

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

DIPARTIMENTO DI INGEGNERIA CIVILE, CHIMICA, AMBIENTALE E DEI MATERIALI

CORSO DI LAUREA IN INGEGNERIA PER L’AMBIENTE E IL TERRITORIO
CURRICULUM EARTH RESOURCES ENGINEERING

TESI DI LAUREA

in
Petroleum Geosystem

HIGH-ENTHALPY GEOTHERMAL RESERVOIR MODEL CALIBRATION
USING PEST

CANDIDATO RELATORE:
Silvia Armani Chiar.mo Prof. Villiam Bortolotti

 CORRELATORE
 PhD Dr. Ester Maria Vasini

Anno Accademico 2015/2016

Sessione III

ABSTRACT

The main purpose of this thesis work is focused on the use of PEST (Parameter Estimation) to

calibrate numerical models of High Enthalpy Geothermal Reservoirs (HEGR). PEST is a

parameter estimation and analysis of the uncertainties of complex numerical models tool, that can

be instructed to work with a standalone simulator. So, the T2Well-EWASG was used as coupled

wellbore-reservoir simulator for multiphase-multicomponent HEGR. The idea of this thesis work

is that the possibility to implement some automation degrees in the wellbore-reservoir model

calibration task would improve substantially the Reservoir Engineers work. To become familiar

with PEST, it has been necessary a preliminary training to learn how to manage its input files, its

keywords, and the utility programs having the function of verifying the correctness and

consistency of the created files. Then, one of the examples of PEST manual (which Fortran

source code is supplied) was reproduced and analyzed, and subsequently modified. In particular,

starting from this example, a simple linear model with two free parameters, some changes have

been performed: "fixing" a parameter to inhibit its change during the calibration; reading a more

complex model output file respect to the original example; inserting dummy data that should not

be processed and instructing PEST to consider only the data of interest; changing the model

adding parameters to be calibrated, and including them in the analysis changing the PEST inputs

files. Finally, these skills were applied to use PEST with T2Well-EWASG to calibrate a

numerical model, relative to a real HEGR, previously calibrated via a trial and error approach in a

PhD thesis work. Among the real data used there were also short production-tests done in a

geothermal field located in the Dominica Commonwealth.

The preliminary results show that the PEST-T2Well-EWASG calibration system works fine, and

that it is a useful tool that can improve the work of reservoir engineering.

Contents
List of Figures .. 1

List of Tables .. 2

1.INTRODUCTION.. 5

1.1 System and model definitions and classification .. 5

1.2 Calibration of the model... 9

1.3 High enthalpy geothermal reservoirs ... 11

1.3.1 Geothermal energy .. 11

1.3.2 Locating high-enthalpy geothermal fields ... 14

1.3.3 The pros and cons, and future of geothermal energy .. 15

1.3.4 Generalities on the simulation of geothermal reservoirs .. 15

1.3.5 Problems related to the use of numerical models for the simulation of geothermal
reservoirs .. 17

1.4 T2Well in brief .. 18

1.4.1 Mass and energy balance and Drift Flux Model ... 19

1.4.2 EWASG module ... 21

1.4.3 Input and output files ... 21

2. PEST TOOLS ... 27

2.1 Model Input files and PEST template files ... 28

2.1.1 The parameter delimiter .. 29

2.1.2 Parameter names ... 30

2.1.3 Setting the Parameter Space Width ... 30

2.1.4 Preparing a Template File ... 31

2.2 Instruction files ... 31

2.2.1 How PEST Reads a Model Output File ... 32

2.2.2 The Marker Delimiter .. 32

2.2.3 Observation Names .. 33

2.2.4 The Instruction file keywords... 33

2.2.5 Creation of an Instruction File .. 38

2.3 The PEST control file ... 38

2.3.1 Parameter Groups Section .. 40

2.3.2 Parameter Data Section .. 41

3. ADDITIONAL USED TOOLS ... 45

3.1 G95 compiler and Fortran language ... 45

3.2 CodeBlocks .. 49

4. APPLICATION OF PEST .. 51

4.1 PEST example of a bilinear model .. 51

4.1.1 Calibration of fixed parameter .. 61

4.1.2 Modification of the example model ... 62

4.2. New extended example model ... 64

4.2.1. How to read a more complex output file .. 66

4.2 T2Well numerical model calibration: multilayer high enthalpy geothermal system 68

4.3 T2Well-PEST ... 71

CONCLUSIONS ... 83

References .. 85

1

List of Figures
Figure 1. General scheme of a model calibration .. 10
Figure 2. Summary scheme that relates all the notions linked to models explained in the
paragraph 1.1 and 1.2. ... 11
Figure 3. The geothermal gradient 12
Figure 4. World map showing variation in surface heat flow. .. 13
Figure 5. Different possible types of grids. ... 19
Figure 6. TOUGH2 input file example. ... 23
Figure 7. Example of PEST input file. .. 29
Figure 8. Example of PEST template file. ... 29
Figure 9. Example of Control file, extracted from PEST User Manual Part I, 2016. 40
Figure 10. Statements order that is required in a unit of a Fortran program. 46
Figure 11. The CodeBlocks user interface. ... 49
Figure 12. Data of file soilvol.dat fitted in two straight lines: the “residual shrinkage” segment
and the “normal shrinkage” segment. .. 52
Figure 13. Two line model parameters scheme. .. 53
Figure 14. The source code of the example model. ... 54
Figure 15. in.dat input file. .. 54
Figure 16. out.dat output file. .. 55
Figure 17. Template file in.tpl. .. 56
Figure 18. in.pmt file. .. 56
Figure 19. File in.par in which the values of SCALEs are all equal to 1.0, OFFSETs equal to 0.0
and PRECIS and DPOINT are ‘single point.’ ... 57
Figure 20. Instruction file out.ins. ... 57
Figure 21. File out.obf. .. 58
Figure 22. File measure.obf. .. 59
Figure 23. Control file twofit.pst. .. 59
Figure 24. Modified section of twofit.pst file. ... 60
Figure 25. Comparison of experiment results calculated in different ways. 61
Figure 26. Modified control file twofit.pst. In the red circle there is the PARTRANS modified of
parameter s1. .. 62
Figure 27. twofit.par changed after the modification of the control file. 62
Figure 28. Changes applied to the model code twoline.for. To notice the comments in red. 63
Figure 29. Modified twoline.for with two more parameters h and k. Highlighted in red the
changed steps. .. 65
Figure 30. New results from file out.dat. .. 66
Figure 31. File twofit.par. New values of parameters estimated with PEST. 66
Figure 32. Modified code for twoline.exe in order to have a more complex output file. 67
Figure 33. New format of output file out.dat after having modified the model executable
twoline.exe. .. 67

2

Figure 34. New version of file out.ins. .. 68
Figure 35. Conceptual model of the WW-01 well-reservoir system: it is possible to see the well
WW-01 and the formation ... 69
Figure 36. WW-01 wellbore-reservoir model 2D vertical section ... 70
Figure 37.Initial pressure and temperature conditions assumed for the wellbore-reservoir model
 .. 70
Figure 38. Comparison between measured and simulated flowing pressures.. 71
Figure 39. Input file for T2Well-PEST application. .. 73
Figure 40. PEST template file called WW-01_0.9.tpl. ... 73
Figure 41. File .pmt, where all the parameters names are listed, generated by using the utility tool
TEMPCHEK. ... 74
Figure 42. File .par, where all the parameters names and values are listed, generated by using the
utility tool TEMPCHEK. ... 74
Figure 43. FStatus_2.ins instruction file. ... 75
Figure 44. File FStatus_2.obf generated from INSCHEK tool. ... 76
Figure 45. File experimental_data.obf. .. 76
Figure 46. Control file generated with PESTGEN, called tough2_WW01.pst. 78
Figure 47. Final output file FStatus_2. .. 79
Figure 48. tough2_WW01.par containing the estimated parameters set. 80
Figure 49. Graph showing the matching between the experimental data, the manually simulated
dataset and the values obtained from PEST calibration.. ... 80

List of Tables
Table 1. Experimental data table.. 52
Table 2.Reservoir formation horizontal permeability as obtained by manual calibration of the
model. ... 71
Table 3. Correct values for the variation interval of the parameters. ... 72

3

4

5

1.INTRODUCTION

The calibration of a model (i.e. the research of the best values to be assigned to its parameters) is

a complex task that in general requires to spend a lot of work. This is particularly true in the field

of the reservoir engineering where the possibilities to have reliable measured data is rare because

of both the high measurement costs and the low reproducibility of measures. Moreover, a

reservoir model is characterized by a huge number of different parameters and often the data

refers to different measurement techniques using different measurement units. Well calibrated

models will produce robust and reliable simulations. Therefore, the possibility to have available a

reliable tool to automatize the process of calibration surely improve the task of the reservoir

engineer.

In particular, we are interested to work with wellbore-reservoir coupled high enthalpy geothermal

models. Therefore, we have used PEST (Model-Independent Parameter Estimation, a program

software for the parameter estimation and analysis of the uncertainties of environmental models

and in general of complex numerical models) coupled with T2Well-EWASG (a wellbore-

reservoir simulator, which uses the equation of state EWASG (Equation-of-State for Water, Salt

and Gas), dedicated to multiphase-multicomponent geothermal high enthalpy reservoir) to

enhance the calibration task. It is noteworthy to highlight that, PEST-T2Well-EWASG could be

also used to improve the interpretation of well-tests performed on geothermal reservoirs.

Before facing with the practical issues of coupling the PEST and T2Well and using their tools

and keywords, it is useful to briefly clarify some fundamental concepts, necessary for

understanding the concept of simulation in general. In particular, the meanings of the terms

system, process, model, numerical model, simulation, geothermal reservoirs, etc., will be defined.

1.1 System and model definitions and classification

The system is defined as an interacting set of parts which form an individual “body” that allows

the process (a transmission of energy, mass or information) to occur. In our case the system will

be a geothermal reservoir. Generally, system has two categories of properties that characterize its

6

behavior: parameters, properties of the system invariant respect to the time, and variables that

change through the time because of the interaction between the system and the external world.

An example of a parameter of an aquifer could be the compressibility of water, while a variable

could be the distribution of the water pressures inside the aquifer.

A system can be schematized as an entity, in which a process occurs, and that has relations with

the external environment through an input and an output. The output (or response) of the system

will depend on the actions that the external world exerts on the system (said inputs or

solicitations or perturbations) and on what happens within the system itself, that is its internal

state. The system output U(t) can be mathematically represented as a function f that depends on

another function that describes the internal state S(t), on a function that describes the external

solicitations I(t) and on a set the set of model parameters p1, p2, …, :

(ݐ)ܷ = ݂ሾܵ(ݐ), ,(ݐ)ܫ ,1 ,2 … ሿ (1.1)

In the case of geothermal aquifers, one input can be the start of production of vapor from the

production well with a defined flow rate; the response may be the pressure variation of the fluids,

while the internal state can be described by the distribution of the saturations, and the parameter

can be the porosity, the permeability etc., …, .

In real cases, it is very difficult or often impossible to properly know all the characteristics of a

system, or sometime it is impossible to work directly on the system itself, thus the system is

studied using a simplified version called model. The model includes exclusively the more

important aspects of the system that affect the analyzed problem. The model could be of different

types: physical model, that can be a scale model in which the elements of the system are

represented in scale; analog model, in which the system properties are represented through

different physical quantities or symbolic models where the system is represented by symbols that

can be handled. An example of symbolic model is the mathematical model in which equations

and functions are used to represent the system and that can be divided in two categories:

analytical and numerical models. Analytical models will provide, if any, an exact solution for the

system, while numerical models develop an approximate solution that is reasonably close to the

expected results. Given that very often it is impossible to find a solution of the analytical model,

the numerical one is the only tool to represent adequately the behavior of the system.

Moreover, the systems can be classified according to different criteria. In particular:

7

- According to the exchanges of matter and energy: a system is said open (from the

thermodynamic point of view) when it exchanges both matter and energy with the external

environment.

If the exchange of energy and matter is not allowed, it is said isolated, and if it is not allowed

only the exchange of matter, is said closed. The geothermal reservoirs, in general, are open

systems.

- Depending on the time variation of parameters: A system in which the same stress, repeated at

different times, produces the same output, is said invariant. It is, however, inevitable that the

parameters vary with time, as an effect of the aging process; the systems in which the parameters

vary in time are called variants. It is possible to assume, however, that, despite a system is

variant, the parameters that characterize it, are constants on sufficiently small time intervals. For

example, the porosity, on long time intervals can vary as a result of the compaction of the rock,

however it can be assumed that remains constant in a sufficiently short period of time, for

example over a period of a few months.

Thus it is the rate of change of the parameters compared with the speed of evolution of the

system which determines the invariance of the system.

