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Sommario

L’esperimento XENON1T, in acquisizione dati presso i Laboratori Nazioni del Gran

Sasso, è una Time Projection Chamber (TPC) contenente 2 t di xeno liquido ed ha come

obiettivo una sensibilità per sezioni d’urto WIMP-nucleone indipendenti dallo spin pari

a circa 1.6·10−47 cm2, per WIMP di massa 50 GeV/c2, in 2 t·y. A tale scopo è fondamen-

tale la riduzione di tutte le sorgenti di segnali di fondo. Per abbattere il fondo esterno

la TPC è inserita all’interno di una vasca cilindrica riempita di acqua, dotata di 84

fotomoltiplicatori (PMT), che funge sia da schermo passivo contro la radiazione esterna

(gamma e neutroni), sia da veto per i muoni grazie alla rivelazione della luce Čherenkov

da essi prodotta in acqua. In questo lavoro presentiamo uno studio sulle configurazioni di

trigger del sistema di veto di muoni e sulla sua efficienza. Lo studio è basato sul confronto

di simulazioni Monte Carlo con i primi dati del rivelatore. Si ottiene un’efficienza del

99.5% per eventi di muone e del 43% per sciami generati da interazioni del muone nella

roccia che circonda la sala sperimentale, e conseguentemente una riduzione degli eventi

di background attesi nell’attuale run scientifico a 1.3 · 10−3 eventi. È già previsto dalla

collaborazione il futuro upgrade dell’esperimento: XENONnT. Uno studio sulle possi-

bili geometrie della TPC di XENONnT è stato effettuato mediante simulazioni Monte

Carlo. Tra le possibili migliorie apportabili a XENONnT vi è la sostituzione degli at-

tuali sensori di luce con fotomoltiplicatori al silicio (SiPM). Le simulazioni mostrano che,

mediante una copertura totale della TPC con i SiPM, si ha un aumento dell’efficienza

nella collezione di luce (LCE) del 20%. La LCE è un parametro fondamentale per la

rivelazione del segnale di luce (S1) nella TPC; in questa configurazione si raggiunge una

soglia in energia per rinculi nucleari di circa 3 keV, aumentando in modo significativo

la sensibilità dell’esperimento, in particolare per WIMP di piccola massa.



Abstract

The XENON project aims at direct detection of Dark Matter through the scattering of

WIMPs off the xenon nuclei. It consists of a time projection chamber (TPC) filled with

liquid xenon both as target and detection medium. The XENON1T detector, installed

at the Laboratori Nazionali del Gran Sasso (LNGS), is currently in its first science

run. It aims at a sensitivity to spin-independent cross sections of 1.6 · 10−47 cm2 for

WIMP masses of 50 GeV/c2 in 2 t·y exposure. For this purpose it requires a very low

background level. An active system able to tag muons and muon-induced backgrounds

is thus critical for this goal. A water Cherenkov detector, the Muon Veto, has been

developed, equipped with 84 8-inch photomultipliers (PMT) and cladded with a reflective

foil. We present a study of the Muon Veto rate for different trigger configurations and

of the corresponding efficiencies. The study has been carried out comparing a Monte

Carlo simulation with the data from the detector.

The muon veto will reach a very high detection efficiencies for muons (99.5%) and

showers of secondary particles from muon interactions in the rock (43%), reducing the

background in the current science run to 1.3 · 10−3 events in 1 tonne fiducial volume.

A next generation detector, XENONnT, is already foreseen by the collaboration. It

will have a larger TPC with an increased xenon target (∼ 6 t) which will improve the

WIMP sensitivity by another order of magnitude. In this work a preliminary study on

the geometry of the XENONnT TPC was carried out, together with the analysis of a

possible replacement of PMTs with Silicon PhotoMultipliers (SiPM).

Instrumenting also the lateral walls of the TPC, our study shows an increase of 20% in

the light collection efficiency (LCE). The LCE is one of the crucial parameters for the

detection of the light signal S1 in the TPC. We showed that with a 4π TPC coverage

of SiPMs we can reach a energy threshold for nuclear recoil of about 3 keV, increasing

significantly the capability to detect low mass WIMPs.
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Introduction

The Dark Matter (DM) quest is today one of the most challenging and intriguing open

questions in physics. During the last century, early as the measurements of unexpected

rotational velocities of the Coma galaxy cluster, we became aware that with the known

physics we are able to explain only a minimum part of the whole Universe composition.

Nowadays, the scientific community agrees that the ordinary matter can not account for

the total mass content of the Universe. Starting from this open question, remarkable

efforts have been directed towards the search for the so-called Dark Matter (DM). In-

deed the number of experiments aimed at detecting Dark Matter has continuously grown

in the last decades. One interesting and promising candidate is the so-called WIMP

(Weakly Interaction Massive Particle), a new corpuscle interacting with ordinary mat-

ter only through gravitation and, we hope, weak interaction.

In Chapter 1, we review the status of the search for Dark Matter, along with the present

state-of-art of experimental and theoretical achievements. We describe the astrophysical

evidences, from both galactic and cosmological scales, which led to the belief in the Dark

Matter existence. The composition of Dark Matter is still quite uncertain, even though

there are strong indications for DM to be non-baryonic; several candidate particles

have been proposed within different theoretical frameworks: Standard Model (SM) and

theories beyond SM, such as SUSY and Extra dimensions. The experimental research

follows basically two detection techniques: direct and indirect. The former aims at

detecting scatterings of Dark Matter particles off target nuclei, while the indirect strategy

relies on searching DM annihilation products. We provide a general overview of the

current Dark Matter experiments and of their main results.

In Chapter 2, a particular focus is dedicated to the experiments of the XENON project.

The current experiment is XENON1T, which is in data acquisition at the Laboratori

Nazionali del Gran Sasso (LNGS) and aims at a sensitivity to spin-independent WIMP-

nucleon cross sections of 1.6 · 10−47 cm2 for WIMP masses of 50 GeV/c2, in 2 t·y.

XENON1T is dual phase Time Projection Chamber (TPC) filled with ultra-pure xenon

in liquid phase (LXe), with a small gap of gaseous xenon (GXe) on the top of the TPC.

1



Introduction 2

Xenon is an excellent scintillator medium, ideal to detect rare scattering events; the

scintillation light is collected by two arrays of Photo Multiplier Tubes (PMTs) placed

on the two opposite ends of the TPC. The interactions of particles in xenon produce

also ionization; by applying an electric field the electrons can be drifted towards the gas

region on the top, and here be extracted and accelerated to produce a second signal

through proportional scintillation. This kind of technology has been demonstrated to

be the most powerful in the direct search for Dark Matter. The interaction of DM

with ordinary matter is characterized by a very small cross section; hence an extremely

low background level is mandatory as well as a large target mass. The XENON1T

experiment has been designed to fulfill both these two requirements.

XENON1T is equipped with an active system around it, able to tag muons and muon-

induced backgrounds, the Muon Veto. It consists of a water Čherenkov detector of

∼ 10 m height and diameter, equipped with 84 8-inch photomultipliers and cladded by

a reflective foil.

Chapter 3 is dedicated to the description of the Muon Veto system of the XENON1T

experiment: a detailed description of its design, electronics and data processing is re-

ported. We present a study pf the Muon Veto rate for different trigger configurations

and of the correspondinf efficiencies. The study has been carried out with a series of

Monte Carlo simulations described in the second part of Chapter 3. The last section

of the third chapter is dedicated to the validation of the Muon Veto simulation against

experimental data. Then we evaluated the Muon Veto tagging efficiency in the config-

uration of the Muon Veto used in the first science run of XENON1T. We also calculate

the residual background due to muon-induced neutrons.

In Chapter 4, we describe the physical and electronic working principles of a silicon

photomultiplier (SiPM). The SiPM addresses the challenge of detecting, timing and

quantifying low-light signals down to the single-photon level. It offers a highly attrac-

tive alternative to PMTs offering all the benefits of a solid-state device: low voltage

operation, lower sensitivity to electric fields, mechanical robustness and excellent uni-

formity of response. In the framework of the XENON collaboration, we started a study

of the possible use of a SiPM as an alternative to the current technique for the light

collection, which consists of two arrays of PMTs placed at the top and bottom of the

TPC.

In Chapter 5 we study the Light Collection Efficiency (LCE) for different future possible

configuration of a TPC instrumented with SiPMs. The LCE is defined as the fraction of

emitted photons reaching the sensors. The study of the LCE has been performed with

the GEANT4 software. We first study a configuration with SiPMs only in the bottom

and top of the TPC and secondly a TPC with also a lateral coverage of SiPMs. The
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improved LCE is then translated in the capability to detect low energy nuclear recoil,

lowering thus the energy threshold of the detector. The sensitivity, expressed as number

of WIMP interactions above threshold, is then estimated.

The results achieved in this work are gathered in the conclusive chapter and discussed

in the context of the whole scenario of direct Dark Matter search.



Chapter 1

The Dark Matter quest

Dark matter is hypotised to be an unidentified type of matter, comprising, in the ob-

servable universe, approximately the 27% of the mass and energy that is not accounted

for by dark energy, baryonic matter (ordinary matter), and neutrinos. The name refers

to the fact that it doesn’t emit or interact with electromagnetic radiation, such as light,

and is thus invisible to the entire electromagnetic spectrum.

Although dark matter has not been directly observed, first evidences for the Dark Mat-

ter (DM) existence came from F. Zwicky observations of the Coma and Virgo clusters.

He found that the velocity of the galaxies were about one order of magnitude higher

than the expected one, as if there were non luminous mass acting on the gravitational

field.

Many hypotheses have been formulated about DM properties. Currently it seems that

the most viable candidates for this kind of matter rise from extensions of the particle

Standard Model (SM). Such candidates are grouped under the common name of Weakly

Interacting Massive Particles (WIMPs) that already introduces some of their charac-

teristics. Indeed, such matter has to have only gravitational and weak interactions,

thus being ’Weakly Interacting’, and it has to be massive, thus being made of ’Mas-

sive Particles’. The most quoted candidate as WIMP comes from the Supersymmetry:

the neutralino. Several experiments have been realized in the last years aiming at the

discovery of the Dark Matter. They are based on two different techniques: direct (inter-

action of the WIMP with ordinary matter) and indirect detection (measurement of the

products of the annihilation of two WIMPs), both allowing to search and test different

values for the theoretical parameters which define the DM properties.

4
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Figure 1.1: The Coma Cluster, which provided the first evidence for Dark Matter.
This image combines data from the Spitzer Space Telescope with the Sloan Digital Sky

Survey to show many of the thousands of galaxies in the Coma cluster.

1.1 Dark Matter evidences

During his studies on the Coma Cluster [1], Fig. 1.1, Zwicky faced gravitational problems

while he was trying to measure its mass. A cluster is a set of galaxies that move together

inside their own gravitational field. The dynamics of such objects is very complex and

usually there is not a real center around which the galaxies move. In order to measure

the mass of the Coma cluster, Zwicky first determined the galaxy velocities inside of it,

by measuring the Doppler effect of their spectra. After that, using the Virial Theorem,

he was able to extract the gravitational force acting on each one of them and, finally, to

obtain the mass of the system. Then, he measured the total light output of the cluster

to determine the light to mass ratio. Comparing this value to the one from the nearby

Kapteyn stellar system, he found a value for the Coma cluster that was 100 times lower

compared to a single Kapteyn star.

Since Zwicky’s results, other experimental observations showed a discrepancy with re-

spect to what expected from a universe without the Dark Matter:

• anomalies in the rotational curves of spiral galaxies;

• observations of the Bullet Cluster;

• gravitational lensing effects;

• anisotropies in the Cosmological Microwave Background (CMB);
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Figure 1.2: Velocity distribution of the dwarf spiral galaxy NGC 6503 [2], located in
the region of space called the Local Void. The black dots are the observation results,
while the dashed line is the expected shape from the only disk contribution. The
contribution from the galaxy gas (dotted line) and halo (dash-dotted line) are also

reported.

1.1.1 Galaxy scale evidences

Spiral galaxies, such as the Milky Way, are excellent probes to test the DM hypothesis.

Such systems are said rotationally sustained since, for them, it is possible to define

a clear rotational motion. To measure the velocity distribution until the edge of a

galaxy, different techniques can be used depending on the used probe; for instance, the

velocity of the hydrogen clouds is evaluated by measurements of the 21 cm line of the

neutral hydrogen (HI), exploiting its low level of absorption in the interstellar medium.

Usually, spiral galaxies are considered as made of a central core (disk+bulge), which is

supposed to contain almost all the galaxy mass, and of an outer region. Their motion is

described as a rigid body, hence, following the Newtonian gravitational law, the velocity

distribution is given by

v2(r)

r
= G

M(r)

r2
→ v(r) =

√
G
M(r)

r
(1.1)

The mass can be obtained integranting the density in the sphere centered in the the

center of the galaxy and of radius r

M(r) = 4π

∫ r

0
ρ(x)x2dx (1.2)
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where ρ(x) is the density of visible matter in the galaxy. If we consider the mass as a

function of the radius, M(r), to be constant outside the core of the galaxy, we have

v(r) ∝ 1√
r

(1.3)

as predicted by the Newtonian theory. However, experimental data show that, outside

the disk and much beyond, the velocity distribution no longer follows the expected

behavior, but it remains constant (see Fig. 1.2). Such evidence points out the presence

of matter (physical entity gravitationally interacting) characterized by a density that

scales with the root square of the distance: ρ ∝ r1/2.

Such result is explained assuming that the spiral galaxies are enclosed in dark halos

with a matter distribution that expands much beyond the distribution of the luminous

matter and whose effect dominates in the outer region of the galaxies. One of the most

popular density profile for the Dark Matter halos is the Navarro-Franck-White (NFW)

profile :

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (1.4)

where rs is the halo scale radius and ρs is the characteristic density.

1.1.2 The Microlensing effect

Several studies on the Dark Matter abundance and composition have been based on

the microlensing effect. Generally speaking, the lensing effect can take place whenever

between a distant observed object and the observer there is a source of gravitational

field (such as stars, galaxy clusters, etc.) intense enough to bend the light along the

path from the source to the observer. According to the theory of general relativity,

postulated by A. Einstein in 1915, the light is expected to follow exclusively the geodesics

in curved spacetime. The matter distribution modifies the metric and consequently the

path followed by the light varies in proximity of a mass. The mass which generates the

gravitational field represents ’the lens’. As a result of the lensing effect, the observer

can see multiple images or a distorted image of a unique source.

The microlensing effect was used to test the hypothesis that the DM was made of

the so called Massive Compact Halo Objects (MACHOs) i.e. astronomical bodies, as

brown dwarfs or black holes. Experiments for MACHOs’ detection are based on the

gravitational microlensing tecnique: if a MACHO interpones between the star and the

observer, the star can be seen as brighter for a limited amount of time, from few days

to few months for bigger bodies. Such an effect is observed for lenses with small masses

(10−6 ≤M/M� ≤ 106) in systems that extent on the Kpc scale.
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Figure 1.3: Illustration of the microlensing effect, i.e. the magnification of a light
source due to astrophysical bodies acting as gravitational lens.

Unlike the Strong Lensing, where multiple images of the source are observed, in the

microlensing what is observed is a time modulation of the luminosity curve of the source

due to the relative motion between it and the lens (an illustration is given in Fig. 1.3).

Hence, the observed luminosity is

τ =
1

δΩ

∫
dV · n(DL) · π · θ2

E , (1.5)

where δΩ is the observation solid angle, n(DL) is the micro-lens density as function

of the lens distance DL and πθ2
E is the micro-lens cross section, θE =

√
4GM
c2

DLS
DLDS

is

the so-called Einstein radius, where DS is the distance of the source. Assuming a flat

space-time and constant density along the line of sight, we have

τ ≈ 2π

3

Gρ

c2
D2
S , (1.6)

where DS is the source distance. For a galaxy like the Milky Way one finds

v2 ≈ GMg

r
→Mg =

rv2

G
(1.7)

and

ρ ≈ 3Mg

4πr3
≈ 3

4πG

(
v

r

)2

. (1.8)

Thus, the optical depth is given by

τ ≈ 1

2

(
v

r

)2

. (1.9)

For the Milky Way τ ≈ 10−6. This means that roughly one out of a million stars in the

nearby galaxies would be lensed. In this way, counting the micro-lenses in a particular

direction it is possible to characterize the lens population. The possibility of detect such
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Figure 1.4: Likelihood contours obtained from the MACHO experiment. [3] The
abscissa is the fraction of the halo mass contained in MACHOs, the ordinate is the
MACHO mass. The contours shown correspond to the 60%, 90%, 95% and 99% confi-

dence level.

events depends on their duration (the Einstein crossing time). This is determined by the

transverse velocity v⊥ and by the lens mass. For micro-lenses in the halo of the galaxy

(DL ∼ 10 kpc) with velocity ∼ 200 km/s, one has

tE ≈ 6 · 106 s

(
M

M�

)0.5

≈ 0.2 yr

(
M

M�

)0.5

(1.10)

If all events had the same time scale, then the number of expected events, N , in the

monitoring time ∆t is:

N =
2

π
nτ

∆t

tE
, (1.11)

where n is the total number of considered sources.

Several research groups worked on the identification of lenses in the Milky Way’s halo

looking at sources in the Large and Small Magellanic Clouds (LMC and SMC). After the

analysis of data collected during several years [3], few microlensing events were observed,

leading to the conclusion that MACHOs can account only for less than 20% of the halo

mass (Fig. 1.4).

New observation campaigns are currently on going aiming at the observation of mi-

crolensing events in the M31 galaxy (Andromeda galaxy). Due to its larger distance

compared to the L/SMC galaxies, it is not possible to distinguish single stars and this

drastically changes the observation strategy. In this case, the total luminosity of the

galaxy should change and, consequently, only high magnification events gives apprecia-

ble signal. There are several advantages in looking at M31: due to its inclination along
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Figure 1.5: Image of the M31 galaxy.

Figure 1.6: X-Ray image of the Bullet Cluster. The mass distribution from weak lens-
ing measurements (green lines) is shown together with the baryonic matter distribution

(red points). The Dark Matter distribution is drawn as the blue region.

the line of sight (see Fig. 1.5), it is possible to accurately measure its rotation curve.

Moreover, the lensing effects show an asymmetry that is not possible to explain only

with the stars self-lensing.

1.1.3 Bullet Cluster

Other strong evidences for the DM existence come from the study of the Bullet Cluster

(1E0657-558)[4]. It is defined as the collision of two clusters of galaxies (Fig. 1.6).

Strictly speaking, the name Bullet Cluster refers to the smaller subcluster, moving away

from the larger one. Both clusters have a stellar and gaseous component that interacts

in different ways: the stellar component is slowed down by the gravitational field of the

other cluster while the two gaseous components behave as a fluid. The gas interactions

result in a X-ray emission that can be measured and used to trace the baryonic matter

distribution.
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Figure 1.7: The anisotropies of the Cosmic Microwave Background (CMB) as ob-
served by Planck. The CMB is a snapshot of the oldest light in our Universe, imprinted
on the sky when the Universe was just 380 000 years old. It shows tiny temperature
fluctuations that correspond to regions of slightly different densities, representing the

seeds of all future structure: the stars and galaxies of today [6].

Experimental measurements show up a discrepancy between the baryonic matter distribu-

tion, measured from the X-ray emission (red points in Fig. 1.6), and the gravitational

field distribution obtained from lensing measurements (green lines). The blue points in

Fig. 1.6 represent the hypothetical Dark Matter distribution. It is based on its charac-

teristics of weak interaction, which let DM particles to pass through each other without

being disturbed along their path. Conversely, this is not the case for the hot gas and

stellar component. As the Dark Matter can continue to move on its trajectory, it is

placed in the outer region of the Bullet Cluster.

1.2 Cosmological scale evidences

The lensing studies showed that, even if the Dark Matter exists, it is mainly composed

by non-baryonic matter. Further convincing experimental evidences that sustain such a

scenario come from the Cosmic Microwave Background (CMB) power spectrum analysis,

but also from the Big Bang Nucleosynthesis (BBN).

