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Scuola di Scienze

Corso di Laurea Magistrale in Fisica

Dynamical Localization of Abelian
Gauge Fields

Relatore:

Prof. Roberto Soldati

Correlatore:

Prof. Lorenzo Sorbo

Presentata da:

Maria Laura Piscopo

Sessione III

Anno Accademico 2015/2016



2



A mamma e papà
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Abstract

We study the possibility that a consistent description of the four-dimensional photon
field can arise from a model of scalar-QED in six-dimensional space-time.

The existence of new dimensions other than the usual four represents one the most
attractive approaches to adopt in the attempt to solve long lasting high energy as well
as cosmological puzzles [28]. However if the introduction of extra dimensions may con-
stitute the natural framework for the construction of new effective field theories, it also
opens the crucial question of explaining why as long as we can test, the Universe appears
truly four-dimensional [13; 25; 17]. Extra dimensions need to be hidden somehow and
one possibility is that Standard Model particles result localized on a four-dimensional
brane embedded in a higher dimensional space-time.

In the present work, we examine the possibility of localizing gauge fields by coupling
the six-dimensional field to a vortex-like configuration of the charged scalar field. This
represents a stable and cylindrically symmetric (along the four usual directions) solution,
which carves Minkowski four dimensional space-time out of its throat.

The main result is that, the gauge field components associated with the four di-
mensional photon can be completely decoupled from the other fields, with a convenient
choice of the gauge together with the existence of a mass hierarchy, which allows to set
a cut-off for the admissible energies range, in order to exclude non physical degrees of
freedom from the theory. This procedure though, doesn’t leave the photon massless.
We add to the six-dimensional Lagrangian a finely tuned mass term, in order to cancel
the mass of the photon thus obtained. We assume this extra mass term coming from a
Higgs mechanism, introducing an auxiliary scalar field with vacuum expectation value
appropriately chosen.
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Sommario

In questo elaborato esaminiamo la possibilità di derivare una descrizione consistente del
campo di gauge associato al fotone, da un modello di QED-scalare in sei dimensioni.

L’esistenza di nuove dimensioni in aggiunta alle quattro comuni, rappresenta uno degli
approcci più interessanti da adottare, nel tentativo di risolvere correnti puzzles nella fisica
delle alte energie cos̀ı come in cosmologia. Tuttavia se da un lato l’introduzione di extra
dimensioni potrebbe rappresentare l’ambiente naturale per la costruzione di nuove teorie
di campo, dall’altro fa emergere la necessità di spiegare perchè, per quanto ne sappiamo,
l’Universo appaia effettivamente quadridimensionale. Le dimensioni extra devono quindi
risultare nascoste in qualche modo e una delle possibilità più stimolanti è che le particelle
del Modello Standard siano localizzate su una brana quadridimensionale immersa in uno
spazio-tempo di dimensionalità maggiore.

Nel presente lavoro discutiamo un possibile meccanismo per la localizzazione del
campo di gauge mediante l’accoppiamento con una configurazione di tipo vortice per
il campo scalare carico, questa rappresenta una soluzione stabile e a simmetria cilin-
drica (lungo le quattro dimensioni usuali) che permette di modellare lo spazio-tempo
Minkowskiano quadridimensionale, confinato all’interno del vortice.

Il risultato principale è che le componenti del campo di gauge associate al fotone
quadridimensionale possono essere completamente disaccoppiate dai restanti campi, come
conseguenza dell’invarianza di gauge del modello congiuntamente alla presenza di una
gerarchia tra le masse delle componenti del campo di gauge sei-dimensionale, che sug-
gerisce di fissare un cut-off al range di energie ammissibili cos̀ı da escludere gradi di libertà
non fisici. Questa procedura tuttavia, lascia il fotone massivo. Una possibilità è aggiun-
gere alla Lagrangiana sei-dimensionale un termine di massa accuratamente scelto per il
fotone, cos̀ı da cancellare la massa ottenuta. Questo termine extra potrebbe derivare
da un meccanismo di Higgs mediante l’introduzione di un campo scalare ausiliario, con
valore di aspettazione del vuoto appropriatamente scelto.
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Introduction

The possibility that our space has more that three spatial dimensions has been actract-
ing the attention of physicists for many years. One of the main reasons for looking for
extra-dimensions comes from the crucial help it might offer in solving long lasting puz-
zles like the Hierarchy Problem. This refers to the ’unnatural’ huge discrepancy between
the electroweak scale mEM „ 103 GeV and the Planck scale MPl „ 1019 GeV. Over
the last few decades, explaining the smallness and radiative stability of the hierarchy
mEW {MPl „ 10´16 has been one of the greatest driving forces behind the construc-
tion of theories beyond the Standard Model. While many different specific proposals
for weak and Planck scale physics have been made, the commonly held picture of the
basic structure of physics beyond the Standard Model, is of a new effective field theory
(like a softly broken supersymmetric theory) revealed at the weak scale, stabilizing and
perhaps explaining the origin of the hierarchy [25]. On the other hand, the physics re-
sponsible for making a sensible quantum theory of gravity is revealed only at the Planck
scale. The desert between the weak and Planck scales could itself be populated with
towers of new effective field theories which can play a number of roles, such as triggering
dynamical symmetry breakings or explaining the pattern of fermion masses and mixings.

The extra-dimensions perspective was firstly adopted in Kaluza-Klein theory 1. In
their work was postulated one extra compactified space-like dimension and assumed noth-
ing but pure gravity in the new p4 ` 1q-dimensional space-time. It turned out [23] that
five-dimensional gravity would manifest in the observable four-dimensional space-time as
gravitational, electromagnetic and scalar field. Kaluza and Klein then managed to unify
gravity and electromagnetism but the theory had some inconsistencies, the calculated
mass and charge of the electron, for example did not match with experimental data.
Neverthless this theory was never completely abandoned. Over many decades physicists
have been trying to improve the Kaluza’s and Klein’s concept, in the attempt of building
a theory which could incorporate gravity in a reliable manner. All these resulting new
field theories are consistently formulated in space-time of more than four dimensions
and are commonly known as Kaluza-Klein(like) theories, independently of the specific
mechanism adopted for explain how four-dimensional physics emerge.

1Published in 1921 by German mathematician and physicist Theodor Kaluza and extended in 1926
by Swedish theoretical physicist Oskar Klein, was one of the first attempts to create an unified field
theory.

ix



x CONTENTS

One possibility is that the extra dimensions are microscopic, compact and essen-
tially homogeneous, ensuring that space-time is effectively four-dimensional at distances
exceeding the compactification scale (size of extra-dimensions). A ’common wisdom’ as-
sumes this size to be roughly of the order of the Planck scale (although compactifications
at the electroweak scale can be also considered). With the Planck length lPl „ 10´33

cm, probing extra dimensions within this framework appears to be hopeless.

Recently, emphasis has shifted towards non-compact extra-dimensions. The crucial
ingredient is a brane on which Standard Model particles are localized. Gravity however,
propagating in all dimensions as it is the dynamics of spacetime itself, could not fix in
this scenario; the first successful model is due to Randall and Sundrum 2[12; 13]. They
assumed a non factorizable geometry i.e. the four dimensional metrics was not inde-
pendent, as it was before, of the coordinates in the extra dimensions, and managed to
prove that p4`nq non-compact dimensions are in perfect compatibility with experimen-
tal gravity.

In the brane world model-building the question of paramount importance is how the
mechanism for implementing compactification in large extra dimensions can take place,
in particular why one may ignore the massive states in lower dimensions which arise from
harmonic expansions of the higher dimensional fields. These states may be ignored if they
are separated from the zero modes by a well defined ’mass gap’ [11]. Different approaches
to realize this mechanism have been suggested, such as adopting warping factor [36] (like
in the R-S model) or induced kinetic term which ensure localization on the brane [17];
another common possibility is that our Universe could be a four-dimensional topological
defect dynamically occurring in a higher-dimensional space-time [25; 28; 15; 26; 27; 33].
Ordinary particles, in this approach, can be viewed as “zero modes“ trapped in the core
of the defect, making extra dimensions invisible for a four dimensional observer. This
mechanism is referred to as dynamical compactification since the four-dimensional space-
time is dynamically generated out of a higher dimensional one, through a spontaneous
breaking of (a part of) the translational symmetries of the original theory.

With the present work we want to discuss explicit models for the localization of four
dimensional fields in higher dimensional space-time, focusing in particular on Abelian
gauge fields. The general structure is outlined briefly below.

In Chapter 1 we present some background topics, we investigate the Hierarchy Prob-
lem in more detail showing how a potential solution can naturally arise in the extra-
dimensions scenario and then introduce the original Kaluza-Klein theory. As previously
stated this was an attempt to derive four-dimensional theory of gravity and electromag-
netism from a theory of gravity in five-dimensions alone. Despite the inconsistent results,
for the first time was presented a mechanism to explain how four-dimensional physics

2Published in 1999 by Lisa Randall and Raman Sundrum, also known as RS2, it constituted an
extension of a former model, RS1, in which the size of the extra-dimension was kept finite.
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can emerge from a higher dimensional framework. From then, many different theories
have been proposed, and independently of the localization procedure assumed, they all
share the same Kaluza-Klein idea.

In Chapter 2 we discuss models for the localization of scalar, fermion and gauge fields
in p4` 1q non compact dimensions. In the first two cases, compactification is dynamical
ensured by a domain wall solution that shapes the four-dimensional space-time. Once
Kaluza-Klein reduction is implemented, four-dimensional massless scalar and fermion
fields emerge as Fourier components of localized zero modes in the extra-dimensions. In
the last model a different mechanism is adopted, localization is achieved by means of
a four-dimensional kinetic term for the gauge field obtained from the coupling with a
localized matter current.

In Chapter 3 is presented a different procedure for the localization of Abelian gauge
fields. Space-time is enlarged with two extra infinite dimensions, and the coupling is with
a complex scalar field. The field equations admit a vortex-like solution for the scalar field
which implements dynamical compactification once fields perturbations around this con-
figuration are considered. The vortex solution enters the linearized gauge field equations
as a mass term, function of the extra dimension, null in the core of the vortex and constant
in the bulk. The main result is that the components associated to the four-dimensional
photon appear completely decoupled below an energy cuf-off, set by a mass hierarchy
between the six-dimensional fields. The photon thus obtained is not massless though, a
fine tuning must apply so to suitably cancel the mass of the lightest Kaluza-Klein mode.
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Notations

The following notations are meant to apply, unless explicitly stated.

Throughout the whole text the natural units system is adopted, as well as the
Heaviside-Lorentz C. G. S. system of electromagnetic units, accordingly

~ “ c “ 1

for the reduced Planck’s constant and speed of light, in this units system the Action
and the Lagrangian density 3 satisfy

rSs “ 1, rLs “ cm´D

D being the dimensionality of space-time, while energy and mass

rEs “ rM s “ cm´1, rx0
s “ rxs “ cm

Finally Planck length and mass in terms of Newton constant G result

lPl “
?
G, MPl “

?
G
´1

Four dimensional Minkowski space-time is denoted Mp1,3q, the metrics signature be-
ing mostly negative. Extension to higher dimensional manifolds will occur, p4 ` nq-
dimensional space-time will then represent the Minkowskian four-dimensional one plus n

3Commonly referred to simply as Lagrangian.
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extra-dimension, the topology of which will depend on the specific case. Capital letters
and subscripts will always refer to higher dimensional quantities while Greek letters to
the four-dimensional ones.

The four-dimensional D’Alambertian is defined

24 ” BµB
µ
“ B

2
0 ´∇2

so that 2n will refer to the n-dimensional D’Alambertian.

We’ll make use of cylindrical coordinates pρ, φ, zq, with ρ P r0,8q, φ P r0, 2πs,
z P p´8,`8q, the metric tensor reads gab “ diagp1, ρ2, 1q and the Laplacian ∇2

∇2
“ B

2
ρ ` ρ

´1
Bρ ` ρ

´2
B

2
φ ` B

2
z



Chapter 1

Preliminaries

1.1 The Hierarchy Problem

The Hierarchy Problem is related to the huge discrepancy between the Standard Model
particles scale, the electroweak scale mEW „ 103 GeV and the scale at which gravity
becomes as strong as the gauge interactions, the Planck scale MPl „ 1019 GeV. The
central issue [1] is that the mass-squared parameter of Higgs field, which determines the
electroweak scale, is quadratically sensitive to new physics at higher energies. For the
Standard Model taken in isolation this would not pose any problem as this parameter
could be taken as an input. One might thus suggest that there is only the Standard
Model and side-step any potential issue. However gravity alone, and in particular the
scale where quantum effects in gravity become important, suggests the existence of new
physics at energy scales MPl, which would feed into the Higgs mass and the electroweak
scale, contradicting the observed hierarchy v “ 246 GeV 1!MPl.

Thought as two fundamental energy scales, the smallness and radiative stability of
the hierarchy mEW {MPl „ 10´16 has represented an intriguing puzzle for many years
[15]. A crucial difference emerges between these two scales though; while electroweak in-
teractions have been probed at distances „ m´1

EW , gravitational forces have not remotely
been probed at distances „ m´1

Pl : gravity has only been accurately measured in the „ 1
mm range [42]. The interpretation of MPl as a fundamental energy scale is then based
on the assumption that gravity is unmodified over the 33 orders of magnitude between
where it is measured at „ 1 mm down to the Planck length „ 10´33 cm.