- Depending on the time variation of variables: Depending on whether the variables that describe

the system are constant or not in time, the systems are defined: static or dynamic. For a system to

be defined as dynamic is sufficient that only one of the variables mutates over time.

- According to the values assumed by the variables: The type of variables of the system,

continuos or discrete, subdivides the system in continuous or discrete respectively. In the first

case the variables have a biunivocal correspondence with the real number set. In the second case

the variables have a biunivocal correspondence with the set of natural numbers, or with a finite

subset of them.

- Depending on the properties of relations: If the relationships between dependent variables and

independent variables allow the determination of the value of a dependent variable in a unique

way, the system is said deterministic. Otherwise, if the relationships among the dependent

variables and the independent ones require the adoption of statistical relations, it is called

stochastic or probabilistic system.

Lastly, observing the output of a system as a result of the input solicitations, the concept of

steady-state and transient can be defined. The steady state is the state in which the system has

8

finished its evolution and produces a constant output or tending asymptotically to a value, said

steady output. The transient state is instead the state in which the system is in evolution between

two states of regime and the output tends to stabilize towards the steady output of the second

state.

9

1.2 Calibration of the model

After the selection of the appropriate model to represent the system under investigation, there is

the interpretation phase, in which the system output data obtained from the preliminary tests are

interpreted using the model. This phase is used in important activities like the model calibration

and analysis of sensitivity and error propagation [Bortolotti, 2013].

More specifically, the calibration operation involves the estimation of the values of constants and

parameters regarding the model structure. In order to do this, it is necessary to compare the

observed variables with that of the output produced by the run of the model and to try to reduce

the discrepancies between the two set of variables. The observed variables are obtained from

experiments, thus in general, the estimation step looks for the values of parameters that have the

higher probability of being accurate taking into account the error tolerance: trial-and-error

method (general scheme shown in Figure 1).

This procedure could be implemented by hand, with severe limitation, or by means of specific

software. Another way to calibrate the model is to use parameters and constants values derived

from a different model estimation in another location similar to the currently studied area. This

last method should be utilized by experienced users only.

The sensitivity analysis is a procedure to identify the intensity of the model output especially as a

consequence of the variation of its parameters. In other words, the research of the parameters that

more influence the behavior of the model (and therefore of the system). This analysis is important

to figure out which laboratory measurements or in situ must be improved. Parameters that do not

affect significantly the model do not require to be measured or estimated with high precision.

While the error propagation analysis allows to study the impact of the uncertainty of parameter

values on the predictions made by models, through the analysis of the propagation of errors or

Monte Carlo simulation, which provides correlations between parameters.

10

Figure 1. General scheme of a model calibration [Taylor et al, 2012].

When a satisfactory estimation of the parameters of the considered model have been obtained, the

model should perform adequately the scope for which it was created, therefore its behavior must

be checked. This process of the verification of a calibrated model is called validation [Institute of

Transportation Engineers, 1992].

The conventional simulation technique determines the output of a calibrated model for a given set

of initial conditions and time history to obtain information regarding the system behavior in its

future evolution.

The inverse simulation is the reverse of the previous type of simulation, in fact in this case, the

time history of a selected system output variable is laid down and the algorithm of the inverse

simulation bring the investigator to calculate the time history of the corresponding input variable.

Inverse modeling, parameter estimation, history matching and model calibration are terms

essentially describing the same technique. They aim to assess the best model and its parameters

for predicting the behavior of a dynamic system [Finsterle, 2007].

In Figure 2 is shown a summary scheme that relates all these notions explained above.

11

Figure 2. Summary scheme that relates all the notions linked to models explained in the paragraph 1.1 and 1.2 [Baveye et al.,
2007].

1.3 High enthalpy geothermal reservoirs

1.3.1 Geothermal energy

Energy from the Earth's interior that flows through its surface is on average very low. Anyway, it

is sufficiently abundant to make it locally worth exploiting. In fact, only in the top 3 km of the

Earth's crust stores an estimated 4.3 × 107 EJ of thermal energy due to the rocks temperature and

their thermal capacity. The principal geothermal potential is from heat flowing through the crust.

Where geothermally heated, water rises to the surface in hot springs. Sometimes in this case, it

has been used directly for heating, recreational and horticultural purposes since Roman times,

while this type of energy was used indirectly for the first time when geothermally generated

electricity was produced in 1904 at Larderello, Italy.

The interior of the Earth becomes hotter with increasing depth for two reasons:

- heat is generated by the decay of some natural radioactive isotopes (uranium-238 and uranium-

235, thorium-232 and potassium-40);

- heat flows from the hot interior by means of convection and conduction.

The geothermal heat flows through the Earth determines a geothermal gradient (the rate at which

temperature increases with depth). The geothermal gradient variation beneath the continental

12

surface is shown in Figure 3, where it is possible to notice that temperature increases much more

with depth in the lithosphere than in the deep mantle.

Figure 3. The geothermal gradient, the temperature increases more rapidly with depth in the lithosphere than it does in the deep
mantle (http://www.open.edu/openlearn/science-maths-technology/science/environmental-science/energy-resources-geothermal-

energy/content-section-1).

Even if they are not melted rocks, rocks forming the deep mantle are hot enough to behave in a

ductile way. Parts of the hotter mantle rise slowly because they are slightly less dense than cooler

mantle, this is a physical transport of heat towards the surface. This process is called convection

and is an efficient means of heat transport.

Except at plate boundaries and hotspots convection, this method does not transfer heat in the

lithosphere. Instead heat is transferred by conduction, which is a far less efficient process than

convection, so the lithosphere acts as an insulating blanket (trapping the heat rising from below).

Harvesting geothermal energy depends on the relationship between heat flow through the

lithosphere and the local geothermal gradient.

The most favorable areas for geothermal exploitation seems to be those in volcanically active

regions, at destructive and constructive plate margins. It is less obvious that is also worth

exploiting some areas that are remote from volcanically active regions.

13

The local potential of geothermal energy is described by the enthalpy H of the area (total energy

content of the geothermal system that lies below it). The enthalpy of a system cannot be

measured directly: only a change or difference in energy has physical meaning. Enthalpy is a

thermodynamic potential, so in order to measure the enthalpy of a system, one must refer to a

defined reference point. Therefore, what is measured is the change in enthalpy, ΔH. At constant

pressure, the ΔH equals the energy transferred from the environment through heating (the heat

flow through the crust, measurable at the surface).

The equation of enthalpy is:

ܪ = ܷ + (1.2) ܸ

Where, U is the internal energy of the system, p is the pressure of the system, V is the volume of

the system.

The Figure 4 shows that large areas of the Earth's surface have basically the same heat flow.

However, the temperature at depth in the crust depends on how conductive the different rocks

are, and this in turn depends on their physical properties. This subsurface temperature is crucial in

evaluating whether or not an area constitutes a geothermal resource.

Figure 4. World map showing variation in surface heat flow in mW m−2in relation to continental and oceanic crust, and major

plate boundaries. The colors relate to the scale in mW m−2. There are areas in continents where heat flow does rise to very high

values, but they are too small to show on this map (http://www.open.edu/openlearn/science-maths-

technology/science/environmental-science/energy-resources-geothermal-energy/content-section-1).

In a general classification, there are three types of area with geothermal potential; those with

high, medium and low enthalpy.

 High-enthalpy areas are those where subterranean water and steam are at temperatures

greater than 180 °C;

14

 Medium-enthalpy areas those where temperatures range between the boiling temperature

of water (100 °C) and 180 °C;

 Low-enthalpy areas where temperatures are lower than 100 °C.

Using geothermal energy effectively speeds up heat flow and locally increases the heat lost by the

Earth. But geothermal heat is continually supplied, so hot water and steam are depleted faster

rather than the energy resource itself. However, if hot fluids removed are replaced by cold water

pumped to recharge the geothermal field, the cold water heats up again. Carefully managed

recharge enables the enthalpy of an area to be exploited continuously.

Geothermal fields usually need three characteristics to be exploited successfully:

1. An energy source to heat the fluids;

2. An aquifer, either natural or artificially created, to act as a reservoir for fluids that can

transport heat energy to the surface;

3. A cap rock with low permeability to seal in these geothermal fluids (in a similar way to the

trapping of petroleum). [Sheldon, 2005; Smith, 2005].

High- to medium-enthalpy geothermal resources are conventionally divided into water- or vapor-

dominated fields. Vapor-dominated systems where the steam is at high temperature and dry tend

to be the most economically viable geothermal resources, because the pV term in the enthalpy

equation is high. Vapor-dominated fields also suffer less from problems of corrosion from the

mineral-laden waters that are typical of deep aquifers. When such hot water passes through

pipelines, not only it is highly corrosive, but solids dissolved in it precipitate in the pipes as

temperature decreases, and could clog them, [Sheldon, 2005].

1.3.2 Locating high-enthalpy geothermal fields

The research of potentially useful geothermal fields is focused initially on locating rocks that

have been chemically altered by natural geothermal fluids, looking for obvious surface features

of geothermal activity (geysers and hot springs). Then, the fluid flow measurement through the

field permits the estimation of the probable economic potential of the reservoir.

After that a promising resource has been located, the exploration wells are drilled. However,

given the high pressures and temperatures typical of a geothermal resource, special precautions

must be taken. For example, once the drill stem penetrates a superheated water saturated zone,

15

the liquid will flash to steam as the pressure drops and this is very dangerous. The well head itself

is capped with valve gear to regulate the flow of fluids, and the whole assembly is then conveyed

to an electricity generating plant [Sheldon, 2005].

1.3.3 The pros and cons, and future of geothermal energy

If correctly exploited, the geothermal energy is renewable but the geothermal fluids emit gases

such as CO2, H2S, SO2, H2, CH4 and N2 when used for electricity generation. However,

geothermal power plants are usually sited in areas of natural geothermal activity, where such

emissions occur anyway. Other potential pollutants are various ions dissolved in the geothermal

fluids, but these are almost always returned to the reservoir when the spent fluids are re-injected.

Regarding safety, accidents are usually rare. Protracted geothermal exploitation can induce

ground subsidence, although this is minimized by re-injecting spent fluids. Small intensity

earthquakes can sometimes result from large-scale exploitation. Anyway, most high-enthalpy

geothermal areas are naturally predisposed to seismicity.

The main disadvantage of geothermal power generation is that suitable high-enthalpy areas are

geographically very restricted, many being in areas of low population density (or under the sea).

On the contrary, the low-enthalpy potential of normal heat flow is universal and potentially useful

for heating and even air conditioning, given the necessary investment.

In the short term, even twenty- to forty-fold growth in geothermal capacity will not result in it

being a significant contributor to global energy needs by 2020. Geothermal power plants are

generally much smaller than fossil-fuel and nuclear generators; tens of MW, rather than a few

GW for the biggest “conventional” plants. To replace a single GW fossil fuel power station

requires from 20 to 33 geothermal plants. The seeming benefit of local and 'environmentally

friendly' geothermal power generation, because of economic factors related to their construction,

delays its adoption at national to international scales [Sheldon, 2005].

1.3.4 Generalities on the simulation of geothermal reservoirs

The simulation of geothermal reservoirs is closely related to the one of the hydrocarbon

reservoirs, which began in the ‘50s. The simulation by means of numerical models of the

subsurface has rapidly evolved in recent years, thanks to the use of ever more advanced digital

techniques and the availability of computers with computing capabilities continuously growing. It

16

has also increased the demand for a quantitative estimation of movement and heat transfer

processes in the subsurface.

A good methodology in the creation of models allows one to increase the reliability of the

simulation results, in fact, the determination of the objectives of the operation at the start of the

modeling and the possible results, allows a more effective use of simulation [Bedient, 1999].

Moreover, although the simulation of a geothermal reservoir is often required by the competent

authorities to grant permissions to exploitation, it is often necessary to integrate a numerical

simulation with other tools in order to get a better analysis of the site on which it must operate.