The Cosmic Microwave Background, discovered by Arno Penzias and Robert Wilson in

1964 [5], provides important hints about the Dark Matter existence, composition and,

in particular, about its abundance in the Universe. The CMB consists of relic photons

from the early Universe stage at which the temperature dropped to about 3000 K,

allowing electrons to recombine with protons. Hence, the Universe became transparent

to the photons as they had not enough energy to ionize the hydrogen. The CMB almost

perfectly follows an ideal black body spectrum with a temperature of T = 2.726 K.

However, it shows temperature anisotropies (Fig. 1.7), at a level lower than 10−5, that

can give crucial information on the Universe composition.
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Figure 1.8: Representation of the contributions to the overall Universe content.

The CMB spectrum is characterized by a peak structure, shown in Fig. 1.9, as a con-

sequence of two opposite effects: the gravitational force attracted the photons into the

higher density regions, while the gas pressure pushed them apart. The angular power

spectrum is obtained by decomposing the anisotropy map into spherical harmonics and

taking into consideration various distortions such as emissions from galaxies. These

anisotropies can be described as

δT

T
(θ, φ) =

T (θ, φ)− 〈T (θ, φ)〉
〈T (θ, φ)〉

=

+∞∑
l=2

+l∑
m=−l

almYlm(θ, φ) , (1.12)

where Ylm(θ, φ) are the spherical harmonics.

The size and the position of the peaks of the CMB spectrum provide valuable information

on cosmological parameters, such as the curvature and the energy-matter composition

of the universe: Ωtot, Ωb and ΩDM . From the CMB study [7, 8] it is then possible to

extract an estimate of the non-baryonic Dark Matter abundance in the Universe:

ΩΛ = 0.707± 0.010 ;

Ωm = 0.293±0.056
±0.010 ;

Ωbh
2 = 0.02211± 0.00034 ;

ΩDMh
2 = 0.1162± 0.0020 .

From the values of cosmological parameters results that the dark energy, Λ, accounts

for about 70% of the Universe energy content, while the majority of the matter content

is in the form of non-baryonic Dark Matter (see Fig. 1.8).
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Figure 1.9: The 2013 Planck CMB temperature angular power spectrum [6]. The
error bars include cosmic variance, whose magnitude is indicated by the green shaded

area around the best fit model.

1.3 Dark matter composition

The Dark Matter identification is an open question still widely debated. There is a

great variety of hypotisized DM candidates, none of them has been proved without a

doubt, but one of the most studied is the WIMP. Nevertheless, it is worth recalling some

of the main DM candidates that have been proposed to date. The dark matter can be

divided in barionic dark matter and non barionic. The barionic dark matter is found

in MACHOs (Massive astrophysical compact halo object), bodies that emits little or no

radiation and drifts through interstellar space unassociated with any planetary system.

The non-barionic dark matter instead is divided into Hot Dark Matter (HDM) and Cold

Dark Matter (CDM), respectively composed by particles in relativistic motus or not and

they represent a residual of the matter-radiation decoupling.

1.3.1 Barionic Dark Matter

The main characteristic of Dark Matter is the undetectability through direct observa-

tion. Since MACHOs are not luminous, they are hard to detect. MACHOs include black

holes or neutron stars as well as brown dwarfs. This scenario predicts a diffuse γ-ray

emission from the Milky Way’s dark halo. A flux, whose properties are in a quite good

agreement with the theoretical prediction, has been observed by the EGRET detector [9]

mounted onto the CGRO satellite. Nonetheless, from microlensing studies and cosmo-

logical observations, we know that the majority of the Dark Matter is non-baryonic and

MACHOs can account for not more than 20% of the total Dark Matter amount. The

experiment EROS (Experience pour la Recherche d’Objets Sombres) at La Silla (Cile)
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observed for a time window of 5 years, about 30 million of stars belonging to the Magel-

lanic Clouds individuating 8 possible MACHO. The data confirm a fraction of barionic

dark matter, but, as already mentioned, not sufficient to explain totally the dark matter

amount.

1.3.2 Non-barionic dark matter

About the non barionic dark matter there are two possible scenarios. The first one

was hypothesized by Zeldovich, and it is named Hot Dark Matter, where the Dark

Matter particles are relativistic. It implies a top-down structure formation history of the

Universe where the big structures, such as galaxies, came first. However, the evolution

of such systems were too slow if compared with the time scale of the primordial galaxy

formation. Moreover, the high energy of the DM particles was in contrast with the

formation of such big structures since relativistic particles would be dispersed in the

space. The second scenario, which is also accepted and supported, is called Cold Dark

Matter (CDM), in which Dark Matter is not relativistic. First evidences for the CDM

came from the N-body simulations by Jeremiah Ostriker and James Peebles [10], in the

1970s. They simulated the interactions of a distribution of mass points, that represented

stars moving in a galaxy, rotating around a central point. To get the correct interactions

between the mass points, they used the Newton’s law. They found that, in a time less

than an orbital period, most of the mass points would have collapsed to a bar-shaped

dense concentration, close to the center of the galaxy, with only few mass points at

larger radii. This result is clearly in contrast with the elegant spiral or elliptical shape

of the galaxies that we observe. But when they added a static and uniform distribution

of mass, from 3 to 10 times the size of the total mass of the mass points, they found

more recognizable structures. Thus, Ostriker and Peebles had solid numerical evidence

that cold Dark Matter was necessary to form the types of galaxies we observe in the

universe.

In the following sections we outline the main proposals for CDM candidates arose so

far. Candidate particles have been hypothesized in different theoretical frameworks,

starting from the Standard Model but also in the Supersimmetry (SUSY) and in the

Extra dimensions models context.

The present work will mainly concentrate on the WIMP dark matter candidate and its

possible nature.
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1.3.3 The MOND Theory

Before describing the possible WIMP candidate, there is also an alternative theory that

must be mentioned. The MOND (MOdified Newtonian Dynamics) theory was proposed

in 1981 by the israelian physicist Mordehai Milgrom. The theory’s original motivation

was to explain the fact that the velocities of stars in galaxies were observed to be larger

than expected based on Newtonian mechanics. Milgrom noted that this discrepancy

could be resolved if the gravitational force, experienced by a star in the outer regions

of a galaxy, was proportional to the square of its centripetal acceleration (as opposed

to the centripetal acceleration itself, as in Newton’s Second Law), or alternatively if

gravitational force came to vary inversely with radius (as opposed to the inverse square

of the radius, as in Newton’s Law of Gravity). In MOND, violation of Newton’s Laws

occurs at extremely small accelerations, characteristic of galaxies yet far below anything

typically encountered in the Solar System or on Earth. The Newton’s second Law,

modified according to the MOND theory, becomes:

F = maµ

(
a

a0

)
(1.13)

where for values of the accelleration not big it is possible to approximate as follow

µ

(
a

a0

)
' a

a0
. (1.14)

where a0 is a constant and has a numerical value of 10−10m/s2 and µ(x) = 1 if |x| � 1

and µ(x) = x if |x| � 1.

Using the Newton’s law modified and the classical gravitational law it is possible to

determine the acceleration acquired by stars as a function of the distance from the

center of the galaxy. From this relation, is it possible to determine the evolution of the

velocity for bigger distances (smaller accelerations):

GM

r2
=
a2

a0
→ a =

√
GM

r
→ v = (GMa0)1/4.

The constant trend of the velocity corresponds thus to the what observed, and for this

reason the MOND theory represent an alternative to the explanation of the rotational

velocity trend of galaxies. This theory results unefficient in the attempt to explain

phenomena such as the bullet cluster or the gravitational lensing, but it was the first

competitive theory with the Dark Matter one.
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1.4 Standard Model candidates

The Standard Model (SM) of particles offers some viable candidates in the framework

of the HDM, while no SM particles seem to be able to account for the larger part of cold

Dark Matter.

1.4.1 Relic Neutrinos

The cosmic neutrino background (CνB) is the universe’s background particle radiation

composed of neutrinos, which are known as relic neutrinos. Like the cosmic microwave

background radiation (CMB), the CνB is a relic of the big bang; while the (CMB) dates

from when the universe was ∼ 379 ·103 years old, the CνB decoupled from matter when

the universe was one second old. It is estimated that today, the CνB has a temperature

of roughly 1.95 K. Since low-energy neutrinos interact only very weakly with matter,

they are notoriously difficult to detect, and the CνB might never be observed directly.

There is, however, compelling indirect evidence for its existence.

From the cosmology, we have that their relic density, under the hypothesis of massive

and non relativistic neutrinos, is given by

Ωνh
2 =

3∑
i

mi

93eV
(1.15)

where h is the Hubble constant in units of 100 km/s/Mpc, the number 3 accounts for

the neutrino’s flavours and mi is the mass of the i-th neutrino. Neutrinos as the main

source of dark matter are experimentally excluded. The most stringent constraints on

their masses come from the combination of PLANCK data with large scale structure

information ∑
mν < 0.18eV (95%C.L.) (1.16)

Given this upper bound on the neutrino mass, the resulting relic density is not enough

to explain the Dark Matter as mainly composed by them.

1.4.2 Axions

Remaining in the SM scenario, the axion is another Dark Matter candidate. This

particle is a Nambu-Goldstone boson which corresponds to the phase of a complex field,

the Peccei-Quinn field, which breaks the U(1)PQ symmetry. The U(1)PQ field is a global

U(1) symmetry, which carries QCD anomalies, proposed by Peccei and Quinn as solution

to the strong CP problem [11]. This symmetry is broken at the scale of fa which is the
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axion decay constant, also called PQ scale. The relic abundance of the axions [12] can

be expressed, using the QCD scale ΛQCD ∼ 200 MeV, as

Ωah
2 = θ2

(
fa

1012GeV

)1.175

. (1.17)

With θ ∼ 0.1 and fa ∼ 1012 GeV axions can represent an important percentage of the

CDM which might consist only of axions. They can be detected through the Primakoff

effect [13] where an axion is converted into a photon under a proper magnetic field. The

CERN Axion Solar Telescope (CAST) [14] and the PVLAS experiment [15] are searching

these particles. While the former looks for solar axions, the latter fires polarized light

through a long vacuum region with a 5.5 T magnetic field and searches for anomalous

rotations of polarization; according to the theory, the vacuum becomes birefringent,

thus photons with polarization aligned with the magnetic field are delayed as they are

preferentially transformed into axions which travel slower than the speed of light.

The PVLAS collaboration initially claimed the detection of an irregular rotation corre-

sponding to an axion mass of 1-1.5 meV, but retracted their results upon obtaining a

null result after upgrades. The current strongest limits, on the axion mass, have been

set by the XENON100 experiment [16].

1.4.3 Interacting Massive Particles (WIMPs)

Concerning SUSY, many interesting features make it attractive, including its role in

understanding the fundamental distinction between bosons and fermions and the prob-

lems of hierarchy for neutrinos. In this framework, Dark Matter particles are identified

with the general definition of: Weakly Interacting Massive Particles (WIMPs). They

are stable, cold, non-baryonic and interact only through gravitational and weak forces.

If WIMPs are stable, there is a cosmological relic abundance produced during the Big

Bang. Assuming for such particles a mass mχ, one has that for temperature T > mχ

they were in thermal equilibrium while at temperatures below mχ they decoupled and

their abundance started to lower. Finally, when the expansion rate of the Universe be-

came larger than the annihilation rate (Γ < h), where h is the Hubble constant, the

WIMP abundance ”freezed out”, resulting in the current relic abundance.

The annihilation cross section of a new particle interacting at the weak scale can be

estimated as: 〈σ〉 ∼ 10−25 cm3 s−2. Such value is close to the one derived from cosmo-

logical arguments. This strongly suggests that if a stable particle associated with the

electro-weak scale interactions exists, then it is likely to be the dark matter particle.

This coincidence has provided strong motivation for finding WIMPs.
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There are several WIMP candidates; the most promising is the Lightest Supersymmetric

Particle (LSP), which is the neutralino.

1.4.4 Neutralino

The Minimal Supersymmetric Standard Model (MSSM) contains the smallest possible

field content necessary to give rise to all the Standard Model (SM) fields. All of the

SM particles have R-parity equal to 1 and all sparticles, their superpartners, have R =

-1. Thus, from R-parity conservation (first introduced to suppress the rate of proton

decay), sparticles can only decay into an odd number of sparticles (plus Standard Model

particles). The Lightest Supersymmetric Particle is, therefore, stable and can only be

destroyed via pair annihilation, making it an excellent Dark Matter candidate. Among

few alternatives, the most promising LSP is the lightest neutralino, which is uncharged

under electromagnetic and strong interactions. In the MSSM, binos (B̃), winos (W̃3)

and higgsinos (H̃0
1 , H̃

0
1 ) states mix into four Majorana fermionic mass eigenstates, called

neutralinos. The four neutralinos are labeled as: χ̃0
1, χ̃

0
2, χ̃

0
3 and χ̃0

4. The first of them is

the lightest one and it is referred as the neutralino, χ = χ̃0
1. The most relevant neutralino

interactions for Dark Matter searches are self annihilation and elastic scattering with

nucleons. At low velocities, the leading channels for neutralino annihilations are into

fermion-antifermion, gauge bosons pairs and final states containing Higgs bosons. All the

possible annihilation processes are of interest for indirect Dark Matter searches, while

direct detection techniques are based on the elastic scattering processes. The WIMP

interaction with the matter can be divided into two types: spin-independent (SI) and

spin-dependent (SD). A scalar interaction, i.e. SI, with quarks can be expressed as

L = aqχχ̄q̄q (1.18)

where aq is the WIMP-quark coupling. The scattering cross section is given by

σscalar =
4m2

r

π
f2
p,n (1.19)

where mr is the reduced mass of the nucleon and f2
p,n is the coupling to protons and

neutrons. The total scalar cross section for interactions with a nucleus, in the case of

zero transfer momentum, is given by the sum over all the nucleons:

σ =
4m2

r

π

(
Zfp + (A− Z)fn

)2

. (1.20)
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Figure 1.10: Feynman diagrams for neutralino-quark scalar (spin-independent)
elastic scattering interactions [17].

Figure 1.11: Feynman diagrams for neutralino (spin-dependent) axial-vector inter-
actions [17].

A spin-dependent interaction, i.e. axial-vector interaction, between WIMPs and quarks

can be expressed as

LAV = dqχγ
µγ5χqγ

µγ5q , (1.21)

where dq is the generic coupling. The Feynman diagrams for both SI and SD neutralino

interactions are shown in Fig.1.10 and 1.11.

The cross section for SD interactions is given by [18]

dσ

d|~v|2
=

1

2πv2
|T (v2)|2 , (1.22)

where v is the WIMP velocity relative to the target and T(v2) is the scattering matrix

element. At zero transfer momentum, one has

|T (0)|2 =
4(J + 1)

J
|(du∆p

u + dd∆
p
d + ds∆

p
s)〈Sp〉+

+ (du∆n
u + dd∆

n
d + ds∆

n
s+)〈Sn〉|2 , (1.23)

where J is the total nuclear spin of the target nucleus, ∆n,p
u,d,s are the fractions of

the nucleon spin carried by a given quark and 〈Sp,n〉 are the expectation values of the

total spin of protons and neutrons, respectively. For target nuclei with even numbers

of protons and neutrons, the total spin is equal to 0. Thus, for such nuclei, the spin-

dependent cross section vanishes.
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Another kind of interaction to be considered is the WIMP-quark vector interaction:

LV = bqχγµχqγµq (1.24)

where bq is the WIMP-quark vector coupling. The zero transfer momentum cross section

can be expressed as [19],

σ =
m2
χm

2
N [2Zbp + (A− Z)bn]2

64π(mχ +mN )2
, (1.25)

with bq = GF (T 3
q − 2eqsin

2θW )/
√

2, where GF is the Fermi constant, T 3
q and eq are the

weak isospin and electric charge of the quark q, respectively, and θW is the Weinberg

angle.

1.4.5 Sneutrino, Gravitino and Axino

In the SUSY context the sneutrino and gravitino, the superpartners of the SM neutrino

and graviton, have been considered as DM candidate. The sneutrino is a viable can-

didate if its mass were in the range [550 , 2300] GeV/c2 . Despite this possibility, it has

been rejected since its cross section would be higher than the current found limits. The

gravitino interacts only through the gravitational force and this makes it very hard to

detect. Gravitinos can be produced in 2→ 2 processes such as scalar-fermion-gravitino

or gaugino-gauge boson-gravitino vertices [20].

The Axino, ã, is the superpartner of the axion and it is a Majorana chiral fermion. Its

mass is strongly model-dependent meaning that it could be the lightest particle, thus

stable, in SUSY models. A production channel for ã is the decay of nonthermal particles.

An example of this process is the decay of the lightest stau mass eigenstate τ̃2.

1.4.6 Wimpzillas

The Super heavy Dark Matter, also named wimpzillas, has been proposed as a non-

thermal Dark Matter candidate. The masses of this kind of particles range from 1012 up

to 1016GeV/c2. In the early Universe there were different available channels to produce

such particles as the gravitational production at the end of inflation, resulting from the

expansion of the background space-time. The interaction cross section of such particles

with ordinary matter, covers a wide range of hypotheses, from very weak to strong

coupling (in the latter case super-massive particles are sometimes called simpzillas). The

wimpzillas have been proposed as a first explanation for the observed ultra high energy

cosmic rays, above the GZK cut-off (∼ 5 · 1019 eV). Above this energy the Universe, on
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cosmological scale (≥ 50 Mpc), is opaque to protons. Since sources for such energetic

protons have not been observed yet, a possible explanation for their existence is that

they are produced in the decay or annihilation of super heavy Dark Matter particles.

(top-down cosmic-ray models [21]).

1.4.7 Kaluza-Klein particle

In the Extra dimensions model, the space is considered to have four dimensions

needed to include electromagnetism into a ’geometric’ theory of gravitation. Also in this

scenario, the lightest particle, called Kaluza-Klein (KK) particle, is a viable candidate

for the Dark Matter. If Standard Model particles propagate in such Extra dimensions

and the KK parity is conserved, the lightest KK particle is stable, becoming an excellent

candidate for DM. The mass of the first stable KK particle ranges from several hundreds

of GeV up to few TeV, and can be detected via elastic scattering in the Dark Matter

direct search experiments, or indirectly via annihilation products, such as positrons from

the galactic halo, gamma rays from the galactic center, high energy neutrinos from the

core of the Sun or the Earth, and antiproton. Due to their characteristics, a tonne-

scale detector is required to detect their interactions that makes suitable experiments as

XENON1T.

1.5 Experiments searching for WIMPs

In the last few decades the dark matter search has been one of the most active and

interesting field in physics, that is why a great variety of experiments were constructed

for dark matter detection. The DM experiments can be divided in two main classes:

direct detection, based on DM scatterings off target nuclei, and indirect detection,

searching for DM particles annihilation products inside and outside the galaxy. Different

choices of the detection technique and target material allow to scan different ranges of

the parameter space of DM models. The indirect detection looks for the products of

the interactions among dark matter itself. According to the type of the particle pro-

duced, the detector technology is different and specific to that particle detection, as, for

instance, the observation of the gamma radiation must be done outside the terrestrial

atmosphere, which is opaque to. This kind of observation is made with Čherenkov tele-

scopes. Neutrinos and antineutrinos, producted by the annihilation of the dark matter

inside massive bodies, are observed with large area telescope such as the submarine tele-

scope KM3NeT in Sicily or ICECUBE at the south pole. It is also possible to observe

the radio waves producted by the charged particles as a result of the annihilation. A

measurements of dark matter through the listening of these radio waves could be done
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only if we know the distribution of dark matter in the galaxy questioned.

Lastly, it is particularly interesting the analysis of the production of couples particle-

antiparticle, such as pp̄ and e−e+: AMS-02, a satellite of the International Space

Station ISS saw a unxepected abundance of antimatter that can be attributed to dark

matter annihilation. Unfortunately the provenience of these particle is still unknown

because the charged particles are deflected by the galactic electomagnetic fields.

The story of the best results for WIMP masses above 8 GeV/c2 sees at first what has

been obtained in 2012 by XENON100 [22], reaching the best SI limit of 2 · 10−45 cm2

at 55 GeV/c2 mass, then LUX [23] in 2013 with 7.6 · 10−46 cm2 for 33 GeV/c2 WIMPs

and finally an update of the LUX result that states a WIMP-nucleon spin-independent

cross sections above 2.2 · 10−46 cm2 ((90%C.L.) confidence level. When combined with

the previously reported LUX exposure, this exclusion strengthens to 1.1 · 10−46 cm2 at

50 GeV/c2. [24] At lower masses, other experiments, as CoGeNT and CDMS, are

more sensitive.