Given that the fundamental nature of the weak scale is an experimental certainty,
it has been proposed [15] to keep mEW as the only fundamental short distance scale in
Nature, even setting the scale for the strength of the gravitational interaction. Accord-
ingly, Planck scale is not a fundamental scale, its enormity is a consequence of the large
size of the new dimensions compared with mEW . Putting mEW as the new ultraviolet
cut-off of the theory, the Hierarchy Problem would be then solved.

1Vacuum expectation value of the Higgs field.

1



2 CHAPTER 1. PRELIMINARIES

Assuming the existence of n compact space-like new dimensions of radius „ R, the
Planck scale MPlp4`nq of this p4 ` nq dimensional theory is by definition „ mEW . At
distances at which the new dimensions become manifest i.e. r ! R, two test masses m1,
m2 will feel a gravitational potential according to Gauss’ law in p4` nq dimensions -See
Appendix A-

Uprq „
m1m2

Mn`2
Plp4`nq

1

rn`1
, pr ! Rq

On the other hand, if the masses are placed at distances r " R, their gravitational
flux lines can not continue to penetrate in the extra dimensions, and the usual 1{r po-
tential is recovered

Uprq „
m1m2

Mn`2
Plp4`nqR

n

1

r
, pr " Rq

From the previous expressions we can identify the effective four dimensional MPl as

M2
Pl „M2`n

P lp4`nqR
n

Assuming that mEW is the only fundamental scale i.e. Mn`2
Plp4`nq „ mEW , the four

dimensional MPl is reproduced for

R „ 10
32
n
´17cmˆ p

1TeV

mEW

q
1` 2

n (1.1)

For n “ 1, R „ 1013 cm implying deviations from Newtonian gravity over solar system
distances, so this case is empirically excluded. For all n ě 2, however, the modification
of gravity only becomes noticeable at distances smaller than those currently probed by
experiment. The case n “ 2 pR „ 100µm´1mmq appears particularly encouraging, this
observation has stimulated recent activity in experimental search for deviations from
Newton’s gravity law at sub-millimeter distances.

While gravity has not been probed at distances smaller than a millimeter, the Stan-
dard Model gauge forces have been accurately measured at weak scale distances. There-
fore, in this scenario, the Standard Model particles cannot freely propagate in the extra
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n dimensions, and must be localized to a four dimensional submanifold with “thickness“
„ m´1

EW in the extra n dimensions (mEW is the only short distance scale in the theory).
Indeed the non-trivial task in any explicit realization of this framework is the localization
of the Standard Model fields.

Independently of any specific realization, this model would have some dramatic con-
sequences. First, gravity becomes comparable in strength to the gauge interactions at
energies mEW „ TeV. Future experiments performed in this range would not only probe
the mechanism of electroweak symmetry breaking, but the true quantum theory of grav-
ity. Second, for the case of 2 extra dimensions, the gravitational force law should change
from 1{r2 to 1{r4 on distances „ 100µm ´ 1mm, and this deviation could be observed
in the next few years by the new experiments measuring gravity at sub-millimeter dis-
tances. Third, since the Standard Model fields are only localized within m´1

EW in the
extra n dimensions, in sufficiently hard collisions of energy Eesc ě mEW , they can ac-
quire momentum in the extra dimensions and escape from the four-dimensional world,
carrying away energy 2. This implies a sharp upper limit to the transverse momentum
which can be seen in four dimensions at pT “ Eesc.

In summary, according to [15] space-time manifold is Mp1,3q ˆ Kn for n ě 2, with
Kn being an n dimensional compact manifold of volume „ Rn and R given by equation
(1.1). The p4 ` nq dimensional Planck mass is „ mEW thus four dimensional MPl is
not a fundamental scale at all, rather, the effective four dimensional gravity is weakly
coupled due to the large size R of the extra dimensions relative to the weak scale. In
this framework the graviton is free to propagate in all p4 ` nq dimensions, while the
Standard Model fields must be localized on a four-dimensional submanifold of thickness
m´1
EW in the extra n dimensions. This is required because no experimental signs of the

extra dimensions have been detected, despite the fact that the compactification scale,
µc „ 1{R would have to be much smaller than the weak scale.

However, as pointed out in [12], while this scenario does eliminate the hierarchy
between the weak scale mEW and the Planck scale MPl, it introduces a new hierar-
chy, namely that between µc and mEW . In light of this a new alternative is explored.
They show that a large mass hierarchy might originate from small extra dimensions, if
the metric is assumed non-factorizable: the four-dimensional metric is multiplied by a
’warp’ factor, which is a rapidly changing function of one additional dimension.

2Usually in theories with extra compact dimensions of size R, states with momentum in the compact
dimensions are interpreted from the four-dimensional point of view as particles of mass 1{R, but still
localized in the four-dimensional world. This is because at the energies required to excite these particles,
their wavelength and the size of the compact dimensions are comparable. On the contrary in this
model, particles which can acquire momentum in the extra dimensions have TeV energies, and therefore
wavelengths much smaller than the size of the extra dimensions R „ mm. Thus, they simply escape
into the extra dimensions.
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ds2
“ e´2krcφηµνdx

µdxν ` r2
cdφ

2 (1.2)

where k is a scale of the order of MPl, rc the compactification radius, ηµν the usual
flat four dimensional metric and 0 ď φ ď π the coordinate for one extra dimension,
which is a finite interval whose size is set by rc. In this framework, four dimensional
mass scales are related to five dimensional input mass parameters and the warp factor
e´2krcφ. Thus the crucial point is that to generate a large hierarchy does not require
extremely large rc, this is because the origin of the hierarchy is an exponential function
of the compactification radius, which constitutes indeed the source of the large hierarchy
between the observed Planck and weak scales.

1.2 Kaluza-Klein picture

1.2.1 The original theory

Kaluza’s achievement was to show that five-dimensional general relativity contains both
Einstein’s four-dimensional theory of gravity and Maxwell’s theory of electromagnetism.
He however imposed a somewhat artificial restriction (the cylinder condition) on the
coordinates, essentially barring the fifth one a priori from making a direct appearance
in the laws of physics. Klein’s contribution was to make this restriction less artificial
by suggesting a plausible physical basis for it in compactification of the fifth dimension.
The key is the concept of gauge invariance, [21] which was coming to be recognized as
underlying all the interactions of physics. Electrodynamics, for example, could be “de-
rived“ by imposing local Up1q gauge invariance on a free particle Lagrangian. From the
gauge invariant point of view, Kaluza’s feat in extracting electromagnetism from five-
dimensional gravity was no longer so surprising: it worked because Up1q gauge invariance
had been “added onto“ Einstein’s equations in the guise of invariance with respect to
coordinate transformations along the fifth dimension. In other words, gauge symmetry
had been “explained“ as a geometric symmetry of spacetime [23].

Consider Minkowski space-time plus one extra space-like dimension, the full set of
coordinates being xM “ pxµ, yq, M “ 0, 1, 2, 3, 4.
Einstein equations, with no five-dimensional energy-momentum tensor, assuming a “min-
imal extension” of general relativity 3, are:

ĜAB “ 0

or, equivalently:

3It means that there is no modification to the mathematical structure of Einstein’s theory. The only
change is that tensor indices run over 0 to p3` nq instead of 0 to 3.
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R̂AB “ 0 (1.3)

where ĜAB ” R̂AB ´ R̂ ĝAB{2 is the Einstein tensor, R̂AB and R̂ “ ĝABR̂
AB are

the five-dimensional Ricci tensor and scalar respectively, and ĝAB is the five-dimensional
metric tensor. Hat and capital letter latin indices refer to higher dimensional quantities,
greek indices to the four dimensional ones.
These equations can be derived by varying a five-dimensional version of Einstein action
with respect to the five-dimensional metric:

S “ ´ 1

16πĜ

ż

d4xdy
a

´ĝ R̂ (1.4)

Ĝ being a “five-dimensional gravitational constant” .

The absence of matter sources in these equations reflects the attempt to explain mat-
ter (in four dimensions) as a manifestation of pure geometry (in higher ones).

The five-dimensional Ricci tensor and Christoffel symbols are defined:

R̂AB “ BCΓ̂CAB ´ BBΓ̂CAC ` Γ̂CABΓ̂DCD ´ Γ̂CADΓ̂DBC

Γ̂CAB “
1

2
ĝCDpĝDB,A ` ĝDA,B ´ ĝAB,Dq

The metric tensor was suitably chosen:

pĝABq “

˜

gαβ ` k
2φ2AαAβ kφ2Aα

kφ2Aβ φ2

¸

(1.5)

where gαβ is the four dimensional metric tensor, Aα the electromagnetic potential, φ
a scalar field and k a normalization parameter.
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Kaluza then, assuming the cylinder condition 4, dropped all the derivatives with re-
spect to the fifth coordinate, this way equations (1.3) reduce to:

Gαβ “
k2φ2

2
TEMαβ ´

1

φ
r∇αpBβφq ´ gαβ2φs

∇αFαβ “ ´3
Bαφ

φ
Fαβ, 2φ “

k2φ3

4
FαβF

αβ (1.6)

where Gαβ ” Rαβ ´Rgαβ{2 is the Einstein tensor, TEMαβ ” gαβFγδF
γδ{4´F γ

αFβγ the
electromagnetic energy-momentum tensor and Fαβ ” BαAβ ´ BβAα the strength tensor.
There are a total of 10 ` 4 ` 1 “ 15 equations, as it has to be since a five-dimensional
metric tensor has p5` 6q{2 “ 15 independent elements.

If φ is constant the first two equations of (1.6) are just the Einstein and Maxwell ones:

Gαβ “ 8π Gφ2 TEMαβ , ∇αFαβ “ 0 (1.7)

with the definition k ”
?

16πG.

Substituting metric (1.5) into the action (1.4): 5

S “ ´
ż

d4x
?
´gφ

´ R

16πG
`

1

4
φ2FαβF

αβ
`

2

3k2

BαφBαφ

φ2

¯

(1.8)

where G is defined in terms of its five-dimensional counterpart Ĝ by:

G ” Ĝ{

ż

dy

Setting φ to a constant, we recover from a variational point of view Einstein-Maxwell
action scaled by factors of φ. The fact that the action (1.4) leads to (1.8), or -equivalently-
that the source-less field equations (1.3) lead to (1.7) with source matter, constitutes the

4Physics was a priori considered independent of the extra coordinate.
5The cylinder condition permits to pull

ş

dy out of the action integral other than dropping all the
derivatives with respect to y.
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central miracle of Kaluza-Klein theory. Four-dimensional matter (electromagnetic radia-
tion, at least) has been shown to arise purely from the geometry of empty five-dimensional
spacetime.
The extra factor φ into Einstein action can be absorbed defining φ2 ” φ and operating
a rescaling of the metric tensor

ĝ Ñ ĝ1 ” Ω2ĝ

with conformal factor Ω2 “ φ´1.

ĝ1AB “ φ´1

˜

gαβ ` k
2φAαAβ kφAα

kφAβ φ

¸

(1.9)

This trasformation will rescale the four dimensional metric tensor as well gαβ Ñ
g1αβ “ Ω2gαβ so that the new Ricci scalar will be

RÑ R1 “ Ω´2
´

R ` 6
2Ω

Ω

¯

The conformally rescaled action read:

S 1 “ ´
ż

d4x
a

´g1
´ R1

16πG
`

1

4
φF 1αβF

1αβ
`

1

6k2

B1αφ B1αφ

φ2

¯

(1.10)

where primed quantities refer to the rescaled metric i.e. B1αφ “ g1αβBβφ and G, k are
defined as before. The Einstein action now has the standard normalization.

In the attempt to give a physical meaning to Kaluza’s original cylinder assumption,
Klein postulated this dimension to be very small and gave it a circular topology S1 so to
ensure compactification. With this approach any quantity fpx, yq becomes periodic in
the extra coordinate i.e. fpx, yq “ fpx, y`2πrq, r being the radius of the fifth dimension
and thus the scale parameter.
Fourier expanding all the fields with respect to y give

gαβpx, yq “
`8
ÿ

n“´8

g
pnq
αβ pxqe

iny{r, Aαpx, yq “
`8
ÿ

n“´8

Apnqα pxqe
iny{r,
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φpx, yq “
`8
ÿ

n“´8

φpnqpxqeiny{r (1.11)

Expressed in terms of eigenfunctions of the operator p̂y “ ´iBy, each of these modes
carries a momentum in the y direction of order |n|{r, for r sufficiently small, even the
n “ 1 modes y-momenta, will be so large to fall far beyond the reach of experiments.
Hence only the n “ 0 modes, which are independent of y, will be observable, in agree-
ment with Kaluza’s theory.
In this scenario r is commonly set to the Planck length lPl „ 10´33 cm, which represents
both a natural value and a small enough scale to guarantee that the mass of any n ‰ 0
Fourier mode lies beyond the Planck mass.

Fourier expansion of fields also suggests a possible mechanism to explain charge quan-
tization.

