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Notations

F
n n-dimensional vector space on the generic field F

R Field of the real numbers
C Field of the complex numbers

〈·, ·〉 Natural inner product over Cn

‖ · ‖ 2-norm of a vector or a matrix
AT Transpose of A
AH Conjugate transpose of A
n Dimension of the space on which the considered linear

system Ax = b is defined
m Dimension of the projected space

e1, . . . , en Canonical Euclidean basis of Rn

Pm Vector space of the polynomials of degree smaller or equal
to m

P∗
m Vector subspace of the polynomials in Pm such that

p(0) = 1
κ(X) 2-norm condition number of the matrix X
Im m×m identity matrix
Jf(x) Jacobian matrix of the function f at point x
Hf (x) Hessian matrix of the function f at point x

blkdiag(A1, ..., An) Block diagonal matrix with matrices A1, . . . , An on the
diagonal



Introduzione

La necessità di risolvere sistemi lineari emerge continuamente da una vasta gamma
di campi d’applicazione. Ad esempio, tali sistemi sono ottenuti nella trattazione
numerica di equazioni differenziali. Sebbene in alcuni casi l’utilizzo di metodi
diretti consente la risoluzione di problemi di dimensione anche notevole, i metodi
iterativi risultano spesso la scelta migliore al fine di risolvere numericamente tali
sistemi. In questo contesto, di particolare importanza sono i metodi sugli spazi
di Krylov. Sebbene le loro potenzialità non siano state colte completamente nelle
due decadi successive ai loro primi sviluppi, verso la fine degli anni ’70 i metodi
sugli spazi di Krylov per sistemi lineari e problemi agli autovalori si diffusero
ampiamente e con successo in contesti scientifici ed ingegneristici.
L’idea principale dei metodi sugli spazi di Krylov, ed in generale dei processi di
proiezione, è quella di trovare una soluzione approssimata di un sistema Ax =
b potenzialmente molto grande risolvendo un sistema di dimensione notevol-
mente inferiore, ottenuto attraverso la proiezione del sistema originale su un
opportuno sottospazio. La quantità di informazione contenuta nel sistema orig-
inale che il processo di proiezione riesce a catturare si riflette nell’accuratezza
dell’approssimazione della soluzione. I metodi sugli spazi di Krylov costruis-
cono una successione annidata di sottospazi, dando origine ad una successione di
soluzioni approssimate, che tendono alla soluzione esatta. Quando il metodo
è ben definito, se un sottospazio della successione dovesse racchiudere tutta
l’informazione necessaria alla risoluzione del sistema, allora il processo di proiezione
termina fornendo effettivamente la soluzione per Ax = b. Pertanto, i metodi
sugli spazi di Krylov (ben definiti) sono processi finiti. Dal punto di vista com-
putazionale, tuttavia, questi metodi dovrebbero essere considerati iterativi, come
anche menzionato da Lanczos nel 1952 [9, p.40]:
“Anche se teoricamente parlando l’ultimo vettore (residuo) si annulla esattamente
e solo dopo n iterazioni, è piuttosto probabile che esso scenda sotto valori trascur-
abili già dopo un numero relativamente piccolo di iterazioni.”
Ad ogni modo, dal punto di vista matematico, la proprietà di terminazione finita
è essenziale, in quanto influisce a livello pratico sul comportamento delle iterate.

Tra i metodi sugli spazi di Krylov, il metodo gmres (Generalized Minimal
RESidual) è adatto per risolvere sistemi non simmetrici. Basato sul processo di
ortogonalizzazione di Arnoldi, fu inizialmente proposto da Saad e Schultz nel 1986
come una generalizzazione del metodo minres, usato per matrici simmetriche.
Questo metodo è caratterizzato dalla proprietà di minimizzare la norma euclidea
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del residuo sullo spazio di Krylov affine x0 +Km(A, r0):

‖rm‖ = min
z∈x0+Km(A,r0)

‖b− Az‖.

Uno svantaggio del gmres è che, a causa delle sue ricorrenze di vettori lunghi, di-
venta intrattabile per problemi su cui converge troppo lentamente. Comprendere
la convergenza di gmres è dunque molto importante per rendere il suo utilizzo
più agevole, ma anche per comprendere il comportamento di altri algoritmi non
necessariamente ottimali.

Lo studio del comportamento dei metodi di Krylov porta a problemi non
lineari complessi. Nonostante l’intensa attività di ricerca ed i numerosi risultati
sia teorici che pratici ottenuti finora, sono ancora tanti i problemi aperti. La
complessità di suddetti problemi invita ad approcci risolutivi che coinvolgono
ipotesi aggiuntive, al fine di restringersi a determinati casi particolari, come ad
esempio avere gli autovalori localizzati in certe aree, oppure avere la possibilità
di isolare la parte responsabile del mal condizionamento della matrice del sistema
A. Una motivazione a questa seconda ipotesi è la seguente: scrivendo A come
A = XJX−1, dove J denota la forma canonica di Jordan di A, la norma del
residuo di gmres è limitata da:

‖rm‖ ≤ κ(X)‖r0‖ min
p∈P∗

m

‖p(J)‖.

A causa dell’ordine di grandezza potenzialmente elevato, la presenza del termine
κ(X) spesso rende la stima totalmente priva di ogni utilità. Essere in grado di
separare la parte ben condizionata di X da quella mal condizionata è un punto
di partenza per fornire una stima più descrittiva.

In questo lavoro di tesi viene analizzato il particolare caso in cui A è diagonaliz-
zabile, e quasi unitaria, e tuttavia è mal condizionata a causa di un piccolo gruppo
di autospazi particolarmente vicini tra loro. Tenendo ben presente il carattere
polinomiale del residuo di gmres, ne viene studiata l’evoluzione all’avvicinarsi
di tali autospazi. Vengono trattati entrambi i casi in cui i relativi autovalori sono
lontani o vicini a loro volta. Quando quest’ultima eventualità si verifica, il poli-
nomio di gmres si comporta come se il metodo fosse stato applicato al sistema
in cui A è sostituita da una matrice a blocchi di Jordan, avente al posto di tali
autovalori vicini la loro media aritmetica.
Il principale risultato di questa tesi consiste nella formulazione di un problema
di ottimizzazione vincolata, la cui soluzione non si limita a rappresentare una
stima per la curva di convergenza di gmres, ma ne descrive il comportamento,
rivelandosi di fatto un nuovo modello di convergenza.

I primi due capitoli sono introduttivi e contestualizzano il metodo gmres

nell’ambito dei metodi di proiezione e ne descrivono le proprietà di convergenza
conosciute. I Capitoli 3 e 4 contengono i risultati originali della tesi.
Nel Capitolo 1 vengono introdotti i metodi di proiezione, con particolare atten-
zione rivolta ai metodi sugli spazi di Krylov. Il metodo gmres viene presentato
nel dettaglio, attraverso la descrizione della sua derivazione ed implementazione.
Il Capitolo 2 raccoglie i risultati ad oggi conosciuti sull’analisi della convergenza
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di gmres. Cominciando dai risultati classici che coinvolgono i polinomi di Cheby-
shev, l’attenzione si sposta poi verso alcuni degli sviluppi più recenti.
Nel Capitolo 3 sono illustrati diversi risultati minori ed il nuovo modello di con-
vergenza, il quale descrive efficacemente il comportamento di gmres quando la
matrice del sistema mostra mal condizionamento dovuto esclusivamente ad alcuni
del suoi autovalori.
Il Capitolo 4 presenta esperimenti numerici a sostegno di quanto affermato nei
risultati del Capitolo 3. Sono mostrati esempi su un’ampia gamma di proprietà
spettrali delle matrici.





Introduction

The necessity of solving linear algebraic systems continuously arises from a wide
range of application fields. For instance, such systems are derived from the dis-
cretization of differential equations. While in some cases, direct methods can be
used to address fairly large problems, iterative methods are often the best choice
for the numerical solution of such systems. In this context, an important role is
played by Krylov subspace methods. Although their attractive features were not
fully realized in the two decades following the first developments, from the late
1970s Krylov subspace methods for linear algebraic systems and eigenvalue prob-
lems became widely and successfully used throughout science and engineering.

The main idea of Krylov subspace methods, and in general of a projection pro-
cess, is to find an approximate solution of a potentially very large system Ax = b
by solving a system of much smaller dimensionality, obtained by projecting the
original system onto a suitable subspace. The magnitude of the information con-
tained in the original data that is captured by the projections reflects into the
accuracy of the approximate solution. Krylov subspace methods use a sequence
of nested subspaces, thus giving a sequence of approximate solutions that con-
verge to the exact solution. When the method is well defined, if some subspace
eventually seizes all the information needed to solve the problem then the projec-
tion process terminates with the solution of Ax = b. Hence well-defined Krylov
subspace methods are finite processes.
From a computational point of view, however, Krylov subspace methods should
rather be considered iterative, as Lanczos also mentioned in 1952 [9, p. 40]:
“Even if theoretically speaking the last vector vanishes exactly only after n itera-
tions, it is quite possible that it may drop practically below negligible bounds after
a relatively few iterations.”
Nevertheless, from a mathematical point of view, the finite termination property
is substantial, for it affects the practical behavior of the iterates.

Among Krylov subspace methods, the Generalized Minimal RESidual method
(gmres) is suitable to address non-symmetric systems. Based on the Arnoldi
process, it was first proposed by Saad and Schultz in 1986 as a generalization of
the minres method (used for symmetric matrices). This method is characterized
by the optimality property of minimization of the residual Euclidean norm over
the affine Krylov subspace x0 +Km(A, r0):

‖rm‖ = min
z∈x0+Km(A,r0)

‖b− Az‖.

One problem with gmres is that, due to its long vector recurrences, it becomes
intractable for problems that converge slowly. Understanding gmres conver-
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gence is thus very important to make its usage easier, but also to understand the
behavior of other non necessarily optimal algorithms.

The question about convergence behavior of Krylov subspace methods leads
to complicated nonlinear problems. Although intense research efforts have been
done to study these problems and a variety of theoretical and practical results
have been produced, many answers have yet to be discovered. The complexity
of the aforementioned problems invites to apply approaches that include addi-
tional hypotheses and restrict to relatively peculiar settings, like, for instance,
the assumption of having clustered eigenvalues, or the eventuality in which it
is somehow possible to isolate the responsible of ill-conditioning of the system
matrix A. To motivate this second requirement, it is sufficient to observe that,
writing A as A = XJX−1, where J denotes the canonical Jordan form of A,
gmres residual can be bounded by

‖rm‖ ≤ κ(X)‖r0‖ min
p∈P∗

m

‖p(J)‖.

The main issue with this relation is the presence of the term κ(X), whose po-
tentially high magnitude may make the bound totally uninformative. Being able
to separate the well-conditioned part of X from the ill-conditioned one has great
chance to provide a more descriptive bound.

In this thesis we analyze the particular case in which the system matrix is
diagonalizable, almost unitary, and yet it shows ill-conditioning due to the prox-
imity of a small set of eigenspaces.
Keeping in mind the polynomial form of the gmres residual, we study how it
evolves as such eigenspaces become closer. We consider both the cases in which
the corresponding eigenvalues are far from each other or close as well. In this last
occurrence, the gmres polynomial behaves like if the system matrix was replaced
by a Jordan block matrix in which the close eigenvalues were substituted with
their mean value.
The principal result of this thesis is the formulation of a constrained minimiza-
tion problem whose solution provides a relation that not only bounds the gmres
convergence curve, but also predicts it quite in detail, revealing itself as a new
convergence model.

The first two chapters are introductive. They contextualize the gmresmethod
as a projection method and describe the known convergence properties. Chapter
3 and 4 contain the original results of this thesis.
In Chapter 1 we describe the main features of the projection methods, with a
particular focus on the Krylov subspace methods and a detailed presentation of
the gmres method, embracing its derivation and implementation.
Chapter 2 collects the known results about gmres convergence analysis. We
start from the classical results involving Chebyshev polynomials and then move
towards some of the most recent developments.
In Chapter 3 we illustrate several minor results along a new convergence model,
that efficiently describes gmres behavior when the system matrix presents ill-
conditioning due to just a part of its eigenvalues.
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Chapter 4 presents numerical evidence to support the results of Chapter 3. It dis-
plays several examples over a wide range of spectral properties of the considered
matrices.





Chapter 1

Projection Methods and Krylov
Subspace Methods

1.1 Projection Methods

In a projection process that aims to solve a linear algebraic system Ax = b, with
A ∈ Fn×n and b ∈ Fn, the approximate solution xm at each step m is sought in
the affine space

x0 + Sm, (1.1)

where x0 ∈ F
n is a given initial approximation to x and Sm in an m-dimensional

subspace of Fn, called the search space.
If A is non-singular, let x be the solution of the given linear system. The vector
x− xm is called the m-th error, and using (1.1) it can be written as

x− xm = x− x0 − zm, for some zm ∈ Sm.

Since Sm has dimension m, we have m degrees of freedom to construct xm,
therefore we generally need m constraints. These are imposed on the (com-
putable) m-th residual, defined by:

rm :=b− Axm

=b− A(x0 + zm) = (b− Ax0)− Azm ∈ r0 + ASm, (1.2)

where the quantity r0 = b−Ax0 is called initial residual. In particular, we ask rm
to be orthogonal to a given m-dimensional subspace Cm, the constraints space,

rm⊥Cm (or equivalently rm ∈ C⊥
m). (1.3)

From (1.2),

r0 = Azm + rm, Azm ∈ ASm, rm ∈ C⊥
m.

If Fn is the direct sum of ASm and C⊥
m (Fn = ASm ⊕C⊥

m), then the corresponding
vectors Azm and rm are uniquely determined as the projections of r0 on the two
mentioned subspaces.

13
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We now want to consider a matrix representation of the projection process.
Let Sm and Cm be two n×m matrices whose columns contain (arbitrary) bases
for Sm and Cm respectively. Then (1.1) becomes

xm = x0 + Smtm

for some vector tm, which is determined by imposing the orthogonality condition
(1.3):

CH
mrm = 0 ⇔ CH

m (b− Axm) = 0 ⇔ CH
mr0 − CH

mASmtm = 0,

therefore
CH

mASmtm = CH
mr0. (1.4)

This is called the projected system, and the key idea of the projection approach for
solving linear systems is to avoid dealing with the (possibly) large system Ax = b
by solving at step m of the projection process the projected system, which is of
order m. Logically, the aim is to obtain a good approximation xm = x0 + Smtm
for m≪ n.

Definition 1.1. A projection process is said to be well defined at step m when
the solution tm is uniquely determined, i.e. when CH

mASm is non-singular.

We now give necessary and sufficient conditions in order to have well defined
projection processes. These are summed up in the following two theorems (proofs
can be found in [10]).

Theorem 1.1. Let A ∈ Fn×n and let Sm and Cm be two m-dimensional subspaces
of Fn, with bases represented by the columns of the matrices Sm and Cm, as defined
above. Then

CH
mASm is non-singular ⇔ F

n = ASm ⊕ C⊥
m.

This theorem implies that whether a projection process is well defined at step
m depends only on the choices of the subspaces Sm and Cm. In particular, if
Fn = ASm ⊕ C⊥

m then CH
mASm is non-singular for any choice of the bases in Sm

and Cm. In this case (1.4) yields

tm = (CH
mASm)

−1CH
mr0,

and therefore

xm = x0 + Smtm = x0 + Sm(C
H
mASm)

−1CH
mr0,

so that

rm =b− Axm = (b−Ax0)− ASm(C
H
mASm)

−1CH
mr0

=(I − ASm(C
H
mASm)

−1CH
m )r0

=(I − Pm)r0, (1.5)
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where

Pm = ASm(C
H
mASm)

−1CH
m

is a projector, since P 2
m = Pm. It holds

Pmv ∈ ASm and (I − Pm)v ∈ C⊥
m ∀v ∈ F

n,

which means that Pm projects onto ASm and orthogonally to Cm.
From (1.5) we derive that r0 can be decomposed as follows:

r0 = Pmr0 + rm.

Of particular interest for us is the case in which ASm = Cm, as it corresponds
to the Krylov subspace methods known asMinimal Residual methods. Under these
conditions the projection process is said to be orthogonal. Moreover, the orthog-
onal decomposition of r0 yields the following result (‖ · ‖ denotes the Euclidean
norm):

‖r0‖2 = ‖Pmr0 + rm‖2 = ‖Pmr0‖2 + ‖rm‖2 ≥ ‖rm‖2,

i.e. for the Minimal Residual methods the sequence of the residual norms is
non-increasing.

Remark 1.1. The m-th approximation xm solves the system Ax = b if and only
if rm = b− Axm = 0. This happens (when the process is well defined at step m)
if ad only if r0 = Pmr0 (see (1.5)), that is r0 ∈ ASm. A sufficient condition for
this is, for instance, to have r0 ∈ Sm and ASm = Sm.

A projection process has the finite termination property when it finds the
solution of the given algebraic linear system in a finite number of steps. From
(1.1) we can guess it may be useful to start the projection process with the
search space S1 = span{r0} and to proceed building up a nested sequence of
search spaces :

S1 ⊂ S2 ⊂ S3 ⊂ . . .

such that at some step m the relation ASm = Sm is satisfied. This idea leads to
Krylov subspaces, which we will treat in the next section.

1.2 Krylov Subspaces

Krylov subspaces were first studied by Krylov who was interested in finding a
method for computing the minimal polynomial of a matrix. Such polynomial,
along with the minimal polynomial of a vector with respect to a matrix, play an
important role in the convergence analysis of Krylov subspace methods.