In the next sections we browse through the main Dark Matter experiments based on

both direct and indirect detection techniques.

1.5.1 Direct detection experiments

Dark Matter interactions with ordinary nuclei are characterized by very small cross

sections. The direct detection of WIMP-nucleon scatterings requires very large target

masses and an extremely low level of radioactivity. Hence, an ultrapure detector is

mandatory as well as its placement into underground laboratories in order to properly

reduce the background rate. The detection technique aims to the observation of WIMP

with velocity lower than the escape velocity from the Milky Way, thus the particles

trapped inside the galactic halo. The collisions between WIMPs and nuclei are both

elastic and not-elastic and there might be a spin dependance. Due to the very small

cross section, the exposition times are very long, according to some theoretical model,

a sample of 2kg (∼ 1025 atoms) undergoes an interaction with a WIMP only once in a

year through elastic diffusion. [25]

In the next part of this chapter we go through the variuos experiment for the direct dark

matter detection.

DAMA/LIBRA The DAMA/LIBRA detector, placed in the LNGS (Laboratori

Nazionali del Gran Sasso) underground laboratory, is the upgrade of the previous

DAMA/NaI detector. The experiment aims to find an annual variation of the num-

ber of detection events, caused by the variation of the velocity of the detector relative

to the dark matter halo as the Earth orbits the Sun. Its sensitive part is made of 25



Chapter 1. The Dark Matter quest 23

Figure 1.12: DAMA/LIBRA detector: schematic view of the 25 highly radio-pure
NaI(Tl) scintillator crystals within the passive shield. It is made of a sealed copper box
flushed with highly pure nitrogen; to reduce the natural environmental background the
copper box is surrounded by a low background multi-ton shield. In addition, 1 m of
concrete, made from the Gran Sasso rock material, almost fully surrounds this passive
shield. The installation has a 3-level sealing system which prevents environmental air

reaching the detectors.

highly radio-pure NaI(Tl) crystals, each one of 9.70 kg, arranged in a 5 x 5 matrix. For

the Dark Matter search, the modularity of DAMA/LIBRA is very useful since WIMPs

are expected to give only one interaction in the entire stuck of detectors. Moreover, the

characteristics of the scintillators allow to reject noise events. With the exception of the

noise rejection, in DAMA/LIBRA it is not possible to distinguish between nuclear and

electromagnetic recoils.

DAMA/LIBRA has observed a signal modulation that could be explained as due to the

modulation of the Dark Matter flux. [26] Several explanations for the modulation signal

have been proposed to investigate a possible background as source of this signal. For

example, since DAMA/LIBRA does not have a muon veto, it was hypothesized that it

was the modulation of the muon flux to generate the signal [27]. However, recently it

was shown that the muon flux is too low to explain the observed signal [28].

CoGeNT The CoGeNT Dark Matter Experiment is a direct search for signals from

interactions of dark matter particles in a low-background germanium detector located

atthe Soudan Underground Laboratory in Minnesota.

The CoGeNT Experiment uses a single, 440 gr, high-purity germanium crystal cooled

to liquid nitrogen temperatures in its measurements. The CoGeNT detector has the

advantage of a very low energy threshold (∼ 0.5 keV) which allows it to search for

nuclear recoil events due to dark matter particles of relatively low mass (> 5 GeV/c2).

In addition to a low-background configuration, the detector is capable of distinguishing

and rejecting background events from the surface through measurement of the risetime

of the detector’s signals. The CoGeNT detector senses only ionization charge from

nuclear recoils and places limits on the mass and interaction cross-section of dark matter
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Figure 1.13: Schematic view of
the CoGeNT structure with its

passive shield.

Figure 1.14: Schematic view of
the EDELWEISS-II experiment.

particles by excluding any candidate mass and cross-section pair that would result in

a signal above the background of the detector. In 2010 CoGeNT observed an excess

of events at low energies, in the bulk of the Ge crystal [29]. Several analyses have

been performed to explain this excess as due to Dark Matter interactions. Assuming

a Maxwellian velocity distribution with v0 = 230 km/s−1, and vesc = 500 km/s−1 for

a spin-independent model, with equal coupling to protons and neutrons and without

any unknown background, the WIMP hypothesis gives a nice agreement, especially in

the very low energy region, with the observed data. The best results were obtained for

mχ = 9.4 GeV and σ = 0.84 · 10−40 cm2 . However, such results are excluded by other

experiments such as CDMS-Si.

EDELWEISS II The EDELWEISS-II detector (Fig. 1.14), at the Laboratoire Souter-

rain de Modane under 4800 m.w.e., is enclosed in a passive shield, covered by a muon

veto system for throughgoing muons. The core of the detector is based on ten bolome-

ters of hyper-pure Ge crystals of cylindrical shapes with a diameter of 70 mm and a

height of 20 mm, all inside a cryostat. For each event, two signals are recorded: one

from the temperature increase, measured using neutron transmutation doped (NTD)-

Ge thermometric sensors glued on each detector, and one from the charges produced

in the interaction that are recorded by proper electrode wires on both side of the Ge

bolometers. In 2012, the collaboration carried out an analysis on low-energy (E < 20

keV) WIMP-induced nuclear recoils [30]. For a WIMP mass of 30 GeV/c2, three events

have been found as possible candidates. The data indicated no evidence for an exponen-

tial distribution of low-energy nuclear recoils that could be attributed to WIMP elastic
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scattering after an exposure of 113 kg ·days. For WIMPs of mass 10 GeV/c2, the ob-

servation of one event in the WIMP search region results in a 90% CL limit of 1.0 · 1041

cm2 on the spin-independent WIMP-nucleon scattering cross section. [30]

SuperCDMS The SuperCDMS detector is a bolometer at the Soudan Underground

Laboratory. To operate, a cryogenic system based on He3/He4 dilution refrigerator has

been realized. The core of the detector is made of 15 600 gr Ge crystals from which it is

possible to extract the phonon and the charge signals. The crystals have cylindrical shape

with a diameter of 76 mm and height of 25 mm. The phonon sensor is a superconducting

174 W film held in the transition state from the superconducting to the normal state

(therefore called Transition Edge Sensor or TES). A small change in the temperature

leads to a large variation in the measured resistance. In 2016, the collaboration carried

out the analysis of a run characterized by an exposure of 612 kg· days [31]. This yielded

minimum WIMP-nucleon spin-independent scattering cross-section limits of 1.8 · 10−44

and 1.8 · 10−41 cm2 at 90% confidence for 60 and 8.6 GeV/c2 WIMPs, respectively.

CRESST-CRESST II-CREST III The CRESST experiment searches directly for

dark matter particles via their elastic scattering off nuclei. The nuclei are in the absorber

of a cryogenic detector, capable of detecting the small energy of the recoiling nucleus

which has been hit by an incoming dark matter particle. CRESST-II is the upgrade

that includes a new neutron shield and a muon veto. CRESST uses simultaneously two

independent detectors for revealing heat/phonon and light. The core of the detector is

made of modules that consist of a CaWO4 300 g crystal, the target, and a silicon-on-

sapphire (SOS) wafer used for measuring the scintillation light. In their interaction inside

the crystals, WIMPs lose energy producing phonons and a small amount of scintillation

light. The reading of signals from crystals and SOS is obtained by a Transition Edge

Sensor (TES) attached to them. All these elements are enclosed in a reflective and

scintillating case (Fig. 1.15).

The use of two detectors allows for precise measurements of the deposited energy and

background discrimination. For example, the electromagnetic background rejection can

be achieved using the scintillation to phonon signals ratio.

In 2016, the CRESST-II collaboration has published its results from the analysis of a

52 kg · days exploring masses down to 0.5 GeV/c2, a novelty in the field of direct dark

matter searches. [32].

In Fig. 1.16 the exclusion limits from several DM experiments in the low WIMP mass

region are shown. .
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Figure 1.15: Scheme of the CRESST-II module.

Figure 1.16: Parameter space for elastic spin-independent dark matter-nucleon scat-
tering. The result from a blind analysis is drawn in solid red together with the expected
sensitivity (1σ confidence level (C.L.)) from the data-driven background-only model
(light red band). The remaining red lines correspond to previous CRESST-II limits
[33]. The favored parameter space reported by CRESST-II phase 1, CDMS-Si[34] and
CoGeNT [35] are drawn as shaded regions. For comparison, exclusion limits (90 %
C.L.) of the liquid noble gas experiments are depicted in blue, from germanium and
silicon based experiments in green and black. In the gray area coherent neutrino nu-
cleus scattering, dominantly from solar neutrinos, will be an irreducible background
for a CaWO4-based[36] dark matter search experiment WIMP parameter space for

spin-independent WIMP-nucleon scattering.
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Figure 1.17: LUX cryostats and TPC structures.

XENON The XENON Collaboration faces the direct search for WIMPs through

a scalable LXe detector arranged in a double-phase TPC. The first stage was the

XENON10 experiment, successively upgraded to XENON100. The further extension

is represented by the XENON1T experiment, which is currently in data acquisition

phase. We describe in detail this experiment in the next Chapter.

LUX The Large Underground Experiment (LUX) is also based on a double phase

Time Projection Chamber (TPC) which contains Xe in liquid and gaseous phases. The

TPC, which contains an active volume of LXe of about 300 kg, is hosted in a double

vessel structure that guarantees thermal isolation (Fig. 1.17). The detector is placed at

the Stanford Underground Research Facility (SURF) at a depth of ∼ 1500 m and it is

surrounded by a water tank that acts as muon veto. The TPC has a diameter of 47 cm

and a height of 48 cm. The prompt scintillation signal, S1, and the electroluminescence

one, S2, are read by two array of PMTs.

LUX published its last results in 2016. After a 3.35 ·104 kg/ day, there were no evidence

of WIMP nuclear recoils. At a WIMP mass of 50 GeV c−2 , WIMP-nucleon spin-

independent cross sections above 2.2·10−46 cm2 are excluded at the 90% confidence level.

When combined with the previously reported LUX exposure, this exclusion strengthens

to 1.1 · 10−46 cm2 at 50 GeV c−2. After the selection of a 118.3 kg fiducial volume

for the analysis, 160 events have been observed in the WIMP search region. From the

likelihood analysis, all the events have been found to be compatible with the background-

only hypothesis resulting in new upper limits for the DM spin-independent cross section,

whose minimum has been found at 7.6 · 10−46 cm2 for a WIMP mass of 33 GeV/c2 [37].
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Figure 1.18: Upper limits on the spin-independent elastic WIMP- nucleon cross sec-
tion at 90% CL. The solid gray curves show the exclusion curves from LUX WS2013
(95 live days) and LUX WS2014-16 (332 live days). These two data sets are combined
to give the full LUX exclusion curve in solid black (’LUX WS2013+WS2014-16’). The
1- and 2-σ ranges of background-only trials for this combined result are shown in green
and yellow, respectively; the combined LUX WS2013+WS2014-16 limit curve is power
constrained at the -1σ level. Also shown are limits from XENON100 (red), DarkSide-50
(orange), and PandaX-II (purple). The expected spectrum of coherent neutrino-nucleus
scattering by 8B solar neutrinos can be fit by a WIMP model plotted here as a black
dot. Parameters favored by SUSY before this result are indicated as dark and light

gray (1- and 2-σ) filled regions.

1.5.2 Indirect detection experiments

Indirect techniques aim to detect DM decay or annihilation products. It is usually

assumed that WIMPs can annihilate in SM particles. Viable signatures for such kind

of processes are thus the production of neutrinos, γ-ray, positrons, anti-protons and

anti-deuterons.

General Antiparticle Spectrometer (GAPS) GAPS (General Antiparticle Spec-

trometer) is a proposed experiment to search for the anti-deuteron particle in the cosmic

rays. Astrophysically produced anti-deuterons have never been detected and so the un-

ambiguous detection of even a single event would be very significant. Antideuterons

may also be a telltale signature of dark matter annihilations. Secondary antideuterons

can be produced in collisions of cosmic rays (CR) with the interstellar medium (IM).

Due to the mass of such nuclei, low energy productions are quite disadvantaged leading

to a reduced background in the search for low energy nuclei.
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Figure 1.19: View of the VERI-
TAS telescope array.

Figure 1.20: Internal view of the
Super-Kamiokande detector.

GAPS will detect anti-deuterons with an effectively background-free method. An-

tideuterons, produced by the annihilation of weakly interacting massive particles (WIMPs),

will be captured in the GAPS target material, resulting in an exotic atom in an excited

state. This exotic atom will then quickly decay, producing X-rays of precisely defined

energies and a correlated pion π signature from nuclear annihilation. The GAPS method

has already been successfully tested in an accelerator environment at KEK in 2004 and

2005. A balloon prototype experiment with a TOF system and 6 Si(Li) detectors was

successfully flown in June 2012. The first data acquisition is planned for 2017.

VERITAS The VERITAS telescope consists of four, 12 m diameter Davies-Cotton

optical reflectors (Fig. 1.19). They focus the light from γ ray air showers, in the

energy range 100 GeV-50 TeV, onto four 499 pixel PMT cameras. Its observations are

mainly directed to dSph galaxies (dwarf spheroidal galaxy), they are gravitational-bound

objects and are believed to contain up to O(103) times more mass as Dark Matter than

as visible matter, making them widely discussed as potential targets for indirect Dark

Matter observations. One of the most important results from VERITAS comes from the

observation of the gamma-ray flux, perhaps originated by annihilation or decay of Dark

Matter [38]. Since no signal above the background has been observed, only upper limits

on the gamma-ray flux have been set considering different annihilation channels.

Super-Kamiokande The Super-Kamiokande (SK) detector, Fig. 1.20, is a kton

water Čherenkov detector of cylindrical shape with height of 36.2 m and radius of 16.9

m. It is located in the Kamioka-Mozumi mine in Japan under about 1000 m rock. It

consists of a inner detector with 11146 inward-facing 50 cm PMTs and an outer detector

equipped with 1885 outward-facing 20 cm PMTs, serving as a cosmic ray veto counter.

This detector is able to search for Dark Matter through the detection of an excess

of upward-going muons (upmu). These muons are generated by the muon neutrinos

(generated in DM annihilations in the Sun) which interacts with rocks that surround
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the detector. Muon events in the detector have been divided into three categories:

stopping, i.e. muons with the lowest energy that stop in the detector (Eν � 10 GeV);

showering, i.e. muons that produce showers in the detector and non-showering, which

don’t produce any shower. For their last results, the collaboration used data acquired

in 3903 days to search for the contribution of neutrinos from WIMP annihilation in the

Sun. No significant excess over expected atmospheric-neutrino background has been

found and the result is interpreted in terms of upper limits on WIMP-nucleon elastic

scattering cross sections under different assumptions about the annihilation channel.

The current best limits on the spin-dependent (SD) WIMP-proton cross section for

WIMP masses below 200 GeV/ c2 is 1.49 · 10−39 cm2 for χχ→ bb̄ and 1.31 · 10−40 cm2

for χχ→ τ+τ− annihilation channels, also ruling out some fraction of WIMP candidates

with spin-independent (SI) coupling in the few-GeV/c2 mass range. [37]

Large Area Telescope The Fermi-Large Area Telescope (Fermi-LAT) is a γ-ray

telescope, placed on board the Fermi Observatory, sensitive to energies from 20 MeV

up to over 300 GeV. One of the goals of this telescope is to find a DM signature in

the diffuse γ-ray emission. At galactic level, it is believed that the signal comes from

annihilation of WIMPs in a smooth halo around the galaxy while the extragalactic signal

arises from DM annihilation processes throughout the universe. For the galactic halo

study, the Fermi-LAT collaboration explored the energy range [1, 400] GeV. Limits were

set both for annihilation and decay of DM particles [39].

IceCube IceCube is a neutrino telescope placed at the south pole that aims at the

detection of the Čherenkov light emitted by muons, created by neutrinos interacting with

the Antarctica ice. The neutrinos of interest are generated by Dark Matter annihilations

in the Earth and in the Sun. The telescope consists of 86 vertical strings equipped with

Digital Optical Modules (DOMs), Fig. 1.21, that contain a digitizer board and a PMT.

Part of these strings (78) carry 60 DOMs, placed at intervals of 17 m from a depth of

1450 m up to 2450 m below the ice surface. The other 8 strings are infill-specialized for

a sub-array dubbed DeepCore, placed in the central region of the telescope. IceCube is

sensitive to neutrinos in the energy range from 100 GeV up to 1 TeV, while DeepCore

can reach sensitivity down to 10 GeV neutrinos. This means that the entire telescope is

sensitive to neutralinos down to masses of about 50 GeV.

The main background of the telescope is due to muons and neutrinos produced by cosmic

rays interacting in the atmosphere. To take into account all the possible background

variations, the dataset used in the last analysis was divided into three parts: summer

season, focused on low energy neutrinos, and winter season which is, in turn, divided into
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Figure 1.21: Representations of IceCube’s DOMs.

a low and high energy sample. After all the cuts and track selection criteria, the observed

distributions of the event directions have been compared with the expected background

distributions from atmospheric muons and neutrinos [40] finding compatibility with the

only-background hypothesis. The obtained upper limits on the expected number of

signal events, µ90
s , can be translated into upper limits for the annihilation rate, Γa, of

WIMPs in the Sun that, in turn, can be converted into limits on the spin-dependent,

σSD,p and spin-independent, σSI,p, WIMP-proton scattering cross-sections. For dark

matter masses between 200 GeV and 10 TeV, results on the cross-section reach a level

of 10−23 cm3s−1. The IceCube data have been also used to infer information and set

limits on the super heavy Dark Matter, i.e. for mχ > 100 TeV/c2 [41]. These values of

masses imply a much lower density of Dark Matter which results in a reduced sensitivity

for direct detection experiments. Due to the low density, this kind of search is based on

the detection of the decay products such as high energy neutrinos. Considering Dark

Matter with mχ ≈ 100 TeV that decays into two neutrinos, IceCube already set limits

on the lifetime giving the strongest limit: τ > 1027 y [42].

AMS-02 The Alpha Magnetic Spectrometer (AMS), currently in its second phase

AMS-02, is an antimatter search experiment placed on the International Space Station

(ISS), (Fig. 1.22). In its latest results [43], the AMS collaboration found an excess

in the positron fraction, at energies > 8 GeV, above the expected background due to

secondary positrons originate in the spallation of cosmic rays on the interstellar medium.

The positron fraction excess stops at ∼ 275 GeV and this excess seems to be isotropic

within 3%, suggesting that the energetic positrons may not be coming from a preferred

direction in space.

Considering also the antiproton results from PAMELA [44], where the antiproton flux

is compatible with the expected background, a scenario that consider a leptophilic Dark

Matter, as possible source of positrons, is viable [45].
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Figure 1.22: AMS-02 experiment on the International Space Station.

This kind of candidates annihilates predominately into leptons producing a large amount

of energetic positrons while the antiproton flux remains suppressed. Using this kind

of WIMP and considering masses above 500 GeV/c2, the AMS-02 collaboration has

evaluated the annihilation cross section for leptophilic channels that can explain the

observed positron fraction [45]; the value for the annihilation cross section is of the order

10−23 ÷ 10−22 cm3s−1 that is about 103 times larger than the thermal cross section.
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The XENON project

Among the various experimental strategies for the direct detection of Dark Matter (DM)

particles, detectors using liquid xenon have demonstrated the highest sensitivities. This

is the case of the dark matter experiments realized by the XENON Collaboration.

The first detector of the XENON project was XENON10 [46]. The main goal of this

experiment was to test the possibility to realize a dual phase, LXe/GXe, detector on the

kg scale to detect DM interactions. The results obtained in 2007 pushed towards the

realization of a new and larger detector, XENON100 [47], based on the same detection

and working principles.

Both detectors, have been placed in the interferometer tunnel at the Laboratori Nazionali

del Gran Sasso (LNGS), Italy, at an average depth of 3600 m water equivalent.

The XENON100 experiment published upper limits on the spin-independent [22] and

spin-dependent [48] coupling of WIMPs to nucleons in 2012 and 2013. Recently, the

LUX experiment which employs a larger amounts of xenon, has confirmed and improved

upon these results [23].

