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No matter what people tell you,

words and ideas can change the world.

Robin Williams





Introduzione

Le macchine virtuali sono usate in una grande varietà di contesti e ap-

plicazioni come Java, Docker, KVM e QEMU. La virtualizzazione è uno dei

concetti più interessanti e flessibili del mondo dell’Informatica.

Questo elaborato descrive il lavoro svolto per implementare una nuova

versione di UMView. Imparando dai prototipi esistenti creati dal team di

Virtual Square una nuova codebase è stata sviluppata con l’obiettivo di es-

sere un punto di riferimento per gli esperimenti futuri sul tema della virtu-

alizzazione parziale.

UMView è una macchina virtuale parziale e un hypervisor in userspace

capace di intercettare le system call e di modificare la visione che i processi

hanno del mondo esterno. UMView dispone inoltre di un’architettura a plu-

gin in grado di caricare moduli in memoria a runtime risultando in questo

modo flessibile e modulare.
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Introduction

UMView in particular is the implementation of the View-OS concept

which negates the global view assumption which is so radically established

in the world of OSes and virtualization.

Virtualization and virtual machines are nowadays used in a variety of

applications, from Java to Docker, KVM and QEMU. Virtualization is one

of the most interesting, flexible and powerful concepts in computer science.

This dissertation describes the work done to make from scratch a new

implementation of UMView. Learning from the existent prototypes created

in the past from the Virtual Square team a new modular codebase has been

written in order to be the foundation of future experiments on partial virtu-

alization.

The software UMView in particular is the implementation of the View-

OS[9] concept which negates the global view assumption which is so radically

established in the world of OSes and virtualization.

UMView is a partial virtual machine and userspace hypervisor capable

of intercepting system calls and modifying their behavior according to the

calling process’ view. In order to provide flexibility and modularity UMView

supports modules loadable at runtime using a plugin architecture.
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Chapter 1

About Virtualization

1.1 Abstraction

Abstraction is among the foundation ideas of the world of computing as

we know it today, thanks to this idea we can design computer systems with

well-defined interfaces that separate levels of complexity.

Using well-defined interfaces help developers building complex and modu-

lar software architectures with ease, the trick is to exploit abstraction to hide

lower-level implementation details thereby simplifying the design process.

One straightforward example of how important abstraction is to computer

scientists resides in what makes the machines we use every day so flexible

and incredibly helpful, the operating system, this utterly essential piece of

software abstracts all the complexity of the physical machine and exposes

a nice and easy API1 that application software developers can use to build

their application without ever having to take care or worry about paging,

scheduling or many other classic problems we face when we design an OS.

1application programmer interface

1



2 1. About Virtualization

Figure 1.1: Computer system architecture layers [10]

This is just a brief and pragmatic look on the concept of abstraction, nev-

ertheless it undeniably proves the value of this idea and its importance as a

paradigm in computing. However every grand idea has its trade-offs and ab-

straction is no exception, building systems with well-defined interfaces makes

components and subsystems designed to specification for one interface unus-

able with others designed for another.

Let’s give another example, applications compiled for a x86 64 architec-

ture will not work on a ARM machine, the same thing applies to applications

compiled for different OSes even on the same computer architecture, this is

because of dependencies, application binaries depends on a specific ISA2 and

the operating system interface they have been compiled for.

2instruction set architecture
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1.2 Virtualization

Virtualization help us getting around the limitations faced by abstrac-

tion, specifically it manages to achieve interoperability between systems or

subsystems designed to different specification.

Virtualization can thus be applied to I/O devices, memory, or any other

subsystem of a computer architecture, furthermore it can be applied to the

entire machine, this last example bring us to the concept of virtual machines.

Virtual machines can be developed adding software layers to the real

machine in order to support the target architecture, in such a way we can

overcome the limits imposed by well-defined interfaces.

1.3 Virtual Machines

Following the taxonomy made by Smith, J. E. and Nair, R.[10], we can

decompose the concept of virtual machines in two macro classes, which are

process VMs3 and system VMs.

1.3.1 System VMs

A system VM provide a consistent and complete environment in which it

can support a full operating system, this guest OS is allowed access to virtual

hardware resources such as networking, I/O and perhaps even a GPU.

A system VM implies the presence of a VMM4 which runs in the most

highly privileged mode, while all guest systems run with reduced privileges so

that the VMM can intercept and emulate all guest operating system actions

that would normally access or manipulate critical hardware resources.

3Virtual machines
4Virtual machine monitor
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Figure 1.2: VMM and virtual machines

1.3.2 Process VMs

Process VMs provide a virtual environment for user applications.

OSes for instance implement this kind of virtualization to offer a simplified

view of the machine to user applications (fig. 1.3), virtual memory is such

an example, application and compiler developers do not have to worry about

physical addressing they can just rely on the OS doing the hard work.

The OS, exploiting virtualization techniques, gives any process the illusion

of having the complete machine to itself, as a matter of fact each process has

its own space address, its set of open file descriptor and registers.

What the OS is really doing to achieve this is sharing the hardware resources

by providing a replicated process-level VM to each executing application.
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Figure 1.3: OS architecture example



6 1. About Virtualization



Chapter 2

Virtualization Today

Today virtualization software is among the most flexible and useful for

developers and users. In this chapter we are going to do a brief survey about

the most famous and used virtualization projects.

2.1 QEMU

QEMU (short for Quick Emulator) is a free and open-source hosted hy-

pervisor which performs hardware-assisted virtualization and emulation[13].

It emulates CPUs through dynamic binary translation and can also be

used purely for CPU emulation for user-level processes, allowing applications

compiled for one architecture to be run on another. Moreover it can be used

together with KVM in order to run virtual machines using hardware-assisted

virtualization.

QEMU has multiple running modes:

• User-mode emulation: this mode is capable of running Linux pro-

grams compiled for a different ISA.

• System-mode emulation: this mode emulates a full computer sys-

tem providing access to different OSes on a single machine.

7



8 2. Virtualization Today

Figure 2.1: QEMU runnning different OS on one machine

• KVM-mode: QEMU can use KVM to run several OSes on a single

machine compiled for the same ISA on which QEMU is running, this

mode achieves near-native speed.

QEMU’s flexibility makes it an essential tool for system and Kernel de-

velopers, in this way there’s no need to reboot every time a small change to

the Kernel is made or when testing new snippets of code, moreover QEMU

can be attached to a GDB session allowing developers to precisely observe

what the machine is actually doing.

QEMU can also provide a different ISA/ABI for user applications allowing

to execute programs compiled for different architectures.

QEMU is not only useful to developers but to users as well, they can now

run multiple different OSes on the same machine and since KVM support

kicked in speed is not necessary a trade-off in spite of flexibility.
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2.2 KVM

Kernel-based Virtual Machine (KVM) is a virtualization infrastructure

for the Linux kernel that turns it into a hypervisor. It was merged into the

Linux kernel mainline in kernel version 2.6.20[12].

KVM permits to have virtual machines running at near-native speed although

it needs hardware support to run on a specific architecture.

Currently KVM runs on x86, S/390, PowerPC, IA-64 and ARM.

KVM also supports paravirtualization for certain devices, paravirtualiza-

tion is a virtualization technique that presents a software interface to virtual

machines that is similar, but not identical to that of the underlying hard-

ware, the intent is to reduce the portion of the guest’s execution time spent

performing operations which are substantially more difficult to run in a vir-

tual environment compared to a non-virtualized environment.

