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Sommario

Il presente lavoro di tesi si prefigge di fornire uno studio della teoria alla base della
descrizione di una particella di spin 2 massiva, attraverso la teoria dei campi quantistici.
Dopo una dettagliata derivazione del modello, il lavoro si concentra sullo studio di due
possibili costruzioni che differiscono tra loro per una diversa struttura dell’accoppiamento
tra la particella di spin 2 e il resto del Modello Standard (MS). In particolare la differenza
consiste nel fatto che, nel primo caso la costante di accoppiamento è universale mentre
nel secondo modello l’accoppiamento con ogni campo del MS è caratterizzato da un
valore distinto della relativa costante di accoppiamento. Questo ultimo modello presenta,
ad alte energie, un problema di unitarietà che la tesi si propone di investigare per la
prima volta in dettaglio, soprattutto per quanto riguarda la fenomenologia al collider,
nel tentativo di fornire una linea guida per la costruzione di un modello migliorato che
permetta la non universalità degli accoppiamenti senza compromettere l’unitarietà della
teoria.
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Abstract

This thesis work aims to give a study on the theory underlying the description of a
massive spin-2 particle through quantum field theory. After a detailed derivation of the
model the work focuses on the study of two possible constructions, which differ from
each other by the coupling between the spin-2 particle and the rest of the Standard
Model (SM). In the first case the coupling constant is universal while in the second
class of models the coupling between every SM field is characterized by a different value
of the related coupling constant. This last model presents, at high energy, a unitarity
problem which the thesis aims to investigate for the first time detail, in particular with
respect to collider phenomenology, in the attempt to give a guideline for the building of a
improved model which allows the non-universality of the couplings without compromising
the unitarity of the theory.
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Introduction

For almost a century physicists have been fascinated by the possibility of providing a
consistent quantum theory of spin-2 particles. Right after the Einstein’s general relativity
it was realized that the same equations it was based on, could be derived from a classical
massless field theory for a symmetric tensor field which corresponds to a spin-2 particle
for the Poincaré group representation. At the beginning the interest was totally focused
in finding a proper quantum theory of gravitation and the massive formulation was
studied as a generalization of general relativity to address the accelerated expansion of
the universe thanks to long distances corrections, without invoking exotic concepts such
as dark energy. However is now well established that massive gravity is experimentally
ruled out because it does not works properly in reproducing the the correct results usual
general relativity gives at small to medium ranges.
Very recently the interest for a massive spin-2 theory has enormously grown also in high
energy particle physics due to the later disclaimed hints of a 750 GeV spin-2 resonance at
the Large Hadron Collider at both CMS and ATLAS experiments. Even if, as said, this
claim has been refuted with the Run 2, is more topical the ever the necessity of deepening
the understanding of spin-2 theories and explore their phenomenology. There are a lot
of different theoretical models which predict the existence of this type of particles, and
many experimental searches on going.
The aforementioned motivations are the starting point for this work in which we will
derive and study the model in one of its most general formulations. This thesis is
organized as follows. In Chapter 1 we derive the action of the massive spin-2 particle
starting from one of the most interesting model among those which give rise to such
kind of particles. In the Randall-Sundrum model, a five dimensional theory originally
developed to address the huge hierarchy between the gravitational energy scale (the
Planck mass ∼ 1019 GeV) and the electro-weak scale (the vacuum expectation value
of the Higgs field at ∼ 102 GeV). Like every other five dimensional model it gives rise
to an infinite set of massive spin-2 gravitons, similar to each others but with different
masses. The main purpose of the thesis will be to analyze in detail the theory for one of
these massive graviton excitations. In particular in Section 1.2 we will build the Randall-
Sundrum model from scratch in its simplest formulation and then in Section 1.3 we will
describe one of its most interesting generalizations which will be studied the rest of the
thesis. In Chapter 2 we will drive our attention on the actual effective field theory for the
massive spin-2 particle coupled with the Standard Model as previously derived. In fact
we will solve the free theory and study the quantization in Section 2.1, then we will focus
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INTRODUCTION 2

on the interaction term of the theory and in especially on its mathematical structure,
describing schematically all the kinds of different new interaction vertices the theory
presents and finally in Section 2.3 we will develop a useful formalism which will allow
us to describe in a easier way the phenomenology the high energy limit of the theory
and will help us for the following considerations. Finally in Chapter 3 we will describe
the actual model of interest, with a special attention on its most important feature and
problem, consisting in a strong unitary violation. We will inspect directly a process that
exhibits such behaviour both analytically and with numerical computations in Sections
3.1 and 3.2 and then we will propose a possible modification of the model to be taken
under consideration for further studies in the attempt of restoring its unitarity.



1. The Randall-Sundrum Model

The existence of extra dimensions in our world is the basis of many modern theories
and it has been extensively studied during the last century in different approaches and
formulations. This idea was presented for the first time in the 1920’s by Theodor Kaluza
in the attempt of unifying electromagnetism and gravitation [1]. Kaluza’s theory was a
simple extension, in five space-time dimensions, of Einstein’s general relativity in which
both the electromagnetic and gravitational fields were components of the unique five
dimensional metric tensor. Few years later, Oskar Klein gave a quantum interpretation
of Kaluza’s work [2] giving birth of what is called Kaluza-Klein theory.
More recently, many theories have been proposed in which five or even more dimensions
are involved. The most remarkable and famous example of them all is probably string
theories but, from the last years of the 90’s up to nowadays, the interest in these kind
of scenarios has increased mostly because the realization that extra dimensions theories
can provide a incredibly natural solution to the hierarchy problem in Standard Model.
Obviously, in order to not be in conflict with our observation of a four dimensional
world, the theory has to provide an explanation to hide the extra dimensions to all the
experimental results we got so far. The most plausible way to achieve such result is to
assume the extra dimension to be finite and small enough to avoid every detection at
the energy scales of our current experiments.
In this chapter, after a brief review of some basic and common features in Kaluza-Klein-
like theories with compact extra dimensions, we will focus on the so-called Randall-
Sundrum model, which will give the theoretical foundations of our effective spin-2 model.
Actually, the effective theory we will take under consideration is a more general and
universal construction. Its structure can be obtained in a general way from any theory
which wants to describe a massive spin-2 particle. Despite the universality of this model,
we will present it as derived from the Randall-Sundrum framework. Even though it
is not the only model leading to such massive spin-2 theory, it helps to give a strong
theoretical background and also to introduce different features of the model which can
be naturally obtained form different formulations and generalizations of the Randall-
Sundrum construction.
What follows is proposed to be a first analysis of the subject. There is no way to give a
comprehensive and satisfactory overview on such a big topic as extra dimensions theories.
For more detailed and complete works see for example [3, 4].
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CHAPTER 1. THE RANDALL-SUNDRUM MODEL

1.1 Kaluza-Klein States and Extra Dimension Size

Before getting started with the actual presentation of the topics, it is mandatory (al-
though a little boring) to briefly set the conventions and notations for everything that
follows. We will always use the mostly-minus convention for the Minkowski metric tensor,
i.e. ηµν = diag(1,−1,−1,−1) where the greek lowercase indicies are used as the usual
four dimension Lorentz indicies µ = 0, 1, 2, 3 while the latin uppercase ones are used as
five dimensional indicies M = 0, 1, 2, 3, 4 so that the set of space-time coordinates will
be denoted as xM = xµ, y. Moreover we will use natural units (c = } = 1) throughout
the whole work.
First of all let us consider a five dimensional theory with the extra dimension compactified
in a circle of radius r. This operation, commonly referred as toroidal compactification,
can be easily accomplished by defining the fifth dimension coordinate up to a periodical
equivalence:

y ∼ y + 2πr.

In this space-time manifold, consider a massless 5D scalar field Φ(xM) with the action

S =

∫
d5x ∂MΦ ∂MΦ, (1.1.1)

which leads to the field equation
∂M∂

MΦ = 0. (1.1.2)

The periodical condition imposed on y suggest to perform a Fourier expansion of the
field:

Φ(xM) =
+∞∑

n=−∞

φn(xµ) ei
n
r
y. (1.1.3)

It is important to notice that the Fourier coefficients φn(xµ) can be interpreted as usual
four dimensional fields whose equations of motion can be derived from (1.1.2) by substi-
tuting the decomposition we have just obtained:(

2 +
n2

r2

)
φn(xµ) = 0. (1.1.4)

These are an infinite number of Klein-Gordon equations for massive scalar particles of
mass mn = n

r
. What is happening in this model can be understood by noting that, due

to the compactification, the five dimensional field Φ has a quantized momentum in the
fifth dimension:

p4 =
n

r
, (1.1.5)

who is responsible for what we can view as an “effective mass”for all these fields φn(xµ),
the Kaluza-Klein states.
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CHAPTER 1. THE RANDALL-SUNDRUM MODEL

This simple construction can be applied to fields with arbitrary spin and, in the end, at
the entire Standard Model, and the same results can be obtained. Every time we extend
our field theory to a fifth compactified dimension, the phenomenology include an infinite
number of KK states with increasing mass. This means that, in order to have theory
consistent with experimental observations, the energy scale r−1 must be greater than the
TeV scale at which we are currently working. This experimental bound impose a strong
constraint on the radius:

r . 10−23 m.

A way to soften very much the constraint is to assume that only the gravity has access
to the fifth dimension while the Standard Model fields remain confined on our four
dimensional world. In this way the constrain on the radius comes only from gravitational
experiments, whose set the upper bound to about a millimeter, and nevertheless keeps
the fifth dimension undetectable.

1.2 Warped Extra Dimensions

The general setup, when dealing with extra dimensions, is to have a compactified di-
mension that connect together two or more branes through a bulk. A d-brane is some
kind of slice of the whole five dimensional space-time that has d spatial dimensions and
on which we want to localize some of the theory fields or we wish to study the model
phenomenology. For example there is always a 3-brane that rappresent our four dimen-
sional (including time) world.
As said before, with the freedom that extra dimension model building gives, the amount
of different possible scenarios is huge. We will focus only on the Randall-Sondrum model
and some of its extensions. It belongs to a category where the extra dimension is warped,
meaning that, in opposition to the flat extra dimensions models, we take into account
the backreaction on the space-time geometry due to the presence of fields and branes in
the bulk. The main effect will be to have to deal with a curved space-time in five dimen-
sions while making sure that at least the brane that represents our world remains flat
in order to preserve Lorentz invariance on it. The usual way to achieve this result is to
include a non-vanishing cosmological constant in the bulk, as we will see in the following.

1.2.1 The Randall-Sundrum Background

Now we can start building the model setup. Let us assume that the extra dimension is
compactified in a circle of radius r in which the upper half is identified with the lower
one, i.e. we are formally building an extra dimension as an S1/Z2 orbifold as we can see
in figure (1.1), and this is nothing but the correct geometrical definition of a segment
with length L = πr. On both boundaries of the segment stands a four dimensional

5



CHAPTER 1. THE RANDALL-SUNDRUM MODEL

Figure 1.1: The S1/Z2 orbifold.

Minkowski-like brane so that we have two flat branes, at distance L, enclosing a one
dimensional bulk, along the fifth dimension.
The most general metric that fulfills all the properties needed is

ds2 = e−A(y) ηµν dx
µdxν − dy2. (1.2.1)

The curvature of the extra dimension depends on the function e−A(y), called warp-factor,
where A(y) is an unknown function, to be determined solving the Einstein’s equation.
While this could be the most intuitive form of the metric, we are free to apply a coordinate
transformation on it. In particular we can go in a coordinate system where there is an
overall pre-factor in front of a five dimensional metric tensor which also becomes flat, so
that we are left with a conformally flat metric. This is by far the simplest coordinate
system to find A(y). Performing such kind of transformation we have to be careful that
it does not depends on xµ, otherwise we will be left with off-diagonal terms in the final
metric. To accomplish this task the new coordinate z has to be connected to y by the
differential relation

e−
A(z)
2 dz = dy, (1.2.2)

such that we are left with a metric becomes

ds = e−A(z)
(
ηµν dx

µdxν − dz2
)
. (1.2.3)

It is now straightforward to notice that this is a conformally flat metric, namely it is
connected by a conformal transformation, a simple overall rescaling, to the flat Minkowski
metric in five dimensions:

gMN = e−A(z) ηMN . (1.2.4)

This is exactly what we were looking for, because now we can use a very powerful
and remarkable result from conformal theories. Exists in fact a relation that connects
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CHAPTER 1. THE RANDALL-SUNDRUM MODEL

the Einstein tensors, calculated from two different metrics, connected by a conformal
transformation in arbitrary numbers of dimensions. Denoting with GMN and GMN the
Einstein tensors from the metrics gMN and gMN respectively, connected by a conformal
transformation exactly as (1.2.4), the relation in five dimensions is:

GMN = GMN +
3

2

[
1

2
∇MA∇NA+∇M∇NA−gMN

(
∇R∇RA− 1

2
∇RA∇RA

)]
, (1.2.5)

where ∇ is the covariant derivative with respect the metric g. In our case of interest
gMN = ηMN , hence the covariant derivative simplifies as the usual derivative ∂M . With
a bit of simple algebraic work we can evaluate all the non-vanishing components of the
Einstein tensor, obtaining:

Gµν = −3

2
ηµν

(
1

2
A′

2 − A′′
)
, (1.2.6a)

G44 =
3

2
A′

2
. (1.2.6b)

Now that we have worked out the left hand side of the Einstein equation we have to
compute the right hand side of them, that is the energy-momentum tensor. To do it we
have to recollect the Hilbert-Einstein action for gravity, extend it in five dimensions, and
include a bulk cosmological constant Λ5:

S =

∫
d5x

√
|g|
(
M5

3 R + Λ5

)
, (1.2.7)

where M5 is the five dimensional Planck scale, related to the Newton constant1 by:

8πGN =
1

2M5
3 . (1.2.8)

The energy-momentum tensor is defined as usual as

TMN =
2√
|g|

δSm

δgMN

, (1.2.9)

with Sm the action part related to the matter content of the theory, in our case the term
proportional to Λ∗ in (1.2.7). Recalling that

δ
√
g

δgMN

=
1

2

√
g gMN , (1.2.10)

1Note that in five dimension the Newton constant has the dimension of inverse cubic power of a mass
[GN ] = M−3. More generically in n dimensions [GN ] = M2−n.
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CHAPTER 1. THE RANDALL-SUNDRUM MODEL

it is easy to see that every term in the action like C
√
|g|, with C a costant, gives a

contribution to the energy-momentum tensor equal to C gMN . Therefore we are now
able to write down the Einstein equation:

GMN = 8πG5 TMN =
Λ5

2M5
3 gMN . (1.2.11)

To begin solving it let us consider the 44 component, that using (1.2.6b) reads

3

2
A′

2
= − Λ5

2M5
3 e
−A. (1.2.12)

It is worth noting that a real solution for A exists only if Λ5 < 0 and this means that
whatever solution we will find we expect it to be an Anti-de Sitter space-time2. If we
define a new function

f(z) ≡ e−
A(z)
2 , (1.2.13)

then we can recast (1.2.12) as

f ′

f 2
= −1

2

√
− Λ5

3M5
3 . (1.2.14)

The solution of this equation is

f(z) =
1

kz − c
, (1.2.15)

and according to the definition of f(z) we find

e−A(z) =
1

(kz − c)2
, (1.2.16)

where c is an irrelevant constant of integration, because different values of it correspond
to a rescaling of z, and can be set to c = −1 imposing e−A(0) = 1, and we defined

k =

√
− Λ5

12M5
3 . (1.2.17)

As a last step we have to take care of making the solution symmetric under a Z2 trans-
formation, i.e. z → −z, since the solution has to live on the S1/Z2 orbifold. Therefore
the final solution for the Randall-Sundrum background metric can be written in the form

ds2 =
1(

k|z|+ 1
)2

(
ηµν dx

µdxν − dz2
)
. (1.2.18)

2The case where Λ5 > 0, i.e. the de-Sitter solution, in which A ∈ C presents an oscillating warp-factor
that does not concern the actual model.
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CHAPTER 1. THE RANDALL-SUNDRUM MODEL

It would seem that we have been able to solve the Einstein equation only using the 44
component, but this is not the case. We have to be sure that this solution satisfies also
the remaining components, that from (1.2.6a) are given by

− 3

2
ηµν

(
1

2
A′

2 − A′′
)

=
Λ

2M5
3 gµν . (1.2.19)

Due to the absolute value in the solution we found, the presence of the second derivative
A′′ leads to the appearance of delta function contributions where the branes are situated.
This should not be a surprise because we expected the branes to affect the actual solution.
As a matter of fact it is impossible to have a flat space-time induced on the branes with
a presence of a non-vanishing cosmological constant in the bulk, without an energy
contribution from the branes themselves to compensate it. However, given that the
solution has already been completely determined, the energy density on the branes can
only be constant.
To start we can see from (1.2.18) that

A = − ln

(
1(

k|z|+ 1
)2

)
, (1.2.20)

and since we have to deal with the absolute value derivatives it is useful to remind that

d|x|
dx

= sign(x) = θ(x)− θ(−x), (1.2.21a)

dθ(x)

dx
= δ(x). (1.2.21b)

Here sign(x) is the sign function and θ(x) is the Heaviside function, while δ(x) is the
Dirac delta. With this in mind the derivatives of A(z) can be easily found as

A′ =
2k sign(x)

k|z|+ 1
, (1.2.22a)

A′′ = − 2k2

(k|z|+ 1)2
+

4k

k|z|+ 1

[
δ(z)− δ(z − z∗)

]
. (1.2.22b)

Few features of A′′ deserve to be commented in some details. The first thing we notice
is the presence of two delta functions, one in z = 0 and the other in z = z∗ where
z∗ = k−1. This happens because, since we expect the solution to be Z2 invariant with
respect both the extremes of the extra dimension which are the two branes, A(z) has to
have two cusps and both give rise to a delta function. It is moreover notable that the two
delta’s contributions have opposite sign, and this will lead to some important physical
consequences. Now let us go back to equation (1.2.19), substituting the expressions for

9



CHAPTER 1. THE RANDALL-SUNDRUM MODEL

A(z) derivatives and performing some algebraic simplifications involving (1.2.17), we are
left with:

3

2
ηµν

(
4k2(

k|z|+ 1
)2 −

4k

k|z|+ 1

[
δ(z)− δ(z − z∗)

])
=

6k2(
k|z|+ 1

)2 ηµν , (1.2.23)

and we can see how the first term in the right hand side of the equation matches precisely
the left hand side, while the two delta contributions are not compensated, as we expected.
It is quite clear now that we need to add energy contributions localized on the branes,
in the action (1.2.7) to be able to solve the four dimensional part of Einstein equation.
The right way to write such terms, keeping in mind that they have to be constant in
order to maintain (1.2.18) as the solution, is given by

Sbrane =

∫
d5x

√
|g|V δ(z − z0)√

|g44|
, (1.2.24)

where z0 is the brane fifth coordinate, V its energy density and the factor
√
g44 in the

denominator is there to ensure the right induced metric determinant in the brane. An
action term in this form implies an energy-momentum contribution

Tµν =
V δ(z − z0)√

|g44|
gµν . (1.2.25)

Putting everything together and dropping the terms not proportional to the delta func-
tions, the four dimensional Einstein equation with two energy contributions localized in
z = 0 and z = z∗ now reads

ηµν
6k

k|z|+ 1

(
δ(z)− δ(z − z∗)

)
=

1

2M5
3

(
V0 δ(z) + V∗ δ(z − z∗)

k|z| − 1

)
ηµν , (1.2.26)

and to satisfy this equality the branes energy density have to be opposite and with value

V0 = −V∗ = 12kM5
3. (1.2.27)

This means that the brane located in z = z∗ has to have a negative energy density to
match the delta contribution in the right hand side of equation (1.2.23).
Therefore we found that the metric of equation (1.2.18) is actually the background space-
time metric for the Randall-Sundrum model with respect the action

S =

∫
d5x

√
|g|

(
M5

3 R+ Λ5−
√
−12ΛM5

3 δ(z)√
|g44|

+

√
−12ΛM5

3 δ(z − z∗)√
|g44|

)
. (1.2.28)

10



CHAPTER 1. THE RANDALL-SUNDRUM MODEL

Now that we have completely solved the Einstein equation we can go back to the original
and more physical related coordinates. Since the relation between z and y is given by
equation (1.2.2) now we are able to write it as

dz

k|z|+ 1
= dy, (1.2.29)

which entails, choosing y = 0 corresponding to z = 0

log
(
k|z|+ 1

)
= k|y|. (1.2.30)

Finally, the Randall-Sundrum metric becomes:

ds2 = gMN dxMdxN = e−2k|y| ηµν dx
µdxν − dy2, (1.2.31)

where y varies from 0 to L, as said before.

