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Abstract

Classical General Relativity predicts the existence of space-times with non-trivial casual struc-
tures known as Black Holes. A classical black hole could form by the gravitational collapse of
a compact object, which should end into a singularity covered by a (sharply defined) horizon,
with a size equal to the gravitational radius of the matter source. In a quantum theory, the
matter source is described by a quantum state, and one can correspondingly describe its grav-
itational radius by means of a Horizon Wave-Function. The resulting space-time is therefore
expected to be ”fuzzy”, and so will be the geodesic motion of test particles. Orbits of massive
particles as well as trajectories of light rays around such fuzzy gravitational sources are here
analysed in details using both analytical approximations and numerical calculations. The un-
certainty in the time of radial free fall and the effects on the out-going radiation emitted by
the collapsing matter will also be presented.
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Sommario

La Relativitá Generale classica predice l’esistenza di spazio-tempi con strutture causali non
banali conosciute come Buchi Neri. Un Buco Nero classico si potrebbe formare da un collasso
gravitazionale di un oggetto compatto, il quale dovrebbe terminare in una singolaritá coperta
da un (ben definito) orizzonte, di grandezza uguale al raggio gravitazionale della sorgente di
materia. In una teoria quantistica, la sorgente di materia é descritta da uno stato quantistico,
e corrispondentemente é possibile descrivere il suo raggio gravitazionale tramite la funzione
d’onda dell’orizzonte. Lo spazio-tempo risultante che ci aspettiamo sará ”sfumato” e cośı
sará il moto geodetico per particelle di prova. In questa tesi vengono analizzate in dettaglio
orbite di particelle massive cośı come le traiettorie dei raggi di luce attorno a queste sorgenti
gravitazionali sfumate usando sia approssimazioni analitiche che calcoli numerici. Saranno
discussi anche l’incertezza nel tempo di caduta radiale libera e gli effetti sulla radiazione uscente
emessa da una sorgente che sta collassando.
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Introduction

From General Relativity, we assist to the birth of various new scenarios. In fact, starting from
Einstein field equations one can study different kind of space-time solutions related to some
(physically reasonable) matter distribution. Moreover, we can faces with particular space-time
structures known as Black Holes which arise as possible final states of important gravitational
phenomena like gravitational collapses of matter sources. A Black Hole is, roughly speaking,
an extremely compact object that consists in a portion of space-time delimited by means of
a null-hypersurface called the event horizon, which is causally disconnected from the exterior
region. In fact, from this region both massive and massless particles cannot escape and reach
the future infinity. There are various kinds of Black Holes because of the different kind of the
initial collapsing sources, in the following chapters we restrict ourselves in the case of spherically
symmetric sources which, from Einstein equations, generate Schwarzschild space-times and,
consequently, Schwarzschild Black Holes.

Thanks to their intense gravitational fields and their particular behavior, Black Holes are
very useful objects for the studies of relativistic and gravitational phenomena. Although it is
very difficult to detect Black Holes (because they are disconnected from the exterior region), it
is possible to observe them studying the motion of particles and astrophysical objects in their
gravitational fields. So, when particles are in the vicinity of a Black Hole, we can study their
behavior and from their trajectories one can obtain information on the field source. In fact, as
in the case of our Galaxy, we can state that at its center there would be a Supermassive Black
Hole because of the observed motion of nearby stars.

For a generic Black Hole, the important quantities that characterize the Black Hole is its
total energy-mass m, charge Q and angular momentum J . In the simplest case of spherically
symmetric source, in which there are no electric charge and no rotational motion, the only
important quantity for the Black Hole is its mass m that define the gravitational radius rH �
2m lP

mP
� 2M . For these reasons when we will consider some quantum aspects, Black Holes are

objects of huge importance. For example, when one considers a source whose quantum nature
cannot be neglected one has a wave function that codifies the states of a quantum source
and from here a new concept of horizon and gravitational radius arise. In fact, starting from
the source’s quantum wave function, one would be able to define its Horizon Wave Function
(HWF), a function that encodes the probability that the source has a certain gravitational
radius and consequently, the probability to find an horizon at some value of r. From here we
have an instrument that calculates the probability that the source is a Black Hole or an ordinary
particle. In this view, also the gravitational radius changes its nature and become an operator.
From here we have a distribution of values in rH and consequently in M . At this point, we can
suppose that M is represented by a certain probability distribution of values instead of a single
precise value, in doing so, a corresponding fuzzy space-time arises. Consequently, this fact will

vii
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affect the particle motion and in this thesis, we are going to study precisely this situation.
Starting from a classic space-time with fixed gravitational radius we will extend the results

to a fuzzy space-time with some reference to the gravitational collapse phenomena. Moreover,
when we will talk about horizon wave function, we will see an example supposing that the
source wave function is a Gaussian because any other localized wave function can be expressed
in terms of Gaussian wave functions. As we will see, this example won’t apply to the case
of astrophysical objects because of the behavior of the rH fluctuations. In these cases will be
useful an extended state wave function to describe the source instead of a localized one.



Part I

Classical Black Hole Space-Times
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Chapter 1

Geometric properties of Black Hole
Space-times

The study of General Relativity implies a strong background in Differential Geometry, for this
reason here we will show some concepts related to the study of a generic manifold together with
some theorems and properties which will be useful when we consider space-times manifold and
the Black Hole physics.

1.1 Useful Geometrical concepts

We will start defining important types of vector, curves and hypersurfaces. In fact, when we
have a manifold pM, gq, vectors defined on it can be timelike,spacelike or lightlike (null). So
we state that a vector is a causal vector if it is timelike or null. Consequently, a curve is a
causal curve if its tangent vector is a causal one everywhere.

When a manifold admits a causal vector field it is called a time-orientable manifold.
When one faces with this type of manifold, it is possible to define a future-orientation and
a past-orientation: if one sets T a as the causal vector that defines the future-direction, all
the other causal vectors will be future-directed if they lie in the same light cone of T a and
are past-directed if they lie in the opposite light cone1. From here, a curve is future(past)-
directed if its tangent vector is future(past)-directed everywhere. Moreover, such a curve is
future(past) inextendible if it have not a future(past) endpoint2. Finally we have to state
another important property that a manifold can have: extendibility. In fact, a manifold pM, gq
is extendible if it is isometric to a proper subset of another space-time pM1, g1q which is called
the extension of M. If this were not happen M is an inextendible manifold.

1.2 Singularity theorem

In this section, we introduce the Singularity theorem which explains the fact that singularity is
a general result for a complete gravitational collapse on the contrary of the Newtonian theory

1A time-orientable manifold admits two unequal time orientation, in the present example the other orientation
occurs when one sets T a as the causal vector which define the past orientation.

2A point p of a future(past)-directed curve γ on a manifold pM, gq is called a future(past) endpoint if for
any neighborhood O of p there is t0 such that γptq P O if t ¡ t0.

3



4 CHAPTER 1. GEOMETRIC PROPERTIES OF BLACK HOLE SPACE-TIMES

in which singularity occur only as a consequence of spherical symmetry of the collapse process.
In fact, breaking the spherical symmetry one cannot avoid the singularity formation. To do
that, we have to talk about trapped surfaces and other particular surfaces of the space-time
manifold.

Definition 1. On a space-time, an hypersurface is defined to be a null hypersurface if its
normal na is null everywhere. For these surfaces, rising the index one obtains a vector na whose
integral curves lie on the surface and these are null geodesics called generetors of the null
hypersurface.

Now, considering spacelike surfaces, one can state that every spacelike surface S has two
future-directed null vectors orthogonal to the surface in each point p P S. If S is orientable
we can define these two vectors continuously, in this way these null geodesics form two null
hypersurfaces (outgoing and ingoing null rays starting from p). All these considerations bring
us to define another important kind of surface, the trapped surface, which will be important
in the definition of apparent horizons and in the Singularity Theorem.

Definition 2. A trapped surface is a compact, orientable, spacelike 2-surface in which the
two families of null geodesic have negative expansion3 θ.

The positivity or negativity of θ depends on the regions of space-time which one takes into
account. A particular case is that of marginally trapped surface which satisfies the same
conditions of a trapping surface but with θ � 0.

Other kind of surface which we have to introduce to explain the singularity theorem are
the Cauchy surfaces that are defined as follow:

Definition 3. An hypersurface on a manifold pM, gq with no two points connected by a causal
curve in M is a partial Cauchy surface.4

Let Σ be a partial Cauchy surface, we will call the future(past) domain of dependence
of Σ: D�pΣq(D�pΣq). This is the set of points p ofM such that every past(future) inextendible
causal curve through p intersect Σ. One can make the union of future and past domain of
dependence defining a region of space-time D pΣq in which, roughly speaking, one knows what
happen from the knowledge of the data in Σ.

Definition 4. In a space-time pM, gq, a Cauchy surface is a partial Cauchy surface Σ such
that M � D pΣq. A space-time which admits a Cauchy surface is globally hyperbolic.

If we consider a time-orientable manifold pM, gq, from the definition of causal curves we
can define the concept of causal future (past) of U (where U � M) J � pUq (J � pUq).
This is the union of U and the point of the manifold which one can reach following a future
(past)-directed causal curve starting from the points in U . Instead, if we consider points of
the manifold which one can reach following a future (past)-directed timelike geodesic starting
from the points in U one can define the chronological future (past) of U : I� pUq (I� pUq).
Chronological future and past are open sets. From here we have:

Definition 5. Let Σ be a Cauchy surface, the future(past) Cauchy horizon H� pΣq
(H� pΣq) is a surface such thatH� pΣq � D� pΣq zI� pD� pΣqq (H� pΣq � D� pΣq zI� pD� pΣqq).

3If one considers a congruence of null geodesic on the space-time pM, gq and let Ua be a tangent vector for
this congruence, the expansion is represented by θ � ∆aU

a.
4If we consider timelike curves instead of causal ones, we obtain the definition for achronal surfaces.
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Now we present a fundamental theorem whose importance is due to the fact that this
represents a lemma in the proof of the singularity theorem.

Theorem 1 (Raychaudhuri’s equation). Along a geodesic γpλq (with tangent vector Ua) of a
null geodesic congruence, the previously defined expansion θ satisfies:

dθ

dλ
� �1

2
θ2 � pσabpσab � pωabpωab �RabU

aU b (1.1)

where Rab is the Ricci tensor, pσab and pωab are the shear and rotation tensors for null geodesics.

From Einstein equations, Ricci tensor is related to matter distribution in terms of its energy-
momentum tensor T ab, the requirement of the use of physically reasonable kind of matter
reflects on the Ricci tensor too. From here one could require some conditions for the energy-
momentum tensor:

• The dominant energy condition states that for any future-directed timelike vector V a

one has that the vector �T ab V a is a future-directed causal vector. If in some region S of
a spacelike hypersurface T ab were null then this will be null in D�pSq too;

• The weak energy condition states that for any causal vector V a one has TabV
aV b ¥ 0

(this condition is also a consequence of the dominant energy condition);

• The null energy condition states that for any null vector V a one has TabV
aV b ¥ 0

(this condition is also a consequence of the weak energy condition);

• A less important condition is the strongly energy condition which states that for any
causal vector V a the energy-momentum tensor satisfies pTab � 1

2gabT
c
c qV aV b ¥ 0. This

means that gravity is attractive5.

Now we have all the tools to enunciate the Penrose singularity theorem:

Theorem 2. Let Σ be a non compact Cauchy surface in a globally hyperbolic space-time pM, gq
which follow Einstein equation and null energy condition for some T ab. If we consider a trapped
surface T and set θ0   0 as the maximum value that the expansion of both the orthogonal null
geodesic congruence can have, then at least one of these geodesics is future-inextendible (with
affine length¤ 2

|θ0|).

We can adapt this theorem to space-time without the requirement to be globally hyperbolic.
In this situation, we have to require the strong energy condition instead of the null one. From
these new conditions we have that the space-time is geodesically incomplete6, so a general
gravitational collapse produces a singularity. This second form is known as the Penrose-
Hawking Singularity Theorem.

Another observation can be done considering the Cauchy stability property of the Einstein
equations, e.g. the solution in a compact region is depend continuously on the initial data set.
As a consequence, if we consider a compact region with a trapped surface in a spherically
symmetric gravitational collapse and perform a slightly deviation from the initial symmetry,
trapped surface occurs again (also the trapped surface formation is general in gravitational
collapses).

5Such a condition won’t be satisfy for example where one consider a positive cosmological constant Λ while
the dominant energy condition is satisfied.

6A space-time is geodesically complete if all the inextendible causal geodesics are complete, i.e. if their
affine parameter ranges from �8 to 8
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1.3 Asymptotically flat space-times

As we will see, a fundamental concept to represent the space-time due to isolated sources is
the asymptotic flatness of a manifold. In this section we will formally define this property
and talking about it. We have to start introducing a particular kind of transformations.

Definition 6. Let pM, gq be a physical space-time manifold, one can define a new unphysical
metric as

ḡµν pxq � Ω pxq2 gµν pxq (1.2)

where x PM and Ω pxq is a smooth, positive function onM. Transformations of this kind are
called conformal transformations.

With these transformations, one can have that the manifold pM, ḡq can be extended to a
larger unphysical manifold

�
M̄, ḡ

�
that contains the physical one. By definition, a conformal

transformation preserves the causal structure of the physical space-time, i.e. the null, spacelike,
timelike nature of vectors remains the same, so that one can study the causal structure of pM, gq
by means of

�
M̄, ḡ

�
. These transformations are useful when one wants to study a manifold

boundary behavior BM (which corresponds to the space-time infinity), in fact if we perform
a conformal transformation on a manifold such that Ω pxq |BM � 0 points at infinity can be
seen at a ”finite distance” By means of this transformation we can study points at infinity
on an unphysical manifold without altering the causal structure, this is called the conformal
compactification.

Intuitively, an asymptotically flat space-time has a conformal infinity like the Minkowski’s
one (see appendix A), but we’ll define it precisely.

Definition 7. Let pM, gq a time-orientable space-time, this is called an asymptotically flat
space-time (at null infinity) if there is another space-time

�
M̄, ḡ

�
such that:

1. On M there is a function Ω from which one can define ḡ � Ω2g and
�
M̄, ḡ

�
represents

an extension of the other space-time;

2. MY BM in M̄ represents a manifold with boundary;

3. We can extend Ω to a function on M̄ to obtain Ω|BM � 0 and dΩ|BM �� 0;

4. BM is formed by two disjoint part I� X I�;

5. Any future (past) causal curve does not intersect I�(I�);

6. I� are complete7 null hypersurfaces.

With the first three requirements we are demanding the existence of a conformal compact-
ification, the other three require that the manifold null conformal infinity shares the form of
the Minkowski’s one.

7If the affine parameter of the generators of the null hypersurfaces ranges in p�8,8q the surface is complete.
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1.4 Black Holes

Here we come with the precise definition for Black Holes which are important causal structures
on the space-time which are predicted to exist by General Relativity. Formal definition of these
objects are expressed by means of past and future surfaces that we have described in previous
sections.