KVM is essential for building secure and flexible cloud infrastructures, as

a matter of fact it is the core of many complex cloud administration softwares

(OpenNebula, OpenStack, etc...) since its ability to execute full system vir-

tual machines at near native speed.

How KVM works essentially is through a special device /dev/kvm which

provides a virtual environment called virtual-cpu, using this device applica-

tion software can run code in a hypothetical CPU ring 1 (between user-land

and kernel-land). This vcpu will execute code in its assigned memory region

as the real CPU would normally do and will eventually block or generate

some kind of software interrupt when the vcpu is trying to execute any of

the reserved instructions1.

1This set of instructions is configurable but restricted, based on the HW implementa-

tion.
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Figure 2.2: KVM simplified architecture[8]
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Once KVM reaches a reserved instruction gives control to the userspace

application using that vcpu along with a notification of what caused this

stop, (this is exactly what happens when QEMU is used in conjunction with

KVM) at this point the application software can decide on how to manage

this specific stop.

As an example if the application detects a I/O event related stop can emulate

the I/O device in question and continue with the virtualization.

There is a special note to be done on QEMU+KVM, the software running

using hardware-assisted virtualization starts running in a virtual environment

as if a real machine just booted thus this type of software (usually QEMU)

will have to supply a BIOS and a bootloader because, for example, on a x86

architecture the vcpu will boot in a 16-bit environment trying to load the

BIOS from the ROM.

This last consideration was done to explain that although KVM is a great

piece of software its use on the subject of virtualization is very specific, it

can solely run full virtual machines, no other options are available.

In some ways this is a pity because having virtual machines (both process

and system) running at near-native speed is very appealing but it just cannot

be done with this technology, the responsibility is not on KVM obviously but

on the hardware virtualization platforms designed by HW engineers.

2.3 Linux Kernel Namespaces

Linux namespaces as one can easily deduce from the name are a set of

features specific of the Linux Kernel. A namespace wraps a global system

resource in an abstraction that makes it appear to the processes within the

namespace that they have their own isolated instance of the global resource.

Changes to the global resource are visible to other processes that are mem-

bers of the namespace, but are invisible to other processes[6].
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To move a process into a new namespace on Linux we can use the system

call unshare(intflags), according to the supplied flags argument the process

will be put in a new namespace where some of its properties are unshared.

Currently the flags values supported on Linux are:

• CLONE NEWCGROUP: this flag isolates the cgroup root direc-

tory;

• CLONE NEWIPC: this flag isolates system V IPC, POSIX message

queues;

• CLONE NEWNET: this flag isolates network devices, stacks, ports,

etc.;

• CLONE NEWNS: this flag isolates uount points;

• CLONE NEWPID: this flag isolates process IDs;

• CLONE NEWUSER: this flag isolates user and group IDs;

• CLONE NEWUTS: this flag isolates hostname and NIS domain

name;

Namespaces are thus a tool to achieve process-level VMs, processes inside

different namespaces will be completely isolated.

In a way is like having a sandbox in which a process can play, as a matter of

fact namespaces are mainly used to implement containers and therefore used

as a security feature.

Unfortunately creation of new namespaces in most cases requires the CAP SYS ADMIN

capability unless the CONFIG USER NS options is enabled when compiling

the Kernel.
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Figure 2.3: Docker architecture

2.4 Docker

Docker containers wrap a piece of software in a complete filesystem that

contains everything needed to run: code, runtime, system tools, system li-

braries and anything that can be installed on a server. This guarantees that

the software will always run the same, regardless of its environment[11].

Docker use Linux namespaces to implement containers and isolate an ap-

plication’s view of the operating environment, including process trees, net-

work, user IDs and mounted file systems.
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Docker is widely used for automation, continuous-integration and deploy-

ment of applications, it clearly is another example of a process-level VMs

creation software.

2.5 VDE

VDE is a sort of Swiss knife of emulated networks. It can be used as a

general Virtual Private network as well as a support technology for mobility,

a tool for network testing, as a general reconfigurable overlay network, as a

layer for implementing privacy preserving technologies and many others[3].

VDE is a virtual infrastructure which gives connectivity to several kinds

of software components:

1. emulators;

2. virtual machines;

3. real operating systems;

4. any tool operating on networks;

This software allows to create a completely virtual/emulated networking

space by using virtual machines on a set of real computers connected by a

real network. VDE virtualizes the main components of a standard Ethernet

network we all are accustomed with[2]:

• vde switch: a virtual Ethernet switch;

• vde plug: Like an Ethernet plug, it is designed to connect two vde switches.

Everything that is injected into the plug from standard input is sent

into the vde switch it is connected to;

• vde plug2tap: it is another plug tool that can be connected to vde switches.

Instead of using standard input and standard output for network I/O
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everything coming from the vde switch to the plug is redirected to a

specified tap interface;

• slirpvde: it is a slirp interface for VDE networks. It acts like a net-

working router connected to a vde switch and provides connectivity

from the host where it is running to virtual machines inside the virtual

network;

VDE with its many tools is a clear example of how virtualization leverages

on flexibility, as a matter of fact being a multi-purpose tool for networks there

are just no limits for the range of applications. One simple application could

using VDE to interconnect various local virtual machines creating a virtual

network, but as stated before the possibilities are endless.
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Chapter 3

A Novel Approach

When talking about virtualization is common to think about virtual ma-

chines and when talking about virtual machines the first applications coming

to mind are QEMU, KVM and the Intel VT-x technology.

Associating these softwares and these concepts of virtualization is obvi-

ously correct but in a way reduces and simplifies the concept of virtualization

to just system-level virtualization because the main applications from the

industry world, namely the cloud, mainly leverage on full machine virtual-

ization.

Full virtualization is a useful concept and has brought powerful applica-

tions, nevertheless related to the pure idea of virtualization lacks of flexibility,

of course you can have different machines running on a single real one, but

this is how far away it goes.

These VMs cannot be decomposed, to have a process thinking of belonging

to a virtual environment in such a way it is expensive because in order to

spawn a VM we need a BIOS, a bootloader, a separate Kernel, separate li-

braries and separate user applications, therefore we end up needing a full

system just for one process.

17
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Is this the power of VMs or can we achieve more? We can bring in

process-level VMs tools like the Linux Kernel namespaces, they can actually

make a process think to be in some separate virtual environment with its

own set of hardware and software resources, no separate Kernel or BIOS or

bootloader is required this time, but then again this is just containing the

process in some kind of a sandbox (as a matter of fact they are mainly used

to implement containers), it is undoubtedly useful but this approach still

seems limited.

First to implement this feature we are increasing the Kernel size and by

adding more Kernel code we are increasing the possibilities of creating new

bugs in the operating system.

It has been estimated that to implement the Linux Kernel namespaces be-

tween 7% and 15% of the core Kernel code would have had to be modified[1],

this is a path of giant dimensions to be introduced in a modern Kernel.

Another limit of Linux namespaces is the requirement for a process to

have the CAP SYS ADMIN capability to create a namespace (in most

cases).

3.1 The Global View Assumption

The concept of a global view in computing has always been applied, every

process has got the same vision of the resources of the operating systems, if

some new resource becomes available or an already existing one changes this

shift of state is visible by any running process.