Definition 1.2. Given A ∈ Fn×n and a non-zero vector v ∈ Fn, the Krylov
sequence generated by A and b is

v, Av, A2v, . . .
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There exists a unique natural number d = d(A, v) such that the vectors
v,Av,..., Ad−1v are linearly independent and v,Av,..., Ad−1v, Adv are linearly
dependent. It holds that 1 ≤ d ≤ n, since v in non-zero and n + 1 vectors of Fn

must be linearly dependent.
By construction there exist coefficients γ0, . . . , γd−1 ∈ F so that

Adv =
d−1∑

j=0

γjA
jv

Thus, setting

p(z) := zd −
d−1∑

j=0

γjz
j (1.6)

we have p(A)v = 0.

Definition 1.3. The polynomial p(z) in (1.6) is called the minimal polynomial
of v with respect to A, and its degree d(A, v) is the grade of v with respect to A.
The minimal polynomial of the matrix A is the non-zero monical polynomial p of
lowest degree such that p(A) = 0 (i.e. p(A)v = 0, ∀v).

Remark 1.2. The minimal polynomial of v with respect to A is the non-zero
monical polynomial p of lowest degree such that p(A)v = 0.

Remark 1.3. It is easy to prove that the grade of any eigenvector v of A with
respect to A is 1, while the grade of a generalized eigenvector is at most the
dimension of the invariant subspace it belongs to (see [10, Section 4.2]).

Remark 1.4. If v is a basis vector for an invariant subspace under A, its minimal
polynomial with respect to A is a divisor of the minimal polynomial of A (again,
see [10, Section 4.2]).

Definition 1.4. Given any matrix A and vector v, the m-th Krylov subspace
generated by A and v (m = 0, 1, 2, . . .) is

Km(A, v) = span{v, Av, A2v, . . . , Am−1v}, m = 1, 2, . . . .

For convention, K0(A, v) = 0.

It is immediate to see that these spaces form a nested sequence, Km(A, v) ⊆
Km+1(A, v) ∀m. Moreover, the existence of the minimal polynomial of v with
respect to A (of degree d) implies that

AKd(A, v) ⊆ Kd(A, v),

namely, such sequence will at some point become invariant under A.

We now present a few basic facts about Krylov subspaces in a lemma:

Lemma 1.2. Let A be a square matrix and let v be a vector of grade d ≥ 1 with
respect to A. Then
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(i) dimKm(A, v) = m for m = 1, . . . , d.

(ii) d− 1 ≤ dimAKd(A, v) ≤ d and, if A is non-singular,
then AKd(A, v) = Kd(A, v).

(iii) If AKd(A, v) = Kd(A, v) then v ∈Range(A).

Proof. (i) By definition of grade of v with respect toA, the vectors v, Av, . . . , Am−1v
are linearly independent for m = 1, . . . , d.
(ii) The d − 1 vectors Av, . . . , Ad−1v ∈ AKd(A, v) ⊆ Kd(A, v) are linearly inde-
pendent, so d− 1 ≤ dimAKd(A, v) ≤ d.
Now, let A be non-singular. We show that Av, . . . , Adv are linearly indepen-
dent, providing dimAKd(A, v) = dimKd(A, v) and hence AKd(A, v) = Kd(A, v).
Suppose

d∑

j=1

‖r0‖jAjv = 0.

Left multiplication by A−1 on both sides yields

d∑

j=1

‖r0‖jAj−1v = 0

and thus ‖r0‖1 = . . . = ‖r0‖d = 0, due to the linear independence of the vectors
in this latter sum. But then Av, . . . , Adv are linearly independent, too.
(iii) v ∈ Kd(A, v) = AKd(A, v) ⊆Range(A).

These facts result in the following theorem:

Theorem 1.3. Consider the projection process (1.1)-(1.3) and let the search
spaces be defined as the Krylov subspaces generated by A and r0:

Sm = Km(A, r0), m = 1, 2, . . .

If r0 is of grade d with respect to A, then r0 ∈ S1 ⊂ S2 ⊂ . . . ⊂ Sd = Sd+j,
∀j ≥ 0.
Moreover, if A is non-singular and the projection process is well defined at step
d, then rd = 0.

Proof. Only the last statement needs to be proved. If A is non-singular then
point (ii) of Lemma 1.2 ensures that ASd = Sd, and if in addition the projection
process is well defined at step d, we have rd = 0, as already observed in the
previous section.

This theorem gives insight into the importance of invariant subspaces in the
context of Krylov subspaces, as it reveals that when the Krylov subspace has
become invariant under A, the projection process ceases with a zero residual.
Indeed, it is sufficient to note the intrinsic presence of the power method in
the building process of a Krylov subspace to intuitively understand that Krylov
subspaces tend to contain the dominant information of A with respect to r0.
The main idea is to closely approximate an A-invariant subspace as quickly as
possible.
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1.2.1 Some Krylov subspace Methods

A common property of all Krylov subspace methods is the orthogonality condition
(1.3). This property can sometimes be related to a certain optimality property,
which is a starting point for the investigation of convergence behavior of specific
methods. The following theorem gives the mathematical description of several
important Krylov subspace methods in term of the search and constraints spaces,
and optimality properties. A complete proof can be found in [10].

Theorem 1.4. [10, Theorem 2.3.1] Consider the projection process (1.1)-(1.3)
for solving a linear algebraic system Ax = b, with initial approximation x0. Let
the initial residual r0 = b−Ax0 be of grade d ≥ 1 with respect to A. Then

(i) If A is HPD and Sm = Cm = Km(A, r0), m = 1, 2, . . ., then the projection is
well defined at every step m until it terminates at step d. It is characterized
by the orthogonality property

x− xm ⊥A Km(A, r0), or also x− xm ∈ Km(A, r0)
⊥A,

where

Km(A, r0)
⊥A := {w ∈ F

n s.t. (v, w)A := wHAv = 0, ∀v ∈ Km(A, r0)}.
The equivalent optimality property is

‖x− xm‖A = min
z∈x0+Km(A,r0)

‖x− z‖A,

where ‖v‖A := 〈v, v〉1/2A is the A-norm of the vector v.
(Mathematical characterization of the Conjugate Gradient (cg) method)

(ii) If A is Hermitian and non-singular, Sm = AKm(A, r0), and Cm = A−1Sm =
Km(A, r0), m = 1, 2, . . ., then the projection is well defined at every step m
until it terminates at step d. It is characterized by the orthogonality property

x− xm⊥AKm(A, r0).

The equivalent optimality property is

‖x− xm‖ = min
z∈x0+Km(A,r0)

‖x− z‖.

(Mathematical characterization of the symmlq method)

(iii) If A is non-singular, Sm = Km(A, r0), and Cm = AS
m = AKm(A, r0), m =

1, 2, . . ., then the projection is well defined at every step m until it terminates
at step d. It is characterized by the orthogonality property

rm⊥AKm(A, r0), or also x− xm ∈ Km(A, r0)
⊥

AHA.

The equivalent optimality property is

‖rm‖ = min
z∈x0+Km(A,r0)

‖b− Az‖, or

‖x− xm‖AHA = min
z∈x0+Km(A,r0)

‖x− z‖AHA.

(Mathematical characterization of the Minimal Residual (minres) method
and the Generalized Minimal Residual (gmres) method)
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Remark 1.5. Since the minimization problems in Theorem 1.4 are defined over
affine spaces of increasing dimensions, the corresponding sequences of norms,
‖x− xm‖A, ‖x− xm‖ and ‖rm‖, are non-increasing for m = 0, 1, 2, . . . , d.

1.3 Arnoldi Algorithm and the GMRES Method

While from the mathematical point of view each Krylov subspace method is
completely determined by the choice of the search and the constraint spaces, for
what concerns, instead, the numerical behavior of the methods, the choice of the
bases for these spaces is fundamental. By construction, the vectors of the Krylov
sequence, v, Av, . . . , Amv, . . ., converge towards a dominant eigenvector of A, and
thus they will eventually become closer and closer as m grows, leading to loss of
information. For this main reason, it is not wise to choose them as a basis for
Km(A, v). In order to preserve as much information as possible from the original
linear system it is advisable to use well-conditioned (and possibly orthonormal)
bases for the Krylov subspaces.

Remark 1.6. As shown below, the computation of orthonormal bases for the
Krylov subspaces is related to orthogonal (or unitary) transformations of the
matrix A. Since in many cases the data in A are affected by errors, these are not
amplified by the transformations in any unitarily invariant norm.

From now on, we consider the generic field F to be C.

1.3.1 Arnoldi’s Orthogonalization Algorithm

The Arnoldi algorithm can be seen as a variant of the Gram-Schmidt orthogonal-
ization method applied to the Krylov sequence in order to generate an orthonor-
mal basis for the Krylov subspace. It has been first introduced in 1951 as a means
to reduce a dense matrix in Hessenberg form.
The algorithm produces the orthonormal basis of Km(A, v), v1, . . . , vd (where d is
the grade of v with respect to A), applying, at each step m, the Gram-Schmidt
orthogonalization to Avm−1 instead of Am−1v. Due to numerical instability rea-
sons, the classical Gram-Schmidt implementation is rarely used. A very common
implementation in practical computations is the modified Gram-Schmidt orthog-
onalization, which is mathematically equivalent, that is, in absence of rounding
errors the two procedures build identical vectors.

Algorithm 1.1. Arnoldi’s algorithm, modified Gram-Schmidt implementation

1. Define v1 = v/‖v‖.

2. For j = 1, 2, . . .

3. wj := Avj

4. For i = 1, . . . , j

5. hi,j = 〈wj, vi〉
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6. wj = wj − hi,jvi

7. End

8. hj+1,j = ‖wj‖2. If hj+1,j = 0 then stop.

9. vj+1 = wj/hj+1,j

10. End

Proposition 1.5. Arnoldi’s algorithm stops at step j (i.e. hj+1,j = 0) if and
only if j = d = d(A, v) (grade of v with respect to A).
Furthermore, ∀m ≤ d the computed vectors v1, . . . , vm form an orthonormal basis
of the space Km(A, v1) = span{v1, Av1, . . . , Am−1v1}.

Proof. Let us first consider a given m ≤ d, and show that the vectors v1, . . . , vm
are an orthonormal basis of Km(A, v1). Such vectors are orthonormal by construc-
tion, so we only need to show they belong to Km(A, v1). In order to prove this, it
is sufficient to point out that each vj , j = 1, . . . , m is of the form vj = qj−1(A)v1,
where qj−1 is a polynomial of degree j − 1. By induction on j:
If j = 1: v1 = q0(A)v1, with q0(z) = 1;
If 1 < j < m:

vj+1 =

Avj −
j∑

i=1

hi,jvi

∥∥∥∥∥Avj −
j∑

i=1

hi,jvi

∥∥∥∥∥

.

Call c the denominator and, by inductive hypothesis, write vj in polynomial form,
vj = qj−1(A)v1:

vj+1 =
1

c

(
Aqj−1(A)v1 −

j∑

i=1

hi,jqi−1(A)v1

)
=

1

c
qj(A)v1.

We now prove the first statement. If j = d, wd must be 0 after all the
subtractions in line 6 of Algorithm 1.1, otherwise it would be possible to define
a vector vd+1, linearly independent of the previously generated ones. But this
would mean dimKd+1(A, v) = d + 1, that contradicts the hypothesis of d to be
grade of v with respect to A.

The next proposition describes the Arnoldi orthogonalization process in a
matrix form (note that the notation here introduced will be adopted also in the
rest of this thesis):

Proposition 1.6. Consider m ∈ {1, . . . , d}, and define:

� Vm: the n ×m matrix whose columns are v1, . . . , vm, i.e. the orthonormal
basis of Km(A, v1):

Vm := [v1, v2, . . . , vm] ,
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� Hm: the (m+ 1)×m upper Hessenberg matrix defined by the elements hi,j
in Algorithm 1.1,

Hm :=




h1,1 h1,2 . . . . . . h1,m
h2,1 h2,2 h2,m

0 h3,2
. . .

...
. . .

. . .
...

hm,m−1 hm,m

0 0 hm+1,m




=




〈Av1, v1〉 〈Av2, v1〉 . . . . . . 〈Avm, v1〉
‖w1‖ 〈Av2, v2〉 〈Avm, v2〉
0 〈Av2, v3〉 . . .

...
. . .

. . .
...

‖wm−1‖ h〈Avm, vm〉
0 0 ‖wm‖




� Hm: the m × m upper Hessenberg matrix obtained from Hm deleting the
last row.

Then it holds:

(i) AVm = VmHm + hm+1,mvm+1e
H
m = Vm+1Hm , (1.7)

(ii) V H
m AVm = Hm. (1.8)

Proof. (i): It follows from the matrix reformulation of Algorithm 1.1, lines 4, 5, 7.
For j = 1, . . . , m− 1:

vj+1 =
1

hj+1,j

(
Avj −

j∑

i=1

hi,jvi

)
,

thus, isolating Avj :

Avj = hj+1,jvj+1 +

j∑

i=1

hi,jvi =

j+1∑

i=1

hi,jvi, j = 1, . . . , m− 1.

For j = m:

Avm =

m+1∑

i=1

hi,mvi =

m∑

i=1

hi,mvi + hm+1,mvm+1.

Therefore AVm = VmHm + hm+1,mvm+1e
H
m = Vm+1Hm.

(ii): From before, with a left multiplication by V H applied to

AVm = VmHm + hm+1,mvm+1e
H
m,

we obtain (remember that Vm+1 = [v1, . . . , vm+1] is an orthogonal matrix):

V H
m AVm = V H

m VmHm + hm+1,mV
H
m vm+1e

H
m = Hm.
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Remark 1.7. Note that, when hm+1,m = 0, from (i) we have AVm = VmHm, which
means that the space spanned by the orthonormal columns of Vm is invariant
under A.

1.3.2 Deriving the GMRES Method

We will now focus on the gmres method. Let A ∈ Cn×n be a general non-
singular matrix. As already stated in Theorem 1.4, this method implements the
projection process characterized by:

xm ∈ x0 +Km(A, r0) and rm⊥AKm(A, r0), (1.9)

with optimality property

‖rm‖ = min
z∈x0+Km(A,r0)

‖b− Az‖.

The method can be implemented through the application of the Arnoldi algorithm
to A, with initial vector v = r0 and the use of the residual minimization property.
More precisely, naming Vm := [v1, . . . , vm] the orthonormal basis of Km(A, r0)
provided by the orthogonalization process, we have that each vector of x0 +
Km(A, r0) can be written as:

x = x0 + Vmy, y ∈ C
m.

Here m is always smaller than d. The approximate solution xm ∈ x0 +Km(A, r0)
is then determined by imposing the minimization of the residual 2-norm. We
have

b− Ax =b−Ax0 −AVmy (using (1.7))

=r0 − Vm+1Hmy = ‖r0‖v1 − Vm+1Hmy

=‖r0‖Vm+1e1 − Vm+1Hmy

=Vm+1(‖r0‖e1 −Hmy).

Therefore

‖b−Ax‖ = ‖Vm+1(‖r0‖e1 −Hmy)‖ =
∥∥‖r0‖e1 −Hmy

∥∥;

and it will be

xm = x0 + Vmym, ym = argminy∈Cm

∥∥‖r0‖e1 −Hmy
∥∥. (1.10)

Thanks to the fact that the matrix Hm ∈ C(m+1)×m has full rank m, ym (and
hence the solution xm) is uniquely determined by

ym = (HH
mHm)

−1HH
m(‖r0‖e1),

where the matrix (HH
mHm)

−1HH
m is the Moore-Penrose pseudoinverse of Hm.

In practice ym is obtained by solving the least squares problem via the QR
factorization, as described in the next section.
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1.3.3 GMRES practical implementation issues

Being gmres a Krylov subspace method, its basic idea is to try to solve a small
projected system instead of the (possibly) large given one. At each step m, the
considered Krylov subspace is expanded by the addition of a new vector in the
basis, and the least squares problem in (1.10) is built. The algorithm terminates
at step m when the stopping criterion is matched by the corresponding residual
norm ‖rm‖. An interesting fact is that it is possible to determine how good the
m-th approximation is without the need to explicitly compute xm, nor rm, at
each step.
Keeping this in mind, here we discuss how to address the least squares problem
miny

∥∥‖r0‖e1 −Hmy
∥∥ in order to obtain the m-th residual norm while avoiding

unnecessary computations.

To individuate the minimizer ym, it is natural to transform the upper Hes-
senberg matrix Hm into its upper triangular form, through a QR factorization.
Due to its structure, Hm can be efficiently treated by the application of Givens
planar rotations. These operations are represented by (m+1)× (m+1) matrices

Ωi =




Ii−1

ci si
−si ci

Im−i


 , c2i + s2i = 1, i = 1, . . . , m.

Coefficients ci and si are determined sequentially, in order to annihilate the non-
zero elements under the diagonal, i.e. imposing (ΩiH

(i−1)
m )i+1,i = 0, for each

i = 1, . . . , m. Here H(i−1)
m := Ωi−1 . . .Ω1Hm. It is then easy to prove that:

si =
hi+1,i√(

h
(i−1)
i,i

)2
+ h2i+1,i

, ci =
h
(i−1)
i+1,i√(

h
(i−1)
i,i

)2
+ h2i+1,i

. (1.11)

Therefore, defining

Qm :=ΩmΩm−1 . . .Ω1

Rm :=H(m)
m = QmHm

g
m
=(γ1, . . . , γm)

T := Qm(‖r0‖e1)
we have:

min
y

∥∥‖r0‖e1 −Hmy
∥∥ = min

y

∥∥Qm(‖r0‖e1 −Hmy)
∥∥ = min

y
‖g

m
− Rmy‖.