Consider the simplest kind of matter, a massless five-dimensional scalar field Φ̂px, yq:

SΦ̂ “ ´

ż

d4xdy
a

´ĝ BAΦ̂BAΦ̂ (1.12)

This field can be expanded as above:

Φ̂px, yq “
`8
ÿ

n“´8

Φ̂pnqpxqeiny{r

substituting into (1.12) and using the rescaled metric tensor (1.9) -primes are omitted-

SΦ̂ “ ´

`8
ÿ

n“0

ż

d4x
?
´g

”´

B
α
`
inkAα

r

¯

Φ̂pnq
´

Bα ´
inkAα
r

¯

Φ̂p´nq ´
n2

φr2
Φ̂pnqΦ̂p´nq

ı

We thus obtain the action for a system of charged four-dimensional scalar fields
Φ̂pnqpxq. Comparison with the minimal coupling Bα Ñ Bα ` ieAα of quantum electrody-
namics -e being the electric charge- shows that the n-th Fourier mode quantized charge is:

qn “
nk

r
?
φ
“
n
?

16πG

r
?
φ

(1.13)



1.2. KALUZA-KLEIN PICTURE 9

where Aα has been redefined Aαφ
´1{2 to ensure that action (1.10) has the standard

normalization.

This also allows to make a rough prediction of the value of the fine structure constant
identifying the charge q1 of the first Fourier mode with the electron charge e.

Setting r
?
φ „ lPl “

?
G 6

α ”
q2

1

4π
„

1

4π

`

?
16πG
?
G

¯2

“ 4

The possibility of explaining an otherwise fundamental constant would have made
compactified five-dimensional Kaluza-Klein theory very attractive.

However, the masses of the scalar modes are not at all compatible with experimental
data. These can be read from the quadratic term into the above action:

mn “
|n|

r
?
φ

If r
?
φ „ lPl as assumed, the electron mass m1 would be „ l´1

Pl i.e. of the order of
the Planck mass MPl „ 1019 GeV, rather than „ 0.5 MeV.

This discrepancy of some twenty-two orders of magnitude between theory and obser-
vation made the model inconsistent and thus partially rejected.

1.2.2 The core mechanism

Despite the profound gaps in the original Kaluza-Klein theory, the core idea was far
to be abandoned. Extension to higher dimensional space-time is one of the building
blocks for many new fundamental theories, and most of them use the Kaluza-Klein
mechanism: starting from the ground-state solution of the field equations in a p4 ` nq-
dimensional manifold Mp1,3q ˆ Kn, Kn being an n dimensional non necessary compact
manifold, one expands the arbitrary fluctuations around these solutions, in a complete
set of eigenfunctions in Kn, identifying the coefficients of the expansion as the physical
(four dimensional) fields. Substitution into the higher-dimensional equations yields the

6An improved determination of r
?
φ would presumably hit closer to the mark.
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four-dimensional field equations and hence the spectrum.

To outline the general idea of Kaluza-Klein scenario we consider two different mecha-
nisms by means of which four-dimensional fields can emerge out from higher dimensional
ones. In both the examples space-time is assumed to be a p4` 1q dimensional manifold
Mp1,3q ˆK1, with coordinates xM “ pxµ, yq.

Following Kaluza-Klein original theory, the low energy physics will be effectively
four-dimensional if the coordinate y is compact with a certain compactification radius R
[25]. This means that y runs in the interval r0, 2πRs, points y “ 0 and y “ 2π R being
identified. The four-dimensional space is a cylider whose three dimensions x1, x2, x3 are
infinite, and the fourth dimension y is a circle of radius R. Assuming the cylinder ho-
mogeneous, we can write a complete set of wave functions of a free massless particle on
this cylinder, i.e. the solutions to five-dimensional Klein-Gordon equation:

25 φpx, yq “ 0

φp,n “ eip¨xein
y
R , n P Z

the quadrimomentum pµ and the one-dimensional angular momentum eigenvalue n
being related by:

p2
´
n2

R2
“ 0

Hence, inhomogeneous modes with n ‰ 0 carry energy of order 1{R and cannot be
excited in low energy processes. Below the energy scale 1{R, only homogeneous modes
with n “ 0 are relevant, and low energy physics is effectively four-dimensional.

Each Kaluza-Klein mode can be interpreted as a separate type of particle with mass
mn “ |n|{R, thus resulting in a Kaluza-Klein tower of four dimensional particles with
increasing masses. At low energies, only massless (on the scale 1{R) particles can be
produced, whereas at E „ 1{R extra dimensions will show up.

Since the Kaluza-Klein partners of ordinary particles (electrons, photons, etc.) have
not been observed, the energy scale 1{R must be at least in a few hundred GeV range,
so in this scenario, the size of extra dimensions must be microscopic R ď 10´17 cm.
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Another possibility makes use of non factorizable metrics [22], localization is then
due by gravity. Assume a five dimensional scalar field ΦpxMq in the following geometry

ds2
“ e2φpyq

pdx0
q
2
´ pdxq2 ´ pdyq2 (1.14)

The conserved quantities associated to the cyclic coordinates px0,xq are

E “ PAgAB p
B

Bx0
q
B
“ P 0e2φ

pi “ PAgAB p
B

Bxi
q
B
“ P i

where

P 2
“ e2φ

pP 0
q
2
´ p2

´ pP 5
q
2
“M2

5

is the five-dimensional rest mass of Φ. Then

P 5
“

b

E2e´2φ ´M2
5 ´ p2

and any classical particle will be confined in the four-dimensional space-time, bound
by the potential φpyq if

E2e´2φ
´M2

5 ´ p2
ă 0

which yields

E ă
b

M2
5 ` p2 suppeφq
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The experimental non observation of any extra dimensions implies that eφ must rise
very rapidly, presumably with a length scale of the order of Planck mass.

Consider five-dimensional Klein-Gordon equation for Φpx, yq:

1
?
´g
BA

´?
´g gABBBΦ

¯

`M2
5 Φ “ 0

substituting the metric (1.14) we get:

”

e´2φ B2

Bpx0q2
´
B2

Bx2
´
B2

By2

ı

Φ´
Bφ

By

BΦ

By
`M2

5 Φ “ 0

Using the ansatz

Φpx, yq “ exppip ¨ xq e´
φ
2 Φ̃pyq

with p2 “ E2 ´ p2 and E2 “ ω2, then Φ̃pyq satisfies the Schroedinger equation

”

´
1

2

B2

By2
`

1

2

´1

2
φ2 `

1

4
φ1φ1 ´ ω2e´2φ

¯ı

Φ̃ “ ´
1

2

”

M2
5 ` p2

ı

Φ̃

which leads to the following eigenvalue problem:

”

´
1

2

B2

By2
` V pω, yq

ı

ηnpω, yq “ ´λnpωq ηnpω, yq

Being λn ą 0, the problem gives rise only to travelling waves in the four usual direc-
tions but bound states in the fifth coordinate

Φpx, yq “
ÿ

n

exppip ¨ xq e´φ{2 ηnpω, yq
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with the excitations spectrum given by:

2λnpωq “M2
5 ` p2

Choosing an appropriate normalisation for x0 we can get:

infpφq “ 0

Then V pω, yq is bounded by

V pω, yq ě V pω, yq ě V pω “ 0, yq ´
1

2
ω2

Leading to the inequality

λnpωq ď λ0pω “ 0q `
1

2
ω2

In the usual type of Kaluza-Klein models one obtains an infinite tower of excited
states of ever increasing rest mass. For this exotic class of Kaluza-Klein theories the
spectrum is significantly more complex, and the specific form will depend on the details
of the model.
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Chapter 2

Localization with one extra
dimension

2.1 Scalar Fields

One of the first attempts to formulate a field theory postulating non-compact extra di-
mensions is due to Rubakov and Shaposhnikov [24]. They assumed space-time manifold
to be Mp1,3`nq where Mp1,3q is the usual Minkowski space-time and n the extra spatial
dimensions 1. Ordinary particles are confined inside a potential well, sufficiently nar-
row along the n directions and flat along the others. The well is originated from the
non-linearity of the field equations and hence is purely dynamical. Unlike Kaluza-Klein
theories, this model allows particles to propagate in the p3 ` nq-dimensional flat space,
provided their energy is large. Namely, if the energy of a particle created in a high energy
collision exceeds the depth of the well, this particle can come out of the well and move
along the extra spatial directions. This process will look for an observer living in the
four-dimensional space-time, like violating energy and momentum conservation and thus
from this point of view the fundamental principles of relativistic quantum theory such
as p1 ` 3q unitarity and p1 ` 3q causality are correct only for particles with sufficiently
low energy.

Consider a toy quantum field model describing a real scalar field in a p1` 4q dimen-
sional Minkowski space-time, xA “ pxµ, x4q, with mostly negative metrics signature, the
Lagrangian being

L “ 1

2
BAφ B

Aφ`
1

2
m2φ2

´
1

4
λφ4, λ,m ą 0 (2.1)

1From this moment gravity effects are completely disregarded.

15
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v-v

ϕ

V(ϕ )

Figure 2.1: Sketch of Z2 symmetry breaking potential, the configuration φ “ 0 represents
a local maximum, V r0s “ 0, the minimum occurs at φ0 “ ˘v, V r˘vs “ ´λv2{2.

The scalar potential

V rφs “ ´
1

2
mφ2

`
1

4
λφ4

has a double-well shape with two degenerate minima -Figure.2.1- occurring at

φ0 “ ˘m{
?
λ ” ˘ v

The Euler-Lagrange field equation

t25 ´m
2
` λφ2

uφpxq “ 0 (2.2)

admits a domain wall solution φclpx4q -Figure 2.2- independent of the three spatial
coordinates px1, x2, x3q and of time x0 i.e.
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v

-v

x
4

ϕclx4

Figure 2.2: Sketch of the solution φcl “ v tghpm{
?

2x4q. It describes a domain wall of
thickness „ m´1 and asymptotes ˘v.

φclpx4
q “

m
?
λ
tghp

m
?

2
x4
q (2.3)

this provides a potential wall separating the two vacua of the model, narrow in the
fourth direction if m is sufficiently large. The spectrum of perturbations can be obtained
linearizing equation (2.2) around φcl

φpxAq “ φcl ` φ1

Thus

t25 ´m
2
` 3λ pφclq2uφ1 “ 0 (2.4)

They found three types of perturbations:

(a.)



18 CHAPTER 2. LOCALIZATION WITH ONE EXTRA DIMENSION

φ1pxµ, x4
q “

dφcl

dx4
eikµx

µ

(2.5)

which yields E2 “ k2.

Being dφcl{dx4 localized around x4 “ 0, (2.5) corresponds to four-dimensional mass-
less scalar particles confined inside the wall.

(b.)

φ1pxµ, x4
q “ upx4

q eikµx
µ

(2.6)

with E2 “ k2 ` 3
2
m2 so that upx4q represents a normalizable solution of

t´
d2

dpx4q2
´m2

` 3λpφclq2uu “
3

2
m2u

these perturbations are also confined inside the wall.

(c.)

There also exist solutions non localized in the extra dimension.

From

lim
|x4|Ñ8

tghp
m
?

2
x4
q “ 1

follows that at large |x4|

φ1pxµ, x4
q „ eikµx

µ´ik4x4 (2.7)

with E2 “ k2 ` pk4q2 ` p2mq2
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These represent five-dimensional massive particles freely moving along all the four
spatial dimensions.

Considering the p1 ` 3q dimensional space-time (interior of the domain wall) as a
toy model of our world, the extra dimension become accessible at high energies: in this
scenario a collision of particles of type pa.q with center of mass energy exceeding 2

?
2m

can result in creation of particles of type pc.q which can leave the domain wall.

2.2 Fermion Fields

The model introduced in the previous section can be extended to include massless fermion
fields living in p1 ` 3q dimensions. Coupling the scalar field φpxAq with a fermion field
ΨpxAq via Yukawa interaction, the following Lagrangian must be added to (2.1):

Lψ “ iΨ̄ΓABAΨ´ hφΨ̄Ψ (2.8)

Ψ is a four components spinor and the p1` 4q dimensional γ matrices are

Γµ “ γµ, µ “ 0, .., 3

Γ4
” ´iγ5

γµ, γ5 being the standard Dirac matrices.

Let’s note that in each of the classical vacua, φ0 “ ˘m{
?
λ, the Yukawa coupling

reduces to a mass term for the five dimensional fermions, the mass being

m5 “
hm
?
λ

In the presence of the domain wall (2.3), the five dimensional Dirac equation

tiΓABA ´ hφ
cl
uΨ “ 0 (2.9)
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Figure 2.3: Four-dimensional spinor field mass spectrum, besides the massless zero mode,
there could or not exist other bound states with m “ k v, k ă 1; the continuum spectrum
starts at m “ m5 “ v. Picture taken from [25].

has a solution

Ψp0q
pxµ, x4

q “ exp
´

´ h

ż x4

0

φclpx41

qdx41
¯

ˆ ψpxµq (2.10)

where ψpxµq is a massless left-handed p1` 3q dimensional spinor

iγµBµψ “ 0, γ5ψ “ ´ψ

This solution is localized inside the wall and at large value of |x4| decays exponentially

Ψp0q
9 e´m5|x4|

Besides the chiral zero mode [25; 24], there may or may not exist bound states, but
in any case the masses of the latter are proportional to |φ0| and are large for large |φ0|.
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There is also a continuum part of the spectrum starting at m “ m5, Figure 2.3; these
states correspond to five-dimensional fermions which are not bound to the domain wall
and escape to |x4| “ 8.