Definition 8. If we have an asymptotically flat (at null infinity) space-time pM, gq the Black
(White) Hole region is defined as B �Mz pMX J � pI�qq (W �Mz pMX J � pI�qq). And
the future(past) event horizon is the boundary of this region H� � BB (H� � BW)8 and
is a null hypersurface whose generators have no future (past) endpoints.

Another important definition strongly related to the Black Holes physics is the concept of
predictability.

Definition 9. Let pM, gq be an asymptotically flat space-time, if we have an open region
V̄ � M̄ so that ¯MX J � pI�q � V̄ and

�
V̄ , ḡ

�
is globally hyperbolic, the space-time pM, gq is

called strongly asymptotic predictable.

As a consequence we have that also
�
MX V̄ , g

�
(which is the the portion of space-time

without the region of the Black Hole) is globally hyperbolic. So we can state that the physics
is predictable on and outside H�. If an asymptotically flat space-time which is not strongly
asymptotic predictable contains a naked singularity, i.e. a singularity which is not covered by
means of the event horizon.

1.5 Apparent horizons

In this section we introduce another kind of horizon, the apparent horizon. Conversely to
the definitions of future and past event horizons these are defined locally. Let’s start with a
theorem on the trapped surfaces that we have defined in the previous sections.

Definition 10. If we have a globally hyperbolic space-time pM, gq we can choose Σt as a
Cauchy surface inM. The set of point p P Σt for which there is a trapped surface S such that
p P S � Σt is called the trapped region of Σt: Tt. The boundary of this region is called the
apparent horizon At � BTt
Theorem 3. In a strongly asymptotic predictable space-time, a trapped surface T which satisfies
the null energy condition, also satisfies T � B.

8This definitions are non-local.
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Chapter 2

Spherically Symmetric Sources

2.1 Mass in General Relativity

From General Relativity, we obtain the following Einstein field equations:

Gµν � Rµν � 1

2
Rgµν � 8πTµν (2.1)

in which Gµν is the Einstein tensor, Rµν is the curvature tensor (Ricci tensor), R is the scalar
curvature, gµν is the metric of the space-time and Tµν is the energy-momentum tensor of
a given region that describes matter distributions in terms of their energy and momentum
(density and flux). From the structure of Rµν

1, Einstein equations are second order non-linear
partial differential in gµν and define the space-time manifold due to the presence of a certain
energy-momentum distribution and, in this view, Tµν represents the source of the gravitational
field.

The energy-momentum tensor does not consider the energy due to the gravitational field,
in fact this latter is included in the right hand side of the equation (2.1) and there is no way
to put these two pieces together in a tensor in such a way that we have a mathematical object
that describes all the energy sources for a generic observer, in fact considering the equivalence
principle one has the non-locality of the gravitational energy and one has to extend Tµν to the
energy-momentum pseudotensor (which is a frame dependent object) to include gravitational
potential energy e.g.the Landau-Lifshits energy pseudotensor.

From the non-locality of the gravitational energy, it is convenient to define the total mass
of a system in an asymptotic way measuring this quantity at infinity on the asymptotic metric.
We can simplify the problem of the total mass definition in some special space-time such as
those which have the property of asymptotic flatness, these space-times are due to the presence
of isolated sources. Although physically there are no completely isolated systems one can
use these models to describe some massive objects ignoring the action of other distant mass’
sources, in this way one obtains space-time metrics that become flat far from the sources. At
this point, one has to be able to define this asymptotic flatness in a coordinate independent way
and the definition has to be such that the evaluation of any relevant physical quantity at large
distance is not ambiguous. To overcome these difficulties, one defines the asymptotic flatness
when it is possible to represent points at infinity as a space-time boundary, e.g. with conformal
compactification (see Chapter 1 Section 1.3). However once one defines the asymptotic flatness,

1Ricci tensor is defined in terms of Christoffel symbols Rµν � BαΓανµ � BνΓααµ � ΓααλΓλνµ � ΓανλΓλαµ.

9
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a quantity which represents the total energy in these special space-times could be the ADM
(Arnowitt-Deser-Misner) mass:

mptq � lim
rÑ8m pt, rq � lim

rÑ8 4π

» r
0
dr̃r̃2ρ pt, r̃q (2.2)

where ρ pt, rq is the classical energy density. The quantity m pt, rq represents the Misner-Sharp
(MS) mass and in a spherically symmetric system it represents the active gravitational mass
(mass energy and gravitational potential energy) inside the sphere of an area 4πr2. There are
also other kinds of definitions of mass but we use the AMD and MS definitions in the following
chapters.

2.2 Spherically symmetric sources

If we consider the particular case of spherically symmetric, non rotating sources with null
electric charge and surrounded by vacuum, we have a static (time- independent and with the
discrete time-reversal isometry) metric which reads:

ds2 � gttpxjqdt2 � 2gtipxjqdtdxi � gikpxjqdxidxk (2.3)

where i, j, k� 1,2,3 and the spherical symmetry implies that the most general line element is:

ds2 � e2Φprqdt2 � e2Ψprqdr2 � r2
�
dθ2 � sin2 θdφ2

�
(2.4)

In the exterior region, we have Tµν � 0, R � 0, Rµν � 0 and, from the definition of these
quantities, one obtains the asymptotically flat, static solution:

ds2 �
�

1� 2M

r



dt2 �

�
1� 2M

r


�1

dr2 � r2dθ2 � r2 sin θ2dφ2 (2.5)

which is known as the Schwarzschild solution. Here r represents the area-radius,defined as

rppq �
b

Appq
4π and Appq is the area of the S2 2-sphere which represent the SOp3q orbit of p,

so r does not correspond to the proper distance from the center of the sphere which reads
r� �

³r
0

?
gr1r1dr

1. The coordinate t is defined as the time measured by an asymptotic observer.

In (2.5), the parameter M � Gm
c2

represents the total mass of the Schwarzschild field (we will

use c � 1 so we obtain G � lP
mP

with lP , mP Planck length and mass respectively) and from
the field equations (2.1) is defined by the relation:

M � 4π
lP
mP

» R
0
ρprqr2dr (2.6)

where R is the radius of the source and since ρprq � 0 for r ¡ R equation (2.6) corresponds
to the ADM mass definition. This equation is the same of the total mass in classical Newton
theory but the identification of these two quantities is formal only. In fact if we want to
integrate density over a certain volume, from the line element we have:

M 1 � 4π

» R
0
dr

ρprqr2b
1� 2M

r

(2.7)
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which does not correspond to the (2.6) definition.

The line element (2.5) is singular for r � 0 and r � 2M . The first one is a physical
singularity (curvature diverges here), the second one depends only on the coordinates system
(curvature remains finite) and defines the Schwarzshild radius RH . At this radius RH , the
coordinates change their meaning. In fact, in the region r   RH , t becomes a space coordinate
(gtt   0) while r becomes a time coordinate (grr ¡ 0) and we observe that particles moving
through this hypersurface show particular behaviors. In fact, if the radius of the source R
verifies the condition R   RH , we have a Black Hole and once a particle (even a photon)
reaches this value for r it cannot escape. If a radially outgoing photon were emitted at this
radius, it remains there and will not be able to reach null infinity, so this surface represents
a null hypersurface and it is called the event horizon because the region inside it is causally
disconnected from the rest of the space-time.

In previous chapters we have introduced the apparent horizon, which represents the bound-
ary of the trapping surfaces (surfaces from which both ingoing and outgoing radially photon
trajectories converge), so the apparent horizon occurs when the expansion parameter of the
radial null out-going geodesics is null. This means that the divergence of these null geodesics
is null on the apparent horizon and this condition is2:

|∇r|2 � gij∇ir∇jr � 0 (2.8)

which reads:

grr � 2M

r
� 1 � 0 (2.9)

Generally this surface does not coincide with the event horizon and their location depends on
the observer. In doing so, we define the gravitational radius (as a function of r):

rHprq � 2m prq lP
mP

(2.10)

This quantity will become useful later, for the moment we limit ourselves to say that an horizon
appears when:

rH prq � r (2.11)

2.3 Gullstrand-Painlevé coordinates

Starting from the Schwarzschild solution (2.5), we make a change of coordinates system to
obtain a regular line element. As we will see, in the Schwarzschild coordinate system a particle
reaches the event horizon in an infinite amount of time t. Instead, if one studies the trajectories
in terms of the proper falling time, the particle can reach the horizon in a finite proper time.
So to avoid singularity at this value for the area radius, we could use the proper time of a
free falling observer tP as time coordinate instead of Schwarzschild time coordinate t. In doing
so, we should obtain a metric which is not singular for r � 2M but still describes the space-
time of the vacuum around the spherically symmetric source. This new metric is known as
the Gullstrand-Painlevé metric and it is useful in the study of the motion of radially infalling

2Here ∇ir is perpendicular to the surface with r � const.
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particles. To obtain this metric we have to relate tP and t. To do so, we note that for the
symmetries of the system tP � tP pt, rq, so we can write:

dtP � BtP
Bt |rdt�

BtP
Br |tdr (2.12)

Consider the case r � const, two clocks ’1’ and ’2’ falling from r0 which start their motion at
t1 and t2 respectively, when they cross a fixed r they measure t11 � t1 � ∆t and t12 � t2 � ∆t.
So the time difference at r:

dt|r � t2 �∆t� t1 �∆t � t2 � t1 (2.13)

Now, both clocks follow the same trajectory, so one has tP1 � t1 �∆τ and tP2 � t2 �∆τ :

dtP |r � t2 � t1 � dt|r (2.14)

BtP
Bt |r � 1 (2.15)

The second step is to consider the case t � const. As we will see later, the equations of motion
for a free falling particle (radial motion) which starts from r � 8 with 9r � 0 are:

9r � �
c

2M

r
(2.16)

9t � E

�
1� 2M

r


�1

(2.17)

dr

dt
� �

�
1� 2M

r


c
2M

r
(2.18)

dots represent derivative w.r.t. proper time τ . The quantity in (2.18) is important in the
synchronization of the clocks and represents the time difference of two events with spacial
separation dr:

dt � �
�

1� 2M

r


�1c r

2M
dr (2.19)

Then we have to consider also the proper time difference due to the different motion (from
(2.16)) which reads:

dτ �
c

r

2M
dr (2.20)

minus sign is dropped because we need τ2 � τ1 instead of τ1 � τ2. In the G-P coordinates, we
have to keep into account both contributes and one obtains:

dtP �

b
2M
r

1� 2M
r

dr (2.21)

Now, from (2.12), (2.15) and (2.21), we finally have:

dt � dtP �

b
2M
r

1� 2M
r

dr (2.22)
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Inserting these results in the line element (2.5) we obtain

ds2 �
�

1� 2M

r


��dt2P � 2M
r�

1� 2M
r

�2dr2 � 2

b
2M
r

1� 2M
r

drdtP

�
� �1� 2M

r


�1

dr2 � r2dΩ2

�
�

1� 2M

r



dt2P � 2

c
2M

r
dtPdr � dr2 � r2dθ2 � r2 sin θ2dφ2 (2.23)

which is not singular in r � 2M and represents the Gullstrand-Painlevé metric, i.e. the
metric of the space-time around the spherically symmetric source described by a free falling
observer which starts its motion at rest at infinity.

These results can be obtained in another way by studying the geodesics motion of the
free falling observer on the space-time manifold. Actually, radially infalling particles subject
only to the gravitational force follow geodesics which four-velocity has the form uµ � dxµ

dτ and
represents the trajectory’s tangent vector (xµpτq are the coordinates τ which parametrizes these
curves and in the massive observer case represents the proper time). Starting from (2.5) in the
case of a radial motion (dθ � 0, dφ � 0) and from the property:

gµνu
µuν �

�
1� 2M

r



9t2 �

�
1� 2M

r


�1

9r2 � 1 (2.24)

we obtain:

uµ �
�� 9t,�

d�
1� 2M

r


2

9t2 �
�

1� 2M

r



, 0, 0

�
� � 9t,�v prq , 0, 0� (2.25)

uµ is orthogonal to the surface τ � const and from the definition of the GP time coordinate
tP � τ so:

uµ � BtP
Bxµs (2.26)

so tP depends on the Schwarzschild coordinates and its variation is:

dtP � BtP
Bxµs dx

µ
s � uµds

µ
s � uνdxµs gνµ �

BtP
Bt dt�

BtP
Br dr

� 9t

�
1� 2M

r



dt� vprq

1� 2M
r

dr (2.27)

as we will see in the next section, the quantity
�
1� 2M

r

�
9t is conserved during the particle motion

and in the Schwarzschild coordinates represents the particle energy E. So the Schwarzschild
time coordinate variation takes the form

dt � dtP
E

� vprq
E
�
1� 2M

r

�dr (2.28)

and considering the definition of vprq, the new line element reads:

ds2 �
�

1� 2M

r


�
dt2P
E2

� vprq2
E2
�
1� 2M

r

�2dr2 � 2
vprq

E2
�
1� 2M

r

�drdtP
�
� dr2

1� 2M
r

� r2dΩ2

� 1� 2M
r

E2
dt2P � 2

vprq
E2

dtPdr � dr2

E2
� r2dΩ2 (2.29)
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This is the most general G-P line element and the time coordinate represents the proper time
of a radially falling observer. This observer can start its motion at any value of the r coordinate

with a given value of 9r. These conditions fix the values of E �
b

1� 2M
rp0q and, consequently,

vprq �
b

2M
r � 2M

rp0q , in fact, if we consider as in the previous case an observer which starts its

motion at rp0q � 8 with 9rp0q � 0 one has 0 � 9rp0q2 � E2 � 1 � 2M
rp0q � E2 � 1, so one obtain

the constant value E � 1 and the expression vprq �
b

2M
r . With such conditions, as expected,

the line element corresponds to (2.23).
If we use general G-P line element in such a way that 9rp0q and rp0q of the particle are the

same of the observer ones the following properties are satisfied:#
9r � �vprq
tP � τ

(2.30)

In the following sections we study particle motion using the particle proper time.



Chapter 3

Geodesic Motion in Black Hole
Space-Times

Now we are ready to study the trajectories followed by test particles (massive or massless) which
are only subject to a gravitational filed. From General Relativity and differential geometry,
we know that these particles follow particular curves, the so-called geodesics of the manifold
which is generated by the source. We will obtain the equations of these curves in two different
ways, from a Lagrangian method and by means of the Christoffel symbols. Finally we check
that one obtains the same results.

3.1 Conserved quantities

As a starting point, we investigate if in the present case there are some particular quantities
which remains constant during the motion.