The solution ym is thus given by solving the upper triangular system Rmy = gm,
where Rm and gm are obtained by removing the last row of Rm (which is a row
of zeros) and the last entry of g

m
respectively. In particular, since

‖g
m
−Rmy‖2 = |γm+1|2 + ‖gm − Rmy‖2,

it holds
min
y∈Cm

‖g
m
− Rmy‖ = |γm+1|.
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Remark 1.8. Even though Hm grows one row and one column each step, from the
discussion above in the previous paragraph we deduce that the QR factorization
of Hm+1 does not need to be recomputed from scratch every time. Indeed, it is
sufficient to just update the QR factorization of Hm by expanding it with the last
column of Hm+1 and subsequently applying the Given rotations Ω1,Ω2, . . . ,Ωm+1

to the last two columns. This means that the cost of the QR factorization process
on the fly is very limited.

Next proposition summarizes the observations above.

Proposition 1.7. Consider Ωi, i = 1, . . . , m, Hm, Rm, Rm, Rm, gm, defined as
before. It holds:

(i) rank(AVm) =rank(Rm). In particular, if (Rm)m,m = 0 then A is singular.

(ii) The minimizing vector ym of ‖‖r0‖e1 −Hmy‖ is given by ym = R−1
m gm.

(iii) The gmres m-th residual vector satisfies:

rm = b− Axm = Vm+1(‖r0‖e1 −Hmym) = Vm+1Q
H
m(γm+1e1)

and hence
‖rm‖ = |γm+1| = ‖r0‖

∣∣eHm+1Qme1
∣∣.

Proof. (i). From (1.7):

AVm =Vm+1Hm

=Vm+1Q
H
m(QmHm)

=Vm+1Q
H
mRm

and since Vm+1Q
H
m, being orthogonal, has full rank, then

rank(AVm) = rank(Rm) = rank(Rm).

Now, if (Rm)m,m = 0 then rank(AVm) =rank(Rm) ≤ m− 1, but Vm has full rank
(equal to m), thus A must be singular.
(ii). The result has already been proved in the discussion that anticipates the
proposition. Note that all the steps are well posed if A is non-singular: from (i)
(Rm)m,m 6= 0 and R−1

m exists.
(iii). If xm = x0 + Vmym, ym = R−1

m gm, then

rm =b− Axm = r0 −AVmym = ‖r0‖v1 − Vm+1Hmym

=Vm+1(‖r0‖e1 −Hmym) = Vm+1Q
H
mQm(‖r0‖e1 −Hmym)

=Vm+1Q
H
m(gm −Rmym) = Vm+1Q

H
m

([
gm
γm+1

]
−
[
Rmym

0

])

=Vm+1Q
H
m(γm+1em+1),

and therefore ‖rm‖ = |γm+1|. Moreover, since g
m

= Qm(‖r0‖e1), then γm+1 =

‖r0‖eHm+1Qme1.
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Remark 1.9. Thanks to this approach, the m-th residual norm is implicitly com-
puted at each step (‖rm‖ = |γm+1|), without the need to solve the system
Rmym = gm, which will be addressed only when ‖rm‖ is small enough.

We are now ready to give the algorithm.

Algorithm 1.2. Basic gmres Algorithm

1. Define r0 = b− Ax0, β = ‖r0‖, v1 = r0/β, m = 0.

2. While (‖rm‖ > tol & m ≤ n):

3. m = m+ 1

4. wm := Avm

5. For i = 1, . . . , m

6. hi,m = 〈wm, vi〉

7. wm = wm − hi,mvi

8. End

9. hm+1,m = ‖wm‖. If hm+1,m = 0, go to line 14.

10. vm+1 = wm/hm+1,m

11. Compute the Givens rotation coefficients sm and cm.

12. Update Rm and Qm in QR factorization.

13. Compute γm+1 and set ‖rm‖ := |γm+1|

14. End

15. Compute ym = argminy‖βe1 −Hmy‖

16. xm = x0 + Vmym

Observe that, in exact arithmetic, gmres may break down in line 9 of Algo-
rithm 1.2, that is when hm+1,m = 0. However (in exact arithmetic) this is called
a lucky breakdown, because in this case the exact solution is found, as stated in
the next proposition.

Proposition 1.8 (Breakdown of gmres). Let A be a non-singular matrix. Then

gmres stops at step m (i.e. hm+1,m = 0) ⇔ Approximate solution xm is exact.
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Proof. (⇒) Remember that γ
(m)
m+1 (the superscript indicates “at step m”) is built

using Givens rotations over ‖r0‖e1 ∈ Fm, more precisely

g(m)

m
=




γ
(m)
1
...

γ
(m)
m

γ
(m)
m+1

0
...
0




= Ωm . . .Ω1(‖r0‖e1) = Ωm




γ
(m−1)
1
...

γ
(m−1)
m

0
0
...
0




=




γ
(m−1)
1
...

cmγ
(m−1)
m

−smγ(m−1)
m

0
...
0




,

therefore, using item (iii) of Theorem Proposition 1.7 and (1.11)

‖rm‖ = |γm+1| = |smγ(m−1)
m | = |hm+1,m|√(

h
(m−1)
m,m

)2
+ h2m+1,m

|γm| = 0.

(⇐) Conversely, if xm is exact (and xm−1 is not), rm = 0 and thus, from the
previous chain of equalities, hm+1,m must be zero.

1.4 GMRES residual polynomial

As already stated in (2.4), rm has a polynomial form involving the matrix A and
the initial residual r0. An explicit expression for such polynomial is known, and
this also results in a way to compute its roots. Due to their clear connection with
the projected system solved ad each step of gmres, the gmres residual poly-
nomial and its roots, known as harmonic Ritz values, have been deeply studied
(see, for instance, survey [16, Section 6 and its references]).

Theorem 1.9. Consider the linear algebraic system Ax = b, and suppose the
initial residual r0 = b − Ax0 to be of grade d with respect to A. For any m ≤ d
consider the m-th gmres approximation xm to the solution x, as in (1.9):

xm = x0 + Vmym, where ym = (HH
mHm)

−1HH
m (‖r0e1‖).

Then the corresponding m-th gmres residual polynomial is given by

ϕm(z) =
det(zHH

m −HH
mHm)

(−1)mdet(HH
mHm)

,

and hence the zeros of ϕm(z) are the eigenvalues of the generalized eigenvalue
problem

(HH
mHm)v = zHH

mv. (1.12)

Remember that the (m+ 1)×m upper Hessenberg matrix Hm has full rank
m, so HH

mHm is non-singular.
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Remark 1.10. If, additionally, the matrix Hm = V H
m AVm is non-singular, then the

generalized eigenvalue problem is equivalent to

H−H
m (HH

mHm)v = zv. (1.13)

Furthermore, in the same hypotheses, we have another available form for such
problem, that is

(Hm + h2mH
−H
m eme

H
m)v = zv, (1.14)

where hm denotes the entry of indices (m+ 1, m) of Hm.
A few passages transform (1.13) into (1.14), namely:

HH
mHm =

[
Hm

hme
H
m

] [
HH

m hmem
]
= HmH

H
m + h2meme

H
m.

Then

H−H
m (HH

mHm) = H−H
m (HmH

H
m + h2meme

H
m) = Hm + h2mH

−H
m eme

H
m.

From the computational point of view, for stability reasons, it is preferable to
consider version (1.14), as it allows to avoid potentially dangerous computations
like, for instance, the multiplication HH

mHm.

1.5 Restarted GMRES

Before starting a more detailed discussion about convergence, which will be the
main topic of next chapter, we shortly present an important variant of the gmres
algorithm, restarted gmres, with its main pros and cons.

Considering the algorithm from a practical point of view, gmres becomes
infeasible when m grows too much. This is due to the high cost required for the
Gram-Schmidt orthogonalization process and the storage of all the basis vectors
in Vm. Indeed, asm increases, the computational cost goes up at least as O(m2)n,
while the memory cost as O(mn). For large n this limits the maximum usable
value for m, thus the scheme might not be continued for an m large enough to
meet the requested stopping criterion.
Therefore, the method is usually stopped for a reasonably small m and then
restarted by constructing the subspace Km(A, rm); rm = b − Axm, the current
approximation xm becomes the starting approximation for the next phase. How-
ever, this leads to the loss of the gmres global optimality property, for the
minimization now occurs only with respect to the last ”partial” basis which is
built. Moreover, for the same reason, the restarted process is not always ensured
to converge, as stagnation may take place. A detailed discussion about these
issues can be found in [15].





Chapter 2

Convergence analysis of GMRES

In exact arithmetic, well defined Krylov subspace methods terminate in a finite
number of steps. Therefore no limit can be formed, and terms like “convergence”
or “rate of convergence” cannot be interpreted in the classical way. The concep-
tual difference between having a convergence bound and having a description of
the convergence behavior has always to be kept in mind. More precisely, a con-
vergence bound basically represents an area in which the convergence curve will
lay, but may not give any other qualitative information about the trend of such
curve. On the other hand, the convergence behavior is an asymptotic description
of the effective trend of the convergence curve. In the context of this thesis it will
refer to the residual history “after a certain number of iterations”, still within
the dimension n of the addressed system.

The goal of the convergence analysis of Krylov subspace methods is to describe
the convergence of this process in terms of input data of the given problem, i.e.
in terms of properties of the system matrix, the right-hand side and the initial
guess.

2.1 Chebyshev polynomials and classical results

In this section we briefly recall Chebyshev polynomials, along with their optimal-
ity properties, which are exploited in some known gmres convergence bounds.

Definition 2.1. The Chebyshev polynomials of the first type are defined recur-
sively as 




C0(z) := 1

C1(z) := t

Ck+1(z) := 2zCk(z)− Ck−1(z), k ≥ 2,

(2.1)

with z ∈ C.

Remark 2.1. It is easy to see that Ck(z) is a polynomial of degree k in z.

29
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Remark 2.2. In the real case, t ∈ R, Definition 2.1 can be written as

Ck(t) =





cos(k arccos t) if |t| ≤ 1

cosh(k arccosh t) if t ≥ 1

(−1)k cosh(k arccosh (−t)) if t ≤ −1

. (2.2)

Furthermore, for k ≫ 1

Ck(t) ≈
1

2

(
t+

√
t2 − 1

)k
.

Theorem 2.1 (Optimality of Chebyshev polynomials in a real interval). Let
[α, β] ⊂ R, and let γ ∈ R r [α, β]. Then the minimum

min
p∈Pk

p(γ)=1

max
t∈[α,β]

|p(t)|,

where Pk denotes the vector space of the polynomials of degree less or equal to k,
with coefficients in R, is reached by the polynomial

Ĉk(t) =
Ck

(
1 + 2 t−β

β−α

)

Ck

(
1 + 2 γ−β

β−α

) .

From now on, in this section we consider Chebyshev polynomials in the more
general complex case.

Remark 2.3. For z ∈ C, it holds:

Ck(z) =
1

2

(
wk + w−k

)
, where w is s.t. z =

1

2

(
w + w−1

)
.

The function

J(w) =
1

2

(
w + w−1

)

is called Joukowski’s mapping. It transforms a circle C(0, ρ), with center in the
origin and radius ρ in an ellipse Eρ, again centered at the origin, with foci ±1,
major semi-axis 1

2
(ρ+ρ−1) and minor semi-axis 1

2
|ρ−ρ−1|. Note that J(C(0, ρ)) =

J(C(0, 1/ρ)), and this is the reason why in the following we will consider only
ρ ≥ 1.

As we will now see, in the complex case Chebyshev polynomials are only
asymptotically optimal.

Lemma 2.2 (Zarantonello). Consider C(0, ρ) the circle of center 0 and radius
ρ ≥ 1, and choose γ ∈ C, |γ| > ρ. Then

min
p∈Pk

p(γ)=1

max
z∈C(0,ρ)

|p(z)| =
(
ρ

|γ|

)k

,

that is, the minimum is reached by the polynomial p(z) =
(

z
γ

)k
.
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Remark 2.4. Scaling and translating, the result is valid also for a circle C(c, ρ),
and γ ∈ C, |γ| > ρ:

min
p∈Pk

p(γ)=1

max
z∈C(c,ρ)

|p(z)| =
(

ρ

|γ − c|

)k

.

Let us now consider an ellipse Eρ centered at the origin, with foci ±1 and
semi-major axis a, Eρ = J(C(0, ρ)).
Theorem 2.3. Let Eρ = J(C(0, ρ)), ρ ≥ 1 and let γ ∈ C be external to Eρ. Then

ρk

|wγ|k
(i)

≤ min
p∈Pk

p(γ)=1

max
z∈Eρ

|p(z)|
(ii)

≤ ρk + ρ−k

|wk
γ + w−k

γ | ,

where wγ is the dominant root of the equation J(w) = γ.

Proof. (ii). Each polynomial p of degree k such that p(γ) = 1 can be written as

p(z) =

∑k
j=0 ξjz

j

∑k
j=0 ξjγ

j
.

If z ∈ Eρ, z = J(w), with w ∈ C(0, ρ), and wγ is the element of maximum norm
of J−1(γ), p(z) can be rewritten:

p(z) =

k∑

j=0

ξj(w
j + w−j)

k∑

j=0

ξj(w
j
γ + w−j

γ )

.

Consider now the particular polynomial with ξk = 1, ξj = 0, ∀j 6= k:

p∗(z) =
wk + w−k

wk
γ + w−k

γ

(= 2Ck(z))

|p∗(z)| is maximum when w = ρeiθ ∈ R, i.e when w = ρ. Therefore

max
z∈Eρ

|p∗(z)| = ρk + ρ−k

|wk
γ + w−k

γ | ≥ min
p∈Pk

p(γ)=1

max
z∈Eρ

|p(z)|.

(i). We have

p(z) =

k∑

j=0

ξj(w
j + w−j)

k∑

j=0

ξj(w
j
γ + w−j

γ )

=

w−k

k∑

j=0

ξj(w
k+j + wk−j)

w−k
γ

k∑

j=0

ξj(w
k+j
γ + wk−j

γ )

.
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Keeping in mind that w = ρeiθ,

|p(z)| = ρ−k

|wγ|−k

∣∣∣∣∣∣∣∣∣∣∣

k∑

j=0

ξj(w
k+j + wk−j)

k∑

j=0

ξj(w
k+j
γ + wk−j

γ )

∣∣∣∣∣∣∣∣∣∣∣

.

The argument of the absolute value is a 2k degree polynomial in w, taking the
value 1 when evaluated at wγ. From Lemma 2.2, its maximum absolute value is

greater or equal to ρ2k

|wγ |2k . Hence

max
z∈Eρ

|p(z)| ≥ ρ−k

|wγ|−k

ρ2k

|wγ|2k
=

ρk

|wγ|k
∀p ∈ Pk s.t. p(γ) = 1,

and therefore

min
p∈Pk

p(γ)=1

max
z∈Eρ

|p(z)| ≥ ρk

|wγ|k
.

Remark 2.5 (Asymptotical optimality of Chebyshev polynomials). The difference
between the two bounds in the theorem goes to 0 as k goes to infinity, therefore
we deduce that, for k ≫ 1, the Chebyshev polynomial

p∗(z) =
wk + w−k

wk
γ + w−k

γ

, with z =
w + w−1

2
,

is close to the optimal polynomial. Chebyshev polynomials are therefore asymp-
totically optimal.

2.2 Known results on GMRES convergence

Before proceeding, it is important to recall that both the error and the residual
of gmres at each step m can be written in a polynomial form. More precisely,
since xm ∈ x0 +Km(A, r0),

x− xm = (x− x0) + (x0 − xm)︸ ︷︷ ︸
=qm−1(A)r0

= x− x0 + qm−1(A)A(x− x0) = pm(A)(x− x0),

where qm−1 ∈ Pm−1 and pm ∈ Pm. From the definition of rm, we have

rm = b− Axm = A (x− xm)︸ ︷︷ ︸
=pm(A)(x−x0)

= pm(A)A(x− x0) = pm(A)r0.

Moreover, considering that rm ∈ r0 + AKm(A, r0), there exists another m − 1
degree polynomial pm−1 such that

rm = r0 + Apm−1(A)r0 = (I −Apm−1(A))r0.
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This means the previously cited polynomial pm satisfies pm(z) = 1 − zpm−1(z),
so pm(0) = 1.
To sum up, there exists a polynomial pm ∈ P∗

m := {p ∈ Pm s.t. p(0) = 1},
uniquely determined by the orthogonality conditions (1.3) in the gmres case,
such that:

x− xm = pm(A)(x− x0), (2.3)

rm = pm(A)r0. (2.4)

Remark 2.6. For later notation observe that, without loss of generality, it is
possible to assume r0 = b. Indeed, for any initial guess x0 for gmres applied to
the system Ax = b, we have:

Ax = b⇔ Ax− Ax0 = b− Ax0 ⇔ A(x− x0) = r0.

Namely, considering x−x0 as the unknown, it is always possible to return to the
case in which the initial guess is 0 and b = r0.

By construction the m-th residual has minimal 2-norm. In term of polynomi-
als, this optimality property can be expressed as

‖rm‖ = min
p∈P∗

m

‖p(A)r0‖. (2.5)

Several studies have been made in order to find a good bound for the right-
hand side in (2.5), however obtaining results that are useful in practice is a real
challenge. The main reason is because the bounds are often tied to the (whole)
spectrum of A, which is usually not available. Another important issue is the
presence of possibly large multiplicative constants in the relations, which may
result in the loss of the quantitative - and sometimes even any qualitative -
information the bound could carry.

In this section we summarize the principal results in the literature. As we
will see, many expedients have been considered, attempting to bypass the cited
problems.

A is diagonalizable.