To significantly improve experimental sensitivities, the XENON collaboration is now

focusing on the XENON1T experiment [49]: with a 30 times larger target mass, and a

background reduction of a factor hundred, the maximal sensitivity to spin-independent

WIMP-nucleon cross sections is expected to improve by two orders of magnitude.

The detector has been built between 2013 and 2016 and it is now in data acquisition

phase.

2.1 Detection principle of a dual phase TPC

The detectors of the XENON project are based on a dual phase Time Projection Chamber

(TPC), containing xenon in the liquid phase (LXe) and gaseous xenon (GXe). In this

33
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section we review the main properties of xenon as target and detection medium together

with the Xenon dual phase TPC working principles.

2.1.1 Liquid xenon as target

The choice of LXe as active target for the DM direct detection implies several advantages:

• Self-shielding power against external background sources, due to its high density,

equal to 2.96 g/cm3;

• Xenon is not extremely demanding from the cyogenic point of view;

• The large atomic number of Xenon (A = 131) increases the expected WIMP

interaction rate, since the WIMP-nucleus cross section scales with A2;

• Xenon has about ten stable isotopes, while instable ones are very short-lived.

Hence, it is a rather pure material, which is a mandatory requirement for a search of

very rare events like WIMP scatterings. There are two isotopes with nonzero spin:

129Xe (spin 1/2) and 131Xe (spin 3/2). This allows to study also the dependence

of the WIMP-nucleus cross section on the spin, thus providing more information

about the Dark Matter nature;

• Xenon is an excellent scintillator, since emits about 5 · 104 photons per MeV

deposited, (λ = 177.6 nm, i.e. VUV photons) and has also a good ionization

yield (6 · 104 electron-ion pairs per MeV). Therefore, an interaction produces both

a large amount of both charges and photons.

2.1.2 Xenon scintillation light

The xenon scintillation is ruled by de-excitation of excimers, i.e. excited xenon dimeric

molecules (Xe∗2), which are formed after recoil events through direct excitation or re-

combination of ionization products. In the direct excitation process an excited state Xe∗

is promptly formed, leading to scintillation through the following decay chain:

Xe∗ + Xe + Xe→ Xe∗2 + Xe

Xe∗2 → 2Xe + hν .
(2.1)
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After ionization in the xenon target, the Xe+ ions can form a molecular state and a

freed electron can recombine, producing scintillation at the end of the chain:

Xe+ + Xe→ Xe+
2

Xe+
2 + e− → Xe∗∗ + Xe

Xe∗∗ → Xe∗ + heat

Xe∗ + Xe + Xe→ Xe∗2 + Xe

Xe∗2 → 2Xe + hν .

(2.2)

Due to the different configuration of the energy levels of dimers and atoms, the photons

emitted by dimers are not re-absorbed by the atoms making LXe transparent to its own

scintillation light. The scintillation light in LXe has two decay components characterized

by two different decay times: the singlet (S) and triplet (T) states of the excited dimers

Xe∗2. The fast scintillation component is due to the S state and its decay time can vary

under intense electric fields. For instance, with a 4 kV/cm electric field, the decay times

after the interaction of relativistic electrons with xenon atoms are: (2.2 ± 0.3) ns from

the singlet states decays and (27± 1) ns from triplet states [50].

2.1.3 Signals produced in the TPC

A schematic view of the TPC structure is shown in Fig. 2.1 left; starting from the

bottom the TPC is closed by the Cathode (at negative voltage) while on its top it is

closed by the Gate mesh (grounded). This structure encloses the LXe active region,

called sensitive volume, that represents the volume used to detect the interactions and

which is available for the electron drift. Along the vertical axis equally spaced thin

copper rings are properly distributed, together with the Cathode and the Gate mesh, to

generate a uniform electric field.

Above the Gate mesh there is the Anode and the LXe/GXe interface is set between

them. Gate mesh and Anode produce the extraction field which has a strength of O(10)

electrons kV/cm, that guarantees an extraction efficiency close to 100%.

Particles interacting in LXe produce a prompt scintillation signal, called S1, through

excitation, and ionization electrons. The electrons can recombine, participating to the

S1 signal, or can be drifted by an appropriate electric field towards the liquid-gas inter-

face where they are extracted by the strong extraction field, and a light signal, named

S2, is generated by proportional scintillation in the gas. The S2 signal is delayed by the

time occurring in the drift from the interaction site to the liquid/gas interface.

Two PMT arrays, one on top of the TPC inside the GXe and one at its bottom below
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Figure 2.1: (Left) Schematic view of the XENON TPC along with its working prin-
ciple. (Right) Illustration of characteristic wave forms due to different kinds of events,

NR and ER.

the cathode, in LXe, are used to detect the scintillation light. From the pattern of the

hit PMTs in the S2 signal, the (x, y) position of the events is determined, while from the

time difference between S1 and S2 signals it is possible to infer the z coordinate. Combin-

ing all these informations, a 3D vertex reconstruction can be achieved. The knowledge

of the interaction point allows the selection of those events located in the inner part of

the LXe, usually called fiducial volume (FV). Since the majority of background events

are expected to be found in the outermost part of the TPC, using the most external

volume as shield, the background from external sources can be remarkably reduced.

The S1 and S2 signals are also used to lower the background, thanks to their different

distribution in case of either electronic (ER) or nuclear recoils (NR). From the measured

S1 and S2 it is possible to achieve a satisfying discrimination power between ER and

NR events. Moreover, single scatter interaction (expected from WIMPs) can be distin-

guished from multiple scatters thanks to the presence of more than one S2 signal in the

latter case.

The scintillation efficiency, i.e. the light output per unit energy deposited, for ER and

NR is significantly different; therefore it is usual to define two energy scales: keVee (or

keVe) for ER events and keVnr (or keVr) for NR events. They are defined so as to avoid

misinterpretation of the event energy in the case it is an ER or NR.

An example of the S1 and S2 signals pattern from NR and ER is shown in Fig. 2.1

(right).
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Figure 2.2: Light and charge yield as a function of drift field for 662 keVee γ-rays
from 137Cs [51].

2.1.4 Discrimination of ER and NR

The ability to discriminate among different particles is essential for a Dark Matter ex-

periment. WIMPs are expected to produce NR while most of the background radiation

produces ER. Particles with different Linear Energy Transfer (LET), dE/dx, have dif-

ferent S2/S1 ratio and this allows to discriminate among them. Indeed, a NR has a

higher recombination rate, due to its higher LET, than an ER. A higher recombination

gives a lower S2 and a higher S1 and ultimately a lower S2/S1 ratio. This characteristic

of the signals implies the anti-correlation between ionization and scintillation signals,

which is experimentally observed (Fig. 2.2).

Hence, using the ratio of the signals S1 and S2 as discrimination parameter, it is possible

to distinguish between the two types of recoil. Having such a separation between the

ER and NR bands, in the S2/S1 parameter, it is possible to set a discrimination level

for the ER which allows to reach the desired background level.

The detector response to ER and NR events is studied through calibration with sources

of photons (for ER) or neutrons (for NR). As example, the XENON100 performance is

shown in Fig. 2.3 [22], where the ER band (blue) is clearly distinguished from the NR

band (red).

With the separation achieved by XENON100, it is found that a 99.5% ER discrimination

corresponds to a 50% acceptance of NR events, while 99.75% ER discrimination gives

40% NR acceptance [22].
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Figure 2.3: Distribution of the flattened discrimination parameter, log10(S2/S1), as
function of the recoil energy achieved with the XENON100 experiment [22]. The ER
band (red points), obtained from 60C and 232Th calibration data, is showed together

with the NR band (blue points), from the 241AmBe calibration.

2.2 The XENON experiments

The XENON project started with the XENON10 experiment, with a target mass of the

order of 10 kg.

The XENON10 experiment has been followed by XENON100, whose xenon mass is

about 170 kg. The mass of the XENON1T experiment has been increased of a further

factor 10. Finally, an upgrade to a xenon mass to about 7 tonnes, named XENONnT is

already foreseen by the Collaboration.

In the following, we briefly review the main results of XENON10 and XENON100, while

a more detailed discussion is dedicated to XENON1T.

2.2.1 XENON10

The XENON10 experiment [46], installed in 2005, has been in operation until October

2007. The TPC was made of a PTFE cylinder with an inner diameter of 20 cm and a

height of 15 cm. The amount of LXe contained inside the TPC was 15 kg, with 5.4 kg

used as fiducial volume. In 2008, the Collaboration published the results of the 58.6 days

run, setting upper limits on both SI and SD WIMP-nucleon cross section. XENON10

reached a sensitivity at 90% confidence level to SI cross sections of 8.8× 10−44 cm2 for

a 100 GeV/c2 WIMP mass and 4.5× 10−44 cm2 for mχ = 30 GeV/c2 [52] (see Fig. 2.4).
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Figure 2.4: Cross section limit, 90% CL, on spin-independent WIMP interactions
(red line), from the XENON10 58.6 live-days dataset [52]. The blue line is the best
limit from CDMS experiment [53]. The shaded areas represent the allowed parameter

region in the constrained minimal supersymmetric models.

Concerning the SD case, a limit for neutron couplings of 5 × 10−39 cm2 was set for 30

GeV/c2 WIMP mass [54]. The XENON10 sensitivity plot for SD WIMP interactions is

shown together with the result of XENON100 in fig. 2.6.

2.2.2 XENON100

The XENON100 experiment [47] started in 2008 at LNGS. The XENON100 TPC has a

radius of 15.3 cm and a height of about 30.5 cm. The LXe amount was increased to 161

kg, with 62 kg used as active volume in the TPC and the remaining as an outer active

veto; In order to be sensitive to a DM interaction, one of the goals of this experiment

was to lower the sensitivity by two orders of magnitude with respect to XENON10.

Such result has been achieved thanks to a larger target, but also thanks to a factor 100

of background reduction through an accurate screening and selection program for all

detector construction materials.

One of the most important results has been obtain with a run of 225 live-days. The

analysis showed no evidences for Dark Matter. Two events have been found in the

energy region of interest for the WIMP search, but this number is compatible with

the expected background (1.0 ± 0.2) events. A second data analysis was carried on

combining three runs summing up to 477 live days from January 2010 to January 2014.

A blind analysis was applied to all the runs prior to combining the results. A profile

likelihood analysis using an energy range of (6.6− 43.3)keVnr sets a limit on the elastic,

spin-independent WIMP-nucleon scattering cross section for WIMP masses above 8

GeV/c2, with a minimum of 1.1 ·10−45 cm2 at 50 GeV/c2 and 90% confidence level. The
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Figure 2.5: Spin-independent cross section limit (blue line) and 1σ (green band) and
2σ (yellow band) expected sensitivity regions at 90 % C.L. from the combined analysis
of the three XENON100 science runs. For comparison, a subset of other experimental

limits (90 % C.L.) and detection claims (2σ) are also shown.[55].

constraints on the elastic, spin-dependent WIMP-nucleon cross sections were obtained

with the same data set upper limits on the WIMP-neutron (proton) cross section with

a minimum of 2.0 · 10−40 cm2 (53 · 10−40cm2) at a WIMP mass of 50 GeV/c2 at 90 %

confidence level [58]. The exclusion limits as function of the WIMP mass are shown in

Fig. 2.5 and 2.6.

2.2.3 XENON1T

The XENON1T experiment [49] is located in the Hall B, shown in Fig. 2.7(a), of

the Gran Sasso Underground Laboratory (LNGS). The construction of the experiment

started in 2013 and has been terminated in 2015. After several months of commissioning,

XENON1T (Fig. 2.7(b)) is now in science data taking and first results are expected by

summer 2017.

The total amount of about 3 tonnes of LXe is contained in a double vessel vacuum

insulated cryostat made of low activity stainless steel (SS), 5 mm thick. The dimensions

of the inner cryostat are chosen to host the XENON1T TPC (Fig. 2.8), while the outer

one is increased in order to host also the future enlarged version of the experiment,

XENONnT. Both vessels are composed by a cylindrical part and two domes; the top

dome is connected to the central part through a flange whose thickness is 50 mm. The

upper domes have a central port from which the cryostat is connected to the XENON1T

cryogenics system, via a long double-wall vacuum insulated tube.

The target consists of about 2 tonnes of LXe, defined laterally by an almost cylindrical

structure of 24 polytetrafluoroethylene (PTFE) interlocking panels: the radius of the

TPC is 479 mm. The target volume is viewed by two arrays of PMTs: one made of

121 PMTs in a compact hexagonal structure directly immersed in LXe in the bottom,
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Figure 2.6: Spin-dependent cross section limit (blue line) and 1σ (green band) and
2σ (yellow band) expected sensitivity regions at 90 % C.L. from the combined analysis
of the three XENON100 science runs. The top (bottom) panel shows the individual
neutron (proton) only cross sections. For comparison, other experimental limits (90 %

C.L.) and detection claims (2σ) are also shown. CDMS [56], ZEPLIN-III [57].

and one made of 127 PMTs placed in concentric rings in the gas phase above the target

volume.

The radius of the bottom array is the same as the TPC, while the top one is slightly

larger to guarantee a good position reconstruction even at the edge of the TPC. The

space among the PMTs is covered with PTFE to reflect the UV light and ensure a good

light collection efficiency. The structure of the TPC is reinforced on the outside region

through PTFE pillars and copper rings. Additional PTFE and copper disks support the

two PMT arrays.

The electric fields in the TPC are generated through electrodes made of SS meshes

welded onto SS rings. There are two electrodes on the bottom of the TPC: the cathode

and a second one to screen the bottom PMT array. At the liquid gas interface there is a

stack of two electrodes, ground and anode, separated by 5 mm; another mesh is used to

protect the top PMTs. The distance between the cathode and the ground meshes, which

defines the active region, where both the light and charge signals can be generated, is

967 mm. A stack of 74 field shaping rings, made of copper and placed just outside the

PTFE lateral panels, assures the uniformity of the electric field along the TPC.
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(a)

(b) (c)

Figure 2.7: (a) Schematic overview of the Hall B of the LNGS, (b) and (c) picture
and drawing of the XENON1T detector: the Muon Veto water tank containing the
TPC, the Service Building which hosts the cryogenic and purificiation system, the

DAQ equipment, the distillation column, and the emergency recovery system.

The liquid level in the proportional amplification region is adjusted between the gate

and the anode electrode, and kept constant, by using the concept of a diving bell with an

adjustable overflow tube coupled to a linear motion feedthrough [47]. The bell closing

the gas phase region is made of SS, 5 mm thick on the top and 3 mm in the lateral part.

This solution has the advantage that the LXe outside the bell can rise above the top

PMT array.

In this way we have a layer of LXe, about 5 cm thick, above the Bell and all around

the TPC (outside of the field cage, between the rings and the cryostat wall); a 3 cm

LXe layer is kept below the bottom PMT array. In the initial operation phase of the

experiment this LXe layer will act as a passive shield to reduce the background from

outside; in a second phase it can be instrumented with 1” PMTs and PTFE panels to

be operated as an active veto.

2.2.3.1 The background

In order to increase the sensitivity of WIMP-nucleus cross section it is necessary to

reduce the background sources.

The principal sources of backgroud signals are:
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Figure 2.8: Picture of the XENON1T TPC and cryostat inside the Muon Veto System.

• Internal background

• Intrinsic background

• External background

2.2.3.2 Internal background

The internal background is due to the radioactivity of materials constituiting the de-

tector. For the construction of XENON1T a screening campaign was carried on, the

materials with the lowest contaminations from radioactive nuclei were chosen.

The most dangerous electromagnetic backgrounds comes from the γ emitted in the 238U

and 232Th chains and from the decay of 60Co, 40K and 137Cs. The γ emitted might

cause electron recoil. An optimized choice of the fiducial volume of xenon used in the

TPC using its external part as a shield, allows the reduction of the internal background.

From Monte Carlo simulations it was estimated that, using part of the xenon as a shield-

ing, the number of background events expected is 0.07 ev/ton/yr [59].

The nuclear recoil due to reactions of the type (α, n) are another source of background.

These reactions are produced by the decay chain of U and Th, which are present in

the material of the detector. Neutrons produce multiple interactions, a detailed Monte

Carlo simulation shows a number of expected events of 0.6 ev/ton/yr.

To conclude, the total expected internal background is lower than the number of events,

∼ 20 ev/ton/yr, expected for a WIMP of mass 100 GeV and cross section 10−47 cm2.

2.2.3.3 Intrinsic background

The intrinsic background is another source of dangerous events. It is due to some

radioactive isotopes that are uniformly distributed in LXe (85Kr , 222Rn).

Kr decays β with an energy of 687 keV and half life of 10.76 years. We require a Kr



Chapter 2. The XENON project 44

contamination lower than 1 ppt. The commercial xenon has a contamination of 1 ppm

and requires to be purificated through a dedicated distillation column.

Also Rn can be a potential source of intrinsic background since it is mixed inside the

LXe and among its daughters there is 214Pb, a beta emitter. We require to have a Rn

contamination inside the LXe less than 1 µBq/kg.

2.2.3.4 External background

The external background is due to different factors:

• Natural radioactivity: low energy (< 10 MeV) γ and neutrons from the rock;

• Neutrons at high energy (up to the order of tens GeV) inducted by the cosmic

muons.

Both can be reduced surrounding the detector with a thick water layer, contained in the

so called Water Tank. The layer of water is about four meters thick in each direction

around the detector and, for gammas, it is equivalent to the shielding of 20 cm of lead.

The presence of water allows a reduction of the γ flux of a factor 105 (Fig. 2.9) and

makes negligible the contribution of neutrons produced in the (α,n) reaction induced by

238U and 232Th decay in the rock and concrete of the experimental hall. As an example,

one meter of water is enough to lower the value of the neutron flux with energy in the

scale of MeV of a factor 106.

Neutrons induced by cosmic muons have an energy up to tens of GeV and they might

cross the Water Tank, enter the TPC and mimic a WIMP-like interaction. This is the

reason why the TPC is surrounded by a Water Tank instrumented with photo multipliers

(PMTs): during their path in water muons emit light through Čherenkov effect. If a

muon-like event is seen, a trigger is sent to the TPC, in this way it is possible to veto

that specific event.

This system is called MuonVeto and will be described in detail in Chapter 3. A Monte

Carlo simulation [59] showed that with 4 meters of water, up to the 99.5% of neutrons

are moderated and stopped.

The last categories of neutrons are the ones producted by the interactions of muons

with the materials of the detector. These neutrons, if the corresponding muons aren’t

detected in the Water Tank, are extremely dangerous . From the simulation it was also

shown that the biggest part of this kind of neutrons is generated in the cryostat.

To conclude, a Water Tank instrumented with PMTs is enough to reduce the γ and

neutrons background up to the desirable levels. The total background expected from

the Monte Carlo simulation is about 4 event in the 1 tonne fiducial volume in 2 years of
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Figure 2.9: Flux of neutrons coming from the concrete measured in the HallB al
LNGS (black line) and MonteCarlo simulation of the energetic spectrum of neutron for

different thickness of the layer of water. [60].

exposure, mostly coming from the intrinsic Rn contamination [61]. With this background

prediction, the XENON1T experiment will be sensitive to WIMP-nucleon scattering

cross section of 1.6 · 10−47 cm2 at mχ = 50 GeV/c2 , with 90% CL, one order of

magnitude better than the best limit of LUX [24]; A final comparison, between the

limits from various experiments is shown in Fig. 2.10. The orange dashed line represents

the neutrino coherent bound, below which the NR from neutrinos will be the dominant

background process. It represents an irreducible source of events since it mimics a

WIMP-nucleon interaction and new detection techniques (exploiting the event direction)

will be required to probe lower values of the cross section.
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Figure 2.10: Comparison between sensitivities, at 90% CL from different experi-
ment: DAMA exclusion region (dark red), PandaX (light blue), XENON100 (black),
DarkSide-50 (purple), LUX (green), XENON1T (blue), XENONnT (blue dashed) and
the neutrino bound (orange dashed). Also superimposed is the XENON1T sensitivity

(yellow and green bands with the solid blue curve inside).



Chapter 3

The Muon Veto

This chapter is dedicated to the description of the Muon Veto system of the XENON1T

experiment.