1.2.2 Hierarchy Solution

Now that the setup has been fully presented and defined, we can start investigating the
main features of the model in its simplest formulation, i.e. with all the Standard Model
fields confined on the second brane at y = L.
The first remarkable property is how this construction addresses the Hierarchy Problem
between the Plank Scale and the Electro-Weak scale 3. To study it let us consider the
Higgs scalar field and its action evaluated in the four dimensional brane at y = L, given
by

SHiggs =

∫
d4x
√
|g|
∣∣∣
y=L

[
gµν
∣∣
y=L

DµH
†DνH − λ

(
H†H − v2

)2
]
, (1.2.32)

and by virtue of the solution we have found in equation (1.2.31), it can be recast as

SHiggs =

∫
d4x e−4kL

[
e2kL ηµνDµH

†DνH − λ
(
H†H − v2

)2
]
. (1.2.33)

It is easy to see that if we redefine a new field H = e−kLH the action takes the form of

SHiggs =

∫
d4x

[
ηµνDµH†DνH− λ

(
H†H− e−2kL v2

)2
]
. (1.2.34)

What we are left with is actually the normal action for the Higgs field, in which the
vacuum expectation value is exponentially suppressed and takes an effective value

veff = e−kL v, (1.2.35)

3This is the main reason why this model was initially conceived indeed.
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CHAPTER 1. THE RANDALL-SUNDRUM MODEL

and consequently, every mass parameter in the Standard Model is submitted to the same
exponential suppression. By virtue of this relation we can allow the actual Higgs vacuum
expectation value v to be of the same order of magnitude of M5, and then warp down
the effective one veff to the electro-weak scale, tuning the size of the extra dimension.
On the other hand, before claiming any important result, we have to work out the four
dimensional Planck Scale also, to check if and how it is affected by the warping factor. To
achieve this we have to consider the gravitational part of the action in equation (1.2.28),
that is

S = M5
3

∫
d5x

√
|g| R, (1.2.36)

and try to extract from it the four dimensional component which has to be proportional to
the Planck Mass squared as in the usual Hilbert-Einstein action. It is straightforward,
but a bit tedious, to compute the Ricci tensor for the Randall-Sundrum background
metric and find out that the only non-vanishing components are Rµν and R44, so that
the Ricci scalar is simply R = gµνRµν + g44R44 (see Appendix (A.1) for the details).
Then it is easy to see that the four dimensional part of the action can be written as

S4D = M5
3

∫
d4x

√
|g|√
|g44|

∫ L

0

dy
√
|g44| gµνRµν . (1.2.37)

From this expression now we can read off the relation between M5 and the Planck Mass
MPl

MPl
2 = M5

3

∫ L

0

dy e−k|y| =
M5

3

k

(
1− e−kL

)
. (1.2.38)

As we can see MPl is barely influenced by the warping factor for moderately large extra
dimension size.
Now it is clear that equation (1.2.35), together with equation (1.2.38), gives us a natural
way to solve the Hierarchy Problem. We can set the five dimensional Planck Mass to
obtain the right value for MPl , and then set the real vacuum expectation value to be of
the same order of M5. Then, since we want to have veff ≈ 10−16MPl we can set the value
of the extra dimension to be

kL ≈ ln 10−16 ≈ 35, (1.2.39)

that is a value large enough to satisfy the requirement imposed by equation (1.2.38).
In conclusion we have shown that we can have all the parameters of the theory to
be determined by one unique scale M5 and still generate the hierarchy between the
gravitational and the electro-weak scales as we observe in nature through an exponential
warping.

1.2.3 Graviton Modes

Now we want to understand how gravity works in the Randall-Sundrum model and, to do
so, we need to find the Kaluza-Klein decomposition of the graviton, which corresponds

12



CHAPTER 1. THE RANDALL-SUNDRUM MODEL

to small fluctuations around the background metric. In general we would expect to have
four different kinds of fluctuations from the unperturbed metric we found in equation
(1.2.31), that we can parametrize as:

ds2 = e−2k|y|
[
ηµν

(
1 + ψ

(
xM
))

+ hµν
(
xM
)

+
]
dxµdxν

+ 2e−2k|y| Aµ
(
xM
)
dxµdy −

(
1 + φ

(
xM
))

dy2.
(1.2.40)

However, it can be proven that the vector fluctuations Aµ and the scalar one ψ do not
correspond to physical degrees of freedom and can be ignored without losing meaning-
ful informations, while the other scalar fluctuation φ do have some important physical
interpretation but we will come back to it only later and, for now, we will ignore it too.
With all these considerations in mind it is better to go back again to the conformal frame
for the metric of equation (1.2.18) and, as we said, keep only the tensor fluctuations hµν
that represent the graviton

ds2 = e−A(z)
(
ηMN + hMN

(
xR
)
dxMdxN

)
, (1.2.41)

where, for sake of simplicity of the following calculations, we have parametrized again

e−2A(z) =
(
k|z|−1

)−2
. What we have to do then is to compute the Einstein equations for

the fluctuations, i.e. the linearized ones. In order to do so we will use again the relation
(1.2.5), where this time the starting metric is the one enclosed in the squared brackets in
the perturbed metric above. The first, and very convenient thing to do is decide to work
with a particular choice of gauge in which the fluctuations do not have extra dimensions
components and are transverse and traceless:

hM5 = 0, (1.2.42a)

∂µ h
µν = 0, (1.2.42b)

ηµν hµν = hµµ = 0, (1.2.42c)

and, in this gauge, we can evaluate the Einstein tensor GMN = RMN − 1
2
ηMNR for

the starting metric, up to linear contributions (see Appendix (A.2) for the details of
calculation for the Ricci tensor and the Ricci scalar), obtaining:

Gµν = −1

2
∂4∂

4 hµν , (1.2.43a)

G44 = 0, (1.2.43b)

Gµ4 = 0. (1.2.43c)

In order to work out the Einstein tensor for our metric we have to be careful dealing
with the covariant derivatives, because this time they do not always reduce to the usual

13



CHAPTER 1. THE RANDALL-SUNDRUM MODEL

derivatives. Considering that they act only on a scalar function, all first order deriva-
tives reduce to the classical ones, however, when a double derivative is involved a term
proportional to the Christoffel symbols has to appear. The two case of interest are then,
for a general scalar function f :

∇M∇Nf = ∇M ∂Nf = ∂M∂Nf − ΓRMN ∂Rf, (1.2.44a)

∇M∇M f = ∇M∂
Mf = ∂M∂

Mf + ΓMMR ∂
Rf. (1.2.44b)

With this in mind we can se that, in our case, equation (1.2.5) becomes

GMN = GMN +
3

2

[
1

2
∂MA∂NA+ ∂M∂NA− ΓRMN ∂RA

]
−3

2
gMN

[
∂R∂

RA+ ΓRRS ∂
SA− 1

2
∂RA∂

RA

]
.

(1.2.45)

We can simplify this expression a lot since A is a function of z only, using equations
(A.2.4) and (1.2.42c) and plugging in the expressions (1.2.43), obtaining

Gµν = −1

2
∂R∂

R hµν −
3

4
h′µν A

′ +
3

4
(ηµν + hµν)

(
2A′′ − A′2

)
, (1.2.46a)

Gµ4 = 0, (1.2.46b)

G44 =
3

2
A′

2
. (1.2.46c)

Now that we have the Einstein tensor we have, on the other hand, to compute the
Energy-Momentum tensor, which once again comes from the Randall-Sundrum action
we wrote down in equation (1.2.28) and since hµν appears only in the µν components of
the Einstein tensor we are interested in the Energy-Momentum four dimensional part as
well, that is

Tµν =
[
Λ5 −

√
−12Λ5M5

3 e
A(z)
2

(
δ(z)− δ(z − z∗)

)]
gµν

=
[
Λ5 e

−A(z) −
√
−12Λ5M5

3 e−
A(z)
2

(
δ(z)− δ(z − z∗)

)](
ηµν + hµν

)
.

(1.2.47)

Recollecting relations (1.2.12), (1.2.20) and (1.2.22) we are now able to write the right
hand side of Einstein equations as

1

M5
3 Tµν =

[
− 3

2
A′

2
+

3

4

(
A′

2 − 2A′′
)](

ηµν + hµν
)

=
3

4

[
2A′′ − A′2

](
ηµν + hµν

)
.

(1.2.48)
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Putting together the two sides of the Einstein equations it is easy to see that we are left
with

1

2
∂R∂

R hµν +
3

4
h′µν A

′ = 0, (1.2.49)

which is exactly the part involving the fluctuations and that now we are going to solve
and study the solution in some details.
To start, we want to get rid of the first derivative term making a rescaling

hµν → eαA hµν , (1.2.50)

with α a constant that we will fix in order to simplify the expression we will obtain as
much as possible. Substituting our rescaling into the equation we find

1

2
∂R∂

R hµν +
(3

4
− α

)
A′h′µν +

[(3

4
α− α2

2

)
A′

2 − 1

2
αA′′

]
hµν = 0, (1.2.51)

and, chosing α = 3
4

the coefficient of h′µν vanishes and the equation reduces to

1

2
∂R∂

R hµν +

(
9

32
A′

2 − 3

8
A′′
)
hµν = 0. (1.2.52)

We are now ready to perform the Kaluza-Klein decomposition

hµν =
+∞∑
n=0

hnµν(x) ψn(z), (1.2.53)

where the four dimensional part hnµν satisfy the condition(
∂ρ∂

ρ +mn
2
)
hnµν = 0. (1.2.54)

And inserting this decomposition in the equation we find a Schrödinger-like equation for
ψn(z) which reads

− ψ′′n(z) +

(
9

16
A′

2 − 3

4
A′′
)
ψn(z) = mn

2ψn(z), (1.2.55)

that looks like a Schrödinger-like equation equation with a potential we can now explic-
itly write using equations (1.2.22)

V (z) =
9

16
A′

2 − 3

4
A′′

=
9

16

4k2(
k|z|+ 1

)2 −
3

4

[
− 2k2

(k|z|+ 1)2
+

4k

k|z|+ 1

[
δ(z)− δ(z − z∗)

]]

=
15

4

k2(
k|z|+ 1

)2 −
3k

k|z|+ 1

[
δ(z)− δ(z − z∗)

]
,

(1.2.56)
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Figure 1.2: Plot of V (z) for k = 2.

the shape of which we can see in figure (1.2). Moreover we need the boundary conditions
on the two branes, and to obtain them we integrate the equation around the branes
locations. For z = 0 we get∫ 0+

0−
dz
[
− ψ′′n(z) + V (z)ψ(z)

]
=

∫ 0+

0−
dz mn

2 ψn(z)

−ψ′n(0+) + ψ′n(0−)− 3kψ(0) = 0,

(1.2.57)

where the right hand side and the first term coming from the potential vanish because,
by definition, the wave function has to be Z2 invariant, or in other words, it has to
be an even function. If this is so, then its first derivative has to be an odd function,
consequently we get the boundary condition at the first brane

ψ′n(0) = −3k

2
ψn(0). (1.2.58)

In the same way we can obtain the condition on the brane at z = z∗. Reminding that
the wave function has to be even also with respect this point we get

ψ′n(z∗) = − 3k

2 (k|z∗|+ 1)
ψn(z∗). (1.2.59)
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Figure 1.3: Plot of ψ0(z) for k = 10.

We are now ready to solve the equation starting with finding the zero mode, that is the
solution for n = 0. This case is particularly simple because it is a massless mode since,
as always happens in Kaluza-Klein’s decompositions, m0 = 0. The equation we have to
solve then is

− ψ′′0 +

(
9

16
A′

2 − 3

4
A′′
)
ψ0 = 0, (1.2.60)

and it is pretty easy to check that the solution is given by

ψ0(z) = e−
3
4
A(z) = (k|z|+ 1)−

3
2 , (1.2.61)

and that it satisfies the boundary conditions we found. This solution is remarkable most
of all because we see (cf. figure (1.3)) that the zero mode wave function is peaked on
the brane at z = 0 and then it is exponential suppressed. This ultimately explains how
the hierarchy problem is solved in this model. Since the graviton zero mode, that is
the predominant mediator of the gravitational interactions (as we will see in the next
section), is strongly localized on the first brane, on the second one, our world brane,
we feel only the exponential suppressed tail of it, and this is the explanation why we
experience gravity as a incredibly weak force compared to the others.
Going back on the solution of the equation, now we have to solve it for all the massive
Kaluza-Klein modes, that between the boundaries becomes

− ψ′′n +

(
15

4

k2(
k|z|+ 1

)2 −mn
2

)
ψn = 0. (1.2.62)
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This is a Bessel equation of order 2 and its solutions is a linear combination of first and
second kind Bessel function:

ψn(z) =
√(
|z|+ k−1

) [
an J2

(
mn

(
|z|+ k−1

))
+ bn Y2

(
mn

(
|z|+ k−1

))]
, (1.2.63)

with an and bn the coefficients of the linear combination. Without going into the details,
one can determine the coefficients and the expression for the masses of the Kaluza-
Klein modes by imposing on the solution the two boudary conditions and requiring the
normalization of the wave function. Hence one can find that the masses are given by

mn = ke−kLjn, (1.2.64)

where jn are the zeros of the first kind Bessel function of first order J1(jn) = 0. From
this expression something not really trivial comes out. Despite the fact that naively one
could expect the separation between the various modes would be of order of the Plank
Scale since k is supposed to be of that order, once again the exponential warping appears
and shrinks it to the TeV Scale. Moreover one can see that all these massive modes are
strongly peaked on the second brane unlike ψ0, therefore their coupling with the matter
content of brane at z = z∗ would be enhanced compared to the gravitational zero mode.
The combination of these two factors, the masses and the displacement between them
at the TeV order and the profile of the wave function peaked around our world brane,
implies that the Kaluza-Klein modes are theoretically observable as individual resonance
at the colliders, making them a reasonable field of interest.

1.2.4 Newtonian Limit

Now what we want to do is to verify whether or not the interactions mediated by the
graviton modes we found to reproduce correctly the Newton’s gravitation. For this
purpose we have to add matter content on the second brane and carry out the couplings
between the graviton modes and this additional matter.
The action is then composed by a gravity part which is the action we have used since
now and wrote down in equation (1.2.28) and that now we refer to as SG, and a part SM
for the matter content and its interaction with gravity

S = SG + SM = SG +

∫
d5x

√
|g| LM

(
Φ, gMN

)
, (1.2.65)

where Φ stands for the various fields that we want to introduce on the brane. Once
again we want to work in the small fluctuation regime around the background metric
gMN = e−A ηMN , so we parametrize it again as

g̃MN = e−A
(
ηMN + hMN

)
, (1.2.66)
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imposing the same gauge choices we used before and expressed in equations (1.2.42). We
then expand the matter lagrangian up to the first order

LM
(
Φ, g̃MN

)
= LM

(
Φ, gMN

)
+ hµν

δLM
δg̃µν

∣∣∣∣∣
g̃µν=gµν

+O
(
h2
)
. (1.2.67)

Then, recollecting the definition of the Energy-Momentum tensor, which we can rewrite
as

T µν = 2
δLM
δg̃µν

∣∣∣∣∣
g̃µν=gµν

− gµνLM , (1.2.68)

and expanding the squared root of the determinant to the first order as well√
|g̃| =

√
|g|
(

1− 1

2
hµν g

µν +O
(
h2
))

=
√
|g|
(

1− h

2
+O

(
h2
))
, (1.2.69)

and h = hµν g
µν , we can write down the expansion of the SM integrand√

|g̃| LM
(
Φ, g̃MN

)
'
√
|g|
(

1− h

2

)
LM
(
Φ, g̃MN

)
'
√
|g|

[(
1− h

2

)
LM
(
Φ, gMN

)
+ hµν

δLM
δg̃µν

∣∣∣∣∣
g̃µν=gµν

]

'
√
|g|

[
LM
(
Φ, gMN

)
+

1

2
hµν T

µν

]
.

(1.2.70)

Here we have not used the trace gauge condition (1.2.42c) in order to more clearly
recognise the expression for the Energy-Momentum tensor, nevertheless it is important
to keep it in mind for the future.
Obviously the same expansion has to be performed on SG too. The calculation is very
similar to what we have done for SM and so quite straightforward but a bit more time
consuming. We are not going through it but if one would do it, he would get a term
independent of hµν which it has to be set to 0 when imposing the vanishing of the effective
cosmological constant; a linear term, that is the one leading to the equations of motion
which then vanishes on shell; and finally a quadratic part that is exactly the Fierz-Pauli
Lagrangian we would become very familiar with in the next chapter. Remembering the
Kaluza-Klein decomposition of equation (1.2.53), after a rescaling by a factor e

3
2
A and

imposing the canonical normalization of the lagrangian we finally obtain the expression
for the coupling between matter and graviton modes

Lint =
∑
n

e
3
2
A

2
√
M5

3
ψn(z) hnµν(x) T µν , (1.2.71)
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from which we can read the expression for the coupling constants to the different modes

kn =
e

3
2
A ψn(z)

2
√
M5

3
. (1.2.72)

From this we can extrapolate, in the non-relativistic limit, the expression for the grav-
itational potential between two particles with unitary TeV mass living on the brane at
z = z∗, generated by the exchange of the zero-mode as well as all the Kaluza-Klein tower
of massive modes. The potential one can obtain is given by

V (r) = −
∞∑
n=0

an
2

4π

e−mnr

r
, (1.2.73)

and since we have the explicit expression for the wave function of the zero-mode in
equation (1.2.61), we easily find its contribution to the potential that is

V0(r) = − 1

16πM5
3

1

r
= −GN

r
, (1.2.74)

where, for the second equality comes form the relation that connects the Newton’s con-
stant and the higher dimensional Planck Mass (equation (1.2.8)). We can see that the
zero mode reproduces the Newtonian gravity only by itself, while the massive modes give
merely small deviations because of the exponential suppression due to the factor e−mnr,
these contributions in fact lead to corrections that are negligible up to distances of order
of the fermi r . 10−15 m.