We know that from a given metric tensor gµν , one can write the corresponding Lagrangian:

L � gµν 9xµ 9xν (3.1)

in the case of G-P metric (2.23), the corresponding Lagrangian (restricting us in a planar
motion θ � θ0 � π

2 , 9θ � 0) is:

L �
�
1� 2M

r

�
E2

9t2 � 2

E2

c
2M

r
� 2M

r0

9t 9r � 9r2

E2
� r2

9φ2 (3.2)

Particles in this manifold are governed by the Euler-Lagrange equations that are of the form:

d

dτ

BL
B 9xµ

� BL
Bxµ � 0 (3.3)

with 9xµ � dxµ

dτ . So in the present case, one can obtain two conservation equations:

d

dτ

��
1� 2M

r



9t�
c

2M

r
� 2M

r0
9r



� 0 (3.4)

d

dτ

�
r2

9φ
	
� 0 (3.5)

15
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Obtaining the corresponding quantities:

E �
�

1� 2M

r



9t� vprq 9r (3.6)

L � r2
9φ (3.7)

which are conserved during the motion and represent energy and angular momentum of the
particle respectively.

The same results could be reached considering that the metric (2.23) is independent from
t and φ, so we have two Killing vectors on this manifold:

ξµ � p1, 0, 0, 0q (3.8)

ζµ � p0, 0, 0, 1q (3.9)

Along a geodesic (with uµ � dxµ

dτ tangent vector), the following quantities are conserved:

E � ξµuµ � ξ0u0g00 � ξ0u1g01 � dt

dτ

�
1� 2M

r



�
c

2M

r

dr

dτ
(3.10)

L � ζµuµ � ζ3u3g33 �
�
dφ

dτ



r2 sin2

�π
2

	
� 9φr2 (3.11)

which have the same form of the quantities obtained in (3.6) and (3.7) from the Euler-Lagrange
equations. If one considers the Schwarzschild coordinate system, the conserved quantities are:

L � ζ3u3g33 �
�
dφ

dτ



r2 sin2

�π
2

	
� 9φr2 (3.12)

E � ξ0u0g00 � dt

dτ

�
1� 2M

r



�
�

1� 2M

r



9t (3.13)

in which E has a different form because of the different definition of the time coordinate. In
fact if we insert (2.22) in (3.13) we recover the result in (3.6).

3.2 Geodesics for test particles

Let us describe the equations of these geodesics followed by the particles in a gravitational
field. They are defined by the geodesics equation:

d2xγ

dτ2
� Γγµν

dxµ

dτ

dxν

dτ
� 0 (3.14)

where Γγµν represents the Christoffel symbols for a certain coordinates system (in this case for
the Schwarzschild coordinates) and, in the case of an holonomic basis, they are given by:

Γγµν �
1

2
gγσ pgσν,µ � gσµ,ν � gµν,σq (3.15)

Let’s start calculating these quantities:

Γttr � Γtrt �
M

r2p1� 2M
r q

(3.16)
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Γrtt �
M

r2

�
1� 2M

r



(3.17)

Γrrr � � M

r2
�
1� 2M

r

� (3.18)

Γθrθ � Γθθr �
1

r
(3.19)

Γrθθ � �r
�

1� 2M

r



(3.20)

Γφφr � Γφrφ �
1

r
(3.21)

Γrφφ � �r
�

1� 2M

r



sin2 θ (3.22)

Γθφφ � � sin θ cos θ (3.23)

Γφθφ � Γφφθ �
cos θ

sin θ
(3.24)

So we have four equations:

0 � d2t

dτ2
� 2M

r2
�
1� 2M

r

� dr
dτ

dt

dτ
(3.25)

0 � d2r

dτ2
� M

r2

�
1� 2M

r


�
dt

dτ


2

� M

r2
�
1� 2M

r

� �dr
dτ


2

� r

�
1� 2M

r


�
dθ

dτ


2

� r

�
1� 2M

r



sin2 θ

�
dφ

dτ


2

(3.26)

0 � d2θ

dτ2
� 2

r

dr

dτ

dθ

dτ
� sin θ cos θ

�
dφ

dτ


2

(3.27)

0 � d2φ

dτ2
� 2

r

dr

dτ

dφ

dτ
� 2

cos θ

sin θ

dφ

dτ

dθ

dτ
(3.28)

Restricting in a planar motion θ � π
2 and dθ

dτ � 0, the equation (3.27) becomes an identity
0 � 0. (3.28) is equivalent to the angular momentum conservation equation:

0 � d

dτ

�
r2

9φ
	

(3.29)

L � r2
9φ (3.30)

(3.25) represents the energy conservation equation:

0 �
�

1� 2M

r



d2t

dτ2
� 2M

r2

dt

dτ

dr

dτ
� d

dτ

��
1� 2M

r



9t



(3.31)

E �
�

1� 2M

r



9t (3.32)



18 CHAPTER 3. GEODESIC MOTION IN BLACK HOLE SPACE-TIMES

Finally the (3.26) equation:

:r � ME2

r2
�
1� 2M

r

� � M

r2
�
1� 2M

r

� 9r2 �
�

1� 2M

r



L2

r3
� 0 (3.33)

is equivalent to the condition:�
1� 2M

r



9t2 � 9r2�

1� 2M
r

� � r2
9φ2 � κ (3.34)

where we set κ � 1 for massive particles, κ � 0 for massless particles. From here, the equations
of motion are given by:

9r2 � E2 � L2

r2

�
1� 2M

r



�
�

1� 2M

r



(3.35)

for massive particles, and

9r2 � E2 � L2

r2

�
1� 2M

r



(3.36)

for massless particles.
We can reach the same results from the Lagrangian method, in fact, from the Schwarzschild

Lagrangian and the Euler-Lagrange equation for r coordinate one has:

d

dτ

�
� 2 9r

1� 2M
r

�
� 2M

r2
9t2 � 2M

r2
�
1� 2M

r

� 9r2 � 2r 9φ2 � 0 (3.37)

the Euler-Lagrange equations for t and φ coordinates give the same conservation equations in
(3.13) and (3.12). Substituting E and L in (3.37) we obtain again (3.33), (3.35) and (3.36).

The form of these equations of motion suggests that the gravitational potential in massive
case could be written as:

Veff �
�

1� 2M

r


�
1� L2

r2



(3.38)

in which we have a correction of o
�

1
r3

�
order at the Newtonian potential:

VN � 1� L2

r2
� 2M

r
(3.39)

The corrections due to General Relativity are important only for relatively small r as we can
see in Fig. 3.1. For massless particles we have (Fig. 3.2):

Veff � �2ML2

r3
� L2

r2
(3.40)

From these equations of Veff the shape of the potential is defined by the value of L as we can
see in Fig. 3.3, 3.4, 3.5.

If we want to use the G-P coordinates (for example in case 9r � 0 at r � 8) we obtain
different Γγµν and different Euler-Lagrange equations because of the different form of the line
element. However, the final equation shares the same form of equations (3.35) and (3.36),
because dots represent derivation w.t.r. to τ which is the proper time and correspond to tP .
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Figure 3.1: For small values of r, Veff has a minimum and a maximum and is different from
the Newton potential. For big values of r, the potentials share the same behavior.

If we differentiate (3.35) w.r.t. τ :

:r � �κM
r2

(3.41)

which shares the same form of the equation of motion in a Newtonian gravitational field but it
is not the same equation because, in this case, the coordinate r is not the flat radius coordinate
(proper distance from the center in a flat space), but it represents the area-radius (as we have
already seen). In these equations dots represent derivative with respect to proper time which
parametrizes the geodesics, while if we had used the Schwarzschild time coordinate tS from
(3.13) and (3.36):

tSf � tSi �
» tSf
tSi

dtS � w

» rf
ri

dr
E�

1� 2M
r

�b
E2 � κ

�
1� 2M

r

� (3.42)

Here we see that in (3.42) the integrand becomes divergent at r � 2M and the Schwarzschild
time needed to reach this radius become infinite. This reflects the singular behavior of the
Schwarzschild coordinate system at this radius.



20 CHAPTER 3. GEODESIC MOTION IN BLACK HOLE SPACE-TIMES

Figure 3.2: Veff for massless particle. Radius for the circular orbit does not depend on L.

3.3 Radially infalling particle

Taking into account the equations of motion in terms of the proper time τ , now we consider
the radial motion of a massive particle, in this case we have L � 0 and κ � 1, so from (3.35):

9r � �
c
E2 � 1� 2M

r
(3.43)

and, as shown in Fig. 3.6 the potential becomes:

V prq � 1� 2M

r
(3.44)

Integrate equation (3.43): » rpτq�r
rpτ0q�r0

dr1b
E2 � 1� 2M

r1

� �
» τ
τ0

dτ 1 (3.45)

The constant E is fixed by initial conditions, for example, the simple case in which a particle
is at rest ( 9r � 0) at r � 8, we have the corresponding conserved energy E � 1 and (3.45)
becomes:

τ � τ0 � 2

3
?

2M

�b
r3

0 �
?
r3



(3.46)

In this case, if we have two spherically symmetric sources with different masses M1 and M2, a
radially infalling particle which satisfies rpτ0q � r0, has a free fall time τ1 and τ2 respectively
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Figure 3.3: Veff for high values of L.

Figure 3.4: Veff for intermediate values of L.
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Figure 3.5: Veff for low values of L.

Figure 3.6: V for L � 0 which represent the potential for a free radially infalling particle.
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to reach the singularity in r � 0.

∆τ � τ2 � τ1 � 2
a
r3

0

3

�
1?

2M1
� 1?

2M2



(3.47)

Returning to the general case (if the particle starts from r � r0 � 8 with 9r � 0 we have E   1)
we obtain:

τ�τ0 �
��� r1?

1� E2

d
2M

r1 p1� E2q � 1� 2M

2

b
p1� E2q3

arctan

�� 2M
1�E2 � 2r1

2r1
b

2M
r1p1�E2q � 1

�
��r0
r

(3.48)

Now if we consider 9rpτ0q � 0 and rpτ0q � r0 we know that 1 � E2 � 2M
r0

and the proper time
needed to reach r is:

τ � τ0 � Mπ

2

c�
2M
r0

	3
� rb

2M
r0

c
r0

r
� 1� Mc�

2M
r0

	3
arctan

�
r0 � 2r

2r
a

r0
r � 1

�
(3.49)

For example, if we are looking for a falling particle that reaches r � 0:

τ � τ0 � Mπ

2

b
p1� E2q3

� r0?
1� E2

d
2M

r0 p1� E2q � 1

� 2M

2

b
p1� E2q3

arctan

�� 2M
1�E2 � 2r0

2r0

b
2M

rop1�E2q � 1

�
 (3.50)

And if 9r � 0 when r � r0 as in (3.49) we have the simpler result:

τ � τ0 � πr0

2

c
r0

2M
(3.51)

Now like in (3.47) if we have two sources with masses M1 and M2 (with RH1 � 2M1 e RH1 �
2M1) and the particle’s motion satisfies rpτ0q � r0 and 9rpτ0q � 0 in both cases, the energies are

E1 �
b

1� 2M1
r0

and E1 �
b

1� 2M1
r0

respectively, so from (3.49) the proper time difference

(to reach certain value for r) is:

∆τ � τ1 � τ2 � M1π

2

c�
2M1
r0

	3
� rb

2M1
r0

c
r0

r
� 1� M1c�

2M1
r0

	3
arctan

�
r0 � 2r

2r
a

r0
r � 1

�

� M2π

2

c�
2M2
r0

	3
� rb

2M2
r0

c
r0

r
� 1� M2c�

2M2
r0

	3
arctan

�
r0 � 2r

2r
a

r0
r � 1

�
(3.52)

and for r � 0:

τ1 � τ2 � πr0

2

c
r0

2

�
1?
M1

� 1?
M2



(3.53)

these formulae will become useful later.
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3.4 Orbits around a Black Hole

If we want to obtain the equations of the trajectories in the plane of motion θ � π
2 , we have to

write the equation for r in function of the angle φ. To do this, we begin with:

9r � L

r2

dr

dφ
(3.54)

then from (3.35) we have:

:r � �L
2

r2

d2

dφ2

�
1

r



� 1

2

�
�2M

r2
� 2L2

r3
� 6L2M

r4



� � d

dr
Veff (3.55)

for the massive particles and from (3.36):

:r � L2

r3
� 3ML2

r4
(3.56)

for the massless case.

Now we set 1
r � u, in doing so we obtain for κ � 1:

d2u

dφ2
� M

L2
� 3Mu2 � u (3.57)

which is a non-linear non-homogeneous second-order differential equation, and for κ � 0:

d2u

dφ2
� �u� 3Mu2 (3.58)

which does not depend on L. In Newtonian mechanics, the orbit equation for a massive particle
has the form:

d2u

dφ2
� M

L2
� u (3.59)

so in (3.57) we have a correction term of u2 order to the Newtonian case, this means that
for high values of r, the Newtonian solutions approximate in a good way the solutions of the
General Relativity. However, from the form of Veff prq, we note that there are different kind of
orbits, in fact for a massive particle:

• for E � Veff pr0�q where r0� � L2�L?L2�12M2

2M , Veff prq has a minimum which corresponds
to the stable circular orbit;

• for E � Veff pr0�q where r0� � L2�L?L2�12M2

2M , Veff prq has a maximum which corre-
sponds to the unstable circular orbit;

• bound orbits;

• scattered orbits;

• capture orbits.
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Figure 3.7: Energy level corresponding to a scattering orbit.

Figure 3.8: Energy level corresponding to a particle capture orbit.

As L decreases, the maximum decreases and when L   ?
12M there are no maxima or minima;

in fact fixing the values of the constants L and E we define the shape of the function Veff prq
and the energy level. Some situations that one can face with are shown in Fig. 3.7, 3.8 and
3.9.

It is possible to solve exactly the orbit equation by using the elliptical functions obtaining:

u � u1 � pu2 � u1q sn2

�
φ

2

a
2M pu3 � u1q � δ



(3.60)

in which sn is one of the Jacobi elliptical functions where δ is an integration constant dependent
on the initial conditions and u1, u2, u3 are the solutions for the equation:

E2 � 1� 2Mu� L2u2 � 2L2Mu3 � 0 (3.61)
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Figure 3.9: Energy level corresponding to a bound precessing orbit.

which corresponds to:
du

dφ
� 0 (3.62)

They satisfy the equation:

u1 � u2 � u3 � 1

2M
(3.63)

We are now going to study a particular particle orbit: the unstable circular one. Circular orbits
occur when the first derivative of the potential is null, i.e. when the following equation holds:

d2u

dφ2
� M

L2
� 3Mu2 � u � 0 (3.64)

which is satisfied for these two values for u:

u0� �
1�

b
1� 12M

2

L2

6M
(3.65)

here u0� is the unstable one while u0� is the stable one. From these results we can see that we
have maxima and minima only if L ¥ ?