In the first section a detailed description of the Muon Veto design, electronics and data

processing is reported. In the second section, we describe the Monte Carlo simulation of

the Muon Veto. The last section of this chapter is dedicated to a comparison between

the Muon Veto simulation and experimental data and to the evaluation of the Muon

Veto tagging efficiency.

3.1 The Muon Veto

3.1.1 Design

The XENON1T experiment is located at Gran Sasso Underground Laboratory at average

depth of 3600 meter water equivalent.

Due to the overlaying rock, the flux of cosmic muons is reduced by a factor ∼ 106

to (3.31 ± 0.03) · 10−8 cm−2s−1 [62], with mean muons energy of ∼ 270 GeV [63].

Such particles, together with their cascades, generated in the rock and concrete of the

laboratory, can produce both ER and NR background for XENON1T. The nuclear recoil

background is more dangerous since neutrons, produced by muons in the spallation

processes on nuclei or in electromagnetic and hadronic showers, have energies up to tens

of GeV. They can thus penetrate also large shields and mimic a WIMP signal in the

TPC. Therefore, several efforts have been dedicated in designing a Muon Veto system

that can tag and reject events possibly related to muons. [59]

47
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Figure 3.1: Schematic view of the XENON1T Muon Veto water tank.

The Muon Veto of XENON1T is a water Čherenkov detector made of a tank with a

cylindrical body, 4.8 m of radius and 9 m height, with a truncated cone roof, for a total

height of 10.5 m, (Fig. 3.1), filled with purified water.

The XENON1T TPC is placed in the center of the Water Tank (Fig. 3.2), thus resulting

surrounded by ∼ 4m of water in all directions. The Muon Veto system is based on the

detection of the Čherenkov light emitted by particles passing through the water. The

light is seen by 84 PMTs, model Hamamatsu R5912ASSY, whose quantum efficiency

in the range [300, 600] nm is about 30%. They are high quantum efficiency (HQE)

phototubes, with 10 dinodes and a bialkali photocatode.

The PMTs are arranged in five rings, one on top, at 9 m from ground, and one on the

bottom of the water tank, each made of 24 photomultipliers, plus 3 equally spaced rings

of 12 PMTs each, along the vertical wall of the tank, looking inwards. The photomulti-

pliers are installed on the internal wall, roof and floor of the water tank.

The inner surface of the Water Tank is covered by a reflective foil, DF2000MA, (Fig.

3.3), which has a reflectivity close to 100% between 400 and 600 nm wavelengths. It

acts also as a wavelength-shifter to better overlap the Čherenkov light spectrum with

the high quantum efficiency region of the PMTs.

In order to calibrate and equalize PMTs gain, the Muon Veto is provided with two

independent calibration systems. Each PMT can be calibrated using an optical fiber
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Figure 3.2: Design of the Muon Veto with the detector and its support structure at
the center of the water tank.

placed in front of it, with light from a blue LED (λ = 470 nm). The LED, driven in

voltage, is interfaced to a bundle of 8 optical fibers grouped together at one end. The

other end is anchored to a vertical support, placed next to the PMT. There is a PTFE

(politetrafluoroetilene) surface attached to the vertical support, to reflect the light, as

shown in Fig. 3.4.

The second calibration system uses four Diffuser Balls (DB) located inside the water

tank which illuminate all the PMTs. The position of the diffuser balls is shown in the

drawing in Fig. 3.5.

The scheme of the calibration system is shown in Fig. 3.6.

3.1.2 The Muon Veto electronics

In this section the stream of information from the single PMT hit to the generation of

the global trigger is explained.

The analog signals coming from the 84 Muon Veto PMTs are recorded by means of 11

commercial 8 channels digitizer CAEN mod. V1724 (14 bit, 0.5 Vpp, 100 MS/s). In Fig.

3.7 is shown an example of a waveform acquired from a Muon Veto PMT.

The digitizer can store sampled signals both from an external and internal trigger. The

Muon Veto system is provided with a trigger unit, CAEN mod. V1495, which is designed

(by means of custom firmware) to generate a global trigger to the Muon Veto following
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Figure 3.3: Internal view of the Water Tank.

Figure 3.4: To the left the LED calibration system for photomultipliers. To the right
the piece of PTFE in which the light is reflected before reaching the photocatode.

a predefined condition.

Two basics trigger modes are implemented in the V1495: the calibration trigger mode

and the normal trigger mode.

In the calibration trigger mode an external trigger starts the LED pulsers, generating

the light pulse for PMTs calibration and the digitalization of PMTs signals.

In normal trigger mode, the trigger is generated if a custom designed trigger condition is

fulfilled. In particular, the trigger condition is set first at the level of single PMT signal

amplitude (Thr) and number of consecutive samples over the threshold (TOT ).
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Figure 3.5: Position of the Diffuser Balls (green dots) inside the Water Tank.

Figure 3.6: Working scheme of the calibration system.
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Figure 3.7: Example of a waveform acquired using a CAEN V1724 digitizer. The red
line represents the baseline, which is set to 16000 ADC counts.

When a digitised channel (i.e. a PMT) overcomes this trigger condition a corresponding

signal is sent to the V1495 trigger unit.

If the number of PMTs satisfying the condition in a time window T = 300 ns is greater

than or equal to a programmable number N of PMTs, the trigger unit generates a global

trigger and all 84 PMTs digitized signals are stored.

Finally, the Muon Veto system needs to be synchronized with the TPC (in order to

behave as a Veto), so its electronics is completed by a Timing Unit, which is used to:

• assign an absolute time to events that have triggered the Muon Veto;

• produce a 50 MHz clock to synchronise all the Muon Veto system digitizers;

• produce a 0.1 Hz SYNC clock signal, distribuited also to the TPC, used as a

common time reference.

The scheme of Muon Veto electronics and flow of information is shown in Fig. 3.8: the

single channel (PMT) over threshold signal is sent to the trigger unit (blue lines); if the

general trigger condition is fulfilled, a global trigger is generated and distributed to all 11

digitizers (red lines) starting the acquisition process of all 84 channels simultaneously.

The 50 MHz clock signal, produced by the Timing Unit, is distributed to the first

digitizer of the Muon Veto system and then propagated to the other 10 boards (violet

lines) to syncronize the 11 fADCs. Finally the Timing Unit produces also the 0.1 Hz

SYNC signal (green lines) that goes to both the TPC and the Muon Veto.
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Figure 3.8: General scheme of the electronics.

3.1.3 PMT Calibration and Trigger setup

The Muon Veto calibration system is used to equalize and monitor the PMTs gain.

Indeed the calibrations are performed on a weekly base. In particular, the PMTs high

voltages (HV) are set in order to have a mean value of the charge collected at PMT anode

equal to 1 pC as response to the extraction of a single photoelectron at the photocathode.

Fig. 3.9(a) shows the charge of the distribution obtained for 6 equalized PMTs. The

mean value of the single photoelectron charge are equalized to 1 pC within few %. From

the gain equalization procedure we derive also the trigger threshold for the single PMT.

Together with the charge spectra we build the amplitude spectra corresponding to the

single photoelectron (Fig. 3.9(b) ) and extract for each PMT the mean signal amplitude

for the single photoelectron and use it as single channel trigger threshold. The measured

average threshold obtained are of the order of 3 mV, i.e. about 90 ADC counts, as also

shown if Fig. 3.9(b).

On the basis of this equalisation we can then set various trigger condition both on the

single channel, like the threshold and the TOT or on the trigger unit.

In this preliminary data acquisition period, in order to have a stable running condition,

the Muon Veto trigger was set to:

• At the single channel (i.e. PMT) level , we require an amplitude signal of 1 pe

and TOT = 1.

• The global trigger condition is: 8 PMTs in coincidence in a 300 ns wide time

window.
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(a)

(b)

Figure 3.9: (a) Charge spectra of 6 PMTs in water, (b) Following an LED or Diffuser
Balls calibration, channel by channel is picked the maximum amplitude in the time
window in which we expect the LED/DF signal to appear. The distribution of maxi-
mum amplitudes for each channel is built and the average value in the signal region is
extracted. In this example the extraction of the values of the thresholds for 4 different

channels.

In the next paragraph we report the data processing and data analysis work.

3.1.4 Data Analysis

The data analysis for XENON1T and for the Muon Veto is done using PAX processed

datasets.

PAX stands for Processor for Analyzing XENON and is a powerful tool used for digital

signal processing and other data processing on the XENON100 and XENON1T raw data.

All datasets taken get processed automatically with PAX, which produces a root file.

To analyse these root files another package is available: HAX, Handy Analysis tools

for XENON: after a dataset is elaborated by PAX, and the root file is created, HAX

works in a way that it accesses the desired root file and it creates a so called MiniTree,
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Variable Description

NumPMTsHit Number of Hit seen in the event
PMTs ID of the PMT where the Hit was detected
Hit area Area of signal [pe]
Hit height Maximum height of signal [PE/samples]
Hit left Left boundary of signal [samples after eventstart]
Hit right Right boundary of signal [samples after eventstart]
Hit width Peak width [samples]
event.start time Start time of the event (Unixtime)
event.stop time Stop time of the event (Unixtime)

Table 3.1: Variable available for the analysis of a Muon Veto events

which is a selection of variables from the complete root file.

The variables used for the analysis of a Muon Veto events are listed in Table 3.1. In Fig.

3.10 an example of the variable Hit area and Hit height : a Hit is defined as every signal

Figure 3.10: Distribution of the area and height of events, unit of photoelectrons
[PE].

over the processor (PAX) threshold, set to 0.1 pe, in a PMT. An event happens when

the collection of Hits in the PMTs channel satisfies the trigger condition. Each PMT

may present many Hits inside the same event. So the area of an Hit is the number of

photoelectrons in that signal, while the area of an event is instead the sum of the areas

of the Hits contributing to that event.

In the processed data the relevant information are related to the area of the signals

expressed in unit of photoelectrons. If we want to express the Muon Veto hardware

trigger condition, i.e. PMT signal amplitude greater than single photoelectron (s.p.e)

mean amplitude, in terms of area of the signal, we get:

QThr = 〈AThr〉 ·
Vpp
214
· ∆t

R
= 5.5 · 10−13C (3.1)

where QThr is the signal area, 〈AThr〉 is the mean amplitude of single photoelectron,

R = 50 Ω is the total impedence of the system, Vpp = 0.5 V is the dynamic range of the

ADC whose number of discrete values available is 214 = 16384 and t is the time width
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Figure 3.11: Distribution of area for events with 8 PMTs in coincidence.

of a sample t = 10 ns.

This implies that, due to PMTs gains equalisation (Qs.p.e. = 1 pC) the corresponding

threshold in the Hit in unit of p.e. is:

QpeThr = 0.55 pe (3.2)

This is visible for example in Fig. 3.11 where the area of the events acquired during

Muon Veto data acquisition run is reported. It indeed presents a minimum value of

0.55 pe. We recall that the Muon Veto has been operated using the trigger conditions

described in 3.1.3. The relevant infos of the Muon Veto used runs are visible in the run

database, as can be seen in the screen shot shown in Fig. 3.12.

3.2 The Monte Carlo simulation

A detailed Monte Carlo simulation of the Muon Veto detector based on GEANT4

(GEometry and Tracking) [64] version 4.9.5 was performed. GEANT4 permits to build

virtually the detector through volumes. Starting from a mother volume, any other

volumes is built inside it, with coordinates referring to it. Every volume contains infor-

mation regarding its shape, position and composition.

The simulation uses a reconstruction of the experimental Hall B of LNGS. To reproduce

the geometry of the Hall B, we built the following volumes:

• Gallery of air, 100 m long, with diameter of ∼18 m and total height of 16 m. (See

Fig. 3.14 for the details).
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Figure 3.12: Screen shot of the MUon Veto run database. We used a datasample of
70957 events acquired during the first XENON1T science run, between 16th and 18th

January 2017.

• Concrete, thickness of 0.50 m, all around the LNGS gallery;

• Rock, thickness 5.00 m, in order to allow the full development of the muon showers.

The Muon Veto Water Tank (containing the XENON1T TPC in its center) is placed

inside the gallery mother volume, as shown in Fig. 3.14, in its proper position.

3.2.1 Generation of muons

The flux of muons in the gallery is modulated by the mountain. The profile of the

mountain modifies the energies and direction of muons that can reach the detector.

The muon characteristics are taken from a separate Monte Carlo simulation [65] already

validated with measurements in situ. In Fig. 3.13 the proper energy and the angular dis-

tibutions of muons in the Hall is shown. With these information, it was thus possible to

prepare a file containing 106 muons. For each of them the charge (muons - antimuons),

the energy and the direction are available.

The Muon Veto simulation reads this file and sets the initial conditions of each muon.

The position of the muon is then generated uniformly in a cilinder with a radius of 15

m. The axis of the cilinder intersects the origin of the reference system (the top-center
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(a) Energy Distribution

(b) Angular Distribution (Zenith and Azimuth)

Figure 3.13: Muon energy distribution at LNGS underground laboratory and angular
distribution (Zenith and Azimuth)

of the TPC) and its direction is the same of the muon.

When it enters the experimental hall, the muon can travel through the water tank, and

occasionally also through the TPC. We call them crossing muons. On the other hand,

it may also happen that the muon track is outside the water tank, but the particles pro-

duced in the electromagnetic and hadronic shower during its path in rock and concrete

can hit the water tank and release energy inside the Muon Veto. We call these events

as showering muons.

3.2.2 The Monte Carlo output

In Table 3.2, the variables in the Monte Carlo output are listed. The variable npmthits

contains the total number of photons detected by the photocathode of a PMT in an

event; for each hit the time and the PMT ID are stored in the variables pmthitTime and

pmthitID.

Every time a particle crosses a volume, variables of the group Save are filled. The

Save flag is filled when a particle goes through a volume, namely :

• Save flag == 11 is a particle going from the concrete to the gallery.



Chapter 3. The Muon Veto data analysis and MC comparison 59

Branch Name Type Description notes
eventid int event ID -
pmthits vector< int > collection of hits per PMT vector size = number of PMTs
pmthitID vector< int > collection of the hit PMT ID vector size = number of hit PMTs
pmthitTime vector< int > Times of the hit vector size = number of hit PMTs
xp pri float X position of the primary particle -
yp pri float Y position of the primary particle -
zp pri float Z position of the primary particle -
nsteps int number of energy depositing steps -
xp vector< float > X position of the step vector size = nsteps
yp vector< float > Y position of the step vector size = nsteps
zp vector< float > Z position of the step vector size = nsteps
NSave int number of saves -
Save flag vector< int > flag of the save vector size = NSave
Save type vector< int > type of the save vector size = NSave
Save x vector< float > X position of the save vector size = NSave
Save y vector< float > Y position of the save vector size = NSave
Save z vector< float > Z position of the save vector size = NSave

Table 3.2: List of variables contained in the MC output tree

• Save flag == 12 is a particle at the border between the gallery and the Water

Tank

• Save flag == 13 is a particle at the border between the Water Tank and the

TPC.

Moreover, GEANT4 provides a class, G4ParticleDefinition, to describe particles: by

means of a numbering scheme every particle is encoded with a number, according to the

PDG classification [66]. So the Save type is filled with a different number according to

the particle nature. The muon has a Save type == 13.

Finally the variables Save x, Save y and Save x are the coordinates of the saved par-

ticles.

In order to select muons in the Water Tank, we require the Save flag to be 12 (particle

on the WT) and the Save type to be 13 (particle is a muon).

In Fig. 3.14 a scheme of the volumes implemented in the simulation and the track of a

muon crossing both the Water Tank and the TPC.

The Monte Carlo simulation output has a set of variable for the analysis different from

the output of the real data processing.

In order to analyse both the Monte Carlo data and Muon Veto real data in the same

way, I developed a code to convert the Monte Carlo output files into the format of the

Muon VetoTreeMaker defined for the real data.

The Monte Carlo simulation provides as output the number of photons’s hit on each
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Figure 3.14: Example trajectory of a muon (red) and scheme of the volumes imple-
mented in the MC: in blue the TPC, in black the Water Tank.

Parameter Value Description

Total QE 0.255 Total QE = QE * CE
Gain 6.2 -
ScaleMc 2 parameter to find the best matching
Processor Th 0.1 Threshold of the software processor

Table 3.3: List of the parameters used in the Monte Carlo data processing.

PMT. This number must be corrected by the Quantum Efficiency, the Collection Effi-

ciency1 to give the number of photoelectrons produced in each PMTs, which correspond

to the variable Hit area.

Starting from this Monte Carlo information I built a clone of the PAX processor acting

on the Monte Carlo data.

PAX reads and process the signals from all the PMTs everytime the trigger condition is

satisfied. The hardware trigger requires two conditions at different levels; The first one

is about the single channel: the amplitude of the pulse must be over a certain threshold

(Thr) for TOT number of consecutive samples. The second one is a predefined number

of PMTs in coincidence within in a time window of 300 ns.

Once the trigger condition is fulfilled, pulses above the software processor threshold, set

1The Quantum Efficiency is the ratio of output electrons to incident photon. It is corrected by the
Collection Efficiency which is the ratio of the number of electrons landing on the effective area of the
first dynode of the PMT to the number of emitted photoelectrons.
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Figure 3.15: Distribution of area of the event for Monte Carlo data (Blue) and Muon
Veto data (red). With the correction of a factor two we see the compatibility between

Monte Carlo and real data.

to 0.1 pe are stored in the output root file. In order to have the same output I imple-

mented this feature of the experimental data processor in the Monte Carlo output files.

Lastly, to be similar to the real data we down sampled the Monte Carlo Data from the

infinite precision of the GEANT4 output to the 10 ns bin width of the digitizer: the

arrival times of the photons on the PMTs, have been projected in 10 ns bins. In this

way the Monte Carlo output a root file has the same format of the Muon Veto processed

data, with all the variables listed in Table 3.1.

As first test of our Monte Carlo simulation of the detector we compared the distribution

of the total area of the event (the sum of all the Hit area) from Monte Carlo and

experimental data. The comparison shows that the amount of light seen in real data

for a muon crossing the Water Tank is a factor two larger than what expected from the

simulation. The discrepancy can be due to the fact that we didn’t take in consideration

the reflectivity of the cryostat in the simulation or that the absorption length in water

is higher than what implemented in the Monte Carlo simulation.

Fig. 3.15 shows the distribution of events obtained from the Monte Carlo simulations

and corrected by a factor 2 together with the distributions of the area of the events of

the experimental data. With this correction, Monte Carlo results and experimental data

are in good agreement, so we can safely use our Monte Carlo simulation to compute the

Muon Veto tagging efficiency for crossing and showering muons.
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3.3 Monte Carlo and experimental data

Before studying the Muon Veto tagging efficiency we compared the Monte Carlo and

experimental data in terms of rate, differential multiplicity and area of the events.

The trigger rate of the Muon Veto can be calculated as follow:

R =
nmu
time

(3.3)

where nmu is the number of events satisfying the trigger condition and time is the

run duration. The simulation used in this work corresponds to about 1200 hours of

Muon Veto data acquisition. The experimental data covers a time period of about 54

hours. For the Monte Carlo simulation, we extracted the equivalent time as: T = N
Aφ ,

where N is the number of muons generated, φ is the muons flux, corresponding to

R = 0.331 · 10−7/cm2/s and A is the effective area of the disk where muons have been

generated, 7.07 · 106 cm2.

In section 3.1.3 it is explained how the trigger threshold is set, we recall its correct

definition: the trigger threshold is the average height of pulses corresponding to the

emission of a single photoelectron at photocathode.

In this analysis we define the software threshold (ThS), the request for each pulse to

have an area equal or bigger than a particular threshold value.

The multiplicity is the number of PMTs in coincidence in a time window of 300 ns, each

one with an area greater than a chosen ThS.

In Fig. 3.16 we show the rate of the Muon Veto experimental data as a function of

the trigger threshold and the number of PMTs in coincidence. Fig. 3.16 represents the

Integral Multiplicity, namely the number of events with a multiplicity value equal or

larger than a minimum number of PMTs in coincidence (x-axis).

The rate with a software threshold of 1 pe is an order of magnitude greater than what

obtained using other thresholds. This is probably due to the effect of natural radioac-

tivity (γ from the rock in Hall B that produce electrons by Compton scatter in water),

which triggers PMTs when a low threshold is set.

A zoom of Fig. 3.16 and the Monte Carlo results are shown in Fig. 3.17(a) and 3.17(b).

