIH
and B−1IH ≤ S−1 ≤ A−1IH. In particular, {ej : j ∈ J} is a tight frame if and

only if S = AIH.

d) The optimal frame bounds are Bopt = ‖S‖ and Aopt = ‖S−1‖−1, here ‖ · ‖
is the operator norm of S.

Proof.

a) We have that

‖Cf‖2 ≥ A‖f‖2,

so taking the sequence

Cfn → y
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we obtain that {xn}n is a Cauchy sequence by the fact that ‖xn − xm‖2 ≤
1
A
‖Cfn − Cfm‖2. So C lim fn = y and hence, y is in the image of C. Hence

it is a closed subspace of `2.

b) Take a finite sequence of coefficients {cj}j∈J . Then

< C∗c, f >=< c,Cf >=
∑

cj< f, ej > =<
∑

cjej, f >=< Dc, f > .

Now, since C is bounded on H and has operator norm ‖C‖ ≤
√
B by (3.1),

it follows that D = C∗ : `2(J) → H is also bounded with the same operator

norm. Thus b) follows.

c) Since S = C∗C = D∗D we have that S is self-adjoint and positive definite.

Since

< Sf, f >=
∑
| < f, ej > |2

it’s immediate that AI ≤ S ≤ BI. Further, S is invertible on H because

A > 0. Since S is a positive definite operator and it commute (i. e. [S, S−1] =

SS−1 − S−1S = 0) therefore AS−1 ≤ SS−1 ≤ BS−1, as desired.

d) We remember that the operator norm is defined by ‖S‖ = sup
‖f‖≤1

< Sf, f >.

Then from inequalities (3.1) the statement follows.

We observe that point b) above is remarkable because it says to us that∑
cjej is well defined for arbitrary `2 sequences even if we are not claiming

that the frame vectors in the sequence are not even orthogonal. We can

explain better this phenomenon using the following:

Corollary 3.2. Let {ej : j ∈ J} be a frame for H. If f =
∑
j∈J
cjej for some

{cj}j ∈ `2(J), then for every ε > 0 there exists a finite subset F0 = F0(ε) ⊆ J

such that

‖f −
∑

cjej‖ ≤ ε for all finite subsets F ⊇ F0.

In this case we say that the series converges unconditionally to f ∈ H.
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Proof. Choose F0 ⊆ J such that |cj|2 ≤ ε/
√
B

n/∈F
for F ⊇ F0. Let cF = cχF ∈

`2(J) be the finite sequence with terms cF,j = cj if j ∈ F and cF,j = 0 if

j /∈ F . Then cjej
j∈F

= DcF and

‖f − cjej
j∈F
‖ = ‖Dc−DcF‖

and by proposition 3.1 b)

= ‖D(c− cF )‖

=
√
B‖c− cF‖`2 ≤ ε

Corollary 3.3. If {ej : j ∈ J} is a frame with positive bound coefficients A

and B, then {S−1ej : j ∈ J} is a frame with bounds A−1, B−1. Every f ∈ H

has non-orthogonal expansions

f =
∑
j∈J

< f, S−1ej > ej (3.2)

and

f =
∑
j∈J

< f, ej > S−1ej, (3.3)

where both sums converge unconditionally in H.

Proof. First of all we have that

∑
j∈J

| < f, S−1ej > |2 =
∑
j∈J

| < S−1f, ej > |2 =

because is self-adjoint and by definition:

=< S(S−1f), S−1, f >=< S−1f, f > .
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Therefore by proposition 3.1, c):

B−1‖f‖2 ≤< S−1f, f >=
∑
j∈J

| < f, S−1ej > |2 ≤ A−1‖f‖
2

.

Thus the collection {S−1ej : j ∈ J} is a frame with bounds B−1 and A−1.

Using the factorizations IH = S−1S = SS−1, we obtain the series expansions

f = S(S−1f) =
∑
j∈J

< S−1f, ej > ej =
∑
j∈J

< f, S−1ej > ej

and

f = S−1Sf =
∑
j∈J

< f, ej > S−1ej.

Because both {< f, ej >} and {< f, S−1ej >} are in `2(J), both series

converge unconditionally by the corollary above.