We start with the case of A diagonalizable (with complex eigenvalues, in general),
A = XΛX−1, with invertible X and Λ = diag(λ1, . . . , λn). In this case:

‖rm‖ = min
p∈P∗

m

‖p(A)r0‖ = min
p∈P∗

m

‖Xp(Λ)X−1r0‖

≤ min
p∈P∗

m

‖p(Λ)‖‖X‖‖X−1‖‖r0‖ = κ(X)‖r0‖ min
p∈P∗

m

‖p(Λ)‖, (2.6)

where κ(X) is the 2-norm condition number of the matrixX , κ(X) := ‖X‖‖X−1‖.
Therefore we have the following bound on the relative residual norm

‖rm‖
‖r0‖

≤ κ(X) min
p∈P∗

m

max
k=1,...,n

|p(λk)|. (2.7)
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If A is normal the spectral theorem assures it is unitary diagonalizable, i.e. X
is unitary, thus X−1 = XH and ‖X‖ = ‖X‖−1 = 1. In this lucky case, κ(X) = 1
and (2.7) reduces to

‖rm‖
‖r0‖

≤ min
p∈P∗

m

max
k=1,...,n

|p(λk)|. (2.8)

As anticipated earlier, results in this form have limited practical interest, as
they involve all the eigenvalues of A, which are not explicitly known. In order to
estimate that min-max quantity we can move from the discrete set of the eigen-
values of A, let it be σ(A), to compact continuous subsets of C containing σ(A),
on which the values of (quasi) optimal polynomials (e.g. Chebyshev polynomials)
are explicitly known. Due to the co-normality property required to the polynomi-
als (i.e. p(0) = 1), we will consider sets that do not contain the origin, otherwise
the maximum of |p(z)| over such a set would be not smaller than 1, loosing any
possibility to be an informative bound.
We can use the results in section 2.1 to further estimate the residual in (2.8):

� If σ(A) is contained in a disk C(c, r) (c ∈ C, r > 0, 0 /∈ C(c, r)), from
Remark 2.4:

min
p∈P∗

m

max
k=1,...,n

|p(λk)| ≤
(
r

|c|

)m

.

In particular, a disk with a small radius, that is far from the origin guaran-
tees fast convergence of gmres residual norms.

� If σ(A) is enclosed in an ellipse E(c, d, a), (center c ∈ R, focal distance
d > 0, semi-major axis a > 0)

min
p∈P∗

m

max
k=1,...,n

|p(λk)| ≤
Cm

(
a
d

)
∣∣Cm

(
c
d

)∣∣ ≈
(
a+

√
a2 − d2

c+
√
c2 − d2

)m

,

where Cm(z) is the Chebyshev polynomial of degree m. We remark that the
polynomials Cm(z)/Cm(z) are in general not the optimal min-max polyno-
mials on E , as shown by Fisher and Freund [6]. However, their asymptotical
optimality allows to correctly predict the rate of convergence of the min-max
approximation problem.

� Another option is to consider the numerical range (or field of values) of A,

F(A) := {w = xHAx, x ∈ C
n, ‖x‖ = 1}.

Denoting with νF(A) the distance of F(A) from the origin,

νF(A) := min
z∈F(A)

|z|,

it holds, when 0 /∈ F(A),

min
p∈Pm

‖p(A)‖ ≤
(
1− νF(A)νF(A−1)

)n/2
.

But again, it is generally difficult to compute the numerical range of a
matrix, moreover, this kind of bound presents slackness especially when the
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spectrum has some outlayer eigenvalues, which make significantly increase
the value νF(A).
If A is normal, F(A) coincides with the convex hull of σ(A), that is the
smallest convex set containing the spectrum. Hence, in the normal case,
replacing E(c, d, a) with F(A) can improve the bound in the previous item.

� If A is hermitian then the eigenvalues are all real and the convex hull of
σ(A) reduces to an interval I := [λmin, λmax]. If, moreover, A is HPD or
HND, I does not intersect zero. Hence

max
k=1,...,n

|p(λk)| ≤ max
t∈I

|p(t)|.

However, when A is not definite, the presence of 0 in such interval I can be
avoided by splitting it into two subintervals. Let λs be the largest negative
eigenvalue, and λs+1 the smallest positive one. The two intervals

I− := [λmin, λs] and I+ := [λs+1, λmax]

include the whole spectrum. In [11], Liesen and Tichý report that when
λmax − λs+1 = λs − λmin, the following relation holds:

‖rm‖
‖r0‖

≤ min
p∈P∗

m

max
k=1,...,n

|p(λk)| ≤ min
p∈P∗

m

max
z∈I−∪I+

|p(t)|

≤ 2

(√
|λminλmax| −

√
|λsλs+1|√

|λminλmax|+
√
|λsλs+1|

)[n2 ]
,

where [n/2] is the integer part of n/2.

Another aspect to keep in mind is the dependence of (2.7) on κ(X). If A is far
from normal, then κ(X) may have large magnitude and this utterly inficiates the
bound, making it possibly too pessimistic, since the relative residual norm on the
left-hand side remains smaller than 1. However, we will return to this argument
later, after having discussed the non-diagonalizable case as well.

An approach to understand the worst case gmres convergence in the generic
non-normal case is to replace the minimization problem (2.5) by another one,
which in some sense approximates it, and that is easier to analyze. These natural
bounds arise when the influence of ‖r0‖ is excluded:

‖rm‖
‖r0‖

= min
p∈Pm∗

‖p(A)r0‖
‖r0‖

(gmres)

≤ max
‖v‖=1

min
p∈Pm∗

‖p(A)v‖ (worst-case gmres) (2.9)

≤ min
p∈Pm∗

‖p(A)‖ (ideal gmres) (2.10)

The bound (2.9) corresponds to the worst-case gmres behavior and represents
a sharp upper bound, i.e. a bound that is attainable by the gmres residual
norm. In this sense, it is the best bound on the relative residual norm that is
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independent of r0.
The bound (2.10) represents instead a matrix approximation problem. A possible
way to deal with it is to determine sets Ω1,Ω2 ⊂ C that are somehow associated
with A, and that provide lower and upper bounds on (2.10):

c1 min
p∈P∗

m

max
z∈Ω1

|p(z)| ≤ min
p∈P∗

m

‖p(A)‖ ≤ c2 min
p∈P∗

m

max
z∈Ω2

|p(z)|.

Here c1 and c2 should be some moderate size constants depending on A and
possibly on m. This generalizes the idea of taking the spectrum of A as an
appropriate set. A possible choice for Ω2 is the ε-pseudospectrum of A (as was
first suggested by Trefethen, see [17])

Λε(A) := {z ∈ C : ‖(zI − A)−1‖ ≥ ε−1}.

Denoting by L the arc length of the boundary of Λε(A), the following bound can
be derived

min
p∈Pm

‖p(A)‖ ≤ L

2πε
min
p∈Pm

max
z∈Λε(A)

|p(z)|.

The parameter ε gives flexibility, but choosing a good value can be hard. In
fact, in order to make the right-hand side reasonably small, ε should be large
enough to make the constant L/(2πε) small, but also small enough to make the
pseudospectrum not too large.

A is not diagonalizable.

When A is not diagonalizable, a relation similar to (2.7), involving the Jordan
form of A, can be derived. The idea is exactly the same Freund presented in [7]
for the Quasi-Minimal residual method. We write the relation as a theorem, for
it generalizes the previously showed bounds, and reduces to each of them in the
corresponding particular cases.

Theorem 2.4. Let A be a non-singular n×n matrix, with eigenvalues λ1, . . . , λr
of algebraic multiplicity µ1, . . . , µr respectively. Consider the Jordan form of A,
A = X−1JX, and denote with J(λk) the Jordan block which corresponds to the
eigenvalue λk; let ℓk ≤ µk be its order. Then it holds

‖rm‖
‖r0‖

≤κ(X) min
p∈P∗

m

max
k=1,...,r

‖p(J(λk))‖

≤κ(X) min
p∈P∗

m

max
k=1,...,r

(
ℓk−1∑

j=0

1

j!

∣∣p(j)(λk)
∣∣
)
. (2.11)

Proof. With the same passages used in (2.6) we can write

‖rm‖ ≤ κ(X) min
p∈Pm∗

‖p(J)‖‖r0‖,
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hence we just need to estimate ‖p(J)‖. Since p(J) is block diagonal, its norm is
the maximum of the norms of its blocks:

‖p(J)‖ = max



 max

k=1,...,r
‖p(J(λk))‖, max

k=1,...,r
µk>ℓk

|p(λk)|



 = max

k=1,...,r
‖p(J(λk))‖.

The result is an immediate consequence of the standard relation

p(J(λk)) =

ℓk−1∑

j=0

1

j!
p(j)(λk)N

j
k ,

where Nk is the ℓk × ℓk nilpotent matrix

Nk =




0 1
. . .

. . .

. . . 1
0




and thus has norm 1.

A particular case: A has clustered eigenvalues

Several studies have been performed in case of clustered eigenvalues. Here we
briefly report the main results presented in [2]. The authors’ bound gives a qual-
itative description of the gmres behavior. The relation they show involves the
clusters radii, the relative distance of the outliers from the clusters and between
the clusters.

First we introduce some notations and the setting. A is again a non-singular
n×nmatrix, with distinct eigenvalues λ1, . . . , λr of algebraic multiplicities µ1, . . . , µr,
indices1 ℓ1, . . . , ℓr, and spectral projectors

Xj :=
1

2πi

∫

Γj

(zI −A)−1dz, j = 1, . . . , r,

where i2 = −1 and Γj is any circle around λj containing no other eigenvalue of
A. Note that the spectral projectors satisfy

XjA = AXj ,

XjXj = Xj and XiXj = 0 for i 6= j,

Range(Xj) = Ker(λjI − A)ℓj .

Now suppose A has M1 outlying eigenvalues and P non-intersecting clusters
of eigenvalues, and consider

dout :=

M1∑

j=1

ℓj

1The index of an eigenvalue λj is the smallest positive integer ℓj such that Ker(λjI−A)ℓj =
Ker(λjI −A)ℓj+1, i.e. ℓj is the dimension of the Jordan block J(λj).
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the degree of the minimal polynomial associated to the outliers {λj}M1
j=1, and Z1

their spectral projector:

Z1 :=

M1∑

j=1

Xj .

The (relative) clusters2 are centered at distinct non-zero points γ2, . . . , γP+1 ∈
C, and are given by

{λj}Mh

j=Mh−1+1 ⊂ {z ∈ C : |z − γh| < ρ|γh|}, h = 2, . . . , P + 1, ρ > 0.

The associated spectral projectors are

Zh :=

Mh∑

q=Mh−1+1

Xq, h = 2, . . . , P + 1.

Let us separate the clusters and the outliers by decomposing

A = A1 +

P+1∑

h=1

Ah, where A1 = Z1A, Ah = ZhA.

Finally, we can state the following proposition.

Proposition 2.5. Consider ρ > 0, the distinct non-zero complex numbers {γh}h=2,...,P+1,
and the integers

0 ≤M1 ≤M2 ≤ . . . ≤MP+1 = r

so that, for h = 2, . . . , P + 1, the non-intersecting sets

{λj}Mh

j=Mh−1+1 ⊂ {z ∈ C : |z − γh| < ρ|γh|}
are clusters, while

{λj}M1
j=1 ⊂ {z ∈ C : |z − γh| > ρ|γh| for h = 2, . . . , P + 1}

are the outliers.
Define the distance of the outliers from the clusters as

δ := max
2≤h≤P+1

max
|z−γh|=ρ|γh|

max
1≤j≤M1

|λj − z|
|λj|

and the maximal distance between clusters as

σ := max
2≤h≤P+1

max
|z−γh|=ρ|γh|

max
q 6=p

|γq − z|
|γq|

.

Then, for any b, x0 and k, it holds

‖rdout+kP‖ ≤ C(σP−1ρ)k‖r0‖, (2.12)

where the constant C is independent on k and given by

C := Pρδdout max
2≤h≤P+1

max
|z−γh|=ρ|γh|

‖(zI − Ah)
−1‖.

2The choice of individuating circular clusters is for the sake of simplicity. Anyway, other
more complex sets (such as ellipses) could be chosen, resulting in less simple but more effective
relations (see for example [12]).
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The model in Proposition 2.5 has qualitative nature. Relation (2.12) shows
how at least dout steps have to pass in order to observe a first residual reduction,
because gmres has to process the outliers. Also the number P of clusters influ-
ences the trend of the residual norm, as a new reduction is expected to occur each
P steps. The residual decrement is ruled by the asymptotic convergence factor
σP−1ρ, and it is faster when the clusters are small and close together, and by the
asymptotic error constant C, that reflects the non-normality of A and gathers
information about the distance between the outliers and the clusters, and the
number and radius of the clusters, too.





Chapter 3

A new convergence model

The aim of this chapter is to provide new descriptive bounds for the gmres

residual norm convergence.
The main issue with the bound (2.7) is that, in case of an ill-conditioned

matrix, the term κ(X) totally inficiates the bound, because of its high magnitude.
Sometimes, however, the ill-conditioning of X is due to just a part of it. For
instance, it may be caused by a few almost linearly dependent eigenvectors, which
is the case we focus on in this thesis. Identifying and isolating the responsible of
ill-conditioning may lead to a more accurate description of gmres convergence.
For example, this idea has already been developed in [4], to describe gmres

behavior when the matrix A is close to singular due to a relatively small group
of eigenvalues located in a neighborhood of zero. In that article, the derived
bound takes into account a sort of splitting of A into its far-from-singular and
almost-singular parts.

In our context, however, the eigenvalues do not need to be clustered, nor the
few ill-conditioned ones must necessarily be close to zero. The idea is to separate
them on the base of the distance between the relative eigenspaces, i.e. to separate
the far-from-dependent and almost-dependent invariant subspaces of A. Indeed,
eigenvalues alone are not sufficient to describe gmres behavior, for they do not
carry all the necessary information, thus we shifted our focus on strategies that
involve eigenspaces, too.

We will begin our discussion introducing the setting and some necessary no-
tions. Initially, we will focus on the simpler situation in which just two eigenspaces
are almost parallel. We will present a first convergence model, followed by the
analysis of the more specific case in which the system matrix is comparable to a
Jordan block matrix. Finally, we will illustrate the derivation of a new conver-
gence model, that reveals to be very descriptive, also generalizing the argument
in the case in which two groups of eigenspaces are one the perturbation of the
other.

3.1 Setting and notations

Let us consider the unitary matrix

X̂ := [x1, d, x3, . . . , xn] ∈ C
n×n

41
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and the matrix X , defined as

X := X̂



(
1 1

ε

)

In−2


 = [x1, x1 + εd, x3, . . . , xn], (3.1)

for ε > 0. Note that X is no longer unitary. Moreover, not only the second
column is almost parallel to the first one (for ε ≪ 1), but also ‖x1+ εd‖ 6= 1. Let
us write Y H := X−1 as the block matrix

X−1 =

[
Y H
1

Y H
2

]
, Y1 ∈ C

n×2, Y2 ∈ C
n×(n−2);

for coherence of notation, let yH1 , . . . , y
H
n be the rows of X−1.

Let then λ1, . . . , λn ∈ C be distinct values (for brevity, we will often use the
notation a := λ1 and b := λ2), and define A := XΛX−1. Using (3.1) we can write

A = XΛX−1 = X̂LX̂H ,

where Λ :=diag(λ1, . . . , λn) and L is the block diagonal matrix

L :=

[
L1

L2

]
,

with

L1 =

(
1 1

ε

)(
a 0
0 b

)(
1 1

ε

)−1

=

(
a b−a

ε

0 b

)
, L2 := diag(λ3, . . . , λn). (3.2)

Remark 3.1. Defining A this way, there are just two ill-conditioned eigenvalues,
namely a and b, whose condition numbers are O(1/ε), as we will now briefly
illustrate. Keep in mind that the condition number of an eigenvalue is defined as

κ(λ) =
1

|yHx| , (3.3)

where x and y are respectively the right and the left eigenvectors of unitary
norm associated with λ. In our case a and b have as right and left (non-unitary)
eigenvectors x1, y1, and x2 = x1 + εd, y2, respectively. Since Y = X−1, it holds
that Y1 = X̂1E

−H , with

X̂1 := [x1, d], E :=

(
1 1
0 ε

)
, and E−H =

(
1 0

−1/ε 1/ε

)
.

But then

y1 = x1 −
1

ε
d and y2 =

1

ε
d.
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Thus

κ(a)2 =

(‖x1‖‖y1‖
|xH1 y1|

)2

=
1 +

1

ε2(
xH1 x1 −

1

ε
dHx1

)2 = 1 +
1

ε2

κ(b)2 =

(‖x2‖‖y2‖
|xH2 y2|

)2

=
(1 + ε2)

1

ε2(
1

ε
dHx1 + dHd

)2 = 1 +
1

ε2

⇒ κ(a) =κ(b) =

√
1 +

1

ε2
.

Therefore κ(a) and κ(b) blow up as ε decreases, i.e. as the eigenspaces of a and
b tend to merge.

In the following, we will very often need to consider matrix valued polynomials.
If A = X̂LX̂H , for any polynomial p it holds

p(A) = X̂

[
p(L1)

p(L2)

]
X̂H ,

where

p(L1) =

(
1 1

ε

)
p

((
a 0
0 b

))(
1 1

ε

)−1

=

(
p(a) p(b)−p(a)

ε

0 p(b)

)
, (3.4)

and p(L2) =diag(p(λ3), . . . , p(λn)). Therefore, going back to the gmres residual,

‖rm‖ = min
p∈P∗

m

‖p(A)r0‖ = min
p∈P∗

m

‖X̂p(L)X̂Hr0‖ = min
p∈P∗

m

‖p(L)(X̂Hr0)‖.

Note also that, since X̂ is unitary, ‖X̂Hr0‖ = ‖r0‖. These last two obser-
vations explain that, in terms of convergence properties, applying gmres to
the system Ax = r0 is equivalent to applying it to the transformed system
L(X̂Hx) = (X̂Hr0). Therefore, without loss of generality, we can directly consider

A = blkdiag(L1, L2) (3.5)

and rename X̂Hr0 as r0.

One more thing we need to introduce is the notion of distance between vector
subspaces. We will very concisely give the definition and some basic properties.