In the Monte Carlo, the contribution of the ambient radioactivity is not simulated.

There are two possibilities, in terms of trigger conditions, to avoid the acquisition of

events from natural radioactivity: If we want to maintain the software trigger threshold

to 1 pe, we might request a minimum multiplicity greater than 20, otherwise we must

set an higher trigger threshold.

With a trigger threshold of 1 pe and a multiplicity bigger than 20, we obtain an event
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Figure 3.16: Trigger rate as a function of multiplicity and threshold

rate of R =∼ 0.03 Hz, which is close to the rate of muon expected in the Water Tank,

extracted from the Monte Carlo simulation (∼ 0.037 Hz). From the comparison between

the Monte Carlo and the experimental data, we see that the trend of the rate is similar:

both show a decrease as the multiplicity and software threshold increase.

Events in the plateau region are expected to be muons, their rate range is from R = 0.03

Hz for a software threshold between 2 pe and 5 pe and a multiplicity lower than 35 PMTs,

to R = 0.025 Hz for a multiplicity between 35 and 60 PMTs.

In Fig. 3.18 is shown a comparison between the rate of Muon Veto data and Monte

Carlo data for selected values of the software threshold. It is evident the absence of

natural radioactivity for Monte Carlo data (Fig. 3.18(a)) and the fact that, in the Muon

Veto data, this effect decreases as soon as the software threshold increases, giving a

better agreement with Monte Carlo data. (Fig. 3.18(b) and 3.18(c)). The agreement in

the rate is very good for multiplicities lower than 30 PMTs, from 30 to 84 PMTs the

experimental data present a slightly higher rate. In Fig. 3.19 we show the differential

multiplicity for various software thresolds. The runs used for the analysis are taken with

a trigger condition set to 8 PMTs and a trigger threshold of 1 pe. In Fig. 3.20 we

show the multiplicities obtained with software thresholds of 1 pe and 0.1 pe. With a

software threshold of 1 pe in amplitude, we see some events with a multiplicity lower

than 8. They fulfilled the trigger condition, in our case the coincidence of at least 8

PMTs whose heights are larger than the trigger threshold,, i.e. the average height of the

signals with 1 pe area. Because of the fluctuations in the ratio between the signal area

and height, in some of the PMTs, the hit might have an area lower than the software

condition (set to 1 pe) and not contribute to the calculation of the multiplicity.
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(a) Muon Veto data

(b) Monte Carlo data

Figure 3.17: Rate comparison for Muon Veto data and Monte Carlo data.

With a software threshold of 0.1 pe, the software multiplicity reflects the trigger multi-

plicity.

In Fig. 3.21 we shows the correlation between the area of an event and its multiplicity.

It is almost linear, indeed the more PMTs participate to the event the more photoelec-

trons are collected.

Many events have the maximum value of multiplicity, N = 84. We might interpret these

events as the muons that fully crossed the Water Tank producing a huge amount of

Čherenkov light. We see the effect of natural radioactivity in the Muon Veto data, with

a low threshold (Fig. 3.21(a)) there are a many events with a value of multiplicity up

to 20 and an area of less than 102 pe.

We see that these events are not present in the Monte Carlo simulation (Fig. 3.21(b))

and as software threshold increases, they disappear (Fig. 3.21(c) and 3.21(e)).
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(a) ThS = 1 pe

(b) ThS = 10 pe

(c) ThS = 20 pe

Figure 3.18: Differential multiplicity for Muon Veto data and Monte Carlo data for
a software threshold of 1 pe (a), 10 pe (b) and 20 pe (c).

The Monte Carlo simulation allows to select muons by their trajectory and analyze their

different behaviors. We divided muons into three categories, mutually exclusive:

• Muons in the water tank, but not in the TPC.

• Muons that cross the water tank and the TPC.

• Muons outside the Water Tank, but with some particles in it. We don’t see the

muon directly, but we see the effect of the shower produced by it.
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(a) Muon Veto data

(b) Monte Carlo data

Figure 3.19: Differential multiplicity for Muon Veto data and Monte Carlo data.

In Fig. 3.22 we show the total area of events of Muon Veto data and the three categories

in which Monte Carlo events have been divided. The software threshold is set to 1 pe.

We see that muons crossing the TPC are few compared to the other categories. Their

rate is R = ∼ 3.4 · 10−4 Hz, two orders of magnitude lower than the rate of events

crossing the Water Tank, which have a rate of R = ∼ 3.3 · 10−2 Hz . Lastly, events with

a muon outside the Water Tank, but with secondary particles on it, have a rate of R =

∼ 3.5 · 10−3 Hz.

The black crosses are Muon Veto data with theis statistical errors; the agreement between

data and Monte Carlo (blue line) is very good. Moreover at very low values of area, we

see the effect of natural radioactivity. This explains the high number of Muon Veto data

in the first few bins.

After a minimum value at about 400 pe, the Muon Veto event’s area presents a bump

around ∼ 2000 pe, this is the average value of photoelectrons produced by muons.
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Figure 3.20: Differential multiplicity for a software threshold of 1 pe and 0.1 pe.

In the same figure the contribution of muons outside of the Water Tank is shown with the

green line. The muon doesn’t cross the Water Tank but some of the particles generated

in electromagnetic or hadronic showers may enter the Water Tank. The number of these

events decreases as a function of the signal area: the secondaries particles indeed are not

as penetrating as the muon and we don’t expect them to have an area bigger than 2000

pe. The purple line represents muons crossing also the TPC, which are less abundant

than the other categories but they have a long path in water and so a large amount of

emitted light. The events with more than 6000 detected pe are due to muons that have

generated a cascade inside the Water Tank.

We report also in Fig. 3.23 the differential multiplicity for the Muon Veto data and the

Monte Carlo simulation for different software thresholds.

The three categories of muons show different behaviours: the secondaries from muons

out of the Water Tank are not very energetic, but with a software threshold of 1 pe and

with a low multiplicity (Fig. 3.23(a)) they are the main contribution. The rate of these

events decreases as the trigger threshold and the multiplicity increase. For a trigger

threshold of 20 pe, their contribution is evident only at low multiplicity and close to the

maximum number of PMTs (84).

Muons in the TPC, which are enough energetic to pass through the water layer, present

the opposite rate. Because of their large path in water at low threshold, they trigger

almost all PMTs, in fact we see these events with the maximum multiplicity. With the

request of an higher threshold (20 pe), we cut events with low area, and their multiplicity
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(a) Muon Veto data: ThS = 1pe (b) Monte Carlo data: ThS = 1pe

(c) Muon Veto data: ThS = 10 pe (d) Monte Carlo data: ThS = 10 pe

(e) Muon Veto data: ThS = 20 pe (f) Monte Carlo data: ThS = 20 pe

Figure 3.21: Area versus Multiplicity for Muon Veto data and Monte Carlo data.

decreases, presenting a bump at about 15 PMTs.

The muons in the Water Tank present, for a low threshold, a flat value of the rate as a

function of the multiplicity. Muons crossing the Water Tank are coming with different

angles and have different incident impact points. Their trajectory inside the Water Tank

can be either very long or very short. A long trajectory allows the triggering of all PMTs

whereas muons crossing the Water Tank only close to the ”corner” and thus with a short

trajectory, trigger a few number of PMTs.

The Monte Carlo simulation clearly shows that the major contribution to the muon

events is represented by muons in the Water Tank, their rate is very close to the total

rate of muons. There is only one conditions in which the rate of these events differs

substantially from the total rate: low multiplicity and low threshold, in this trigger

condition there are many events from secondaries generated by muons outside of the

Water Tank.
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Figure 3.22: Total area of events of the Muon Veto data and of the three categories
in which Monte Carlo events have been divided. The black points are experimental
data with their statistical error, the blue line is the total output of the Monte Carlo.
It is divided into muons in the Water Tank but not in the TPC (red line), muons out

of the Water Tank (green line) and muons in the TPC (purple line).

3.4 Muon Veto Tagging Efficiency

After the first months of commissioning and testing, XENON1T is now in data acquisi-

tion for its first science run, called Science Run 0. In order to perform any background

estimation, it is fundamental to know the tagging efficiency of the Muon Veto detector

for both muon and shower events. The Muon Veto constitute an effective shield against

gammas and neutrons produced by rock radioactivity. The only residual enviromen-

tals background after the water shield is given by muon-induced neutrons, which are

produced via direct muon spallation of nuclei or through electromagnetic and hadronic

cascades generated by muons [59].

We consider dangerous events those with at least one neutron at the surface of the Water

Tank, with a neutron energy of at least 10 MeV. In [59] it was estimated the residual

background due to neutrons crossing the whole water shield, producing a single scat-

ter nuclear recoil, in 1 tonne fiducial volume, in the [5, 50] keV energy range. Before

considering the impact of the Muon Veto, the background is summarised in Table 3.4.

Muon events Shower events

Background rate [ev/y] in 1 tonne 9 · 10−3 2.1 · 10−2

Table 3.4: Background rate in 1 tonne fiducial volume for muon and showering events
without considering the Muon Veto tagging.



Chapter 3. The Muon Veto data analysis and MC comparison 70

(a) ThS = 1pe

(b) Muon Veto data: ThS = 2 pe

(c) Monte Carlo data: ThS = 20 pe

Figure 3.23: Differential multiplicity for Muon Veto data and Monte Carlo data. The
black crosses are experimental data with their statistical error, the blue line is the total
output of the Monte Carlo. It is divided into muons in the Water Tank but not in
the TPC (red line), muons out of the Water Tank (green line) and muons in the TPC

(purple line).
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Figure 3.24: Tagging efficiency for shower events as a function of the PMT multiplic-
ity. The threshold in each PMT is fixed to 1 pe.

After the validation of the Monte Carlo simulation against the available Muon Veto data,

we can reliably use the Monte Carlo to estimate the tagging efficiency. We applied then

to the dangerous events the trigger requirements of the Muon Veto during the Science

Run 0.

The Muon Veto tagging efficiency is ηµ = 99.5% for muon events and ηshower = 43% for

the shower events.

The efficiency for the shower events, as a function of the PMT multiplicity is shown

in Fig. 3.24. With the detection efficiency estimated above, we calculate the residual

background from muon induced neutrons and report the values in Table 3.5

Background rate [ev/y] in 1 tonne Muon events Shower events Total

Before MV cut 9 · 10−3 2.1 · 10−2 3.0 · 10−2

Tagging Efficiency 99.5% 43%
Residual Background Rate 5 · 10−5 1.2 · 10−2 1.2 · 10−2

Table 3.5: Residual background rate in 1 tonne fiducial volume.

In the 40 days exposure of Science Run 0, the resulting background is 1.3 · 10−3 events

in 1 t fiducial volume, practically negligible.
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3.5 Conclusion

The comparison between the Monte Carlo simulation of the Muon Veto detector and

the experimental data show an very good agreement. This is evident for example either

from Fig. 3.22 where we show the total light detected in the event, and in Fig. 3.19

where we plot the differential PMT multiplicity. The agreement between the simulation

and the experimental data allows us to safely use the simulation to study and compute

the Muon Veto tagging efficiency. With the trigger requirements used by the Muon Veto

during the XENON1T Science Run 0 we obtain a tagging efficiency of ηµ = 99.5% for

crossing muon events and ηshower = 43% for showering muons events.

Given these efficiencies, it is possible to calculate the expected background in the Sci-

enceRun0, which corresponds to 1.3 · 10−3 events in 1 tonne fiducial volume.



Chapter 4

SiPM Silicon PhotoMultiplier

In this chapter the physical and electronic working principles of a silicon photomulti-

plier (SiPM)are described. The SiPM addresses the challenge of detecting, timing and

quantifying low-light signals down to the single-photon level. It offers a highly attractive

alternative to PMTs offering all the benefits of a solid-state device: low voltage opera-

tion, insensitivity to magnetic fields, mechanical robustness and excellent uniformity of

response.

In the framework of the XENON collaboration, we started a study of the possible use of

a SiPM as an alternative to the current technique for the light collection, which consists

of two arrays of PMTs based at the top and bottom of the TPC, characterised by a low

radioactivity and by a high quantum efficiency.

In the first part of this chapter we briefly describe the development of the SiPM, in

the second one, the performance parameters and noise components are reported. In the

next chapter we will study the LCE (Light Collection Efficiency) for different future

possible configuration for a TPC instrumented with SiPMs.

4.1 The physics of a silicon photodiode

4.1.1 Silicon

Silicon (Si) has been used as a particle detector both for ionizing particles (excellent spa-

tial resolution) and for photon-counting (at single-photon level) devices. It is an indirect

semiconductor and the electrical properties are related to its energy band structure.

Indeed the valence band is filled and the conduction band is only partly filled, depending

on the room temperature.

If impurities are added to a semiconductor (doping), the material characteristics change.

73
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Figure 4.1: The band structure of p and n-type silicon. At absolute zero tempera-
ture the valence band is completely occupied and the maximum energy of the highest
occupied state is called Ev. The conduction band is instead completely empty. The
energy of the lowest unoccupied state is called Ec. The bandgap is the forbidden area
in between. There are no allowed energy states available and the width of the bandgap
is Eg = Ec − Ev. In n-type silicon electrons form the majority charge carriers while

holes are minority charge carriers, whilst in p-type material this is vice versa.

There are two ways of doping; considering that silicon forms four covalent bonds, one

can add donors, atoms of valence five like phosphorus, P, or arsenic, As, which leave

free excess electrons in the conduction band, or acceptors, of valence three, like boron,

B, or aluminium, Al, which leave positive holes in the valence band.

Donors (n-type silicon) and acceptors (p-type silicon) introduce states in the forbidden

region (bandgap) and an increase in doping concentration affords an increase in con-

ductivity (see Fig. 4.1). The Fermi level, namely the energy at which the probability

of occupation by an electron is exactly one half, shifts towards the conduction band for

n-type silicon and towards the valence band for p-type silicon. The extra electrons for

n-type material reside in a discrete energy level inside the gap and can be excited into

the conduction band. For p-type material the extra states are created in the forbidden

region near the valence band, which means that electrons from the valence band are

excited to this extra level. In this case an electron-hole pair is created and the holes

become majority charge carriers for this kind of material.

4.1.2 The p-n junction

A boundary between two types of semiconductor material, p-type and n-type, inside a

single crystal of semiconductor is called p-n junction. The p (positive) side contains an

excess of electron holes, while the n (negative) side contains an excess of electrons. A p-

doped and an n-doped semiconductor is relatively conductive, but the junction between

them can become depleted of charge carriers, and hence non-conductive. This property
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Figure 4.2: Band-gap diagram for zero bias (top), forward bias (middle) and reverse
bias(bottom) of a silicon p-n junction. The depletion zone decreases for forward bias
making the junction conductive and increases for reverse bias making the junction non

conductive.

depends on the relative voltages of the two semiconductor regions. The application of a

voltage across a p-n junction is called bias. The simplest electronic component containing

a p-n junction is a diode, allowing current to flow only in one direction, depending on

the bias:

• Zero bias: for a p-n junction at zero bias (see Fig. 4.2), the Fermi levels EF ,

match on the two sides of the junctions. Electrons and holes reach an equilibrium

at the junction and form a depletion region. The upward direction in Fig. 4.2

represents increasing electron energy. That implies that you would have to supply

energy to get an electron to go up or to get a hole to go down in the diagram.

• Forward bias: To forward-bias the p-n junction, the p side is made more positive,

so that it is ’downhill’ for electron motion across the junction. The depletion region

becomes smaller and an electron can move across the junction and fill a vacancy

or ’hole’ near the junction. It can then move from vacancy to vacancy leftward

(see Fig. 4.2 ) toward the positive terminal, which could be described as the hole

moving right. The conduction direction for electrons in Fig. 4.2 is right to left.

• Reverse bias: To reverse-bias the p-n junction, the p side is made more negative,

making it ’uphill’ for electrons moving across the junction. The depletion zone

becomes bigger, making the p-n junction non-conductive (see figure4.2).
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Figure 4.3: Different doped layers of a reverse biased APD showing the corresponding
electric field strength. The photon absorption, impact ionisation and avalanche forma-
tion are visualized. The electron trajectories are represented by black arrows and the

hole trajectories by red arrows.

4.1.3 Avalanche photodiode (APD)

An avalanche photodiode is a diode with four different layer of semiconductor doped

asimmetrically:

• p+ zone: zone intensely doped with number of acceptors Na.

• intrinsic zone: non doped zone.

• p zone: zone mildly doped with Na acceptors.

• n+ zone: zone intensely doped with Nd donors

An electron-hole pair is generated for example by the absorption of a photon with

sufficient energy in the intrinsic region i (see Fig. 4.3) or by thermal effect. Under the

influence of an external field, the electron drifts to the n+ side and the hole drifts to the

p+ side, resulting in the flow of a current.

The charge carriers can gain sufficient energy in the high field at the p − n+ junction

to generate other electron-hole pair, losing some of their kinetic energy in the process.

This process is known as impact ionization. The charge carriers can accelerate again, as

the secondary electron or hole, and create more electron-hole pairs. After a few transit

times, a competition develops between the rate at which electron-hole pairs are being

generated by impact ionization and the rate at which they exit the high-field region and

are collected. If the magnitude of the reverse-bias voltage is below a value known as

the breakdown voltage, the collection dominates, causing the population of electrons and

holes to decline.
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Figure 4.4: Equivalent circuit of a SiPM. A single pixel is a series combination of
an avalanche photodiode (APD) and a quenching resistor (Rq ). All the pixels are

connected in parallel.

4.1.4 Operation of APDs and SiPMs

Silicon photomultipliers (SiPMs) consists of several pixels connected in parallel; one

pixel is a combination of an APD and a quenching resistor Rq connected in series, as

illustrated in Fig. 4.4. It is operated with an external reverse-biased voltage (Vbias ), that

is up to a few volts larger than the breakdown voltage (Vbr ) of the APD. In this mode

the electrons and holes multiply by impact ionisation faster than they can be extracted.

The overvoltage, ∆V = Vbias−Vbr , is one of the most important adjustable parameters

affecting the performance of the device. The following two subsections describe in detail,

the operation of an APD and a SiPM for Vbias > Vbr.

Avalanche photodiode in Geiger mode When the applied bias voltage Vbias to

an APD exceeds its breakdown voltage Vbr, the APD is said to be in Geiger mode [67].

It is also called Single Photon Avalanche Diode (SPAD), it is able to detect also signal

at low intensity (up to the single photon) and to provide the arrival time of the photon

with excellent time resolution. Geiger-mode APDs are modelled by the circuit shown in

Fig. 4.5, where the main components are the capacitance CJ of the depletion region of

the APD, a switch S, a voltage and a series resistance Rs that is equal to the combined

resistance of the undepleted regions in the APD. The value of Rs depends on the voltage

over the diode since the latter controls the total length of the undepleted regions. Rs is

of the order of several hundred ohms at zero bias and decreases to tens of ohms for bias

around Vbr.
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Figure 4.5: Equivalent circuit of an APD in Geiger mode in series with a resistor Rq.

Figure 4.6: Current flowing through the terminals of the APD as a function of time.
The pulse is asymmetric around t = tmax because of Rq � Rs.

In the absence of light, the switch S is open and CJ is charged to Vbr. The voltage on

the APD is ∆V = Vbias − Vbr above Vbr, and the APD is ready to detect a photon. If

the APD absorbs a photon and the resulting charge carrier triggers an avalanche. The

switch S closes and CJ begins to discharge through Rs, which tends to lower the voltage

across the APD. However, since the APD is biased by a constant voltage source Vbias

, a current begins to flow through the terminals of the APD reaching a steady state

value of ∆V/RS . This current will persist unless Vbias is reduced to Vbr , restoring the

APD to the light-sensitive state. The role of Rq is to extinguish or quench the avalanche

bringing the APD back to Geiger mode, hence the name quenching resistor. The time

dependency of the described current flow through the APD is shown in Fig. 4.6.

The avalanche begins at t = ti . The leading edge of the current pulse increases with

the time constant Rs × Cj and reaches a maximum value of

Imax =
Vbias − Vbr
Rq +Rs

≈ ∆V

Rq
(4.1)

at tmax . At this time the avalanche stops or is quenched because of Rq . After tmax,

Cj recharges to the nominal voltage of Vbias while the current decreases with a time



Chapter 4. Silicon photomultipliers - SiPM 79

Figure 4.7: Equivalent circuit of a SiPM. Every pixel correspond to an APD with a
quenching resistor Rq in series. All the pixels are connected in parallel and operated in

Geiger mode.