A typical scheme of the project of numerical models is the following:

1. Definition of the simulation objective: for example, in the case of geothermal reservoirs can be

the prediction of the values of pressure and temperature as a result of putting into production of

new wells;

2. Development of a conceptual/geological model of the system (geometry, zoning, spatial

distribution of petrophysical properties, initial saturation in fluids and initial pressures, etc...);

3. Identification of the thermodynamic parameters of the fluids in the reservoir and their spatial

variations; definition of the curves of relative permeability and capillary pressure;

4. Choice of the equations that govern the processes and of a simulation software. Both must be

verified: the equations must describe the physical, thermodynamic, chemical and biological

processes that has been established to simulate, while the code, that implements these equations,

must be verified by comparing the numerical results with the analytical solution to a known

problem;

5. Definition of the grid ("mesh"): it defines the discretization in blocks of the system's spatial

domain. It must be appropriate to reproduce the volume occupied by the field, of the boundary

conditions and of particular conformations of the subsurface such as faults or fractures;

6. Model initialization: to each block are assigned the values of petrophysical parameters of the

rocks, and initial thermodynamic and fluid dynamic values of fluids present in the reservoir. The

combination of phase 5 to 6 constitute the so-called pre-processing, namely the creation of the

data needed to process the numerical model, which will be stored in a simulator input file;

7. Model calibration or history matching;

8. Sensitivity analysis;

9. Predicting the behavior of the model in terms of future programs of the reservoir cultivation, or

use in forecast mode. The analysis of results is also called post-processing;

17

10. Corrections and changes to the model according to the results of the simulations.

1.3.5 Problems related to the use of numerical models for the simulation of geothermal
reservoirs

A lack of the use of numerical models in the simulation of geothermal systems is that they require

large amounts of input data, which are often too expensive and difficult to obtain, so that often

either simplifying assumptions are made or values obtained from the literature are adopted, that

cannot be closely representative of the real properties of the reservoir.

The values of parameters measured in situ are intended as the average or total values of the area

involved (for example by means of pumping tests, transmissivity and storage coefficient of the

aquifer are obtained), which cannot reflect a particular local situation of the field. On the other

hand, values obtained in the laboratory (such as permeability or porosity) on cores, are only

representative of the area in which the sampling of the material has been made, which can have

very different characteristics from the surrounding areas.

The attempt to model a system, of which there are few data available, is the same a useful

operation as it allows one to identify areas where a greater number of information are needed,

increasing in this way the understanding of the reservoir [Bedient, 1999].

The need to have results in reduced times requires the use of very powerful computers and

therefore expensive; despite the adoption of the most powerful computers available on the

market, the detail of the grids cannot massively increase, as well as the precision of calculation,

all this to the detriment of the accuracy of the final results of the simulation.

The use of numerical models in the oil field has highlighted the need and the priority to focus the

efforts on finding the most likely geological model of the reservoir and its internal structure and

share the tasks, within the simulation team, in function of the individual skills [Chierici, 2004].

The calibration of the model, obtained by means of the solution of the so-called inverse problem,

allows to obtain a validated model; such model is not necessarily unique: they may exist in fact

several models (different distributions of parameters) that reproduce the past history of the

reservoir, but only one can be used as the real one.

Although the model validation phase is mandatory, it does not guarantee that the validated model

can forecast the future behavior of the reservoir [Chierici, 2004]. It is also no possible to prove

that the results of a simulation are correct [Bedient, 1999].

18

The sensitivity analysis is performed by varying, within a reasonable range, the values of one

parameter at a time and comparing the results of the series of simulations. This allows one to

determine the influence of the uncertainty of parameters on the final response of the simulation.

This procedure allows one to determine the most likely values of parameters; the studies of

sensitivity are the most realistic way of use of numerical models for the prediction of reservoirs

behavior [Chierici, 2004].

1.4 T2Well in brief

T2Well is a coupled wellbore-reservoir numerical simulator for non-isothermal, multiphase,

multicomponent flows. This software was created as an extension of the numerical reservoir

simulator TOUGH2 to calculate the flow simultaneously and efficiently in both the wellbore and

the reservoir, by introducing a special wellbore subdomain into the numerical grid. For the

wellbore subdomain grid-blocks, the 1D momentum equation of the mixture (which may be two-

phase) is solved as described by the Drift-Flux Model (DFM, explained later in paragraph 1.4.1),

[Pan and Oldenburg, 2012]. The equations are numerically solved with the Integrated Finite

Difference Method. The IFDM is a numerical method for approximating the solution to

differential equation using finite difference equations to approximate derivatives [Bortolotti,

2015]. This method is characterized by a geometrical grid constraint: the connecting segment

between the centers (or nodes) of two close blocks must be perpendicular to the interface between

the two blocks. Structured grids always satisfy this constraint, as the blocks are either cubes or

parallelepipeds or radial sections, whereas in case of unstructured grids, the Voronoi tessellation

must be used [Berry et al., 2014]. In Figure 5 are reported the different possible types of grids as

reported by Berry at al., 2014.

19

Figure 5. Different possible types of grids [Berry et al., 2014].

T2Well coupled with an adequate Equation of State (EOS), that manages the fluids

thermodynamic of the system, can be used to simulate the commonly exploited high enthalpy

geothermal systems. To deal with high enthalpy geothermal reservoir characterized by water,

salts and one non-condensable gas, T2Well was coupled with the EOS EWASG (Equation-of-

State for Water, Salt and Gas, see paragraph 1.4.2).

In the following subparagraphs, there will be both a generic explanation of the equations used by

T2Well and of the structure of its input and output files.

1.4.1 Mass and energy balance and Drift Flux Model

The equations for the mass and energy conservation used by T2Well have the same structure as

in TOUGH2:

ௗ

ௗ௧
 ݀ܯ ܸ = ࡲ ∙ ߁݀ + ݀ݍ ܸ௰

 (1.3)

Where Vn is the volume of an arbitrary element of the system and Γn is the closed surface that

bounds the element volume. On the left side of the equation 1.3, which is the accumulation term,

Mk represents the quantity of mass or energy per volume, where the label κ can assume 1,…,NK

values when it represents the mass components (that could be water, air, solutes or H2) and NK+1

20

values in energy balance case. On the right side, the vector n is the normal to the surface element

dΓn and Fk represents the mass or heat flux term, the second integral with qk denotes sinks and

sources terms [Pruess et al., 1999].

The main differences from the equations used for the porous media by TOUGH2 are in the

energy flux, energy accumulation and in the computation of phase velocity in the subdomains

representing the wellbore. T2Well uses the DFM briefly described in the following, to calculate

the velocity of both liquid and gaseous phases.

The DFM was first developed by Zuber and Findlay (1965) and it represents a valid alternative

for the two-phase flow study in a pipe. More in detail it is used for the phase velocities

determination without solving the equation of the momentum for each phase. This model is based

on some empirical constitutive relationships, in which all the variables must be considered either

as area-averaged or constant over a cross-section. The main relationship is the following

equation:

ீݒ = ݆ܥ + ௗ (1.4)ݒ

which establishes that the gas velocity Gv , can be related to the volumetric flux of the mixture j ,

and the drift velocity of the gas, dv , via the parameter 0C , named profile parameter, which takes

in account for the effect of local gas saturation and velocity profiles over the pipe cross-section

[Pan et al, 2011].

In the case of subdomain grid-blocks representing the wellbore, the 1D momentum equation of

the mixture, which may be two-phase, (liquid and gas for example) is solved according to the

DFM. Here the mixture velocity is calculated by solving numerically the momentum equation,

whereas the velocities of individual phases are calculated from the mixture velocity. More in

detail, the pressure gradient, gravity component, and time derivative of momentum are treated

fully implicitly, while the spatial gradient of momentum is treated explicitly. The friction term is

calculated with a mixed implicit-explicit scheme [Pan and Oldenburg, 2012].

21

1.4.2 EWASG module

Considering that geothermal fluids usually consist of complex mixtures of water, salts and gases,

and their thermodynamic and transport properties affect reservoir conditions and performance, as

mentioned before, the EWASG module was developed for the TOUGH2 multi-purpose

numerical reservoir simulator to handle three-component fluid mixtures of water, sodium

chloride and a slightly soluble non-condensable gas (NCG) [Battistelli et al., 1993; 1997].

Since 1999 EWASG has been available to the public within the TOUGH2 V.2.0 package [Pruess

et al., 1999]. Sodium chloride (NaCl), is used to simulate the effects of dissolved salts, whereas

the effects of one NCG were included following a general formulation in which the NCG can be

chosen by the user among a set of implemented NCGs (in the TOUGH2 V.2.0 package, the

NCGs available are CO2, CH4, H2, N2, air and O2 added more recently). So, the multi-phase

system is assumed to be composed of three mass components: water, sodium chloride, and one

NCG, (carbon dioxide for conventional geothermal applications).

All the relevant thermophysical properties are evaluated by means of a subroutine structure, so

that the correlations currently used can be easily modified as soon as more reliable experimental

data and correlations become available. It is assumed that the three phases (gaseous, liquid, and

solid) are in local chemical and thermal equilibrium, and that no chemical reactions take place

other than interphase mass transfer [Calore and Battistelli, 2003].

As mentioned before, the thermo-physical property correlations used in EWASG, are accurate for

different conditions of geothermal reservoirs, as an example, the fluid pressure can be up to 80

MPa, temperatures can vary in a range between 100 and 350°C, CO2 partial pressure can arrive

up to 10 MPa and salt mass fraction up to halite saturation.

1.4.3 Input and output files

Being T2Well based on the TOUGH2, their input files are very similar, however there are small

differences that will be explained in this paragraph. Let’s first describe shortly the TOUGH2

input file.

To characterize a flow system, TOUGH2 requires many data including hydrogeological

parameters and constitutive relations of the permeable medium, as relative and absolute

permeability, porosity, capillary pressure; fluids thermophysical properties, initial and boundary

22

conditions of the flow system, sink and sources. It requires also the specification of space-

discretized geometry, program options, computational parameters and time-stepping information.

All these data must be provided to TOUGH2 in one or more ASCII data files within a fixed

format with up to 80 characters per record. All the information is organized in blocks and

reported in the standard metric (SI) unit system.

Here below, the main keywords used in a typical TOUGH2 input file are described briefly (it is

possible to see the complete list of the input file and keywords in the TOUGH2 v.2.0 manual

[Pruess et al.,1999]):

- ROCKS describes the rock types providing also the hydrogeological parameters as porosity,

permeability, heat conductivity and specific heat…;

- ELEME and CONNE provide the mesh geometric information like nodes coordinates, areas of

interface; in ELEME the rock type for each grid block is also specified;

- MULTI specifies the fluid components number and grid block balance equations;

- SELEC provides the thermophysical properties data;

- PARAM defines all the parameters for the computation such as program options, time steps and

simulated time;

- GENER is used to define sources and sinks;

- INCOM and INDOM permit to define the initial conditions.

An arbitrary record, with arbitrary data, that do not start with a TOUGH2 keyword will be

ignored, permitting to directly insert comments in the input file. TOUGH2 will collect all these

comments and write them as records in the output file. Figure 6 shows a piece of a TOUGH

input file with all keywords explained before.

23

Figure 6. TOUGH2 input file example.

All the specific parameters of T2Well are stored under the keyword ROCKS, and they must be

introduced only for the wellbore ROCKS types, as follows:

ROCKS----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
wellb NAD 2600.0 1.0 1.0E-13 1.0E-13 1.0E-13 -2.1 1000.0
0.0 0.0 2.1 0.0 0.0
 1 0.2 0.1 0.9 0.7
 1 0.0 0.0 1.0
 NTEMP RWB UHT
 ZF(1) TF(1)
 ZF(2) TF(2)
…
 ZF(NTEMP) TF(NTEMP)

The first four record are the traditional ones, referring to the properties of the rocks (density,

porosity, permeability, thermal conductibility, in the first record specific heat, in the second

record pore compressibility and expansion, heat conductivity in desaturated conditions, tortuosity

factor and Klinkenberg parameter, in the third record relative permeability function parameters

and in the fourth record capillary pressure function). The new records follow and are read only if

NAD (first record, second field) is larger than 3. Thus, after the record of the capillary pressure, it

is possible to introduce the following parameters:

NTEMP: number of couples (cell depth; formation temperature) with which the code will

determine the corresponding formation temperature at the wellbore cell depth. If NTEMP is equal

24

to 0, the temperature of the formation is taken equal to the initial temperature of wellbore,

otherwise the code will read the couples depth-temperature in the following NTEMP records;

RWB (m): the completion radius;

UHT: the over-all heat transfer coefficient;

It is possible, by proper rock type introduction, to take into account different parts for the same

wellbore, characterized by different parameters, such as the wellbore and the completion radius,

the over-all heat transfer coefficient. Furthermore, characterizing the wellbore, for example, with

two different rocks type, it is possible to apply an analytical computation of heat exchange only

for a wellbore portion, for which, for modelling purpose, the surrounded formation must not be

explicitly modelled. In fact, the analytical computation of heat exchange between wellbore and

reservoir is possible only if the model is composed by the wellbore (no grid blocks of

surrounding formation) and it is activated if the thermal conductivity (CWET) of the wellbore

rock type is negative. With the keyword NAD it is possible to select the type of wellbore

reservoir heat exchange analytical relation [Vasini, 2016].

Regarding the main output file, here will be reported only a brief summary, for more details see

TOUGH2/ECO2N manual [Pruess, 2005].