Observation 10. If the frame is tight, that is the bound coefficients are iden-

tical, then both the decompositions are identical. So from

∀f ∈ H
1

B
‖f‖2 ≤

∑
j∈J

| < f, S−1ej > |2 ≤
1

A
‖f‖2, (3.4)

we have that also:

f =
1

A

∑
j∈J

< f, ej > ej.

Definition 3.3. The frame {S−1ej : j ∈ J} in the statement above is called

the dual frame.

Observation 11. In the applications our synthesis operator is discretized as a

pseudo inverse. The (continuous) linear pseudo inverse C+ is defined as the

left inverse that is zero on (R(C))⊥:

∀f ∈ H C+Cf = f and ∀a ∈ (R(C))⊥ C+a = 0. (3.5)

The pseudo inverse of the analysis operator C, also called frame analysis
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operator in literature, allows a reconstruction with the dual frame just defined

above. This reconstruction from inner products (3.2) is the counterpart of

the series expansion with respect to a set of vectors (3.3).

So the signal f is reconstructed from the frame coefficients Cf(ej) =< f, ej >

with the dual frame coefficients ẽj = S−1ej as expanding functions. For

orthonormal bases these two aspects, (3.2) and (3.3), coincide. Note however

that we have to be able to compute the dual coefficients ẽj in advance to make

effectively computations with these formulae. In general this is not the case,

to provide for this situation we will prove Richardson iteration procedure

below.

Further, our decomposition is not unique in general. This in contrast as it is

in the case of orthonormal bases. The following proposition says us when that

uniqueness of the coefficients < f, S−1ej > happens. Here is a preliminary

result, it says us that the coefficients are canonical in a certain sense:

Proposition 3.2. Suppose {ej : j ∈ J} is a frame for X and f =
∑
j∈J
cjej for

some coefficients c ∈ `2(J), then

∑
j∈J

|cj|2 ≥
∑
j∈J

| < f, S−1ej > |2,

with equality only if cj =< f, S−1ej > for all j ∈ J .

Proof. Set aj =< f, S−1ej >. Then f =
∑
j∈J
ajej and

< f, S−1f >=aj < ej, S
−1f >

j∈J
=

∑
j∈J

|aj|2.

On the other hand, using that S is self-adjoint we have,

< f, S−1f >=
∑
j∈J

cj < ej, S
−1f >=

∑
j∈J

cjaj =< c, a > .
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Therefore ‖a‖2`2 =< c, a >, and we see that

‖c‖2`2 = ‖c− a+ a‖2`2

= ‖c− a‖2`2 + ‖a‖2`2+ < c− a, a > + < a, c− a >

= ‖c− a‖2`2 + ‖a‖2`2 ≥ ‖a‖2`2 ,

with equality only if c = a.

So the question when the coefficients are uniquely determined is settled

by the following statement:

Proposition 3.3. Suppose that {ej : j ∈ J} is a frame for H. Then the

following conditions are equivalent:

i) The coefficients c ∈ `2(J ) in the series expansion (3.2) are unique;

ii) The analysis operator C maps H surjectively onto `2(J);

iii) There exist positive constants A′, B′ such that the inequalities

A′‖c‖`2 ≤ ‖
∑
j∈J

cjej‖ ≤ B′‖c‖`2 (3.6)

hold for all finite sequences c = {cj}j∈J .

iv) {ej : j ∈ J} is the image of an orthonormal bases {gj : j ∈ J} under an

invertible operator T ∈ Bound(H).

v) The Gram matrix G, given by Gj,m =< ej, em >j,m∈J , defines a positive

invertible operator on `2(J).

Proof. Consider {ej : j ∈ J} a frame, we remember that from proposition 3.1

and equation (3.2) we have that C is one-to-one with closed range and that

D is onto.

We recall also that a bounded operator is one-to-one if and only if its adjoint

operator has dense range.
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i) ⇐⇒ ii) The coefficients are uniwue if and only if D is one-to-one if and

only if D∗ = C is onto (id est its range, R(C), is closed and dense in `2(J))

i)⇒ iii) The continuity of D, by proposition 3.1, implies the existence of a

constant B′ such that ∑
j∈J

‖cjej‖ ≤ B′‖c‖2.