A perfect example is the filesystem, every process sees the same under-

lying structure, if a new file is created every process sees it if and old one is

removed no process is able to open it again, in short every change to the tree

structure of the filesystem affects every process of the machine.
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Figure 3.1: Example of a *nix filesystem structure

This is exactly the concept of having a global view assumption, we may

not see it at first but operating systems are designed around it, this is why

on such operating systems the same identifiers points to the same resources,

thus all the processes share the same IP, the same filesystem, the same net-

work stack and so on.

This assumption (always true in POSIX standards) does have some draw-

backs, as a matter of fact it draws a tangible and inflexible line between what

is allowed to do for users and what is not, most of the times this is under-

standable but in certain cases it is rather confusing.

Let’s consider the mount operation, this system call modifies the global

filesystem structure therefore it obviously is a restricted operation, if any

user could mount a filesystem without any authorization the system would

be highly unstable and unsafe. However a user willing to browse, open and

edit its own files maybe from a usb-stick cannot do so because mounting a

filesystem requires administrator permissions but doing the same action in a

VM is possible and it does not require any additional permission, this is a bit
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confusing and unjust to be honest, nevertheless is one of the limits imposed

by the global view assumption.

3.2 View-OS

View-OS is the idea of having all the processes in the system free from

this assumption[9]. The concept is that each process should be allowed to

have its own view of the running environment, this does not mean that pro-

cesses must live in completely different environments, but it can be useful to

keep in their view a subset of the of the real system, while part of it is virtual

and different for every process.

In particular, a View-OS process can define a new behavior for each sys-

tem call, in such a way it is possible to run existing executables in multiple

scenarios, possibly enhancing their features.

A View-OS process behavior entirely depends on the definition of the sys-

tem calls it is using, but the same system calls can be re-defined and changed

while an executable is running. This makes the environment in which pro-

cesses run dynamic, flexible and extremely configurable, thus every process

will have its own view of the outside world tailored for him.

Finally, since View-OS is part of the Virtual Square Framework, it shares

all the V2 design guidelines like modularity and user-mode implementation[5].

The concept of View-OS is strictly based on the idea of VM, and should be

seen as a configurable, modular and general purpose Process-VM.
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Figure 3.2: System call example

(1) UMView captures the syscall, (2) the syscall is forwarded to a module,

(3) The module processes the syscall , (4) UMView injects the syscall

return value.

3.3 UMView

UMView lives as a part of the Virtual Square project[4] and specifically

is a prototype implementation of the View-OS idea[5].

UMView is a user-level hypervisor capable of intercepting system calls

and modifying their behavior according to the calling process view.

Moreover UMView is implemented as a system call VM capable of loading

modules on-the-fly that can change the view of running processes.



22 3. A Novel Approach

A system call implementation of View-OS is obviously slower than a Ker-

nel one but bring some nice benefits with it:

1. a user-level hypervisor does not need any administration permissions;

2. it does not need any specific feature or support from the underlying

Kernel;

3. debugging a userspace application is a lot simpler than debugging a

Kernel module;

4. no lines are added to the Kernel code;

3.3.1 UMView Features

UMView brings a new set of interesting features to help developers and

users achieve the flexibility they need, the following is a brief description of

what UMView is able to do.

• Syscall1 rerouting: UMView can reroute any syscall to a new syscall

defined by UMView modules, redefining system calls behavior is an

effective way to alter the view a process has of the entire system.

• User-level implementation: UMView is a userspace application, no

additional permissions are required;

• Stability: Since UMView runs only unprivileged code and each process

only alter its own view leaving the ones belonging to other processes

untouched, stability is not affected.

• Multi-arch support: From the beginning UMView has been designed

to support various architecture, and porting new ones requires few lines

of code.

1System call
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• Binary compatibility: There’s no need to recompile any application

in order to use UMView.

• Modularity: UMView relies on modules to redefine system calls be-

havior, this mean flexibility and plenty of possibilities for developers,

anything can implemented, from simple modules implementing a new

virtual filesystem to modules aspiring to be a ”userspace Kernel”.

UMView presents itself as a one-stop solution to every virtualization ap-

plication, nearly everything can be implemented as a UMView module.

3.3.2 Partial Virtualization

UMView is a View-OS implementation as a system call virtual machine,

specifically it is a partial virtual machine (PVM)[5].

A PVM is a system call virtual machine providing the same set of system

calls of the hosting kernel.

A PVM allows to:

• combine several PVMs together applying one VM on top of the other;

• forward each system call to the hosting Kernel or to another underlying

partial VM;

• load modules inside the VM which redefine system calls under certain

conditions;

UMView is developed using the ptrace() system call to intercept system

calls issued by an application. At the time being this seems to be the most

reliable way to perform such a task without requiring additional functional-

ities from the Kernel or without adding a Kernel module, although ptrace()

has not been designed for the implementation of partial virtual machines but

specifically to support GDB2.

2GNU Debugger



24 3. A Novel Approach



Chapter 4

UMView for Users

This actually is a new incarnation of the UMView project, the first work-

ing implementation was made by the Virtual Square team led by Prof. Renzo

Davoli thus this chapter will only introduce some basic example of UMView

modules which have been written for testing and development reasons.

4.1 Starting UMView

Spawning a process wrapped in a UMView session is as simple as launch-

ing a shell, as a matter of fact spawning a shell inside the UMView hypervisor

is what we are going to do (Figure 4.1):

$ umview xterm

4.2 Working with Modules

Modules are what make UMView such a flexible software, they can rede-

fine the behavior of any system call supported by UMView.

The basic principle is, whenever a process expresses a request to the Kernel

through a system call this request usually targets some resource identified

25
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Figure 4.1: xterm inside UMView

by an ID, this can be a file descriptor, a path or a network interface, if a

module owning the resource associated to the ID is currently loaded that

same module is selected to fulfill the process request.

4.2.1 Listing Modules

UMView has got some special commands to interact with modules, one

of these is used to list the currently loaded modules (Figure 4.2):

$ um_lsmod

The command is nearly identical to the lsmod Linux command which shows

the currently loaded Kernel modules, this has been done to maintain consis-

tency.

lsmod
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Figure 4.2: um lsmod command

At the time being no modules are loaded but we will get to that shortly.

4.2.2 Loading Modules

Loading a module is supported by launching the command um_insmod.

The user does not have to type the file extension or the position of the mod-

ule unless this is located in a directory which is not part of the UMView

modules path.

At the time being these are the directories in which UMView expects to

find modules ready to be loaded:

1. ~/.umview/modules;

2. /usr/lib/umview/modules;

3. ${INTREE_MODULES_PATH}/lib which is the the directory where output

files are put when compiling from source;

um_insmod
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Figure 4.3: um insmod command

For example we can load the unreal module launching the following

command (Figure 4.3):

$ um_insmod unreal

Now as it can be seen from figure 4.3 we have loaded the module unreal.

UMView loads a given module only once for a given tree of processes.

4.3 The Unreal Module

The unreal module when loaded creates a virtual filesystem mounted at

the root directory which mirrors the content of the filesystem structure.

It basically redirects any system call to the mirror counterpart, figure 4.4

shows the idea behind this module.

After loading the module any operation done on a real path on which we

prepend /unreal will be forwarded to the real path giving the illusion of a

real filesystem mounted at /unreal.

unreal
unreal
unreal
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Figure 4.4: The unreal module

We can try some common unix commands to test the module.