12M .
If we start with the initial conditions for the unstable circular orbit:#

up0q � u0�
9up0q � 0

(3.66)

a particle remains at this value for r (or u) if the system is not perturbed. Even a small per-
turbation causes a completely different result, we are going to study precisely these situations.
We could have little deviations from the unstable circular orbit initial conditions or in the mass
measure, both bring to an orbit different from the circular one but they affect the motion in
different ways. Let’s start from fixed initial conditions given in (3.66), if we modify the mass
source with a small correction M ÑM �∆M for some ∆M , the orbit equation becomes:

d2u

dφ2
� 3Mu2 � 3∆Mu2 � u� M

L2
� ∆M

L2
(3.67)
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Now we solve this new equation by means of perturbation method, in fact if we consider small
deviation from M we can set ε � 3δM � 3∆M

M and the new solution will be of the form:

u � u0� � εu1 � o
�
ε2
�

(3.68)

(small deviations imply |ε|    1). So at zero order in ε we have the equation for u corresponding
to (3.64) which bring to the circular unstable orbit, while at first order we find:

d2u1

dφ2
� 6Mu0�u1 �Mu2

0� � u1 � M

3L2
(3.69)

From (3.65) we have to resolve the equation for u1:

d2u1

dφ2
�
c

1� 12
M2

L2
u1 �Mu2

0� �
M

3L2
(3.70)

and the solution is of the form:

u1 � A cosh

�
4

c
1� 12

M2

L2
φ

�
�B sinh

�
4

c
1� 12

M2

L2
φ

�
�M

u2
0� � 1

3L2b
1� 12M

2

L2

(3.71)

We fix the constant A and B from the initial conditions (3.66) which read:#
u1 p0q � 0

9u1 p0q � 0
(3.72)

and finally one has:

A �M
u2

0� � 1
3L2b

1� 12M
2

L2

(3.73)

B � 0 (3.74)

So the perturbed solution at first order is:

u pφq � u0� � 3∆M

�� u2
0� � 1

3L2b
1� 12M

2

L2

cosh

�
4

c
1� 12

M2

L2
φ

�
� u2

0� � 1
3L2b

1� 12M
2

L2

�
 (3.75)

so the particle falls through the singularity of the source forming a spiral when we have positive
corrections ∆M ¡ 0 while particle become more and more distant from the circular orbit if we
have negative corrections ∆M   0 instead of remaining at a fixed radius as shown in Fig. 3.10.
In fact, if we started with E and L such that we have the unstable circular orbit, a correction
to M modifies the position of the maximum of Veff and so we have a motion different from
the circular one.

The solution found with these perturbation method can be compared with the numerical
solution obtained from a calculator as we can see in Fig. 3.11. As expected for small value of u
the solution obtained with the two methods are practically the same and begin to be different
from each other as u increases, in fact the perturbation solution is accurate enough in the range
of small ∆RH

r and |ε|    1, if these conditions are not satisfied one has to consider also higher
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Figure 3.10: Modified orbit with M ÝÑM �∆M in the case RH � 3000m, ∆M � 0.001M if
we have a massive particle.

Figure 3.11: The corrected orbits u pφq generate from ∆M � �1.5m obtained with numerical
and perturbation method. (For M � 1500m and L � 6300m)

order corrections (in a semilogarithmic scale this can be seen in a better way as shown in Fig.
3.12).
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Figure 3.12: The corrected orbits u pφq generate from ∆M � �1.5m obtained with numerical
and perturbation method in semilogarithmic scale. (For M � 1500m and L � 6300m)

We can find a lower limit on the correction ∆M , in fact if we want an appreciable effect,
we have to be able to see an effective diminution of the radius in a reasonable amount of time
or number of turn around the source. Inverting the equation (3.75) we obtain the number of
turns needed to reach some value r starting from u0� as a function of ∆M :

φrp∆Mq �
cosh�1

�
1�

b
1�12M

2

L2 p 1
r
�u0�q

3∆M
�
u2

0�� 1
3L2

	
�

�
1� 12M

2

L2

	1{4 (3.76)

we see that the argument in cosh�1 is in the interval r1,8q, in fact if one has ∆M � 8
there will be the corresponding cosh�1p1q � 0 which means φr � 0 but this situation is out
of our condition ∆M

M    1, the other extreme of the domain gives us the situation ∆M � 0
which reads cosh�1p8q � 8 � φr so we can never reach r starting from r0 � 1

u0�
with

∆M � 0 (without perturbations particle remains at that radius). Fixing an upper limit to φ
(the maximum number of turns in which one has to be able to reach r) we impose a lower one
to ∆M .

Now if we consider the massless case we can have a different function for Veff prq and as we
see in Fig. 3.13 and 3.14 we can have:

• capture trajectories;

• scattering trajectories;
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• unstable circular orbit for r � r0 � 3M .

Figure 3.13: Energy level corresponding to a (massless) particle scattering orbit.

Figure 3.14: Energy level corresponding to (massless) particle capture.

From here we proceed as in the massive case and we can study the perturbed unstable circular
orbit. If we add a correction ∆M to M such that

��∆M
M

��    1 we obtain the perturbed orbit
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equation:
d2upφq
dφ2

� 3Mu2 � 3∆Mu2 � u (3.77)

and, if we set ε � 3∆M
M , the perturbed solution can be expressed in the form:

upφq � u0 � εu1pφq (3.78)

in which u0 � 1
3M � up0q with 9up0q � 0.

At the first order we obtain the equation for u1 which reads:

d2u1pφq
dφ2

� u1pφq � 1

9M
(3.79)

knowing the initial conditions our result is:

upφq � 1

3M
� ε

�
coshpφq

9M
� 1

9M



(3.80)

Inverting this formula we can find the number of turns around the source to reach some r̄

Figure 3.15: Modified orbit with M ÝÑM �∆M in the case RH � 3000m, ∆M � 0.001M if
we have a massless particle.

starting from r � 3M as a function of mass deviation ∆M :

φr̄p∆Mq � cosh�1

��
1

r̄
� 1

3M



9M2

∆M
� 1



(3.81)

the same considerations of the massive case holds in this case.
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Part II

Fuzzy Black Hole Space-Times
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Chapter 4

Horizon Wave Function

In this chapter we introduce the Horizon Wave Function (HWF) that give us a probability
distribution for the gravitational radius.

4.1 Quantized gravitational radius

In quantum mechanics, the states of a system are codified in terms of some wave function
ψs P L2

�
R3
�
. Wave functions have to be in the space of all possible states the system can have

and we can decompose the matter state on the basis of energy eigenstates of the system:

|ψsy �
¸
Eα

C pEαq |Eαy (4.1)

If our system has an Hamiltonian H, in quantum mechanics this quantity becomes an operator
acting on the system’s states space, pH |Eαy � Eα |Eαy (|Eαy are the energy eigenstates with
eigenvalue Eα) so one obtains the energy spectrum.

This can be applied on the study of the event horizon. Consider a system in which one
has two sets of variables which correspond to the matter (E) and gravitational (RH) degrees
of freedom, the state of this system can be described by means of:

|Ψy �
¸
α,β

cα,β |Eα, RHβy (4.2)

Now one can identify the ADM mass function to the mean value for the Hamiltonian on the
matter state:

lim
rÑ8mprq � mÑ xψs| pH |ψsy �

¸
α

|cs pEαq|2Eα (4.3)

As we have seen, in General Relativity when we are faced with the Schwarzschild solution, we
can introduce the gravitational radius defined by the relation:

rH prq � 2
lP
mP

m prq (4.4)

in which m prq is the Misner-Sharp mass function defining in that way a local gravitational
radius. Instead, when we use the asymptotic value of m prq given by the ADM mass m, we
define a global gravitational radius. In the last case we are not interested in the interior
structure of the source but only on its asymptotic mass.
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The Schwarzschild radius is defined in terms of total energy (or as we have seen to the
ADM mass)1:

rH � 2
lPE

mP
� 2M (4.6)

So, similar to energy, we do not have a precise value for rH in quantum mechanics, but the
Schwarzschild radius becomes an observable and, in the space of the states of the system, acts
as an adjoint operator prH � pr:H . In this way we can define the gravitational radius eigenstates
as: pRH |RHβy � RHβ |RHβy (4.7)

From here the condition for the Schwarzschild radius reads as:� pH � mP

2lP
pRH
 |Ψy � 0 (4.8)

which can be satisfied by the wave function:

|Ψy �
¸
α

c

�
Eα,

2lP
mP

Eα



|Eαy |RHαy (4.9)

From this function we can extract both matter state and gravitational state:#
|ψSy �

°
α cS pEαq |Eαy

|ψHy �
°
α cS

�
mP
2lP

RHα

	
|RHαy

(4.10)

In doing so we can introduce another wave function ψH prHq: the Horizon Wave Function
(HWF) [5]. This object is defined by the relation:

ψH pRHq � xRH |ψHy � C

�
mPRH

2lP



(4.11)

We have to normalize |ψHy, as usual, with the Schrödinger scalar product:

xψH |φHy �
» 8

0
drH

» π
0
dθ

» 2π

0
dϕr2

H sin θψ�H prHqφH prHq

� 4π

» 8
0
drHr

2
Hψ

�
H prHqφ prHq (4.12)

Normalization requires:

xψH |ψHy � 1 (4.13)

In this way, HWF describes the states for the Schwarzschild radius of a certain source, so it
can be used in calculating the probabilities to have some values for rH and the probability to

1 Considering quantum effect we have to take into account that the Schwarzschild radius should not be
covered by the corresponding Compton lenght:

rH � 2M Á λM �
l2P
M

(4.5)

which means that m ¡ mP and M ¡ lP .
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have a Black Hole instead of a simple particle. In fact, if a source can be represented by the
wave function ψS prq, the probability that the source has r   rH is given by:

P pr   rHq � 4π

» rH
0

drr2|ψSprq|2 (4.14)

At the same time, the corresponding HWF defines the probability density that the particle has
a Schwarzschild radius which is equal to rH :

pH prHq � 4πr2
H |ψH prHq |2 (4.15)

From here, one obtain the probability density that the particle is a Black Hole in the following
way:

pBH prHq � P pr   rHq pH prHq (4.16)

since there are no restrictions on the possible values of rH , the final probability is:

PBH �
» 8

0
pBH prHq drH (4.17)

At this point it is possible to study the fluctuations of r and rH and to obtain a more
general form of the uncertainty principle (GUP). The uncertainty in r is given by:

∆r2 � xψS prq2y � xψS prqy2 (4.18)

For rH :
∆r2

H � xψH prHq2y � xψH prHqy2 (4.19)

Finally, to obtain the GUP we need to calculate the uncertainty in p:

∆p2 � xψS ppq2y � xψS ppqy2 (4.20)

In such a way that the total uncertainty in measuring the radius is a linear combination of
the square root of (4.18) and (4.19) which are related with (4.20) to give us the generalized
uncertainty principle.

Another way to study Black Holes formation is in terms of collisions of two (or more)
particles. The states of a system of N particles are codified in a wave function of the form:

ψS px1, x2, ...xN q �
N¹
i�1

ψSi pxiq (4.21)

Like in the previous case, one can decompose the WF on the complete and orthonormal basis
of energy eigenstates, and from (4.6) one obtains the HWF. In this case, ψHprHq describes the
states of the whole system of colliding particles of the system.

If we have two particles one of the parameters of scattering phenomena is the impact
parameter b, at the end of the scattering we face with a Black Hole if:

b   rH (4.22)

in which rH came from (4.6) and E represents the total energy of the whole system. This
condition is known as the Hoop conjecture. As in the case of a single particle we can define
the probability of having a Black Hole in the case of N particles too.
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4.2 Gaussian sources

What we have said about the HWF can be applied, for an example, at the case in which the
source can be described by a Gaussian Wave Function centred at the origin of the coordi-
nate system (this is an important example because any other localized wave function can be
expressed as a sum of Gaussian functions).

ψS prq � e�
r2

2l2

pl?πq 3
2

(4.23)

l is a length scale that define the width of the gaussian and now we consider the case in which
l is the Compton length of the particle l � lP

mP
m . The correspondent wave function in the

momentum space (Fourier transform) is given by:

ψ̃S ppq � e�
p2

2∆2

p∆?πq 3
2

(4.24)

From the Minkowskian mass-shell condition m2 � E2 � p2 2 (m is the rest mass of the particle
which is not equal to the total energy m ¤ E) we can write:

ψ̃S pEq � e�
E2�m2

2∆2

p∆?πq 3
2

(4.25)

and then from the Schwarzschild radius relation RH � 2mlP
mP

� 2M , rH � 2ElP
mP

:

ψ̃S prHq � e�
�
mP rH

2lP


2
�

�
mPRH

2lP


2

2∆2

p∆?πq 3
2

(4.26)

Normalizing with the scalar product:

ψH prHq � 1

4l3P

gffe l3

πΓ
�

3
2 ,

m2

∆2

	θ prH �RHq e
� l2r2H

8l4
P (4.27)

this latter can be used for calculate the probability that the particle is a Black Hole. (4.27)
represents a Gaussian function of the gravitational radius rH centered in rH � RH (RH �
2m lP

mP
) cut for rH   RH .

Let us calculate the deviation ∆rH and how the GUP works here.

∆r2
H � xrHy2 � xrH2y �

�»
|ψH p~rHq |2~rHd~rH


2

�
»
|ψH p~rHq |2~r2

Hd~rH

�
�

4π

» 8
0
drHr

3
H |ψH prHq |2


2

� 4π

» 8
0
drHr

4
H |ψH prHq |2 (4.28)

2We use that relation because in the definition of Misner-Sharp mass we calculate the total energy as if the
space were flat.



4.2. GAUSSIAN SOURCES 39

substituting (4.27) in the latter equation:

∆rH � 2
l2P
l

gffe�E� 3
2
p1q

E� 1
2
p1q �

E�1p1q
E� 1

2
p1q

�
(4.29)

where we have defined the function:

Enpxq �
» 8

1

e�xt

tn
dt (4.30)

So we see that in the case of a Gaussian source wave function ∆rH � l�1 � m � RH which
means that the fluctuations in rH are of the same magnitude of the RH itself. For this reason
the HWF derived from the Gaussian source cannot be used in the case of an astronomical Black
Hole (m ¡¡ mP ) because they should behave semi-classically, so we cannot model them as a
tiny mass source which deforms the space-time metric around it. We should find another kind
of WF to describe macroscopic BHs, such like extended state (in fact any localized state can
be expressed in terms of Gaussian states) or talking about BHs as a Bose-Einstein condensate
(BEC) of gravitons.

Now we see as the GUP works in this example of Gaussian source. Let us calculate the
uncertainty in r given by (4.18) and in the present case become:

∆r � l2
3π � 8

2π
� l2∆QM (4.31)

The uncertainty in p is given by (4.20):

∆p2 � ∆QM
l2Pm

2
P

l2
(4.32)

So, the total uncertainty in radius is given by:

∆R � ∆r � ε∆rH (4.33)

with some constant ε and expressing ∆rH in term of ∆p the equation (4.33) represent the GUP.

In the previous paragraph we wrote about the probability to have a Black Hole from a
given WF. Inserting ψS prq and ψH prHq of the present example we can calculate effectively
this probability. Results that the particle is more probably a Black Hole if m Á mP while the
probability density goes rapidly to zero for m   mP Fig. 4.1.