Since D is bijective, D−1 is continuous by the open mapping theorem, from

which the lower estimate follows and iii) is proved.

iii)⇒ iv) Let {fj : j ∈ J} be an orthonormal bases of H For f =
∑
j∈J
cjfj, we

define Tf =
∑
j∈J
cjej. Then ‖f‖ = ‖c‖`2 and

‖Tf‖ = ‖
∑
j∈J

cjej‖ ≥ A‖c‖`2 = A‖f‖,

and similarly, ‖Tf‖ ≤ B‖f‖ for all f ∈ H. Thus T is well defined, invertible

operator on H and Tfj = ej, as desired.

iv)⇒ i) If Tfj = ej, j ∈ J for an orthonormal bases {fj}j and an invertible

operator T ∈ Bound(H), then

∑
j∈J

cjej = T (
∑
j∈J

cjfj) = 0

if and only if ∑
j∈J

cjfj = 0

if and only if

cj = 0, for all j ∈ J

iii) ⇐⇒ v) For any finite sequence c = {cj}j∈J ,

< Gc, c >=
∑
m,j∈J

< em, ej > cmcj = ‖
∑
m∈J

cmem‖2.

Therefore (3.6) is equivalent to saying that G is a positive invertible operator



36 3. Frames

on `2(J).

Definition 3.4. A frame {ej : j ∈ J} that satisfies the conditions of propo-

sition 3.3 is called a Riesz bases of H.

Observation 12. A Riesz bases is a frame of vectors that are linearly inde-

pendent, which implies that R(C) = `2(J), so the vectors of the dual frame

are also linearly independent. Inserting f = ek in (3.2) and (3.3) above yelds

ek =
∑
j∈J

< ek, S
−1ej > ej (3.7)

and by linear indenpendence we have that

< ek, S
−1ej >= δk,j.

Thus dual Riesz bases are biorthogonal families of vectors. If we take a

normalized bases (‖ej‖ = 1), substituting f = ej in the frame inequality of

corollary 3.3:

B−1‖f‖2 ≤< S−1f, f >=
∑
j∈J

| < f, S−1ej > |2 ≤ A−1‖f‖
2

,

we have that

A ≤ 1 ≤ B.

3.2 Richardson algorithm

In signal processing we have to represent a signal f with as possibly as

less coefficients in our frame {ej : j ∈ J}. So the problem at the end of the

approximation process is how to well reconstruct f . We devote this section to

the computations needed in order to achieve the reconstruction of a function

approximated by only sparse coeffients.

The best linear approximation of a function f by a subspace spanned by

`2(J) functions is the orthogonal projection of f in the subspace. When it is
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not this case, id est we do not make use of dual coefficients, we will use the

Richardson algorithm.

However, it is possible to compute the orthogonal projection with the dual

frame stated in the previous section. This is proved exactly by the following

result:

Proposition 3.4. Let {ej}j∈J be a frame of `2(J), and {S−1ej}j∈J its dual

frame. The orthogonal projection of f ∈ H in `2(J) is

Pf =
∑
j∈J

< f, ej > S−1ej =
∑
j∈J

< f, S−1ej > ej. (3.8)

Proof. Since both frames are dual, by corollary 3.3, in the case f ∈ `2(J),

then the operator Pf satisfies trivially Pf = f .

To prove that it is an orthogonal projection it is sufficient to verify that if

f ∈ H then < f − Pf, ek >= 0 ∀k ∈ J . Indeed,

< f − Pf, ek >=< f, ek > −
∑
j∈J

< f, ej >< S−1ej, ek >,

because by the dual frame property (3.7) we have that finally

< f − Pf, ek >= 0.

This result is particularly important for approximating signals from a

finite set of vectors. In fact in the case that J is a finite set, {ej : j ∈ J} is

a frame of the space it generates.

But our situation is not the case: f ∈ H and our pseudo inverse (3.5) is only

invertible on `2(J), the definition of the pseudo inverse changes in this:

Definition 3.5. A pseudo-inverse on the subspace `2(J) ⊆ H is:

∀f ∈ `2(J) C+C = f and ∀a ∈ (R(C))⊥ C+a = 0.
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If the frame E = {ej : j ∈ J} does not depend on the signal f , then the

dual frame vectors ẽj = S−1ej are precomputed and the dual reconstruction

is solved directly with our projection formula (3.8).