1.2.5 Radius Stabilization

We are now going to discuss an important feature of the model but we will treat it
without any claim to be comprehensive because, despite its general importance, it will
not play any prominent role in following discussions.
Until now we have considered the size L of the extra dimension to be an arbitrary and
fixed constant that we can set as we want to address the hierarchy problem. In other
words, at this stage there is no dynamical mechanism taking care of fixing the value
of the extra dimension radius. This means that there has to be an effective theory of
a scalar field in the bulk, commonly called radion, corresponding to the fluctuations of
the length around its main value. Moreover, we can naively understand that the radion
has to be massless by realizing that, if there were not for the hierarchy argument, the
Randall-Sundrum solution we found would work for arbitrary values of the radius. In
the effective theory language it means the scalar field has no potential nor mass since
there has not to be any prefered value for L fixed by the radion equation of motion.
However, if this would be the case, we will be left with a new force in violation of the
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equivalence principle, since a massless radion would affect the Newton’s law. This is an
obvious phenomenological constraint that forces us to find a mechanism to stabilize the
radius, i.e. to give a mass to the radion.
The most common way to achieve the stabilization has been proposed by Goldberger and
Wise. The main idea to dynamically obtain a non-trivial radius is to create a situation
in which, adding terms to the Randall-Sundrum action, in addition to the kinetic term
which drives the extra dimension size to very large values there would be some others
trying to keep it as smaller as possible. This can be achieved by introducing a mass term
for the scalar field which wants to have the smallest possible radius in order to minimize
the potential and two branes energy contributions set in a particular way to have a non-
trivial profile for the potential and then a non-trivial minimum. The way to build it is
to introduce the branes potentials which have different minima values from each others
so as to obtain a vacuum expectation value that varies along the extra dimension. This
means that now we have to deal with an action that is composed by the usual Randall-
Sundrum contribution SG of equation (1.2.28) and in addiction we have the action for
the radion that we denote as Φ. Using the coordinates xM = {xµ, y} we have

S = SG +

∫
d5x

√
|g|
[

1

2
∂MΦ∂MΦ− V (Φ)− V1(Φ)δ(y)− V2(Φ)δ(y − L)

]
. (1.2.75)

Now one would have to simultaneously solve both Einstein equation and the radion field
equation, to have the the effect of its presence on the background metric under control.
Just to give the idea of the calculation one should face, by requiring and maintain the
Lorentz invariance we have to do the same ansaz for the metric as we have always done

ds2 = e−2A(y) ηµν dx
µdxν − dy2, (1.2.76)

and it is necessary to restrict the dependence of the scalar field on the extra dimension
coordinate only

Φ
(
xM
)

= Φ(y). (1.2.77)

The equation of motion for the scalar field is the usual covariant Klein-Gordon equation

1√
|g|

∂M

(√
|g| gMN ∂NΦ

)
=
∂Vtot
∂y

, (1.2.78)

while the Einstein equation comes out to be

4A′
2 − A′′ = −2k2

3
V (Φ0)− k2

3

[
V1(Φ0)δ(y)− V2(Φ0)δ(y − L)

]
, (1.2.79a)

A′
2

=
k2

12
Φ′0

2
+
k2

6
V (Φ0). (1.2.79b)
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The first equation comes the µν components of the Einstein equation while the second
from the 44 one and we denoted as Φ0 the solution of the field equation. This system
is quite hard to solve generally but for some special form of the potential V (Φ), deriv-
ing from some function usually referred to as superpotential, one can actualy solve the
equations obtaining the expression of the radius length as function of the two different
vacuum values of the two branes Φ1 and Φ2

L =
k

λ
ln

(
Φ1

Φ2

)
, (1.2.80)

where λ is a constant parameter of the potential. What we have seen is that the radius
is determined by the equation of motion and moreover one can obtain the right value
for extra dimension length to address the hierarchy problem kL ≈ 35 without any fine
tuning of the initial parameters.

1.3 The Standard Model in the Bulk

The Randall-Sundrum model as presented so far, even though works perfectly fine in
solving the hierarchy problem and in reproducing the right gravitation law in the New-
tonian limit, appears to have some great issues mainly concerning flavour physics. This
led to a lot of effort in finding some extension and improvement of the model. The most
studied and valued of them is the framework where all the Standard Model gauge and
matter fields are extended to live in the bulk while only the Higgs field remains confined
on the world brane. This setup is very appealing because it offers a natural explanation
of the flavour physics of the Standard Model, for example addressing the mass hierarchy
of the fermions. Since a lot of work has been done in this direction it is impossible to
cover in details this huge topic. We will concentrate only in reviewing the construction
of the model and some remarkable results which will be helpful in the following. For
many others details and aspects that will not be mentioned see [5–9] as well as many
other good reviews that can be found.

1.3.1 The Bulk Field Actions

We will study the situation in which the back-reaction for the presence of all the ad-
ditional fields on the bulk can be neglected in orderd to preserve the solution for the
background we found previously. The first thing we have to do is to learn how to extend
the Standard Model fields to the bulk.
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Scalar Field

We start from the simplest case even if it is not the interesting one, the scalar massive
field case denoted by Φ, of which action is given by

SΦ =

∫
d5x

√
|g|
[
∂MΦ∂MΦ +mΦ

2Φ2
]
, (1.3.1)

And by the variation of it we can derive the equations of motion

∂2Φ− e2ky∂4

(
e−4ky ∂4Φ

)
− e−2ky mΦ

2Φ2 = 0, (1.3.2)

where here ∂2 = ηµν∂µ∂ν . Then, performing the by now usual Kaluza-Klein decomposi-
tion and normalizing the field

Φ
(
xM
)

=
1√
L

∑
n

Φn(xµ)φn(y). (1.3.3)

Assuming the mass mΦ to be defined in units of the scale k, that means supposing
mΦ = ak with a dimensionless, we can find the general solution for the zero-mode extra
dimension profile

φ0(y) = C1e
(2−α)ky + C2e

(2+α)ky, (1.3.4)

with α =
√

4 + a and C1 and C2 two arbitrary constants. However one can see that,
given the boundary conditions given by the variation of the action as it is, both C1 and
C2 vanish, implying that there is no zero-mode solutions. To obtain it we have to add
boundary mass terms in the action which will me parametrized in units of k once again
with dimensionless coefficient b

Sbounduary = −
∫
d5x

√
|g|2bk

[
δ(y)− δ(y − L)

]
Φ2. (1.3.5)

With this new term the boundary conditions becomes(
∂4φ0(y) + bkφ0(y

)∣∣∣
y=0,L

= 0, (1.3.6)

leading to some non-vanishing solution for b = 2 ± α. So, the profile of the zero mode
wave function along the extra dimension is found to be

φ0(y) ∝ e1±
√

4+aky, (1.3.7)

and we can se that, with the freedom given by the free parameter a, we can choose the
localization of the first mode. The general solution for the massive modes is given again
in terms of Bessel functions and we can find an approximate expression for their mass
in the limit of kL� 1 (which is quite good since we know that kL has to be ∼ 35)

mn ≈=

(
n+

1

2

√
4 + a− 3

4

)
πke−kL, (1.3.8)

and they can not be localized arbitrarily but rather forced to stay near the brane at y = L.
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Fermion Field

Let us next consider the extension of a fermion field on the bulk. In five dimensions the
fundamental spinor representation has four components, so fermions are described by
Dirac spinors Ψ. The five dimensional action for it is

SΨ =

∫
d5x

√
|g|
[
Ψ̄ΓM∇MΨ−mΨΨ̄Ψ

]
. (1.3.9)

Few points have to be defined and explained in this equation. Since we are building the
action in curved five-dimension space-time geometry there are five gamma matrices

ΓM = eAM γA, (1.3.10)

where eAM is the funfbein defined by gMN = eAM eBN ηAB and γA = (γα, iγ5) the gamma
matrices in flat space. The curved covariant derivative ∇M is composed by two terms
∇M = DM + ΩM of which the first is the usual gauge covariant derivative and the
second is the part due to the curvature. This second part is expressed in terms of the so
called spin connection ωABM which is the extension to spinors bundles of the Christoffel’s
symbols, required to define the affine connection on vector bundles. It can indeed be
defined from the affine connection since it is related to the Christoffel’s symbols by

ωABM = eAN ΓNRM eRB + eAN ∂Me
NB. (1.3.11)

So the curvature covariant derivative can be expressed as

ΩM = − i
4
ωABM σAB, (1.3.12)

where σAB = i
2

[
γA, γB

]
. Once the formal structure of the action is somehow defined

there is one other precaution we should take. Under Z2 a fermion transforms up to a
phase as

Ψ(−y) = γ5 Ψ(y), (1.3.13)

which means that the combination Ψ̄Ψ is Z2-odd. Since the bulk action must be invariant
(i.e. even) we have to introduce a mass parameter which is odd as well. Parametrizing
it in terms of k then mΨ has to necessarily be given by

mΨ = c k sign(y), (1.3.14)

with c a dimensionless parameter again. The corresponding equations of motion coming
from the variation of the action SΨ as we build are then

eky ηµνγµ∂νΨ̂− − ∂4Ψ̂+ +mΨΨ̂+ = 0, (1.3.15a)

eky ηµνγµ∂νΨ̂+ + ∂4Ψ̂− +mΨΨ̂− = 0, (1.3.15b)
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in which Ψ̂ = e−2k Ψ and Ψ = Ψ+ + Ψ− with Ψ± = ±γ5Ψ±. To solve the equation we
have to perform the Kaluza-Klein decomposition for both Ψ+ and Ψ−

Ψ±
(
xM
)

=
1√
L

∑
n

Ψn
±(xµ)ψn±(y), (1.3.16)

where the Ψn
±(xµ) now satisfy the usual Dirac four dimensional equation. With this ansaz

then the equations (1.3.15) can be solved for the zero-mode and the general solutions
are given by

ψ0
±(y) = D± e

∓cky, (1.3.17)

with D± arbitrary constants. The Z2 symmetry implies that one component between ψ0
+

and ψ0
− has to be odd and then vanish (depending on the chosen representation for the

gamma matrices). This is in fact how one can recover the chirality in four dimensions.
For the remaining component, the boundary conditions obtained again from the action
are (

∂4ψ̂
0
±(y)± ckψ̂0

±(y
)∣∣∣

y=0,L
= 0. (1.3.18)

We can easily see that this boundary condition is exactly the equation of motion and
then there is always a zero-mode. It turns out that, likewise the scalar field the profile
of the zero mode contains a dependence from the parameter c

ψ0(y) ∝ e
1
2

(1−2c)ky (1.3.19)

allowing us to localize it wherever we would like to. The non-zero modes solutions are
once again given by a combination of Bessel functions and are always localized near the
world brane.

Vector Field

Last but not least, we want to study how gauge vector bosons field can be implemented.
We denote VM the five dimensional gauge field and we will restrict the discussion for a
abelian gauge boson since the extension to non-abelian it is straightforward. The action
is then given by

SA =

∫
d5x

√
|g|
[
− 1

4
gMRgNSFRSFMN

]
, (1.3.20)

with FMN the field strength tensor defined as usual as

FMN = ∂MVN − ∂NVM , (1.3.21)

but it is important to notice that the definition does not involve the covariant derivative
coming from the curvature thanks to the antisymmetry structure that cancels any affine

25



CHAPTER 1. THE RANDALL-SUNDRUM MODEL

connection terms. We can now use the gauge freedom to set V4 = 0 which is a consistent
choice with the assumption we are free to make that V4 is a Z2-odd function. In this way
we can totally eliminate the fifth components from the theory on the world brane without
affecting the gauge invariance of the four dimensional theory we want to preserve. With
this gauge choice done we can rewrite the action, integrating by part, as

SA = −1

4

∫
d5x ηµρηνσFρσFµν + 2ηµνVν∂4

(
e−2ky∂4Vµ

)
. (1.3.22)

As we have become familiar by now, we can Kaluza-Klein decompose the vector field

Vµ
(
xR
)

=
1√
L

∑
n

V n
µ (xρ)vnµ(y), (1.3.23)

and substituting it into the action and integrating over y we obtain

SA =
∑
n

∫
d4x − 1

4
F n
µνF

µν(n) − 1

2
mn

2ηµνV n
µ V

n
ν , (1.3.24)

while the fifth dimension profile has to obey the equation

∂4

(
e−2ky ∂4vn(y)

)
+mn

2vn(y) = 0. (1.3.25)

We have obtained then a four dimensional action for a vector boson of which the zero-
mode is massless, recovering the usual gauge invariance. The general solution can be
found as a combination of first order Bessel’s function of first and second kind and the
remarkable fact is that, in this case, the zero-mode is constant along the extra dimension

v0(y) =
1√
L
, (1.3.26)

while the others are localized in the same way as the scalar and the fermion ones.

1.3.2 The Standard Model Bulk Action

Now that we know how to build the action for the fields we can construct a bulk action
for the Standard Model. Recalling that the warping factor to address the hierarchy
problem affects only the Higgs boson, we have to be careful and must localize the Higgs
field very near the world brane or, as many times assumed for simplicity, confine it at
y = L.
The main consequence of extending the fermions to the bulk is, by virtue of the freedom
we have to localize their zero-mode anywhere, to generate in a very natural way the
hierarchy between the various Yukawa couplings. In fact, localizing every fermionic zero-
mode field in a different position along the extra dimension, one can tune the strength
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of their interaction with the Higgs field as required. So we will have a situation in which
the electron field, being the lightest fermion, is the furthest away from the world brane,
while the top field is the nearest.
With this in mind let us analyze for sake of briefness of the expressions (which will be
quite long anyway) only the electro-weak sector since the extension to strong interaction
is straightforward. The ingredients needed for write down the total action are the gauge
fields of SU(2)L × U(1)Y , we denote as W a

M and BM . We choose their fifth components
W a

4 and B4 to be Z2-odd while the vector components W a
µ and Bµ to be even, in order

to ensure that the zero-modes correspond to the usual Standard Model gauge bosons.
The Higgs field is, exactly as in the normal construction, a doublet we denote by Φ. And
finally we need the fermion fields, we denote as Li and Qi respectively the lepton and
the quark SU(2)L doublets and with ei, ui and di the singlets of lepton, up and down
quarks while i = 1, 2, 3 is the generation index so that for example ei = {e, µ, τ} the
three right handed leptons or ui = {u, c, t} the up, charm and top quarks. So the total
action is composed by several pieces we are now going to study briefly:

• SRS, the usual and already well known Randall-Sundrum background action of
equation (1.2.28);

• SH , the brane localized Higgs-sector action, which we have already studied in
section (1.2.2);

• SG, the gauge part of the theory composed by three different pieces, corresponding
to the gauge bosons terms SB, the gauge-fixing term SGF and the Faddeev-Popov
ghost part SFP ;

• SF , the fermionic part, divided in two pieces, the first involving kinetic terms Sf
and the second concerning the Yukawa couplings SY .

Gauge Action

Let us start by inspect the gauge bosons action given by

SB = −1

4

∫
d5x

√
|g| gMRgNS

[
W a
MNW

a
RS +BMNBRS

]
, (1.3.27)

where W a
MN is the non-abelian field strength tensor

W a
MN = ∂MW

a
N − ∂NW a

M + ig′5
[
W a
M ,W

a
N

]
, (1.3.28)

and finally g′5 is the five dimensional gauge coupling of SU(2)L, while we denote with
g5 the one corresponding to U(1)Y . We can also perform the usual field redefinition to
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diagonalize the mass terms

W±
M =

1√
2

(
W 1
M ∓W 2

M

)
, (1.3.29a)

ZM =
1√

g5
2 + g′5

2

(
g5 W

3
M − g′5 BM

)
, (1.3.29b)

AM =
1√

g5
2 + g′5

2

(
g′5 W

3
M + g5 BM

)
. (1.3.29c)

The kinetic terms contain some mixed combinations between the actual gauge bosons
and their extra dimension components W±

4 , Z4 and A4 and, from the Higgs kinetic terms
arise contributions involving the gauge bosons and the Goldstone fields we call ϕ± and
ϕ3, from the usual decomposition of the Higgs complex doublet

Φ(x) =
1√
2

(
−i
√

2ϕ+(x)
v + h(x) + iϕ3(x)

)
. (1.3.30)

All these mixed terms can be removed introducing a gauge-fixing Lagrangian that reads

LGF =− 1

2ξ

(
∂µA

µ − ξ∂4e
−2kyA4

)2

− 1

2ξ

[
∂µZ

µ − ξ
(
δ(y − L)MZϕ

3 + ∂4e
−2kyZ4

)]2

− 1

ξ

[
∂µW+

µ − ξ
(
δ(y − L)MWϕ

+ + ∂4e
−2kyW+

4

)]
×
[
∂µW−

µ − ξ
(
δ(y − L)MWϕ

− + ∂4e
−2kyW−

4

)]
,

(1.3.31)

where the five dimensional mass parameters are

MW =
vg5

2
, (1.3.32a)

MZ =
v

2

√
g5

2 + g′5
2. (1.3.32b)

It is also important to say that there is no problem in squaring the delta functions
because the derivatives of W±

4 and Z4 contain other delta contributions which cancel
exactly the one explicitly written.
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After having introduced the gauge fixing terms we can proceed in decomposing in Kaluza-
Klein modes all the bosonic fields denoting the general n-th profile along the fifth dimen-
sion with χan with a = A,W,Z and the masses of the modes as well as ma

n. Substituting
the decompositions in the action we can find the equations of motion for the profiles

− ∂4

(
e−2ky ∂4χ

a
n(y)

)
= (ma

n)2χan(y)− δ
(
y − L

)
M2

a χ
n
a(y), (1.3.33)

with the boundary conditions as well. Solving the equation, inserting the solution in
the action and integrating over y we find that the quadratic part of the action takes the
usual and expected form

S
(2)
B + S

(2)
GF =

∑
n

∫
d4x

{
− 1

4
F n
µνF

µν(n) − 1

2ξ

(
∂µAnµ

)2
+

1

2

(
mA
n

)2
AnµA

µ(n)

− 1

4
Z n
µνZ

µν(n) − 1

2ξ

(
∂µZn

µ

)2
+

1

2

(
mZ
n

)2
Zn
µZ

µ(n)

− 1

4
W+(n)

µνW
−µν(n) − 1

ξ
∂µW+(n)

µ ∂µW−(n)
µ +

(
mW
n

)2
W+(n)

µ W−µ(n)

+
1

2

(
∂µϕ

n
A

)2 − 1

2
ξ
(
mA
n

)2(
ϕnA
)2

+
1

2

(
∂µϕ

n
Z

)2 − 1

2
ξ
(
mZ
n

)2(
ϕnZ
)2

+ ∂µϕ
+n
W ∂µϕ−

n
W − ξϕ+n

Wϕ
−n
W

}
.