After that, we can apply these results in the case of the radially infalling particle, and
calculate the time difference for a particle that starts its motion from the initial conditions
r pτ0q � r0 and 9rpτ0q � 0 but with M1 � M and M2 � M � ∆rH

2 , so the time difference from
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Figure 4.1: Probability that a particle with m � l�1 is a Black Hole [5].

(3.52) is:

∆τ1 � τ1 � τ2 � π

2
b

8M
r3
0

� rb
2M
r0

c
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� 1� 1b
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arctan
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r � 1

�

� π

2

gfffe8
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?
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gfffe8
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E
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r3
0

(4.34)
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while in the more general case, if M2 �M � n∆rH
2 :

∆τn � τ1 � τ2 � π

2
b

8M
r3
0

� rb
2M
r0
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r0

r
� 1� 1b
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0
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gfffe8
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� 1
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� E�1p1q

E
� 1

2
p1q

��

r3
0

(4.35)

So, as we have seen, if we have a probability distribution for E �M , there is also a probability
distribution for the fall time associated with the HWF.
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Chapter 5

Modified unstable circular orbits

Now we can study the particular case in which Black Hole’s mass M is not a simple single value
but it is represented by some probability distribution. Let’s study how this situation reflects
itself on the particles motion.

We have calculated in the previous chapter how corrections in M modify orbits (starting
from unstable circular orbit). So if we have a probability distribution for ∆M (and rH), a test
particle with given initial conditions does not follow a fixed trajectory but there is a probability
distribution for all the possible trajectories of the particle. At this point, we can study two
situations:

• Starting from the unperturbed orbits equation we consider initial conditions for the un-
stable circular orbit and then study how deviations from these initial conditions affect
the starting circular trajectory. To do that, suppose that to have a discrete distribution
for the initial conditions, so if we have the modified initial conditions:

rip0q � r0� � dri (5.1)

9rip0q � 0 (5.2)

every correction dri has a corresponding probability Pi to occur (with i discrete collection
of indexes). Consequently the particle trajectory generated from the i-th initial conditions
has a probability Pi to occur, so if we have a probability distribution for initial conditions
there is a correspondent trajectories probability distribution;

• Starting from the fixed initial conditions for the unstable circular orbit:

rp0q � r0� (5.3)

9rp0q � 0 (5.4)

consider deviation from M and study how they affect the particle motion, so in this
situation consider a discrete collection of corrections ∆Mi for M with the correspondent
probability Pi to occur:

Mi �M �∆Mi (5.5)

with i discrete collection of indexes. In this case we have a probability distribution of
modified orbits equations and consequently of particle trajectories.
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The latter case is the same that we have studied in the previous chapter and the resulting
orbits have the form:

uipφq � u0� � 3∆Mi
u2

0� � 1
3L2b

1� 12M
2

L2

� 3∆Mi
u2

0� � 1
3L2b

1� 12M
2

L2

cosh

�
4

c
1� 12

M2

L2
φ

�
(5.6)

until
���∆Mi
M

���    1. Some examples are represented in Fig. 5.1 (in the following figures upφq is

in m�1 and φ in rad).

Figure 5.1: Orbits (obtained with the numerical method) generated from different corrections
on M starting from the unstable circular orbit (solid yellow) for M � 1500m and L � 7250m.

For a certain distribution Pi of Mi we have a distribution of capture or escape orbits due
to positive or negative corrections respectively. As we have seen this distribution could come
from the Horizon Wave Function of the source. In this way, starting from this wave function, it
will be possible to calculate the probability that a particle is in r � r̄ after a certain number of

turns N̄ � φ̄
2π (or equivalently for a certain value τ̄), which is the probability of the correction

∆Mī which generates the trajectory such that:

uī
�
φ̄
� � 1

r̄
(5.7)

This could be compared with observational data.

Instead, in the first case, we have a fixed M and corrected initial conditions:

ui p0q � uo� � δi0 (5.8)
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9ui p0q � 0 (5.9)

so we started from energy levels which are lower than that of the unstable circular orbit (L
is fixed at the same value) so we have capture or escape at r � 8 for negative or positive
corrections respectively. The orbit has the form:

ui pφq � u0� � δi pφq (5.10)

with
δi p0q � ∆ui0 � δi0u0� (5.11)

9δi p0q � 0 (5.12)

and finally we have the equation at first order in δi0 is:

d2δi
dφ2

�
c

1� 12
M2

L2
δi � 3Mδ2

i (5.13)

yi � dδi
dφ

(5.14)

dyi
dφ

� dyi
dδi

dδi
dφ

� yi
dyi
dδi

�
c

1� 12
M2

L2
δi � 3Mδ2

i (5.15)

dδi
dφ

�
�c

1� 12
M2

L2
δ2
i � 2Mδ3

i � C

�1{2
(5.16)

This equation can be solved by means of elliptical integrals.

However if we have small corrections
��� δipφqu0�

���    1, |δi0|    1, it is possible to solve the

problem with a perturbation method.

δi pφq � δi0δ
1
i pφq � o

�
δ2
i0

�
(5.17)

at the first order in δi0 we have the equation:

d2δ1i pφq
dφ2

�
c

1� 12
M2

L2
δ1i pφq (5.18)

from here we can solve this equation and taking into account the previous initial conditions we
have:

ui pφq � u0� � δi0u0� cosh

��
1� 12

M2

L2


 1
4

φ

�
(5.19)

In the massless case we have the first order equation for δipφq which reads:

d2δipφq
dφ2

� δipφq (5.20)

from the initial conditions the solution is:

upφq � 1

3M
�∆u0 coshpφq (5.21)
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Figure 5.2: Orbits (obtained with numerical method) generated from correction on the initial
conditions of the unstable circular orbit for M � 1500m and L � 6300m

We see from (5.19) and (5.21) that even small perturbations in initial conditions of the unstable
circular orbit generate divergent corrections at the orbit Fig. 5.2.

The equation (5.13) for δi pφq is different from that of u1i pφq so the two kind of corrections
modify the orbits in different way Fig. 5.3.

We can see from Fig. 5.1 that if we have corrections to M of different magnitude they affect
the motion in such a way that the different modified orbits tend to become more and more
distant as φ increases; in Fig. 5.4 it is shown how small differences in Mi are amplified after
one turn around the source, it should be an amplification of the small mass deviations.

However an observed orbit could come both from errors in measurements of initial conditions
or from an error in measurement of M but with different relative errors (Fig. 5.3).

Let’s see when the two cases generate superposed orbits. From fixed ∆M
M we can adjust ∆r0

r0
in such a way that the behavior of the orbits results effectively the same and then we compare
each other. Here we show some of these situations using the numerical approach, e.g. we see
in Fig. 5.5 and Fig. 5.6 that for ∆r0

r0
� 0.1% and ∆M

M � 0.06% the two kind of orbits that

these correction generate are very similar and for ∆r0
r0

� 0.1% and ∆M
M � 0.0567% two orbits

are superposed. In this way we see that in this case the relative deviation from r0� has to be
bigger than the relative deviation from M to obtain the same trajectory.

The same analysis can be done for a lot of other situations and in doing so, every trajectory
should have two probabilities to occur: one due to the distribution of the deviations in the
initial conditions and the other due to the distributions of the deviation from the mass of the
source M .

We can also perform this study of the orbits with an analytic method using the perturbation
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Figure 5.3: Different corrected orbits, in the same color we have the same relative correction
(%), solid line for corrections in initial condition and dashed line for corrections in M . (M �
1500m, L � 6300m)

formula, some examples are in Tab. 5.1 in which we see some values of the two kind of
corrections needed to have the same ∆r after a certain number of turns around the source.
Here we consider φ � 2π for L � 4.2; L � 4.5; L � 5 and φ � 3π

2 for L � 18;L � 25.1

L δ%M δ%r0
δ%r0
δ%M

∆r

4.2 0.0565 -0.1 -1.77 -0.20088
4.2 -0.0565 0.1 -1.77 0.224401
4.2 0.1154 -0.2 -1.744 -0.38904
4.2 -0.1147 0.2 -1.733 0.484792
4.2 0.173 -0.3 -1.734 -0.55509
4.2 -0.1724 0.3 -1.74 0.778182
4.2 0.2312 -0.4 -1.73 -0.70737
4.2 -0.2273 0.4 -1.76 1.096912
4.2 0.28925 -0.5 -1.729 -0.84579
4.2 -0.2863 0.5 -1.746 1.492509
4.2 0.34747 -0.6 -1.727 -0.97282
4.2 -0.3435 0.6 -1.747 1.941768
4.2 0.4058 -0.7 -1.725 -1.08969
4.2 -0.40015 0.7 -1.749 2.468229
4.2 0.46425 -0.8 -1.723 -1.1976

1L and ∆r are expressed in M units.
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4.2 -0.457 0.8 -1.751 3.102772
4.2 0.5228 -0.9 -1.721 -1.29751
4.2 -0.5134 0.9 -1.753 3.872598
4.2 0.58145 -1 -1.72 -1.39027
4.2 -0.5701 1 -1.754 4.84042
4.5 0.06844 -0.1 -1.461 -0.28853
4.5 -0.0683 0.1 -1.464 0.343197
4.5 0.13701 -0.2 -1.46 -0.53445
4.5 -0.1365 0.2 -1.465 0.758492
4.5 0.20572 -0.3 -1.458 -0.74659
4.5 -0.2044 0.3 -1.468 0
4.5 0.27455 -0.4 -1.457 -0.9314
4.5 -0.2723 0.4 -1.469 1.917168
4.5 0.3435 -0.5 -1.456 -1.09384
4.5 -0.34025 0.5 -1.47 2.765058
4.5 0.41267 -0.6 -1.454 -1.23795
4.5 -0.4064 0.6 -1.476 3.886122
4.5 0.48193 -0.7 -1.452 -1.36642
4.5 -0.4755 0.7 -1.472 5.575939
4.5 0.55134 -0.8 -1.451 -1.48177
4.5 -0.54265 0.8 -1.474 8.157501

5 0.0728 -0.1 -1.374 -0.32777
5 -0.07265 0.1 -1.376 0.402756
5 0.14592 -0.2 -1.371 -0.6003
5 -0.1453 0.2 -1.376 0.91073
5 0.21909 -0.3 -1.369 -0.82967
5 -0.2179 0.3 -1.377 1.570824
5 0.29243 -0.4 -1.368 -1.02569
5 -0.2901 0.4 -1.379 2.458344
5 0.3659 -0.5 -1.366 -1.19504
5 -0.3622 0.5 -1.38 3.721579
5 0.43953 -0.6 -1.365 -1.34289
5 -0.4344 0.6 -1.381 5.670013
5 0.51328 -0.7 -1.364 -1.47301
5 -0.5065 0.7 -1.382 9.055708

18 0.100109 -0.1 -0.999 -0.15326
18 -0.09992 0.1 -1.001 0.170173
18 0.200418 -0.2 -0.998 -0.29202
18 -0.19962 0.2 -1.002 0.360182
18 0.300929 -0.3 -0.997 -0.41824
18 -0.29913 0.3 -1.003 0.573745
18 0.401641 -0.4 -0.996 -0.53356
18 -0.39844 0.4 -1.004 0.815542
18 0.502556 -0.5 -0.995 -0.63932
18 -0.49755 0.5 -1.005 1.091521
25 0.100991 -0.1 -0.99 -0.1557
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25 -0.10079 0.1 -0.992 0.173275
25 0.202184 -0.2 -0.989 -0.29638
25 -0.20138 0.2 -0.993 0.367271
25 0.30358 -0.3 -0.988 -0.42411
25 -0.30176 0.3 -0.994 0.585946
25 0.405179 -0.4 -0.987 -0.54059
25 -0.40195 0.4 -0.995 0.834324

Table 5.1: Orbits

We note here that for a fixed value of angular momentum, the ratio δ%r0
δ%M

remains almost a

constant value (in the escape cases it is a little higher than in the capture cases). Now if we

gradually increase the value of L we see that first δ%r0
δ%M

¡ 1 and then becomes δ%r0
δ%M

  1 (in the

case L � 18 for the escape cases the ratio is ¡ 1 and for the falling cases is   1). It means that
the importance of one kind of correction in generating a variation in r depends on L.
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Figure 5.4: Orbits (obtained from numerical method) generate from correction in M : blue
∆M
M � �0.1%, green ∆M

M � 0.2%, red ∆M
M � 0.4%. (For RH � 3000m and L � 7250)
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Figure 5.5: Orbits (obtained from numerical method) generate from corrections in initial con-
ditions of the unstable circular orbit ∆r0

r0
� �1%, and from correction ∆M

M � 	0.6%. (For
M � 1500m and L � 6300m)
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Figure 5.6: Orbits (obtained from numerical method) generate from corrections in initial con-
ditions of the unstable circular orbit ∆r0

r0
� �0.1%, and from correction ∆M

M � 	0.0567%. (For
M � 1500m and L � 6300m)



Chapter 6

Modified radial motion

The same considerations that we have seen in the case of unstable circular orbits can be done
in the case of radial motion studying the proper time variations. We will set a fixed final value
for r � rpτq (in the following examples we set r � 2M) and then study the two situations:

• from a given initial condition 9rpτ0q � 0 and rpτ0q � r0 we perform deviation from this
value of r coordinate of different magnitude (δr0i � ∆r0i

r0
is the i-th relative deviation).

In this way the effective initial conditions are r0effipτ0q � r0 �∆r0i and 9rpτ0q � 0. From
here we learn how these deviations influence τ ;

• we fix an initial condition rpτ0q � r0 and 9rpτ0q � 0 and starting from a given value of
mass M we perform some deviations from it (δMi � ∆Mi

M is the i-th relative deviation) to
have an effective value of mass Meffi � M � ∆Mi. In doing so we can study how these
deviations affect the τ value.