In many applications however, the frame vectors E depend on the signal f ,

in which case the dual frame vectors cannot be computed in advance. This

is the case, for example, when coefficients {< f, ej >}j∈J are selected in a

redundant transform in building a sparse signal representation. Thus, the

transform coefficients Cf are known and we must compute

Pf = (C
∗
C
`2(J)

)−1C
∗
Cf = (C

∗
C
`2(J)

)−1Sf.

A dual synthesis algorithm computes first

y = C
∗
Cf =

∑
j∈J

< f, ej > ej ∈ `2(J)

and then derives Pf = L−1y = z by applying the inverse of the symmetric

operator L = C
∗
C
`2(J)

to y, with

∀h ∈ `2(J), Lh =
∑
j∈J

< h, ej > ej.

Note that the eigenvalues of L are between A and B.

Observe that the operator L is symmetric:

< Lh, ek >=
∑
j∈J

< h, ej >< ej, ek >=
∑
j∈J

< h, ej >< ej, ek >=

=
∑
j∈J

< h, ej >< ek, ej > 1 =< h,Lek >, ∀ek ∈ E .

The step requiring more effort in the algorithm above is the inversion of L

to compute z = L−1y, where the eigenvalues of L are between A and B. The

first algorithm we see requires knowing the frame bounds A and B.

Proposition 3.5. To compute z = L−1y, let z0 be an initial value and γ > 0
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be a relaxation parameter. For any k > 0, define

zk = zk−1 + γ(y − Lzk−1). (3.9)

If

δ = max{|1− γA|, |1− γB|} < 1,

then

‖z − zk‖ ≤ δk‖z − z0‖ (3.10)

and therefore

lim
k→+∞

zk = z.

Proof. We rewrite equation (3.9):

z − zk = z − zk−1 − γL(z − zk−1).

Let

R = I− γL,

and

z − zk = R(z − zk−1) = Rk(z − z0).

Since the eigenvalues of L are between A and B,

A‖z‖2 ≤ 〈Lz, z〉 ≤ B‖z‖2.

This implies that R = I− γL satisfies

| < Rz, z > | ≤ δ‖z‖2,

where δ is defined as in the statement. Since R is symmetric (L was), this

inequality proves that ‖R‖ ≤ δ. Thus iterating we derive (3.10). Finally, the

error converges to zero in the case δ < 1.

Observation 13. We note that convergence is guaranteed for all possible initial
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values of z0. The convergence rate to the term L−1y is maximized when δ is

minimum. This is the case if we choose γ = 2
A+B

, because then

|1− γA| ≈ |1− γB|,

so δ = B−A
B+A

= 1−A/B
1+A/B

is optimum.

We now derive an estimate on the velocity of convergence. From the error

estimate (3.10) above we obtain an error smaller than ε for a number n of

iterations, which satisfies

‖z − zk‖
‖z − z0‖

≤ δk = ε.

Inserting the value of γ in δ = |1 − γA| = |1 − 2
A+B

A| ≈ 1 − 2A
B

, by Taylor

series it yelds:

k ≈ ln ε

ln(1− 2A
B

)
≈ −B

2A
ln ε.

Therefore, the number n of iterations increases proportionally to the frame

bound ratio B
A

. Usually in the applications, the exact values of A and B are

often not known. We have that A is generally more difficult to compute than

B and B = ‖CC∗‖. By proposition above for

γ < ‖CC∗‖,

the algorithm is guaranteed to converge, but the convergence rate still de-

pends on A.

The optimal relaxation parameter γ is in the range ‖CC∗‖−1 ≤ γ ≤ 2‖CC∗‖−1

The difficulty in finding the bounds coefficients A and B, often found

far from an optimal ratio Bopt
Aopt

, leads to an implementation using conjugate

gradient’s method. It is an alternative approach in finding Pf = z using

iterative algorithms. In computing, z = L−1y we follow a gradient descent

along orthogonal directions with respect to the norm (and its related scalar
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product) induced by the symmetric operator L:

‖z‖2L = ‖Lz‖2.

This L norm is used to estimate the error. The implementation is given by

the following:

Proposition 3.6. To compute z = L−1y, we have the initial data

z0 = 0, r0 = p0 = y, p−1 = 0.