The formats of the output file are basically the same as that of TOUGH2/ECO2N except that a

profile of velocities (of the mixture, gas, and liquid phase) in the wellbore is added next the

regular profile output (at user specified output steps). In addition, some informational outputs

regarding wellbore cells, connections, and their geometry features are also included in the front

of the main output file. In addition to the TOUGH2 output, T2Well gives two additional

information: FStatus and FFlow that are briefly described below together with the other files with

fixed name. These description are taken from the ”TWell/ECO2N Version 1.0: Multiphase and

Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable

Salinity Water” [Pan et al., 2011].

-FStatus: five status variables of each wellbore cell at every time step and depth: time, distance to

wellhead, gas saturation, mass fraction of CO2 in liquid, pressure, temperature, gas density;

- Fflow: five variables of each wellbore connection at every time step and depth: time, distance to

wellhead, liquid phase mass flow rate, gas phase mass flow rate, liquid phase velocity, gas phase

velocity, mixture velocity;

25

- FOFT: optional (transient output of state variables for user-specified cells in main input file.

First two variables are the index and the simulation time, respectively. They are followed by the

cell index and five variables at the cell in turn of each cell listed in FOFT section of the main

input file. The five variables are pressure, gas saturation, mass fraction of CO2 in liquid phase,

mass fraction of salt in liquid phase, and the temperature, respectively.);

- COFT: optional (transient output of flow rate and velocity for user-specified connections in

main input file. Data structure here are very similar to FOFT, except for that here the five

variables are gas phase mass flow rate, liquid phase mass flow rate, gas phase velocity, liquid

phase velocity, and total CO2 mass flow rate, respectively, for each connection listed in COFT

section in the main input file.);

- DOFT: a time series of total liquid and gas volume (see TOUGH2/ECO2N manual for details).

26

27

2. PEST TOOLS

The acronym PEST stands for Parameter Estimation and was originally created for model

calibration in which the parameter values are calculated with inverse modelling by matching the

output of the model to the values of measurements of the system state. PEST is different from the

others parameter estimation software because it works in a model-independent way, in fact PEST

interacts with the model through its own input and output files.

In a few words, PEST runs many times a executable program representing the model (program-

model in short) every time with different values of some parameters of a program-model in order

to minimize the difference from the output of the models and a set of experimental data.

Therefore PEST must be able to interact with the input and output files used by the program-

model.

PEST run a program-model through a call to the operating system (OS), process named system

call, that has the same effect as typing the model name in the command line window. For this

reason the program-model must be accessible to a user through the command line. In practice, the

folder in which the model is stored the program-model should be inserted in the PATH

environment variable of the OS so that the OS knows where to find it.

If a model prompts the user for keyboard input, then the process of calibration apparently seems

not to be automatable, but this situation can be easily accommodated. In fact the keyboard

responses to the model's prompts can be placed into a text file and the model will import the

answers from this file (see below for details). In this way, PEST can run the model without

needing any user involvement [Doherty, 2016].

Therefore using PEST it is possible to automatize the calibration of a generic model as long as its

executable is accessible and usable via a terminal way (command line approach).

More in detail, to execute a calibration run, PEST requires three types of input file:

 template files, in which all the parameters are defined for each input file of the studied

model;

 instruction files, one for each model output file on which model-generated observations

exist;

28

 control file, supplies PEST with all template and instruction files names, corresponding

model input and output files names, the problem size, control variables, initial parameter

values, measurement values and weights, etc. … .

Once having built these files, it is possible to use the utility programs TEMPCHEK, INSCHEK

and PESTCHEK to check both their correctness and consistency.

2.1 Model Input files and PEST template files

PEST provides a set of parameter values which it wants the model to use for a particular run.

These data are generally taken from the model input file.

Some models read their data from the terminal prompt, the user must supply these data in

response to model prompts, but this can also be done through a file. It is possible to redirect the

responses to the model, that the user has been previously written in a file, through the terminal

redirection < symbol (redirection is a form communication between process of a many OSs).

Therefore if the model in question is run using “model” command, and the responses are typed in

advance to a file named for example file.inp, then PEST can run the model without supplying the

terminal input using the command:

model < file.inp

If the file.inp contains some parameters that PEST must optimize, it is possible to create a

template for it as if it were any other model input file.

The template file instructs PEST to read the input files of the simulator and is necessary only for

those input files which contain parameters that require an estimation. Generally, an input file of a

model can be of any length, however PEST requires that it is less than 2000 characters in width.

The same applies to the template files and it is suggested that template files have to be provided

with “.tpl” extension in order to distinguish them from other file types. Basically a template file is

simply a model input file replica except that the space occupied by each parameter in the latter

file is replaced by a sequence of characters which identify the space that the parameter occupies.

The first line of a template file must contain the letters ptf (PEST template file) followed by a

parameter delimiter explained later. It is possible to see the examples of a PEST input file and its

relative PEST template file taken from PEST Manual in Figure 7 and Figure 8 respectively.

29

Figure 7. Example of PEST input file.

Figure 8. Example of PEST template file.

Both input and template file are necessary to create the PEST control file explained later.

2.1.1 The parameter delimiter

The parameter delimiter is the equivalent of the field format of Fortran, indicates the boundaries

in which PEST will read the input file of the model. The parameter delimiter is a single character

that follows the keyword “ptf” after a blank space in the PEST template file (# in Figure 8). In a

template file, a parameter space is identified as the set of characters limited by and including two

parameter delimiters. When PEST writes a model input file based on a template file, it replaces

all characters between and including these parameter delimiters by a number representing the

30

current value of the parameter that owns the space; that parameter is identified by name within

the parameter space, between the parameter delimiters.

The characters [a-z], [A-Z] and [0-9] are invalid to identify the parameter delimiter. The defined

parameter delimiter must appear nowhere within the template file except in its parameter

delimiter capacity, in fact wherever PEST finds that character in the template file it assumes that

it is delimiting a parameter space.

2.1.2 Parameter names

All parameters are referenced by a name, these references are necessary in template files (in

which the parameters locations on model input files are identified), in control file (where

parameter initial values and lower and upper bounds are provided), and in input files which

contains parameters that PEST has to process. Parameter names cannot exceed twelve characters

in length and are case-insensitive, moreover any characters is allowed except for the space

character and the parameter delimiter chosen previously.

Given that each parameter space is defined by two parameter delimiters, the parameter name to

which the space belongs must be written between the two delimiters.

2.1.3 Setting the Parameter Space Width

Numbers can be represented with greater precision in wider spaces than in narrower spaces,

anyway PEST can adjust to limited precision in parameters representation on model input files, as

long as sufficient precision is employed in order to distinguish a parameter value from the value

of that same parameter incremented for derivatives calculation. It could be useful to provide the

values of the parameters with as much precision as the model is able to read them with, in this

way they can be provided to the model with the same precision with which they have been

calculated by PEST.

Generally the numbers are read by the models either from the terminal or from an input file in

two different ways: namely from specified fields, or as a sequence of numbers (of any length);

the latter method is often referred to as free field input or as list-directed input. Notice how no

31

whitespace or comma is needed between numbers which are read using a field specifier. Very

often, a model input file is used as starting point for the construction of a template file. In such

input file, numbers are read using free field input and are often be written without trailing zeros,

for this reason during the construction of the template file it has to be recognized where there are

free field input numbers and consequently expand the parameter space (to the right) in respect to

the original number, leaving whitespace or a comma between successive spaces, or between a

parameter space and a neighboring character or number.

In a similar way, numbers read through field-specifying format statements may not occupy the

full field width in a model input file, in this case, during the template file compilation, it should

be necessary, again, to expand the parameter space beyond the extent of the number (here to the

left of the number only) until the space coincides with the field defined in the format specifier.

2.1.4 Preparing a Template File

The preparation of a template file is very simple procedure, in many models it is done just by

using a text editor, coping the input file and replacing the parameter numerical values with their

respective parameter space and name identifiers. As mentioned before, one time that the template

file has been created, its correctness can be checked using the TEMPCHECK utility program.

This program can also write a model input file which will be based on the template file and a

user-supplied list of parameter values. Then, if the model is run with the provided TEMPCHEK-

prepared input file, the model will not have difficulties in reading the PEST prepared input files.

2.2 Instruction files

For each output file of the model that contains observations, an instruction file has to be provided

to PEST in order to instruct the program to follow its directions which PEST must follow to read

that file. This instruction file has to have the extension “.ins”. The first line of a PEST instruction

file must begin with the three letters “pif” (PEST instruction file).

Remember that if an output file is more than 2000 characters in width, PEST will not read it. Pay

attention that given that the precision in the representation of model-generated observations is

32

essential, unlike the precision of parameter values, it is possible to vary with any control variables

the precision with which a model’s output data are written in order to have the maximum

available precision. Also this file together with input and template files is used to generate the

control file.

2.2.1 How PEST Reads a Model Output File

PEST must be taught how to read a model output file (that must be a text file) and identify the

numbers it must extract from that file. A list of instructions on how to find data on an output file

must be provided to PEST, instead of using a template for an output file.

Essentially, PEST acts in the same way as a person does. Both run eyes down the file looking for

something that is known, a marker properly selected to link to it the observations. In case of

simple models, more in detail single-purpose models where small development time has been

invested in highly descriptive output files, no markers are necessary, the default initial marker

will be the top of the file. It is possible to have either primary or secondary markers. PEST

employs primary marker to scan the model output file line by line, looking for a reference point

for subsequent observation identification or further scanning, while it uses a secondary marker as

a reference point given that a single line is examined from left to right.

2.2.2 The Marker Delimiter

The role of the marker delimiter in an instruction file is not unlike that of the parameter delimiter

in a template file, it must be placed just After the acronym “pif” and a single space and before the

first character of a text string comprising a marker and immediately after the last character of the

marker string and it has to define the extent of a marker. The portion of text between a pair of

marker delimiters is not interpreted by PEST as a set of instructions. The choice of the marker

delimiter is limited, in fact it cannot be one of the following characters: A - Z, a - z, 0 - 9, !, [,], (,

), :,&, the space or tab characters and it should not occur within the text of any markers as this

will cause confusion to PEST.

33

2.2.3 Observation Names

Each observation has to be provided with a unique name that must be twenty characters or less in

length. These characters can be any ASCII characters except for [,], (,), or the chosen marker

delimiter character. These same observation names must also be cited in the PEST control file

where measurement values and weights are provided. These rules do not apply to the dummy

observation name, “dum”; it can occur many time in an instruction file if necessary and signifies

to PEST that although the observation is to be located as if it were a normal observation, the

number corresponding to the dummy observation on the model output file is not actually matched

with any laboratory or field measurement. Thus, a “dum” observation must not appear in a PEST

control file where measurement values and observation weights are provided. The dummy

observation is simply a device for model output file navigation.

2.2.4 The Instruction file keywords

When an instruction file is created, it has to be provided with a precise and clear syntax which

must be followed exactly. The instruction items on a single line must be separated by at least one

space. Instructions in a single line of a model output file are written on a single line of the PEST

instruction file. So the new instruction line start implies that PEST must read at least another one

new model line of the output file, the number of lines that it has to read depends on the first

instruction on the new instruction line. If the first instruction on the new line is the character “&”,

that like the others instruction items has to be separated from its following instruction item by at

least one space, it means that the new instruction line is simply a continuation of the old one.

PEST reads the model output file in top-to-bottom (forward) direction and it is important to

remember that an instruction cannot direct PEST to read a previous line on the output file. Here

following are reported the main keywords for the instruction file:

34

Primary Marker

The primary marker has already been discussed briefly. On encountering a primary marker in an

instruction file PEST reads the model output file, line by line, looking for the string between the

marker delimiter characters. When it finds the string it places its “cursor” at the last character of

the string. If any other instruction as the primary marker on the same instruction line directs

PEST to further processing this line, that processing must pertain to parts of the model output file

line following the string identified as the primary marker. If in a primary (or secondary) marker

there are blank characters, exactly the same number is expected to match the string on the output

file of the model. It should be noted that despite the utility of markers, the search for a primary

marker is a very time-consuming process as each line of the model output must be individually

read and scanned for the marker.

Line Advance

The syntax for the line advance item is “ln” where n is the number of lines to advance. The line

advance item must be the first item of an instruction line; it and the primary marker are the only

two instruction items which can occupy this initial spot. Unlike the case of the primary markers,

in implementing a line advance, PEST does not have to examine the model output file lines while

it advances. It simply moves forward n lines, placing its processing cursor just before the

beginning of this new line, this point will become the new reference point for more processing of

the model output file. Generally a line advance command is followed by other instructions. If a

line advance item precedes the first instruction line of a PEST instruction file, the reference point

for line advance is taken as a “dummy” line just above the first line of the model output file.