3.1.1 Projectors and distance between vector subspaces

Definition 3.1. A projector is a linear map P : Cn → Cn such that

P 2 = P.
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It holds:

� Every projector P gives a decomposition of Cn as

C
n = ImP ⊕KerP,

∀x ∈ C
n, x = Px+ (I − P )x.

� Conversely, given any pair of vector subspaces M and N such that Cn =
M ⊕N⊥, there exists a projector P with

M = ImP and N⊥ = KerP.

� If N = M , the associated projector πM is an orthogonal projector of Cn

over M . Moreover, if the columns of X form an orthonormal basis of M ,
then πM has a matrix representation given by

πM = XXH .

Definition 3.2. Given the subspaces M , N of Cn, their distance is defined as

ω(M,N) := ‖πM − πN‖.

Note that, once an orthonormal basis of M and N is known, their distance
corresponds to a matrix norm.

Definition 3.3. The distance between a vector x and a subspace N is given by

dist(x,N) := ‖x− πNx‖ = ‖(I − πN)x‖.

Thus, the following result holds

Proposition 3.1.

ω(M,N) = max



max

x∈M
xHx=1

dist(x,N), max
y∈N

yHy=1

dist(y,M)



 .

Moreover, it can be proved that spaces of different dimensions have distance
larger than 1; and also that if dim(M) =dim(N) and M⊥N , then ω(M,N) = 1.

We conclude this introduction with some theoretical results about how pertur-
bation over a Jordan block transfers into the relative eigenvalue and generalized
eigenspace.
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3.1.2 Perturbations over a Jordan block

In this subsection only A will denote a general square matrix possessing an eigen-
value λ of algebraic multiplicity µ, geometric multiplicity g and index ℓ. Call

M = Ker(A− λI)ℓ and E = Ker(A− λI)

the associated invariant subspace and eigenspace. Consider then a perturbation
of A: A′ = A+H , with ‖H‖ = ε. Here we will make use of the “prime” to denote
the entities related to the perturbed matrix A′.
In [3] a detailed description of the behavior of eigenvalues and eigenspaces in
case of perturbation can be found. Here we limit ourselves to just state the main
results and show they are effectively satisfied by the matrices L1 and L1,J . First
of all we recall that, as may be expected, perturbing A produces a scattering
of the µ coincident eigenvalues λ into µ eigenvalues λ′i, i = 1, . . . , µ (not neces-
sarily all distinct) of A′. Naturally, along with this scattering, the generation of
new eigenspaces occurs. It is reasonable to think that the new eigenvalues and
eigenspaces will not be far from the original ones. Next proposition and theo-
rems describe what the situation is like for what concerns invariant subspaces,
eigenvectors and eigenvalues, in this order.

Proposition 3.2. [3, Corollary 4.3.2] Let M and M ′ be the invariant subspaces
corresponding to λ and {λ′i}µi=1 respectively. Then the distance between these
subspaces is of the order of the perturbation (for ε → 0),

ω(M,M ′) = O(ε).

Remark 3.2. With the expression invariant subspace corresponding to a set of
eigenvalues we indicate the vector subspace that is the sum of all the generalized
eigenspaces associated with those eigenvalues. This is the case for M ′. Clearly,
when the set of eigenvalues is a singleton, the sum reduces to a unique generalized
eigenspace, like M .

Next theorem focuses on eigenvectors (see [3, Theorem 4.3.7], with j = k = 1):

Theorem 3.3. In the previous notations, fix one of the eigenvalues λ′i of A
′, and

let E ′ =Ker(A− λ′iI) be the corresponding eigenspace.
Then for any eigenvector x′ ∈ E ′ it holds

dist(x′, E) = O(ε1/ℓ).

In addition, some interesting relations about the position of the scattered
eigenvalues are satisfied:

Theorem 3.4. In the previous notations, it holds:

(i) max
i

|λ− λ′i| = O(ε1/ℓ),

(ii)

∣∣∣∣∣λ− 1

µ

µ∑

i=1

λ′i

∣∣∣∣∣ = O(ε).
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Gathering the information given by these three results, we can conclude that
the distance between the eigenvectors of A and A′ is of the order of the dis-
tance between the eigenvalues λ and λ′i, while the distance between the invariant
subspaces M and M ′ is of the same order of the distance between λ and the
arithmetic mean of the scattered eigenvalues.

3.2 A first model

In the introduction to this chapter we explained our decision to separate the
eigenvalues based on their conditioning, but also and especially looking at the
distance between their eigenspaces. Since all eigenvalues of A are distinct, all
eigenspaces are mono-dimensional, thus computing the distances between them
only involves their (normalized) generating vectors. The two eigenspaces with
eigenvalues a and b have distance of the order of ε, while all the other distances
are of order 1. This is easy to see, as ‖x1 − x2‖ = ε‖d‖ = ε, while the distance
between any other couple of eigenspaces is 1 due to their reciprocal orthogonality.
In order to split the eigenvalues, we opted for building a polynomial written as a
product of other polynomials.
Keeping in mind the form of A, let us write the m-th residual norm as

‖rm‖2 = min
p∈P∗

m

∥∥∥∥∥

[
p(L1)

p(L2)

] [
r
(1)
0

r
(2)
0

]∥∥∥∥∥

2

= min
p∈P∗

m

(
‖p(L1)r

(1)
0 ‖2 + ‖p(L2)r

(2)
0 ‖2

)
. (3.6)

Here r
(1)
0 and r

(2)
0 denote respectively the vectors composed by the first two entries

of r0 and the remaining n− 2 ones.
As a first try, we chose a specific polynomial p ∈ Pm to bound the minimum in
(3.6), namely the product

p(z) = ϕ(z)ψm−2(z),

where ϕ(z) = (1− z
a
)(1− z

b
) is the minimal polynomial of L1, whilst ψm−2 is the

residual polynomial at step m− 2 of gmres applied to the well-conditioned part
of the system, that is to the (n− 2)× (n− 2) system L2x

(2) = r
(2)
0 . Let sm−2 be

the corresponding residual at step m− 2. The idea of writing p(z) as a product
of two polynomials has been used in the past for similar purposes, see e.g. [2, 4].
The aim of this choice is to limit the influence of the ill-conditioned part of the
matrix. From (3.6) we get:

‖rm‖2 ≤‖ψm−2(L1)ϕ(L1)r
(1)
0︸ ︷︷ ︸

=0

‖2 + ‖ϕ(L2)ψm−2r
(2)
0 ‖2

≤‖ϕ(L2)‖2‖ψm−2(L2)r
(2)
0 ‖2 = ‖ϕ(L2)‖2‖sm−2‖2
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Figure 3.1: gmres residual norms and bound (3.7). Data: n = 100, ε = 10−6,
λ3, . . . , λn = 98, . . . , 1; left: a = 100, b = 99; right: a = 10−5, b = 2 · 10−5.

and thus
‖rm‖ ≤ ‖ϕ(L2)‖‖sm−2‖. (3.7)

In practice the bound (3.7) appears to be informative when the convergence
is not too slow in the beginning. However, it presents some limits in case of an
initial stagnation, when the setback of having a coefficient of high magnitude
springs again.

Figure 3.1 shows two examples. We computed the bound by constructing and
evaluating the polynomial ϕ and by multiplying the results with the residuals
obtained running gmres on the system L2x

(2) = r
(2)
0 . While in the plot on the

left the bound is coherent with the residual history, the situation on the right is
totally different. A low initial rate of convergence may be caused, for instance,
by a cluster of eigenvalues around the origin, and in our example a and b are set
to be both of order 10−6. When a and b are close to zero if compared to the rest
of the spectrum, ‖ϕ(L2)‖ can be very large, as on the real axis ϕ represents a
parabola which assumes the value 1 on 0 and whose roots are assigned to be a and
b. Having observed this, we conclude that bound (3.7) has very little chance to
be interesting whenever the eigenvalues on which ϕ is built are small with respect
to the rest of the spectrum. Still, the bound qualitatively describes the trend of
the convergence curve after the stagnation phase has been surpassed, i.e. after
the information about the ill-conditioned part of the matrix has been processed.

Thus far we have talked about bounds that, in some sense, consider the in-
fluence of the spectrum of A and of the relative eigenspaces separately, or even
do not take into account either of them at the same time. We have seen how
these kinds of relations present some flaws in describing the convergence curve.
Therefore we can conclude that the eigenvalues themselves are not sufficient to
obtain good, informative relations. Many authors have already pointed this out
in several works (see e.g. [10, 11]). To further highlight this issue, we give a the-
orem, whose main point is that any non-increasing convergence curve is possible
for gmres for a matrix having any prescribed set of eigenvalues. It was originally
presented in [1] and [8], where a constructive proof is reported, too.
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Theorem 3.5. [10, Theorem 5.7.7] For any n positive numbers f0 ≥ f1 ≥ . . . ≥
fn−1 > 0 and any n non-zero complex numbers λ1, . . . , λn, not necessarily distinct,
there exists a matrix A ∈ Cn×n, with eigenvalues λ1, . . . , λn, and a vector b ∈ Cn,
with ‖b‖ = f0, so that gmres applied to Ax = b with x0 has the residual norms
‖rm‖ = fm, m = 0, 1, . . . , n− 1.

It is therefore clear that we should proceed with the purpose of not prema-
turely separate the information carried by eigenvalues and relative eigenspaces.
For example, an approach that follows this idea is to consider the field of val-
ues of the matrix (see (2.2)). However, likewise many other proposed bounds,
the relations the field of values provides are good for some instances, but rough
and completely useless for others, as they do not follow the effective asymptotic
convergence. A detailed description of the behavior of different global and local
bounds, along with several enlightening examples, can be found in the technical
report [5].

3.3 Similarities with the Jordan case

In this section we explore the case in which the ill-conditioning of the system ma-
trix makes it close to a matrix possessing a Jordan block with the corresponding
ill-conditioned invariant subspace.
Let A =blkdiag(L1, L2), with L1 and L2 defined in (3.2). In particular,

L1 =

(
a b−a

ε

b

)
=

(
1 1
0 ε

)(
a 0
0 b

)(
1 1
0 ε

)−1

=: V

(
a 0
0 b

)
V −1. (3.8)

When a and b are close together, and also when ε is small, the 2 × 2 matrix L1

can be read as the perturbation of the following matrix:

L1,J :=

(
a b−a

ε
−ε(b−a)

4
b

)
=

(
1 1
ε
2

ε
b−a

(
1 + b−a

2

)
)(

a+b
2

1
0 a+b

2

)(
1 1
ε
2

ε
b−a

(
1 + b−a

2

)
)−1

=:VJ

(
a+b
2

1
0 a+b

2

)
V −1
J , (3.9)

having the single eigenvalue a+b
2

of index 2 (see [3, Example 4.2.2]).
The difference between L1 and L1,J is given by

‖L1 − L1,J‖ =
ε|b− a|

4
,

therefore, L1 is close to the non-diagonalizable matrix L1,J whenever |b− a| or ε
are small, that is, whenever the eigenvalues are close to each other, or whenever
V and VJ are close to each other. This motivated us to investigate and com-
pare the residual results of gmres when applied to blkdiag(L1, L2)x = r0 and
blkdiag(L1,J , L2)x = r0. For analogy with A, pose AJ :=blkdiag(L1,J , L2).

In the rest of this section we will first discuss the theoretical results presented
in Subsection 3.1.2. Later we will continue investigating how gmres behaves over
matrices that are perturbations of Jordan blocks, focusing on the particular case
of L1 and L1,J , and will make a few comparisons.
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3.3.1 An example: L1 as a perturbation of the Jordan
block L1,J

Keeping in mind the results in Proposition 3.2, Theorem 3.3 and Theorem 3.4,
we discuss the relations between the invariant subspaces, eigenvectors and eigen-
values of L1 and L1,J . We can write L1 as

L1 = L1,J +

(
0 0
δ 0

)
, with δ = ε

b− a

4
,

then the perturbation norm is |δ|. A direct computation of the distances in
Proposition 3.2, Theorem 3.3 and Theorem 3.4 is possible. In particular:

� Denoting with v1, v2 and vJ,1, vJ,2 the columns of the matrices V and VJ , we
have: ω(span{v1, v2},span{vJ,1, vJ,2}) = ω(R2,R2) = 0, so Proposition 3.2
trivially holds.

� Theorem 3.3 states that dist(v1, vJ,1) = O(|δ| 12 ) and dist(v2/‖v2‖, vJ,1) =

O(|δ| 12 ). On the other hand, calling EJ =span(xJ,1) and proceeding with
explicit computations, we have

dist(v1, EJ) = ‖(I − πEJ
)v1‖ =

∥∥∥∥∥

(
I −

vJ,1v
H
J,1

‖vJ,1‖2

)
v1

∥∥∥∥∥

=

∥∥∥∥
(

ε2

4+ε2
2ε

4+ε2
2ε

4+ε2
4

4+ε2

)(
1
0

)∥∥∥∥ =
ε

4 + ε2
‖(ε, 2)T‖

=
ε√

4 + ε2
= O(ε)

and, similarly, dist(v2, EJ) = O(ε).

� For what concerns eigenvalues, instead, the theory says that |a − a+b
2
| =

O(|δ| 12 ) and |b− a+b
2
| = O(|δ| 12 ), while we obtain

∣∣∣∣a−
a+ b

2

∣∣∣∣ =
∣∣∣∣b−

a+ b

2

∣∣∣∣ =
|b− a|

2
= O(|b− a|).

What observed in the last two items might seem not completely coherent with the
statements of Proposition 3.2 and Theorems 3.3 and 3.4, as it accounts only for
either ε or |b−a|, while the perturbation δ involves both of them simultaneously.
To clarify, note that asymptotically speaking, ε and |b − a| cannot be totally
unrelated, as neither L1 nor L1,J exist if only one of those two quantities tends
to zero (to be precise, L1,J would still exist for |b− a| → 0, but it would loose its
Jordan form). In particular, both the ratio (b− a)/ε and its reciprocal must be
asymptotically constant. Therefore, |b− a| = O(ε) for ε → 0, and ε = O(|b− a|)
for |b − a| → 0. This means that δ = O(ε2), or equivalently, δ = O(|b − a|2),
depending on which quantity one focuses on. Thus, in this example, O(|δ| 12 ) =
O(ε) = O(|b− a|), so what we found agrees with the theoretical results.
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3.3.2 Comparison: GMRES on Ax = r0 and AJx = r0

To study the convergence behavior of gmres we first need to understand the
relation between p(L1) and p(L1,J). Recall we already computed p(L1) from
(3.4),

p(L1) =

(
p(a) p(b)−p(a)

ε

0 p(b)

)
. (3.10)

To write p(L1,J), we remind that the evaluation of a polynomial over a Jordan
block also involves derivatives, so that

p(L1,J) =VJp

((
a+b
2

1
0 a+b

2

))
V −1
J

=VJ

(
p

(
a + b

2

)(
1 0
0 1

)
+ p′

(
a+ b

2

)(
0 1
0 0

))
V −1
J

=p

(
a+ b

2

)(
1 0
0 1

)
+ p′

(
a+ b

2

)
VJ

(
0 1
0 0

)
V −1
J

=p

(
a+ b

2

)(
1 0
0 1

)
+ p′

(
a+ b

2

)
(b− a)

(
−1

2
1
ε

− ε
4

1
2

)

=p(ξ)

(
1 0
0 1

)
+ p′(ξ)

b− a

2

(
−1 2

ε

− ε
2

1

)
, (3.11)

where ξ := (a+ b)/2.
For the moment, let us focus on the case in which the distance between the

two ill-conditioned eigenvalues is small, i.e. |b − a| ≪ 1. To proceed, we need
some Taylor expansions around ξ:

p(a) = p

(
ξ − b− a

2

)
= p(ξ)− p′(ξ)

b− a

2
+O(|b− a|2) (3.12)

p(b) = p

(
ξ +

b− a

2

)
= p(ξ) + p′(ξ)

b− a

2
+O(|b− a|2) (3.13)

so that

p(b)− p(a) = p′(ξ)(b− a) +O(|b− a|2). (3.14)

We have the following proposition:

Proposition 3.6. Consider L1 and L1,J as defined in (3.8) and (3.9). For fixed
ε > 0 and for any polynomial p it holds

p(L1) = p(L1,J) + p′(ξ)

(
0 0

ε b−a
4

0

)
+O(|b− a|2)

(
1 1
0 1

)

and

‖p(L1)− p(L1,J)‖ = |p′(ξ)| |b− a|
4

ε+O(|b− a|2), (3.15)

for |b− a| → 0.
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Proof. Using (3.10), (3.11) and then (3.12), (3.13) and (3.14):

p(L1)− p(L1,J) =

(
p(a) p(b)−p(a)

ε

0 p(b)

)
− p(ξ)

(
1 0
0 1

)
− p′(ξ)

b− a

2

(
−1 2

ε

− ε
2

1

)

= p′(ξ)

(
− b−a

2
b−a
ε

0 b−a
2

)
− p′(ξ)

b− a

2

(
−1 2

ε

− ε
2

1

)
+O(|b− a|2)

(
1 1
0 1

)

= p′(ξ)

(
0 0

ε b−a
4

0

)
+O(|b− a|2)

(
1 1
0 1

)
,

and the result follows.

Proposition 3.6 shows that for any polynomial p such that |p′(ξ)| is not ex-
cessively large, the value of p(L1) is close to that of p(L1,J) when the distance
between a and b (eigenvalues of L1) is small. As a consequence, when the eigen-
values a and b are close to each other, the gmres residual history of Ax = r0
closely follows the one of AJx = r0 (clearly, for |b − a| ≫ 0, the behavior may
differ).