$ ls /unreal

bin dev home lib64 opt root sbin sys usr

boot etc lib mnt proc run srv tmp var

$ echo "unreal" > /unreal/tmp/file

$ cat /unreal/tmp/file

unreal

The Linux Kernel knows nothing about a virtual filesystem called unreal

and if a process tries to do the same operation outside of the UMView hy-

pervisor it will result in a ”No such file or directory”.

The reason is at this point obvious, UMView only alters the view of the

wrapped process which has loaded the unreal module.

4.4 A Useless Module

The second module we are going to take under consideration is the useless

module.

This module mimics the behavior of a simple Kernel device driver imple-

menting a char device which stores into an internal buffer some content.

unreal
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First we have to load the module:

$ um_insmod useless

Now that the module is loaded we can put a store a string into its internal

buffer:

$ echo "Hello UMView!" > /dev/useless

Let’s use a minimal C++ program to print out the content of /useless:

#include <fstream>

#include <iostream>

#include <string>

using namespace std;

int main(int argc, char *argv[]) {

string buf;

ifstream file("/dev/useless");

getline(file, buf);

cout << buf << endl;

return 0;

}

Once executed it will correctly print out the content we have just put into

the useless module:

$ ./simple_read Hello UMView!
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Again we’ve seen a simple virtualization associated to a path resource in

the filesystem structure only visible from a process wrapped inside a UMView

session.

This is exactly the same as having a Kernel module implementing a char

device exposing a /dev/useless resource which is one of the first examples

many try when writing their first Kernel module, but the just shown module

being a UMView one runs in userspace and needs no additional permission

to be loaded.

4.4.1 Removing Modules

Removing a module is supported by launching the command um_rmmod.

The only argument of this command is the module which has to be removed,

in this case since we previously loaded two module we are going to remove

them both (Figure 4.5).

$ um_rmmod unreal

$ um_rmmod useless

um_rmmod
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Figure 4.5: um rmmod command



Chapter 5

UMView for Developers

This chapter will cover all the material needed to start developing mod-

ules for UMView.

A substantial part of this dissertation has been dedicated to design a com-

fortable environment for developers willing to develop UMView services and

to constructing an easy and intuitive set of APIs.

5.1 Modules API

In order to start developing a module one must import the definitions

of the facilities UMView offers, in this case there is just a single header file

called umview/header.h.

5.1.1 Declaring a Service

Every UMView module is described by a data structure called umview_

service_t.

33
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typedef struct umview_service_t {

char *name;

char *description;

void *dlhandle;

void (*destructor)();

sysfun *module_syscalls;

} umview_service_t;

The following is a description of the fields:

• name: the name of the module;

• description: a brief description of what the module does;

• dlhandle: used internally;

• destructor: a handle to the destructor function, used internally;

• module syscalls: the system calls table containing the redefinitions

of the module. This table is used internally by UMView and is dynam-

ically allocated by umview_add_service and freed by umview_del_

service;

To actually create a module two simple steps are required, the first one

is to declare a umview_service_t static variable.

The variable can have any name as long as the UMVIEW_SERVICE() macro

is used to state that the variable will indeed contain a UMView module,

without it the module will have no visibility when trying to loading it into a

UMView session and will therefore fail to load.

#include <umview/module.h>

// Declaring a UMView service

static umview_service_t service;

UMVIEW_SERVICE(service);
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To finally register our module we will have to call the umview_add_

service() function inside the module’s constructor.

umview_add_service(service, "Hello-module", "My first UMView module");

The registration function must be called before any other UMView API,

otherwise the module’s data structure used to contain the system calls redef-

initions will not be allocated and ready to be used.

5.1.2 Using the Hashtable

UMView internally utilizes a global hashtable used for storing any kind

of object, this data structure can also be used by modules.

It mainly serves one purpose from a module perspective, it can be used

to create a resource owned by a module. Whenever an application requests

to do some processing using that resource the module can take responsibility

for the system call to be executed.

hashtable_obj_t*

ht_tab_pathadd(uint8_t type, const char *source,

const char *path, const char

*fstype, unsigned long mountflags,

const char *mountopts, umview_service_t

*service, unsigned char trailingnumbers,

confirmfun_t confirmfun, void* private_data);
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The following is a brief description of the function’s parameters:

• type: this must always be CHECKPATH1 and indicates we are adding a

virtual path to the filesystem structure;

• source: where this new path will be mounted at;

• fstype: name of the filesystem type;

• mountflags: mount options expressed as a bitmask, the same used by

the Linux Kernel;

• mountopts: mount options expressed as a comma separated list of

values, the same used by the Linux Kernel;

• service: the UMView module associated with this resource;

• trailingnumbers: if 1 then the path is allowed to have trailing num-

bers, otherwise set to 0;

• confirmfun: now unused;

• private data: an address the module can store to associate it with

the path resource being added, it can be anything;

This function returns the newly created hashtable element.

For example we can use UMView’s hashtable to add a virtual device

hellodev using the following call:

//registering a path and storing the new hashtable element

hashatable_object_t hte;

hte = ht_tab_pathadd(CHECKPATH, "/", "/dev/hello", "hellodev", 0,

"", &service, 0, NULL, NULL);

1In future releases of UMView more options will be available
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From now on if some application does a system call X on /dev/hello

and the module described by the variable service redefines X with a new im-

plementation X1 then every system call X will be forwarded to the module

which in turn will execute X1.

Obviously what has just been described applies only for the processes living

inside the UMView hypervisor that loaded the hellodev module.

Once a module is unloaded it should free any previously allocated re-

source, in this case the hellodev virtual device should remove the hashtable

element created in the constructor.

The place to do this is of course the module’s destructor.

//in the destructor

ht_tab_del(hte);

5.1.3 Creating Virtual File Descriptors

UMView modules gives the possibility of creating and managing a set of

virtual file descriptors, this can be useful in many situation mostly to asso-

ciate an ID to some resource the module is offering.

Every virtual file descriptor is just like a real one, specifically it is just

an integer representing some resource, in addition to this UMView offers the

possibility of associating some data (through a pointer) with every VFD2.

The creation of VFDs is completely controlled by the hypervisor, this is

done to avoid collisions with real file descriptors, therefore a function call has

been created for modules to request a new VFD.

2Virtual file descriptor
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int umview_create_fd(int close_on_exec, void *private);

• close on exec: if 1 then this VFD will be closed if the process executes

an execve() call;

• private: a pointer used to associate data to the VFD.

Of course the return value is the value of the newly created VFD.

UMView also offers a pair of getter/setter functions to manage the VFD’s

associated data, their usage is straightforward.

void *umview_fd_set_private(int fd, void *private);

void *umview_fd_get_private(int fd);

They both return the value of the private variable associated to the VFD.

5.2 UMView System Calls

This section is going to describe how modules can redefine system calls

and the facilities offered by UMView about the topic.

5.2.1 Redefining System Calls

For a module to redefine a system call the first step is to give a new im-

plementation of it, this is fairly simple. It is sufficient to copy the signature

of the system call and develop a new implementation.

The following example redefines the behavior of the write system call,

instead of actually writing the data contained in the buffer passed to the

system call it will just store it in a module’s buffer.
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static char module_buf[4096];

static ssize_t new_write(int fd, const void *buf, size_t count)

{

memcpy(module_buf, buf, count);

return 0;

}

5.2.2 Registering System Calls

Now that the new system call is ready to be used UMView must be

informed about its existence otherwise it will not be able to perform the

syscall redirection towards the module.

To register a new system call the following macro is available:

module_syscall(service, syscall_name, new_syscall);

This macro must be called in the module’s constructor.