Setting dτ � τ � τ0 the value obtained from (3.49) when δ%r0 � 0 and δ%M � 0, in the
following Tab. 6.1 we show ∆dτr0i which is the i-th deviation from dτ due to the i-th deviation
from r0 while ∆dτMi represents i-th deviation from dτ obtaining inserting Meffi in (3.49).
Both i-th kind of deviations have the same relative magnitude (now we have no limit to use the
(3.49) analytic formula contrary to the previous case of L � 0 orbits which is a perturbation
formula). We can repeat the same calculus for various r0.

r0 δ%r0i � δ%Mi r0effi dτr0i ∆dτr Meffi dτMi ∆dτM
4 0 4 7.27131 0 1 7.27131 0
4 0.1 4.004 7.285048 0.013738 1.001 7.26768 -0.00363
4 -0.1 3.996 7.257577 -0.01373 0.999 7.27495 0.00364
4 0.2 4.008 7.298792 0.027482 1.002 7.26405 -0.00726
4 -0.2 3.992 7.24385 -0.02746 0.998 7.27859 0.00728
4 0.3 4.012 7.312541 0.041231 1.003 7.26043 -0.01088
4 -0.3 3.988 7.230128 -0.04118 0.997 7.28224 0.01093
4 0.4 4.016 7.326295 0.054985 1.004 7.25681 -0.0145
4 -0.4 3.984 7.216412 -0.0549 0.996 7.2859 0.01459
4 0.5 4.02 7.340055 0.068745 1.005 7.2532 -0.01811
4 -0.5 3.98 7.202701 -0.06861 0.995 7.28956 0.01825
4 0.6 4.024 7.353821 0.082511 1.006 7.24959 -0.02172
4 -0.6 3.976 7.188996 -0.08231 0.994 7.29322 0.02191
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4 0.7 4.028 7.367592 0.096281 1.007 7.24599 -0.02532
4 -0.7 3.972 7.175296 -0.09601 0.993 7.29689 0.02558
4 0.8 4.032 7.381368 0.110058 1.008 7.2424 -0.02891
4 -0.8 3.968 7.161601 -0.10971 0.992 7.30057 0.02926
4 0.9 4.036 7.39515 0.12384 1.009 7.23881 -0.0325
4 -0.9 3.964 7.147912 -0.1234 0.991 7.30425 0.03294
4 1 4.04 7.408937 0.137627 1.01 7.23522 -0.03609
4 -1 3.96 7.134228 -0.13708 0.99 7.30794 0.03663
5 0 5 10.87804 0 1 10.878 0
5 0.1 5.005 10.89694 0.018903 1.001 10.8726 -0.00543
5 -0.1 4.995 10.85914 -0.01889 0.999 10.8835 0.00544
5 0.2 5.01 10.91585 0.037815 1.002 10.8672 -0.01086
5 -0.2 4.99 10.84026 -0.03778 0.998 10.8889 0.01089
5 0.3 5.015 10.93477 0.056736 1.003 10.8618 -0.01628
5 -0.3 4.985 10.82138 -0.05666 0.997 10.8944 0.01635
5 0.4 5.02 10.9537 0.075665 1.004 10.8563 -0.02169
5 -0.4 4.98 10.80251 -0.07553 0.996 10.8999 0.02182
5 0.5 5.025 10.97264 0.094603 1.005 10.8509 -0.02709
5 -0.5 4.975 10.78365 -0.09439 0.995 10.9053 0.0273
5 0.6 5.03 10.99159 0.113549 1.006 10.8456 -0.03249
5 -0.6 4.97 10.7648 -0.11324 0.994 10.9108 0.03278
5 0.7 5.035 11.01054 0.132504 1.007 10.8402 -0.03787
5 -0.7 4.965 10.74596 -0.13208 0.993 10.9163 0.03827
5 0.8 5.04 11.02951 0.151467 1.008 10.8348 -0.04325
5 -0.8 4.96 10.72712 -0.15092 0.992 10.9218 0.04377
5 0.9 5.045 11.04848 0.170439 1.009 10.8294 -0.04862
5 -0.9 4.955 10.70829 -0.16974 0.991 10.9273 0.04928
5 1 5.05 11.06746 0.18942 1.01 10.8241 -0.05399
5 -1 4.95 10.68948 -0.18856 0.99 10.9328 0.0548
6 0 6 14.82692 0 1 14.8269 0
6 0.1 6,006 14.85162 0.024696 1.001 14.8195 -0.00741
6 -0.1 5.994 14.80224 -0.02468 0.999 14.8343 0.00742
6 0.2 6,012 14.87632 0.049403 1.002 14.8121 -0.0148
6 -0.2 5.988 14.77756 -0.04936 0.998 14.8418 0.01485
6 0.3 6,018 14.90104 0.074122 1.003 14.8047 -0.02219
6 -0.3 5.982 14.7529 -0.07402 0.997 14.8492 0.02229
6 0.4 6,024 14.92577 0.098853 1.004 14.7974 -0.02957
6 -0.4 5.976 14.72826 -0.09867 0.996 14.8567 0.02974
6 0.5 6,03 14.95052 0.123596 1.005 14.79 -0.03693
6 -0.5 5.97 14.70362 -0.1233 0.995 14.8641 0.03721
6 0.6 6,036 14.97527 0.14835 1.006 14.7826 -0.04428
6 -0.6 5.964 14.67899 -0.14793 0.994 14.8716 0.04468
6 0.7 6,042 15.00004 0.173116 1.007 14.7753 -0.05162
6 -0.7 5.958 14.65438 -0.17254 0.993 14.8791 0.05217
6 0.8 6,048 15.02482 0.197894 1.008 14.768 -0.05895
6 -0.8 5.952 14.62978 -0.19714 0.992 14.8866 0.05967
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6 0.9 6,054 15.0496 0.222684 1.009 14.7606 -0.06627
6 -0.9 5.946 14.60519 -0.22173 0.991 14.8941 0.06717
6 1 6,06 15.07441 0.247485 1.01 14.7533 -0.07358
6 -1 5.94 14.58061 -0.24631 0.99 14.9016 0.0747

Table 6.1: Radial motion

In the examples presented in Tab. 6.1 we have the effects of the two kind of corrections on
the proper fall time (from r0 � 4M , r0 � 5M , r0 � 6M to r � 2M), the results are expressed
in M units. We can see that a deviation from r0 generates higher deviation from dτ with
respect to those generate by the same relative deviation in M . This is true for all our three
starting points r0 � 4M , r0 � 5M and r0 � 6M .

We learn that the i-th deviation ∆dτri due to the i-th correction in r0 is higher than the
i-th deviation ∆dτMi generated by the i-th correction in M with the same relative error (we
have to compare the i-th positive (negative) correction in r0 with the negative (positive) i-th
correction in M).

6.1 Proper time distribution from mass distribution

As we have seen, for fixed r0 and r, different values of mass bring to different values of free fall
(escape) proper time. Now we will apply this phenomenon to the situation in which one has a
probability distribution for mass values. If one fixes initial conditions rpτ0q � r0 and rpτq � r,
a probability distribution for M values means that one has some definite probability Pi to have
the mass value Mi. For this reason there will be the same probability Pi to have the proper
time interval dτi � τi � τ0 to be able to reach r starting from r0. This proper time interval
is obtained inserting M � Mi in (3.49) and the result is that there will be also a probability
distribution for the free fall proper time τ .

Now we postulate some reasonable probability distribution for M and study how this dis-
tribution reflects itself in the proper time space. We will work with different initial position r0

while we always consider r � 0, in this way we can estimate the free fall time needed by the
particle to reach the physical singularity (starting from the given initial position).

Now we consider a Gaussian distribution for the mass values. This distribution depends on
two important parameters:

• the expectation value for the mass that we label as M0;

• the width of the distribution that we label σ.

So we study the present situation for different r0 and also for various value for σ. As first case
we fix M0 � 300m and we assume that σ � λM0 in which λM0 represents the Compton length

associated with the mass M0, so it is defined as λM0 � l2P
M0

where lP is the Planck length.
After that we remake the same study but changing σ (we take σ � nλM0 with n � 1, 2, 3, 4, 5)
and then changing r0 (e.g. we show the situations for r0 � 3M, 7M). We see some results in
Fig.6.1-6.8 (M and τ are expressed in meters ) where we see also how τ distribution changes
when we modify the Gaussian width.

We see from these graphics that if we consider σ not big enough, the probability to have
the ratio (at least) ∆τi

τ � 1 considerable deviation from τ is practically null (Pi   10�5). As
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Figure 6.1: Distributions for M and τ in case
r0 � 3M and σ � λM0 .

Figure 6.2: Distributions for M and τ in case
r0 � 3M and σ � 3λM0 .

Figure 6.3: Distributions for M and τ in case
r0 � 3M and σ � 4λM0 , dark spots imply con-
siderable deviations from τ .

Figure 6.4: Distributions for M and τ in case
r0 � 3M and σ � 5λM0 , dark spots imply con-
siderable deviations from τ .
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Figure 6.5: Distributions for M and τ in case
r0 � 7M and σ � λM0 .

Figure 6.6: Distributions for M and τ in case
r0 � 7M and σ � 3λM0 .

Figure 6.7: Distributions for M and τ in case
r0 � 7M and σ � 4λM0 , dark spots imply con-
siderable deviations from τ .

Figure 6.8: Distributions for M and τ in case
r0 � 7M and σ � 5λM0 , dark spots imply con-
siderable deviations from τ .
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σ increases, the probability to have considerable deviations from τ increases. For example for
σ � 5λM0 the probability to have the ratio δτi � ∆τi

τ � 1 is in the interval 5�10�5   Pi   8�10�4

(we have to take into account that Pi of the maximum is Pi � 0.011). In this probability interval
we have to consider also the relative deviations of mass (δMi � ∆Mi

M ) needed to obtain such
deviations in τ , in fact we have:

• a region in which relative deviations in τ are bigger than those in M . This occurs when
5 � 10�5   Pi   4 � 10�4 and the ratio δMi

δτi
is in the interval p0.6, 1q;

• a region in which δτi and δMi are of similar magnitude (δMi starts to become bigger).
This occurs when 5 � 10�4   Pi   8 � 10�4 and the ratio δMi

δτi
is in the interval p1, 1.1q

So we learn that as Pi increases, both δτi and δMi decreases but the former decreases faster.
In addition, all these results are the same if we consider different values for r0 as expected
considering equation (3.51).

6.2 Position distribution from mass distribution

The same considerations of the previous section could be done if we consider L � 0 and return
on the general orbits cases.

Recall the previous situation of modified orbit equations due to fluctuations in M . If
these corrections are due to some probability distribution for the values of M , we can find
the corresponding probability distribution of the position of the test particle after a certain
number of turns around the source. So we suppose again that the probability distribution for
M is a Gaussian centered on M0, with width σ and fix the initial conditions. As we have seen,
we could start from the unstable circular orbit associated with the mass M0 and the angular
momentum L:

u0� �
1�

b
1� 12

M2
0

L2

6M0
(6.1)

then we fix a value for φ in which we want to study the distribution. Fig. 6.9-6.12 show the
results for different Gaussian width and at different values for φ. Distributions have a peak
on the value u � u0� and as σ increase more value for u will have a non-neglecting probability
to occur. As φ increases, the shape of the distributions changes according to the equation of
orbits.
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Figure 6.9: Distributions for M and u � 1
r in

the case L � 4M0 and σ � 0.5λM0 when φ �
3rad.

Figure 6.10: Distributions for M and u � 1
r in

the case L � 4M0 and σ � 1λM0 when φ �
3rad.

Figure 6.11: Distributions for M and u � 1
r

in the case L � 4M0 and σ � 0.5λM0 when
φ � 5rad.

Figure 6.12: Distributions for M and u � 1
r in

the case L � 4M0 and σ � 1λM0 when φ �
5rad.
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Chapter 7

Gravitational Collapses

One of the most important phenomena due to gravity, is the gravitational collapse of stars. To
maintain equilibrium, star need to balance gravity attraction (that tends to collapse). In the
case of hot stars, this energy come from thermonuclear reactions that take place in the interior
regions of the star (and depend on its chemical composition).

During their lives, stars could face with situations in which thermonuclear reactions stop
to occur and the internal pressure is not enough to balance the gravitational attraction, so the
whole structure collapses. When the thermonuclear reactions stop forever, a collapse occurs
until some new pressure source is available. When the contraction goes on, a star’s density
increases, in this way when it reaches certain values we cannot neglect quantum effects like
Pauli exclusion principle. For this reason we find a new source of pressure that could balance
the contraction of the star. At this point the source can reach different final high density states
depending on the star’s collapsing mass. In fact if the mass is not too high, precisely less than
the Chandrasekar limit M � 1.4MÄ, Pauli pressure of the electrons of the star can balance
the gravity attraction, this final state represents a White Dwarf, there is not thermonuclear
energy source and the star tend to be cold T Ñ 0.

Another possible final state is the Neutron Star (a cold star too) in which the high density
tends to reverse the beta neutron decay and then the neutron Pauli pressure balances the
gravity attraction, even in this case we face with a cold star and there is an upper limit to
the mass that is known as the Tolman-Oppenheimer-Volkoff limit M � 3MÄ. If the source’s
mass is higher than the TOV limit the complete gravitational collapse occurs. In all of these
cases the mass threshold refers to the effective collapsing mass, in fact during the collapse part
of the total mass (of the most exterior regions) can be loss, this occur when one faces with a
supernova (that can also exhaust all the star mass).

7.1 Spherically symmetric case

Restrict us to the study of spherically symmetric static sources, these requirements force the
metric to be of the form:

ds2 � e2Φprqdt2 � e2Ψprqdr2 � r2dΩ2 (7.1)

where r is the usual area-radius as defined in the first chapter.
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We can simplify the problem assuming that the interior of the star is made of a perfect fluid.
This assumption allows us to use the following stress-energy tensor in the Einstein equations:

Tµν � pρ� pquµuν � pgµν (7.2)

in this expression uµ represents the 4-velocity of a fluid comoving observer, gµν is the metric in
this region, ρ ¡ 0 and p ¡ 0 are energy density and pressure respectively as measured by the
comoving observer (for fluid stability reasons we are interested to the case of dp

dρ ¡ 0 only). At
this point we define the function mprq as:

e2Ψprq � 1

1� 2mprq
r

(7.3)

This requires mprq   r
2 because of the positivity of the exponential of the left hand side.

Thanks to the symmetries of our problem the Einstein equations reduce only to three compo-
nents and take the form of the Tolman-Oppenheimer-Volkoff (TOV) equations which read:

dm

dr
� 4πr2ρprq (7.4)

dΦ

dr
� mprq � 4πpr3

r pr � 2mprqq (7.5)

dp

dr
� �pp� ρq mprq � 4πpr3

r pr � 2mprqq (7.6)

Now we have to remember that T , p and ρ are related by the equation of state of the fluid (in
the case of cold stars T Ñ 0 and one obtains the barotropic equation of state in which density
depends on pressure ρ � ρppq only).

From the TOV equations we have that dp
dr   0, hence one has dρ

dr   0 and density increases
as r decrease. For this reason it could exist some r0 such that in the region r   r0 density is
higher than the nuclear densities. This region is defined as the core of the star (equation of
state is not known for these high density matter), the exterior region r0   r   R (where R
represents the value for the radius of the star) is known as the envelope of the star.

To avoid stress-energy tensor singularity, when r Ñ 0 one has to require that each hyper-
surfaces at t � const Σt are smooth manifolds in each point including r � 0. This is equivalent
to the assumption that Σt are locally flat everywhere, hence in r � 0 too. This implies that
Ψpr � 0q � 0 and from (7.3) one obtain mp0q � 0. However one can integrate numerically these
differential equations using as initial conditions the requirement of continuity at the surface and
regularity of the solutions. In this way the problem is solvable and one obtains the solution for
the interior of the source. In fact, if we study the exterior of the source the solution is different
because for r ¥ R one have pprq � 0 and ρprq � 0 and from the TOV equations results:

mprq � mpRq �M � 4π

» R
0
r12ρpr1qdr1 (7.7)

in which M is constant in the whole exterior region R   r   8 and represents the gravitational
mass.