Proposition 3.7. Denote with rm and rm,J the m-th residuals of gmres ap-
plied to Ax = r0 and AJx = r0, respectively, and let φm(z) and φm,J(z) be the
corresponding residual polynomials. Then
∣∣∣‖rm‖−‖rm,J‖

∣∣∣ ≤ max

{∣∣∣∣φ
′
m

(
a+ b

2

)∣∣∣∣ ,
∣∣∣∣φ

′
m,J

(
a+ b

2

)∣∣∣∣
} |b− a|

4
ε‖r(1)0 ‖+O(|b−a|2),

(3.16)
for |b− a| → 0.

Proof.

‖rm‖ = min
p∈Pm

‖p(A)r0‖ ≤ ‖φm,J(A)r0‖

≤‖φm,J(AJ)r0‖+ ‖φm,J(A)r0 − φm,J(AJ)r0‖
=‖rm,J‖+ ‖(φm,J(A)− φm,J(AJ))r0‖

=‖rm,J‖+
∥∥∥∥
[
φm,J(L1)− φm,J(L1,J) 0

0 φm,J(L2)− φm,J(L2)

]
r0

∥∥∥∥

=‖rm,J‖+
∥∥∥∥
[
φm,J(L1)− φm,J(L1,J) 0

0 0

]
r0

∥∥∥∥

=‖rm,J‖+
∥∥∥(φm,J(L1)− φm,J(L1,J)) r

(1)
0

∥∥∥ .

Thus, using (3.15), we obtain:

‖rm‖ ≤ ‖rm,J‖+
∣∣∣∣φ

′
m,J

(
a+ b

2

)∣∣∣∣
|b− a|

4
ε‖r(1)0 ‖+O(|b− a|2),

for |b− a| → 0.
In the same way, we can write:

‖rm,J‖ ≤ ‖rm‖+
∣∣∣∣φ

′
m

(
a+ b

2

)∣∣∣∣
|b− a|

4
ε‖r(1)0 ‖+O(|b− a|2).

Combining the last two inequalities we obtain the result.
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Note the presence of the residual polynomials’ first derivative in Proposi-
tion 3.7, which in some sense is reminiscent of the relation in Theorem 2.4.

Relation (3.7) is illustrated in Figure 4.1, Figure 4.2 and Figure 4.5 in Chapter
4, where gmres convergence curves relative to the systems Ax = r0 and AJx = r0
are compared, with very small distance between a and b.

3.3.3 Further comparisons and observations

With the same approach we adopted for AJ , one may wonder wether there are
any similarities when gmres is applied to the two diagonal systems ADx = r0 and
ADξ

x = r0, where AD :=diag(a, b, λ3, . . . , λn) and ADξ
:= diag(ξ, ξ, λ3, . . . , λn),

with ξ = a+b
2
. Indeed, for a fixed ε and for |b− a| ≪ 1, the 2-norm distances

‖A− AD‖ =
|b− a|
ε

and ‖A− ADξ
‖ =

|b− a|
2

√
1 +

2

ε

are very small. For coherence with the previous notation, let us set L1,D :=diag(a, b)
and L1,Dξ

:=diag(ξ, ξ) = ξI2. Moreover, we denote with φm,D and φm,Dξ
the m-th

gmres polynomial relative to AD and ADξ
, respectively. For the residuals, we

use the notations rm,D and rm,Dξ
.

Since L1 = V L1,DV
−1, with V defined as in (3.8), studying what happens

when L1,D replaces L1 substantially means to study the diagonal problem without
ill-conditioning. On the other hand, L1,Dξ

= V L1,Dξ
V −1, so, when |b−a| is small,

L1 can be obtained from L1,Dξ
by slightly perturbing its eigenvalues. The double

geometric multiplicity of the eigenvalue ξ allows to always choose an orthonormal
basis for the eigenspace, therefore the diagonal problem corresponding to L1,Dxi

is not affected by ill-conditioning, either.

Let us now briefly analyze the gmres behavior over the aforementioned sys-
tems. gmres convergence is driven by polynomials, hence having a small distance
between the system matrices does not necessarily imply having similar conver-
gence curves. Instead, we need to compare the corresponding matrix valued
polynomials. Since the computations are analogous to those made earlier in this
chapter, to give a more slender presentation, we avoid to write them down, di-
rectly stating the results.

Proposition 3.8. With the previous notation, it holds:

∣∣∣‖rm‖ − ‖rm,D‖
∣∣∣ ≤max

{
|φ′

m (ξ)| ,
∣∣φ′

m,D (ξ)
∣∣} |b− a|

ε
‖r(1)0 ‖+O(|b− a|2),

∣∣∣‖rm‖ − ‖rm,Dξ
‖
∣∣∣ ≤max

{
|φ′

m (ξ)| ,
∣∣∣φ′

m,Dξ
(ξ)
∣∣∣
} |b− a|

2

√
1 +

2

ε
‖r(1)0 ‖+O(|b− a|2),

for |b− a| → 0.

For completeness, we also insert the comparison between the Jordan block
matrix AJ and the corresponding diagonal one ADξ

, which holds for any value of
|b− a|.
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Proposition 3.9. With the previous notation, it holds

∣∣∣‖rm,J‖−‖rm,Dξ
‖
∣∣∣ ≤ max

{∣∣φ′
m,J (ξ)

∣∣ ,
∣∣∣φ′

m,Dξ
(ξ)
∣∣∣
} |b− a|

2

(
1

4
+

1

ε2

)
‖r(1)0 ‖+O(|b−a|2).

Figure 4.1 and Figure 4.3 in Chapter 4 show the gmres convergence curves
of the systems Ax = r0, ADx = r0, ADξ

x = r0 and AJx = r0 in the same plots, so
to allow a qualitative comparison. Further comments to the plots are presented
in Remark 4.3.

Returning now on the comparison with the Jordan case, we would like to
point out that, while the theory regarding non-diagonalizable matrices involves
not only the polynomial p, but also its first derivative p′ (see (2.11)), no derivatives
appear when the diagonalizable matrix A is considered. However, if indeed A is
a perturbation of AJ , totally forgetting about p′ may be misleading. Hence, we
expect that the presence of a derivative, or at least a difference ratio, would
provide a more descriptive bound. The model problem we discuss in Section 3.4
follows up on this argument, by including a related constraint.

Additional insight towards the inclusion of a constraint is given by some simple
bounds for ‖p(L1)‖ and ‖p(L1,J)‖, that we present in the following lemmas.

Lemma 3.10. It holds

‖p(L1)‖ ≤

√

|p(a)|2 + |p(b)|2 +
∣∣∣∣
p(b)− p(a)

ε

∣∣∣∣
2

. (3.17)

Proof. Thanks to the small dimension of L1 we can bound ‖p(L1)‖ by explicitly
computing: ‖p(L1)‖ =

√
λmax(p(L1)Hp(L1)). The characteristic polynomial of

p(L1)
Hp(L1) =

[
|p(a)|2 p(a)p(b)−p(a)

ε

p(a)p(b)−p(a)
ε

|p(b)|2 +
∣∣∣ p(b)−p(a)

ε

∣∣∣
2

]

is

q(λ) = λ2 − λ

(
|p(a)|2 + |p(b)|2 +

∣∣∣∣
p(b)− p(a)

ε

∣∣∣∣
2
)

+
∣∣p(a)p(b)

∣∣2.

Since p(L1)
Hp(L1) is Hermitian and positive definite, its roots are both real and
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positive,

λmax =
1

2

(
|p(a)|2 + |p(b)|2 +

∣∣∣∣
p(b)− p(a)

ε

∣∣∣∣
2

+

+

√√√√
(
|p(a)|2 + |p(b)|2 +

∣∣∣∣
p(b)− p(a)

ε

∣∣∣∣
2
)2

− 4
∣∣p(a)p(b)

∣∣2



≤1

2


|p(a)|2 + |p(b)|2 +

∣∣∣∣
p(b)− p(a)

ε

∣∣∣∣
2

+

√√√√
(
|p(a)|2 + |p(b)|2 +

∣∣∣∣
p(b)− p(a)

ε

∣∣∣∣
2
)2



=|p(a)|2 + |p(b)|2 +
∣∣∣∣
p(b)− p(a)

ε

∣∣∣∣
2

.

Furthermore, for |b − a| ≪ 1, using the expansions (3.12), (3.13) and (3.14)
to rewrite p(L1) we also have:

Lemma 3.11. For |b− a| → 0 it holds

‖p(L1)‖ ≤ |p(ξ)|+ |p′(ξ)| |b− a|
2

√(
1 +

2

ε2

)
+

√
1 +

4

ε4
+O(|b− a|2). (3.18)

Proof. Substituting (3.12), (3.13) and (3.14) in (3.10), we can write

p(L1) = p(ξ)I2 + p′(ξ)
b− a

2

(
−1 2/ε

1

)
+O(|b− a|2).

Therefore

‖p(L1)‖ ≤ |p(ξ)|+ |p′(ξ)| |b− a|
2

∥∥∥∥
(
−1 2/ε

1

)∥∥∥∥+O(|b− a|2).

To complete the proof, observe that the coefficient

√(
1 +

2

ε2

)
+

√
1 +

4

ε4

is computed as the square root of the maximum eigenvalue of

(
−1 2/ε

1

)H (−1 2/ε
1

)
=

(
1 −2/ε

−2/ε 1 + 4/ε2

)
.

Considering now p(L1,J), we have one last lemma
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Lemma 3.12. It holds

‖p(L1,J)‖ ≤ |p(ξ)|+ |p′(ξ)| |b− a|
2

(
2

ε
+
ε

2

)
. (3.19)

Proof. To calculate the bound for ‖p(L1,J)‖ we can rely on its decomposition into
two addends,

p(L1,J) = p(ξ)I2 + p′(ξ)
b− a

2

(
−1 2/ε
−ε/2 1

)
.

Thus

‖p(L1,J)‖ ≤ |p(ξ)|+ |p′(ξ)| |b− a|
2

∥∥∥∥
(

−1 2/ε
−ε/2 1

)∥∥∥∥ .

Like we did before, we can evaluate the 2-norm of the matrix in the right hand
side, let it be G, as ‖G‖ = λmax(G

TG). We have

GTG =

(
1 + ε/4 − (2/ε+ ε/2)

− (2/ε+ ε/2) 1 + ε/4

)

with characteristic polynomial

p(λ) = λ

(
λ− (ε2 + 4)2

4ε2

)
.

Hence

λmax =

(
ε2 + 4

2ε

)2

=

(
2

ε
+
ε

2

)2

,

from which the result follows.

These two bounds have similar form, as they both show a dependence (of the
same nature) on the values assumed by p over the eigenvalues, and by p′(ξ) and

the difference ratio p(b)−p(a)
b−a

. This is particularly evident by rewriting (3.17) as

‖p(L1)‖ ≤

√

|p(a)|2 + |p(b)|2 +
∣∣∣∣
p(b)− p(a)

b− a

∣∣∣∣
2( |b− a|

ε

)2

.

Note that, when ε goes to zero, the coefficient of the first derivative term in
(3.18) behaves similarly to the corresponding coefficient in (3.19).

3.4 A new convergence model

As noted in the first section of this chapter, it is not restrictive to consider the
linear system Ax = r0, where A is the block diagonal matrix L =blkdiag(L1, L2).
The gmres residual norm is thus given by:

‖rm‖ = min
p∈P∗

m

‖p(L)r0‖.
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Here we study what happens if we shrink the polynomial set used in the
gmres residual problem, by adding the constraint

p(b) =
p(b)− p(a)

ε
. (3.20)

Recalling the bound for ‖p(L1)‖ in (3.17), this constraint ensures that the ratio
(p(b)− p(a))/ε will not blow up, hence it limits the influence of ε.

Even if a and b are far from each other, what matters for gmres seems to be
the similarity of the values the minimizing polynomial assumes on them. This
motivates the choice of the constraint (3.20). Indeed, once reformulated as

p(a) = (1− ε)p(b) (3.21)

or also, when p(b) 6= 0, as
p(b)− p(a)

p(b)
= ε,

the constraint can be interpreted as a request for p(a) and p(b) to be as close as
ε, in a relative sense.
Another remark is that, by asking (p(b)− p(a))/ε to assume a precise value, we
are implicitly imposing conditions regarding the quotient (p(b) − p(a))/(b − a),
because

p(b)− p(a)

ε
=
p(b)− p(a)

b− a

b− a

ε
.

Observe that, when a and b are close to each other, using (3.13) and (3.14) shows
that condition (3.20) differs by O(|b− a|2) from the request

2p(ξ)

2− ε
= p′(ξ)

b− a

ε
,

that is, we are implicitly imposing conditions on the first derivative of the minimal
polynomial.

Finally, we can state the following bound for the gmres residual norm.

Theorem 3.13. Let Λ =diag(a, b, λ3, . . . , λn) be the diagonal matrix containing
the eigenvalues of A. Then at every step m the gmres residual norm satisfies

‖rm‖ ≤
√
3 min

p∈P∗

m

p(b)= p(b)−p(a)
ε

‖p(Λ)r0‖. (3.22)

Proof.

‖rm‖2 = min
p∈P∗

m

‖p(A)r0‖2 = min
p∈P∗

m

(
‖p(L1)r

(1)
0 ‖2 + ‖p(L2)r

(2)
0 ‖2

)

≤ min
p∈P∗

m

p(b)=
p(b)−p(a)

ε

(
‖p(L1)r

(1)
0 ‖2 + ‖p(L2)r

(2)
0 ‖2

)
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With the constraints (3.20), the expression in (3.10) gives

‖p(L1)r
(1)
0 ‖2 =

∥∥∥∥
(
p(a) p(b)

p(b)

)
r
(1)
0

∥∥∥∥
2

=

∥∥∥∥
(
1 1

1

)(
p(a)

p(b)

)
r
(1)
0

∥∥∥∥
2

(3.23)

≤3

∥∥∥∥
(
p(a)

p(b)

)
r
(1)
0

∥∥∥∥
2

.

Therefore

‖rm‖2 ≤ min
p∈P∗

m

p(b)= p(b)−p(a)
ε

3

(∥∥∥∥
(
p(a)

p(b)

)
r
(1)
0

∥∥∥∥
2

+ ‖p(L2)r
(2)
0 ‖2

)

= min
p∈P∗

m

p(b)=
p(b)−p(a)

ε

3‖p(Λ)r0‖2,

from which the result follows.

Remarks:

1. The constant 3 is an upper bound for 3+
√
5

2
≈ 2.6, the squared norm of the

2× 2 Jordan matrix (
1 1

1

)
.

2. The bound in (3.22) is surprisingly clean, involving nothing but the eigen-
values of A and the initial residual. We would like to point out that the
alternative constraint

p(b)− p(a)

ε
= p(a)

could have been considered. However, adopting it does not yield an equally
simple bound, as (3.23) would become:

‖p(L1)r
(1)
0 ‖2 =

∥∥∥∥
(
p(a) p(a)

p(b)

)
r
(1)
0

∥∥∥∥
2

=

∥∥∥∥
(
p(a)

p(b)

)(
1 1

1

)
r
(1)
0

∥∥∥∥
2

.

This time the norm of the Jordan matrix cannot be bounded without sep-
arating the norms of diag(p(a), p(b)) and r

(1)
0 as well.

3. The bound does not depend on how close a and b are. In other words, it can
be descriptive irrespective of the distribution of the eigenvalues. So indeed,
relation (3.22) is an alternative to eigenvalue-clustering-based bounds, that
may not be descriptive as they take into account only information regarding
eigenvalues.

4. The bound in Theorem 3.13 can be further estimated as

‖rm‖ ≤
√
3 min

p∈P∗

m

p(b)=
p(b)−p(a)

ε

max
i=1,...,n

|p(λi)|‖r0‖,

which leads to a constrained min-max polynomial problem.
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Numerical experiments in Chapter 4 illustrate the descriptive value of this
new bound in several cases.

Remark 3.3. Using the relation (3.21), we can rewrite (3.22) as

‖rm‖ ≤
√
3 min

p∈P∗

m

p(a)=(1−ε)p(b)

‖p(Λ̂)r̂0‖

where

Λ̂ = diag(b, b, λ3, . . . , λn) and r̂0 = ((1− ε)r0,1, r0,2, . . . , r0,n)
T .

Indeed, thanks to (3.21) we have

‖p(Λ)r0‖2 =
n∑

i=1

p(λi)
2r20,i = p(a)2r20,1 + p(b)2r20,2 +

n∑

i=3

p(λi)
2r20,i

=p(b)2(1− ε)2r20,1 + p(b)2r20,2 +
n∑

i=3

p(λi)
2r20,i

=

∥∥∥∥∥∥∥∥∥∥∥




p(b)
p(b)

p(λ3)
. . .

p(λn)







(1− ε)r0,1
r0,2
r0,3
...
r0,n




∥∥∥∥∥∥∥∥∥∥∥

2

.

3.5 Generalization to more than two ill-conditioned

eigenspaces

Let us now consider the case in which the ill-conditioning of the eigenvector
matrix is due to more than two eigenvectors.
We proceed by generalizing the previous model problem. To maintain the same
notation, let X̂ be a square unitary matrix of the form:

X̂ = [X1, D,X3]

where this time, X1, D and X3 are tall rectangular matrices. Let

X2 := X1 +DE,

for some square and non-singular matrix E, E = εE0, with the hypothesis that
both ‖E0‖ and ‖E−1

0 ‖, and thus κ(E0) as well, are moderate. In this way the
columns of X1 and X2 span closely related subspaces. Define

X := [X1, X2, X3] = X̂



I I

E
I


 ,
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and for our choice of X2, the matrix X is non-singular. We again denote with Λ
the diagonal matrix containing the eigenvalues of A, similar to A through X :

A = XΛX−1

and we use the block partitioning

Λ =



Λ1

Λ2

Λ3




conforming to X1, X2 and X3, respectively. We have

A = XΛX−1 = X̂



I I

E
I





Λ1

Λ2

Λ3





I −E−1

E−1

I


 X̂H .