For any k ≥ 0, we define by induction:

λk =
〈rk, pk〉
〈pk, Lpk〉

zk+1 = zk + λkpk

rk+1 = rk − λkLpk

pk+1 = Lpk −
〈Lpk, Lpk〉
〈pk, Lpk〉

pk −
〈Lpk, Lpk−1〉
〈pk−1, Lpk−1〉

pk−1 (3.11)

If σ =
√
B−
√
A√

B+
√
A

, then

‖z − zk‖L ≤
2σk

1 + σ2k
‖z‖L, (3.12)

and therefore:

lim
k→+∞

zk = z

Proof. Following the Groechenig implementation of the proof we outline the

following important steps:

i) Let Uk be the subspace generated by {Ljz}
1≤j≤k . By the induction formula

(3.11) on k, we have that pj ∈Uk for j < k.

ii) By induction we can prove that {pj}0≤j≤k is an orthogonal bases of Uk with

respect to the inner product 〈z, h〉L := 〈z, Lh〉. Assuming that 〈pk, Lpj〉 = 0,

for j ≤ k − 1, it can be shown that 〈pk+1Lpj〉 = 0 for j ≤ k.
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iii) We can verify that zk is the orthogonal projection of z onto Uk with

respect to 〈., .〉L, which means that

∀g ∈ Uk, ‖z − g‖L ≥ ‖z − zk‖L.

Since zk ∈Uk, this requires proving that 〈z − zk, pj〉L = 0, for j < k.

iv) We can compute so the orthogonal projection of z in embedded spaces Uk

of dimension k, and one can verify that lim
k←+∞

‖z−zk‖L = 0. The exponential

convergence formula (3.12)also can be proved.

Observation 14. Note here that we must choose z0 = 0 to start the algorithm.

The convergence is slower when A
B

is small. In this case,

σ =
1−

√
A/B

1 +
√
A/B

≈ 1− 2

√
A

B
.

The exponential convergence (3.12) proves that we obtain a relative error

‖z − zk‖L
‖z‖L

≤ ε

for a number of iterations

k ≈
ln ε

2

lnσ
≈ −1

2

√
B

A
ln
ε

2
.

Comparing this result with the previous one, we observe that when B/A

in σ above is big, the conjugate gradient algorithm is more faster than the

Richardson iteration algorithm to compute z = L−1y at a fixed precision.
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Wigner-Ville Distributions

The mathematical approach to time-frequency quadratic distributions

consists in looking for sesquilinear forms G(f, g)(x, ω); that is, G is linear in

f and conjugate linear in g. Then there are two ways to make G quadratic

in f . To take Cf = |G(f, g)|2 and Cf = G(f, f). In both cases we have:

C(αf + βh) = |α|2Cf + |β|2Ch+ αβG(f, h) + αβG(h, f), (4.1)

where α, β ∈ C. For the last decades, the more effort has been spending

explaining the non linear formula (4.1) above relative to the two cross terms

G(f, h) and G(h, f). Plotting it gives figure 4. We observe immediately the

typical phenomenon of interferences. Interferences are shading created in

unexpected regions of the time-frequency plane. They are caused not by a

property of the signal but by the transform’s quadratic property. The result

is that Wigner-Ville distribution do not always reveal the exact pattern of

the signal’s spectrum or energy. We define the Wigner-Ville distribution of

a signal:

Definition 4.1. The Wigner-Ville distribution Wf of a function f ∈ L2(R)

43
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Figure 4.1: Three pairs of different signals and their corresponding Wigner-
Ville distributions plot

is defined to be

Wf(u, ξ) =

∫ ∞
−∞

f(u+
t

2
)f(u− t

2
)e−itξdt (4.2)

Observation 15. Our defined distribution in (4.2) is a function which takes

real values because w(f)(t, ξ) = f(ξ+ t/2)f(ξ − t/2) is hermitian in t (id est

w(f)(t, ξ) = w(f)(−t, ξ)).

Observation 16. The Wigner-Ville distribution, by polarization formulas, be-

comes:

W (f, g)(u, ξ) =

∫ +∞

−∞
f(u+

t

2
)g(u− t

2
)e−iuξdt,
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∀f, g ∈ L2(R), which is named Cross-Wigner distribution.