(1.3.34)

We see that, for each Kaluza-Klein mode, the action is almost identical to the Standard
Model, the only difference is in the mass term for the photon form the n ≥ 1 mode. It
follows then that we need n Fadeevv-Popov ghost actions, one for every mode, which
is totally analogous to the Standard Model with n different ghost fields, one for every
component of the Kaluza-Klein tower, so that

SFP =
∑
n

S n
FP , (1.3.35)

where every S n
FP is the Standard Model Faddeev-Popov action with the n-th ghost fields.

Fermionic Action

Let us now proceed to the fermion content of the theory. From the last section we learnt
how to build the action for a Dirac spinor in five dimensions. In the following expression
we write the kinetic term for the Standard Model Sf in which we already worked out the
curvature contribution to the covariant derivative, leading to different exponentials in
front of the various pieces. And also a mass term is needed but it has nothing to do with

29



CHAPTER 1. THE RANDALL-SUNDRUM MODEL

the actual mass terms coming from the Yukawa part. It is only the piece concerning the
five dimensional ”mass” parameters needed for localize the fields in the desired point of
the bulk.
With this in mind we can write

Sf =
∑
i

∫
d5x

{
e−3ky

[ ∑
F=L,Q

F̄ iiΓMDMF
i +

∑
q=e,u,d

q̄iiΓMDMq
i
]

− e−4ky sign(y)
[ ∑
F=L,Q

Q̄i MQ Q
i +

∑
q=e,u,d

q̄i Mq q
i
]

− e−2ky

[ ∑
F=L,Q

F̄ i
L∂4

(
e−2kyF i

R

)
− F̄ i

R∂4

(
e−2kyF i

L

)
∑

q=e,u,d

q̄iL∂4

(
e−2kyqiR

)
− q̄iR∂4

(
e−2kyqiL

)]}
.

(1.3.36)

Here the various M are diagonal matrices containing the bulk masses and the chiral
left and right components denoted with the L and R subscript are defined in the same
way as in the previous section. These components are chosen with the right transforma-
tion under Z2 in order to recover the desired zero mode. In particular the left-handed
components of the doublets Li and Qi are even, while the right-handed ones are odd.
Conversely, for the singlets ei, ui and di the right-handed components are even and the
left-handed are odd. This is the right way to assign the Z2 parities since we know that
the zero mode of the even components are the one which correspond to the Standard
Model fields while the odd ones vanish. Finally, we chose to write the action in a base
of the flavour space in which the bulk masses terms are diagonal, this can be proven to
be always possible without loss of generality. However, the action Sf itself would give
rise to a massless Weyl fermion for every five dimensional field (plus their respective
Kaluza-Klein towers) switching to the effective theory in four dimensions. This is why
we need to introduce the Yukawa interactions that take care of removing the massless
zero modes and replace them with the massive Standard Model fermions, which will be
still accompanied by the massive Kaluza-Klein modes. Therefore we can write an action
with the Yukawa mass terms in the form

SY =
∑
i

∑
q=u,d,e

∫
d5x − δ

(
y − L

)
e−3ky v√

2

[
q̄i

doub

L Yq q
i
R + q̄iR Y†q q

idoub

R

]
, (1.3.37)

where with qi
doub

we denote the correspondent Weyl component coming from the SU(2)L
doublets and the Y are the Yukawa five dimensional matrices connected with the usual
four dimensional one by the relation

Y =
2

k
Y(4D). (1.3.38)
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Now for every field in the theory one have to perform the Kaluza-Klein decomposition
and, inserting it into the action, find the equations of motion that are similar to the
one we found in the previous section with the only difference regarding the additional
Yukawa’s term localized on the world brane. The solution it is also a straightforward
generalization and can be written in terms of Bessel function but this time the zero
mode, on the brane y = L acquire a mass.

Now that the model is built we can ask ourselves what are the majors changes that
the extension of the Standard Model in the bulk provides. The most important for the
purposes of our discussion is that now, if one performs again the Newtonian limit of
the theory (exactly as we done in section (1.2.4)) and finds the interaction between the
graviton and the Standard Model particles, the coupling constants wouldn’t be the same
for every field. Since now all the Standard Models fields have their own and different
bulk profile, the strength of the interaction with the gravitational field should change
consequently the coupling. As an example, for a generic Standard Model fermion zero
mode with profile ψ(y), one can find that its coupling with the n-th graviton massive
mode with profile χn(y) is given by

k ∝
∫ L

0

dy ψ(y)χn(y), (1.3.39)

up to some normalization. A similar result can be obtained for every coupling constant
in the model, leading a theory in which the couplings with the graviton are not universal.
This gives rise to some important features that are the main topic of this work.
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2. The Spin-2 Effective Model

Now that we have an understanding on the origin of the effective model we want to study,
we can proceed to analyze it, starting from the classical field theory for a free spin-2
particle, to the coupling with the Standard Model and finally perform the quantization
and find the Feynman rules.
Of course the interest on a quantum field theory for a massive spin-2 particle is not
something recent. Already in the late 1930’s Markus Fierz and Wolfgang Pauli explored
the possibility of having a field theory for a spin 2 particle [10], and since then the idea
has been studied and applied in many different topics. The most investigated field is
of course connected with gravity, in particular the Massive Gravity theory (see [11] for
example), which most of all tried to address the acceleration of the universe without
involving a cosmological constant since the huge discrepancy between the value needed
to fit the experimental observation and the so much larger value that quantum field
theory arguments suggest. And also the different attempt to obtain a quantum field
theory for gravity have led to a lot of literature on the topic (one reference over all is the
work from John Donoghue on gravity effective field theory [12]).
Despite all the different fields connected to this topic, the aim of this thesis work is,
more humbly, to study the quantum field theory model for a spin-2 particle coupled
with the Standard Model and in particular the non-unitary behaviour that this theory
has under some circumstances, without pretending to give some new theory for massive
gravity, but rather in the attempt to give the guideline for the construction of a simpler
and consistent model that can be applied in many different applications, for example a
simplified model for Dark Matter.
Therefore, in the following, we will study the quantum effective field theory for a spin-2
massive particle, thinking about it as the effective theory in the four dimensional world
brane of one of the massive Kaluza-Klein mode of the graviton from the Randall-Sundrum
model.

2.1 The Fierz-Pauli Action

As we already pictured in section (1.2.4), when one performs the expansion for small
fluctuations from the background metric of the Randall-Sundrum action (1.2.28) and
then inserts the Kaluza-Klein decomposition for the fluctuation field, one eventually
finds that the action which describes the fluctuation field is the Fierz-Pauli action, given
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by

S =

∫
d4x

{
− 1

2
∂ρhµν ∂

ρhµν + ∂µhνρ ∂
νhµρ − ∂µhµν ∂νh

+
1

2
∂ρh ∂

ρh− 1

2
m2
(
hµν h

µν − h2
)}
,

(2.1.1)

where h = hµµ. To start te discussion we can notice that this action contains all the
possible contractions up to order of h2 with at maximum two derivatives. The terms
which do not depend on the mass are built in such a way to be gauge invariant under
the usual symmetry

δhµν = ∂µξν + ∂νξµ, (2.1.2)

even though the mass terms explicitly brakes gauge invariance. This is required because,
allowing the kinetic term to have a more general structure, we would eventually end
up propagating too many degrees of freedom than the expected, with the additional
problem that the extra degrees of freedom are ghost-like1. Moreover we can notice that
the mass term has already the right relative coefficient of −1 between the two different
pieces it is composed by. It is important to remark this feature because there are no
general principles that enforce this particular coefficient between them, nevertheless with
every other value one would end again with some extra and ghost-like degrees of freedom
propagating in the theory. This means that the theory we are describing is the full-fledged
only correct description of a spin-2 particle without any other additional and unwanted
degrees of freedom. Let us then count the actual number of degrees of freedom that we
have. To do so we need to use the equations of motion which reads

Gµν +m2
(
hµν − h ηµν

)
= 0, (2.1.3)

and here Gµν is the usual Einstein tensor. If now we take the divergence with respect
one of the two free indices of this equation we are left with

∂µh
µν − ∂νh = 0, (2.1.4)

since the divergence of the Einstein tensor vanishes by virtue of the Bianchi’s identity.
So, expanding the field in plane waves

hµν = h̃µνeik·x + c.c. (2.1.5)

and plug it into the equation we get

kµh̃
µν − kν h̃ρρ = 0. (2.1.6)

1This is exactly the reason why, for a massive spin-1 particle, we keep the kinetic term as FµνF
µν

even if the gauge invariance is broken by the mass term.

34



CHAPTER 2. THE SPIN-2 EFFECTIVE MODEL

These are four equations and therefore four constraints on the symmetric polarization
tensor h̃µν driving its 10 independent components to 6. Moreover, if we take another
divergence of the equations of motion we get

∂µ∂νh
µν − ∂ρ∂ρh = 0, (2.1.7)

which is exactly the condition of having a traceless Einstein tensor since Gµ
µ = ∂µ∂νh

µν−
∂ρ∂

ρh. It is important to notice that this happens only by virtue of the coefficient -1 we
have in the mass term. By virtue of this relation, which tells us that the the Einstein
tensor trace vanishes on the equations of motion, if we now take the trace of the equations
we are left with

h = 0, (2.1.8)

that implies, in plane waves, that the polarization tensor is traceless. So in the end we
are left with two conditions on the polarization tensor which now read as

kµh̃
µν = 0, (2.1.9a)

h̃µµ = 0, (2.1.9b)

and there are now five equations which reduce the independent components of h̃µν to 5
that is the right number of degrees of freedom one should expect from a massive spin-2
particle. Inserting now these conditions in the equations of motion we can find that they
reduce to (

2 +m2
)
hµν = 0. (2.1.10)

This is the usual Klein-Gordon equations which as the general solution

hµν(x) =

∫
d3k√

(2π)32ωk

h̃µν(k)eik·x + h̃∗µν(k)e−ik·x, (2.1.11)

with ωk =
√

k2 +m2 and the momenta in the equations are understood to be on shell
kµ = (ωk,k). Now we expand the Fourier coefficients h̃µν(k) over some basis of tensor
indexed with λ = 1, 2, 3, 4, 5

h̃µν =
∑
λ

ak,λεµν(k, λ). (2.1.12)

Imposing the conditions (2.1.9) and demanding the orthonormality of the basis

εµν(k, λ)ε∗µν(k, λ
′) = δλλ′ , (2.1.13)

this basis forms a symmetric tensor traceless representation of the rotation group SO(3),
that is the little group for a massive particle of spin-2 and satisfy the completeness
relation ∑

λ

εµν(k, λ)ε∗ρσ(k, λ) =
1

2

(
P µρP νσ + P µσP νρ

)
− 1

3
P µνP ρσ, (2.1.14)
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where

P µν = −ηµν +
pµpν

m2
. (2.1.15)

Thus the general solution reads

hµν(x) =
∑
k,λ

ak,λ u
µν
k,λ(x) + a∗k,λ u

∗µν
k,λ(x), (2.1.16)

where we defined the mode functions uµνk,λ(x) as

uµνk,λ(x) =
1√

(2π)32ωk

εµν(k, λ) eik·x. (2.1.17)

The inner product on the space of solutions to the equations of motion we found is given
by

(h, h′) =

∫
d3x h∗µνi

←→
∂0 h

′
µν

∣∣∣∣∣
t=0

, (2.1.18)

with respect to which the mode functions are orthonormal

(uk,λ, uk′,λ′) = δ
(
k− k′

)
δλλ′ , (2.1.19a)

(u∗k,λ, u
∗
k′,λ′) = −δ

(
k− k′

)
δλλ′ , (2.1.19b)

(uk,λ, u
∗
k′,λ′) = 0. (2.1.19c)

In the quantum theory following the canonical quantization, the coefficients of the ex-
pansion a∗k,λ and ak,λ become creation and annihilation operators satisfying the usual
commutation relations.
The last thing we have to do now is to find the propagator, inverting the kinetic term.
To do so, integrating by part, we can rewrite the Fierz-Pauli action as

S =

∫
d4x

1

2
hµν Oµνρσhρσ, (2.1.20)

with

Oµνρσ =
[
η

(µ
(ρη

ν)
σ) − η

µνηρσ

](
2 +m2

)
− 2∂(µ∂(ρη

ν)
σ) + ∂µ∂νηρσ + ∂ρ∂ση

µν , (2.1.21)

where, with the bracket notation for the indicies (µν), we intend the symmetric combi-
nation. The propagator is then obtained by solving in momentum space the equation

OµναβDαβ,ρσ =
i

2

(
δµρ δ

ν
σ + δµσδ

ν
ρ

)
, (2.1.22)

The right hand side of the equation is nothing but the identity operator on the space of
symmetric tensor. The solution of this equation gives the expression of the propagator

Dµνρσ =
−i

p2 −m2

[
1

2

(
P µρP νσ + P µσP νρ

)
− 1

3
P µνP ρσ

]
. (2.1.23)
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2.2 Effective Coupling with the Standard Model

Now that the free theory for a free massive spin-2 particle and its quantization are
understood we can focus on the study of the interaction with the Standard Model. In
equation (1.2.71) we already saw how the effective interaction Lagrangian looks like, so
for a generic massive spin-2 particle it would take the form

Lint = − k
Λ
hµν T

µν
SM , (2.2.1)

for some coupling constant k, with Λ the relevant cut-off energy scale of the effective
theory and T µνSM the Standard Model energy-momentum tensor

T µνSM = 2
δLSM
δgµν

∣∣∣∣
gµν=ηµν

− ηµν LSM . (2.2.2)

Before proceeding with the calculations for the actual Standard Model it is useful and
instructive to take a little while to compute a Feynman rule by hand for a toy model. In
particular let us consider a real massive scalar field φ with the usual Lagrangian given
by

Lφ =
1

2
∂µφ ∂

µφ− 1

2
mφ

2φ2. (2.2.3)

From this expression we can easily find the energy-momentum tensor which reads

T µνφ = ∂µφ ∂νφ− 1

2
ηµν
(
∂ρφ ∂

ρφ−mφ
2φ2
)
. (2.2.4)

We know that the interaction term is obtained by the contraction between this tensor
and the graviton field and we now should remember that the spin-2 tensor is actually
traceless, which means that the only effective interaction contribution is given by the
Lagrangian term

Lint = − k
Λ
hµν ∂

µφ ∂νφ, (2.2.5)

that can be written also, for sake of clarity when extracting the Feynman rule, as

Lint = − k

2Λ
hµν

(
ηµρηνσ + ηµσηνρ

)
∂ρφ ∂σφ, (2.2.6)

37



CHAPTER 2. THE SPIN-2 EFFECTIVE MODEL

by virtue of the total symmetric structure of the contraction. The Feynman rule then
follows immediately as reads

= − ik
2Λ

(
ηµρηνσ + ηµσηνρ

)
kρ1k

σ
2 , (2.2.7)

where all the momenta are meant to be incoming.
This is, in principle, what one should do for the whole Standard Model. However the
calculation becomes extremely tedious and time consuming, insomuch that to resort
on some software turns out to be the only viable option, most of all regarding to the
Feynman rules evaluation. The first thing to do anyway is to find the expression for
the energy-momentum tensor of every Standard Model field. If one actually does all the
computations needed should eventually find the following results [13]:

THiggs
µν = ∂µH∂νH + gZmZZµZνH +

gZ
2

4
ZµZνH

2

+

[
gWmWW

+
µ W

−
ν H +

gw
2

4
W+
µ W

−
ν H

2 + (µ←→ ν)

]
− ηµν

[
1

2
∂ρH∂

ρH − 1

2
mH

2H2 − gWmH
2

4mW

H3 − gWmH
2

32mW
2
H4

−
∑
f

gWmf

2mW

ψ̄fψfH +
1

2
gZmZZρZ

ρH +
1

8
gZ

2ZρZ
ρH2

+ gWmWW
+
ρ W

−ρH +
1

4
gW

2W+
ρ W

−ρH2

]
;

(2.2.8a)

T Z−Boson
µν = −Zρ

µZνρ +mZ
2Z2 − ηµν

[
− 1

4
ZρσZ

ρσ +
1

2
mZ

2Z2

]
; (2.2.8b)
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TW−Bosons
µν = −

[
W+ρ

µW
−
νρ −mW

2W+
µW

−
ν + (µ←→ ν)

]
− ηµν

[
− 1

2
W+

ρσW
−ρσ +mW

2W+ρW−
ρ + (µ←→ ν)

]
;

(2.2.8c)

TPhoton
µν = −F ρ

µFνρ + ∂µ∂
ρAρAν + ∂ν∂

ρAρAµ − ηµν
[
− 1

4
FρσF

ρσ

+ ∂ρ∂σAρAσ −
1

2

(
∂ρAρ

)2
]
;

(2.2.8d)

TGluons
µν = −Ga,ρ

µ Ga
νρ + ∂µ∂

ρGa
ρG

a
ν + ∂ν∂

ρGa
ρG

a
µ − ηµν

[
− 1

4
Ga
ρσG

a,ρσ

+ ∂ρ∂σGa
ρG

a
σ −

1

2

(
∂ρGa

ρ

)2
]
;

(2.2.8e)

T Leptons
µν =

[ ∑
L=l,ν

1

2
ψ̄LiγµDνψL −

1

4
∂µ
(
ψ̄LiγνψL

)
+ (µ←→ ν)

]
+

[
− gW

2
√

2
Uijψ̄liγµ

(
1− γ5

)
ψνjW

−
ν + h.c.+ (µ←→ ν)

]
− ηµν

[ ∑
L=l,ν

ψ̄L
(
iγρDρ −mL

)
ψL −

1

2
∂ρ
(
ψ̄LiγρψL

)
−
( gW

2
√

2
Uijψ̄liγ

ρ
(
1− γ5

)
ψνjW

−
ρ + h.c.

)]
;

(2.2.8f)

TQuarks
µν =

[ ∑
Q=u,d

1

2
ψ̄QiγµDνψL +Q− 1

4
∂µ
(
ψ̄QiγνψQ

)
+ (µ←→ ν)

]
+

[
− gW

2
√

2
Vijψ̄uiγµ

(
1− γ5

)
ψdjW

−
ν + h.c.+ (µ←→ ν)

]
− ηµν

[ ∑
Q=u,d

ψ̄Q
(
iγρDρ −mQ

)
ψQ −

1

2
∂ρ
(
ψ̄QiγρψQ

)
−
( gW

2
√

2
Vijψ̄uiγ

ρ
(
1− γ5

)
ψdjW

−
ρ + h.c.

)]
.