To generalize (3.20) we take the new matrix constraint

p(Λ2) =
p(Λ2)− p(Λ1)

ε
. (3.24)

The following theorem extends Theorem 3.13 to the case of a more general
eigenspace ill-conditioning situation. As already explained in Section 3.1, without
loss of generality we can suppose to directly have

A =



I I

E
I





Λ1

Λ2

Λ3





I −E−1

E−1

I


 =



Λ1 (Λ2 − Λ1)E

−1

EΛ2E
−1

Λ3




(3.25)

and rename X̂Hr0 as r0.

Theorem 3.14. Consider X, Λ, A as defined before. Let J :=blkdiag(I, E0, I).
Then at every step m the gmres residual norm satisfies

‖rm‖ ≤ ‖J ‖ min
p∈P∗

m

p(Λ2)=
p(Λ2)−p(Λ1)

ε

∥∥p(Λ)J −1r0
∥∥ , (3.26)

where ‖J ‖ ≤
√

2 + ‖E0‖ is moderate, since ‖E0‖ is moderate by construction.

Proof. Following what was done in the proof of Theorem 3.13, we have

‖rm‖2 = min
p∈P∗

m

‖p(A)r0‖2 = min
p∈P∗

m

∥∥∥∥∥∥



p(Λ1) (p(Λ2)− p(Λ1))E

−1

Ep(Λ2)E
−1

p(Λ3)


 r0

∥∥∥∥∥∥

2

= min
p∈P∗

m

∥∥∥∥∥∥



p(Λ1)

p(Λ2)−p(Λ1)
ε

E−1
0

E0p(Λ2)E
−1
0

p(Λ3)


 r0

∥∥∥∥∥∥

2

≤ min
p∈P∗

m

p(Λ2)=
p(Λ2)−p(Λ1)

ε

∥∥∥∥∥∥



p(Λ1)

p(Λ2)−p(Λ1)
ε

E−1
0

E0p(Λ2)E
−1
0

p(Λ3)


 r0

∥∥∥∥∥∥

2

.
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Now let us focus on the upper triangular block. If we ask (3.24) to hold, we have

[
p(Λ1)

p(Λ2)−p(Λ1)
ε

E−1
0

E0p(Λ2)E
−1
0

]
=

[
p(Λ1) p(Λ2)E

−1
0

E0p(Λ2)E
−1
0

]
=

[
I I

E0

] [
p(Λ1)

p(Λ2)

] [
I

E−1
0

]
.

(3.27)
Therefore

‖rm‖2 ≤ min
p∈P∗

m

p(Λ2)=
p(Λ2)−p(Λ1)

ε

∥∥∥∥∥∥



I I

E0

I





p(Λ1)

p(Λ2)
p(Λ3)





I

E−1
0

I


 r0

∥∥∥∥∥∥

2

and we finally find

‖rm‖ ≤ ‖J ‖ min
p∈P∗

m

p(Λ2)=
p(Λ2)−p(Λ1)

ε

∥∥∥∥∥∥
p(Λ)



I

E−1
0

I


 r0

∥∥∥∥∥∥
.

Remark 3.4. Again, the bound of Theorem 3.14 can be further estimated as

‖rm‖ ≤ κ(J ) min
p∈P∗

m

p(Λ2)=
p(Λ2)−p(Λ1)

ε

max
i=1,...,n

|p(λi)|‖r0‖. (3.28)

We next show that the bound simplifies by assuming the matrix E0 is unitary:

Corollary 3.15. Consider X, Λ, A as previously defined, and let the matrix E0

be unitary. Then, at every step m, the gmres residual norm satisfies:

‖rm‖ ≤
√
3 min

p∈P∗

m

p(Λ2)=
p(Λ2)−p(Λ1)

ε

∥∥p(Λ)J Hr0
∥∥ .

Remark 3.5. Observe that this time, since E0 is unitary, the matrix J H is unitary
as well, thus the norm of r0 is preserved when the matrix-vector multiplication is
performed. In particular, (3.28) holds with κ(J ) = 1.

Next, we consider the case of a diagonal matrix E0. Of course, this is a very
special case, for requiring E0 to be diagonal implies having an X2 with a quite
peculiar structure: each column of X2 is almost parallel to the corresponding
column of X1, and it is not almost a linear combination of all columns of X1.

Theorem 3.16. Consider X, Λ, A as previously defined, and let the matrix E0

be diagonal. Then, at every step m, the gmres residual norm satisfies:

‖rm‖ ≤
√

2 + ‖E−1
0 ‖ min

p∈P∗

m

p(Λ2)=
p(Λ2)−p(Λ1)

ε

‖p(Λ)r0‖ .
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Proof. The passages mirror those in the proof of Theorem 3.14. If E0 is diagonal,
since E0p(Λ2)E

−1
0 = E0E

−1
0 p(Λ2), then the matrix in 3.27 can be rewritten as

[
p(Λ1) p(Λ2)E

−1
0

p(Λ2)

]
=

[
I E−1

0

I

] [
p(Λ1)

p(Λ2)

]
.

Therefore it holds

‖rm‖2 ≤ min
p∈P∗

m

p(Λ2)=
p(Λ2)−p(Λ1)

ε

∥∥∥∥∥∥



I E−1

0

I
I


 p(Λ)r0

∥∥∥∥∥∥

2

,

from which the result follows.





Chapter 4

Numerical evidence: constrained
minimization problem

In this chapter we report on our computational experience aimed at illustrating
the sharpness of the new convergence bound obtained in Chapter 3.

For m ∈ {1, . . . , n} consider the minimization problems that appear in Theo-
rem 3.13 and Theorem 3.14:

min
p∈P∗

m

p(b)=
p(b)−p(a)

ε

‖p(Λ)r0‖ and min
p∈P∗

m

p(Λ2)=
p(Λ2)−p(Λ1)

ε

∥∥p(Λ)J −1r0
∥∥ (4.1)

(remember that J :=blkdiag(I, E0, I), with moderate ‖E0‖ and ‖E−1
0 ‖). For

later reference let n1 be the number of columns of E0. Since the former problem
is a particular case of the latter, here we will focus on the more general case, from
which the derivation of the procedure for the other case is immediate.

Note that in our model no hypothesis of reality over the eigenvalues is as-
sumed, therefore it is natural to provide numerical evidence involving complex
spectra. To be able to compare (4.1) with the actual gmres residual norm as
the iteration proceeds, we need to numerically solve the constrained minimization
problem in (4.1). The procedure used in our experiments is discussed in Section
4.1.

4.1 Solving the constrained minimization prob-

lem

In order to have the means to compute all quantities and closely follow the evo-
lution of the polynomial, we limit ourselves to small dimension problems, namely
n = 50 (in Examples 5.1 and 5.2 n = 49 for construction reasons). Among the
representations we took in account, the most stable way to evaluate p was given
by the following form:

p(z, c) =
m∏

j=1

(
1− z

cj

)
,

63
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where the dependence on the (complex) vector of the polynomial roots c =
(c1, . . . , cm)

T is highlighted. Note that writing p in this form also allows to im-
plicitly impose co-monicity. From now on, we will denote with pcon the solution
of the constrained minimization problem in (4.1).

Remark 4.1. In section 1.4, through Theorem 1.9, we introduced the harmonic
Ritz values as the roots of the gmres residual polynomial. A small modification
of the gmres algorithm allows to compute such roots on the fly, by solving
the generalized eigenvalue problem (1.14). The relatively modest computational
efforts to obtain them (for small dimension problems), along with the parallelism
with the roots cj of the sought polynomial pcon, makes the harmonic Ritz values
a good initial guess candidate when solving unconstrained system (4.2) through
iterative methods.

We can now proceed with the derivation of the numerical procedure to solve
the constrained problem in (4.1). Setting r̃0 := J −1r0 and identifying C with R2,
the function F : R2m → R to be minimized is given by

F (c) :=‖p(Λ, c)r̃0‖2

=

n∑

h=1

(
p(λh, c)r̃

(h)
0

)(
p(λh, c)r̃

(h)
0

)
,

while the constraint function φ : R2m → Rn1 , φ(c) = (φ1(c), . . . , φn1(c))
T has

components

φk(c) :=
∣∣(1− ε)p(λn1+k, c)− p(λk, c)

∣∣2

=
(
(1− ε)p(λn1+k, c)− p(λk, c)

)(
(1− ε)p(λn1+k, c)− p(λk, c)

)
.

Both F and φ are R-differentiable with respect to the real and imaginary parts
of the roots cj =: xj + iyj, so we can address the minimization problem making
use of Lagrange multipliers, which give rise to the non-linear system




∇F (c) =

n1∑

k=1

µk∇φk(c)

φ(c) = 0

(4.2)

in the unknowns xj , yj and µk, for j = 1, ..., m and k = 1, ..., n1.

4.2 Non-linear equations algorithms

When addressing a non-linear system F (x) = 0, where F : Ω → R is a continu-
ously differentiable function defined over a convex open set Ω ⊂ Rn, it is natural
to think of Newton-like methods. We decided to use the Matlab built-in function
fsolve, that implements several variants of such algorithms.

As it is well known, the k-th Newton iteration basically consists in:
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Solve JF (xk)dk = −F (xk)

Update xk+1 = xk + dk

where JF (xk) is the Jacobian matrix of F at the point xk. However, some
drawbacks may arise when adopting the method in this raw form. The local
convergence is probably the one that most inficiates the method’s usefulness.
To overcome this disadvantage, Newton algorithm is combined with trust-region
techniques, that grant global convergence.

In particular, the results we report in this thesis were obtained through
the Trust-Region Dogleg and the Levenberg-Marquardt algorithms (depending on
which behaved best in terms of convergence and stability). Keeping in mind that
the study of these methods falls beyond the scope of this thesis, for completeness
we would like to briefly recall their principal features. First of all, let us intro-
duce the main ideas behind the trust-region approach. After this we will shortly
describe the two cited algorithms.

In this context, trust-region techniques are used to solve the non-linear mini-
mization problem

min
x
f(x),

where f(x) := 1
2
‖F (x)‖2. Indeed, every solution x∗ of F (x) = 0 is a minimizer

for f(x). For simplicity from now on we assume Ω = Rn.
The idea behind the method can be summarized as follows. For every itera-

tion:

� Approximate f with a quadratic model mk(d), which must reasonably re-
flect the behavior of f in a neighborhood N of xk. Such N is the so-called
trust region. In this case the quadratic model is given by

mk(d) =
1

2
‖F (xk) + JF (xk)d‖2 = f(xk) +∇f(xk)Td+

1

2
dTJF (xk)

TJF (xk)d

=
1

2
F (xk)

TF (xk) + JF (xk)
TF (xk)d+

1

2
dTJF (xk)

TJF (xk)d.

� Compute a trial step dk which minimizes mk over N (defined as a spherical
set centered in xk, with radius δ > 0):

mk(dk) = min
d∈N

mk(d) = min
d∈Rn

‖d‖≤δ

mk(d) (Trust-region subproblem). (4.3)

Since mk is a quadratic model, if N is opportunely chosen then f(xk+dk) <
f(xk).
We note that sometimes, due to a poor scaling of the problem, the trust-
region is built as an ellipsoidal set, making use of a diagonal scaling matrix
D: N = {d ∈ Rn s.t. ‖Dd‖ ≤ δ}.

� The new iterate xk+1 := xk + dk is accepted when a sufficient reduction of
f occurs. More precisely, dk is considered a good step when the coefficient

ρf (dk) =
f(xk)− f(xk + dk)

mk(0)−mk(dk)
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is larger than a certain fixed value in (0, 1
4
). In this case, ρf(dk) also influ-

ences the choice of the new trust-region radius.
If the achieved reduction is not sufficiently important, the current point re-
mains xk and the trust region N is shrunk; then the trial step computation
is repeated.

The following theorem characterizes the solution of the trust-region subprob-
lem (4.3).

Theorem 4.1. [13, Lemma 10.3] Given a continuously differentiable function
F : Rn → R, a point x ∈ Rn and δ > 0, the vector d is a solution of the
trust-region subproblem

min
d∈Rn

‖d‖≤δ

‖F (x) + JF (x)d‖2

if and only if there exists a scalar λ ≤ 0 such that

{(
JF (x)

TJF (x) + λI
)
d = −JF (x)TF (x),

λ(δ − ‖d‖) = 0.
(4.4)

Remark 4.2. The trust-region step d falls between the Gauss-Newton step dGN

and the Cauchy step dC . Recall that dGN := −JF (x)−1F (x), while dC is instead
defined as the minimum of mk over the trust-region, along the steepest descent
direction:

dC :=




−τ∇F (x) if τ‖∇F (x)‖ ≤ δ

−δ ∇F (x)
‖∇F (x)‖ otherwise

, τ =
‖∇F (x)‖2

‖JF (x)∇F (x)‖2
.

The statement can be deduced from (4.4): when λ = 0, then d = −JF (x)−1F (x),
while if λ 6= 0, then ‖d‖ = δ and limλ→+∞ ‖d‖ = 0. Moreover for a sufficiently
large λ, we have d ≈ − 1

λ
∇F (x).

The two Matlab algorithms previously introduced differ in the way the trust-
region subproblem (4.3) is coped with.

Trust-Region-Dogleg algorithm

As the name suggests, the Trust-Region-Dogleg algorithm adopts a dogleg strat-
egy to solve (4.3). It consists in building the step d as the convex combination of
dC and dGN :

d = dC + λ(dGN − dC)

where λ is the largest value in [0, 1] such that ‖d‖ ≤ δ. If JF (xk) is (nearly)
singular, d is just the Cauchy direction. In this way the dogleg algorithm is
more robust then the Gauss-Newton method with a line search. In addition, it is
efficient since it requires only one linear solve per iteration (for the computation
of the Gauss-Newton step), that may be performed using an LU factorization of
JF (xk).
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Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm takes as step d the solution of (4.4), exploit-
ing the fact that it represents the normal equations for the unconstrained linear
least-squares problem

min
d

1

2

∥∥∥∥
[
JF√
λI

]
d+

[
F
0

]∥∥∥∥
2

.

This problem may be solved through a QR factorization of the coefficient matrix
which involves both Householder reflections and Givens rotation for computa-
tional efficiency reasons.

4.3 Numerical experiments

In this section we present a few examples through which the results of Theo-
rem 3.13 and Theorem 3.14 are tested. The selection was made with the purpose
of covering a relatively wide range of settings while remaining concise.

The proposed tables and plots were obtained applying gmres to the system
Ax = r0, with A as in (3.5) or (3.25), to get the convergence curve, and making use
of the Matlab function fsolve, with the algorithms described in Section 4.2, to
solve the non-linear system (4.2). The tolerance on the residual norm for gmres
was set to 10−8, and so were set the tolerances involved in the fsolve function.
In order to have comparable results for the different choices of eigenvalues, ε was
set to 10−4 in all cases.

We begin by illustrating the result of Theorem 3.13. The first examples focus
on problems with exclusively real eigenvalues, while the subsequent ones embrace
the situation in which the spectrum lies in the complex plane. Subsequently,
bound of Theorem 3.14 is tested on a few more general cases where ill-conditioning
is extended to more than two eigenvalues (in the plots, ill-conditioned eigenval-
ues are highlighted using red and light blue colors). In all the examples, E0 is a
random unitary matrix.
Data in the tables illustrate and compare gmres residual norm ‖rk‖ with the com-
puted values of bound (3.22) or (3.26), depending on the number of ill-conditioned
eigenvalues, sampled every five gmres iterations. To facilitate the comparison,
also the relative difference between the bound and the residual norm is reported.
We report just the firt three significative digits of any value, to avoid an exces-
sively heavy presentation. We would like to point out that, although some of
these values are negative, they are actually identifiable with zero, as the corre-
sponding absolute differences (from which they are computed) are of the same
order of machine precision. In addition, the number of iterations fsolve required
to terminate is given, too.

Example 1. The spectrum is located on the positive real axis. The aim
is to test the quality of bound (3.22) as the position of the two eigenvalues a
and b changes. More precisely, we present three variants in which spectra are
built considering all the natural numbers between 1 and 50, and subsequently
ascribing the ill-conditioning to the pairs (a, b) = (49, 50), (a, b) = (1, 50) and
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(a, b) = (30.5, 30.5001); in this last case, a and b substitute the eigenvalues 1
and 2. With this construction a and b are not outliers with respect to the other
eigenvalues.

In the first two variants of Example 1 the two ill-conditioned eigenvalues are
chosen to be relatively distant from each other. In particular, in the first case a
and b are on the right extremum of the spectrum, while in the second case they
delimit the remaining eigenvalues. The polynomial that solves the constrained
minimization problem of Theorem 3.13 gives a bound that strictly follows the
gmres convergence curve. The small distance between a and b of the third case
seems not to affect the quality of the results, either. Tables 4.1, 4.2 and 4.3 show
very low relative difference values: the bound sticks to the gmres residual norm
up to the fifteenth decimal digit, with values that are sometimes very close to
machine precision.

The next example further explores the situation in which the distance between
a and b is of the same order of the perturbation ε, (i.e. when both the eigenvalues
and their relative eigenspaces are very close to each other).

Example 2. In addition to the small distance between a and b, in this
example we locate them outside the interval containing the other eigenvalues.
Apart from a and b, the spectrum is composed by the natural numbers between
3 and 50. Case 1 analyzes the bound on the positive definite, nearly-singular
problem given by a = 10−4, b = 2 · 10−4, while case 2 looks into the indefinite
problem characterized by a = −20 and b = −19.9999.