The Cross-Wigner distribution is just a Windowed Fourier transform in

disguise:

Proposition 4.1. For all f, g ∈ L2(R),

W (f, g)(u, ξ) = 2de2iuξ
∫ +∞

−∞
f(t)g(u− t)e−itξdt

Proof. We make the substitution η = t+ u
2

in definition (4.2) and obtain

W (f, g)(u, ξ) =

∫ +∞

−∞
f(u+

t

2
)g(u− t

2
)e−iuξdt

= 2d
∫ +∞

−∞
f(η)g(−(η − 2u))e−2iξ(u−t)du

= 2de2iuξFwinf(2u, 2ξ),

where the Windowed Fourier transform is computed with g( ·) .

There is here an orthogonality property for the Wigner-Ville distribution

corresponding to which one already seen in theorem 2.1, and it implies also

that the Wigner-Ville distribution is unitary (which implies that energy is

conserved).

Proposition 4.2. (Moyal’s formula) For every f and g in L2(R):

1

2π

∫ +∞

−∞

∫ +∞

−∞
W (f)(u, ξ)W (g)(u, ξ)dudξ = |〈f, g〉|2,

where 〈f, g〉 =
∫ +∞
−∞ f(t)g(t)dt.

In general, Wigner-Ville distributions are not positive. So it has been

proposed, as a remedy for its negative values, to take averages at each point.

The standard averaging procedure in maths is the convolution of Wf with a
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smoothing function σ which is centered at (0, 0). Then the convolution

([Wf ] ? σ)(t, ξ) =

∫ +∞

−∞

∫ +∞

−∞
Wf(u, ω)σ(t− u, ξ − ω)dudω

can be seen as a local average of Wf at (t, ξ) According to our discussion

of section 1.1, a region of area ∆t∆ξ < 1 in phase space does not have any

physical meaning. For such small regions in phase space paradoxical conclu-

sions may be deduced. On a formal level, these can be expressed in the form

of new uncertainty principles for quadratic time-frequency representations

given below, in proposition 4.3, in this particular case for the Wigner-Ville

distribution. We may think that since only regions of size larger than 1 are

relevant, the oscillations, caused by the cross terms in eq. (4.1), will cancel

out and that (Wf) ? g is non-negative for all f ∈ L2(R), whenever the sup-

port of σ is large enough. This beautiful conjecture however is not true in

general. It is difficult to determine those kernels σ for which the averaged

Wigner distribution (Wf) ? g is always positive. It can be seen that this

question is equivalent to characterizing the positivity of pseudodifferential

operators by their symbol. Nevertheless, if σ is a gaussian, our intuition on

the uncertainty principle is true.

Proposition 4.3. Let σ
a,b

(t, ξ) = e−(
t2

a
+ ξ2

b
) = ϕa

2
(t)ϕ

b
2

(ξ).

i) If ab = 1, then (Wf) ? σ
a,b
≥ 0 for all f ∈ L2(R).

ii) If ab > 1, then (Wf) ? σ
a,b
> 0 for all f ∈ L2(R).

iii) If ab < 1, then (Wf) ? σ
a,b

may assume negative values.

To prove this result we need the following semigroup property of Gaus-

sians:

Lemma 4.1. For a > 0 we have

Wϕa(u, ξ) = ϕa
2
(u)ϕ 1

2a
(ξ)
√

2πa.
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Proof. We take a Fourier transform and we apply the same Fourier transform

property used in the previous lemma:

Wϕa(u, ξ) =

∫ +∞

−∞
e−

2
a
[(u+ t

2
)2+(u− t

2
)2]e−itξdt

= e−
u2

a

∫ +∞

−∞
e−

t2

2a e−itξdt

= ϕa
2
(u)ϕ̂2a(ξ)

=
√

2πaϕa
2
(u)ϕ 1

2a
(ξ).

Lemma 4.2. For a, b > 0 we have

ϕa ? ϕb = ϕ2π(a+b)

√
ab

a+ b
.