Secondary Marker

A secondary marker is a marker which does not occupy the first position of a PEST instruction

line. Hence it instructs PEST to move its cursor along the current model output file line until it

finds the secondary marker string, and to place its cursor on the last character of that string ready

for subsequent processing of that line. If a particular secondary marker is preceded only by other

markers, and the text string corresponding to that secondary marker is not found on a model

output file line on which the previous markers’ strings have been located, PEST will assume that

it has not yet found the correct model output line and resume its search for a line which holds the

text from all the markers. When it will find a line with both primary and secondary markers, it

35

will commence the next instruction line execution. If any instruction items different from the

markers precede an unmatched secondary marker, PEST will consider that mismatch an error

condition and will stop the execution displaying an appropriate error message. Remember that

also the secondary markers may be used sequentially.

Whitespace

The whitespace instruction is similar to the secondary marker in that it allows the user to navigate

through a model output file line prior to reading a non-fixed observation. It directs PEST to move

its cursor forwards from its current position until it encounters the next blank character. PEST

then moves the cursor forward again until it finds a nonblank character, finally placing the cursor

on the blank character preceding this nonblank character ready for the next instruction. The

whitespace instruction is a simple “w”, separated from its neighboring instructions by at least one

blank space.

Tab

The tab instruction places the PEST cursor at a user-specified character position (i.e. column

number) on the model output file line which PEST is currently processing. The instruction syntax

is “tn” where n is the column number. The column number is obtained by counting character

positions (including blank characters) from the left side of any line, starting at 1. Like the

whitespace instruction, the tab instruction can be useful in navigating through a model output file

line prior to locating and reading a non-fixed observation.

Fixed Observations

First of all, it is necessary to specify that an observation reference can never be the first item on

an instruction line. As for the others instructions, if there are different observation on a particular

line of the model output file, these must be read from left to right and cannot be read backward

along the line. To identify observations it is possible to say to PEST that a particular observation

can be found between and also including columns n1 and n2 on the output file line of the model

where the cursor is resting at that moment. This is the best way to read an observation value

because PEST simply has to read a number from the space identified without doing any research.

This type of observations is called “fixed observations”. The instruction for PEST for reading a

36

fixed observation consists of two parts. The first part consists of the observation name between

square brackets, while the second one indicates the number of the first and last columns from

which to read the observation. These instructions must not be separated by a space because PEST

will interpret the space as the end of the instruction item.

When the model output is written in a tabular form using fixed field width specifiers, reading the

numbers as fixed observations is very useful. However it has to be remembered that the space

defined by the column numbers must be wide enough to accommodate the maximum length that

the number will occupy over the model runs for which PEST will read the output file. This space

must not be so wide to include parts of others numbers, otherwise an error will occur and PEST

will stop its execution with an appropriate error message.

If an instruction line contains only fixed observations whitespace or tabs are not necessary and

there will not any need for a secondary marker. This because these items are generally used for

navigating through a model output file line before reading a non-fixed observation (explained

later); in fact this navigation is not required to locate a fixed observation as its location on a

model output file line is defined without ambiguity by the column numbers included within the

fixed observation instruction.

Semi-Fixed Observations

Semi-fixed observations are very similar to fixed observations in that two numbers are provided

in the pertinent instruction item, this numbers purpose being to locate the observation’s position

by column number on the model output file. Nevertheless, differently from fixed observations,

these numbers do not locate precisely the observations; in fact when PEST finds a semi-fixed

observation instruction, it continues to the first of the two columns of interest and then it look for

the second the second identified column or a non-blank character in that output file line from left

to right starting from the previous column number. If PEST finds a non-blank character before

reaching the second column, an error condition will arise. By the way, if it finds a non-blank

character at the first of the two column numbers, it then locates the nearest whitespace on either

side of the character; in this way, it identifies one or a number of non-blank characters situated

between whitespace. It tries to read these characters as a number, being the value of the

observation named in the instruction of semi-fixed observation. The width of this number can be

greater than the difference between the column numbers cited in the instruction. As for fixed

observation, the instruction for reading a semi-fixed observation consists of two parts,

37

specifically observation name followed by two column numbers that must be in ascending order,

the latter being separated by a colon. To remember that for semi-fixed observations, the

observation name is enclosed in round brackets rather than square brackets and also here there

not must be space between the two parts of the instruction.

If, when reading the model output file, PEST encounters only whitespace between (and

including) the two nominated column numbers, or if it encounters non-numeric characters or two

number fragments separated by whitespace, an error condition will occur and PEST will

terminate execution with an appropriate error message.

It should be clear that for PEST is clearly more complicated to read a semi-fixed observation than

a fixed one because it must establish for itself the extent of the number that it has to read.

However it should be noted that it takes more effort for PEST to read a semi-fixed observation

than it does for it to read a fixed observation as PEST must establish for itself the extent of the

number that it must read.

Non-Fixed Observations

Differently from fixed and semi-fixed observations, non-fixed observation instruction does not

include any column numbers because the number which PEST must read is found using either

secondary markers, whitespace or/and tabs which precede the non-fixed observation on the

instruction line.

If, on a particular output file line, you do not know exactly where a model will write the

observation number, but you do know the structure of that line, then you can use this knowledge

to navigate your way to the number. In the instruction file of PEST, a non-fixed observation is

represented simply by the observation name surrounded by exclamation marks and no spaces that

separate these elements as for the others types of observations.

When PEST finds a non-fixed observation instruction it first searches forward from its current

cursor position until it finds a non-blank character; this character is assumed by PEST as the

beginning of the non-fixed observation number. Then PEST looks forward again until it finds

either a blank character, the end of the line, or the first character of a secondary marker which

follows the non-fixed observation instruction; thus PEST assumes that the non-fixed observation

number finishes at the previous character position. If it is unable to read a number because of the

presence of non-numeric characters or if it encounters the end of a line while looking for the

38

beginning of a non-fixed observation, PEST will stop the execution with a run-time error

message.

2.2.5 Creation of an Instruction File

In this file there are the command to instruct PEST to read the measured observation (pressure

and temperature profiles…) and simulated observation (PEST output variables). An instruction

file, as the others PEST input files, can be built using a text editor. In building an instruction set

to read a model output file it is necessary caution and attention, especially if markers, whitespace,

tabs and dummy observations are utilized. PEST will always follow the given instructions to the

letter, but it may not read exactly the desired number if an instruction is wrong. If PEST does not

find an observation number where it expects one during the reading of the file, a run-time error

will occur. To allow the user to find the problem, PEST will display of where it encountered the

error, and of the instruction it was implementing when the error occurred.

PEST utility program PESTCHEK during the check of all the input data of PEST before a PEST

run, reads all the instruction files cited in a PEST control file ensuring that no syntax errors are

present in any of these files. Whereas INSCHEK program, checks a single PEST instruction file

for syntax errors. If an instruction file is error-free, INSCHEK can then use that instruction file to

read a model output file, printing out a list of observation values read from that file. In this way

you can be sure that your instruction set “works” before it is actually used by PEST.

2.3 The PEST control file

In the control file there are the information and the characteristics for the parameter estimation.

For shortness not every variable appearing in the PEST control file will be discussed in the

following subparagraphs. Some keywords, and some entire sections of the PEST control file, are

discussed entirely in the PEST manual Part 1 (Chapter 4) where the aspects of PEST’s

functionality to which they pertain are presented in detail [Doherty, 2016].

Once template and instruction files have been prepared for a particular case, a PEST control file

must be prepared to keep everything together. Unlike template and instruction files, there are

some conventions associated with the PEST control file name. In fact, the file must have the

39

extension of “.pst”. Its filename base is referred to as the PEST “case name” herein; PEST uses

this same filename base for the files which it generates in the course of its run. For example, let

case represent this case name. The PEST control file is therefore named case.pst. As it runs,

PEST generates a set of files which all have this same filename base: case.rec (the run record

file), case.par (best parameter values), case.rst (contains restart information), case.jco (the

Jacobian matrix file) and others.

The PEST control file can be built in a number of ways. It can easily be prepared using a text

editor following the directions provided in the manual. Alternatively, it is possible to use the

PESTGEN utility to generate a PEST control file for the current case which uses default input

variables; this file can then be modified using a text editor. In all of these cases the PEST control

file can be checked for correctness and consistency using the PESTCHEK utility.

The first line of a PEST control file must contain only the string “pcf” (PEST control file). This

text is case-insensitive (as is all other text featured in a PEST control file).

The PEST control file consists of integer, real and character variables separated by spaces. The

value of each variable must be separated from its neighbor by at least one space. Real numbers

can be supplied with the minimum precision necessary to represent their values; the decimal

point does not need to be included if it is redundant. Note, however, that all real numbers are

stored internally by PEST as double precision numbers. The exponentiation is expressed using

the e symbol.

The PEST control file is subdivided into sections, each of which has a section header whose

name begins with the “*” character; a space must separate this character from the text which

follows it.

A simplified example of a PEST control file is presented in Figure 9. Here many optional

variables have been omitted.

40

Figure 9. Example of Control file, extracted from PEST User Manual Part I, 2016.

2.3.1 Parameter Groups Section

Every model parameter must belong to a parameter group; the group to which each parameter

belongs is supplied through the parameter-specific PARGP keyword supplied in the “parameter

data” section of the PEST control file. Each parameter group must possess a unique name of

twelve characters or less in length.

A tied or fixed parameter can be a member of a group; however, as derivatives are not calculated

with respect to such parameters, the group to which these parameters belong is of no significance.

Hence fixed or tied parameters can be assigned to the dummy group “none”. If a parameter is

41

assigned to any group other than “none” in the “parameter data” section of the PEST control file,

the properties for that group must be defined in the “parameter groups” section of the PEST

control file.

In the following part of the paragraph, there will be a description of only one keyword for the

parameter group that is PARGPNME because of its utility in the development of the elaborate.

The others several keywords, named INCTYP and DERINC, DERINCLB, FORCEN,

DERINCMUL,DERMTHD and SPLITHRESH, SPLITRELDIFF and SPLITACTION are

omitted here, but the complete description is present in the already cited PEST User Manual Part

I, 6th edition published in 2016 by Doherty.

The PARGPNME indicates the parameter group name. This must be a maximum of twelve

characters in length, but it is preferable to limit to six characters that length.

If a group is featured in the “parameter groups” section of a PEST control file it is not essential

that any parameters belong to that group. However if, in the “parameter data” section of the

PEST control file, a parameter is declared as belonging to a group that is not featured in the

“parameter groups” section of the PEST control file, an error condition will arise.

The parameter group name “none” is illegal. This name is only reserved for fixed and tied

parameters. However assignment of such parameters to the “none” group is actually not

recommended as you may want to untie or unfix them in the future. For this reason it is better to

assign them to a parameter group, even if the group-specific variables which govern derivatives

calculation have no meaning for these parameters [Doherty, 2016].

2.3.2 Parameter Data Section

For every parameter cited in a PEST template file, up to ten fields of instruction must be provided

in the PEST control file. On the contrary, every parameter in the PEST control file must be cited

at least once in a PEST template file.

The “parameter data” section of the PEST control file is divided into two parts; in the first part a

line must appear for each parameter. In the second part, a little extra data is supplied for tied

parameters (namely the name of the parameter to which each such tied parameter is linked). If

there are no tied parameters, the second part of the “parameter data” section of the PEST control

file is omitted.

42

Each item of parameter data is now shortly discussed, for more details see Paragraph 4.9 of PEST

manual v.1.

- The PARNME is the parameter name. Each parameter name has to be unique and of maximum

12 characters in length; it is also case insensitive.

- The PARTRANS is a keyword which must assume one of four values, that can be “none”, “log”,

“fixed” or “tied”.

If a parameter is fixed, taking no part in the inversion process, PARTRANS must be supplied as

“fixed”. If a parameter is linked to another parameter, PARTRANS value will be “tied”. In the

latter case the parameter plays only a limited role in the inversion process. However the

parameter to which the tied parameter is linked (this “parent” parameter must be neither fixed nor

tied itself) takes an active part in the inversion process. In fact the tied parameter is simply pulled

by the parent parameter, the value of the tied parameter will maintain at all times the same ratio

to the parent parameter as the ratio of their initial values.

If a parameter is neither fixed nor tied, the parameter transformation variable PARTRANS must

be supplied as “none”.

- The PARCHGLIM is used to designate whether an adjustable parameter is relative-limited,

factor-limited or absolute-limited. This parameter variable can be provided with a value of

“relative” or “factor” to designate that a parameter is subject to a relative limit or a factor limit

respectively. Alternatively, the string “absolute(N)” can replace “relative” or “factor” as the value

of the PARCHGLIM keyword, where N is a number between 1 and 10. If a parameter is tied or

fixed, its change limit is ignored.

- The PARVAL1 is a parameter’s initial value represented by a real variable. For a fixed

parameter, this value remains invariant during the inversion process. For a tied parameter, the

ratio of PARVAL1 to the parent parameter’s PARVAL1 sets the ratio between these two

parameters that is maintained throughout the inversion process.