(2.2.8g)

Here the covariant derivative is understood to be

Dµ = ∂µ + igsT
aGa

µ + igW sin θWQfAµ + igZ

[
t3

2

(
1− γ5

)
−Qf sin2 θW

]
Zµ, (2.2.9)

notice that there are no terms involving the W -bosons in the derivative because they
are explicitly written in the fermionic energy-momentum tensors. Moreover the field-

39



CHAPTER 2. THE SPIN-2 EFFECTIVE MODEL

strength tensors for the various gauge bosons are

Fµν = ∂µAν − ∂νAµ + igW sin θW

[
W+
µ W

−
ν −W+

ν W
−
µ

]
, (2.2.10a)

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µG

c
ν , (2.2.10b)

Zµν = ∂µZν − ∂νZµ + igW cos θW

[
W+
µ W

−
ν −W+

ν W
−
µ

]
, (2.2.10c)

W±
µν = ∂µW

±
ν − ∂νW±

µ ∓ igW
[

sin θWW
±
µ Aν + cos θWW

±
µ Zν + (µ←→ ν)

]
. (2.2.10d)

These expressions are obviously far too long and complex to be handled with pen and
paper. This is why we employ the Mathematica [14] package FeynRules [15, 16]. It
is a very useful tool which allows to implement a model and derives automatically the
Feynman rules and also the analytical expressions for the decay width of the various
particles of the model. Moreover a massive spin-2 model has already been realized and
its phenomenology has been studied extensively [17] and is currently available. To list
and give the analytical formulas of all the possible Feynman rule is impracticable due to
their enormous quantity and complexity. In the following discussions we will have the
opportunity to write down and inspect directly the structure of few of them, however in
figure (2.1) the different kinds of vertices are summarized.This gives only an idea of how
rich and interesting the phenomenology of this model is.
FeynRules itself can not clearly be enough to carry on the entire study of the model.
It is not indeed the only software indispensable for this work. We also need a tool which
allow us, starting from the model we implemented in FeynRules, to make predictions
about the possible production of such particle and signatures for example at the Large
Hadron Collider (LHC). All this can be achieved in MadGraph [18] which is a frame-
work providing the possibility to perform numerical computations of matrix elements and
cross-sections, event generation and simulation as well as a variety of different instru-
ments needed for the analysis of the results. With such a tool one can for example study
the different production channel for the spin-2 particle, computing the total cross-section
for every one of them at LHC, that means with a proton-proton scattering process, and
also the best signature for a possible detection studying the different decay channels (we
refer again to [17] for all the detail of these investigations).
To our concerns we will see all this software equipment in action in the following chapter,
in which we will study in details the unitary violating behavior the theory originating
from allowing the Standard Model in the bulk has.
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Figure 2.1: We present a schematic overview of all the different kinds of vertices in the
theory involving the spin-2 particle. Here the dashed line stands for the Higgs boson,
the solid line represents a generic fermionic particle and the curly line depicts any spin-1
boson, so either a photon, a gluon or a weak boson.
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2.3 The Stückelberg Trick

In the previous sections we solved and described the theory for a massive spin-2 particle
coupled through the energy-momentum tensor to the Standard Model. Now for further
discussions we introduce a useful formalism, the Stückelberg trick, which makes the high
energy limit particularly clear. By high energy limit here we mean the limit in which
momenta are much larger than the mass of the particle p� m. For the massive spin-2,
its five degrees of freedom are formally in the same representation little group and this
means that each one of them can be cast in one other by suitable Lorentz transformations.
Approaching the high energy regime however this reshuffle of the polarizations becomes
increasingly tricky to achieve. This makes perfect sense since we know that in the
massless limit (or equivalently the speed of light limit) the helicity is a Lorentz invariant
quantity preventing them from changing under frame transformations. This is a clear
suggestion that when p � m is convenient to decompose the five massive polarizations
into the little group for a massless particle representations. So the claim we are making
is that in the high energy limit the five degrees of freedom can be thought as five helicity
states of the particle, meaning that we can have h = ±2,±1, 0, five different projections
of the angular momentum of the particle onto its direction of motion.
The implementation of this trick at the Lagrangian level is quite simple. Even if we
are starting with a massive theory without gauge invariance, because the mass term
explicitly breaks it, when we want to approach the high energy limit we have somehow
to restore it since this limit can be thought also as a massless limit. In this formulation
so we have to end up with a tensor field hµν describing only the helicity h = ±2 which
has to satisfy the usual and standard gauge invariance relation

δhµν = ∂µ ξν + ∂ν ξµ. (2.3.1)

Moreover we should have a vector field Vµ, taking care of helicity h = ±1, along with
the gauge invariance with respect the transformation

δVµ = ∂µΩ, (2.3.2)

and for describing the longitudinal helicity h = 0 we need a scalar field φ. Now the trick
is to replace in the Lagrangian, whenever we see an hµν with a new filed Hµν which takes
the form

Hµν ≡ hµν + ∂µVν + ∂νVµ + 2∂µ∂νφ. (2.3.3)
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This new field is now invariant with respect to two transformations{
hµν → hµν + ∂µ ξν + ∂ν ξµ,

Vµ → Vµ − ξµ,
(2.3.4a)

{
Vµ → Vµ + ∂µΩ,

φ→ φ− Ω,
(2.3.4b)

where ξµ(x) and Ω(x) are generic.
Up to now what we have done is have introduced more fields supplemented with gauge
invariances so that we can always choose a gauge in which the two extra field vanish,
or in other words we can chose ξµ(x) and Ω(x) accordingly to set them to zero, since
Vµ and φ are simply shifted by them. In this gauge, which we call Unitary gauge, it
is trivial to see that we are left with Hµν = hµν , our starting spin-2 field. This means
that we have done nothing physically speaking and our rewriting in terms of these new
fields is completely equivalent to the starting formulation, we only add a redundancy
in our description of the model that can be eliminated with a suitable choice of the
transformation parameters. However this parametrization of the theory is extremely
useful, and to realize that, let us explicitly perform the trick. The first thing we have
to do then is to replace Hµν instead of hµν in the action. In doing so we have to realize
that the kinetic part of the action is gauge invariant and the substitution we are going
to make is nothing but a gauge transformation, namely

hµν → hµν + ∂µ
(
Vν + ∂νφ

)
+ ∂ν

(
Vµ + ∂µφ

)
, (2.3.5)

so when performing the trick we are not going to get additional terms from the kinetic
term or, rephrasing the statement, Skin [Hµν ] = Skin [hµν ]. The only two terms we have
to take care are then the mass term mostly and the interaction one which is obviously
simpler. For sake of simplicity let us substitute the part involving Vµ, so that we obtain

L = Lkin −
1

2
m2
(
hµν h

µν − h2
)
− 1

2
m2FµνF

µν − 2m2
(
∂µVν h

µν − ∂µV µh
)

+
k

Λ
hµνT

µν +
2k

Λ
∂µVν T

µν ,

(2.3.6)

where Fµν is the usual field-strength tensor for Vµ. Now we can clearly see the need for
introducing the scalar field also. After having rescaled the vector field Vµ → m−1Vµ to
normalize its kinetic term, if we go to the high-energy limit (formally the m→ 0 limit)
we are left with a theory for a massless graviton and a massless vector filed which in
total has 4 degrees of freedom instead of the required five. Introducing then the scalar
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field also, the Lagrangian takes the form

L =Lkin −
1

2
m2
(
hµν h

µν − h2
)
− 1

2
FµνF

µν − 2m
(
∂µVν h

µν − ∂µV µh
)

− 2
(
∂µ∂νφ h

µν −2φ h
)

+
k

Λ
hµνT

µν +
2k

mΛ
∂µVν T

µν +
2k

m2Λ
∂µ∂νφ T

µν ,

(2.3.7)

where we have also rescaled the vector and the scalar field respectively as Vµ → m−1Vµ
and φ→ m−2φ.
A quick but important remark has to be done here. One could in principle argue that
the whole substitution of equation (2.3.3) would have led to more terms, for example

one could have expected to see a term like
(
∂µ∂νφ

)2
coming from the first of the two

parts of the mass term. The reason why we do not see them in the final result is due
to the Fierz-Pauli tuning we have in the mass term, which allow, after an integration by

part, to exactly cancel
(
∂µ∂νφ

)2
with the term 22φ coming from the second piece of the

mass term. It is extremely important that this happens, otherwise we would have had a
four-derivatives kinetic terms, which implies the double degrees of freedom, unavoidably
leading to a ghost-like scalar field. On the other hand, now one could be worried about
the apparent lack of kinetic term for the scalar. We do not see it because now we have
a Lagrangian with a mixed quadratic term involving both the graviton and the scalar
field which, at this stage, are not eigen-fields any more. The first step to diagonalize
the Lagrangian is to consider a reshuffle between φ and hµν , performing the following
substitution

hµν → hµν −
2

3
ηµνφ. (2.3.8)

In doing so we have to be careful because this is not a gauge transformation and then
the kinetic term is not invariant. Under this change it actually becomes

Lkin = L0 −
4

3
∂µφ∂

µh+
4

3
∂µφ∂νh

µν + ∂µφ∂
µφ. (2.3.9)

In this expression L0 stands for the kinetic term for the graviton (the new hµνfield) only
and we now have the explicit form for the kinetic term of the scalar field together with
some interactions. To do the same substitution in the rest of the Lagrangian is only a
tedious but straightforward algebraic exercise and, with a bit of endurance one can go
through this calculation and find

L =L0 −
1

2
m2
(
hµν h

µν − h2
)
− 1

2
FµνF

µν + 3φ
(
2 + 2m2

)
φ

− 2m
(
∂µVν h

µν − ∂µV µh
)

+ 3m2 hφ+ 6m ∂µV
µφ

+
k

Λ
hµνT

µν +
2k

mΛ
∂µVν T

µν +
2k

m2Λ
∂µ∂νφ T

µν − k

Λ
φ ηµνT

µν .

(2.3.10)
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We have to be aware that now the gauge symmetry for the graviton (2.3.4a) has been
changed by this replacement we have done and now it reads{

hµν → hµν + ∂µ ξν + ∂ν ξµ +m Ω ηµν ,

Vµ → Vµ −mξµ,
(2.3.11)

while the other one stays untouched.
To eventually obtain the diagonalized form we have to fix the gauge with a suitable
choice which let us to get rid of the mixed terms. By imposing the conditions∂

νhµν − 1
2
∂µh+mVµ = 0,

∂µV
µ + 1

2
mh+ 3mφ = 0,

(2.3.12)

or alternatively, introducing a gauge-fixing Lagrangian

LGF = −
(
∂νhµν −

1

2
∂µh+mVµ

)2

−
(
∂µV

µ +
1

2
mh+ 3mφ

)2

, (2.3.13)

after an integration by part and a rescaling of the scalar field φ→ 1√
6
φ and the vector

field Vµ → 1√
2
Vµ to recover the right normalization of their kinetic term, we finally get

the result

L =
1

2
hµν
(
2−m2

)
hµν − 1

4
h
(
2−m2

)
h+

1

2
Vµ
(
2−m2

)
V µ +

1

2
φ
(
2−m2

)
φ

+
k

Λ

[
hµν +

1√
2m

(
∂µVν + ∂νVµ

)
+

√
2√

3m2
∂µ∂νφ−

1√
6
φ ηµν

]
T µν .

(2.3.14)

The propagators for these fields are now

DGrav
µνρσ =

−i
p2 −m2

[
1

2
ηµρηνσ +

1

2
ηµσηνρ −

1

2
ηµνηρσ

]
, (2.3.15a)

DVect
µν =

−iηµν
p2 −m2

, (2.3.15b)

DScal =
−i

p2 −m2
. (2.3.15c)
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3. Non-Universal Couplings Model

We are now ready to study the non-universal extension of the massive spin-2 model.
The only difference in the action is that, as we already argued, the spin-2 field now
couples to different Standard Model fields with a specific coupling constant, determined
by the various bulk profile each distinct Standard Model field has. Formally the only
modification we need to do is replace in the Lagrangian the interaction term of equation
(2.2.1) with

Lint = − 1

Λ
hµν

∑
i

ki T
µν
i , (3.0.1)

where the various T µνi are the energy-momentum tensor of every Standard Model particle
and of course

∑
i T

µν
i = T µνSM . This apparently harmless modification affects the model

in a very strong way conversely. The problem is that the spin-2 particle is not coupled
to a conserved source any more

∂µJ
µν = ∂µ

∑
i

kiT
µν
i 6= 0. (3.0.2)

The conservation of the Standard Model energy-momentum tensor was preventing the
theory to exhibit an anomalous and increasing energy dependence of some scattering
amplitudes, and so a faster unitary loss than the expected from a dimension five effective
field theory. In the universal case everything was fine because, every time the spin-2
propagator of equation (2.1.23) was hitting the source, the terms with a momentum
dependence coming form the structure m−2 pµpν were vanishing due to the conservation
equation, which in Fourier’s transform reads exactly pµTµν = 0. In the non-universal
case these terms are no longer cancelled and they lead to a strong energy growth and a
resultant non-unitary behaviour as we will explicitly show now.

3.1 Unitarity Violation

Before getting started it is useful to carry out a little change of notation. From now on
we shall refer to the spin-2 field as Xµν instead of hµν in order to avoid confusion between
the graviton we will label as X and the Higgs boson usually denoted with h.
Let us now consider a production process for the graviton and compute the explicit
expression for the amplitude squared and check its energy dependence. In particular
we can focus on the study of the quark and anti-quark annihilation into a graviton and
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(a) Vertex interation. (b) s-channel diagram.

(c) t-channel diagram. (d) u-channel diagram.

Figure 3.1: The four diagrams involved in the qq̄ → gX process.

a gluon in the approximation of massless quarks. There are four different diagrams
which contribute to the process we want to study and they are visualized in Figure
(3.1). For sake of completeness and also to give an idea of the structure originating from
the coupling through the Standard Model energy-momentum tensor we list now all the
Feynamn rules needed to write down these diagrams and thus the total amplitude of the
process.
The first rule we need is the three point vertex between the quark and anti-quark couple
with the graviton. Assuming all the momenta to by incoming the rule reads

=
ikq
4Λ

[(
q2−q1

)µ
γν+

(
q2−q1

)ν
γµ
]
. (3.1.1)
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The other rule involving the graviton is the three point vertex with two gluons which
has the form

=

− ikg
Λ

δa1a2
[
ηρσ
(
kµ1k

ν
2 + kν1k

µ
2

)
− ηµσ

(
kν1k

ρ
2 + kν1k

ρ
1

)
− ηνρ

(
kσ1k

µ
2 + kσ2k

µ
2

)
− ηµρ

(
kσ1k

ν
2 + kσ2k

ν
2

)
− ηνσ

(
kµ1k

ρ
2 + kµ1k

ρ
1

)
+ k1 · k2

(
ηµρηνσ + ηµσηνρ

)]
.

(3.1.2)
In both the expressions we already got rid of the terms proportional to ηµν since they
vanish when the contraction with the graviton filed occurs.
We are able now to write down the four amplitudes corresponding to the four different
diagrams of figure (3.1). We denote with q1 and q2 the momenta of the quark and the
anti-quark respectively, with p1 the spin-2 particle momentum and with p2 the gluon
one. The first amplitude, corresponding to the vertex interaction, comes again from the
Feynman rules and it reads

Mv = −gskq
2Λ

T aXµν(p1) εaρ(p2) v̄(q2)
(
γµηνρ + γνηµρ

)
u(q1), (3.1.3)

where gs is the strong interaction coupling constant, T a the SU(3) generator and εaρ(p2)
the polarization vector of the gluon. The second amplitude is the one related to the
s-channel diagram and, after few simplifications involving the gluon polarization vector
transverse condition, take the form

Ms =− gskg
Λ(q1 + q2)2

T aXµν(p1) εaρ(p2)

[
ηρσ
(
pµ2(q1 + q2)ν + pν2(q1 + q2)µ

)
− ηµρ

(
pν2p

σ
2 + pν2(q1 + q2)σ

)
− ηνρ

(
pµ2p

σ
2 + pµ2(q1 + q2)σ

)
− ηµσ(q1 + q2)ν(q1 + q2)ρ − ηνσ(q1 + q2)µ(q1 + q2)ρ

+ p2 · (q1 + q2)
(
ηµρηνσ + ηµσηνρ

)]
v̄(q2) γσ u(q1).

(3.1.4)

The other two diagrams we need to write the amplitude are the t-channel and the u-
channel, which are quite similar in the structure. The first one is given by

Mt = − gskq
4Λ(q1 − p1)2

T aXµν(p1) εaρ(p2) v̄(q2)γρ
(
/p1 − /q1

)[
γµ(p2 − q2 + q1)ν

+ γν(p2 − q2 + q1)µ
]
u(q1),

(3.1.5)
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while the second is

Mu = − gskq
4Λ(q1 − p2)2

T aXµν(p1) εaρ(p2) v̄(q2)
[
γµ(q1 − p2 − q2)ν

+ γν(q1 − p2 − q2)µ
](
/p2 − /q1

)
γρu(q1).

(3.1.6)

The total amplitude of the process is obviously the sum of these four contributions and
we can notice that the colour component, identified by the generator T a, is common to
every amplitude and then it can be factorised out. This means that, even in there is a
gluon in the final state, the amplitude is essentially QED-like or, in other words, when we
perform the sum over its polarizations after the squaring, we can simply use the relation∑

λ

εaρ(p2, λ)ε∗bσ(p2, λ) = ηρσ δ
ab. (3.1.7)

The colour factor therefore comes out to be

C = Tr
[
T aT b

]
δab =

1

2
δabδab = 4. (3.1.8)

To perform the computation by hand is almost impossible given the length and the dif-
ficulty of the expressions involved. However, as said before, we can rely on the package
FeynCalc and perform the analytical calculation on Mathematica and in the Ap-
pendix (B.1) one can find the whole notebook used for this purpose. Here we provide
only the final expression of the calculation, which is already a well known result [19,20]

|M|2 =
g2
s

27Λ2M4stu

{
3k2

gM
4
[
2M4 − 2M2(t+ u) + t2 + u2

][
M4 − 2M2(t+ u) + 4tu

]
+ 6kgM

4s(kq − kg)
[
M6 +M2s(s+ 2u)− 2su(s+ u)

]
+ s(kq − kg)2

[
6M10 − 6M8(t+ u) + 3M6(t2 + u2)− 12M4tu(t+ u)

+ 2M2tu(t2 + 12tu+ u2)− 2tu(t3 + t2u+ tu2 + u3)
]}
,

(3.1.9)

where M is the spin-2 particle mass. Unlike the results we can find in the Appendix,
we have reorganized the terms in such a way to make as evident as possible the effect
of the non-universal couplings scheme. We can clearly see that if we impose again the
universality of the couplings, i.e. kq = kg, only the first line remains in the expression
above, while the rest, being proportional to the difference between the two couplings,
disappear. It is relevant to specify that this result has been also checked and confirmed
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Figure 3.2: The transverse momentum distribution of the jet in the process pp → jX
with energy s = 13 TeV. The mass of the spin-2 particle has been fixed to M = 100 GeV
and the cut-off scale Λ = 1 TeV.

with the numerical value obtained with MadGraph for various phase space points.
From the optic theorem we know that, in order to be unitary, the matrix element squared
as to be at most constant as function of the energy. In our case of interest however, since
it is an effective theory with a dimension five operator, we should expect to have an
amplitude squared with a linear dependence on the energy. This set a natural limit to
the validity range of the theory and,consequently, to the value of the cut-off scale Λ.
Now if we look at the expression for the amplitude squared in the limit of equal coupling
we can easily see that it grows as fast as Λ−2s, and it is the expected behaviour indeed.
In the non-universal case however there are terms, on the contrary, which have a quite
stronger energy dependence and they grow as fast as Λ−2M−4s3. These terms, together
with the milder but still badly behaved terms that goes as Λ−2M−2s2 are the responsible
of a much faster unitarity loss and then a significant lowering in the cut-off scale and are
the one we want to focus our study on.
We can visualize this feature of the model with the help of MadGraph by simulating a
proton-proton collision at LHC for the production of a spin-2 particle plus one jet, and
look at the results. Note that, if we take such an initial state, not only the process we
studied is present, but also the process gg → gX and all their crossing. However the
situation is simpler that the expected. Of course the processes qq̄ → gX and its crossing
are unitary-violating but the other with two gluons in the initial state is not. Naively we
can understand this because it is obvious that this process involves only Feynman rules
with the coupling constant for the gluons kg. This means that, as far as this process
in concerned, only the energy-momentum tensor of the gluon field is involved and, by
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itself, it is conserved and it does not lead to any bad behaved term in energy. In figure
(3.2) we plot the transverse momentum of the jet in the process mentioned above, in
the universal and in the non-universal scenario and it is utterly explicit the non-unitary
profile for the distribution when the couplings are different.