Proof. We take a Fourier transform and apply this Fourier transform prop-

erty:

F (f ? g) = (Ff)(Fg) for all f, g ∈ L2,

to have

F (ϕa ? ϕb)(ξ) = ϕ̂a(ξ)ϕ̂b(ξ)

= π
√
abϕ 2

a
(ξ)ϕ 2

b
(ξ)

= πe−
1
4
(a+b)ξ2

√
ab

= π

√
ab

a+ b

√
a+ bϕ 2

a+b
(ξ)

=

√
ab

a+ b
F (ϕ2π(a+b))(ξ).

We are now ready to prove proposition 4.3

Proof. The trick is to write σa,b as a Wigner distribution and the convolution
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as an inner product as in

f ? g(u) =< f, g(t− u) >, for all f, g ∈ L2

where convolution is now an inner product with a translation and an involu-

tion.

Furthermore the following identity hold.

Wf(−u,−ξ) =

∫ +∞

−∞
f(−u+

t

2
)f(−u− t

2
)eiξtdt

=

∫ +∞

−∞
f(−u− t

2
)f(−u+

t

2
)e−iξtdt

= W (f(− ·))(u, ξ). (4.3)

Now assume that ab = 1. Then by lemma 4.1:

σa,b(u, ξ) = ϕa
2
(u)ϕ 1

2a
(ξ) =

√
2πa

−1
Wϕa(u, ξ).

Using involution identity (4.3), the covariance of Wf , and Moyal’s formula

proposition 4.2, we obtain:

(Wf ? σ
a, 1a

)(u, ξ) =
∫ +∞
−∞

∫ +∞
−∞ Wf(u− t, ξ − η)σ

a, 1a

(t, η)dtdη

=
∫ +∞
−∞ W (f(− ·))(t− u, η − ξ)σ

a, 1a

(t, η)dt, dη

= 1√
2aπ

∫ +∞
−∞

∫ +∞
−∞ W (eitξf(−(· − u))(t, η)Wϕa(t, η)dtdη

=
√

2aπ|〈eitξf(−(· − u)), ϕa〉|2 ≥ 0.

In the case ab > 1, we can choose 0 < c < a and 0 < d < b such that cd = 1,

and by lemma 4.2 we can write σa,b = σc,d ? σa−c,b−d. Therefore

Wf ? σa,b = (Wf ? σc,d) ? σa−c,b−d > 0

is strictly positive since it is a convolution of a non-negative function with a

positive function.
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Finally, in the last case ab < 1 we have that f(t) = te−t
2

will give

(Wf ? σa,b)(0, 0) < 0.
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Chapter 5

Wavelet transform

Now we introduce the wavelet transform.

Definition 5.1. A wavelet is a function ψ ∈ L2(R), symmetric, with a

zero average property (
∫ +∞
−∞ ψ(t)dt = 0) and ||ψ|| = 1 (not necessarily with

compact support). We translate and scale the wavelet in order to weight the

signal in the integral below with 1√
s
ψ( t−u

s
). The wavelet transform is:

Fwave(f)(u, s) :=

∫ +∞

−∞
f(t)

1√
s
ψ∗(

t− u
s

)dt (5.1)

The symbol ∗ in the definition is the complex conjugate.

Observation 17. In the figure below there is the wavelet transform applied

to a signal varying by time. The wavelet is not shown because changes in

width as the parameter s change.

We could define here Heisenberg boxes and Ambiguity functions men-

tioned above identically as for the windowed Fourier transform case.
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Observation 18. In L2(R), Hilbert space, we decompose the signal f in the

subspace generated by the following family of vectors:

{g(t− u)eitξ}u,ξ

making the windowed Fourier transform. We can observe that

g(t− u− v)ei(t−v)ξ = g((t− v)− u)ei(t−v)ξ

and

g(t− u)eitξeitω = g(t− u)eit(ξ+ω).

So the family of vectors is closed under time and frequency translation. So

the windowed Fourier transform (2.1) above is particularly useful in analyzing

patterns that are translated in time and frequency

The aforementioned wavelet transform (5.1), instead is useful to analyze

patterns translated and scaled. In fact, considering the family of vectors

{ 1√
s
ψ( t−u

s
)}u,s, we have:

1√
s
ψ(
t− u− v

s
) =

1√
s
ψ(

(t− v)− u
s

)
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and
1√
s

1√
r
ψ(
t− u
rs

) =
1√
rs
ψ(
t− u
rs

).
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