The existence of massless modes for the four dimensional spinor field, which are meant
to mimic ordinary matter, represents the central point of this model. They propagate
with the speed of light along the domain wall, but do not move along the extra-dimension
and in realistic theories they should acquire small masses by one or another mechanism.
At low energies, their interactions can produce only zero modes again, so physics is effec-
tively four-dimensional. Zero modes interacting at high energies, however, will produce
continuum modes, the extra dimension will open up, and particles will be able to leave
the brane, escape to |x4| “ 8 and literally disappear from our world. For a four dimen-
sional observer, made by particles stuck into the wall, these high energy processes will
look like e`e´ Ñ nothing, or e`e´ Ñ γ` nothing.

2.3 Abelian Gauge Fileds

In [17] is presented a model for the localization of Abelian Gauge Fields on a three-brane
embedded in five-dimensional space-time.
The four coordinates of the Minkowski space-time Mp1,3q are xµ, with µ “ 0, .., 3; the
extra coordinate is y. Capital letters and subscripts are used for five-dimensional quan-
tities, Greek letters for the corresponding four-dimensional ones. The metric convention
is mostly negative.
In simplest scenario, the four-dimensional brane has the form of a delta-function placed
in y “ 0. Let’s ACpxMq, denote a gauge field living in the bulk of the five-dimensional
space-time, the Lagrangian being

L1 “ ´
1

4g2
F2
AB (2.11)

where the strength tensor is defined FAB ” BAAB ´ BBAA and g is a coupling con-
stant with dimensionality

rg2
s “ cm

hence the gauge field AC has canonical dimension

rACs “ cm´1
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The three-dimensional brane action reads:

S3´brane “ ´τ

ż

d4x
?
ḡ

where τ is the brane tension and ḡµν the induced metric on the brane i.e.

ḡµνpxq “ gµνpx, yq|y“0

In general there will be localized matter fields on the brane world-volume. Account-
ing for them, the additional term must be added to the previous action

S̃3´brane “ S3´brane `

ż

d4x
?
ḡ Lpψq

These fields will give rise to a localized current:

JApx, yq “ Jµpxqδpyqδ
µ
A (2.12)

Five-dimensional current conservation is guaranteed by five-dimensional gauge invari-
ance and because of the vanishing of the fifth component of JApx, yq, four-dimensional
current conservation is also satisfied:

BAJ
A
px, yq “ BµJ

µ
pxq “ 0

This current will interact with bulk field according to

Lint “
ż

d4xdy JCpx, yqACpx, yq “
ż

d4xJµpxqAµpx, 0q (2.13)
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Figure 2.4: The one-loop diagram generating the kinetic term for Aµpxq. Wave lines
denote photon propagators while solid lines fermion ones.

thus the effective interaction is between the four-dimensional current and the gauge
field Aµpxq:

Aµpxq ” Aµpx, y “ 0q

Due to the interaction (2.13) a kinetic term for Aµpxq is induced on the brane world-
volume, this emerges from one-loop diagrams with two external legs of Aµpxq and lo-
calized matter running into the loop -Figure 2.4. As a result the following Lagrangian
should be added to (2.11)

L2 “ ´
1

4e2
F 2
µν ` higher derivatives

with

e´2
“

2Nf

3π
lnp

Λ

µ
q

where Nf (number of flavours) accounts for the different kinds of fermions running
into the loop and Λ, µ are the ultraviolet and infrared cut-offs. The induced term has
the correct negative sign, were the loops generated by localized bosonic fields the sign
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would be wrong (positive).

The total five-dimensional low energy Lagrangian for the gauge fields results

L “ ´ 1

4g2
F2
AB ´

1

4e2
F 2
µνδpyq ´ABJB

where a source term has been added to account for the effects of the induced kinetic
term on the Coulomb potential.

The Euler-Lagrange equations read

1

g2
pBCB

CAB ` BBBCACq ` δpyq
1

e2
pBµB

µAν ` BνBµAµqδνB “ JBpx, yq

Choosing the Lorentz gauge BCAC “ 0 and assuming the source to be of the form

JBpx, yq “ Jµpxq δpyq δ
µ
B

we get

BCB
CAµ `

g2

e2
δpyq

´

BβB
βAµ ` BµBβAβ

¯

“ g2Jµpxqδpyq (2.14)

BCB
CAy “ 0 (2.15)

Fourier transforming with respect to xµ 2

Aµpx, yq “
ż

d4p

p2πq4
Ãµpp, yq eip¨x

2Wick rotation to Euclidean space is performed, so that p2 “ p24 ` p
2
1 ` p

2
2 ` p

2
3 with p4 “ ip0.
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Jµpx, yq “

ż

d4p

p2πq4
J̃µpp, yq e

ip¨x

yields

pp2
´ B

2
yqÃµpp, yq `

g2

e2
δpyq

´

p2Ãµpp, yq ` ipµBβÃβpp, yq
¯

“ g2J̃µppqδpyq (2.16)

pp2
´ B

2
yqÃypp, yq “ 0 (2.17)

Let’s multiply both sides of equation (2.16) by J̃µppq, using four-dimensional transver-
sality pµJ̃

µ “ 0 we obtain

pp2
´ B

2
yqfpy, pq `

g2p2

e2
δpyqfpy, pq “ g2J̃2δpyq (2.18)

where fpy, pq ” Ãµpy, pqJ̃
µppq.

For y ă 0 we get

fpy, pq “ Appqepy, y ă 0

for y ą 0

fpy, pq “ Bppqe´py, y ą 0

and from the continuity of the solution in y “ 0 follows Appq “ Bppq. Integrating
equation (2.18) from ´ε to `ε and then taking the limit for εÑ 0

Bppqp2p`
g2p2

e2
q “ g2J̃2
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and hence

Bppq “ e2J̃2 1

p2 ` 2pe2{g2

the solution to equation (2.16) then reads

Ãµpy, pqJ̃
µ
ppq “ e2J̃2 1

p2 ` 2pe2{g2
e´p|y| (2.19)

Taking the four-divergence of equation (2.14) and using BµJ
µ “ 0 we get

BµAµ “ 0

which, together with BCAC “ 0 entails

ByAy “ 0

from equation (2.15) follows

2Ay “ 0

which describes a four-dimensional massless scalar field, decoupled from the matter
fields localized on the brane. Hence from the point of view of a four-dimensional observer
we can forget about Ay and focus only on Aµ.

From (2.19), the propagator of the gauge field on the brane world-volume at y “ 0
takes the form:

Dµν “
ηµν

p2 ` 2e2p{g2
r1`Oppqs (2.20)
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Thus there are two distinct regimes with respect to the critical value of momentum
p˚ “ 2e2{g2. For small momenta, p ! p˚ (2.20) resembles the propagator of the five-
dimensional theory, in the limit of large momenta, p " p˚ the four-dimensional photon
propagator -in Feynman gauge- is recovered. It gets clearer to turn to coordinate space;
the effect of the propagator (2.20) on the interaction between two static probe charges
results [16]:

V prq9
1

r

´

sinp
r

r˚
qCip

r

r˚
q `

1

2
cosp

r

r˚
q

”

π ´ 2Sip
r

r˚
q

ı¯

(2.21)

where r “ |x| and

Cipzq ” γ ` lnpzq `

ż z

0

dt pcosptq ´ 1q{t, Sipzq ”

ż z

0

dt sinptq{t

γ „ 0.577 is the Euler-Mascheroni constant and the critical distance scale r˚ is de-
fined:

r˚ ” g2
{2e2

At short distances r ! r˚

V prq9
1

r

´π

2
`

”

´ 1` γ ` lnp
r

r˚
q

ı r

r˚
`Opr2

q

¯

As previously stated for p " p˚ the potential has the correct four-dimensional 1{r
scaling. At intermediate distances it is modified by a logarithmic repulsion term.

For r " r˚ the (2.21) becomes

V prq 9
1

r

´r˚
r
`Op

1

r2
q

¯

Thus, the large-distances potential scales as 1{r2, in accordance with five-dimensional
theory laws. The result has been interpreted as follows: a gauge field emitted by a source
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localized on the brane propagates along the brane but gradually dissipates in the bulk,
however the lower the frequency of the signal the faster it leaks in the extra space, this
phenomenon is referred to as ’infrared transparency’.
Consequently, r˚ represents the crossover scale between four dimensional and five di-
mensional theories. At first sight, the bound on its value is expected to be very severe,
at least comparable to the present Hubble size 3. This is due to the fact that the elec-
tromagnetic waves propagating over the cosmic distances, constantly detected, seem to
behave in a perfectly four-dimensional way. Surprisingly enough, the actual bound on
r˚ is rather mild; this is because of the phenomenon of ’infrared transparency’ according
to which the large wavelength radiation penetrates easier in extra dimensions. To see
this, consider an electromagnetic wave produced by a monochromatic source lµ located
on the brane:

Jµpx, yq „ lµ δpyq δ
p3q
pxqexppiωtq (2.22)

the corresponding wave equation is given in (2.14) with the right-handed side sub-
stituted by (2.22) and Ay set to zero. The induced world-volume contribution (the
second left-hand side term into equation(2.14)) is responsible for the existence of the two
regimes, without this the wave would behave as five-dimensional:

Aµ „ εµ
?
ω
eiωpt´Rq

R3{2
(2.23)

R being the five-dimensional radial coordinate. On the other hand, a four-dimensional
wave which propagates in the world-volume would be described by:

Aµ „ εµ
eiωpt´Rq

R
δpyq (2.24)

The crossover between the four-dimensional and five-dimensional behaviour can be
estimated, looking at the distance at which the two regimes become comparable i.e.

g2

e2
δpyqBµB

µ
´?

ω
eiωpt´Rq

R3{2

¯

|rω “ BµB
µ
´eiωpt´Rq

R
δpyq

¯

|rω

3The radius of a Hubble sphere (known as the Hubble length) is c{H0 „ 14ˆ 1012 ly where c is the
speed of light c „ 3 ˆ 108m{s and H0 „ 71.9 (Km/s)/MPc is the Hubble constant. The surface of a
Hubble sphere is called the microphysical horizon.
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which yields:

r „ rω „ ω r2
˚ (2.25)

Thus rω sets the distance below which the wave propagates as four-dimensional. The
waves with the frequency ω " r´1

˚ will propagate as four-dimensional waves over the
distances much larger than r˚. This suggests that even if the Coulomb law gets mod-
ified at relatively short distances, propagation of visible light at larger scales will still
look perfectly four-dimensional. For instance, assuming that the Coulomb law breaks
down beyond the solar system size, that is r˚ „ 1015 cm and considering the largest
wave-length radiation propagating over cosmic distances which has been detected so far,
i.e. the radio waves in a meter wave-length range ω „ 10´2cm´1, such radiation would
propagate according to the laws of four-dimensional physics over the distance scale

rradio „ 1028 cm

which is comparable to the size of the Universe 4. Thus, the Coulomb law might
break down at a scale of the solar system size and we would not even notice it!

4The diameter of the Universe is „ 91ˆ 1010 ly „ 1029cm.
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Chapter 3

Localization with two extra
dimensions

In this chapter we present a possible model for the localization of Abelian Gauge Fields
in p4` 2q dimensions. Compactification is dynamical, due to the existence of a topolog-
ical defect, a vortex solution, which models four-dimensional space-time. The approach
partially follows the one described in [15].

The main result is that, the field components associated with the four-dimensional
photon can be completely decoupled from the other fields, thanks to the gauge invari-
ance of the field equations together with the appearance of a mass hierarchy between the
fields, which sets a cut-off for the admissible energies range. This procedure though, will
not leave the photon massless. We add to the six-dimensional Lagrangian a finely tuned
mass term for the photon, in order to cancel the mass of the photon thus obtained. We
assume this extra mass term coming from Higgs mechanism, introducing an auxiliary
scalar field with vacuum expectation value appropriately chosen.

3.1 The vortex solution

Consider six dimensional Minkowski space-time Mp1,5q 1. A charged scalar field

ΦpxMq “ φ1px
M
q ` iφ2px

M
q

coupled, via the free parameter g, to an Abelian gauge field AMpxNq, is described by
the following Lagrangian:

1throughout the entire section M “ 0, 1, 2, 3, 5, 6 with xM “ pxµ, yaq and a “ 1, 2.

31
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L “ pDMΦqpDMΦq˚ ´
λ

2

´

|Φ|2 ´
v2

2

¯2

´
1

4
FMNF

MN (3.1)

λ, v are free positive parameters and

FMN ” BMAN ´ BNAM , DM ” BM ´ ig AM

define, respectively, the six-dimensional Abelian strength tensor and the gauge co-
variant derivative, so to ensure local Up1q gauge invariance

Φ Ñ Φ1 “ eigχ Φ

AM Ñ A1M “ AM ` BMχ

and

LÑ L1 “ L

for arbitrary choice of χpxMq.

According to the units system conventions, the following relations hold:

rΦs “ rvs “ cm´2, rA2
s “ cm´4

rgs “ cm, rλs “ cm2

The Euler-Lagrange field equations result:

$

’

’

&

’

’

%

DMpD
MΦq ` λp|Φ|2 ´ v2

2
qΦ “ 0

D˚MpD
MΦq˚ ` λp|Φ|2 ´ v2

2
qΦ˚ “ 0

BLF
LM ` igpΦ˚DMΦ´ pDMΦq˚Φq “ 0

(3.2)
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Alternatively equations (3.2) could have been derived varying the Action

S “
ż `8

´8

d4x

ż `8

´8

d2y L (3.3)

with respect to the fields Φ,Φ˚ and AM .