3.2 Helicity Contributions

Until now we have only pointed out both analytically and numerically the most inter-
esting although unpleasant feature of the model we are studying. We now need to go
deeper in the understanding of this non-unitary behaviour and, in particular it would be
very helpful to find out from where, in terms of the spin-2 particle proprieties, the strong
energy growth comes from. For this reason we are now interested in find the analytical
expressions for the various helicity contributions to the total matrix-element squared we
considered in the previous section. Knowing them would be a strong hint about on what
we should focus and what we should expect to modify in the model in order to address
this unitarity problem.
There is no unique way to achieve such a goal but once again it would be better and
easier to contrive a way to perform this calculation with the help of FeynCalc again.
Moreover, since there in so actual clear decomposition of the polarization sum of equation
(2.1.14) into helicity contributions, there is no evident way to carry out the computation
either. However we can attain the desired result, exploiting the fact that the polarization
tensors for the massive spin-2 can be obtained by taking specific combinations of prod-
ucts of the polarization vector for a massive vector field (see for example [21]). Denoting
the transverse polarization vectors εµ± and the longitudinal one εµ0 , we can build the five
polarization tensors for the massive spin-2 particle using the Clebsch-Gordan coefficients
to obtain the X±1 and X0 from the transverse tensors

Xµν
±2 = εµ± ε

ν
±, (3.2.1a)

Xµν
±1 =

1√
2

(
εµ± ε

ν
0 + εµ0 ε

ν
±

)
, (3.2.1b)

Xµν
0 =

1√
6

(
εµ+ εν− + εµ− ε

ν
+ + 2 εµ0 ε

ν
0

)
. (3.2.1c)

The way to profit by this decomposition in a FeynCalc notebook is to choose a spe-
cific frame in which evaluate by hand the scalar products between all the four-vector
(momenta and polarization vectors) involved in the calculation and instruct the software
to substitute the result of such scalar product every time it appears in the expression.
Again we stress the fact that this is not the only way to obtain the result but it is an
easy and convenient way to make use of the software and of the decompositions relations
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Figure 3.3: The process qq̄ → gX in the centre of momentum frame. The z-axis is meant
to be parallel with the outgoing momentum of the spin-2 particle and the incoming quark
is tilted with an angle θ along the y-axis.

we wrote down.
The best frame in which we can do the work is by far the centre of momentum frame
with the z-axis aligned with the momenta of the outgoing particles and with θ the angle
between the the spin-2 particle and the incoming quark (as represented in figure (3.3)).
In this framework we can easily write down the explicit expression of every momenta
involved in the proces componets by components

pµ1 =
(
E, 0, 0, p

)
, (3.2.2a)

pµ2 =
(
p, 0, 0,−p

)
, (3.2.2b)

qµ1 =
(
q, 0, q sin θ, q cos θ

)
, (3.2.2c)

qµ2 =
(
q, 0,−q sin θ,−q cos θ

)
, (3.2.2d)

where E =
√
p2 +M2 is the energy of the spin-2 particle and, form the conservation law

follows

p =
4q2 −M2

4q
. (3.2.3)

Moreover we also need the polarization vectors of a vector field, with the same momentum
of the spin-2 particle, in order to build its polarization tensors. This is why we have
chosen the z-axis in the same direction of pµ1 . The expression for the polarization vector
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of a vector field along the z-axis are well-known and they read

εµ+ =
1√
2

(
0, 1,−i, 0

)
, (3.2.4a)

εµ− =
1√
2

(
0,−1,−i, 0

)
, (3.2.4b)

εµ0 =
1

M

(
p, 0, 0, E

)
, (3.2.4c)

with the relation ε∗µ+ = −εµ−.
Now the only thing we have to do is to evaluate the scalar products of the three polariza-
tion vectors with each others and with the momenta of the particles. Once we have done
this we can then instruct Mathematica to use the relations to simplify the results.
In order to obtain the helicity contributions to the total amplitude squared, instead of
replacing the whole polarization sum when performing the sum over the polarizations
of the spin-2 particle as we have done in the previous calculation, now we substitute
the explicit expression of the polarization tensors in term of εm±u and ε0. If we want to
calculate the contributions of the helicities h = ±2 then we perform the substitution

XµνX∗ρσ → εµ+ε
ν
+ε
∗ρ

+ε
∗σ

+ + εµ−ε
ν
−ε
∗ρ
−ε
∗σ
− = εµ+ε

ν
+ε

ρ
−ε

σ
− + εµ−ε

ν
−ε

ρ
+ε

σ
+, (3.2.5)

while for the contributions form h = ±1 we have to replace

XµνX∗ρσ →1

2

(
εµ+ εν0 + εµ0 ε

ν
+

)(
ε∗ρ+ ε∗σ0 + ε∗ρ0 ε

∗σ
+

)
+

1

2

(
εµ− ε

ν
0 + εµ0 ε

ν
−

)(
ε∗ρ− ε

∗σ
0 + ε∗ρ0 ε

∗σ
−

)
= −1

2

(
εµ+ εν0 + εµ0 ε

ν
+

)(
ερ− ε

σ
0 + ερ0 ε

σ
−

)
− 1

2

(
εµ− ε

ν
0 + εµ0 ε

ν
−

)(
ερ+ εσ0 + ερ0 ε

σ
+

)
,

(3.2.6)

and finally for the longitudinal contribution h = 0 we write

XµνX∗ρσ →1

6

(
εµ+ εν− + εµ− ε

ν
+ + 2 εµ0 ε

ν
0

)(
ε∗ρ+ ε∗σ− + ε∗ρ− ε

∗σ
+ + 2 ε∗ρ0 ε

∗σ
0

)
=

1

6

(
εµ+ εν− + εµ− ε

ν
+ + 2 εµ0 ε

ν
0

)(
ερ− ε

σ
+ + ερ+ εσ− + 2 ερ0 ε

σ
0

)
.

(3.2.7)

Even if it is not strictly necessary, for our procedure of computation, it can be interesting
to look directly at the structure of the polarization tensors in the centre of momentum

54



CHAPTER 3. NON-UNIVERSAL COUPLINGS MODEL

frame. We can write them in matrix form quite easily and they are given by

Xµν
±2 =

1

2


0 0 0 0
0 1 ±i 0
0 ±i −1 0
0 0 0 0

 , (3.2.8a)

Xµν
±1 =

1

2M


0 ∓p −ip 0
∓p 0 0 ∓E
−ip 0 0 −iE

0 ∓E −iE 0

 , (3.2.8b)

Xµν
0 =

1√
6M2


2p2 0 0 2pE
0 −M2 0 0
0 0 −M2 0

2pE 0 0 2E2

 . (3.2.8c)

Further details on the calculation, such as the various expressions of the scalar products,
can be found in the notebook written to perform this evaluation, reported in Appendix
(B.2). Here we give and comment only the final results, which, as well as equation (3.1.9),
have been verified with the numerical results we got with MadGraph.
The contribution coming from the transverse helicities of the spin-2 particle, i.e. h = ±2
we find

|M±2|2 =
4gs

2

9Λ2s (M2 − s)4

[
M4 − 2M2

(
s+ t

)
+ s2 + 2st+ 2t2

][
kg

2
(
M2 − s

)4

+ 2kgkqs
(
2M2 − s

)(
M2 − s

)2
+ 2kq

2s2
(
2M4 − 2M2s+ s2

)]
.

(3.2.9)

It is quite easy to see that, even in the non-universal coupling configuration, this expres-
sion has the right energy behaviour for a amplitude squared involving one vertex coming
from a dimension five operator, and it scales as Λ−2 s. This obviously means that the
transverse helicities of the spin-2 particle are in no way the culprits for the non-unitary
behaviour and for this reason, they do not require any intervention or modification. It
should not be a real surprise because, as we learnt in section (2.3), the propagator of the
transverse component of the spin-2 particle, as well as its polarization sum, do not have
any momenta in its expression, but only metric tensors and then no strongly growing
terms can arise from such a structure. The amplitude squared regarding the vector-like
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components of the helicity h = ±1 on the contrary reads

|M±1|2 =
gs

2

9Λ2M2tu(M2 − s)4

{
8kg

2t2(M2 − s)4(−M2 + s+ t)2

−4kgkqt(M
2 − s)2

[
M10 −M8(3s+ 5t) +M6

(
3s2 + 2st+ 8t2

)
−M4

(
s3 − 15s2t− 8st2 + 4t3

)
− 8M2st

(
2s2 + 3st+ t2

)
+ 4s2t(s+ t)2

]
+kq

2
[
M16 − 2M14(2s+ 3t) +M12

(
7s2 + 10st+ 14t2

)
− 4M10

(
2s3 − 3st2 + 4t3

)
+M8

(
7s4 − 12s2t2 − 48st3 + 8t4

)
− 2M6s

(
2s4 + 5s3t+ 50s2t2 + 16st3 − 16t4

)
+M4s2

(
s4 + 6s3t+ 126s2t2 + 160st3 + 48t4

)
− 16M2s3t2

(
3s2 + 5st+ 2t2

)
+8s4t2(s+ t)2

]}
.

(3.2.10)

It is not the easiest expression to handle for sure but, with a careful inspection, we can
notice that there are not term which grow faster than Λ−2M−2s2. Again, this is not to-
tally unexpected, since, performing the Stückelberg trick, we saw that the vector field in
charge to mimic these helicities components, has a coupling with the energy-momentum
tensor of the Standard Model involving one derivative, making the correspondent opera-
tor of dimension six. In any case the terms with this energy dependence are fully-fledged
unitary-violating and need to be cured and compensated in order to restore the unitarity
of the model. And last we can look into the contribution of the longitudinal helicity
which, by process of elimination, should be the responsible of the worst behaving terms.
For it, the squared amplitude is given by

|M0|2 =
2gs

2

27Λ2 (M3 −Ms)4 s

{
kg

2
(
M2 − s

)4 (
M4 − 2M2(s+ t) + s2 + 2st+ 2t2

)
+ 2kgkq

(
M2 − s

)2
[
2M8 − 2M6(s+ 5t) +M4

(
−3s2 + 6st+ 10t2

)
+ 2M2s

(
2s2 + 3st+ 2t2

)
− s2

(
s2 + 2st+ 2t2

) ]
+ kq

2
[
13M12 − 2M10(9s+ 25t)

+M8
(
−3s2 + 10st+ 50t2

)
+ 4M6s

(
s2 + 13st+ 10t2

)
+M4s2

(
9s2 − 4st− 12t2

)
− 2M2s3

(
3s2 + 5st+ 4t2

)
+ s4

(
s2 + 2st+ 2t2

) ]}
.

(3.2.11)
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Figure 3.4: Plots of the total amplitude squared of the process qq̄ → gX compared with
the different helicities contributions, with respect the total energy

√
s. The mass of the

spin-2 particle has been chosen to be M = 100 GeV, the cut-off scale Λ = 1 TeV and the
angle between the incoming quark and the graviton θ = π/2. The coupling constants
here are set to be kq = 1 and kg = 0.1 instead.

We can see as expected that the longitudinal contribution grows as fast as Λ−2M−4s3,
and this is also motivated by the fact that, in the Stückelberg formulation, the scalar
field which is taking the part of the helicity h = 0 of the spin-2 particle, has a coupling
term with a double derivative and so a dimension seven operator.
A quick check has to be done now in order to have an additional confirmation, other
than the MadGraph numerical verification, that what we have done is right. The first
thing we want to make us sure of, is that these three contributions sum up to the total
amplitude squared of equation (3.1.9), since the various helicities are orthogonal to each
other and no interference can happen between them. This exercise is very easy with
Mathematica and much more time consuming by hand, but in the end one can prove
that indeed

|M|2 = |M±2|2 + |M±1|2 + |M0|2. (3.2.12)

In figure (3.4) we can see the plots, in the non-universal couplings scheme, of the to-
tal squared amplitude compared with the various helicities contributions we previously
found. In order to plot them one must use the expressions in the centre of momen-
tum frame which are written in the Appendixes (B) and has to fix the angle θ between
the spin-2 particle and the incoming quark (in the figure it has been chosen θ = π/2).
Looking at the plots it is manifest that almost immediately the contribution of the lon-

57



CHAPTER 3. NON-UNIVERSAL COUPLINGS MODEL

Figure 3.5: Plots of the total amplitude squared of the process qq̄ → gX compared with
the different helicities contributions, with respect the total energy

√
s in the universal-

coupling case. The mass of the spin-2 particle is set to M = 100 GeV, the cut-off scale
Λ = 1 TeV and the angle between the incoming quark and the graviton θ = π/4.

gitudinal helicity is by far the leading one while the others grow to much slower and
they soon become irrelevant. The vector-like and the transverse contribution are indeed,
more or less, respectively two and four order of magnitude smaller than the dominant
contribution already at not-so-high energy like

√
s = 1 TeV.

The last study we want to do now is to investigate the behaviour of the helicity ampli-
tudes in the limit of equal couplings to see, in that regime, which one is dominating.
The expressions are easily calculable and we write them in the centre of momentum
frame, because is much easier to understand what happens in the universal-couplings
framework, and they end up to be

|MUniv
±2 |2 =

gs
2k2
(

cos 2θ + 3
)(
M8 + s4

)
9Λ2s(M2 − s)2

, (3.2.13a)

|MUniv
±1 |2 =

gs
2k2M2

(
cos 2θ + cos 4θ + 2

)
csc2 θ

(
M4 + s2

)
9Λ2(M2 − s)2

, (3.2.13b)

|MUniv
0 |2 =

4gs
2k2M4s cos2 θ

3Λ2 (M2 − s)2 . (3.2.13c)

From these results, together with figure (3.5), we can realize that the situation is totally
inverted. The contribution from the helicities h = ±2 is now the leading one and it gives
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rise to the Λ−2s terms. The amplitude squared of the vector-like components behave like
a constant while the longitudinal part is actually a decreasing function of the energy, in
strong opposition with the previous case.

3.3 First Steps Towards Restoring Unitarity

Until now what we have done is to analyze in details the non-unitary behaviour of the
model with non-universal couplings. Now what we can try to do is to address this
problem the model has, with the intention to give a guideline about what could be a
possible way to solve this issue and to write down a model which allows us to maintain
the non-universal coupling scheme without compromising the unitarity.
The fundamental idea we want to pursue is to achieve the unitarity by adding to the
theory new degrees of freedom, in the form of new fields, which, with some mechanism,
have the aim to compensate the wrong-behaving energy term, leaving the final model with
the expected behaviour of a dimension five effective filed theory. The most important
observation we made is that the term which have a wrong dependence with respect the
energy arise from the helicities h = ±1, 0 of the spin-2 particle. In our framework it
means that we have to think about adding a scalar and a vector field to the theory
in order to restore the unitarity by counterbalancing. Exactly for this reason we are
interested to study in more details the vector and the scalar field which come from the
Stückelberg trick we described in section (2.3). At this stage we want to think about
them not as proper Stückelberg fields but, more generically, like new extra degrees of
freedom to be used as we mentioned, utilizing the Stückelberg formulation as a suggestion
about how these fields should couple with the Standard Model in order to obtain the
desired outcome.
Let us start by recollecting the interaction Lagrangian we have derived and obtained in
equation (2.3.14), which emerges form the trick

L =
k

Λ

[
1√
2M

(
∂µVν + ∂νVµ

)
+

√
2√

3M2
∂µ∂νφ−

1√
6
φ ηµν

]
T µνSM . (3.3.1)

In order to perform the same kind of study we have done in the previous sections with
the spin-2 particle we now need to implement this Lagrangian in FeynRules which
will allow us to easily discover the Feynman rules concerning these fields and to pro-
duce the UFO (Universal FeynRules Output) file needed to perform simulation of this
model in MadGraph. The implementation is actually a straightforward addition to
the “DMspin2”model [17], where we simply introduced two new fields and we added the
extra terms displayed in the previous equation. For the model file we refer to Appendix
(C) in which we have written in red the modification we made. Note also that in the
model we gave to the scalar and the vector field two different masses with respect the
spin-2 mass to make even more explicit the fact that we are thinking about these fields

59



CHAPTER 3. NON-UNIVERSAL COUPLINGS MODEL

as totally unrelated from the graviton in their origin and in the following we will keep
this generalization.
The intention is again to compute the total amplitude squared for the processes qq̄ → g V
and qq̄ → g φ and look at the analytic expressions, to see how these new fields are able to
reproduce the contribution of the spin-2 particle we want to eliminate from the theory.
It is quite intuitive to realize that the same topology of Feynman diagrams are involved
as in the case of the precess qq̄ → g X, in fact they are exactly the same of the diagrams
in figure (3.1), but with the spin-2 particle replaced with the vector and the scalar field.
To begin, it is useful to write down the Feynman rules which are the counterparts of the
rules (3.1.1) and (3.1.2) for the vertex involving the massive graviton and the quark and
anti-quark pair or the gluon pair respectively. Loading the model in FeynRules we
find the following expression for the scalar vertex with the quark and anti-quark pair

=
ikq√
6Λ

[
5

2

(
/q2 − /q1

)
+
p · (q1 − q2)

Mφ
2 /p

]
,

(3.3.2)
and for the vertex with two gluons

=

√
2ikg√
3Λ

δa1a2

[
ηρσ
(

2

Mφ
2 (k1 · p) (k2 · p)− k1 · k2

)
+

2

Mφ
2

(
(k1 · k2) pρpσ − (k1 · p) (k1 + k2)ρpσ

− (k2 · p) (k1 + k2)σpρ
)

+ 2

(
kρ1k

σ
1 + kρ2k

σ
2

+ kρ1k
σ
2 + kρ2k

σ
1

)]
.