Then for Φprq we have:

Φprq � 1

2
ln

�
1� 2M

r



(7.8)
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e2Φprq �
�

1� 2M

r



(7.9)

as expected from the Birkhoff theorem we have recovered the Schwarzschild solution in the
exterior region. As we have seen, this metric is static but the gravitational collapse is not a
static phenomenon, despite this, the metric out of the source remains the Schwarzschild one
but its boundary changes during the collapse (R varies during the contraction starting from
R0). Now if the mass is less than the TOV limit we have a cold star and from the constrain
mprq   r

2 we have a limit on the star’s radius R ¡ 2mpRq � 2M but from (7.6) one can
obtain an improved limit which reads R ¡ 9

4M that is known as the Buchdahl inequality. If
M ¡ 3MÄ the complete gravitational collapse force the radius to become smaller than the limit
R � 2M where an (event) horizon arises. Once the star’s surface crosses the Schwarzschild
radius, matter continues to fall and reaches the space-time singularity at r � 0 in a finite proper
time (see Fig. 7.1). In such a situation, we assist to a Schwarzschild Black Hole formation
and as we have already seen in the first chapter, it is useful to change the coordinate system
describing this space-time.

For a star with the same mass of our sun MÄ(which will end its life as a withe dwarf) the

radius for these three final states would be:

• R � 7 � 103km if it were a Withe Dwarf;

• R � 10km if it were a Neutron Star;

• R � 3km if it were a Schwarzschild Black Hole.

There are no proof that Black Holes are always the final state of a complete gravitational
collapse. In fact in more general situations, i.e. if one considers different symmetric properties
or different kinds of fluid in the star’s body, it might happen that the final state corresponds
to a naked singularity, a physical space-time singularity that can interact causally with the
exterior region because in this case it is not isolated from the exterior region by means of the
event horizon (Cosmic Censorship Conjecture). As we have seen, such a situation could
cause many problems especially for the predictability of the theory.

7.2 Oppenheimer-Snyder model

As we have seen in the previous section, it might happen that during the life of a star, every
thermonuclear energy sources ends. If the star mass is big enough, the gravitational collapse
occurs. During this process the star could lose energy because matter in the outermost star’s
shells (envelope) could be expelled during the contraction. Consider now the case in which
we can neglect these losses of energy and that we have again a spherically symmetric system.
With these conditions we have in the exterior region the Schwarzschild solution as usual. From
here we assume that the interior region is spherically symmetric too and composed by an
homogeneous density (ρ0) perfect fluid. In this conditions in the Schwarzschild line element
the total energy M � mlP

mP
can be write as m � 4π

3 ρ0R
3. Studying this situation one finds

that relevant physical quantities like p (which is not homogeneous) and R depends only on the
parameter ρ0.

If we suppose that the perfect fluid has the equation of state p � 0 which is the case of a
dust fluid one can write the stress-energy tensor as Tµν � ρuµuν and the TOV equations can
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Figure 7.1: Spherically symmetric gravitational collapse: the space-time singularity (r � 0) is
covered by the event horizon (r � 2M) and every shell reach this singularity with the same
amount of proper time.

be solved analytically. This is the simplest collapse situation one can faces with and represents
the Oppenheimer-Snyder model.

Now if we use a comoving set of coordinates (Tµν � diag pρ, 0, 0, 0q) and considering the
Einstein field equations, we are allowed to describe the space-time by means of the Friedmann
metric:

ds2 � dt2 � S ptq
�

dr2

1� κr
� r2dΩ2



(7.10)

in which S ptq is the scale factor and κ determines the curvature, this quantity can take only
three different values κ � �1 (closed universe), κ � 0 (flat universe) and κ � �1(open universe).
We are interested to the close solution and we can write:

ds2 � dt2 � S ptq
�
dr2

1� r
� r2dΩ2



� dt2 � S ptq �dχ2 � χ2dΩ2

�
(7.11)

with χ � sin�1 r.
As we know the exterior solution is different from the interior one, so we have to impose a

boundary condition that forces the metric to be continuous at the surface of the star. From
here one can use the parametric solutions for these kind of models and we obtain:

S pηq � Sm
2
p1� cos ηq (7.12)

t pηq � tm
2
pη � sin ηq (7.13)
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where η parametrizes the whole contracting phenomenon, in fact η � 0 is the beginning of the
collapse while the end corresponds to η � π. However in this collapse model one can treat
any star’s shell as a free radially infalling particle, so its trajectory is governed by the equation
(3.51) in which r0 take the value of the starting radius of the shell (where the shell is at rest).
We note that if we call mpr0q the mass inside the shell with starting radius r � r0:

τ �
d

r3
0

mpr0q (7.14)

and from the homogeneity property
r3
0

mpr0q � 3
4πρ0

is a constant. In this way every shell reach
the physical singularity with the same amount of proper time. In this model an event horizon
arises when r equal the gravitational radius, this surface covers the singularity and we assist
to a Black Hole formation.

7.3 Photons emitted from collapsing surface

In this section we want to study the effects generated by the mass M on photons eventually
emitted from a radially infalling particle (that could be a particle on the surface of a collapsing
star).

We have obtained in the first chapter the equations of motion for a massive particle on the
G-P space-time manifold obtaining the 4-velocity along the geodesic:

uµ � dxµ

dτ
� � 9t, 9r, 0, 0� (7.15)

taking into account that for the generic G-P coordinate system:

9t � 1 (7.16)

9r � �
c
E2 � 1� 2M

r
(7.17)

Consider now a photon with conserved frequency ω0 � kµξ
µ (where ξµ � p1, 0, 0, 0q is a Killing

4-vector) and conserved angular momentum �l � kµζ
µ (where ζµ � p0, 0, 0, 1q is the other

Killing 4-vector), so one have:

ω0 � k0g00 � k1g10 � k0 1� 2M
r

E2
� vprq

E2
k1 (7.18)

k3 � l

r2
(7.19)

So we obtain

k0 � E2ω0 � vprqk1

1� 2M
r

(7.20)

while k1 is obtained from the condition to have a light-like wave 4-vector:

kµkµ � kµkνgµν � k0k0 1� 2M
r

E2
� 2

vprq
E2

k0k1 � 1

E2
k1k1 � l2

r2
� 0 (7.21)
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Figure 7.2: ω�1prq for ε � �1 and fixed M �
1000m, l � 0, ω0 � 1015Hz. The observer starts
the falling from r � r0 � 4000m with 9r � 0.

Figure 7.3: ω�1prq for ε � �1 and fixed M �
960m, E � 1, l � 0, ω0 � 1015Hz. The observer
stars the falling from r � r0 � 8 with 9r � 0.

k1
ε � ε

d
E2ω2

0 �
�

1� 2M

r



l2

r2
(7.22)

so the photon wave 4-vector is:

kµ �
��E2ω0 � εvprq

b
E2ω2

0 �
�
1� 2M

r

�
l2

r2

1� 2M
r

, ε

d
E2ω2

0 �
�

1� 2M

r



l2

r2
,
l

r2
, 0

�
 (7.23)

In these equations vprq �
b

2M
r � 2M

r0
for a particle which starts from r0 with 9r � 0.

When a radially infalling massive observer meets the photon kµ along the geodesic uν (e.g.
emission or reception) the frequency measured by the observer is:

ωε � kµu
µ � kµuνgµν �

�
1� 2M

r0

	
ω0 � ε

b
E2ω2

0 �
�
1� 2M

r

�
l2

r2

b
E2 � 1� 2M

r

1� 2M
r

(7.24)

If a photon were emitted (in r � r1) from a massive falling observer (1) with the conserved
value ω0 its energy k0 depend on r1 and M . Then if we have another infalling observer (2)
that receives this photon (in r � r2) it sees frequency like ωεpr2q.

For ε � �1 we have that the photon direction is the same to the observer’s one and ω
decreases as r decreases. For ε � �1 the photon direction is the opposite of the observer’s one
and ω increases as r decreases.

When the photon is emitted (or observed) near the horizon [13] we can approximate the
quantity

�
1� 2M

r

� � 0� 1
2M pr � 2Mq in doing so we can express also ωprq in an approximate

form which read for ε � �1:

ω�1prq � 4ME2ω0�
re{o � 2M

� (7.25)

and for ε � �1:

ω�1prq � ω0

2
� l2

2ω0p2Mq2 (7.26)
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where re{o is the value of r in which emission/observation takes place. Obviously these measured
frequencies depend on the mass of the source so for different values of M we have different
behavior for ωprq for every set of fixed conserved quantities tE, l, ω0u.

Figure 7.4: ωM prq for ε � �1 for fixed E, l � 0, ω0 � 1015Hz starting from r � r0 � 4000m
with 9r � 0.

For example, in Figure 7.4, we fix l, ω0 and E, we see that as M increases ω decreases (at
some r) and there are no problems when we cross the event horizon. In Figure 7.5, we fix l,ω0

and E, ω increases faster for higher values of M and reaches its maximum on the event horizon.
To see how frequency change in time suppose that the observer 1 measures frequency ω1

for a photon at the horizon, the observer 2 measures frequency ω2 of the very same photon at
the horizon, in [13] there is the calculus of the ratio ω2

ω1
in Kruskal coordinates which reads:

ω2

ω1
� V1

V2
(7.27)

where V � e
v

4M and v � tS �
³r
0

dr1

1� 2M
r1

, now from (2.22) we have

v � tP �
» r

0

�� dr1

1�
b

2M
r1

�
 (7.28)

and
ω2

ω1
� e

1
4M

ptP1�tP2q (7.29)

so if tP2 ¡ tP1 then ω2prHq   ω1prHq, as tP increases frequency is redshifted.
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Figure 7.5: ωM prq for ε � �1 for fixed E, l � 0, ω0 � 1015Hz starting from r � r0 � 4000m
with 9r � 0.

Also in this case we could apply these results at the case in which one have a probability
distribution for M that generate a correspondent probability distribution for ωprq.

Finally ω depends on ω0 so if we have a spectrum from the collapsing star and we consider
different value of mass for every ω0 there is a ”split” of the curve ωprqdue to M as we see in
Figure 7.7
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Figure 7.6: ωM prq for ε � �1 for fixed E, l � 0 and various values for ω0 starting from
r � r0 � 4000m with 9r � 0 in semilogarithmic. Dashed lines correspond to M � 900m, solid
lines M � 1000m, dotted lines M � 1100m.
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Figure 7.7: ωM prq for ε � �1 for fixed E � 1, l � 0 and various values for ω0 starting from
r � r0 � 4000m with 9r � 0 in semilogarithmic. Dashed lines correspond to M � 1000m, solid
lines M � 900m, dotted lines M � 1100m.



Conclusions

One of the major results arising from the General Theory of Relativity is that a compact
astrophysical object, under suitable conditions, could eventually collapse to form a black hole.
It is straightforward to infer that such an object could not be directly observed due to the
fact that it does not emit any form of detectable radiation (Indeed, the Hawking radiation is
predicted to be way weaker with respect to the typical background radiation so it does not
appear to be a suitable marker for the detection of astrophysical black holes). Therefore, the
only feasible way to experimentally identify the presence of a black hole in a given region is
through the study of how its gravitational field deforms the geodesic motion of observable
objects in that region.

In this thesis we have presented a study on how quantum gravitational effects could poten-
tially modify some of the main features taken into account for the experimental detection of
astrophysical black holes. In particular, in Chapter 1 we have discussed some general properties
concerning the geometry of black hole spacetimes focusing on the mathematical formulation
of the notions of event horizon and trapping surface and on the conditions that lead to the
breakdown of the (classical) relativistic theory of gravity, i.e. the Hawking-Penrose singularity
theorem. Then, in Chapter 2 we focussed our attention on a specific type of spacetimes, i.e.
the one produced by charge-less static spherically symmetric sources. In this framework we
introduced the notions of Misner-Sharp and ADM mass and we discussed their relevance in the
context of both the classical and the quantum description of the source and of its gravitational
field. In the same chapter we have also introduced the coordinate frame of a free falling ob-
server in a Schwarzschild background. In Chapter 3, that concludes the introductory part of
the thesis, we revised the analysis of the geodesic motion of a point particle for a Schwarzschild
black hole.

In Chapter 4 and 5, after a brief review of the Horizon Quantum Mechanics, we discussed
the effects that the quantum mechanical fluctuation of the mass of a (quantum) source can
produce on the geodesic motion of point particle on a perturbed Schwarzschild background.
Indeed, if we consider a source described in terms of a static spherically symmetric wave
function, according to the Horizon Quantum Mechanics formalism the quantum nature of the
source will result in a quantum behaviour of the geometry of the spacetime. In particular, one
has that the the radius of the horizon is not sharply defined any longer, but rather follows a
certain probability distribution induced by the wave function of the source. These fluctuations
of the horizon, or equivalently of the mass of the ADM mass, affect the geodesic motion of a
point particle and they can be modelled as small perturbations of the equations of motion. The
result of our analysis is that these kind of fluctuations seem to lead to small, but not completely
negligible, deviations from the classical trajectories. Therefore we believe that this problem is
worth of further studies.
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Moreover, in Chapter 6 and 7 we have also discussed how quantum mechanical effects affect
properties of the light emitted by a collapsing radially falling source as measure by an in-falling
observer.



Appendix A

Minkowski’s conformal
compactification

Here we will perform the conformal compactification on the flat Minkowski space-time to see
how this space-time behaves at infinity.

One obtains different kind of infinities. In fact, starting from the physical metric:

gµν � dt2 � dr2 � r2dω2 (A.1)

in which infinities are represented by t Ñ �8 and r Ñ 8, one has to apply the following
transformations: #

w � t� r

v � t� r
(A.2)

and then #
w Ñ q � arctanw

v Ñ p � arctan v
(A.3)

so that the conformal transformed metric (Ω � 2 cos p cos q) is:

ḡµν � 4dpdq � sin2 pq � pq dω2 (A.4)

in which Minkowski’s infinities are represented by

• i� for t Ñ �8 and r fixed and finite (q � p � π
2 ), a radial timelike geodesic starts in

i� and finishes on i� so these infinities are called past and future timelike infinity
respectively;

• I�, which are null surfaces with t	 r fixed and finite but tÑ �8 and r � 8, radial null
geodesics start from I� (q � �π

2 , p � �π
2 ) and finish on I� (p � π

2 , q � �π
2 ), so these

surfaces are called past and future null infinity respectively;

• i0 for r Ñ 8 and t fixed and finite (q � �π
2 , p � π

2 ), all spacelike geodesics start and
finish in i0 which is called the spacelike infinity.
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Now we can put these results in a diagram which is known as the Penrose diagram of the
Minkowski space-time Fig.A.1. To do that we perform another coordinate transformation which
reads: #

R � q � p

T � p� q
(A.5)

to obtain the unphysical metric:

ḡµν � dT 2 � dR2 � sin2Rdω2 (A.6)

with R P r0, πq and T P p�π, πq. If the coordinates were be such that T P p�8,8q and

Figure A.1: Penrose diagram of Minkowski space-time

R P r0, πs we face with the (cylindric) Einstein static universe.