Because of the ’wrong’ mass sign in (3.1) 2, the minimum of the scalar potential is
reached for a non null value of the field Φ, namely

|Φ|2 “
v2

2
(3.4)

which defines a Up1q invariant set of degenerate vacua, with topology S1 -Figure 3.1.

The vacuum configuration thus results

|Φ|2 “
v2

2
_ AM “ 0

We could try to investigate the spectrum of this model, looking for stable time-
independent solution, with finite energy, other than the vacuum one [31; 32]. If this
exist, it will represent a lump of energy density known as a soliton Figure 3.2.

Let’s use the following ansatz for the scalar field, independent of xµ, and thus cylin-
drically symmetric [30]:

Φ0pρ, φq “
v
?

2
fpmρq einφ, n P Z{t0u (3.5)

where m is a parameter with dimension of a mass and fpmρq cannot be expressed in
terms of known functions but has the following behaviour -Figure 3.3-

2Expansion of Scalar Potential in (3.1) yields λv2{2|Φ|2´λ{2|Φ|4`λv4{8, thus we see that the mass
term appears with the unconventional plus sign.
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Figure 3.1: Sketch of the Potential functional V rΦs, the vacuum manifold is described
by |Φ|2 “ v2{2, configuration Φ “ 0 represents a local maximum.

$

&

%

ρÑ 0, f Ñ 0

ρÑ 8, f Ñ 1
(3.6)

The configuration (3.5) cannot be continuously deformed to the trivial vacuum one
because of the nonzero winding number n; an integer cannot change continuously and
thus the winding number must be preserved by smooth deformations of the fields that
keep the energy finite: it represents a topological invariant -see Appendix B. Starting
from a configuration with nonzero winding number we cannot reach the vacuum, which
has n “ 0, by means of a continuous transformation; since time evolution is continuous,
the winding number must be a constant of the motion. This constitutes a ’topological
conservation law’ because it’s not associated with any symmetry of the Lagrangian.
Solution (3.5) represents a string along the xµ direction and it’s known as Nielsen-Olesen
vortex. The lowest energy configuration corresponds to n “ 1 and represents a lump of
energy density surrounding the origin in the plane y1y2.
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Figure 3.2: Energy density distribution for a soliton-like configuration. Picture taken
from [30].

Figure 3.3: Sketch of the radial part of the vortex solution. Picture taken from [30].
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Having switched coordinates of the extra-dimensional space

pxµ, y1, y2
q Ñ pxµ, ρ, φq

with ρ P r0,8q, φ P r0, 2πs, and

$

&

%

ρ “
a

py1q2 ` py2q2

φ “ arctgpy
2

y1
q

the new metrics

gMN “

¨

˚

˚

˚

˚

˚

˚

˝

`1
´1

´1
´1

´1
´ρ2

˛

‹

‹

‹

‹

‹

‹

‚

leads to the following non null affine connection elements:

Γρφφ “ ´ρ Γφφρ “ Γφρφ “ 1{ρ

The generalization of Euler-Lagrange equations (3.2) to arbitrary coordinate systems
is:

$

’

’

’

’

&

’

’

’

’

%

DMpDMΦq ` λp|Φ|2 ´ v2

2
qΦ “ 0

D˚MpDMΦq˚ ` λp|Φ|2 ´ v2

2
qΦ˚ “ 0

∇MF
MN “ ´J N

the metric-covariant derivative ∇M , the metric-gauge-covariant derivative DM and
the gauge-covariant current JM being defined by:
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∇MV
N
” BMV

N
` ΓNMLV

L, DM ” ∇M ´ igAM

JM
” igpΦ˚DMΦ´ pDMΦq˚Φq

Thus we have

t∇M∇M
` λp|Φ|2 ´ v2

{2q ´ 2igAMBM ´ g
2A2

´ ig∇MA
M
uΦ “ 0 (3.7)

t∇M∇M
` λp|Φ|2 ´ v2

{2q ` 2igAMBM ´ g
2A2

` ig∇MA
M
uΦ˚ “ 0 (3.8)

t∇M∇M
` 2g2

|Φ|2uAµ ´ Bµ∇MA
M
“ ´jµ (3.9)

t∇M∇M
` ρ´2

` 2g2
|Φ|2uAρ ` 2ρ´1

BφA
φ
´ B

ρ∇MA
M
“ ´jρ (3.10)

t∇M∇M
´ 2ρ´1

Bρ ` 2g2
|Φ|2uAφ ´ 2ρ´3

BφA
ρ
´ B

φ∇MA
M
“ ´jφ (3.11)

where

BMB
M
” BµB

µ
´ B

2
ρ ´ ρ

´2
B

2
φ, ∇M∇M

” BMB
M
´

1

ρ
Bρ

∇MA
M
“ BMA

M
` ρ´1Aρ

and

jM ” igΦ˚
Ø

B
MΦ
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Substituting the vortex solution (3.5) into equations (3.7)-(3.11) leads to:

´m2f2 ´mρ´1f 1 ` n2ρ´2f `m2
f pf

2
´ 1qf ´ igpBMA

M
0 ` ρ´1Aρ0qf`

´ 2igmAρ0f
1
` 2gnAφ0f ´ g

2A2
0f “ 0 (3.12)

´m2f2 ´mρ´1f 1 ` n2ρ´2f `m2
f pf

2
´ 1qf ` igpBMA

M
0 ` ρ´1Aρ0qf`

` 2igmAρ0f
1
` 2gnAφ0f ´ g

2A2
0f “ 0 (3.13)

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ `m

2
0f

2
uAµ0 ´ B

µ
pBMA

M
0 ` ρ´1Aρ0q “ 0 (3.14)

t24 ´ B
2
ρ ´ ρ

´2
B

2
φ `m

2
0f

2
uAρ0 ` BρBMA

M
0 ` 2ρ´1

BφA
φ
0 “ 0 (3.15)

t24 ´ B
2
ρ ´ 3ρ´1

Bρ ´ ρ
´2
B

2
φ `m

2
0f

2
uAφ0 ´ 2ρ´3

BφA
ρ
0`

` ρ´2
BφpBMA

M
0 ` ρ´1Aρ0q “ ´nρ

´2 gv2f 2 (3.16)

Prime indicates derivative with respect to the argument and the following definitions
have been adopted: m2

f ” λv2{2 and m2
0 ” g2v2.

Because of the source term into equation (3.16) there exists a non null component of
the gauge field AM0 , the solution takes the form:

AM0 pρq “ ´
n

ρ2g
ηpmρq δMφ (3.17)

where ηpmρq has not an analytic expression but is defined by:



3.1. THE VORTEX SOLUTION 39

η2 ´
η1

mρ
`
m2

0

m2
f 2
p1´ ηq “ 0 (3.18)

We can understand the asymptotic behaviour of ηpmρq, taking the limit for small
and large values of ξ ” mρ, we also set m “ m0:

ξ Ñ 0, η2 ´
η1

ξ
„ 0 Ñ η „ a ξ2

ξ Ñ 8, η2 ` p1´ ηq „ 0 Ñ η „ 1

Where we have used the (3.6).

With AM0 given by (3.17), the (3.12) now reads:

f2 `
1

ξ
f 1 ´

n2

ξ2
p1´ ηq2f ´ βpf 2

´ 1qf “ 0 (3.19)

in the previous equation we have defined β ” m2
f{m

2
0 “ λ{2g2.

Hence:

ξ Ñ 0, f 2 `
1

ξ
f 1 ´

n2

ξ2
f „ 0 Ñ f „ b ξ|n| (3.20)

Numerical evaluation of equations (3.18) and (3.19) for the case n “ 1, is shown in
Figure 3.4.

The asymptotic behaviour f „ 1, η „ 1 can be made more precise [57].

Writing for ξ Ñ 8:

f Ñ 1` δf
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Figure 3.4: Numerical solutions of eq. (3.18) and (3.19). Picture taken from [32].

η Ñ 1` δη

equations (3.18), (3.19) ignoring quadratic terms in δf , read:

δη2 ´
δη1

ξ
´ δη “ 0 (3.21)

δf 2 `
δf 1

ξ
´
n2

ξ2
δη2

´ 2βδf “ 0 (3.22)

Using the following ansatz:

δη “ e´γξ ξαpcv1 `
cv2
ξ
q

with cv1 and cv2 arbitrary constants, the (3.21), collecting terms „ ξα and „ ξα´1 (the
„ ξα´2 and „ ξα´3 ones being negligible for ξ Ñ 8) becomes:

ξαtcv1pγ
2
´ 1qu “ 0
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ξα´1
tcv1γp1´ 2αq ` cv2pγ ´ 1qu “ 0

which yields:

γ “ 1 _ α “
1

2

and cv2 can be set to 0.

δη “ e´ξ ξ1{2cv (3.23)

Substituting (3.23) into (3.22):

δf 2 `
δf 1

ξ
´ 2βδf “ n2 e

´2ξ

ξ
pcvq2

The solution to the associated homogeneous equation can be obtained using the same
ansatz for δf :

δf “ e´γξ ξαpcs1 `
cs2
ξ2
q

Thus:

ξαtcs1pγ
2
´ 2βqu “ 0

ξα´1
tcs1γp1` 2αq ` cs2p2β ´ γ

2
qu “ 0

now:

γ “
a

2β _ α “ ´
1

2
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and

δf0 “ e´
?

2βξ ξ´1{2cs

The particular solution takes the form:

δfp “ cp n
2 e
´2ξ

ξ
pcvq2

where the constant cp “
1

4´2β
. The general solution reads:

δf “
e´
?

2βξ

?
ξ

cs ´ pcvq2 n2 e´2ξ

2pβ ´ 2qξ

with:

β ”
m2
f

m2
0

“
1

2

λv2

g2v2

Thus:

β
ă
„ 2, δf Ñ

e´
?

2βξ

?
ξ

cs

β ą 2, δf Ñ ´pcvq2 n2 e´2ξ

2pβ ´ 2qξ

For β “ 2, cv must be zero for δf being finite, this constitutes the threshold for the
production of a pair of scalar particles with mass m2

0 starting from a scalar particle with
mass m2

s “ λv2{2 i.e β „ 2 Ñ m2
s “ 2m2

0.

The total asymptotic behaviour results:
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ξ Ñ 0

f „ b ξ|n|, η „ a ξ2, a, b ą 0 (3.24)

ξ Ñ 8

f „ 1`
e´
?

2β ξ

ξ
cs ´ pcvq2 n2 e´2ξ

2pβ ´ 2qξ
, η „ 1` e´ξ pξq1{2cv

Further considerations on the stability of vortex solution (3.5) and (3.17) in terms of
the winding number and the value of β can be found in [32], here we only stress that for
the lowest energy configuration n “ 1 stability is guaranteed for every β.

3.2 Linearization of the field equations

Turning back to the equations (3.12)-(3.16) we define the background configuration to
be the Nielsen-Olesen vortex solution:

Φ0 “
v
?

2
fpm0ρq e

inφ
_ AM0 “ ´

n

ρ2g
ηpm0ρq δ

Mφ

Considering small fluctuations around this configuration, we can linearize the field
equations (3.7)-(3.11)

Φpx, ρ, φq “ Φ0 ` ϕ̃px.ρ, φq

AMpx, ρ, φq “ AM0 `AMpx.ρ, φq

with terms „ Opϕ̃2q, „ OpA2q and „ Opϕ̃Aq neglected, thus we get

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ `m

2
f p2f

2
´ 1q ` n2η2ρ´2

uϕ̃` 2inρ´2ηBφϕ̃`m
2
ff

2e2inφϕ̃˚ “

“ i 2´1{2m0fpBMAM ` ρ´1Aρqeinφ ` i
?

2m0AρBρfeinφ `
?

2nm0fpη ´ 1qAφeinφ (3.25)

‹ ‹ ‹
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t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ `m

2
f p2f

2
´ 1q ` n2η2ρ´2

uϕ̃˚ ´ 2inρ´2ηBφϕ̃
˚
`m2

ff
2e´2inφϕ̃ “

“ ´i 2´1{2m0fpBMAM ` ρ´1Aρqe´inφ ´ i
?

2m0AρBρfe´inφ `
?

2nm0fpη ´ 1qAφe´inφ
(3.26)

‹ ‹ ‹

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ ` 2g2

|Φ0|
2
uAµ ´ BµpBMAM ` ρ´1Aρq “ ´igtΦ˚0Bµϕ̃´Φ0B

µϕ̃˚u
(3.27)

‹ ‹ ‹

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ ` ρ

´2
` 2g2

|Φ0|
2
uAρ ` 2ρ´1

BφAφ`

` BρpBMAM `
1

ρ
Aρq “ ´igtrΦ˚0Bρϕ̃´ Φ0B

ρϕ̃˚s ` rϕ̃˚BρΦ0 ´ ϕ̃B
ρΦ˚0su (3.28)

‹ ‹ ‹

t24 ´ B
2
ρ ´ 3ρ´1

Bρ ´ ρ
´2
B

2
φ ` 2g2

|Φ0|
2
uAφ ´ 2ρ´3

BφAρ`

` ρ´2
BφpBMAM `

1

ρ
Aρq “ ´igtrΦ˚0Bφϕ̃´ Φ0B

φϕ̃˚s ` rϕ̃˚BφΦ0 ´ ϕ̃B
φΦ˚0su (3.29)

The first two equations suggest to set:

ϕ̃px, ρ, φq “ ϕpx, ρ, φqeinφ

ϕ̃˚px, ρ, φq “ ϕ˚px, ρ, φqe´inφ

so equations p3.25q, p3.26q now read:

einφt24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ ` n

2ρ´2
pη2
´ 1q2 `m2

f p2f
2
´ 1q ` 2inρ´2

pη ´ 1qBφuϕ`

`m2
ff

2ϕ˚einφ “ ti 2´1{2m0fpBMAM ` ρ´1Aρq ` i
?