Ideally the initial value of a parameter should be the pre-calibration estimate of the parameter’s

value based on expert knowledge alone. If a parameter has an initial value of zero, the parameter

can be neither a tied nor a parent parameter as the tied-parent parameter ratio cannot be

calculated.

- The PARLBND and PARUBND are two real variables representing respectively the lower and

the upper bound of a parameter. For adjustable parameters the initial parameter value

43

(PARVAL1) must lie between these two bounds. However for fixed and tied parameters the

values provided for PARLBND and PARUBND are ignored.

- The PARGP is the group name to which a parameter belongs. As derivatives are not calculated

with respect to fixed and tied parameters, PEST provides a dummy group name of “none” to

which such tied and fixed parameters can be assigned. Any group other than “none” which is

cited in the “parameter data” section of the PEST control file must be properly defined in the

“parameter groups” section of this file. It has to be remembered that for reasons discussed in

Paragraph 2.3.1, the parameter group “none” is not recommended practice for fixed and tied

parameters.

- The SCALE and OFFSET keywords allow the user to redefine the domain of the parameter. In

fact just before that the value of the parameter is written to a model input file, it is multiplied by

the real variable SCALE and after that the other real variable OFFSET is added. Since they

intervene on the parameter value at the last minute before it is written to the model input file, they

do not take part in the inversion process.

- The DERCOM variable should be set to 1 unless PEST’s external derivatives functionalities are

used.

44

45

3. ADDITIONAL USED TOOLS

In this chapter, there will be an explanation for each program useful and utilized for the following

coupling between T2Well and PEST software (Chapter 4).

More specifically, it is possible to find some basic information about G95 compiler, the Fortran

language and the program CodeBlocks.

3.1 G95 compiler and Fortran language

The G95 Fortran 95 is a free multi-operating systems compiler for Fortran language. An input file

is compiled according to its extension and this is determined by the G95 compiler. For Fortran

files, it is possible to have the following extensions: .f, .F, .for, .FOR, .f90, .F90, .f95, .F95, .f03

and .F03. These extensions determine whether the Fortran sources are to be considered as fixed

or free format. .f, .F, .for, and .FOR ending files are assumed to be fixed form, while .f90, .F90,

.f95, .F95, .f03 and .F03 extension are assumed to be treated as free source format.

The basic options for compiling Fortran sources with G95 compiler are:

-c : does not run the linker, compile only, for example, compiling in the command prompt:

g95 -c hello.f90: Compiles hello.f90 to an object file named hello.o;

-v : shows the actual programs invoked by G95 and their arguments, it is useful for tracking path

problems;

-o : specifies the output file name, that could be either the executable or an object file. In the

Windows systems, an .exe extension is automatically generated, if no output file name is

specified, a.exe is the default name in Windows systems. Writing in the command prompt:

g95 -o hello h1.f90 h2.f90 h3.f90: the compiler creates multiple source files and

links them together to an executable file named hello.exe.

Now, as regard the Fortran language, used to write the source example model, some basic

definitions are given together with the explanation of the basic and the most frequently utilized

keywords.

A Fortran program is formed by one or more program units. A program unit is generally a

sequence of statements that define the data environment and the necessary steps for the

calculations; it has to terminate by an END statement (statements concepts will be explained

46

later). A program unit can be either a main program, an external subprogram, a module, or a

block data program unit. An executable program includes always one main program, and,

optionally, other kinds of program units that can be separately compiled.

As regard the program statements, they are divided into two general classes: executable and non-

executable. An executable statement specifies an action to be performed, while a non-executable

statement describes program attributes, (arrangement and characteristics of data, editing and data-

conversion information,…). A Fortran statement cannot start with a digit.

The Figure 10 reported below, shows the statements order that is required in a unit of a Fortran

program. The vertical lines in the scheme separate statement types that can be alternated. The

statements types that are divided by horizontal lines cannot be interspersed.

Figure 10. Statements order that is required in a unit of a Fortran program [Intel® 2003-2004].

The PROGRAM statement is optional. The END statement is the only required part of a program.

In a program, source code could be in free, fixed, or tab form. Fixed or tab forms must not be in

the same source program with free form.

 In free source form, statements are not limited to specific positions on a source line. A

source line of a free form can contain from 0 to 132 characters and blank characters are

significant, exclamation point character (!) indicates a comment, moreover the ampersand

character (&) indicates a continuation line, (up to 39 continuation lines are permitted in

this programs…).

47

 In fixed and tab source forms, a statement can appear within a line with restrictions. By

default, a statement can occupy up to 72 characters, any text following position 72 is

ignored and no warning message is printed. Also in this form, the exclamation point

character (!), together with the letter C (or c) or an asterisk (*) indicate a comment. For

the comment character in these forms, it is possible to choose between several characters

(except 0 and blank) and up to 19 continuation lines are permitted using Fortran 95/90.

This statement marks the end of a program unit. In a program unit the END statement cannot be

continued, and no other statement in this unit can have an initial line that seems to be the END

statement program unit.

- The PARAMETER attribute defines a named constant and can be specified in a type declaration

statement or a PARAMETER statement. Real data types can be specified as follows:

REAL

REAL([KIND=]n)

REAL*n

DOUBLE PRECISION

Where n is kind 4, 8, or 16. If a kind parameter is specified, the real constant has the kind

specified, while if a kind parameter is not specified, the kind is default real: REAL(4). DOUBLE

PRECISION is REAL(8) and no kind parameter is permitted for data declared with this precision

type.

Integer data types can be written as follow:

INTEGER

INTEGER([KIND=]n)

INTEGER*n

Where n is kind 1, 2, 4, or 8. As in the real data type, if there is a specified kind parameter, the

integer has the kind specified, while if a kind parameter is not specified, integer constants can be

interpreted as reported: if the integer constant is within the default integer kind range, the kind is

default integer: INTEGER(4); whereas if the integer constant is outside the default integer kind

range, the kind of the integer constant is the smallest integer kind which holds the constant.

An integer constant is a whole number with no decimal point, which can have a leading sign and

can be interpreted as a decimal number. Integers are expressed in decimal values (base 10) by

default.

48

- The DO construct controls the repeated execution (loop) of a statements/constructs block. The

number of iterations of a loop can be specified in the initial DO statement in the construct, or the

number of iterations can be left indefinite by a simple DO ("DO forever") construct or DO

WHILE statement. The EXIT and CYCLE statements modify the loop execution. The former

statement terminates execution of a loop, while the latter terminates the execution of the loop

current iteration. If an error or end-of-file occurs, the DO construct terminates. The range of a DO

construct includes all the statements and constructs that follow the DO statement, up to and

including the terminal statement. If DO construct contains another construct, the inner construct

must be entirely contained in the DO construct.

- The CONTINUE statement is mainly used to terminate a DO construct when the construct

would otherwise end improperly with either a GO TO, arithmetic IF, or other prohibited control

statement. This simple statement does nothing by itself and do not have effect on execution

sequence of program results.

- The IF construct conditionally executes one block of statements or constructs, while the IF

statement conditionally executes one statement. The decision to transfer control or to execute the

statement or block is based on a logical expression evaluation within the IF statement/construct.

As a rule, if a construct name is specified at the beginning of an IF THEN statement, this same

name must appear in the corresponding END IF statement. The logical expressions are evaluated

in the order in which they appear, until an ELSE or END IF statement is encountered or a true

value is found. Once one of the above conditions are encountered, the block immediately

following it is executed and the construct execution terminates.

- The READ statement is a data transfer input statement. Data can be input either from external

sequential, direct-access records, or from internal records. The input data taken from the decided

type of record is transferred by the sequential READ statements.

- The OPEN statement connects a Fortran logical unit to a file or device and declares attributes

for read and write operations, more easily the OPEN statement connects an external file to a unit,

creating a new file and connecting it to a unit.

- The CLOSE Statement terminates the connection between a logical unit and a file or device, it

can also disconnect a file from a unit. The CLOSE statement specifiers can appear in any order,

the status specified in this statement supersedes the status specified in the OPEN statement. If this

statement is specified for a unit that is not open, it has no effect.

49

- The WRITE statement is a data transfer output statement. Data can be output to external

sequential or direct-access records, or to internal records. The statements can be formatted by

using format specifiers or namelist specifiers, or they can be unformatted [Intel® 2003-2004].

3.2 CodeBlocks

To improve the writing of a Fortran file source, it was used CodeBlocks, a free C, C++ and

Fortran IDE (Integrated Developed Environment) designed to be very extensible and fully

configurable. In fact it was built around a plugin framework in order to be extended with plugins

to add functionalities.

For example the function compiling and debugging is already provided by plugins.

In my work, CodeBlocks has been used to write the source and to build the executable of the

program-model used.

The CodeBlocks user interface is visible below in the Figure 11.

Figure 11. The CodeBlocks user interface.

Now, referring to the CodeBlocks manual v. 1.1 [Björklund et al.], it is possible to describe the

components of the interface:

50

 Management: this window contains the interface Projects which will be referred to as the

project view. To specify, a project can be defined as the set of command of IDE to create

starting from the source files the executable file. Here all the project opened in

CodeBlocks at a certain time are shown. Symbols tab in the Management window shows

all variables, symbols, etc…;

 Editor: In Figure 11 as an example, a source named hello.c is opened with syntax

highlighting in the editor.

 Open files list: a list of all files opened in the editor is shown, in this example: hello.c.

 CodeSnippets: here it is possible to manage text modules, links to urls and links to files.

It is possible to display this window via menu View → CodeSnippets;

 Logs & others: here search results, log messages of a compilers, bugs, etc… are output.

CodeBlocks offers a very flexible and comprehensive project management, for more details about

projects, template, scripts, etc… refer to the CodeBlocks v. 1.1 mentioned before.

51

4. APPLICATION OF PEST

In this chapter, will be showed some examples of the different acquired skills regarding PEST

using the example present in PEST User Manual Part I as step stone. In particular, the original

PEST example found in the manual has been modified in order to explore four different exercises

and to apply the acquired knowledge on more complex models, input and output files. The

objective of these modification is to approach the typical structure which will be found in the

T2Well files.

It will follow the description of the procedure of applying the acquired skills regarding PEST in

order to calibrate a numerical model on a real geothermal reservoir, previously already calibrated

manually with the trial-and-error method in the work of PhD thesis. The model simulates a

coupled wellbore-reservoir flow in geothermal systems using T2Well-EWASG as numerical

simulator. The aim is to make the simulation obtained using a specific model more objective

thanks to its automatic calibration using PEST. There will be first the description of the model

and of the results obtained by trial-and-error calibration, then the calibration procedure with

PEST software will be explained step by step (input files preparation, outputs, results analysis).

4.1 PEST example of a bilinear model

In this paragraph, it is reported the reproduction of an example extracted from the Chapter 18 of

PEST User manual part I, 6th Edition, [Doherty, 2016]. This example demonstrates step by step

the application of PEST to a practical problem in order to understand the procedure and the

functions of the software. Once PEST package has been downloaded on the computer, the files

that will be cited in this paragraphs can be found in a subfolder of the main PEST folder called

pestex.

The laboratory data of the example consist in the results of an experiment in which the specific

volume of a soil clod is measured at different water contents as the clod is desiccated through

oven heating. The experimental data are shown in Table 1. These data are visible also in the text

file soilvol.dat. It is possible to fit two straight lines to these data as displayed in Figure 12. In

soil physics, the lower slope straight segment fitted through the points of low water content is

52

referred as the “residual shrinkage” segment, while the other segment with the slope near unity is

considered the “normal shrinkage” segment.

Figure 12. Data of file soilvol.dat fitted in two straight lines: the “residual shrinkage” segment and the “normal shrinkage”

segment.

Table 1. Experimental data table.

Now, it is necessary to construct a model, that fits the experimental observations with the

analytical ones. Looking at Figure 13 it is possible to see two intersecting line segments. The

slope segment is named s1 for the first segment and s2 for the second one. Moreover, the intercept

of the first segment on the y-axis is y1 and the x-coordinate of the point of intersection of the two

line segments is xc. Thus, it is possible to write the system of equations for these two lines in the

following way:

ݕ = ଵݏ ∙ ݔ + ݔ ଵݕ ≤ ݔ

ݕ = ଶݏ ∙ ݔ + ଵݏ) − (ଶݏ ∙ ݔ + ݔ ଵݕ > ݔ

In which x is the water content and y the soil clod specific volume.

53

Figure 13. Two line model parameters scheme.

Based on this concept, I have written a simple Fortran program and build it with CodeBlocks to

have an executable version of it (twoline.exe). The source program has been called twoline.for

and is visible entirely in Figure 14 below.

54

Figure 14. The source code of the example model.

twoline.for starts reading an input file called in.dat which supplies it with values for s1, s2, y1, xc

and the water contents (x values in equations) at which soil clod specific volumes are required

and at the end writes a single output file (out.dat) listing both water contents and the specific

volumes calculated for these water contents.