Following our example the call to register the new write system call will be:

//inside the constructor

module_syscall(service, write, new_write);

This is enough to register the new system call.

5.2.3 System Calls Grouping

The Linux system calls for the x86 64 architecture are more than 300 and

a relevant number achieve the same results with minor differences in their

signatures.

To avoid overwhelming developers with many system call implementations
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basically doing the same thing UMView internally classifies system calls in

several sets based on the syscalls behavior.

In such a way developers only need to implement the UMView system

call for that set and the whole set will be covered. For example Linux has

got different calls to retrieve information about a file: stat, fstat, lstat

and newfstatat.

They all have the same behavior but accept different arguments and in

some cases different option flags. This group of system calls is the stat set and

the UMView system call representing this set is the lstat call which makes

it the only system call a module needs to implement to support the whole set.

Since there could be different forms of IDs pointing to the same resource

(path/file descriptors) when UMView receives a system call according to the

provided arguments it internally and uniquely identifies the resource the sys-

tem call is referring to.

Once this resolution process is completed UMView rearranges the system

call parameters in order to always pass the module an absolute path as the

resource identifier or a file descriptor when the same resource is non repre-

sentable by a path.

In the stat system call family case all the system calls are translated into

a lstat call with the path provided as an absolute one (Figure 5.1). The

same mechanism applies for any option flags.

This is utterly important because it simplifies the module development

process removing duplicate code which could bloat modules/textquoteright

source code.

Some system calls can even be ignored by module developers, if the be-
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Figure 5.1: System call grouping

havior is the one expected UMView will deal with them without requiring

the module intervention.

For example if a module redefines the open system call but not the close

one UMView will automatically close the file descriptor created by the first

system call, these are called UMView optional system calls and they can be

ignored if they are to behave like the real system call (this works even with

VFDs). At the time being the only optional system calls are close and dup3.

The table 5.1 shows the currently supported system calls and how they

are grouped in different sets.

5.3 Writing Modules

After a quick introduction to the UMView modules API it’s helpful to

show a minimal module in order to wrap up the concepts covered so far.
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Table 5.1: UMView supported system calls

System Calls UMView Sytem Call Resource ID

open, creat, openat open path

write, writev write file descriptor

read, readv read file descriptor

pread64 pread64 file descriptor

pwrite64 pwrite64 file descriptor

close close file descriptor

chdir, fchdir not forwarded to modules -

lstat, stat, newfstatat lstat path

access, faccessat access path

readlink, readlinkat readlink path

lseek lseek fd

utimensat, futimesat, utimes, utime utimensat path

dup3, dup2, dup dup3 file descriptor

symlink, symlinkat symlink path

link, linkat link path

unlink, unlinkat unlink path

mkdir, mkdirat mkdir path

rmdir rmdir path

getcwd not forwarded to modules -

getdents64, getdents getdents64 file descriptor

chmod, fchmod, fchmodat chmod path

lchown, fchown, chown, fchownat lchown path
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5.3.1 Hello UMView

First we have to include the header file containing all the definitions

needed to develop a UMView module.

Then we are going to implement a read system call in order to create a VFS3

that when any of its node is read the string ”Hello UMView!” is returned.

#include <string.h>

#include <umview/module.h>

static ssize_t hello_read(int fd, void *buf, size_t count)

{

strncpy(buf, "Hello UMView!", count);

}

5.3.2 Module Constructor

Now that we have our read system call the module’s constructor must be

written. The constructor is the first function that gets called as soon as the

module is loaded and is therefore where all the initialization routines and

operation should be put.

The constructor has a special signature, as matter of fact it is a function

having the special macro UM MOD INIT preceding its name like shown

in the example below.

Inside the constructor we have to:

1. add a hashtable path element to create the virtual path /hello;

2. register the hello module;

3. register the new read system call;

3Virtual filesystem
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static umview_service_t hello_service;

static hashtable_obj_t *hte;

UM_MOD_INIT hello_init()

{

//register the "hello" module

umview_add_service(hello_service, "hello", "The greeting module");

//create a hashtable element for the "/hello" path

hte = ht_tab_pathadd(CHECKPATH, "/", "/hello", "hellofs", 0,

"", &hello_service, 0, NULL, NULL);

//register the new read system call

module_syscall(hello_service, read, useless_read);

}

5.3.3 Module Destructor

The only thing missing to have a complete minimal UMView module is

the module’s destructor.

The destructor is where all the allocated memory should be freed and all the

hashtable elements should be deleted.

For the newly created hello module writing the destructor is quite a trivial

task, like the constructor the destructor is a special function having the macro

UM MOD FINI preceding its name.

The destructor is obviously the last function that is going to be called before

unloading the module.
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UM_MOD_FINI hello_fini()

{

ht_tab_del(hte);

umview_del_service(hello_service);

}

The last line of every UMView module’s destructor should be the macro

umview_del_service having the umview_service_t variable describing the

module as the only argument.

The purpose of this call is to free the memory used for all the internal data

structures related to this module and is therefore very important otherwise

memory leaks may occur.

5.3.4 Building Modules

Building the module shown in the previous sections is fairly simple thanks

to the CMake build system.

After cloning the git repository the module source code should be placed

in the src/modules directory because CMake has been instructed to detect

and compile every module placed in that directory.

A clean and easy way to build projects with CMake is to create a separate

directory in which all output files will be put and this is exactly what we are

going to do.

The shell commands shown below create a new directory and tell CMake to

build the project there, after that the command to compile the hello module

can be launched.
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$ mkdir build

$ cd build

$ cmake ..

$ make hello

The module has been compiled and put into the build/lib directory.

If compiling UMView from source the UMView binary will be put in build/

bin and it will automatically find modules in the build/lib directory.

5.3.5 Testing and Debugging

Modules can be debugged with GDB or any other debugger the user may

prefer, being UMView a userspace application modules and UMView can be

debugged together, this is also useful for educational reasons as to better

understand the inner workings of UMView.

The suggested way to test and debug a module is to set a breakpoint to the

module’s constructor or any other interesting module’s function or system

call.

UMView also offers a set of macros to facilitate logging to the system log:

um_syslog(prio, ...);

um_log(...);

um_log_notice(...);

um_log_err(...);

um_log_critical(...);

um_log_debug(...);

um_log_warning(...);

To have them available the header file umview/syslog.h must be included.
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To wrap everything up the components a minimal UMView module should

have are:

• a constructor;

• the module’s syscall redefinitions;

• a destructor;
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Chapter 6

UMView Internals

Throughout this chapter all the inner workings of UMView will explored

and discussed in order to give a detailed picture of all the software developed

during this dissertation including its architecture.

6.1 The Tracing Unit

UMView being an implementation of View-OS and in particular a partial

VM lays its foundation on having a mechanism to intercept and manipulate

the system calls issued by an application.

The mechanism used for UMView, which is developed on and for Linux, is

the only one available on Linux which is the ptrace system call.

6.1.1 Ptrace

The ptrace system call is described as follows by the Linux Programmer’s

Manual :

The ptrace() system call provides a means by which one pro-

cess (the ”tracer”) may observe and control the execution of an-

other process (the ”tracee”), and examine and change the tracee’s

49
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Figure 6.1: ptrace tracing

memory and registers. It is primarily used to implement break-

point debugging and system call tracing[7].

The Manual is quite clear about the intended usage for this system call, as

a matter of fact it has been designed for applications such as gdb and strace

and not for system call manipulation/injection or even virtualization.