2m0AρBρf `
?

2nm0fpη´ 1qAφueinφ
(3.30)
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‹ ‹ ‹

e´inφt24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ ` n

2ρ´2
pη ´ 1q2 `m2

f p2f
2
´ 1q ´ 2inρ´2

pη ´ 1qBφuϕ
˚

`m2
ff

2ϕ e´inφ “ t´i 2´1{2m0fpBMAM`ρ´1Aρq´i
?

2m0AρBρf`
?

2nm0fpη´1qAφue´inφ
(3.31)

Consider the Up1q gauge trasformation:

Φ Ñ Φ1 “ Φ eigχ

AM Ñ A1M “ AM ` BMχ

where χpx, ρ, φq is a small real scalar field of the same order of ϕ, so that we can drop
Opχ2q terms in the defining series of the exponential:

Φ1 « pΦ0 ` ϕ̃` igΦ0 χq “ p |Φ0| ` ϕ` i g|Φ0|χq e
inφ

A1M “ A0 M `AM ` BMχ

From the previous relations we see that the infinitesimal gauge transformation will
act on ϕ and AM in the following way:

#

ϕÑ ϕ` ig|Φ0|χ

AM Ñ AM ` BMχ
(3.32)

and because of gauge invariance of the Lagrangian, the field equations need to read
the same after this transformation is implemented.. To check this out, we must compare
the equations (3.25)-(3.29) with the ones transformed according to (3.32), for gauge in-
variance to apply the difference between the two, has to vanish.

From equation (3.25), after setting µ ” vg{
?

2 we obtain:
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t26 ` n
2ρ´2

pη ´ 1q2 `m2
f pf

2
´ 1q ` 2inρ´2

pη ´ 1qBφu iµfχ “

“ i µfpBMB
Mχ` ρ´1

B
ρχq ` i

?
2m0B

ρχ Bρf ´ ρ
´2
?

2nm0fpη ´ 1qBφχ

linear terms in Bφ cancel and we are left with

iµf 26 χ´ iµχtB
2
ρf ` ρ

´1
Bρf ´ n

2ρ´2
pη ´ 1q2f ´m2

f pf
2
´ 1qfu`

´2iµBρf Bρχ “ iµf 26χ´ i
?

2m0Bρχ Bρf

Recognizing between brackets the (3.19) -the background equation satisfied by f - the
previous equality holds for arbitrary fields χ.

Let’s check the remaining equations, from the (3.27) we get:

tBMB
M
´ ρ´1

Bρ ` 2g2
|Φ0|

2
uB

µχ´ BµpBMB
Mχ` ρ´1

B
ρχq “ 2µgf |Φ0|B

µχ

which is again true. Taking the (3.28):

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ ` ρ

´2
` 2g2

|Φ0|
2
uB

ρχ` 2ρ´1
BφB

φχ`

`BρpBMB
Mχ` ρ´1

B
ρχq “ 2g2

|Φ0| B
ρ
p|Φ0|χq ´ 2g2

|Φ0|χ B
ρ
|Φ0|

and then:

´Bρt24 ´ B
2
ρ ´ ρ

´2
B

2
φuχ` Bρpρ

´1
Bρχq ` ρ

´2
Bρχ` 2ρ´3

B
2
φχ`

`ρ´2
B
ρχ` 2g2

|Φ0|
2
B
ρχ´ 2ρ´3

B
2
φχ` BρBMB

Mχ` Bρpρ
´1
B
ρχq “ 2g2

|Φ0|
2
B
ρχ

Recalling that BMB
M “ 24 ´ B

2
ρ ´ ρ

´2B2
φ we see that all terms vanish.

Finally from equation (3.29):
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t24 ´ B
2
ρ ´ 3ρ´1

Bρ ´ ρ
´2
B

2
φ ` ρ

´2
` 2g2

|Φ0|
2
uB

φχ´ 2ρ´3
BφB

ρχ`

`ρ´2
BφpBMB

Mχ` ρ´1
B
ρχq “ 2g2

|Φ0| B
φ
p|Φ0|χq ´ 2g2

|Φ0|χ B
φ
|Φ0|

which gives

´ρ´2
Bφt24 ´ B

2
ρ ´ ρ

´2
B

2
φuχ` 2g2

|Φ0|
2
B
φχ´ 2ρ´3

BφB
ρχ`

`ρ´2
BφpBMB

Mχ` ρ´1
B
ρχq “ 2g2

|Φ0| B
φ
p|Φ0|χq ´ 2g2

|Φ0|χ B
φ
|Φ0|

again satisfied. We’ll use the trasformation (3.32) to simplify the field equations.

Let’s write equations (3.25)-(3.29) explicitly in terms of the real fields ϕ1 and ϕ2

ϕpx, ρ, φq “ ϕ1 ` i ϕ2

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ ` n

2ρ´2
pη ´ 1q2 `m2

f p3f
2
´ 1quϕ1`

´ 2npη ´ 1qρ´2
Bφ ϕ2 “

?
2nm0fpη ´ 1qAφ (3.33)

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ ` n

2ρ´2
pη ´ 1q2 `m2

f pf
2
´ 1quϕ2`

` 2npη ´ 1qρ´2
Bφ ϕ1 “

?
2m0AρBρf ` 2´1{2m0fpBMAM ` ρ´1Aρq (3.34)

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ `m

2
0f

2
uAµ ´ BµpBMAM ` ρ´1Aρq “

?
2m0fg

µν
Bν ϕ2 (3.35)

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ ` ρ

´2
`m2

0f
2
uAρ ` 2ρ´1

BφAφ`

` BρpBMAM ` ρ´1Aρq “
?

2m0tϕ2 Bρf ´ f Bρ ϕ2u (3.36)
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t24 ´ B
2
ρ ´ 3ρ´1

Bρ ` ρ
´2
B

2
φ `m

2
0f

2
uAφ ´ 2ρ´3

BφAρ`

` ρ´2
BφpBMAM ` ρ´1Aρq “ ´

?
2m0fρ

´2
tBφϕ2 ` 2nϕ1u (3.37)

Equation (3.33) can be rearranged, for ρ ‰ 0

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ ` n

2ρ´2
pη ´ 1q2 `m2

f p3f
2
´ 1quϕ1 “

“ ´
?

2npη ´ 1qfm0ρ
´2
tAφ ´ µ´1

Bφpϕ2{fqu

while from equation (3.34) we get:

pBMB
M
` ρ´1

B
ρ
qϕ2 ` tn

2ρ´2
pη ´ 1q2 `m2

f pf
2
´ 1quϕ2 ` 2nρ´2

pη ´ 1qBφϕ1 “

“
?

2m0AρBρf ` 2´1{2m0fpBMAM ` ρ´1Aρq

Using again the (3.19) for terms between brackets

pBMB
M
` ρ´1

B
ρ
qϕ2 ´ pBMB

Mf ` ρ´1
B
ρfqϕ2{f ` 2nρ´2

pη ´ 1qBφϕ1 “

“
?

2m0AρBρf ` 2´1{2m0fpBMAM ` ρ´1Aρq

and dividing both members by m0f{2
1{2 ” µf

1

µf
BMB

Mϕ2 `
1

µf

1

ρ
B
ρϕ2 ´

1

ρ2µ
ϕ2pBMB

Mf `
1

ρ
B
ρfq `

2n

µf

1

ρ2
pη ´ 1qBφϕ1 “

“
2

f
AρBρf ` pBMAM `

1

ρ
Aρq
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little manipulation yields

BMpAM ´ µ´1
B
M
pϕ2{fqq ´

2

µf 2
B
Mϕ2 BMf `

2

µf 3
B
Mf BMfϕ2 `

1

ρ
Aρ`

´
1

µf

1

ρ
B
ρϕ2 `

1

µf 2

1

ρ
pB
ρfqϕ2 ´

2n

µρ2

1

f
pη ´ 1qBφϕ1 `

2

f
AρBρf “ 0

and finally

BMpAM ´ µ´1
B
M
pϕ2{fqq `

1

ρ
pAρ ´ µ´1

B
ρ
pϕ2{fqq`

`
2

f
BρftAρ ´ µ´1

B
ρ
pϕ2{fqu ´

2n

µf

1

ρ2
pη ´ 1qBφϕ1 “ 0

We see that ϕ2 and AM appear always in the same combination AM ´µ´1BMpϕ2{fq,
this is another statement of gauge invariance of the field equations, by means of which
we can make the choice

χ “ ´µ´1
pϕ2{fq (3.38)

and drop explicit dependence on the field ϕ2.

$

&

%

ϕÑ ϕ1 “ ϕ1

AM Ñ A1M “ AM ´ µ´1BMpϕ2{fq

Note that in the bulk, for ξ " 1 and fpξq „ 1, the previous transformation is equiv-
alent to the Unitary gauge of the Higgs model with ϕ2 being the massless Goldstone
boson arising from the global Up1q symmetry breaking in the vacuum [58]; on the other
hand, the choice (3.38) is not well defined at the origin ξ “ 0 and hence we must assume
ϕ2 to vanish in the core of the vortex.

In terms of the new fields
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$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

ϕ1 “ ϕ1 “ ϕ11

ϕ12 “ 0

A1µ “ Aµ ´ pµfq´1 Bµϕ2

A1φ “ Aφ ´ pµfq´1 Bφϕ2

A1ρ “ Aρ ´ µ´1 Bρpϕ2{fq

equations (3.33)-(3.37) now read (neglecting primes):

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ ` n

2ρ´2
pη ´ 1q2 `m2

f p3f
2
´ 1quϕ “

“ ´
?

2npη ´ 1qfm0ρ
´2Aφ (3.39)

BMAM `
1

ρ
Aρ ` 2

f
BρfAρ ´

2n

µf

1

ρ2
pη ´ 1qBφϕ “ 0 (3.40)

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ `m

2
0f

2
uAµ ´ BµpBMAM ` ρ´1Aρq “ 0 (3.41)

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ ` ρ

´2
`m2

0f
2
uAρ ` 2ρ´1

BφAφ`

` BρpBMAM ` ρ´1Aρq “ 0 (3.42)

t24 ´ B
2
ρ ´ 3ρ´1

Bρ ´ ρ
´2
B

2
φ `m

2
0f

2
uAφ ´ 2ρ´3

BφAρ`

` ρ´2
BφpBMAM ` ρ´1Aρq “ ´2nm0f

?
2ρ´2ϕ (3.43)

Thus we have obtained four dynamical equations for the fields ϕ1, Aµ, Aρ and Aφ
and a constraint relation from the equation for ϕ2.
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3.3 Possible solutions

Let’s decompose the spatial components of the four-vector field Aµ into an irrotational
and solenoidal part -Appendix C-

AM “ pA0, BiA`Ai T ,Aρ,Aφq

where the transverse component satisfies by definition

BiAi T “ 0

using the ’constraint equation’ (3.40), we are left with

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ ` n

2ρ´2
pη ´ 1q2 `m2

f p3f
2
´ 1quϕ “

“ ´
?

2npη ´ 1qfm0ρ
´2Aφ (3.44)

B0A0
´∇2A` BρAρ ` BφAφ `

1

ρ
Aρ`

`
2

f
BρfAρ ´

2n

µf

1

ρ2
pη ´ 1qBφϕ “ 0 (3.45)

µ “ 0

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ `m

2
0f

2
uA0

`

`
2

f
Bρf B0Aρ ´

2n

µf

1

ρ2
pη ´ 1qB0Bφϕ “ 0 (3.46)

µ “ i
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t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ `m

2
0f

2
uAi T “ 0 (3.47)

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ `m

2
0f

2
uA`

`
2

f
BρfAρ ´

2n

µf

1

ρ2
pη ´ 1qBφϕ “ 0 (3.48)

Comparison between (3.46) and (3.48) shows that A0 and B0A solve the same equa-
tion, thus we identify

A0
“ B0A (3.49)

Indeed equation (3.45) can be inverted in terms of A, and once this is substituted
into (3.48) we loose any explicit dependence on it. This shows that A is not independent
grade of freedom, its dynamics can be derived from that of A0 and can be ignored.