(3.3.3)
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The same procedure can be performed for the vector field also, leading to the result

=
kq

2
√

2ΛMV

[
p·(q2−q1) γµ+

(
q2−q1

)µ
/p+2

(
/q1− /q2

)
pµ
]
,

(3.3.4)
for the three point vertex with the quarks, and

=

√
2kg

ΛMV

δa1a2
[
pρ
(
kσ1k

µ
2 + kσ2k

µ
2 − ησµk1 · k2

)
+ pσ

(
kρ1k

µ
1 + kρ2k

µ
1 − ηρµk1 · k2

)
+ pµ

(
ηρσk1 · k2 − kρ1kσ1 − k

ρ
1k

σ
2 − k

ρ
2k

σ
1 − k

ρ
2k

σ
2

)
+ k1 · p

(
ησµkρ1 + ησµkρ2 − ηρσk

µ
2

)
+ k2 · p

(
ηρµkσ1 + ηρµkσ2 − ηρσk

µ
1

)]
,

(3.3.5)
for the rule with the two gluons.
Using the same notation we introduced in section (3.1) for the process qq̄ → gX we
can now write down the amplitudes corresponding to the four diagrams involved in the
process for the scalar field

Mφ
v =

gskq
Λ

T aεaρ(p2)v̄(q2)

(
5√
6
γρ −

√
2√

3Mφ
2
pρ1 /p1

)
u(q1), (3.3.6a)

Mφ
s =−

√
2gskg√

3Λ(q1 + q2)2
T aεaρ(p2)

[
ηρσp2 · (q1 + q2) + 2(q1 + q2)ρ(q1 + q2)σ − (q1 + q2)ρpσ2

− 2

Mφ
2

(
ηρσ(p1 · p2) p1 · (q1 + q2) + pρ1 p

σ
1 p2 · (q1 + q2) + pρ1 (q1 + q2)σ p1 · (q1 + q2)

− pρ1 pσ2 p1 · (q1 + q2) + (q1 + q2)ρ pσ1 p1 · p2

)]
v̄(q2) γσ u(q1),

(3.3.6b)
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Mφ
t =

gskq√
6Λ(q1 − p1)2

T aεaρ(p2) v̄(q2)γρ( /p2 − /q2)

[
/p1

Mφ
2 p1 · (p2 − q2 + q1)

− 5

2
( /p2 − /q2 + /q1)

]
u(q1),

(3.3.6c)

Mφ
u =

gskq√
6Λ(q1 − p2)2

T aεaρ(p2) v̄(q2)

[
/p1

Mφ
2 p1 · (p2 − q1 + q2)− 5

2
( /p2 − /q1 + /q2)

]
· ( /p2 − /q1)γσu(q1),

(3.3.6d)

where we made use of the transverse relation for the gluon polarization vector in order
to simplify the expressions as much as possible.
Of course we can do the same for the vector field also, denoting εµ(p1) the polarization
vector of V µ, we obtain the following amplitudes

MV
v =

igskq√
2ΛMV

T a εµ(p1) εaρ(p2) v̄(q2)
[
ηµρ /p1 + γµpρ1

]
u(q1) (3.3.7a)

MV
s =

√
2igskg

ΛMV (q1 + q2)2
T a εµ(p1) εaρ(p2)

[
ηµσ
(

(q1 + q2)ρ (p1 · p2)− pρ1 p2 · (q1 + q2)
)

+ ηµρ
(
pσ2 p1 · (q1 + q2)− pσ1 p2 · (q1 + q2)− (q1 + q2)σ p1 · (q1 + q2)

)
− ηρσ

(
(q1 + q2)µ p1 · p2 + pµ2 p1 · (q1 + q2)

)
+ pσ1 p

µ
2 (q1 + q2)ρ

+ pρ1

(
pσ2 (q1 + q2)µ − (q1 + q2)σ (q1 + q2)µ

)]
v̄(q2) γσ u(q1),

(3.3.7b)

MV
t =− igskq

2
√

2ΛMV (q1 − p1)2
T a εµ(p1) εaρ(p2) v̄(q2)γρ( /p2 − /q2)

[
γµ p1 · (p2 − q2 + q1)

+ /p1 (p2 − q2 + q1)µ
]
u(q1),

(3.3.7c)

MV
u =− igskq

2
√

2ΛMV (q1 − p2)2
T a εµ(p1) εaρ(p2) v̄(q2)

[
γµ p1 · (p2 − q1 + q2)

+ /p1 (p2 − q1 + q2)µ
]
( /p2 − /q1)γρu(q1).

(3.3.7d)
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Figure 3.6: The ratio of the longitudinal helicity contribution of the spin-2 particle over
the amplitude squared of the scalar field. The masses have been set to equal values
M = Mφ = 100 GeV and the scattering angle θ = π/4.

The evaluation has been performed again using FeynCalc and goes on in the same way
as in the previous calculation1 and the final result for the scalar field is

|Mφ|2 =
2gs

2 s(kg − kq)2 (t2 + u2)

27Λ2Mφ
4 , (3.3.8)

which can be recast in the centre of momentum frame as

|Mφ|2 =
gs

2 s(kg − kq)2(cos 2θ + 3)
(
Mφ

2 − s
)2

54Λ2Mφ
4 . (3.3.9)

At first glance this expression does not match at all with the longitudinal contribution
of the spin-2 particle of equation (3.2.11), but we can immediately recognize that, at
least, it has the correct energy behaviour, i.e. it grows like Λ−2Mφ

−4s3 and moreover
it vanishes identically in the universal couplings regime, which is also the asymptotic
behaviour of |M0|2 in the same limit, as checked in equation (3.2.13c). The difference
between the expressions should not surprise us, in fact we learnt that the Stückelberg
trick works in the limit of high energy, which means that the two amplitudes squared
have to be similar only in that regime. We can prove this statement by commenting
figure (3.6), in which is displayed the ratio between the longitudinal contribution of the

1It was considered appropriate to not give the Mathematica notebooks for these computations
because they are almost identical to the one in the Appendix (B.1) and (B.2), one only needs to replace
the sum over the tensor polarizations with the polarization sum for V µ or with nothing for φ.

63



CHAPTER 3. NON-UNIVERSAL COUPLINGS MODEL

graviton |M0|2 over the scalar amplitude squared |Mφ|2 with respect the energy of the
process. In the plot we can see that, after a initial range of energies around the values
of the masses, in which the spin-2 amplitude squared is dominating, the ratio quickly
stabilize at the value of 1, meaning that the two quantities are numerically identical.
Moreover, the fact that at low energies the ratio diverges is a very good indication that
the scalar field is totally negligible with respect the spin-2 particle, and so, adding it in
the model would not modify the low energy behaviour of the theory which we know to
be fine already.
Let us now write down the amplitude squared for the vector field also and discuss the
result. Carrying out the whole calculation the expression ends up to be

|MV |2 =
2gs

2(kg − kq)2
[
MV

2(t2 + 4tu+ u2)− t3 − t2u− tu2 − u3
]

9Λ2MV
4 , (3.3.10)

or, in the centre of momentum frame,

|MV |2 = −
gs

2(kg − kq)2
(
MV

2 − s
)2
[

cos 2θ
(
2MV

2 − s
)
− 2MV

2 − 3s
]

18Λ2MV
4 . (3.3.11)

As for the scalar case, the expression does not look like the contribution of the helicities
h = ±1 of the spin-2 particle, and, even worst, this amplitude squared grows with the
energy exactly like the scalar one, that is as fast as Λ−2MV

−4s3. Once again however we
should have expected this kind of behaviour. Ultimately we are dealing with a massive
vector field and therefore it has to have a longitudinal component too, and it is this
which causes the matrix element squared to grow that fast. To appreciate this fact, let
us then evaluate the contribution of the vector transverse polarizations as well as of the
longitudinal one separately. The strategy to achieve the desired result follows exactly
the construction we made for the spin-2 case in section (3.2) and so, when performing
the polarization sum we actually make the replacement

εµ ε∗ν → εµ+ε
∗
+
ν + εµ−ε

∗
−
ν = −εµ+εν− − ε

µ
−ε

ν
+, (3.3.12)

for the transverse contribution while the substitution for the longitudinal one is

εµ ε∗ν → εµ0ε
ν
0. (3.3.13)

The expressions, checked as usual with the numerical value obtained with the simulations
in MadGraph, are given by

|MV
±1|2 =

8gs
2tu(kg − kq)2

9Λ2MV
2 , (3.3.14a)

|MV
0 |2 =

2gs
2s(kg − kq)2 (t2 + u2)

9Λ2MV
4 , (3.3.14b)
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Figure 3.7: Ratio of the longitudinal helicity contribution of the spin-2 particle over
the helicity h = 0 to amplitude squared of the vector field and the ratio between the
respective contributions of the helicities h = ±1. The masses have been set to equal
values M = MV = 100 GeV and the scattering angle θ = π/4.

or, equivalently in the centre of momentum frame

|MV
±1|2 =

8gs
2tu(kg − kq)2

9Λ2MV
2 , (3.3.15a)

|MV
0 |2 =

gs
2s(kg − kq)2(cos 2θ + 3)

(
MV

2 − s
)2

18Λ2MV
4 . (3.3.15b)

Inspecting the results we can realize that the different contributions behave in the ex-
pected way with respect the energy and, in particular, the transverse component grow
as Λ−2M−2

V s2 as required. Like the scalar the algebraic structure of the expressions is
not similar to the spin-2 counterparts, but the hope is that they quickly become nu-
merically equal in the high energy regime an analogy with the scalar field. To quickly
check this out we plot the ratios of the h = ±1 and h = 0 separately as functions of the
energy. As we can see in figure (3.7), the transverse contributions ratio approaches the
unit value very soon, the ratio between the longitudinal parts instead stabilizes at 1/3,
while in both cases the low energy regime is dominated by the spin-2, which is a good
feature as argued in the previous analysis. Now a problem arises for the longitudinal
amplitudes since the vector contribution is three times bigger than the spin-2 particle,
in fact looking at the expressions (3.3.8) and (3.3.14b) we realize that the proportion
is exactly |MV

0 |2 = 3 |Mφ|2. This implies that we can not simply add these two fields
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as they are, because there would not be compensation between the longitudinal compo-
nents. However, there could be at least two possible solutions to this issue, which allow
the contributions to perfectly match. We could have naively expected to subtract both
the vector and the scalar field to the starting spin-2 Lagrangian, or in other words, add
the two fields but with inverted signs of the coupling with the Standard Model energy-
momentum tensor in order to cancel the unitary-violating helicities. The first solution
keeps this idea of flipping the signs of both the vector and the scalar field but needs also
some kind of mechanism which enforces the transverse condition to V µ even if it remains
a massive vector field. In fact we can not make it a strictly massless field because the
coupling with the Standard Model would diverge. This would leave in the theory only
the degrees of freedom needed to ensure, at least at the amplitude squared level, the
cancellation of all the terms with the strong energy dependence. Another and probably
more natural solution would be to make use of the very precise proportionality between
the longitudinal components of the three fields. The right combination suggested from
the analysis seems to be to actually subtract the vector field and add, without flipping
the sign, the scalar field with a further

√
2 enhancement for the coupling term, which

would lead to double the value of its matrix element squared. In doing so we would end
up with a perfect balance for the longitudinal contributions of the three involved fields
without the necessity to impose more auxiliary conditions. This second way seems to be
to more appealing and requires the minimal modification of the starting spin-2 theory
and it would have been described by the Lagrangian

L =− 1

2
∂ρXµν ∂

ρXµν + ∂µXνρ ∂
νXµρ − ∂µXµν ∂νX +

1

2
∂ρX ∂ρX

− 1

2
M2
(
Xµν X

µν −X2
)

+
1

2
Vµ
(
2−MV

2
)
V µ +

1

2
φ
(
2−Mφ

2
)
φ

+
1

Λ

[
Xµν +

2√
3Mφ

2
∂µ∂νφ−

1√
3
φ ηµν −

1√
2MV

(
∂µVν + ∂νVµ

)]∑
i

kiT
µν
i .

(3.3.16)

Further and important comments will follow in the next section.

3.4 Outlooks

Clearly we are not making the statement of having solved the unitary problem of the
model, because a lot more work has to be done on this topic before obtain some solid
result. We are only trying to give a guideline for the construction of a model to be studied
in more depths and, in the following, we want describe some further analysis which are
currently under consideration, together with a possible application of this model.
As pointed out before, we have made a comparison between the different contributions
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Figure 3.8: Three diagrams involved in the fermionic dark matter production process,
where the dotted line stands for the dark matter particle.

of the spin-2 particle and the two new fields, at the amplitude squared level only. This
is evidently not enough because, up to now, we treated these three fields as totally
unrelated to each other. Even though it is a required step in the development of the
model and it has lead to some useful insight, it is obviously that, if we want to really
understand the effect of the new vector and scalar fields to the theory, we have to go one
step further. Namely we should now take in consideration the situations in which these
fields are allowed to interfere in one unique process and check whether or not the final
result has a consistent energy dependence or is still unitary-violating. The interference
can only happen if we allow the spin-2 (and consequently the other fields) to decay in
some common final state. This framework is extremely interesting in the context of dark
matter particle physics, where the coupling between the dark matter candidate and the
Standard Model is achieved with a mediator which couples with both and always decays.
We can then rephrase our model as a s-channel simplified dark matter model, adding for
example a massive fermionic dark matter candidate to the theory, which couples with
the three mediators through its energy-momentum tensor, with the form totally similar
to the tensors for the Standard Model fermionic content we saw in equations (2.2.8f)and
(2.2.8g), as prescribed by the Lagrangian of equation (3.3.16). This is exactly what it has
been done. If one looks the last lines of the FeynRules model in Appendix (C) in fact
will notice the construction of the interaction Lagrangian with the dark sector2. The first
thing to realize is that, if we want to really test the unitarity of the model, we have to
consider more complex process than the 2→ 2 ones. As already mentioned, when there
is a vertex with a current simple enough to be conserved despite the non-universality
of the couplings, i.e. when only the energy-momentum for a single field is involved, the

2Obviously the model has been modified, changing the coefficients and the signs of vector and scalar
fields couplings according to equation (3.3.16).
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Figure 3.9: Transverse momentum distribution of the dark matter particle for the proton-
proton collision production process at

√
s = 13 TeV.

amplitude squared turns out to have the right energy behaviour is is supposed to have.
We can quickly check this statement by performing a simple calculation of the total
amplitude squared for a dark matter pair production process with a quark anti-quark
pair as initial state. The three diagrams involved are given in figure (3.8) and, with the
help of the by now familiar computational routine, denoting mx the dark matter particle
mass and with kx the respective coupling constant, we find the expression for the total
amplitude squared

|M|2 = − kq
2kx

2

96Λ4 (M2 − s)2

[
8mx

8 − 8mx
6(t+ u)− 10mx

4(t− u)2 + 4mx
2
(
t3 + t2u

+ tu2 + u3
)
− t4 + 6t3u− 18t2u2 + 6tu3 − u4

]
.

(3.4.1)

The expression grows as fast as Λ−4s2, that is the expected behaviour for an ampli-
tude squared for a effective theory with two insertion of a dimension five operator, so
no unitary problem arises beside the natural one. Moreover, if we evaluate the contri-
butions of the vector and the scalar field separately we eventually find that they both
vanish identically and this is another suggestion that they do what they are supposed
to. Furthermore, the same results are confirmed numerically with MadGraph as we
can see in figure (3.9) the transverse momentum distributions in the universal and in the
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non-universal case are almost identical and very fast decreasing.
The real testing ground then is the slightly more complicated situation of a 2→ 3 pro-
cess, namely the by this time well-known qq̄ → gX(V, φ), where now the spin-2 particle
(vector, scalar) decays in dark matter pair or in any other Standard Model final state.
As figure (3.9) allows to visualize, this process once again exhibit the unitary-violating
behaviour in every possible different decay channel for the spin-2 particle, of which only
some examples are given, but the same behaviour can be found in each allowed case.
In particular we present here the transverse momentum distributions for the decay re-
spectively in: fermionic dark matter pair (a), in electron and positron pair (b), in two
photons (c) and finally in two Z-bosons (d). This scenario is currently under analysis
in order to produce, first of all the analytical results for the amplitudes squared of the
processes simulated with the spin-2 particle only, and then to test the whole model with
the three mediators to check if the cancellation really happens or more effort as to be
expended to improve the model suggested in this work.
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(a) p p > j fx fx

(b) p p > j e+ e−
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(c) p p > j γ γ

(d) p p > j Z Z

Figure 3.9: Transverse momentum distribution in 2→ 3 for different decay channels.
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Conclusion

Before undertake the final conclusions, we can take a moment to recap the key point of
this thesis work and do some final comments to the results we have obtained.
In the first chapter we fully work out the Randall-Sundrum model, which we decided to
use as a theoretical foundation and origin for our massive spin-2 particle theory. In fact
we have been able to show how this model, in the limit of small perturbation around
the background metric, is able to give origin to the Fierz-Pauli action. In particular
we pointed out that the Randall-Sundrum construction leads to the only possible for-
mulation of a ghost-free massive spin-2 field, thanks to the Fierz-Pauli tuning for the
mass term, which naturally arises without any external constraint, and ensures the right
number of degrees of freedom propagating in the theory. Furthermore we demonstrate
that is makes sense to study the theory for a massive spin-2 particle thinking about it
as the first Kaluza-Klein excitation of the Randall-Sundrum graviton field without have
to worry about the presence of an undetected massless zero mode because, due to the
totally different five dimensional profile of the wave function, the couplings between the
massive modes and the Standard Model are strongly enhanced, leaving the possibility
to discover them before the massless mode. Finally we studied the differences between
two possible framework constructions. The first, we used as first and simpler example
to develop the model, where all the Standard Model field content is confined to live on
the 3-brane corresponding to our visible four dimensional world and the second where
we allowed everything, except the Higgs filed, to propagate through the five dimensional
bulk. Beside the much more effort needed for the model building of the second instance,
we focused the attention on the different structure of the couplings between the graviton
modes and the various Standard Model fields, which correspond to the zero modes of
every five dimensional bulk fermions and gauge bosons. In particular we saw that, even
if the coupling with matter is obtained through the contraction between the graviton
field and the energy-momentum tensor in both models, in the second the coupling con-
stants values are influenced by the bulk profile of the Standard Model particles also, and
because of that, they are different from a field to another, since there is the freedom to
build the model in such a way to have the zero modes of the fermionic fields localized
wherever we prefer to, along the extra dimension.
Motivated from this analysis, in the second chapter we proceeded in the detailed study
of the massive spin-2 theory described by the Fierz-Pauli action, interacting with the
Standard Model through its energy-momentum tensor as instructed. We have been able
to solve the free theory, finding the mode decomposition, the structure of the tensor
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polarizations and the form of the propagator. Then we moved on, investigating the
interaction term in detail and giving an overview of the extremely vast and variegated
structure of the Feynman rules. Lastly we described the Stückelberg trick, a useful con-
struction which allows us to easily describe the theory in the high energy limit. It consist
in the decomposition of the various helicities of the spin-2 particle into different degrees
of freedom, respectively a vector and a scalar field, which have the purpose of mimic
respectively to the h = ±1 and h = 0.
In the last chapter we finally took under consideration the model with non-universal cou-
plings, focusing on the main feature it has, that is the unitary-violating behaviour. We
explicitly saw it, with the concrete example of the spin-2 production process qq̄ → gX,
that, instead of grow with the energy as Λ−2s, as expected from a dimension five ef-
fective filed theory, the amplitude squared has terms which grow as fast as Λ−2M−4s3,
clearly violating the unitarity and hugely lowering the cut-off scale for the effective the-
ory validity. Then we tried to understand the origin of such behaviour and, evaluating
separately the various helicities contributions to the total amplitude squared of the pro-
cess we found out that the terms with the strong energy dependence are coming mainly
from the longitudinal component and also from the h = ±1 helicities. Finally, we ar-
gued that a possible solution to restore the unitarity, without waive the non-universal
couplings framework, could be to introduce new degrees of freedom in the model which
cancel the contributions from the unitary-violating helicities. We studied in more details
the vector and the scalar field arising from the Stückelberg trick, thinking them as more
general fields suggested from the Stückelberg formulation, and we saw that, with some
minor changes, there is an hope to use these fields to achieve the desired result since they
give promising results at least at the amplitude squared level. Ultimately we proposed a
possible Lagrangian, implementing the above mentioned fields for further studies in the
direction of the unitarization of the massive spin-2 model we discussed.
For the last comment it is necessary to focus on the outlooks of this work. Even though
the preliminary results obtained are promising indications that the model is worth study-
ing in details, there is no substantial proof of its proper functioning. As mentioned, some
aspects are under investigation already with the hope of being able to provide a con-
sistent and unitary effective model for a spin-2 particle in the generic framework of
non-universal couplings, which would be of extreme interest for both theoretical and
experimental point of view.