Nevertheless both the original UMView implementation and this porting use

this system call as a backend to intercept and manipulate system calls hop-

ing that some specific and more performant technique will be available in the

future.

Despite its use in this project the ptrace system call has some perfor-

mance drawbacks and at times is quite cumbersome to use. The performance

penalty comes from the fact that the only available option to track a pro-

cess’s system call is the PTRACE SYSCALL which stops the tracee at

the next entry to or exit from a system call.

This means that for every system call two ptrace calls are needed even when

there’s no interest in inspecting the next entry/exit transition or the entire

next system call.
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For example from the UMView perspective if the system call X is inter-

cepted and then virtualized there’s no interest in stopping again at the exit

transition from this system call because the call has already been processed,

but a second ptrace call (with the PTRACE SYSCALL option) is needed

because there is no other way to tell the Kernel we are interested in the next

system call without stopping at every entry/exit transition.

Moreover UMView needs to stop the tracee at every system call to be

able to virtualize the ones it is interested to because the Linux Kernel does

not offer any facility to choose only a set of system call to trace.

Nevertheless the system call interception mechanism in UMView is im-

plemented by the tracing unit using ptrace.

6.1.2 Intercepting System Calls

The tracing unit implementation resides in the source file src/umview/

tracer.c and its API is composed of the sole umview_trace function.

void umview_trace(int tracee_tid);

Its only argument is the tid1 of the thread the calling process is going to

wrap inside a UMView session.

The umview_trace function has two main tasks, the first one is of course to

trace the system calls issued by a thread/process and the second one is to

create new tracer-threads each time a tracee executes a clone system call.

The tracing unit basically is an event-driven routine that according to the

type of event performs a set of actions. As stated before the tracing unit uses

the ptrace backend and obviously receives the events detected by the ptrace

support. The main event in which UMView is interested in is of course the

reception of system calls.

1Linux thread ID
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Figure 6.2: Virtualizing a system call

After the tracing unit intercepts a system call the values of the machine

registers are saved and passed on to the fetch unit and consequently to the

execute unit. Once the execute unit has completed its processing, the inter-

cepted system call will be either faked or virtualized according to the output

of the two previous units.

When a system call is faked what actually happens is a manipulation of

the system call in order to replace it with a getpid(), in such a way the

Kernel will never receive the original intercepted system call. This usually

happens during a system call entry to transition to make the Kernel skip the

call.
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When a system call is virtualized a return value is injected into the tracee

registers to make it look like the real return value of the just issued system

call. This usually happens during a system call exit from transition.

6.2 Virtual System Calls

UMView enlarges the set of Linux system calls creating some virtual ones

in order to be able to communicate with UMView-aware applications.

6.2.1 The UMLib

At the time being the new virtual system calls are just three:

1. int umview_add_service(const char *path, int permanent);

2. int umview_del_service(const char *name);

3. int umview_list_service(char *buf, int len);

The first one can be used to load a module, the second one to unload it

and the third one returns a buffer filled with a description of all the currently

loaded modules, if buf is NULL then the call returns the size of the buffer

that should be allocated to store the description string.

These functions are part of a library called UMLib which is compiled as

a shared object, thus the applications using this functions should be linked

against the UMLib library adding -lumview to the GCC command.

The commands um_insmod, um_rmmod and um_lsmod use this library to

load, unload and remove modules.

Obviously these virtual system calls are only available inside a UMView

session.
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6.2.2 Implementation

Regarding the implementation of the UMView virtual system calls the

technique

used is quite simple, since Linux system calls numbering starts from 0 the

UMView’s one start from -1 instead, in such a way no collision is possible

between real or virtual system calls.

• umview_add_service → System call -1;

• umview_del_service → System call -2;

• umview_list_service → System call -3;

6.3 The Plugin Architecture

In order for UMView to be able to load modules a plugin architecture

was needed. A simple and straightforward mechanism existed in the original

implementation of UMView thus it has been ported with minor modifications

introduced to improve code clarity and modularity.

6.3.1 Modules as Shared Objects

UMView modules are compiled as dynamic shared objects and therefore

have a .so extension.

The functions used to load/unload modules reside in the modutils.c

source file, their signature are the following:

1 umview_service_t *open_module(const char *modname); void

2 close_module(umview_service_t *module);

The first one loads a module and the second one unloads it.

Both functions internally use the dl library in order to load dynamic shared
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objects and obtain addresses of symbols contained into libraries.

The open_module function in particular tries to load the target module

from different locations, once found it loads it into memory and adds a ref-

erence to it in the global hashtable.

The module’s constructor is automatically called when the module is loaded

thanks to the GCC constructor attribute __attribute__((constructor))

contained in the UM_MOD_INIT macro.

The close_module function instead unloads the module from memory,

removes its reference from the global hashtable and call the module’s de-

structor.

6.4 The Guardian Angels Technique

UMView is designed to take maximum advantage of the parallelism and

multi-threading characteristics of the machine on which in running on.

Differently from the previous implementation of UMView which was single-

threaded the new one follows a different tracing model, as a matter of fact

UMView has got a 1-1 relationship between tracers and tracees, this means

that for every process or thread living under the supervision of UMView there

is a tracer instance guarding its own tracee. This is what gave the name to

the parallelization technique called The Guardian Angels. The first proof-

of-concept of this technique has been made by Giacomo Bergami, Gianluca

Iselli and Matteo Martelli.

This technique basically consists in associating a new tracer to a tracee

every time the tracee spawns a new child via a clone system call. The result

is both performant and simpler to manage because each tracer has to worry

about one and only one tracee at a time.
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Figure 6.3: UMView guardian angels

6.4.1 Implementation

The implementation is based on the system call tracing backend which is

ptrace.

When a tracee performs a clone as soon as the new child does its first

system call UMView executes the transfer_tracee routine, this function

blocks the newly created thread/process by changing the just issued system

call to a poll(NULL,0,-1) which obviously stops the calling process indefi-

nitely.

While the child tracee is blocked the tracer copies or share the par-

ent tracee filesystem information and file descriptor table according to the

CLONE_FS and CLONE_FILES flags presence in the clone system call. The

tracer now creates a new thread which is going to become the child tracee’s

tracer.
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Once this process is complete the new tracer unblocks the child tracee

and starts tracing its system calls. The child tracee’s first system call is

recovered before the unblock.

6.5 The Hashtable Unit

UMView inherited from its previous implementation the global hashtable.

The source code implementing this data structure has been left mostly un-

touched and for this reason is not going to be described in depth being a

non-original part of this dissertation.

The global hashtable is shared between the UMView tracer-threads and

is designed to store any kind of object.

Specifically each element of the hashtable is structured as follows:

typedef struct hashtable_obj_t {

void *obj;

char *mtabline;

unsigned long mountflags;

epoch_t timestamp;

uint8_t type;

uint8_t trailingnumbers;

uint8_t invalid;

umview_service_t *service;

struct hashtable_obj_t *service_hte;

void *private_data;

int objlen;

long hashsum;

int count;

/* confirmfun_t */
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int (*confirmfun)(int type, void *arg, int arglen,

struct hashtable_obj_t *ht);

struct hashtable_obj_t *prev, *next, **pprevhash, *nexthash;

} hashtable_obj_t;

Here is a description of the various fields:

• obj: the address of the object stored in this hashtable element;

• mtabline: the mount tab line;

• mountflags: mount options;

• timestamp: element timestamp (discussed in the Epoch section)

• type: the hashtable element type;

• trailingnumbers: if this is a path element and is allowed to have

trailing numbers;

• invalid: indicate an invalid element;

• service: address of the related UMView module;

• service hte: address of the UMView module’s hashtable element;

• private data: data associated to this hashtable element;

• objlen: length of the object stored;

• hashsum: the hash value;

• count: reference counter;

• confirmfun: not used;

• prev, next, pprevhash, nexthash: elements for hashtable naviga-

tion and chaining;
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The used hash function is the djb2 which is adequately simple and fast.