The last equations for Aρ and Aφ are

t24 ´ B
2
ρ ´ ρ

´1
Bρ ´ ρ

´2
B

2
φ ` ρ

´2
`m2

0f
2
uAρ ` 2ρ´1

BφAφ`

´ Bρ t
2

f
BρfAρ ´

2n

µf

1

ρ2
pη ´ 1qBφϕu “ 0 (3.50)

t24 ´ B
2
ρ ´ 3ρ´1

Bρ ´ ρ
´2
B

2
φ `m

2
0f

2
uAφ ´ 2ρ´3

BφAρ`

´ ρ´2
Bφ t

2

f
BρfAρ ´

2n

µf

1

ρ2
pη ´ 1qBφϕu “ ´2nm0f

?
2ρ´2ϕ (3.51)

The Hamiltonian reads

H “
ż

d3x

ż

ρ dρ dφ T 00

with
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T 00
“ pB0ϕq

2
` |∇ϕ|2 ` rBρp

v
?

2
f ` ϕqs2 `

λ

2
rp
vf
?

2
` ϕq2 ´

v2

2
s
2
`

1

ρ2
pBφϕq

2
`

´tg2A2
0 ´ g

2A2
´ g2Aρ 2

´
1

ρ2
rnp1´ ηq ` gAφs2up

vf
?

2
` ϕq2

´ F 0M
B

0AM `
1

4
FMNF

MN (3.52)

For ρ Ñ 0 terms proportional to Bφϕ, BφAM will increase the value of the Hamilto-
nian; being interested in the configurations of minimal energy we can drop the angular
dependence on φ, this is equivalent to Kaluza ansatz -see Chapter 1- on Fourier expand-
ing the fields into a complete set of eigenfunctions in the domain r0, 2πs, and keep only
the zero modes; we also set n “ 1:

t24 ´ B
2
ρ ´

1

ρ
Bρ `

1

ρ2
pη ´ 1q2 `m2

f p3f
2
´ 1quϕ “ ´

?
2

ρ2
pη ´ 1qfm0Aφ (3.53)

t24 ´ B
2
ρ ´

1

ρ
Bρ `m

2
0f

2
uAi T “ 0 (3.54)

t24 ´ B
2
ρ ´

1

ρ
Bρ `m

2
0f

2
uA0

`
2

f
BρfB0Aρ “ 0 (3.55)

t24 ´ B
2
ρ ´

1

ρ
Bρ ` ρ

´2
`m2

0f
2
uAρ ´ Bρp

2

f
BρfAρq “ 0 (3.56)

t24 ´ B
2
ρ ´

3

ρ
Bρ `m

2
0f

2
uAφ “ ´2

?
2m0

ρ2
f ϕ (3.57)

The first and fifth equations above are decoupled from the other ones, and describe
the fluctuations of the background string solution.
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The second, third and fourth describe, from the four-dimensional point of view, the vec-
tor and scalar components of the photon and a scalar Aρ which acts as a source for the
scalar photon through the term 2f´1BρfB0Aρ.

Let’s recall that fpξq and ηpξq have the following behaviours at small and large values
of the variable ξ “ m0ρ:

fpξq „
ξÑ 0

b ξ _ ηpξq „
ξÑ0

a ξ2

fpξq „
ξ" 1

1 _ ηpξq „
ξ"1

1

and consider equations (3.54)-(3.56) only.

In the region ξ ! 1 these read

t
24

m2
0

´ B
2
ξ ´

1

ξ
Bξ ` b

2 ξ2
uAi T “ 0 (3.58)

t
24

m2
0

´ B
2
ξ ´

1

ξ
Bξ ` b

2 ξ2
uA0

`
2

m0ξ
B0Aρ “ 0 (3.59)

t
24

m2
0

´ B
2
ξ ´

3

ξ
Bξ `

3

ξ2
` b2ξ2

uAρ “ 0 (3.60)

While for ξ " 1 we have

t
24

m2
0

´ B
2
ξ ´

1

ξ
Bξ ` 1uAi T “ 0 (3.61)

t
24

m2
0

´ B
2
ξ ´

1

ξ
Bξ ` 1uA0

“ 0 (3.62)
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t
24

m2
0

´ B
2
ξ ´

1

ξ
Bξ `

1

ξ2
` 1uAρ “ 0 (3.63)

Let’s now consider equations (3.60) and (3.63) first, writing

Aρpx, ρq “ ΞpξqÂρpx, ρq

and substituting into (3.60)

qpξq p
24

m2
0

´ B
2
ξ qÂρ ´ Âρ

d2

dξ2
qpξq ´ 2

d

dξ
qpξq BξÂρ ´

3

ξ
Âρ d

dξ
qpξq`

´qpξq
3

ξ
BξÂρ ` p

3

ξ2
` b2 ξ2

qqpξq ÂρI “ 0

where qpξq ” limξÑ0 Ξpξq need to cancel terms propotional to BξÂρ

d

dξ
qpξq `

3

2ξ
qpξq “ 0 Ø qpξq “ ξ´3{2

and

ξ´3{2
p
24

m2
0

´ B
2
ξ `

15

4ξ2
` bξ2

qÂρ “ 0

Thus for 0 ă ξ ! 1 have:

p
24

m2
0

´ B
2
ξ ` V

ρ
eff pξqqÂ

ρ
“ 0 (3.64)

with

V ρ
eff pξq “

15

4

1

ξ2
` b2 ξ2
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Similarly, from equation (3.63) we get:

q1pξq
´

24

m2
0

´ B
2
ξ

¯

Âρ ´ Âρ d
2

dξ2
q1pξq ´ 2

d

dξ
q1pξqBξÂρ ´ Âρ

d

dξ
q1pξq`

´q1pξqBξÂρ ` q1pξqp1`
1

ξ
qÂρ “ 0

where q1pξq “ limξÑ8 Ξpξq. Hence

q1pξq “ ξ´1{2

and we obtain, for ξ " 1:

t
24

m2
0

´ B
2
ξ ` V

ρ
effuÂ

ρ
“ 0 (3.65)

with

V ρ
eff “ 1`

3

4

1

ξ2

Factoring out the eigenfunctions of 24 into (3.64) and (3.65), with free parameter m2
1

we get

Âρ „ eip
1¨xwm1pξq

where p12 “ m2
1.

We define k1 ” m2
1{m

2
0, and arrive to the following Schroedinger problem:
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´

´
d2

dξ2
` V ρ

eff pξq
¯

wm1 “ k1wm1 (3.66)

with:

V ρ
eff pξq „

$

’

&

’

%

15
4

1
ξ2
` b2ξ2, ξ ! 1

3
4

1
ξ2
` 1, ξ " 1

The effective potential diverges for ξ Ñ 0 -Figure 3.5, hence forcing the solution to
vanish at the origin. Furthermore we see that V ρ

eff pξq is always positive and bounded by
below by 1, thus from

k1 ąMinpV ρ
eff q

we can set k1 ą 1.

Let’s write the equations explicitly:

d2

dξ2
wIm1

´

´ 15

4ξ2
` b2ξ2

¯

wIm1
` k1w

I
m1
“ 0, ξ ! 1 (3.67)

d2

dξ2
wIIm1

´

´3

4

1

ξ2
` 1

¯

wIIm1
` k1w

II
m1
“ 0, ξ " 1 (3.68)

Where we have labeled the respective asymptotic solutions in the two regimes in or-
der to avoid confusion.

The general solution of equation (3.67) 3, wIm1
pρq is a linear combination of Hyperge-

ometric and Laguerre functions [9], the former diverge for ξ Ñ 0 and must be ignored,
then:

wIm1
“ D1 e

´b ξ2{2 ξ´3{2L rα,´2, b ξ2
s

3All computational analysis have been obtained with Wolfram Mathematica 11.
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with α “ k1´2b
4b

. Thus considering only the ξ depndece of the field Aρ:

Aρ9D1 e
´b ξ2{2 ξ´3L rα,´2, b ξ2

s, ξ ! 1

For ξ Ñ 8 from (3.68), recalling that k1 ą 1 we have:

t
d2

dξ2
` pk1 ´ 1quwIIm1

« 0

thus the solution is expressed in terms of plane waves

wIIm1
„ D3 exppiγ ξq, γ ”

a

k1 ´ 1

and

Aρ 9D3 ξ
´1{2 exppiγ ξq, ξ " 1

It turns out that Aρ describes, from the four-dimensional point of view, a massive
scalar field, non localized in the extra-dimensions and vanishing at the origin, with four-
dimensional mass m2

1 ą m2
0. This allows to say that for energies lower than m0 which can

be assumed to be of the order of mEW , Aρ is not dynamical and can be ignored in the
equation (3.59), where it appears as a source term for the scalar component A0. Under
this condition, the gauge field components associated to the four-dimensional photon i.e.
Aµpx, ρq, are completely decoupled and the corresponding equations potentially solvable.

Let’s then consider equations (3.59) and (3.62) assuming a cut-off „ m0 for the en-
ergy range.

t
24

m2
0

´ B
2
ξ ´

1

ξ
Bξ ` b

2 ξ2
uA0

“ 0, ξ ! 1

t
24

m2
0

´ B
2
ξ ´

1

ξ
Bξ ` 1uA0

“ 0, ξ " 1
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Figure 3.5: Effective potential for wm1pρq, in the region ξ ă 1.

Being separable with respect to the variables pxµ, ρq we can factor out the solutions
of Klein-Gordon equation with free parameter m2

2:

t24 `m
2
2uαpxq “ 0

which gives

A0
px, ρq „ eiqxRpρq

with q2 “ m2
2.

Setting k ” m2
2{m

2
0 we obtain the following asymptotic equations for Rpρq:

t´
d2

dξ2
´

1

ξ

d

dξ
` b2 ξ2

´ kuR “ 0, ξ ! 1 (3.69)
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t´
d2

dξ2
´

1

ξ

d

dξ
´ pk ´ 1quR “ 0, ξ " 1 (3.70)

We recognize the (3.69) to be the Schroedinger equation of an isotropic two-dimensional
harmonic oscillator in polar coordinates [10], with unitary mass, frequency ω ” b, energy
E ” k{2 and null angular momentum eigenvalue m “ 0 (from the absence of φ depen-
dence); the energy spectrum is given by

En “ bpn` 1q, n P N0

and hence

kn “ 2b pn` 1q, n P N0 (3.71)

with

Rnpξq “ Nn e´b
ξ2

2 L
1{2
n
2
pbξ2

q (3.72)

where Lpqpwq are the Laguerre polynomials and Nn a normalization constant.

We have to select the admissible values for kn. Let’s set

Rn “ hpξq rnpξq (3.73)

equation (3.69) becomes

h r
2I
n ` r

I
n h

2
` 2h1 r

1I
n `

1

ξ
rIn h

1
` h

1

ξ
r

1I
n ´ b

2 ξ2h rIn ` kn h r
I
n “ 0 (3.74)
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where hpξq is chosen so to cancel terms proportional to rInpξq

h1pξq `
1

2ξ
hpξq “ 0 Ø hpξq “ ξ´1{2

then equation (3.74) yields

ξ´1{2
t
d2

dξ2
`

1

4ξ2
´ b2 ξ2

` knu r
I
n “ 0 (3.75)

Analogously, substituting (3.73) into (3.70) gives

hpξq “ ξ´1{2

and

ξ´1{2
t
d2

dξ2
`

1

4ξ2
´ p1´ knqu r

II
n “ 0 (3.76)

Hence we arrive to the following Schroedinger problem for rnpξq, ξ ‰ 0:

´

´
d2

dξ2
` Veff pξq

¯

rn “ kn rn (3.77)

The effective potential cannot be expressed in terms of any analytic function, all we
know are the asymptotic behaviours for very small and very large value of the variable
ξ, namely:

Veff pξq „

$

’

&

’

%

V I
eff “ ´

1
4ξ2
` b2 ξ2, ξ ! 1

V II
eff “ ´

1
4ξ2
` 1, ξ " 1
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It turns out that bound states, if any, are possible only provided kn ă Veff p8q, from
the previous relations we should expect:

• kn ă 1, the problem might give rise to bound states

• kn ą 1, only continuum states are allowed

This is clear if we consider the limit ξ Ñ 8 of equation (3.77)

t
d2

dξ2
´ p1´ knqu r

II
n « 0

the solution falls down exponentially for kn ă 1 but results in plane waves for kn ą 1

$

’

&

’

%

rIIn pξq „ expp´βnξq, kn ă 1

rIIn pξq „ exppiβnξq, kn ą 1

with βn ”
a

|1´ kn|.

However having set m0 as the energies cut-off, it follows that condition kn ą 1 is
automatically excluded and only kn ă 1 may apply.

Turning to the spectrum (3.71) we find the following condition for the lowest energy
level to be a bound state:

k0 “ 2b ă 1 Ø b ă 1{2

The corresponding wave function

R0pξq „ N0 e
´b ξ

2

2
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Figure 3.6: Sketch of R0pξq for b “ 0.4.

is sketched in Figure (3.6).

Accordingly higher energy states with n ‰ 0 will be confined in the vortex core iff

kn “ 2 bp1` nq ă 1 (3.78)

The complete solution for A0, in absence of φ dependence reads:

A0
px, ρq “

n̄
ÿ

n“0

αpnqpxqRnpρq

where n̄ is the biggest value of n that satisfies (3.78) and:

Rnpρq «

$

’

&

’

%

e´b
ξ2

2 L
1{2
n
2
pbξ2q, ξ ! 1

e´
?

1´kn ξ ξ " 1
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Thus we have found a set of n̄ Kaluza-Klein modes localized in the extra-dimensions,
these are Gaussian like at small value of the variable ξ and exponentially vanishing at
infinity. Requiring b ă 1{2 guarantees that exists at least one bound state, namely n̄ “ 0,
where other values are admitted according to (3.78).