The input file in.dat is shown in Figure 15 and the output file out.dat is visible in Figure 16

below.

Figure 15. in.dat input file.

55

Figure 16. out.dat output file.

The model twoline starting from its input file calculates the specific volumes of the soil clod

sample at water contents corresponding to our experimental dataset. Using PEST it possible to

adjust the model parameter in order to reduce the discrepancies between laboratory and model-

generated specific volumes as small as possible. In this case, the parameters are the four line

parameters, namely s1, s2, y1 and xc. Once the model is complete, the next task is to prepare the

twoline-PEST files.

The template file can be realized simply by copying the file in.dat in a file with extension .tpl

(called for example in.tpl) and modifying the latter by replacing the numeric value with the

appropriates parameter names. Moreover, the header line “ptf” has been added to the top of the

file. The template file in.tpl is shown in Figure 17.

56

Figure 17. Template file in.tpl.

twoline reads all the parameters using a free field format, so each parameter space width is not

critical; however, if two parameters are found on the same line, they must be separated by a

space. In this case the width of the parameters space is 13 characters in order to have the

maximum precision available for representing single precision numbers. Once in.tpl is ready, it

should be checked running the program TEMPCHEK writing in the command prompt:

tempchek in.tpl

TEMPCHEK writes a file in which all the parameters cited in file in.tpl are listed. This file will

be called in.pmt visible in Figure 18.

Figure 18. in.pmt file.

Now, by copying the file in.pmt to in.par and adding PEST parameter values, SCALEs and

OFFSETs to the listed parameter names, as well as values for the character variables PRECIS and

DPOINT, it is possible to create a PEST parameter value file. The Figure 19 shows this file.

57

Figure 19. File in.par in which the values of SCALEs are all equal to 1.0, OFFSETs equal to 0.0 and PRECIS and DPOINT are

‘single point.’

Given that in.par will be used shortly with the PESTGEN program to generate a PEST control

file, each parameter value supplied has to be the same as the initial parameter value to be used in

the process of parameter estimation. At this point, TEMPCHEK should be run again using the

command:

tempchek in.tpl in.dat in.par

When run using this command, TEMPCHEK generates file in.dat, the twoline input file, using

the parameter values provided in file in.par. twoline should then be run again, making sure that it

is read correctly.

Next the instruction file should be prepared. This can be easily accomplished using a text editor

by writing the instructions to a file named out.ins shown below in Figure 20.

Figure 20. Instruction file out.ins.

58

Using this instruction set, all model-generated observations are read as semi-fixed observations;

while they could have also been read as fixed observations but it is not known how wide a

number can be in the second column of file out.dat. The program INSCHEK should be used to

check that file out.ins contains a legal instruction set and this is done using the command:

inschek out.ins

If there are no errors, INSCHEK should be run again, this time directing it to read a twoline

output file using the instruction set and writing in the command prompt:

inschek out.ins out.dat

A file named out.obf will be produced by INSCHEK. In this files the values that it reads from the

file out.dat for the observations cited in file out.ins are listed. It is possible to view the file out.obf

in Figure 21.

Figure 21. File out.obf.

The PEST- twoline interface is now complete as PEST can now correctly act on the twoline input

file and read its output file. Now a PEST control file must be generated. This file must provide to

PEST an appropriate set of control variables and the values measured in laboratory of the specific

volume. First of all, the file out.obf has to be copied to file measure.obf then the values of model-

generated observations have to be replaced with the corresponding values from the Table 1 and

the form of the file measure.obf is as in Figure 22 here below.

59

Figure 22. File measure.obf.

Then run PESTGEN using the command:

pestgen twofit in.par measure.obf

With this command PESTGEN generates a PEST control file named twofit.pst; see Figure 23.

Figure 23. Control file twofit.pst.

60

File twofit.pst should now be edited because some of the default values used by PESTGEN in

writing this file are not appropriate to the problem. In particular, it is necessary rename the

default name of the model (from model to twoline); the filenames listed in the model input/output

section of twofit.pst need to be modified as well. The Figure 24 lists that part of twofit.pst to

which the correction have been made.

Figure 24. Modified section of twofit.pst file.

Once these changes have been made, the preparation for the PEST run is complete. As a final

check for completeness, correctness and consistency of the entire PEST input dataset, program

PESTCHEK should be run using the command:

pestchek twofit

If all is correct, finally PEST can be run using the command:

pest twofit

In the pestex subfolder PEST writes a run record file, twofit.rec, and file, twofit.par, containing

the estimated parameter set. In Figure 25 the lines of best fit superimposed on the laboratory data

are shown.

61

Figure 25. Comparison of experiment results calculated in different ways.

4.1.1 Calibration of fixed parameter

In general, it is useful to have the possibility to instruct PEST to work with model in which only a

subset of the model parameters must be calibrated.

Therefore, the example of paragraph 4.1 has been modified in order to fix a parameter. In this

case files in.dat, in.tpl, in.pmt, in.par, out.dat, out.ins, out.obf and measure.obf have been

unchanged from the starting example. The only file that has been modified is the twofit.pst. In

particular, it has been changed only the PARTRANS of the parameter s1 from “none” to “fixed”

as shown in Figure 26. With this change, PEST will run to estimate all the others parameters as

s2, y1 and xc except s1. After having saved the new version of file twofit.pst and checked it

correctness with PESTCHEK as in the example, PEST has been run.

62

Figure 26. Modified control file twofit.pst. In the red circle there is the PARTRANS modified of parameter s1.

At the end of the estimation, it is possible to find in the work folder, called “s1_fisso”, the file

twofit.par containing the new estimated parameter set reported in Figure 27.

Figure 27. twofit.par changed after the modification of the control file.

As it is possible to notice from Figure 27, the applied change worked properly, in fact the

parameter s1 remained fixed to its initial value and the other three parameters changed according

to the calibration run.

4.1.2 Modification of the example model

In order continue the acquisition of new skills on the use of PEST, the file twoline.for has been

modified, with the program CodeBlocks, adding two more parameters.

63

In particular, the example of paragraph 4.1 has been modified in order to use PEST with a more

complex output file respect to the original one using the skills acquired before in Chapter 2.

In particular, the command write and format of the code have been changed as if PEST read the

numbers in fixed field of 15 characters instead of variable field. Moreover the indentation of the

code has been shifted to the right of 6 spaces just as the Fortran language requires. In Figure 28,

it is possible to see only the extract of the code where the change to the field has been applied. In

particular, referring to line 61 and line 64 to see the modified code lines.

Figure 28. Changes applied to the model code twoline.for. To notice the comments in red.

After that, the twoline.for code has been saved in executable form by using the G95 compiler and

its option “- c” by writing in the command prompt the following:

g95 –c twoline.for

Finally, the model with its input file in.dat has been run to check if the applied changes were

correct. Having verified that, PEST has been run as in the original example in Paragraph 4.1 and

thus the results are the same.

64

4.2. New extended example model

In this part of the chapter, two more parameters have been added to the model file in order to

instruct PEST to read a more complex model with several parameters to estimate. Again, for

doing this, the file twoline.for has been modified with the program CodeBlocks as it is visible in

Figure 29 adding the parameter h and k.

65

Figure 29. Modified twoline.for with two more parameters h and k. Highlighted in red the changed steps.

More in detail, note that the parameters h and k have been added as real variables as the others

parameters of the model. Also the number of significant digits is the same than the original four

parameters. Then the two new parameters have been added in the equations solving the model

system trying not to complicate too much the resolution (Figure 29). Moreover the indentation of

the code has been shifted to the right of 6 spaces just as the Fortran language requires. After that,

the new version of twoline.for code has been saved in executable form by using the G95 compiler

and its option “- c” by writing in the command prompt the following:

g95 –c twoline.for

Finally, the model with its input file in.dat has been run to check if the applied changes were

correct. Having verified that, PEST has been run as in the original example in Paragraph 3.4 but

modifying all its input files. The initial assigned value for the parameters h and k was 1.0. All the

procedure for preparing PEST has been the same involving also all the utility programs to check

the consistency. At the end of PEST estimation, the values of the output file and of the

parameters estimated were of course different from the originals results of the example in

Paragraph 4.1. The new values are reported below in Figure 29 for the outputs taken from file

out.dat and in Figure 30 for the parameters values extracted from twofit.par file.

66

Figure 30. New results from file out.dat.

Figure 31. File twofit.par. New values of parameters estimated with PEST.

4.2.1. How to read a more complex output file

In this subparagraph, the example of paragraph 3.4 has been modified in order to make PEST

read a more complex output file respect to the original one using the skills acquired before in

Chapter 2. In this case the model twoline has been modified using the text editor PSPad in order

to make more complex the structure of the output file of the model. In the Figure 32 it is reported

only the changed extract of the new twoline.exe (the original one is visible in Figure 14).

67

Figure 32. Modified code for twoline.exe in order to have a more complex output file.

After that, the model has been run to have the new format of output file and to check that every

change does not influence the correct functioning of the model. The new output file is reported in

Figure 33. It is possible to see the difference in relation to the original one in Figure 16

(Paragraph 4.1).

Figure 33. New format of output file out.dat after having modified the model executable twoline.exe.

Now, preparing PEST input files, in.dat, in.tpl, in.pmt, in.par, out.dat, out.obf and measure.obf

have been left unchanged from the starting example. The file that has been modified is the

out.ins. It has been changed following the instructions in Paragraphs 2.2, 2.2.1, 2.2.2 and as

shown in Figure 34 below.

68

Figure 34. New version of file out.ins.

With this operation PEST will run to estimate all the parameters s1, s2, y1 and xc but reading from

the output files only the observation from characters 28 to 40 and skipping the title “Writing

model output file OUT.DAT” with the help of marker character “#”. After having checked the

correctness of all the modified files with PESTCHEK as in the example, PEST has been run. The

results are the same of the original example because no data has been varied.

4.2 T2Well numerical model calibration: multilayer high enthalpy
geothermal system

Finally, a high enthalpy geothermal model is calibrated with PEST. This model has already been

calibrated via trial and error in a PhD Thesis work and it deals with a short production test of a

well sited in Commonwealth of Dominica. More in detail now will be reported an extract of a

PhD Thesis [Vasini et al., 2015; Vasini, 2016] to describe the characteristics of the location. The

well is a vertical slim hole 1200 m deep and producing from a liquid-dominated reservoir. The

maximum temperature and pressure, measured under shut-in conditions, are 238°C and 102 bar,

respectively.

69

Figure 35. Conceptual model of the WW-01 well-reservoir system: it is possible to see the well WW-01 and the formation

[Vasini, 2016].

In Figure 35 is shown the conceptual model of the numerical model that was used. It is a

wellbore-reservoir coupled model constituted of: a cap-rock from 0 to -230 m (elevation referred

to the ground); a first feed zone located between -297 m and -344 m (FEED1); a reservoir layer

between-344 m and -710 m (RESV1); a second feed zone between -710 m and -734 m (FEED2);

a second reservoir layer between -734 m and -880 m (RESV2); a third feed zone between -880 m

and -940 m (FEED3).

The model is completed by a low permeable rock domain (BOTTM) below the third feed zone.

The well is characterized by a change in diameter at - 263 m from an internal diameter of 15.94

cm to an internal diameter of 10.16 cm. The numerical model has been represented by a 2D radial

grid with 1658 elements and with the wellbore along the axis of symmetry and with a radial

extension of 1500 m.

Figure 36 shows a vertical cross section of the model where the main feed zones can be

identified (with lighter color: yellow, green and cyan). In the model the cap-rocks has not been

included: the heat exchange between wellbore and the formation between 0.0 m and – 297 m has

been simulated adopting the analytical approach.

70

Figure 36. WW-01 wellbore-reservoir model 2D vertical section. The principal feed zones are represented with lighter colors

(yellow, green and cyan). This representation has been made by using TOUGH2Viewer [Bonduà et al. 2012].

The shut-in temperature and pressure logs measured in the well can be reasonably supposed be

closed to reservoir natural state and therefore used as initial conditions for the steady state

simulation (initial T and initial P of the well) are shown in Figure 37. Anyway in the case of

calibration using PEST only the pressure profile will be considered as observation variables.

Figure 37.Initial pressure and temperature conditions assumed for the wellbore-reservoir model [Vasini, 2016].

The experimental data available consists in two downhole flowing pressure transients at depths of

800 m and 1180 m, one flowing pressure and temperature log, well-head pressure, (WHP) and

enthalpy. The different rock domains permeability was calibrated in order to reproduce the

0

200

400

600

800

1000

1200

0 50 100 150 200 250

D
ep

th
 (

m
)

Temperature (°C) / Pressure (bar)

initial T
formation

initial T well

initial P

71

experimental results. In Table 2 the results of the calibration of the model obtained manually are

listed. In this preliminary study, possible skin effects for both producing feed zones have been

neglected.