Figure 4.8: Transverse section of a SiPM and its trend of electrical field.

constant Rs × Cj . Because Rq � Rs , the leading edge of the pulse is steeper than the

declining edge, making the pulse asymmetric around t = tmax.

SiPM A SiPM is an array of light-sensitive elements, pixels, that are all connected

in parallel and externally biased by a single voltage source, Vbias. Each pixel is a series

combination of an APD and a quenching resistor Rq. By design, all pixels are identical

and all operated in Geiger mode. Since the pixels are connected in parallel and work

on a common load; It is not possible to have any information about which pixel has

detected for example a photon.Fig. 4.7 shows the equivalent circuit of a SiPM; the

dashed rectangle delineates a single pixel. In the absence of light, all the switches are

OFF, and the voltage is Vbias on each APD and is zero on each Rq. If a single APD

absorbs a photon and the process triggers an avalanche, the switch goes to the ON

position, and the current pulse begins to flow through the terminals of the SiPM. The

resistor Rq of that pixel quenches the avalanche, and the pixel is restored back to the

’ready’ state. If two (or more) photons simultaneously trigger avalanches in two (or

more) distinct pixels, the current pulse flowing through the terminals of the SiPM is a

superposition of the current pulses. Instead, if a single pixel absorbs simultaneously two

or more photons, the resulting current pulse is identical to the one produced by a single

photon.

In figura 4.8 is showed an illustrative scheme of the a SiPM structure.
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The drift region, at low electric field, few mm thick, is on the low-resistive substrate p.

The condition for the discharge are verified in the Depletion Layer, between the p+ and

n+ layers, where it is located a high electric field (≈ 3− 5 · 105 V/cm).

The uniformity of the electric field is garanted by a guard-ring around every pixel and

the electrical decouplig is obtained by resistive stripes of polysilicon; all the cell are

connected by Aluminium stripes in order to read the total signal of the detector. The

upper part is coated by a antireflecting cladding to minimize the photon reflection on

the surface. Lastly, a Si02 or SiC layer cover the device in order to protect it. The last

prototypes of SiPM have also an optical trench, made of a nitrade layer to reduce the .

cross-talk (section 4.6.2).

4.2 Gain of a SiPM

The Gain of a SiPM is defined as the amount of charge created for each detected photon.

Values of gains are around ∼ 105− 107. Considering one single pixel, the gain is defined

as the ratio of the total charge crossing the junction when a photon is revealed and the

electron charge q = 1.6 · 10−19 C :

Gpixel =
Qpixel
q

= Cpixel
Vbias − Vbr

q
(4.2)

So it is evident that the gain depends on the breakdown voltage and on the costructive

characteristic of the device.In order to have an accurate knowledge of the signal in

output, the uniformity of the pixels gain is necessary.

The external parameter modifiable to have a bigger uniformity are Vbias and the pixel

dimensions. Considering a signal of time duration t, we calculate the value of the total

output charge of the SiPM as:

Qtot =

∫ t

0

Vout
Rload

dt (4.3)

where Vout is the voltage on Rload. If the charge is uniform, from the total charge emitted

from a single pixel, we can extract the number of pixels on.
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4.3 The Photon Detection Efficiency (PDE)

The Photon Detection Efficiency (PDE) is the probability than an incoming photon with

certain wavelength is detected. PDE is the product of different factors:

PDE = Q.E. · ηtrigger(λ, Vbias, T )ηgeom (4.4)

where ηgeom is the geometrical efficiency, namely the ratio of active surface to total

detector area. Tipically this values is around ∼ 0.3 − 0.6. ηtrigger is the efficiency to

trigger a microcell when an electron hole pair has been created, it depends on the Vbias

and on the wavelength of the photon. QE is the quantum efficiency to create a primary

electron hole pair, it is defined as the average number of electron-hole couples created

by the incident photon conversion in the depletion layer.

With the last prototypes of SiPM, the typical values of detection efficiency are from 10%

to 20%.

4.4 Timing Resolution

The time response of a SiPM depends on four differen process that happens in the single

pixel when a photon is detected.

• Holes and electrons move in the drift region with a similar velocity (due to the

high electric field), the time for their collection, called collection time is of the

order of 50 ps.

• The breakdown time is the time that occurs for the avalanche to bring all the

juction in breakdown.

• Time of avalanche propagation, depends on the region of the photon interaction.

The total propagation time is in the order of hundreds of picoseconds.

• The Drif Time of the carriers generated outside the active area, is the time they

need to reach the drift area. Outside the depleted region the electric field is much

more lower and consequently the drift time is slower and can lead to a time delay.
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4.5 Dynamic Range

The dynamic range of a SiPM, namely the optical signal level range over which the

detector provides a useful output, extends from the lowest signal level detectable to the

highest signal obtained when every microcell reveals simultaneously incident photons.

In this condition the output signal is saturated and it is not possible to reveal any other

photon until one or more pixels return in Geiger mode, after the necessary hold-off time.

At this point, the output signal completely saturates, since no more microcells are

available to detect incoming photons until some of the microcells have recovered back

to their sensitive (charged) state.

The dynamic range of an SiPM is therefore a function of the total number of microcells

and the PDE of the device, which is in turn a function of the bias voltage Vbias and

wavelength of the incident photons.

The number of microcells fired as a function of the number of incident photons can be

approximated by the expression:

Nfired(M,V, λ) = M

(
1− e

−PDE(λ,Vbias)Nph
G

)
. (4.5)

where Nfired is the number of microcell fired, Nph is the number of incident photons

and M is the number of SiPM microcells.

The expression also assumes that the incoming photons are uniformly distributed across

the surface of the SiPM.

At low optical signal levels the SiPM photocurrent is proportional to the incident optical

power, giving a linear detector response. As the optical power increases the SiPM

photocurrent begins to deviate from linearity due to the limited number of microcells,

and finally saturates. [68].

4.6 Noise components of a SiPM

Noise in SiPMs is represented by output current pulses produced in absence of incident

light. A SiPM generates three different noise components: dark noise also called dark

counts (DC), optical cross-talk (CT) and after-pulses (AP).

4.6.1 Dark count rate

The main source of noise in an SiPM is the dark count rate (DCR), which is primarily

due to thermally generated electrons that create an avalanche in the high field region.

The signals resulting from the breakdown of the cell, due to either photoelectrons or
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thermally generated electrons, are identical. Therefore, these electrons form a source

of noise at the single photon level. If a threshold can be set above the single photon

level, false triggers from the noise can be avoided, but the dark counts will always form

a contribution to the measured signal. [68]. The physical process for the dark rate is

due to the Silicon structure and it is exlained by the Shockley-Read-Hall (SRH) theory:

the electron in transition between bands passes through a new energy state (localized

state) created within the band gap by an impurity in the lattice; such energy states

are called deep-level traps. The presence of recombination center is particularly due to

imperfection in the lattice, which in turn are caused by impurities of the semiconductor

or after an exposition to high energy radiation. The temperature plays an important role

in the dark rate, in fact it decreases with the temperature from the order of MHz/mm2

at room temperature to less than 1kHz/mm2 at 100K [69].

4.6.2 Crosstalk

When undergoing an avalanche, carriers near the junction emit photons as they are

accelerated by the high electric field. These photons tend to be in the near infrared

region and can travel substantial distances through the device.

Typically 2 · 105 photons are emitted per electron crossing the junction. These photons

can travel to neighboring microcells and may initiate a subsequent Geiger avalanche

there. The crosstalk probability is the probability that an avalanching microcell will

initiate an avalanche in a second microcell. The process happens instantaneously and,

as a consequence, single photons may generate signals equivalent to a 2, 3 or higher

photoelectron event. The optical crosstalk probability is a function of SiPM over-voltage

and the distance between neighboring microcells, and can be estimated by the ratio of the

count rate at the second photoelectron level to the count rate at the single photoelectron

level.

An other type of cross talk is the electrical cross talk, which happens when the carriers

generated during the avalanche propagate across the p+ region, which is common to al

the cells. At this point they can be absorbed from neighbouring pixels and trigger new

avalanches.

The cross talk can be diminuished or increasing the distance between the active zones

of two pixels or insulating the microcell with an optical trench made with an oxide.
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Figure 4.9: Primar pulse and afterpulsing.

4.6.3 AfterPulsing

After-pulsing is due to charge carriers, trapped in silicon defects during the avalanche

multiplication, that are released later or during the recharge phase of the SiPM pixel.

The net effect is that a new current pulse is observed on the tail of the original pulse,

see Fig. 4.9.

After-pulse probability increases more than linearly with the overvoltage. The amount

of charge released in an after-pulse depends on the time delay ∆t between the primary

and secondary avalanches.The after-pulse contributes to the noise only if the photon is

relaxed after the hold-off time, because during it, the electric field is not high enough

to produce an avalanche. Consequently an efficient way to limit the afterpulsing is to

increase the hold-off time with very high quenching resistors.
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LCE study for SiPM future

application in XENONnT

XENON1T has a design sensitivity for spin independent WIMP nucleon cross section

of 1.6 · 10−47 cm2, a factor 100 below the XENON100 best limit. To achieve another

order of magnitude in sensitivity, the XENON collaboration plans to build and install

inside the same XENON1T cryostat a new detector with about three times the active

LXe mass and with even lower background. The new experiment, named XENONnT,

will use the same shield, cryogenic plants and DAQ system of XENON1T.

With a LXe target mass of ∼ 6 tons, compared to the current 2 tons, the sensitivity to

spin-independent WIMP-nucleon elastic scattering cross sections can reach the value of

σSI = 1.6 · 10−48 cm2 in a 20 t · y exposure [70].

XENONnT won’t only increase the WIMP sensitivity by an order of magniture, but it

will also probe with higher statistics a potential signal seen by XENON1T.

Furthermore it will open the possibility to probe other physics channels, such as the

detection of solar 8B neutrinos via coherent neutrino scattering or the search for the

neutrinoless double beta decay in 136Xe.

For the achievement of this upgrade, an intense R&D is carried out. Different solutions

are explored, such as different geometries for the TPC and different mechanisms for the

light collection.

The parameter that measures the light collection is the LCE (Light Collection Efficiency).

It is defined as the fraction of emitted photons reaching the PMTs. It depends on the

position of the interaction in the active volume and on the optical properties of LXe and

of the materials around it.

The study of the LCE has been performed with the GEANT4 tookit.

85
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In this work we study the possibility of using SiPMs for the light collection and we

provide an estimation of the reachable LCE.

We first study a configuration with SiPMs only in the bottom and top of the TPC

and secondly a TPC with also a lateral coverage of SiPMs. The improved LCE is then

translated in the capability to detect low energy nuclear recoil, lowering thus the energy

threshold of the detector. The sensitivity, expressed as number of WIMP interaction

above threshold is then estimated.

5.1 Optical photons and their interactions

The search of dark matter in the XENON experiments relies on the detection of the

interaction of a WIMP with a xenon nucleus. Its detection depends on the collection of

the light produced in the interaction. The photon, emitted in the process that follows

such a collision, has a wavelenght of λ ∼ 178 nm, in the ultra-violet range.

In GEANT4, optical photons (including also UV photons) are treated as a class of

particle distinct from their higher energy gamma cousins. This implementation allows

the wave-like properties of electromagnetic radiation to be incorporated into the optical

photon process.

The GEANT4 catalogue of processes at optical wavelengths includes refraction and

reflection at medium boundaries, bulk absorption and Rayleigh scattering. Each of

these phenomena is described with a specific parameterization in the code.

We briefly recall each process and how it is coded in GEANT4:

Reflection The most frequent process inside the TPC for optical photons is the re-

flection. In GEANT4, reflection at an interface between two adiacent media is treated

differently according to the materials. For the simple case of a perfectly smooth interface

between two dielectric materials, all the user needs to provide are the refractive indices

of the two materials stored in their respective G4MaterialPropertiesTable. In all other

cases, the optical boundary process relies on the concept of surfaces. The information is

split into two classes. One class, in the material category, keeps information about the

physical properties of the surface itself, and a second class, in the geometry category,

holds pointers to the relevant physical and logical volumes involved and has an associ-

ation to the physical class. The former is called a border surface while the latter is

referred to as the skin surface. This second type of surface is useful in situations where

a volume is coded with a reflector and is placed into many different mother volumes [64].
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Rayleigh Scattering The Rayleigh scattering is the elastic scattering of light by

particles much smaller than the wavelength of the radiation. Rayleigh scattering results

from the electric polarizability of the particles. The oscillating electric field of a light

wave acts on the charges within a particle, causing them to move at the same frequency.

The particle therefore becomes a small radiating dipole. We see the radiation as scattered

light [64].

Absorption An other important process for optical photon is the absorption. It deter-

mines the lower limit in the window of transparency of the radiator. The implementation

in the code of bulk absorption, G4OpAbsorption, is trivial. The process merely kills the

particle. The procedure requires the user to fill the relevant G4MaterialPropertiesTable

with empirical data for the absorption length, which is the average distance traveled by

a photon before being absorbed by the medium. In LXe the value of the absorption

length is set to λabsorption = 50 m [64].

Among the initial tests to understand the behaviour of optical photons, we looked at

the distribution of arrival times on the PMTs of photons generated in different positions

of the XENON1T TPC.

We defined a small cylinder with radius 0.1 mm and half height of 0.1 mm. We placed

this cylinder in six relevant positions in the TPC.

Photons were generated isotropically from the cylinder. The center of each starting

point is indicated in the table 5.1. The origin of the Z-axis is at the the top of the active

Bottom edge Bottom center Top edge Top center Middle edge Middle center
(r, z) [mm] 478, -968 0, -968 478, -3 0, -3 478, -480 0, -480

Table 5.1: Position of the center of the cylinder used for the generation of photons.

volume.

In Fig. 5.1 we show the distribution of the arrival time of photons on the bottom PMT

array (red line) and top PMT array (blue line).

The main differences on arrival times for the optical photons are due to the position

along the vertical axis of the TPC. Photons generated at the bottom of the TPC have

a short path in LXe before reaching the bottom PMT array and consequentely their

arrival times are short. Only a small fraction of them reaches the top PMT array (Fig.

5.1(a)). The opposite happens if photons are generated in the top part of the TPC:

most of them are detected in a short time by the upper PMTs array, but a consistent

part of photons reaches the lower array thanks to the total internal reflection between

the LXe and the GXe. (Fig. 5.1(c))

We see the effect of reflection also in the time arrival distribution of photons generated

in the middle part of the TPC. The majority of photons is collected by the bottom
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(a) Bottom left (b) center left

(c) top left

Figure 5.1: Distribution of the arrival time of photons on the bottom PMT array
(red line) and top PMT array (blue line). In Black the total arrival time of photons.
Photons are generated from a cilynder placed in the bottom left side of the TPC in

5.1(a), in the certer left side in 5.1(b) and in top left side in 5.1(c).

PMT array, after their reflection at the LXe/GXe surface. We see indeed that the tail

of the distribution for the total arrival time is larger than in the two previous cases (Fig.

5.1(b)).

5.2 The XENONnT geometries

XENONnT is conceived as a fast upgrade of XENON1T: the infrastructure has been

designed for a rapid deployment of an upgraded detector.

The muon veto for XENONnT will be the same one currently used, furthermore the

support structure and levelling systems of XENON1T were designed to accomodate also

an enlarged detector and the cryogenic system is able to handle an additional heat load.

The GXe purification system is modular and scalable, and the Kr distillation column

can fulfill XENONnT 85Kr requirement. Currently the LXe storage capacity is of 7.6

tons, which is enough for the ∼ 6− 7 tons hypothesized for XENONnT.

The current dimension of the outer cryostat of XENON1T leaves the possibility of an
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Figure 5.2: Sketch of the proposed inner vessels inside the outer cryostat.

easy upgrade of the experiment in terms of dimensions of inner cryostats and TPCs. A

larger TPC implies a larger fiducial volume of LXe and the capability to increase the

reduction of external backgrounds.

At the beginning of the work for this thesis, there were still various possible options for

the geometry of the XENONnT TPC, named Realistic, Optimistic, LZ and Draft-Design.

The Realistic and Optimistic geometry The Realistic and Optimistic scenario

were the first two hypotised geometries for the XENONnT TPC. Both of them are based

on the dimensions of the XENON1T outer cryostat, and they are projected to fit into

it without any modification. The final XENON1T cryostat design constrains the inner

diameter of the outer cryostat to 1620 mm and limits the maximum possible increase of

the TPC length to 357 mm (the space available below the XENON1T inner cryostat).

The actual TPC in XENON1T has a radius r = 479.25 mm and and height of h = 970

mm.

The dimensions of the TPCs in these two preliminary geometries are shown in Table 5.2

and a sketch of them is presented in Fig. 5.2.

Table 5.2: Table of the dimension of the possible upgrade of XENON1T TPC in the
Realistic and Optimistic geometry.

Scenario Realistic Optimistic

r (mm) 616.0 668.0
h (mm) 1232.0 1281.0

A larger TPC involves also a different number and pattern of the PMTs in order to

cover the surface as much as possible. The number of the R11410 PMTs increases from
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the current 248 to 394 (195 in the bottom plate plus 199 in the top one) in the Realistic

option, and to 452 in the 0ptimistic one (222 in the bottom and 230 in the top).

We report in Table 5.3 the structural details of the two geometries.

Table 5.3: Reference dimensions and (G4) implemented dimensions of XENONnT
detector parts.

Realistic Optimistic
ID outer cryostat 1620 mm 1620 mm
Outer cryostat cylinder height 1687 mm 1687 mm
Inner cryostat ID 1350 mm 1474 mm
Inner cryostat cylinder height 1687 mm 1687 mm
Bell diameter 1300 mm 1384 mm
Bell height 248 mm 248 mm
TPC diameter 1232 mm 1336 mm
TPC height 1232 mm 1282 mm
Liquid Xe diameter 1350 mm 1350 mm
Liquid Xe height 1232 mm 1282 mm
TPC active radius 616 mm 668 mm
Gate Z position 553 mm 568 mm
Cathode Z position -678 mm -714 mm
Z position top surface bottom PMTs -737 mm -772 mm
Z position top LXe surface above bell 854 mm 'mm
Z position bottom LXe surface below TPC -934 mm ' mm
Total number of PMTs 394 (195 bottom, 199 top) 452 (222 bottom, 230 top)

A direct competitor of the XENONnT experiment has been proposed in the US with

the name of LZ (as the proponents come mainly from the previous LUX and ZEPLIN

experiments), foreseen to be realized by 2020 in the Homestake underground laboratory.

The LZ geometry In order to compare the performances of XENONnT direcly

with LZ, and to check the results claimed in their Conceptual Design Report [71], we

implemented also a geometry similar to the LZ one. This geometry has a TPC that

resembles the dimension of the TPC of LZ, it has a radius of r = 728 mm and a height

of h = 1456 mm.

Due to the bigger dimension, this TPC doesn’t fit the actual outer cryostat making this

possibility not quick and easy to install. The number of hypotised PMT is 476 (223 in

the top plate and 253 in the bottom one).

In the Fig. 5.3 we show a scheme of the three options.

The Draft-Design geometry Recently the collaboration fixed the final geometry

for the XENONnT proposal, named here ”Draft-Design”. This geometry maximizes

the dimensions of the TPC, with the constrain to fit the actual external cryostat. It is

slightly larger that the Optimistic one, and with a longer drift length in the TPC. The
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(a) Realistic scenario (b) Optimistic scenario

(c) alaLZ scenario

Figure 5.3: In blue the Cryostat; in red the PMTs; in yellow the PTFE; in purple
the active LXe volume; in black the LXe below the cathode, and outside the TPC; in
green the position of the neutron capture in a potential Gd-loaded LS buffer outside

the outer cryostat.

number of top PMTs is 223, while the number of bottom PMTs is 253, for a total of

476 PMTs.

The main geometrical characteristics of the Draft-Design geometry are reported in Table

5.4.