A. Ricci Tensor

A.1 Ricci Tensor of Randall-Sundrum Background

We want to evaluate the Ricci Tensor for the Randall-Sundrum metric as in equation
(1.2.31):

ds2 = e−2k|y| ηµν dx
µdxν − dy2 = gMN(y) dxMdxN . (A.1.1)

The first thing to do is to work out the Christoffel symbols

ΓRMN =
1

2
gRS

(
∂M gNS + ∂N gMS − ∂S gMN

)
. (A.1.2)

Since the only non-constant components of gMN are the µν ones and they are funcion of
the extra dimension only we have

∂R gMN = ∂4 gµν , (A.1.3)

while every other kind of derivatives vanish. This implies that there are only two types
of relevant Christoffel symbols, that are

Γ4
µν =

1

2
g44
(
∂µ gν4 + ∂ν gµ4 − ∂4 gµν

)
=− 1

2
gx44 ∂4 gµν

=− k sign(y) e−2k|y| ηµν ,

(A.1.4a)

and

Γρµ4 =
1

2
gρσ

(
∂µ g4σ + ∂4 gµσ − ∂σ gµ4

)
=

1

2
gρσ ∂4 gµσ)

=− k sign(y) δρµ.

(A.1.4b)

From these results we can work out the Ricci Tensor components, given by

RMN = ∂R ΓRMN − ∂N ΓRMR + ΓRRS ΓSMN − ΓRNS ΓSMR, (A.1.5)
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obtaining

Rµν = ∂4 Γ4
µν + Γρρ4 Γ4

µν − Γ4
νρ Γρµ4 − Γρν4 Γ4

µρ

=− 2k δ(y)e−2k|y| ηµν + 2k2 ηµν − k2 e−2k|y| ηµν

=
[
2k2e2k|y| − k2 − 2k δ(y)

]
gµν ,

(A.1.6a)

R44 =− ∂4 Γρ4ρ − Γρ4σ Γσ4ρ

=− 2k δ(y)− k2 δρσ δ
σ
ρ

=− 4k2 − 2k δ(y),

(A.1.6b)

while it is easy to see that the other components vanish

Rµ4 = 0. (A.1.6c)

A.2 Ricci Scalar of Perturbed Metric

We want to compute the Ricci scalar for the metric

ds2 = ηMN + hMN

(
xR
)
dxMdxN , (A.2.1)

that, with the gauge choice we made in equations (1.2.42) becomes:

ds2 =
(
ηµν + hµν

(
xR
))

dxµdxν − dz2. (A.2.2)

At the same time, by the fact that we want to do this calculation at the linear order,
the Christoffel symbols reduce to

ΓRMN =
1

2

(
∂M hRN + ∂N hRM − ∂R hMN

)
, (A.2.3)

where the indices are rised and lowered with the flat metric ηMN . In the chosen gauge
only two types of Christoffel symbols are non-vanishing:

Γρµν
1

2

(
∂µ h

ρ
ν + ∂ν h

ρ
µ − ∂ρ hµν

)
, (A.2.4a)

Γρµ4 =
1

2
∂4 h

ρ
µ, (A.2.4b)

Γ4
µν = −1

2
∂4 hµν . (A.2.4c)
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The next step is to evaluate the Ricci tensor, obtained again from equation (A.1.5),
reminding once again the gauge conditions (in particular the tracelessness (1.2.42c)) and
disregarding all non-linar terms

Rµν = ∂R ΓRµν +O(h2) = −1

2
∂R∂

R hµν +O(h2), (A.2.5a)

Rµ4 = 0, (A.2.5b)

R44 = 0 +O(h2). (A.2.5c)

Finally we can calculate the Ricci scalar contracting the Ricci tensor with the flat metric
to keep the evaluation at the linear order

R = RMN ηMN = Rµν η
µν +R44 η

44 = 0 (A.2.6)

for the traceless condition again.
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B. Feyncalc Notebooks

B.1 Computation of qq̄ → gX
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C. FeynRules Model

(***** Setting for interaction order ******)

M$InteractionOrderLimit = {
{DMT, 2}
};

M$InteractionOrderHierarchy = {
{QCD, 1}, {DMT, 2}, {QED, 2}
};

(* ************************** *)
(* *****     Fields     ***** *)
(* ************************** *)
M$ClassesDescription = {

S[12] == { ClassName -> YS,
SelfConjugate -> True,
Mass -> {MYS, 1000.},
Width -> {WYS, 1.},
TeX -> S},

V[13] == { ClassName -> YV,
SelfConjugate -> True,
Mass -> {MYV, 1000.},
Width -> {WYV, 1.},
TeX -> V},

F[7] == { ClassName -> Xd,
SelfConjugate -> False,

Mass -> {MXd, 10.},
Width -> 0,
PDG -> 5000521,
TeX -> Subscript[X,d],
FullName -> "Dirac DM" },

T[1] == { ClassName -> Y2,
SelfConjugate -> True,
Symmetric -> True,
Mass -> {MY2, 1000.},

Width -> {WY2, 1.},
PDG -> 5000002,
TeX -> Subscript[Y,2],
FullName -> "Spin-2 mediator" }

}; 87
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(* ************************** *)
(* *****   Parameters   ***** *)
(* ************************** *) 

M$Parameters = {

Lambda == { ParameterType -> External,
BlockName -> DMINPUTS,

TeX -> \[CapitalLambda],
Description -> "cut-off scale",
Value -> 1000.0},

gTg == { 
ParameterType -> External,
InteractionOrder -> {DMT, 1},
BlockName -> DMINPUTS,
TeX -> Subscript[gT,g],
Description -> "g-Y2  coupling",
Value -> 1. }, 

gTw == { 
ParameterType -> External,
InteractionOrder -> {DMT, 1},
BlockName -> DMINPUTS,
TeX -> Subscript[gT,W],
Description -> "W-Y2  coupling",
Value -> 1. }, 

gTb == { 
ParameterType -> External,
InteractionOrder -> {DMT, 1},
BlockName -> DMINPUTS,
TeX -> Subscript[gT,B],
Description -> "B-Y2  coupling",
Value -> 1. }, 

gTq == { 
ParameterType -> External,
InteractionOrder -> {DMT, 1},
BlockName -> DMINPUTS,
TeX -> Subscript[gT,q],
Description -> "q-Y2  coupling",
Value -> 1. }, 

gTq3 == { 
ParameterType -> External,
InteractionOrder -> {DMT, 1},
BlockName -> DMINPUTS,
TeX -> Subscript[gT,q3],
Description -> "t-Y2  coupling",
Value -> 1. }, 
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gTl == { 
ParameterType -> External,
InteractionOrder -> {DMT, 1},
BlockName -> DMINPUTS,
TeX -> Subscript[gT,l],
Description -> "l-Y2  coupling",
Value -> 1. }, 

gTh == { 
ParameterType -> External,
InteractionOrder -> {DMT, 1},
BlockName -> DMINPUTS,
TeX -> Subscript[gT,h],
Description -> "h-Y2  coupling",
Value -> 1. }, 

gTx == { 
ParameterType -> External,
InteractionOrder -> {DMT, 1},
BlockName -> DMINPUTS,
TeX -> Subscript[gT,x],
Description -> "Xd-Y2  coupling",
Value -> 1. }  

};

(*** Defining the cov derivatives ***)

covdelE[field_, mu_] :=
Module[{j, a},  del[field, mu]

+ I ee/cw 2 B[mu]/2 ProjP.field + I ee/cw B[mu]/2 
ProjM.field + I ee/sw/2 ProjM.field Wi[mu,3]];

covdelN[field_, mu_] :=
Module[{j, a}, del[field, mu] + I ee/cw B[mu]/2 ProjM.field - I ee/sw/2 

ProjM.field Wi[mu,3]];

(*** Defining the energy-momentum tensor T[mu,nu] ***)

(* Fermions *)

TFf[mu_, nu_, ff_] :=   QLbar[ss, ii, ff, cc].Ga[mu, ss, ss1].DC[QL[ss1, 
ii, ff, cc], nu] - DC[QLbar[ss, ii, ff, cc], mu].Ga[nu, ss, 
ss1].QL[ss1, ii, ff, cc] + 

uRbar[ss, ff, cc].Ga[mu, ss, 
ss1].DC[uR[ss1, ff, cc], nu] - DC[uRbar[ss, ff, cc], mu].Ga[nu, ss, 
ss1].uR[ss1, ff, cc] + 

dRbar[ss, ff, cc].Ga[mu, ss, 
ss1].DC[dR[ss1, ff, cc], nu] - DC[dRbar[ss, ff, cc], mu].Ga[nu, ss, 
ss1].dR[ss1, ff, cc];

TFhb[mu_, nu_] :=   QLbar[ss, 2, 3, cc].Ga[mu, ss, ss1].DC[QL[ss1, 2, 3, 
cc], nu] -

DC[QLbar[ss, 2, 3, cc], mu].Ga[nu, ss, ss1].QL[ss1, 2, 3, cc] + 
dRbar[ss, 3, cc].Ga[mu, ss, ss1].DC[dR[ss1, 3, cc], nu] -
DC[dRbar[ss, 3, cc], mu].Ga[nu, ss, ss1].dR[ss1, 3, cc];
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TFht[mu_, nu_] :=   QLbar[ss, 1, 3, cc].Ga[mu, ss, ss1].DC[QL[ss1, 1, 3, 
cc], nu] -

DC[QLbar[ss, 1, 3, cc], mu].Ga[nu, ss, ss1].QL[ss1, 1, 3, cc] + 
uRbar[ss, 3, cc].Ga[mu, ss, ss1].DC[uR[ss1, 3, cc], nu] -
DC[uRbar[ss, 3, cc], mu].Ga[nu, ss, ss1].uR[ss1, 3, cc];

TFlq[mu_, nu_] := -ME[mu, nu] I/2 TFf[al, al, 1] + I/4 ( TFf[mu, nu, 1] + 
TFf[nu, mu, 1]) - ME[mu, nu] I/2 TFf[al, al, 2] + I/4 ( TFf[mu, nu, 2] + 
TFf[nu, mu, 2])-ME[mu, nu] I/2 TFhb[al, al] + I/4 ( TFhb[mu, nu] + 
TFhb[nu, mu]);

TFt[mu_, nu_] := -ME[mu, nu] I/2 TFht[al, al] + I/4 ( TFht[mu, nu] + 
TFht[nu, mu]);

feynmangaugerules =  If[Not[FeynmanGauge], {G0 | GP | GPbar -> 0}, {}]; 
yuk =  ExpandIndices[-yd[ff2, 3] CKM[3, ff2] QLbar[sp, ii, 3, cc].dR[sp, 
3, cc] Phi[ii] - yu[3, 3] QLbar[sp, ii, 3, cc].uR[sp, 3, cc] Phibar[jj] 
Eps[ii, jj], FlavorExpand -> SU2D];
yuk = yuk /. {CKM[a_, b_] Conjugate[CKM[a_, c_]] -> IndexDelta[b, c], 
CKM[b_, a_] Conjugate[CKM[c_, a_]] -> IndexDelta[b, c]};

TYt[mu_, nu_] := -ME[mu, nu] (yuk + HC[yuk] /. feynmangaugerules)

TFlep[mu_, nu_] :=   LLbar[ss, ii, ff].Ga[mu, ss, ss1].DC[LL[ss1, ii, 
ff], nu] - DC[LLbar[ss, ii, ff], mu].Ga[nu, ss, ss1].LL[ss1, ii, ff] + 

lRbar[ss, ff].Ga[mu, ss, 
ss1].DC[lR[ss1, ff], nu] - DC[lRbar[ss, ff], mu].Ga[nu, ss, ss1].lR[ss1, 
ff] ;

TFl[mu_, nu_] := -ME[mu, nu] I/2 TFlep[al, al] + I/4 ( TFlep[mu, nu] + 
TFlep[nu, mu]);

(* Higgs *)

Tscalar[mu_, nu_] := (2 DC[Phibar[ii], mu] DC[Phi[ii], nu]) - ME[mu, nu] 
(DC[Phibar[ii], rho] DC[Phi[ii], rho] + muH^2 Phibar[ii] Phi[ii] - lam 
Phibar[ii] Phi[ii] Phibar[jj] Phi[jj]);

(* Gauge bosons *)

TGg[mu_,nu_] := -ME[mu,nu] (-1/4 FS[G,rho,sig,a] FS[G,rho,sig,a]) -
FS[G,mu,rho,a] FS[G,nu,rho,a];
(*new lag for the weak sector before EWSB*)
(*Careful to check the gauge fixing term coefficient*)
TGB[mu_,nu_] := -ME[mu,nu](-1/4 FS[B,rho,sig]FS[B,rho,sig])-
FS[B,mu,rho]FS[B,nu,rho];
TGW[mu_,nu_] := -ME[mu,nu](-1/4 FS[Wi,rho,sig,ii]FS[Wi,rho,sig,ii])-
FS[Wi,mu,rho,ii]FS[Wi,nu,rho,ii];

(* Gauge fixing term is here because Madgraph takes the Feynman gauge for 
massless gauge boson propagators *)
(* and unitary gauge for massive gauge boson propagators. *)
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TGFg[mu_,nu_]:= -ME[mu,nu].( del[del[G[sig, a1], sig], rho].G[rho, a1]   
+ 1/2 del[G[rho, a1], rho].del[G[sig, a1], sig] ) + del[del[G[rho, a1], 
rho], mu].G[nu, a1] + del[del[G[rho, a1], rho], nu].G[mu, a1];

TGFa[mu_,nu_]:= -ME[mu,nu].( del[del[A[sig], sig], rho].A[rho] +1/2 
del[A[rho], rho].del[A[sig], sig] ) + del[del[A[rho], rho], mu].A[nu] + 
del[del[A[rho], rho], nu].A[mu];

(** Ghost **)

(*TGhost[mu_,nu_] := ( -ME[mu,nu].(DC[ghGbar,rho] DC[ghG,rho]) 
+DC[ghGbar,mu] DC[ghG,nu] + DC[ghGbar,nu] DC[ghG,mu] ); *)

LQCDGhs = -ghGbar[ii].del[DC[ghG[ii], mu], mu];

TGhost[mu_,nu_] := -ME[mu,nu](ExpandIndices[ LQCDGhs , FlavorExpand-
>SU2W]) + ( del[ghGbar[a], mu].(del[ghG[a], nu] - gs f[a,b,c] G[nu,c] 
ghG[b] ) +   del[ghGbar[a], nu].(del[ghG[a], mu] - gs f[a,b,c] G[mu,c] 
ghG[b] )); 

(*** Writing the lagrangian ***)

L2f := -1/Lambda (gTq  TFlq[mu, nu] + gTq3 (TFt[mu, nu] + TYt[mu, nu]) +    
gTl (TFl[mu, nu] + TYl[mu, nu])) (Y2[mu, nu] + (Sqrt[2])/(Sqrt[3]*MYS^2) 
del[del[YS, nu], mu] - 1/Sqrt[6] ME[mu,nu] YS + 1/(Sqrt[2]*MYV) 
(del[YV[nu],mu] + del[YV[mu],nu]));
L2v := -1/Lambda ExpandIndices[ ( gTg (TGg[mu,nu]+TGFg[mu,nu]) + gTw 
TGW[mu,nu] + gTb TGB[mu,nu] + (gTb cw^2 + gTw sw^2) TGFa[mu,nu]) (Y2[mu, 
nu] + (Sqrt[2])/(Sqrt[3]*MYS^2) del[del[YS, nu], mu] - 1/Sqrt[6] 
ME[mu,nu] YS + 1/(Sqrt[2]*MYV) (del[YV[nu],mu] + 
del[YV[mu],nu])),FlavorExpand->True];
L2gh := -1/Lambda (gTg TGhost[mu,nu]              ) (Y2[mu, nu] +
(2)/(Sqrt[3]*MYS^2) del[del[YS, nu], mu] - 1/Sqrt[6] ME[mu,nu] YS +
1/(Sqrt[2]*MYV) (del[YV[nu],mu] + del[YV[mu],nu]));
L2H  := -1/Lambda ExpandIndices[(gTh Tscalar[mu,nu]              )(Y2[mu, 
nu] + (Sqrt[2])/(Sqrt[3]*MYS^2) del[del[YS, nu], mu] - 1/Sqrt[6] 
ME[mu,nu] YS + 1/(Sqrt[2]*MYV) (del[YV[nu],mu] + 
del[YV[mu],nu])),FlavorExpand->True] /. feynmangaugerules;

LY2YSYVSM := L2f + L2v + L2gh + L2H;

(**** DM sector ***)

TFqX[mu_,nu_] := (-ME[mu,nu] ( I Xdbar.(Ga[rho].del[Xd, rho]) -1/2 del[I 
Xdbar.Ga[rho].Xd, rho]) +(I/2  Xdbar.Ga[mu].del[Xd, nu] - 1/4 I 
del[Xdbar.Ga[nu].Xd, mu] + I/2  Xdbar.Ga[nu].del[Xd, mu] - 1/4 I 
del[Xdbar.Ga[mu].Xd, nu] ));

TYqX[mu_,nu_] := -ME[mu,nu] ( - MXd Xdbar.Xd );

L2fX := -1/Lambda ( gTx (TFqX[mu,nu] + TYqX[mu,nu]) ) (Y2[mu, nu] + 
(Sqrt[2])/(Sqrt[3]*MYS^2) del[del[YS, nu], mu] - 1/Sqrt[6] ME[mu,nu] YS + 
1/(Sqrt[2]*MYV) (del[YV[nu],mu] + del[YV[mu],nu]));  

L2DM := L2fX + LY2YSYVSM;
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