The lightest mode coefficient i.e. αp0qpxq is identified with the scalar potential of the
four-dimensional photon field, this however is not massless as we would wish, the mass
being:

m2
2,0 “ 2 bm2

0

The same analysis repeated for equations (3.58) and (3.61) shows that we can expand
Ai T px, ρq in terms of localized functions in the ξ dimension as well obtaining

Ai T px, ρq “
n̄
ÿ

n“0

αi pnqpxqVnpρq

with:

αi pnqpxq „ εippq eipx

where p2 “ m2
p,n and pi ¨ ε

i “ 0.

The lowest energy mode coefficient αi p0qpxq describes a three-dimensional vector field,
with two independent degrees of freedom because of the condition BiAi T “ 0, decoupled
from the other components of the gauge field AMpxNq as well as from ϕpxMq and local-
ized in the core of the vortex; this is thus identified with the vector field describing the
photon in the Coulomb gauge. As before, however, this mode has a non null value of the
four-dimensional mass m2

p,0 “ 2 bm2
0.

A possible way to recover the correct description of the photon field, could be the
introduction of a fine tuning mass that exactly cancel the zero mode one [20]. We can as-
sume this extra term coming from a Higgs mechanism, coupling the gauge field AMpxNq
to an auxiliary complex scalar field ψpxMq. If the Higgs vacuum expectation value is
suitably chosen, the gauge field can acquire the precise mass term needed. We leave the
details of proving that such a mechanism may occur, to a later work. Here we just point
out that the auxiliary field need to be a ghost, it must occur with a negative kinetic term
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in order for the gauge field to acquire the correct mass with a ’wrong’ minus sing. The
introduction of a ghost however, should’t rise new issues if its mass falls far outside the
theory energy range, and the instabilities can’t set and propagate.

Once the extra mass term is added, it will have the effect to decrease the fields po-
tentials of the same amount so that the hierarchy between the Aρ and A0,Ai T will not
be changed.

Equations (3.69) and (3.70) thus read

t´
d2

dξ2
´

1

ξ

d

dξ
` b2 ξ2

´ pkn ` 2bquRn “ 0, ξ ! 1

t´
d2

dξ2
´

1

ξ

d

dξ
´ pkn ` 2b´ 1quRn “ 0, ξ " 1

which together with (3.71), give

kn “ 2b n, n P N0

hence ensuring that the lightest mode with n “ 0 is actually massless.
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Conclusions

Theories with large and infinite extra dimensions look rather exotic, at least for the mo-
ment. Nevertheless the help they might offer to long lasting puzzles as well as to the con-
struction of new effective field theories, makes them far to be abandoned. In the present
work we have discussed different approaches for the localization of four-dimensional fields
in higher dimensional space-time, showing that under appropriate conditions the results
can be really encouraging. The main purpose however, has been to investigate a possible
mechanism for the localization of Abelian gauge fields, different from the one exposed in
[17].

Our starting point has been a model of scalar-QED in six dimensional space-time. The
emerging picture is that four-dimensional space-time, can be build in the core of a thin
six dimensional vortex, a topological defect, symmetric along the four usual coordinates,
which represents a stable solution of the scalar field equations, narrow in the extra
dimensions tyau with characteristic width „ m´1

0 . At perturbation level the scalar field
only interacts with the φ component of the gauge field, namelyAφpxNq, the corresponding
equations describe the fluctuations of the background vortex configuration; the remaining
gauge field components describe the scalar and vector six-dimensional photon A0pxNq,
Ai T pxNq together with a scalar fieldAρpxNq which acts as a source forA0. We found that
it is possible to define a low energy regime, where Aρ is not dynamical, while a localized
spectrum for A and Ai T is possible; this possibility is closely related to exact form of the
radial function entering the vortex solution fpξq, namely the value of b which gives the
slope of fpξq in proximity of the vortex core. The loosen condition for having just one
bound state reads b ă 1{2, where tighter values of b would allow to accommodate more
bound states. Conversely, Aρ doesn’t admit bound states in the extra dimensions and
represents from the four dimensional point of view a massive scalar field, the mass being
greater than m0. Setting m0 as an energy cut-off for the theory, permits thus to exclude
this non physical degree of freedom from the effective spectrum. The four dimensional
photon obtained with this procedure results localized, decoupled but massive though.
We suggest that a fine tuning, to exactly cancel this mass term, might occur, coupling
the six dimensional gauge field to an auxiliary scalar field in order to implement Higgs
mechanism. We don’t give any detail and leave the proof that such an occurrence may
take place for a future work.
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Appendix A

Gauss’ law in (4+n) dimensions

Consider an N -dimensional flat and infinite space-like manifold. The divergence theo-
rem, for any vector field g, reads:

ż

Ω

dNx div g “

ż

Σ

dN´1x ă g, n̂ ą (A.1)

where Ω is an arbitrary N -dimensional volume, Σ the enclosing surface and n̂ the
unit vector normal to the surface and pointing outward.

Assume gprq to be a radial function, r “
?
xixi and i “ 1, .., N , obeying Gauss’ law:

div g “ ´4πGN ρ (A.2)

ρ is the mass density and GN the N -dimensional generalization of Newton constant.

Choosing Ω “ BNprq and Σ “ SN´1prq, respectively the N -dimensional ball of radius
r and the enclosing N ´ 1 sphere and combining equations (A.1) and (A.2), we get [56]:

V ol pSN´1
prqqgprq “ ´4πGN M ûr

from the relation

V ol pSN´1
prqq “

2πN{2

ΓpN{2q
rN´1
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where M is the mass enclosed by BN , hence it follows

gprq “ ´K GN
M

rN´1
ûr

with K “ 1
ΓpN{2q

8πpN{2`1q.

From g “ ´gradpV q we find the gravitational potential:

V prq „ GN
M

rN´2

For the three dimensional ordinary space, N “ 3, we recover

gprq “ ´G3
M

r2
ûr

together with

V prq “ G3
M

r

Suppose the N -dimensional space-like manifold to be made by three flat and infi-
nite dimensions while the remaining n “ N ´ 3 extra-dimensions result compactified
into an n-dimensional sphere Sn of radius R [55]. The complete set of coordinates is
txi, yau, i “ 1, 2, 3 and a “ 4, ..., n:

n
ÿ

a“4

pyaq2 “ R2

At scales much smaller than the compactification radius R, we don’t resolve the
curved nature of the extra-coordinates, and space looks flat along all the N dimensions
Figure A.1. All coordinates are on an equal footing and the compact nature of the extra
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Figure A.1: Space schematically represented as mixture of three flat and n compact
dimensions, i “ 1, 2, 3 and a “ 4, .., n; the total dimensionality of the bulk is N . Flux
line is showed in red.

dimensions doesn’t affect the form of the gravitational potential.

From the previous calculations, it follows

V prq “ Gp3`nq
M

rn`1
, r ď R

where

r “
a

xixi ` yaya

At distances much larger than the characteristic scale of the extra-dimensions, Figure
A.2, the flux lines run predominantly along the flat dimensions, and we recover the usual
three-dimensional inverse distance law:
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Figure A.2: For xi " ya, contribution to the flux lines (in red) coming from the extra-
dimensions, can be ignored and volume and surface area are governed only by xi.

V prq “ G3
M

r
, r " R

where now

r “
a

xixi ` yaya «
?
xixi



Appendix B

Topological Defects

Consider a classical field theory with energy density T00 ě 0, such that T00 “ 0 ev-
erywhere for the ground states (or ’vacua’) of the theory. A solution of the classical
equations of motion is said to be dissipative if [32]

lim
t´ą8

maxxT00pt,xq “ 0 (B.1)

If the vacuum manifold V , the set of minima of the potential, contains non-contractible
n-spheres, then field configurations in pn`1q-spatial dimensions whose asymptotic values
as r Ñ 8 ’wrap around’ those spheres are necessarily non-dissipative, since continuity
of the scalar field guarantees that, at all times, at least in one point in space the scalar
potential (and thus the energy) will be non-zero. The region in space where energy is
localized is referred to as a topological defect. In three spatial dimensions, it is custom-
ary to use the names monopole, string 1 and domain wall to refer to defects that are
poin-tlike, one-dimensional or two-dimensional respectively.

In order to decide whether a theory, possesses non dissipative solutions, we need to
examine the topology of the vacuum manifold.

Let G be the Lagrangian symmetry group, and φ0 a point on V . Then

@g P G, gφ0 P V

1The names cosmic string and vortex are also common. Usually, ’vortex’ refers to the configuration
in two spatial dimensions, and ’string’ to the corresponding configuration in three spatial dimensions;
the adjective ’cosmic’ helps to distinguish them from the so-called fundamental strings or superstrings.
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Since many different elements g may yield the same point, it is convenient to intro-
duce the isotropy group H of φ0, as the set of all elements h P G such that

hφ0 “ φ0

Then

gφ0 “ g1φ0 Ø g1 “ gh, h P H

We say that the points of V are in one to one correspondence with the left cosets of
H in G i.e.

V “ G{H

In the case of vortex configuration, the asymptotic solution

φ̄pϕq “ lim
ρÑ8

φpρ, ϕq

build on φ0, i.e. φ̄p0q “ φ0, must define a non-contractible loop in V , a map from
S1 into V based at φ0, that cannot be shrunk to a point, so that the energy carried is
always non zero. Non-contractible loops are classified by the elements of the fundamen-
tal group, or first homotopy group of V , denoted π1pV , φ0q. Two loops based at φ0 are
homotopic if one can be smoothly deformed into the other without leaving V . This is
an equivalence relation; the equivalence classes, or homotopy classes of loops, are the
elements of π1pV , φ0q. These classes have a group structure: the identity is the class of
contractible loops, homotopic to the trivial loop which remains at φ0. The inverse is the
class comprising the same loops traversed in the reverse sense and the product is defined
by traversing two loops in succession.

If V is connected, then π1pV , φ0q does not depend on the base point φ0 and the first
homotopy group is often denoted simply by π1pVq. If π1pVq is trivial, comprising the
identity element only, then V is said to be simply connected. A necessary, but not suffi-
cient, condition for the existence of stable vortices is π1pVq to be non-trivial.
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If G is chosen to be simply connected (which can always be done by going to the
’universal covering group’), then an equivalent condition is that H contains disconnected
pieces. In the case of the Abelian model seen in Chapter 3, we must replace Up1q by its
covering group R, then the isotropy subgroup is the group Z of integers (transformations
with phase equal to a multiple of 2π) and

V “ R{Z “ S1

which is not simply connected. This suggests the existence of non dissipative solu-
tions, but there is certainly no guarantee. For example, all loops with non-zero winding
number n are non-contractible, but for β ą 1 and |n| ą 1, there are no stable vortices.

Cosmic strings and other topological defects are particularly interesting also from a
cosmological point of view because they might have been formed at phase transitions
in the very early history of the Universe. Like transitions in condensed matter systems,
these may have led to the formation of defects of one kind or another. In many cases,
such defects were stable for topological or other reasons and may therefore have survived,
a few of them even to the present day. If such defects existed, they would constitute a
uniquely direct connection to the highly energetic events of the early Universe [30].



76 APPENDIX B. TOPOLOGICAL DEFECTS



Appendix C

Decomposition of a vector field

Every vector field Apxq “ Apr, tq can be uniquely decomposed into longitudinal A||pr, tq
and transverse AKpr, tq components, as a consequence of Helmhotz theorem [60; 59] with
respectively:

∇ˆA|| “ 0, ∇ ¨AK “ 0

Starting from the tautology:

Apr, tq “

ż

dV 1Apr1, tqδpr´ r1q

together with the identity:

δpr´ r1q “ ´∇2
p1{4π|r´ r1|q

we get:

Apr, tq “ ´

ż

dV 1Apr1, tq∇2
p1{4π|r´ r1|q

Being the Laplacian a function of r we can invert the order and write:
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Apr, tq “ ´

ż

dV 1∇2
´

Apr1, tq {4π|r´ r1|
¯

and from the general relation valid for any vector field E

∇2E “ ´∇ˆ∇ˆ E`∇p∇ ¨ Eq

we arrive to:

Apr, tq “ A||pr.tq `AKpr, tq

where:

A||pr, tq “ ´∇
ż

dV 1∇ ¨
”

Apr1, tq{4π|r´ r1|
ı

(C.1)

AKpr, tq “ ∇ˆ
ż

dV 1∇ˆ
”

Apr1, tq{4π|r´ r1|
ı

(C.2)

using Fourier expansion:

1

4π|r´ r1|
“

1

p2πq3{2

ż

d3p
1

p2
exp

´

ippr´ r1q
¯

and substituting into (C.1), (C.2):

A||pr, tq “ ´∇2

ż

d3p

p2πq3{2
Ãpp, tq

p2
eipr
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AKpr, tq “ ∇ˆ∇ˆ
ż

d3p

p2πq3{2
Ãpp, tq

p2
eipr

This decomposition could have been obtained as well, making use of the longitudinal
and transverse delta functions δij

||
pr´ r1q and δijK pr´ r1q, which project out the respective

vector field components. In momentum space these read:

δij
||
ppq “ pipj{p2, δijK pp “ δij ´ p

ipj{p2
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