Like for the third case of Example 1, the proximity of a and b does not inficiate
the sharpness of the bound, as the obtained values still reflect the behavior of the
convergence curve. The small magnitude of the two eigenvalues in Example 2.1,
however, provokes some instability and difficulties in the convergence of fsolve,
as it is peculiarly noticeable in Figure 4.1 and Table 4.4. In the current and in
the later examples, we will mark the possible unreliability of a result (assessed
on the base of the fsolve warnings) by using asterisks in the tables and differ-
ent colors in the plots (the black and the blue circles indicate respectively that
fsolve stopped with a message of missing convergence or too many iterations
done).

Since the distance between a and b is very small, both cases of Example 2 are
suitable to qualitatively show how similarly gmres behaves when A is replaced
with AJ (see Section 3.3 and relation (3.16)). This effect can be appreciated in
Figure 4.1 and Figure 4.2, as well as later in Figure 4.5, where the gmres residual
norms of the system AJx = r0 (cyan line) show a trend that is very akin to the
one related to the original system Ax = r0.

Remark 4.3. As already pointed out in Chapter 3, when the eigenvalues are
close together, looking at the small distances (2-norm) between the matrices A,
AD :=diag(a, b, λ3, . . . , λn) and ADξ

:=diag(ξ, ξ, λ3, . . . , λn), where ξ = a+b
2
, one

may expect a similar behavior of the gmres residual norms for the systems
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k iterfsolve ‖pcon(L)r0‖ ‖rk‖ ‖pcon(L)r0‖−‖rk‖
‖rk‖

5 1 1.45e-01 1.45e-01 6.50e-15
10 2 4.49e-02 4.49e-02 5.10e-15
15 1 1.08e-02 1.08e-02 3.83e-13
20 1 1.57e-03 1.57e-03 7.88e-15
25 1 1.26e-04 1.26e-04 4.31e-15
30 1 5.12e-06 5.12e-06 2.85e-12
35 1 9.36e-08 9.36e-08 1.92e-12

Table 4.1: Example 1, case 1. Eigenvalues uniformly distributed in [1, 50], a = 50,
b = 49.

k iterfsolve ‖pcon(L)r0‖ ‖rk‖ ‖pcon(L)r0‖−‖rk‖
‖rk‖

5 1 1.91e-01 1.91e-01 4.05e-11
10 3 4.31e-02 4.31e-02 1.05e-10
15 2 1.09e-02 1.09e-02 1.51e-10
20 1 1.57e-03 1.57e-03 1.77e-10
25 1 1.26e-04 1.26e-04 2.00e-10
30 1 5.12e-06 5.12e-06 2.23e-10
35 1 9.36e-08 9.36e-08 2.21e-10

Table 4.2: Example 1, case 2. Eigenvalues uniformly distributed in [1, 50], a = 1,
b = 50.

k iterfsolve ‖pcon(L)r0‖ ‖rk‖ ‖pcon(L)r0‖−‖rk‖
‖rk‖

5 0 6.93e-02 6.93e-02 -3.43e-14
10 0 6.71e-03 6.71e-03 2.06e-14
15 0 5.03e-04 5.03e-04 -6.67e-15
20 0 2.63e-05 2.63e-05 5.90e-14
25 0 8.58e-07 8.58e-07 3.20e-15
30 0 1.52e-08 1.52e-08 -1.89e-13

Table 4.3: Example 1, case 3. a = 30.5, b = 30.5001, other eigenvalues uniformly
distributed in [3, 50].



70 4. Numerical evidence: constrained minimization problem

k iterfsolve ‖pcon(L)r0‖ ‖rk‖ ‖pcon(L)r0‖−‖rk‖
‖rk‖

5 1 1.85e-01 1.85e-01 6.13e-13
10 4 1.43e-01 1.43e-01 3.15e-11
15 8 1.41e-01 1.41e-01 2.93e-09
20 13 1.41e-01 1.41e-01 7.57e-08
25 2 1.41e-01 1.41e-01 2.02e-13
30 100 1.41e-01 1.41e-01 9.57e-06
35 2 8.30e+03 (∗) 1.41e-01 5.87e+04 (∗)

40 1 7.41e-02 (∗) 6.58e-02 1.26e-01 (∗)

45 1 1.02e-04 1.02e-04 5.55e-06

Table 4.4: Example 2, case 1. a = 10−4, b = 2 · 10−4, other eigenvalues uniformly
distributed in [3, 50].

k iterfsolve ‖pcon(L)r0‖ ‖rk‖ ‖pcon(L)r0‖−‖rk‖
‖rk‖

5 1 1.70e-01 1.70e-01 -4.07e-12
10 1 3.80e-02 3.80e-02 -1.83e-15
15 1 3.41e-03 3.41e-03 3.82e-16
20 1 2.27e-04 2.27e-04 1.31e-15
25 1 1.01e-05 1.01e-05 2.29e-08
30 1 2.61e-07 (∗) 2.61e-07 1.24e-05 (∗)

Table 4.5: Example 2, case 2. a = −20, b = −19.9999, other eigenvalues uni-
formly distributed in [3, 50].
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Figure 4.1: Example 2, case 1. Top: Eigenvalues; Bottom: Convergence curve
for Ax = r0 (blue) and corresponding bound (red, black circles indicate unreliable
results). Comparison is made with the convergence curves for AJx = r0 (cyan),
ADx = r0 (green) and ADξ

x = r0 (magenta).

Ax = r0, ADx = r0 and ADξ
x = r0. Figure 4.1 and Figure 4.3 prove wrong

this idea, since the blue, green and magenta lines show quite different trends. A
possible explanation is given by the relations presented in Proposition 3.8: both
the inequalities show the perturbation ε as a denominator, thus the smaller the
value it assumes, the wider the distance between the residual norms is allowed to
be.

The same holds for the comparison between the convergence curves of the
systems AJx = r0 and ADξ

x = r0, visible in Figure 4.1 and described in Propo-
sition 3.9.
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Figure 4.2: Example 2, case 2. Top: Eigenvalues; Bottom: Convergence curve
for Ax = r0 (blue) and corresponding bound (red, black circles indicate unreliable
results). Comparison is made with the convergence curves for AJx = r0 (cyan).

Note that, in Figure 4.3, none of the diagonal cases shows some stagnation, in
agreement with the fact that they are not affected by ill-conditioning (see Sub-
section 3.3.3). In Figure 4.1, anyway, the very small magnitude of the eigenvalues
a, b and ξ results equally in an initial phase of very slow convergence.

As anticipated before, our experiments encompass cases characterized by a
complex spectrum, too. For each of the next three proposed spectral environ-
ments, the instance in which just two eigenspaces are almost parallel is compared
to the more general case where two groups of eigenspaces are one the perturba-
tion of the other.
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k iterfsolve ‖pcon(L)r0‖ ‖rk‖ ‖pcon(L)r0‖−‖rk‖
‖rk‖

5 750 3.46e-01 (∗) 3.46e-01 8.41e-04 (∗)

10 417 2.22e-01 (∗) 2.22e-01 4.56e-05 (∗)

15 305 1.60e-02 (∗) 1.56e-02 2.68e-02 (∗)

20 17 1.62e-03 1.62e-03 6.48e-04
25 1 1.26e-04 1.26e-04 5.36e-05
30 1 5.12e-06 5.12e-06 1.72e-05
35 1 9.36e-08 9.36e-08 4.01e-05

Table 4.6: Example 3, case 1. Purely imaginary eigenvalues. a = i, b = 2i, other
eigenvalues uniformly distributed in [3i, 50i].

k iterfsolve ‖J ‖‖pcon(L)J −1r0‖ ‖rk‖ ‖J ‖‖pcon(L)J−1r0‖−‖rk‖
‖rk‖

5 731 6.59e-01 (∗) 6.84e-01 -3.59e-02 (∗)

10 382 6.36e-01 (∗) 5.28e-01 2.04e-01 (∗)

15 343 4.02e-01 (∗) 3.79e-01 6.20e-02 (∗)

20 205 6.75e-03 (∗) 4.37e-03 5.43e-01 (∗)

25 80 5.40e-04 1.71e-04 2.16e+00
30 0 9.98e-06 3.69e-06 1.70e+00
35 0 2.86e-07 4.10e-08 5.97e+00

Table 4.7: Example 3, case 2. Same (purely imaginary) eigenvalues of case 1. The
ill-conditioned eigenvalues are gathered in the sets {i, . . . , 5i} and {6i, . . . , 10i}.

Note that, in these hypotheses, the gmres residual polynomial may be complex
valued, differently from what happened in the previous examples, in which having
all real eigenvalues resulted in the reality of the residual polynomial as well.

Example 3. As a counterpart for the previous experimental settings, this
example involves purely imaginary eigenvalues, namely the numbers i, 2i, . . . , 50i.
In the first instance bound (3.22) is checked, with a = i and b = 2i. In the
second one, instead, ill-conditioning is attributed to the subsets {i, . . . , 5i} and
{6i, . . . , 10i}, as represented also in Figure 4.3 and Figure 4.4.

Even if fsolve warns about some convergence problems in the first iterations,
sharpness of bound (3.22) remains remarkable: the digits in Table 4.6 exhibit a
behavior that is coherent with the gmres residual norm up to the fifth decimal
place. On the other hand, the results of Example 3.2 regarding (3.26) are slightly
loose if compared to all the previous experiments. Since this phenomenon is also
encountered in later tests, it may be attributed to the wider dimension of the
ill-conditioned space. In any case, data for bound (3.26) in Table 4.7 are of the
same order of the residual norms, which remains a definitively positive result.
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Figure 4.3: Example 3, case 1. Top: Eigenvalues; Bottom: Convergence curve
for Ax = r0 (blue) and corresponding bound (red, black circles indicate unreliable
results). Comparison is made with the convergence curves for ADx = r0 (green)
and ADξ

x = r0 (magenta).

Example 4. The spectra of this example are composed by random, uni-
formly distributed eigenvalues located in a square region of the complex plane.
Like in Example 3, the inequalities of both Theorem 3.13 and Theorem 3.14 are
assessed. This time the latter is tested on a system matrix having two groups of
ten eigenvalues each responsible for ill-conditioning.

Scaling the spectrum with the 10−4 factor permitted to generate one additional
evidence for the comparison with the Jordan case (see Example 2).

What is immediately noticeable when looking at data in Table 4.8 and Ta-
ble 4.9 is that fsolve stopped without performing any iteration. As suggested
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k iterfsolve ‖pcon(L)r0‖ ‖rk‖ ‖pcon(L)r0‖−‖rk‖
‖rk‖

5 0 1.18e-01 1.18e-01 2.39e-12
10 0 1.71e-02 1.71e-02 -8.84e-13
15 0 2.48e-03 2.48e-03 2.61e-12
20 0 2.67e-04 2.67e-04 -8.70e-13
25 0 2.09e-05 2.09e-05 1.57e-12
30 0 7.59e-07 7.59e-07 7.33e-12
35 0 1.95e-08 1.95e-08 1.02e-09

Table 4.8: Example 4, case 1. Eigenvalues (pseudo-)randomly chosen in
[0, 10−4]× [0, 10−4]i ∈ C.

k iterfsolve ‖J ‖‖pcon(L)J −1r0‖ ‖rk‖ ‖J ‖‖pcon(L)J−1r0‖−‖rk‖
‖rk‖

5 0 1.00e-01 9.40e-01 6.29e-02
10 0 9.56e-01 8.84e-01 8.16e-02
15 0 2.66e-02 2.58e-02 3.02e-02
20 0 1.95e-03 1.14e-03 7.09e-01
25 0 5.32e-04 1.18e-04 3.50e+00
30 0 1.21e-05 5.21e-06 1.32e+00
35 0 3.52e-07 1.04e-07 2.38e+00

Table 4.9: Example 4, case 2. Eigenvalues (pseudo-)randomly chosen in
[0, 10−4]×[0, 10−4]i ∈ C, the two sets of eigenvalues responsible for ill-conditioning
have (both) cardinality ten.
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Figure 4.4: Example 3, case 2. Top: Eigenvalues; Bottom: Convergence curve
for Ax = r0 (blue) and corresponding bound (red, black circles indicate unreliable
results).

in Remark 4.1, the initial guess was chosen to be the vector of the harmonic Ritz
values. This means that, within the given tolerances, the minimizer polynomial
is indeed the gmres residual polynomial. We will further discuss this important
issue later.

For what concerns the quality of the results, it is confirmed that the bounds
not only provide a threshold curve for the gmres convergence history, but also
quantitatively describe its trend.

Example 5. The last example we present refers to a PDE. In particular, the
considered system matrix A is similar to the one obtained from the discretization
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Figure 4.5: Example 4, case 1. Top: Eigenvalues; Bottom: Convergence curve
for Ax = r0 (blue) and corresponding bound (red). Comparison is made with the
convergence curves for AJx = r0 (cyan).

of the 2D stationary advection-diffusion problem

{
−uxx − uyy + f(x)ux + g(y)uy = 1 (x, y) ∈ (0, 1)2

u(x, y) = 0 for (x, y) ∈ Γ = ∂(0, 1)2,

where f(x) = −2.5x and g(y) = −50y. With this choice for the coefficient
functions, A is real with all complex conjugate eigenvalues. This results in a
real valued gmres polynomial, despite the complex nature of the spectrum.
Ill-conditioning is assigned as follows: when calculating bound (3.22) we have
b = ā, while for bound (3.26) the two groups of eigenvalues responsible for ill-



78 4. Numerical evidence: constrained minimization problem

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
10-4 Eigenvalues

0 5 10 15 20 25 30 35 40 45 50

10-8

10-6

10-4

10-2

100

gmres A
bound

Figure 4.6: Example 4, case 2. Top: Eigenvalues; Bottom: Convergence curve
for Ax = r0 (blue) and corresponding bound (red).

conditioning are composed by five elements, chosen so that complex conjugate
values belonged to the same set (see Figure 4.8).

The situation reported in Table 4.10, Table 4.11, Figure 4.7 and Figure 4.8 is
totally similar to the two previous examples. The computed bound sticks to the
convergence curve in the first case, and looses a bit of its sharpness in the second
instance, when ill-conditioning is extended, still maintaining a nice behavior.

A common remark for case 2 of Examples 3, 4 and 5 is that convergence of
both gmres and fsolve encountered a few more difficulties, presumably due
to the larger dimension of the ill-conditioned part of the system matrix. On
the one hand, the residual norm history shows a quite extended initial phase of
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k iterfsolve ‖pcon(L)r0‖ ‖rk‖ ‖pcon(L)r0‖−‖rk‖
‖rk‖

5 29 8.54e-02 (∗) 8.54e-02 -1.98e-11 (∗)

10 409 8.88e-03 (∗) 8.88e-03 1.72e-08 (∗)

15 32 9.33e-04 (∗) 9.33e-04 1.14e-11 (∗)

20 1 7.47e-05 7.47e-05 -1.15e-11
25 1 2.88e-06 2.88e-06 1.61e-11
30 1 4.08e-08 4.08e-08 4.15e-09

Table 4.10: Example 5, case 1. Complex conjugate eigenvalues, b = ā.

k iterfsolve ‖J ‖‖pcon(L)J −1r0‖ ‖rk‖ ‖J ‖‖pcon(L)J−1r0‖−‖rk‖
‖rk‖

5 641 1.07e-01 (∗) 9.50e-01 -8.87e-01 (∗)

10 353 1.37e-02 (∗) 1.34e-02 2.74e-02 (∗)

15 3 1.25e-03 1.13e-03 1.01e-01
20 0 1.50e-04 5.90e-05 1.54e+00
25 0 9.21e-06 1.67e-06 4.52e+00
30 0 9.93e-08 2.56e-08 2.88e+00

Table 4.11: Example 5, case 2. Same eigenvalues of case 1. The two groups of
eigenvalues responsible for ill-conditioning are chosen so that complex conjugate
values belonged to the same set.

stagnation. On the other hand, fsolve computations relative to the same first
iterations are affected by some instability. Indeed, at a first glance, Figure 4.4,
Figure 4.6 and Figure 4.8 seem not to agree with the result in Theorem 3.14, as
the bound appears to be located beneath the convergence curve. However, keep-
ing in mind that only the red marks indicate convergence of fsolve, the obtained
values verify the theoretical predictions and represent a significantly good bound
for the gmres convergence curve.

In conclusion, thanks to the numerical evidence provided in this section, Theo-
rem 3.13 and Theorem 3.14 indeed seem to dispense an accurate model for gmres
convergence behavior in the specific case in which ill-conditioning is attributable
to some specific eigenvalues and eigenspaces.

We would like to notice how in most of our experimentations it happened that
fsolve stopped immediately, without doing any iteration, which means that the
gmres residual polynomial (our initial guess) solved the constrained minimiza-
tion problem (within the specified tolerances). This has great significance for
the convergence model presented in this thesis, for it supports the fact that con-
straints (3.20) and (3.24) not only provide a bound for the gmres residual norms,
but actually describe the gmres residual polynomial behavior.
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Figure 4.7: Example 5, case 1. Top: Eigenvalues; Bottom: Convergence curve
for Ax = r0 (blue) and corresponding bound (red, black circles indicate unreliable
results).
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Figure 4.8: Example 5, case 2. Top: Eigenvalues; Bottom: Convergence curve
for Ax = r0 (blue) and corresponding bound (red, black circles indicate unreliable
results).
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consigli, che mi hanno permesso di elaborare questa tesi.

Vorrei inoltre esprimere la mia gratitudine a Margherita Porcelli, che gentil-
mente mi ha fornito nozioni e consigli utili riguardo la risoluzione di sistemi non
lineari.

Ringrazio di cuore i miei familiari per avermi accompagnata ed incoraggiata
durante tutto il percorso universitario con il loro sostegno, sia morale che eco-
nomico.

Infine, un grande “grazie” a tutti i miei amici, che mi hanno regalato giornate
memorabili e mi hanno aiutato a crescere durante gli anni dell’Università. Grazie
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