Appendix B

Christoffel symbols in
Gullstrand-Painlevé coordinate
system

From the definition of the Christoffel symbols we can see that under a general coordinate
transformation they do not behave as tensors. For this reason they depend on the coordinate
system or, equivalently, on the observer.

Here we calculate these quantities for the metric in (2.23) and we can check that they do
not correspond to those of the Schwarzschid case. From (3.15) the only Γγµν � 0 are:

Γttt �
1

2
gtt pgtt,tq � 1

2
gtr p2grt,t � gtt,rq �

c
M

2r3
(B.1)

Γttr � Γtrt
1

2
gtt pgtt,rq � 1

2
gtr pgrr,t � grt,r � gtt,rq � M

r2
�
1� 2M

r

� (B.2)

Γtrr �
1

2
gtt p2gtr,r � grr,tq � 1

2
gtr pgrr,rq �

c
M

2r3

1

1� 2M
r

(B.3)

Γtθθ �
1

2
gtt p2gtθ,θ � gθθ,tq � 1

2
gtr p2grθ,θ � gθθ,rq �

c
r3

2M
(B.4)

Γtφφ �
1

2
gtt p2gtφ,φ � gφφ,tq � 1

2
gtr p2grφ,φ � gφφ,rq � �

c
r3

2M
sin2 θ (B.5)

Γrtt �
1

2
grr p2grt,t � gtt,rq � 1

2
grt pgtt,tq � M

r2
(B.6)

Γrtr � Γrrt �
1

2
grr pgrt,r � grr,t � gtr,rq � 1

2
grt pgtt,r � gtr,t � gtr,tq � �

c
M

2r3
(B.7)

Γrrr �
1

2
grr pgrr,rq � 1

2
grt p2gtr,r � grr,tq � � 1

2r
(B.8)

Γrθθ �
1

2
grr p�gθθ,rq � 1

2
grt p�gθθ,tq � �r (B.9)

Γrφφ �
1

2
grr p�gφφ,rq � 1

2
grt p�gφφ,tq � �r sin2 θ (B.10)
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Γθµν and Γφµν are the same of the Schwarzschild case. We note that these are very different from
those we have seen in the first chapter so, the geodesic equations will have a different form.



Appendix C

Black Hole Shadow

The case of massless particles behavior in the vicinity of a source is very important as in the case
of photons. In fact, we detect signals and images from the universe which are electromagnetic
signals and are represented by photons.

If we study photons trajectories around a source, we obtain a set of results which could be
compared with direct observations of astronomical objects and some simulations. In fact, as we
have seen in the first chapter, from the shape of Veff prq for massless particle (which depends
on L), we can have:

• circular unstable orbit in r � 3M ( 9r � 0)with E � L2

27M2 which defines the photon sphere;

• capture trajectories;

• scattering trajectories.

From these results, we can imagine a Black Hole and a light source of a large angular size
(larger than the BH) i.e. a galaxy. Now suppose that the Black Hole is between the large light
source and the observer (large light source could be thought at null past infinity). What does
the observer see?

Photons come from the light source and when they approach the Black Hole, they behave
like the cases previously described for the geodesics motion of massless particles.

Consider the impact parameter of this situation l: only the photons with l ¡ lmin can reach
null future infinity (i.e. the observer), if l   lmin photons are captured Fig. C.1. Calculating

lmin one obtain lmin � 3
?

3
2 in this way the photon capture cross section is:

σph � l2minr
2
Hπ � 27M2π (C.1)

The region l   lmin is called Black Hole Shadow and the observer sees a dark spot on a bright
background.

For these reasons, a Schwarzschild Black Hole the shape of the shadow is a circle whose size
depends on the unique parameter of the Black Hole, the mass M .

In most general cases, a Black Hole can rotate around a certain axis and it could be
electrically charged. In these cases the shape of the BH shadow becomes more complicated
than in the Schwarzschild case (in rotating Black Holes some photons can escape even from
region which are nearer to the BH than in the Schwarzschild case and the shape of the shadow

77



78 APPENDIX C. BLACK HOLE SHADOW

Figure C.1: Possible trajectories for photons when they approach a Schwarzschild Black Hole

is no longer circular, the deformation depends even on the observation point) and depends on
the other parameters which describe the BH such as spin and charge.

Thanks to that, we can have a possible way to check some important results of the General
Relativity, as the validity of the theoretical metrics obtained from Einstein equations, like the
Kerr metric. In fact, with the improvement of the sub-millimeter interferometers, it will allow
to investigate these shadows and we could test if there are or not divergences from the theory.

For a rotating source of mass M and with angular momentum J , the line element from the
Kerr metric is given by:

ds2 �
�

1� 2Mr

ρ2



dt2 � ρ2

∆
dr2 � ρ2dθ2 �

�
r2 � α2 � 2Mrα2

ρ2
sin2 θ



sin2 θdφ2

� 4Mrα sin2 θ

ρ2
dtdφ (C.2)

with

α � J

M
(C.3)

ρ2 � r2 � α2 cos2 θ (C.4)

∆ � r2 � 2Mr � α2 (C.5)

To test this metric, one can introduce a new metric, the Cardoso-Pani-Rico parametrization of



79

Figure C.2: Divergences from the theoretical Kerr metric affect the shape of the BH shadow
[9].

the metric:

ds2 �
�

1� 2Mr

Σ


�
1� ht

�
dt2 � Σ p1� hrq

∆� hra2 sin2 θ
dr2 � Σdθ2

� sin2 θ

�
Σ� a2 sin2 θ

�
2
a
p1� hrq p1� htq �

�
1� 2Mr

Σ


�
1� ht

�


dφ2

� 2a sin2 θ

�a
p1� hrq p1� htq �

�
1� 2Mr

Σ


�
1� ht

�

dtdφ (C.6)

which parametrizes the possible divergence from the Kerr metric through the two set of defor-
mation parameters (εtk, ε

r
k):

ht �
�8̧

k�0

�
εt2k � εt2k�1

�
Mr

Σ


�
M2

Σ


k�
(C.7)

hr �
�8̧

k�0

�
εr2k � εr2k�1

�
Mr

Σ


�
M2

Σ


k�
(C.8)

Where a � J
M , Σ � r2 � a2 cos2 θ, ∆ � r2 � 2Mr� a2. Now if we detect a Black Hole shadow,

its shape depends only on the metric and the BH parameters, so from observational data we
can define the deformation parameters and test the theoretical Kerr metric Fig. C.2.
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Appendix D

Quantum treatment of a collapsing
source

From the particles equations of motion, one can study what happens during a collapse focusing
on the behavior of a particle on the surface of the star. Our results tell us that using the
Schwarzschild coordinate system, we cannot see the particle crossing the horizon in fact it needs
an infinite amount of Schwarzschild time to reach r � 2M . However in the G-P coordinate
system, we do not have this problem because the G-P time coordinate represents the particle
proper time and it is possible to study the motion also for r   2M in a finite amount of tP .

Now we want to see what happens if the quantum nature of the particles of the source
cannot be neglected. We are looking for a particle on the surface of the star. Let us calculate
the classical Action and Hamiltonian from the Lagrangian (we use now the generic G-P metric):

L � �m
E

d�
1� 2M

r



9t2 � 9r2 � 2vprq 9r 9t (D.1)

where m is the mass of the particle on the surface (these massive particles are the constituent
of the source), dots represent derivative with respect to the parameter τ . From here we can
write the Action on a certain path γ:

Srγs � �m
E

» tf
ti

dt

d�
1� 2M

r



� 9r2 � 2vprq 9r (D.2)

Then we calculate momenta p:

p � BL
B 9r

� m

E

9r � vprqb
1� 2M

r � 9r2 � 2 9rvprq
(D.3)

and, considering classical path (vprq �
b

2M
r � 2M

r0
and E2 � 1� 2M

r0
), the Hamiltonian H:

H � p 9r � L �
d�

1� 2M

r0



p2 �m2 � p

c
2M

r
� 2M

r0
(D.4)

where r0 is the value for the r coordinate in which 9r � 0. H reduces to the free relativistic
Hamiltonian when we are in the limit M Ñ 0.
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Now we are ready to study the problem in a quantum point of view and assume that the
particle’s state is codified in a Gaussian wave function in pri, tiq:

ψ pri, tiq � Ne�
m2pr�rcq

2

~2 (D.5)

where N � 4
a

π
2

b
~
m is the normalization constant and rc is some value for the initial position

of the surface (we assume rc ¡¡ 2M). We know from the path integral quantization that one
can define the propagator as:

G prf , tf ; ri, tiq �
¸
γ

e
i
~Srγs (D.6)

which is the sum of the amplitude due to all possible trajectories γ, in this sum one has to
consider also space-like (ds2   0) and light-like (ds2 � 0) trajectories (classically one considers
only time-like paths for massive particles), for this reason when 9r appears in the sum we consider

the relation 9r2 � � drdτ �2 � E2 � κ
�
1� 2M

r

�
in which κ � 0 for light-like geodesics, κ � �1 for

time-like geodesics and κ � �1 for space-like geodesics.
From propagator and the initial Gaussian state one obtains the WF that describes the

particle’s state at any pr, tq integrating on all the possible initial conditions:

ψ pr, tq �
» 8

0
driG pr, t; ri, tiqψ pri, tiq (D.7)

We can study the problem of finding the quantum WF at some pr, tq supposing that the massive
particle wave function ψ pr, tq can be found solving the Schr:odinger equation i~Btψ � Hψ for
our Hamiltonian in (D.4), from here we proceed with a perturbation method in which we set

ε �
b

2M
r � 2M

rc
and our equation is:

i~
B
Btψ pr, tq �

�d�
1� 2M

rc



p2 �m2 � pε

�
ψ pr, tq (D.8)

In this way we can write our solution approximated at first order in the form:

ψ pr, tq � ψ0 pr, tq � εψ1 pr, tq � o
�
ε2
�

(D.9)

where we have:

ψi pr, tq �
» 8
�8

dk ˜ψi pk, tqeikr (D.10)

(i � 0, 1). So ψ0 pr, tq satisfies the zeroth-order equation:

i~Btψ0 pr, tq �
d�

1� 2M

rc



p2 �m2ψ0 pr, tq (D.11)

and the solution is:

ψ0 pr, tq �
» 8
�8

dkψ̃0 pk, 0q e
� i

~ t

c�
1� 2M

rc

	
~2k2�m2

(D.12)

In t � ti � 0 we have the condition that ψ pr, tq is a Gaussian centered in r � rc, this fixes the
form for ψ̃0 pk, 0q and imposes the condition ψ1 pr, 0q � 0.



83

At first order we obtain the equation for ψ1 pr, tq which reads:

i~Btψ1 pr, tq �
d�

1� 2M

rc



p2 �m2ψ1 pr, tq � pψ0 pr, tq (D.13)

From here we obtain:

ψ pr, tq � ~
m

N?
2π

» 8
�8

dke�
k2~2

4m2 e
� i

~ t

c�
1� 2M

rc

	
~2k2�m2

eikpr�rcq

�
c

2M

r
� 2M

rc

~
m

N?
2π

» 8
�8

dke�
k2~2

4m2 eikpr�rcqikte
� i

~ t

c�
1� 2M

rc

	
~2k2�m2

�
c

2M

r
� 2M

rc

» 8
�8

dkeikrAe
� i

~ t

c�
1� 2M

rc

	
~2k2�m2

(D.14)

in which considering the initial conditions A � 0. Note that the wave function is not normalized,
this is due to the use of the perturbation method that give us a solution which is useful only
in the first few instants. From here, knowing that

N?
2π

» 8
0
drie

�ikrie�
pri�rcq2m2

~2 � N~?
2πm

e�
~2k2

4m2 e�ikrc (D.15)

and from (D.7) one obtain the propagator:

G pr, t, ri, ti � 0q � N?
2π

» 8
�8

dke�
pri�rcq2m2

~2 eikpr�riqe
� i

~ t

c�
1� 2M

rc

	
~2k2�m2

(D.16)

�
c

2M

r
� 2M

rc

N?
2π

» 8
�8

dke�
pri�rcq2m2

~2 eikpr�riqikte
� i

~ t

c�
1� 2M

rc

	
~2k2�m2

At this point we can integrate (D.14) to study the behavior of the probability of finding the
particle at some r in t ¡ ti � 0, in Fig. D.1 we have shown |ψ prq |2 for different values of t for
a fixed M � ~

m and rc � 30M .
In this figure, we see that the WF (starting from a Gaussian WF centered in rc � 30M

at t � 0) as t increases shows two peaks which represent the radially ingoing (collapse) and
outgoing (expanding) possible motions for the particle. As t increases, the peaks become more
and more distant from each other. We see that the ingoing peak is higher than the outgoing
one at any fixed t, so collapse is more probable than expansion of the star. These results are

acceptable until |ε| �
���b2M

r � 2M
rc

���    1.

Particle’s WF is also function of the total energy M as is shown in (D.14) and in Figure
D.2.

At fixed time, as the mass M increases, ingoing peaks become higher and higher. Also out-
going peaks become higher and higher as M increases but they are lower than the ingoing ones
and are shifted toward smaller values of r. However as shown in [7] the Schr:odinger approach
is not appropriate in this case and one should proceed with a path integral quantization and
eventually one can perform some approximation such as the WKB (Wentzel-Kramers-Brillouin)
approximation. Also, in this case, we can apply these results in cases in which M does not
have a definite value, but there is a probability distribution of masses. In fact if we have a
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Figure D.1: |ψ prq |2 for different t with rc � 30M , m � 10�13eV , M � 1 ~
m (r is expressed in

~
m � 1.97328 � 10�3m �M units).

probability Pi for the mass Mi, Pi also represents the probability to have a certain ψMi pr, tq
for the particle on the surface of the source. Suppose that i is a set of discrete indexes, for a
fixed t the probability distribution to find the particle af some value of r is:

ρ pr, tq �
Ņ

i�0

Pi|ψMi pr, tq |2 (D.17)

The probability distribution for rH and hence for M could also be obtained from the HWF
of the source so we can study the effects of this latter during the collapse. If this is the case,
the probability density to have a gravitational radius rH is given from:

ρ prHq � 4πr2
H |ψH prHq |2 (D.18)

so if the horizon of the source can be described by means of ψH prHq and the states of the
particle on its surface are (initially) codified in a Gaussian wave function, the probability to
find the particle in r at some t ¡ 0 (if we exclude the possibility of an angular motion) is:

P pr, tq �
» 8

0
drHρ prHq |ψM� rH

2
pr, tq |2 (D.19)
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Figure D.2: |ψM prq |2 for different M with rc � 30 ~
m , m � 10�13eV at t � 10 ~

m (r is expressed
in ~

m units).
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