The hashtable, as pointed out before, is capable of storing any kind of

object but despite the presence of the type field at the time being the only

types of object actually stored are the CHECKPATH type (used for paths)

and the CHECKMODULE type (used for storing loadable modules).

UMView can interact with the hashtable with an extensive set of APIs,

even though the most used and important are actually four.

hashtable_obj_t*

ht_tab_add(uint8_t type, void *obj, int objlen,

umview_service_t *service, confirmfun_t confirmfun,

void *private_data);

The ht_tab_add is used, as the signature explicitly suggests, to add generic

object to the hashtable.

hashtable_obj_t*

ht_tab_pathadd(uint8_t type, const char *source,

const char *path, const char *fstype,

unsigned long mountflags, const char *mountopts,

umview_service_t *service,

unsigned char trailingnumbers,

confirmfun_t confirmfun, void *private_data);

The ht_tab_pathadd function as explained in chapter 5 is used for storing

path elements in the hashtable.

int ht_tab_del(hashtable_obj_t *ht);
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Another important function is the ht_tab_del one, used for removing an

element from the global hashtable.

hashtable_obj_t*

ht_check(int type, void *arg, umview_stat_t *st, int setepoch);

The last most used function of the hashtable set of APIs is the ht_check

one, this routine searches the hashtable looking for the arg object of type

type. If setepoch is 1 and an element is found the virtual epoch will be set to

the hashtable’s element one (epochs will be discussed in the relevant chapter).

The hashtable unit is of vital importance for UMView since its extensive

usage as a way of communication and sharing memory between tracer-threads

and modules.

6.6 Fetch-Execute Unit

UMView internal architecture has been inspired by the classic fetch, de-

code & execute model used by CPUs.

Even though the naming used throughout UMView’s code essentially re-

flects the fetch, decode and execute operations only two of them actually exist

as modules in the source code structure, the fetch and the execute module.

The execute one absorbed the functionalities of the decode one (due to its

simplicity).

6.6.1 The Fetch Unit

UMView’s fetch unit is the one coming to play after a system call is in-

tercepted. Its task is quite simple, retrieving the system call arguments from

the machine’s registers.
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Figure 6.4: UMView Architecture
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This is one of the few architecture-dependent components in UMView

since its implementation depends on the representation of the machine’s regis-

ters, thus to port UMView to a new architecture the umview_syscall_fetch

routine must be implemented.

The function’s signature is as follows:

void umview_syscall_fetch(struct user_regs_struct *regs,

syscall_descriptor_t *syscall_desc,

syscall_state_t sys_state)

A brief description of its arguments:

1. regs: a data structure describing the content of the machine’s registers

(input);

2. syscall desc: the UMView data structure used to describe a system

call (output);

3. sys state: variable denoting if UMView is in a entry to or exit from

system call state (input);

The syscall_descriptor_t struct is structured as follows:

typedef struct syscall_descriptor_t {

int syscall_number;

int fd_close_on_exec;

syscall_arg_t syscall_args[SYSCALL_ARG_NR];

syscall_arg_t ret_value;

} syscall_descriptor_t;

To port this function one must simply fill-in the syscall_desc fields us-

ing the information contained in the variable regs.
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Since the tracer and tracee threads live in separate address spaces the

fetch unit also implements a set of function allowing to transfer memory be-

tween the two address spaces, this is possible thanks to the special capability

a Linux process has when p-tracing another.

char *umview_peek_string(char *addr);

This first function is used to retrieve a NULL-terminated string from the

tracee memory at address addr.

void umview_peek_data(void *addr, void *buf, size_t datalen);

void umview_poke_data(void *addr, void *buf, size_t datalen);

The umview_poke_data function writes datalen bytes of data from the buffer

buf into the tracee memory starting at address addr.

The umview_peek_data function reads datalen bytes of data from the tracee

memory starting at address addr storing them into the buffer buf.

All the fetch unit routines used to transfer memory employ the process_

vm_writev and process_vm_readv system calls, which allow to do these

operation in a single system call.

6.6.2 The Execute Unit

The execute unit takes control immediately after the fetch one, its task

is to inspect the system call (decode unit) and to take appropriate actions.

This unit is implemented by the umview_syscall_execute function which

after inspecting the number of the intercepted system call has two distin-

guished execution paths according to the entry to/exit from transition of the

ptrace backend.
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When the transition is an entry to UMView checks if the system call is

a real one or a UMView’s virtual one, in case of a virtual system call its

implementation is called and the return value is stored. If the system call is

indeed a real one UMView, according to the system call number, retrieves

the addresses of two functions: the wrapper and choice function.

Choice functions

The choice function is used by UMView to check if the intercepted system

call context is owned by a module, which means that the file descriptor or

path the system call is referring to is actually owned by a currently loaded

module. This happens when a system call is trying to fulfill any kind of

operation on either a VFD, a real file descriptor or a virtual path added in

the global hashtable by a module.

All the choice functions return a hashtable element, if this element is not

NULL then indeed there is a loaded module waiting to process the intercepted

system call, otherwise the call will be simply passed to the Kernel.

Choice functions are distinguished by their signature, which has to be as

follows:

hashtable_obj_t *(*choice_function)(syscall_descriptor_t *);

Different system calls can share the same choice function but since these func-

tions/textquoteright behavior mostly depend on the system call signature,

specifically on the position of the arguments, the usual case is that system

calls belonging to the same set (table 5.1) share the same choice function.

To better understand how a choice functions is implemented is useful to

actually inspect one. The following CFunction2 selects a hashtable element

according to a path passed as the first argument of the system call.

2Choice function
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hashtable_obj_t *choice_path_follow(syscall_descriptor_t *sd)

{

char *path = umview_peek_string(SYSARG(char *, sd, 0));

hashtable_obj_t *ht;

ht = get_hte_from_path(&path, FOLLOW_LINK, 1);

SET_SYSARG(sd, 0, path);

return ht;

}

The choice_path_follow implementation is quite straightforward, after re-

trieving the path from the tracee memory searches the hashtable for a cor-

responding element, if found it returns that element.

CFunctions usually perform a fixed set of operation in order to simplify

further processing of the system call.

As shown in the choice_path_follow example these operations usually are:

1. retrieving syscall arguments from the tracee memory and making them

available for further processing;

2. relative path resolution in order to obtain an absolute path;

3. at-call (newfstatat, linkat, unlinkat, etc...) path resolution into an

absolute path;

Wrapper functions

Wrapper functions are used by UMView to forward intercepted system

calls to modules. They are called immediately after the system call choice

function.

Like the CFunctions many system calls can use the same WFunction but
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the usual case is that system calls belonging to the same set share the same

WFunction.

WFunctions3 actually classify in two distinct categories, the WINFunc-

tions4and the WOUTFunctions5.