Draft-Design

TPC diameter (mm) 1368
TPC height (mm) 1446
Active LXe (t) ∼6
Total LXe (t) ∼8
Cryostat (kg) 1600
PTFE (kg) 170
Total number of PMTs 476 (top 223, bottom 253)

Table 5.4: Geometric characteristics of the Draft-Design geometry.
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5.3 The XENONnT Monte Carlo simulation

This work is performed on the XENONnT Monte Carlo simulation based on the GEANT4

toolkit.

In GEANT4 the tracking of the various particles is divided into steps, whose length

is automatically chosen according to the type and energy of the particle, and to the

characteristics of the medium. For each step of all the particles inside the LXe target,

we record the position, time, deposited energy, particle type and the process responsible

for the energy loss.

In order to cross check the initial results, we started this work with the calucation of

the Light Collection Efficiency (LCE) for XENON1T and compared it with the results

published in [61].

Secondly we extended the analysis to XENONnT: we improved various parts of the sim-

ulation code implementing in particular the various reflective components in the TPC, in

order to increase the LCE. Lastly we changed the light collection sensors in XENONnT,

from the current option of PMTs to a potential improvement using SiPMs with various

coverage inside the TPC.

5.3.1 LCE in XENON1T

The first exercise to learn confidence with the code was the reproduction of the LCE

map, namely the LCE as a function of the position in the TPC, for the XENON1T

experiment. The parameters used in the simulation have been studied through several

measurements of the optical properties of LXe throughout the years [61].

For the refractive index it was used the average value of 1.63 and the Rayleigh scattering

length, which affects the mean free path of photons, was set to 30 cm. Another parameter

of interest is the absorption length which mostly depends on the amount of impurities

present in the LXe (O2 and H2O) and is therefore dependent on the performance of the

purification system. We consider a conservative value of 50 m.

The quartz of the PMT window is a material whose optical properties must be properly

defined, as it governs the amount of light transmitted to the photocathode. We chose a

refractive index of 1.59 for a wavelength of 178 nm.

The photocathode is modeled as a fully-opaque thin layer, placed on the inner side of

the PMT window where photons are absorbed. Apart from the cut-outs needed to host

the PMTs, the inner surface of the TPC is entirely made of PTFE in order to reflect as

much VUV light as possible. We assumed a 99% PTFE reflectivity in this study.

The layer of GXe located between the LXe and the top PMT array is characterized by
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Figure 5.4: Map of the LCE for XENON1T.

a refractive index equal to 1.

Lastly, there are five electrodes used to define the electric field within the TPC. Four

of them are hexagonally etched meshes: the top and bottom screening meshes and gate

meshes have an optical transparency of 94%, while that of the anode is 93%. The

cathode is made of thin wires and presents an optical transparency of 96%.

In this study, photons are generated uniformly and isotropically in the full volume of

the TPC, and the LCE is calculated for each individual R2, Z pixel, using the axial

symmetry of the TPC.

A map of the variation of LCE inside the TPC is shown in Fig. 5.4.

Given the internal reflection occurring at the liquid/gas interface, the LCE is higher

close to the bottom PMT array, in particular in the center of the TPC, and decreases

when moving closer to the anode due to the increase in path length, leading to absorption

of photons.

The average LCE value obtained is: 36.73% in good agreement with the results of [61].

5.3.2 LCE in XENONnT

The starting point of this work was a rough (not optimized for the optical simulations)

Monte Carlo simulation of the XENONnT detector with a LCE values of ∼ 8%. From

a quick comparison with the value of LCE in XENON1T, which is ∼ 37%, it is obvious
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(a) A x-y view of the bottom of the TPC, in
red the PMTs windows and in black the Bot-
tom Reflector Plate.

(b) Side view: A z-r view of a PMT and a re-
flector plate. The outer ring in visible in red
at z = 638mm, in blue the reflector plate. The
thickness of the bottom (and top) side reflec-
tor is 1mm. The PMT has a ring to keep it in
position, the outer radius of which, r = 38.75
mm, is bigger than the radius of the pmt win-
dows, r=32mm. The ring is few mm under the
PMTs windows therefore the PTFE reflector
is made thin enough not to overlap with the
ring.

that many photons are lost during their propagation from the generation point to the

PMT arrays.

In the Physics List of GEANT4, which is the class collecting all the particles and physics

processes, it is possible to activate the verbosity of an event. In this way, the output file

reports all the information about the propagation of the particles generated, and in our

case, for each photon, which intecration it undergoes to.

I noticed that the main reasons for the poor LCE were, at first, the loss of photons in

the lateral walls of the TPC, secondly the loss of photons in the space amongst PMTs

and lastly the absorption of photons by the grids.

The loss of photons in the lateral walls of the TPC was solved with the introduction of

an optical surface between the LXe and the TPC wall. When a photon reaches the edge

of the TPC, if a reflecting surface is present, it is reflected and keeps travelling in the

LXe and it is not lost outside the detector.

In this way, the possibility of the photon detection by a PMT increases, and the LCE

as well.

Similarly, reflectors plates to cover the surface between the PMTs windows were missing.

I defined, on the top and bottom of the TPC, two reflecting surfaces, called respectively

Bottom Reflector Plate and Top Reflector Plate. The lateral, bottom and

top side reflecting surfaces are made of PTFE.

These reflectors cover the surface between the PMTs windows. An image of the bottom

of the TPC with the reflector among the PMTs, together with a lateral view of a PMT

and the reflector can be seen in Fig. 5.5(a) and Fig. 5.5(b).

The last correction to the XENONnT code, was the proper value of the transparency of
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the five electrodes used to apply the electric field within the TPC.

The transparency enters in the definition of the absorption length, namely the distance

λ inside a material where the probability that a particle has not been absorbed has

dropped to 1/e. The Absorption Length is defined as:

AbsorptionLength =
Grid Thickness

−log(Transparency)
(5.1)

The values of transparecy given to the grids are reported in Tab. 5.5.

TopScreeningMesh BottomScreeningMesh AnodeMesh GateMesh CathodeMesh
Transparency 0.945 0.945 0.929 0.945 0.96

Table 5.5: Values of trasparency given to the grids.

These optimitation of the GEANT4 simulation code for XENONnT were done for the

four geometries described in section 5.2. In Table 5.6, I report the value of LCE for each

of them and, as a mean of comparison, the LCE value in XENON1T.

geometry Realistic Optimistic AlaLZ Draft-Design XENON1T
LCE 40.85% 40.57% 39.99% 39.01% 36.73%

Table 5.6: LCE values for XENONnT in the four geometries and as a comparison
XENON1T LCE.

From Table 5.6 we see that the four versions of the XENONnT geometry presents

very similar values of the LCE. The difference in LCE values between XENON1T and

XENONnT lies in the different implemented structure of the PMTs. In XENON1T,

the real detector and its reconstruction, the PMTs are surrounded by a small ring to

keep them in position. The ring is opaque, thus every time a photon hits this ring it is

absorbed.

In the XENONnT detector reconstruction, this ring is not present, so the reflecting sur-

face is larger. Consequently the number of photons eligible for the collection is larger,

leading to a sligthly higher LCE.

In Fig. 5.5, the LCE map for the geometry Draft-Design, which is the definitive geometry

foreseen by the XENON collaboration.

5.4 Simulation of a next generation TPC

A promising replacement candidate for the PMT is the SiPM, since its technology is

rapidly developing and may become suitable for the read-out of large detectors, offering
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Figure 5.5: LCE map for the Draft-Design geometry.

very low radioactivity levels, compact geometry and low operation voltages. They would

allow an increase of the photosensitive area of the TPC, and might be suitable for a 4π

coverage, since they might be operated inside an electric field. Commercially available

SiPMs operate well at LXe temperatures and are comparable to the state of the art of

PMTs, having photodetection-efficiency (PDE) values of ∼ 10-25% at 178 nm and gains

of a few 106 [72].

A Monte Carlo simulation of the XENONnT TPC explores the possibility of PMTs

replacement with SiPMs.

At first, we fully covered the top and bottom part of the TPC with SiPM, replacing the

area previously filled by PMTs and PFTE reflector. Secondly, we added SiPMs also to

the lateral walls of the TPC.

To simulate the coverage of the top and bottom plates of the TPC with SiPMs, we

built a SiPM surface with the same radius of the PTFE reflector. For example in the

Draft-Design the radius of the bottom ssurface is r = 684 mm. The photocathode is

implemented as a completely opaque disk, so that every photon reaching its surface is

absorbed and available to be converted in the signal.

In Table 5.7, we report the values of LCE for the four different geometries obtained in

this first step.

geometry Realistic Optimistic AlaLZ Draft-Design
LCE 60.81% 60.46% 59.57% 59.77%

Table 5.7: LCE values for XENONnT with SiPMs in the bottom and top face of the
TPC.
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Figure 5.6: LCE map for the geometry Draft-Design. Optical photons were generated
inside the TPC and collected by two surfaces, on top and bottom of the TPC. They

mimic a coverage with SiPMs.

In Fig. 5.6 we show the LCE for the Draft-Design geometry with the implementation

of SiPMs on the top and bottom face of the TPC.

The are various type of SiPMs and we study, for instance, a possible implementation

with the Hamamatsu 12× 12 mm (2 SiPM 10943- 3186), which is an array of 4 separate

6 mm, vacuum ultraviolet sensitive SiPMs, merged in one device [72]. Each 6 × 6 mm

SiPM (segment) has its own 2 pins (cathode and anode). This gives the possibility

of reading every segment separately or in various combinations. If the single read-out

method would be employed inside a large-volume time-projection chamber, the high

number of channels would be a disadvantage: every channel would need cabling, an

amplifier and an ADC input channel. This provides the motivation to find a suitable

method of reading more segments per channel [72]. For this reason, the SiPM has been

tested by the XENON collaboration either in a single channel read out either in a multi-

channel read out.

The read out of every single channel is not possible in term of electronics, every channel

would need cabling, an amplifier and an ADC input channel and, considering the dimen-

sion of the TPC and of the single SiPM, that would involve a huge amount of cables. In

a dual-phase TPC, the xy-reconstruction of an event is performed by using the informa-

tion of the light intensity distribution across the photosensor array. A simulation of the

XENON1T TPC, using a neural network for the position reconstruction trained with

5 · 103 photons, showed a typical resolution of 4.5 mm in the x-y plane [73]. Considering

that, the area of the XENON1T PMTs is about 30 times bigger than the area of all

the four segments of the given SiPMs, in XENONnT there will be no need to read the

segments separately. The required xy-position resolution of a few mm allows to combine
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more SiPM segments in one channel, reducing the total number of read out channels [72].

The values of LCE obtained for the various geometries must be corrected by the Fill

Factor, namely the sensitive area per channel ratio. We calculate the active area for a

tile made of 4 (6 × 6 mm) SiPMs over the total area. The fill factor of a single SiPM

(F.F.SiPM ) is :

F.F. =
Aactive
Atotal

= 61.8% (5.2)

Assuming to cover completely the top and bottom side with SiPM, the value of the LCE

corrected by the fill factors are reported in Table 5.8.

geometry Realistic Optimistic AlaLZ Draft-Design
LCE 37.58% 37.36% 36.81% 36.93%

Table 5.8: LCE values for XENONnT with SiPMs in the bottom and top face of the
TPC.

These values are of the same order of magnitude of the LCE obtained in the simulation

of the XENON1T TPC instrumented with PMTs. An advantage of the use of a smaller

detection module, such a tile of SiPM which is ∼ 17 times smaller than a PMT, is that

the borders of the TPC can be covered better.

In XENON1T the outer ring of PMTs oversteps the external limit of the TPC, in this

way it is possible to reduce the loss of light at the borders. Nevertheless, we see that the

LCE value at the border is lower than in the middle (see Fig.5.4). In the implementation

with SiPM, as seen in Fig. 5.6 for the Draft-Design, the dependence of the LCE value

with r2 is smaller. We obtain thus an higher resolution even for events at the border.

The next step was to simulate a 4π SiPMs coverage. For this purpose we added a SiPM

surface also to the lateral walls of the TPC.

One of the advantages of SiPMs is that they can work also inside high electric fields.

PMTs instead, when coupled with a high electric field, don’t work properly.

With such an implementation, the sensible area grows considerably and consequently

the LCE.

In Table 5.9 we report the values of LCE, corrected for the Fill-Factor, for a TPC covered

entirely of SiPM. In Fig. 5.7 we show the LCE map for the geometry Draft-Design with

geometry Realistic Optimistic AlaLZ Draft-Design

LCE 56.80% 56.54% 55.08% 56.39%

Table 5.9: LCE values (corrected by the Fill-Factor) for the XENONnT TPC covered
by SiPMs in the four different geometries

the implementation of SiPMs also in the lateral walls of the TPC. We see that a 4π
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Figure 5.7: LCE map for the geometry Draft-Design. Optical photons were generated
inside the TPC and collected by three surfaces, on top and bottom of the TPC and on

the lateral walls.

coverage shows a LCE value larger at the center of the TPC. Considering that we use

the internal part of the LXe as a fiducial volume, this is a very promising result.

5.5 NR Energy threshold and LCE

The value of the LCE is crucial if we want to estimate the energy threshold to a nuclear

recoil interaction.

To convert the energy deposited in the active LXe, Ed, into light S1 and charge S2 signal,

we first need a model which predicts the amount of generated photons and electrons.

The light yield Ly(r) is defined as the specific number of detected photoelectrons (PE)

per keV, and it is traditionally referred to the 122 keV γ emitted by a 57Co source, at

zero electric field. The average photon yield, Phy, of this γ line is 63.4 ph/keV. For

nuclear recoil (NR), the photon yield is parameterized in terms of the so-called relative

scintillation efficiency in LXe, Leff . Similarly to the light yield, Leff is defined with

reference to Phy.

The average number of photons producted in a nuclear recoil interaction is:

NNR
ph = Ed · Leff · Phy · SNR (5.3)

where SNR = 0.95 is the light yield suppression factor for NR, due to the electric field.

Photons are converted into the S1 signal by applying the position-depedent light col-

lection efficiency fPE(r), which is a function of the LCE. We compare the LCE of a

TPC instrumented with PMTs on the top and bottom plate, and of a TPC with a 4π
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Figure 5.8: NR energy vs S1. The red line represents a LCE value of 36.93%
(XENON1T), the black line a value of 59.39% (XENONnT). The blue vertical line

is set at 3 pe, the lowest S1 detectable.

coverage with SiPMs. The LCE values for the Draft-Design geometry of XENONnT in

the two scenarios are derived in section 5.4.

If the light is collected by PMTs, the probability for an emitted photon to be converted

in a photoelectron signal, fPE , (r) can be expressed as:

fPE(r) = LCE(r) · PE ·QE (5.4)

where QE is the average quantum efficiency of the PMT (∼ 35%) and CE is the average

collection efficiency from the photocathode to the first dynode (∼ 90%).

If the light is collected by SiPMs, the fPE(r) becomes:

fPE(r) = LCE(r) · PDE (5.5)

where PDE is the photon detection efficiency, which is defined in 4.3. Typical values of

PDE are in the range ∼ 10− 20%. We assume a value of PDE of 20%.

The LCE value, for the TPC instrumented with PMT, is 36.93%. This value is lower than

the LCE value (corrected by the Fill Factor) in the Draft-Design with the 4π coverage

of SiPMs, 56.39%. Of course, with a larger LCE value, more photons are converted into

the S1 signal, and the experiment becomes thus sensitive to lower energy deposit.

In Fig. 5.8 we show the relation between the S1 signal and the energy deposited. So far

in the XENON experiments we required to have at least 3 different PMTs with 1 pe,

so the minimim S1 signal value accepted in the data analysis is 3 pe. We draw a blue

vertical line in correspondence to this value of the S1 threshold.
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Figure 5.9: Expected wimp as a function of the NR enery for different values of
masses.

With a 3 pe S1, the value of the nuclear recoil energy threshold for different values of

LCE are reported in Table 5.10.

LCE NR energy threshold [keV]

36.93% 4.22
56.39% 3.05

Table 5.10: NR energy threshold [keV] for different LCE values

We can now estimate the improvement in the expected number of WIMP interactions due

to the capability to lower the detector threshold. In Fig. 5.9 we show the NR spectrum

of the WIMP interaction for different WIMP masses, together with the two energy

thresholds obtained in Table 5.10. In Table 5.11 we present the number of interactions

with the same two thresholds, and their ratio. They are calculated assuming a WIMP-

nucleon cross section σ = 1 · 10−46 cm2, and they are expressed as events per tonne

per year. In particular, for low mass WIMP, the increase in the number of detected

interactions is significant, allowing for a large improvement in sensitivity to study the

low mass WIMP region.

WIMP mass [GeV] Thr = 3.05 keV Thr = 4.22 keV Ratio

6 0.0325 0 /
8 3.73 0.421 8.84
10 19.3 5.73 3.37
20 168 120 1.4
50 277 246 1.13

Table 5.11: Expected number of interaction for different NR energy threshold. They
are calculated assuming a WIMP-nucleon cross section σ = 1 · 10−46 cm2, and they are

expressed as events per tonne per year.
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5.6 Conclusions

SiPMs look to be very promising devices for next generation noble liquids dark matter

search experiments. Their stronger advantage is the possibility of working also inside

high electric fields.

This allows the instrumentation of the lateral walls of the TPC, offering an increase of

20% on the LCE value. The LCE is one of the crucial parameters for the formation of

the signal S1. We showed that with a 4π TPC coverage of SiPMs we can reach a energy

threshold for NR of about 3 keV. Considering low mass WIMP, we estimate that the

improvement in the total number of detected events can be about a factor 9 for a 8 GeV

WIMP, increasing significantly the sensitivity in the search for such a feeble signal.



Conclusions

The question about the composition of the Universe is today one of the most challenging

open questions in physics. Despite the scientific achievement of the last decades in the

astrophysical and cosmological fields, the majority of the Universe energy content is still

unknown. Experimental results, based both on the direct and indirect detection of Dark

Matter have not yet confirmed any positive signal from such a kind of matter. Due to

the very small cross section for WIMP interactions, the number of expected events is

very limited (∼ 1 ev/tonne/year), thus requiring detectors with large target mass and

low background level. The use of double phase, LXe/GXe, TPC represents one of the

most promising techniques for this kind of search.

XENON1T, currently in data acquisition at LNGS, is the first tonne scale LXe-based

detector, its aim is to detect a WIMP-nucleon interaction. With XENON1T, we aim

to reach a sensitivity for the spin-independent WIMP-nucleon interaction of 1.6 · 10−47

cm2 in 2 t·y, which requires a background reduction by two orders of magnitude with

respect to the XENON100 detector. The XENON1T TPC is surrounded by an active

veto system to tag muons and muon-induced backgrounds. The Muon Veto consists of

a water Čherenkov detector of ∼ 10m height and diameter, equipped with 84 8-inch

photomultipliers and cladded with a reflective foil.

We studied different trigger configurations of the Muon Veto and we compared the

results with a Monte Carlo simulation, obtaining a very good agreement. This gives the

opportunity to safely use the simulation to study and compute the Muon Veto tagging

efficiency. With the trigger requirements used in the Muon Veto during the current

XENON1T Science Run 0 (8 PMTs in coincidence, in a time window of 300 ns, with a

threshold of 1 pe) we obtain a tagging efficiency of ηµ = 99.5% for crossing muon events

and ηshower = 43% for showering muons events.

Given these efficiencies, it is possible to calculate the expected background in the Science

Run 0, which corresponds to 1.3 · 10−3 events in 1 tonne fiducial volume, practically

negligible.

The future upgrade of the experiment, named XENONnT, is already forseen by the

collaboration. It will be conceptually identical to XENON1T but with a larger TPC and
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bigger xenon target (∼ 6 t), to improve the WIMP sensitivity by an order of magnitude.

In this work a preliminary study on the geometries of the XENONnT TPC was carried

out, together with the analysis of a possible replacement of PMTs with SiPMs.

The replacement with SiPMs allows the instrumentation also of the lateral walls of the

TPC, offering an increase of 20% on the LCE value. The LCE is one of the crucial

parameters for the formation of the signal S1. We showed that with a 4π TPC coverage

of SiPMs we can reach a energy threshold for NR of about 3 keV. Considering low mass

WIMP, we estimate that the improvement in the total number of detected events can

be about a factor 9 for a 8 GeV WIMP, increasing significantly the sensitivity in the

search for such a feeble signal.
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