Table 2.Reservoir formation horizontal permeability as obtained by manual calibration of the model.

As showed in Figure 38 the measured flowing pressure profile and the simulated one are in good

agreement. The percentage difference value for the pressures is about 2.12% [Vasini, 2016].

Figure 38. Comparison between measured and simulated flowing pressures. The two set of data show a good agreement.

4.3 T2Well-PEST

It is necessary to specify that for a matter of time and precision, it has been chosen to calibrate

only the permeability of the FEED1, RESV1 and FEED2 layers and the output data relative to the

dynamic pressure profile have been compared with the experimental data and the ones obtained

via trial-and-error approach.

0

200

400

600

800

1000

1200

10 20 30 40 50 60 70 80 90 100

D
ep

th
 (

m
)

Pressure (bar)

P exp

P sim

72

The initial values of the permeability for the three layers of interest have been chosen equal to the

one obtained by manual calibration and the values of the lower limit and the upper interval in

which varying the permeability parameter to be estimated, have been calculated through a

sensitivity analysis. The limit values were found by increasing and decreasing the starting values

of a percentage value for which T2Well worked properly. The starting point was 20% and has

been decreased iteratively trying to run the executable T2Well until the output file was

completely and properly written by the simulator. In Table 3 all the working boundary values are

reported. These values were properly checked by modifying the input file of T2Well and running

the executable file called T2Well-EWASG_12.exe. If T2Well ran with success the simulation, as

previously said, the percentage selected to calculate the range of variation can be considered

correct, otherwise the value of the interval has to be decreased.

Table 3. Correct values for the variation interval of the parameters.

After this operation, all the input files for PEST have been prepared scrupulously. Starting from

the complex input file, only the parameters values to estimate have been substituted with the

values obtained and reported in Table 3, leaving the rest of the file unchanged. In Figure 39 the

input file prepared for PEST is shown. The initial permeability values have been highlighted in

red. After that, also the template file has been prepared following the same procedure illustrated

in the example paragraph 4.1. So, it was created by simply copying the input file and substituting

the numeric value of the parameters with their name. For simplicity, the names of the

permeability of FEED1, RESV1 and FEED2 that have been assigned are p3x, p4x, p5x

respectively. The template file called WW-01_0.9.tpl is reported in Figure 40.

73

Figure 39. Input file for T2Well-PEST application.

Figure 40. PEST template file called WW-01_0.9.tpl.

Always following step by step the example in paragraph 3.4, the template file has been checked

with the utility tool TEMPCHEK and then using again TEMPCHEK the files .pmt and .par has

been generated (Figure 41 and 42).

74

Figure 41. File .pmt, where all the parameters names are listed, generated by using the utility tool TEMPCHEK.

Figure 42. File .par, where all the parameters names and values are listed, generated by using the utility tool TEMPCHEK.

Next the instruction file has to be prepared. This is done using a text editor and by writing the

instructions for reading correctly only the values of the pressures from the T2Well output file.

This instruction file is named FStatus_2.ins and is shown partially for a space reason below in

Figure 43.

75

Figure 43. FStatus_2.ins instruction file.

Using this instruction set, all model-generated observations are read as semi-fixed observations.

Now, as in paragraph 4.1, the program INSCHEK should be used to check that file FStatus_2.ins

contains a legal instruction set. If there are no errors, INSCHEK should be run again, this time

directing it to read the T2Well output file using the instruction set with INSCHEK, the instruction

file and the input file with the original data. After this operation, a file named FStatus_2.obf will

be produced. In this file the values that it reads from the output file for the observations cited in

the instruction file are listed. It is possible to view an extract of the file FStatus_2.obf in Figure

44.

76

Figure 44. File FStatus_2.obf generated from INSCHEK tool.

The PEST-T2Well interface is now complete as PEST can now generate a model input file and

read the output file. Now a PEST control file has to be generated. This file has to provide to

PEST an appropriate set of control variables and the set of measured values. First of all the file

FStatus_2.obs has to be copied to file experimental_data.obf then the values of each model-

generated observation have to be replaced with the corresponding measured values and the form

of the file measure.obf is as in Figure 45 here below.

Figure 45. File experimental_data.obf.

77

Then run the utility program PESTGEN to generate the PEST control file named

tough2_WW01.pst; see Figure 46.

78

Figure 46. Control file generated with PESTGEN, called tough2_WW01.pst.

This control file has been modified fixing all the parameters that are not of interest for this

simulation and leaving free to vary in the previously defined intervals the permeability

parameters p3x, p4x and p5x. Moreover the last part of the control file, in detail lines 124, 126

and 127 of Figure 46 have been modified inserting the correct names of the executable file of the

model, the input file name, the template file name and the instruction and output file names. Now

the preparation of PEST run is complete and as final global check, the utility program

PESTCHEK should be run using the command:

pestchek tough2_WW01

79

Finally, if all is correct, it is possible to run PEST using the command:

pest tough2_WW01

All the procedure resulted to be correct and at the end, it is possible to see the results in the final

output file FStatus_2 (small extract in Figure 47)and in files generated from the simulation

tough2_WW01.rec and tough2_WW01.par (Figure 48) containing the estimated parameters set.

Figure 47. Final output file FStatus_2.

80

Figure 48. tough2_WW01.par containing the estimated parameters set.

As final step, the values of the pressures have been extracted from the output file FStatus_2 and

have been copied to an Excel file in order to compare these values obtained with PEST

simulation with the measured ones and with the manually calibrated set. These values have been

plotted all together in a unique graph shown in Figure 49 to see the matching.

Figure 49. Graph showing the matching between the experimental data, the manually simulated dataset and the values obtained

from PEST calibration. All these data are obviously pressures.

81

The graph shows qualitatively a very good match between the experimental data of the pressure profile

and the data obtained from the PEST run. As last check the absolute value of the percentage ratio

between the residual and the measured pressure data has been calculated obtaining an average

difference value of about 0.5 % that is a better value than the one obtained with trial-and-error manual

calibration. From this point of view, the use of PEST for the model calibration is convenient because it

leads to a more accurate results with lower time consuming respect to the trial and error approach.

82

83

CONCLUSIONS

In order to improve the reservoir engineering activities, it has been decided to use PEST (Model-

Independent Parameter Estimation), a tool for automatic parameter estimation and analysis of the

uncertainties of environmental models and in general of complex numerical models, in

combination with T2Well-EWASG, a coupled wellbore-reservoir flow simulator, which uses the

equation of state EWASG dedicated to work with multiphase-multicomponent geothermal high

enthalpy reservoirs.

The calibration platform PEST-T2Well-EWASG, has been then used to calibrate a model

concerning a coupled wellbore-reservoir flow geothermal model, referring to a real geothermal

reservoir located in Commonwealth of Dominica.

This model was already previously calibrated manually with a trial-and-error method in the work

for a PhD thesis, and the parameters obtained from this first calibration were used as initial

tentative value. Once all the files necessary to PEST were constructed, PEST has been

successfully run to automatically calibrate three feed zone (i.e. the permeability of layers) of the

model.

The comparison of the simulation output (in particular a pressure profile) obtained from the

model calibrated with PEST with the measured pressure profile displayed a good qualitative

match. A residual analysis showed an average percentage difference between simulated and

measured pressure profile of about 0.5 % that is a better value than the one obtained with the

previous trial-and-error manual calibration (about 2%).

Thus it is possible to say that, even if the used model is not well representative of the real system,

because it is too simple respect to the real system and we do not have a large number of measured

data, PEST has proven to be surprisingly a very powerful tool for the automatic calibration of

models with a lot of potentialities to be explored. In particular, PEST-T2Well-EWASG could be

used to improve the interpretation of well-tests performed in geothermal reservoirs.

84

85

References

Battistelli, A., Calore, C., Pruess, K., 1997, The simulator TOUGH2/EWASG for modelling
geothermal reservoirs with brines and a non-condensible gas. Geothermics, Vol. 26, No. 4, pp.
437-464, 1997.

Battistelli, A.,2012 Improving the treatment of saline brines in EWASG for the simulation of
hydrothermal systems, In: Proceedings of TOUGH Symposium 2012. Lawrence Berkeley
National Laboratory, Berkeley, California. September. 17-19, 2012.

Baveye P. C., Laba M., Mysiak J., 2007, Uncertainties in Environmental Modelling and
Consequences for Policy Making, Springer in cooperation with NATO Public Diplomacy
Division, Vrasar, Croatia, 30 September-11 October 2007.

Bedient, P., 1999, Ground water contamination: transport and remediation, Prentice Hall PTR:
Upper Saddle River NJ.

Berry, P., Bonduá, S., Bortolotti, V., Cormio, C., Vasini, E.M., 2014, A GIS-based open-source
pre-processor for georesources numerical modeling, Environmental Modelling and Software,
Volume 62, December 2014, Pages 52–64.

Bonduà, S., Berry, P., Bortolotti, V., Cormio, C., 2012, TOUGH2Viewer: A post-processing tool
for interactive 3D visualization of locally refined unstructured grids for TOUGH2, Computer &
Geosciences, 46, pp. 107-118.

Bortolotti, V., 2013, Lectures on Numerical Simulations of Acquifer, Lectures notes.

Bortolotti, V., 2015, Lectures on Petroleum Geosystems-Discretiziation chapter, Lectures notes.

Calore, C., Battistelli, A., 2003, Application of TOUGH2/EWASG to the modelling of salt water
injection into a depleted geothermal reservoir: preliminary results. Proceedings, TOUGH
Symposium 2003, Lawrence Berkeley National Laboratory, Berkeley, California, May 12-14,
2003.

Chierici, G.L. Principi di ingegneria dei giacimenti petroliferi. ENI, 2004.

Doherty, J., 2016, PEST, Model-Independent Parameter Estimation, User Manual Part I,
SENSAN and Global Optimisers, 16th Edition, Watermark Numerical Computing.

86

ELC Electroconsult, Wotten Waven Geothermal Field, Commonwealth of Dominica, West Indies:
Feasibility Study. Report for the Ministry of Public Utilities, Energy and Ports, Commonwealth
of Dominica, 2013 (unpublished).

Finsterle, S. 2007. iTOUGH User’s Guide, Earth Science Division, Lawrence Berkeley National
Laboratory, University of California, Berkeley, CA 94720.

Institute of Transportation Engineers, Transportation Planning Handbook, 1992, p. 116.

Intel®, 2003-2004, Intel® Fortran Language Reference, Document Number: 253261-002, World
Wide Web: http://developer.intel.com, Intel corporation, 2003-2004.

Osborn, W., Hernández, J., George, A., 2014, Successful Discovery Drilling in Roseau Valley,
Commonwealth of Dominica. Proc., 39th Workshop on Geothermal Reservoir Engineering
Stanford U., Stanford, CA, Feb. 24-26, 2014 SGP-TR-202.

Pan, L., Oldenburg, C.M., Wu, Y. and Pruess, K., 2011, TWell/ECO2N Version 1.0: Multiphase
and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and
Variable Salinity Water, Earth Sciences Division, Lawrence Berkeley National Laboratory,
University of California, Berkeley, California 94720.

Pan, L., Oldenburg, C.M., 2012, T2Well – An integrated wellbore-reservoir simulator, TOUGH
Symposium, Lawrence Berkley National Laboratory, Berkley, California, September 17-19,2012.

Pruess, K., Oldenburg, C., Moridis, G., 1999, TOUGH2 USER’S GUIDE, VERSION 2.0, Earth
Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley,
California 94720.

Sheldon, P., Earth's Physical Resources: An Introduction (Book 1 of S278 Earth's Physical
Resources: Origin, Use and Environmental Impact), The Open University, Milton Keynes, 2005.

Smith, S., Water: The Vital Resource (Book 3 of S278 Earth's Physical Resources: Origin, Use
and Environmental Impact), The Open University, Milton Keynes, 2005.

Taylor D., Pandya A., Thompson D., 2012, Fundamentals of Model Calibration: Theory &
Practice, OPTUMInsightTM, ISPOR 17th Annual International Meeting, Washington, DC USA, 4
June 2012.

87

Vasini, E.M., Battistelli, A., Berry, P., Bonduà, S., Bortolotti, V., Cormio, C., Pan, L., 2015,
Interpretation of production tests in geothermal wells with T2Well-EWASG, Proceedings of the
TOUGH Symposium 2015, LBNL, Berkeley, California, September 28-30.

Vasini, E.M., PhD Dissertation., Numerical modelling and simulation optimization of geothermal
reservoirs using the TOUGH2 family of codes, Supervisor: Bortolotti, V, coadvisor: Battistelli,
A., Alma Mater Studiorum-University of Bologna, 2016.