The WINFunctions are called in the case of a entry to system call transition

and the WOUTFunctions when there is a exit from system call transition.

WINFunctions

WINFunctions are distinguished by their type, which has to be as follows:

void (*wrapin_func)(hashtable_obj_t *, syscall_descriptor_t *,

syscall_behaviour_t *);

The input arguments are a hashtable element (returned by the choice func-

tion), which tells UMView if this system call has to be processed by a mod-

ule, a system call descriptor and a pointer to a variable of type syscall_

behaviour_t.

typedef struct syscall_behaviour_t {

long ret_value;

syscall_action_t action;

} syscall_behaviour_t;

The syscall_behaviour_t structure contains the return value of a given

system call and the action to be taken. The action variable is an enumerated

type having as possible values VIRTUAL, STD or FAKE.

3Wrapper functions
4IN wrapper functions
5OUT wrapper functions
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The WINFunction’s task is to either forward the system call to a module

or to the Kernel and if the former case applies to store the return value of

the processed system call.

The following code shows the implementation of the chmod system call WIN-

Function.

1 void wi_mkdir(hashtable_obj_t *ht, syscall_descriptor_t *sd,

2 syscall_behaviour_t *sysb)

3 {

4 char *path = NULL;

5 int mode = 0;

6 sysfun fun;

7

8 if (IS_SYS(sd, mkdir)) {

9 path = SYSARG(char *, sd, 0);

10 mode = SYSARG(int, sd, 1);

11 } else if (IS_SYS(sd, mkdirat)) {

12 path = SYSARG(char *, sd, 1);

13 mode = SYSARG(int, sd, 2);

14 }

15 sysb->action = STD;

16 if (ht && (fun = get_module_syscall(ht, SYSNO(mkdir)))) {

17 sysb->action = SKIP;

18 sysb->ret_value = fun(path, mode);

19 }

20 xfree(path);

21 }

WINFunctions essentially carry out the same operations for the many system

calls supported by UMView. First, according to the intercepted call, the

system call’s arguments are retrieved and then if the ht variable is not NULL

and the module pointed by it has an implementation for the just received
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system call that same implementation is called in order to process the system

call.

In the wi_mkdir function at line 16 we can notice the translation of an

eventual mkdirat system call into a mkdir. Another thing to be noticed is

how the sysb→action variable is used, if the call has to be simply passed

to the Kernel the value STD is stored into it, which denotes the normal

execution flow for this system call, otherwise it takes the value SKIP which

tells to the tracing unit to skip the system call.

get_module_syscall is a macro which actually retrieves the address of

the module’s implementation of the system call and at line 18 (wi_mkdir)

we can notice the actual call and the return value being stored.

IS_SYS(sd,syscall) is a helper macro returning 1 if the intercepted system

call described by the sd variable is a syscall system call;

WOUTFunctions

Once the entry to transition is concluded, which means that the WIN-

Function has been executed and the tracing unit has taken appropriate ac-

tions, at the next exit from transition the system call’s associated WOUT-

Function is called.

WOUTFunctions/textquoteright type has to be as follows:

void (*wrapout_func)(syscall_descriptor_t *, syscall_behaviour_t *);

Their task is usually very trivial, it consists in inspecting the action previ-

ously taken by the tracing unit which can be SKIP if the system call has

been forwarded to a module or STD if no virtualization took place.

When a system call has been taken care by a module the WOUTFunction

simply stores the value VIRTUAL into the sysb→action variable in order to

make the tracing unit inject a custom value as the system call return one.
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If the call has not been virtualized the WOUTFunction does not take any

action.

What has just been described is what happens in the majority of cases,

therefore one WOUTFunction is shared between most of the system calls,

this function is wo_virtual. When some custom action has to be taken a

different WOUTFunction can be implemented and used.

6.7 Purelibc

UMView also supports virtualization of its own system calls and the ones

generated by modules, this is done thanks to a library called purelibc.

Purelibc is a C library developed by the Virtual Square team to provide a

pure access to the system call interfacing functions of the C language.

UMView initializes the purelibc library before starting to trace the first

process.

void init_purelibc()

{

native_syscall = _pure_start(puresyscall_landing, NULL, 0);

}

The _pure_start function takes as its first input parameter the address of

a function that will be called every time UMView or a loaded module issues

a system call, the return value of this function is a hook to the syscall

function allowing to directly call a real system call.

The virtualization offered by the purelibc library does not incur any

performance penalty because the actual system calls are redirected to the

puresyscall_landing function without any context switch.
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static long int puresyscall_landing(long int sysno, ...)

{

syscall_descriptor_t sd;

syscall_tab_entry *tab_entry = NULL;

hashtable_obj_t *ht;

va_list arg_list;

sd.syscall_number = sysno;

va_start(arg_list, sysno);

for (int i = 0; i < SYSCALL_ARG_NR; i++)

sd.syscall_args[i] = va_arg(arg_list, syscall_arg_t);

va_end(arg_list);

/* check if some module wants to run this syscall */

tab_entry = arch_table[sysno];

if (tab_entry && tab_entry->purelibc_choice) {

ht = tab_entry->purelibc_choice(&sd);

if (tab_entry->purelibc_wrap)

return tab_entry->purelibc_wrap(ht, &sd);

}

/* forward the syscall to the Kernel */

return native_syscall(sysno, sd.syscall_args[0], sd.syscall_args[1],

sd.syscall_args[2], sd.syscall_args[3],

sd.syscall_args[4], sd.syscall_args[5]);

}

The role of puresyscall_landing is to gather the system call arguments

and call in sequence the Pchoice6 function and the Pwrap7 which perform

the same task as the CFunctions and the WINFunctions, one thing to notice

6Purelibc choice
7Purelibc wrapper
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is that now arguments live in the same process address space of the tracer

and need no fetching.

Throughout UMView’s code one can find system call prefixed by “r ”,

these are real system calls (directly forwarded to the Kernel), otherwise they

will be virtualized by purelibc.

Purelibc’s Pchoice and Pwrap functions have the following types:

/* purelibc choice function */

hashtable_obj_t *(*purelibc_choice)(syscall_descriptor_t *);

/* purelibc wrap function */

long int (*purelibc_wrap)(hashtable_obj_t *, syscall_descriptor_t *);

The only difference with their “real” counterpart (CFunctions and WFunc-

tions) is that the Pwrap function has no entry to/exit from transition to take

into account but simply is a single function call.

6.8 The Path Canonicalization Unit

UMView has a set of routines to deal with paths in order to always resolve

relative paths in absolute ones.

The actual function used to resolve a relative path into an absolute one

has been inherited from the former implementation of UMView and is called

umview_realpath.

char *umview_realpath(const char *const name, char *resolved,

realpath_follow_t follow);

The fist two input arguments of the function are self-explaining, the follow

argument is an enumerated type allowing the values FOLLOW_LINK and NO_
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FOLLOW_LINK, if name is a symbolic link then the first value tells the func-

tion to follow it otherwise the symbolic link will not be followed during the

resolution process.

In the original implementation of UMView this was the only available

function to deal with paths, during this dissertation, building on the pre-

viously done work, the canonicalization unit has been expanded to handle

more cases.

The umview_realpath function is never actually called throughout UMView’s

code which uses more high-level functions built on it.

The new set of canonicalization API is the following:

char *umview_absolute_path(char *path, realpath_follow_t follow);

char *path_from_fd(int dirfd, char *path);

hashtable_obj_t *get_hte_from_path(char **path, realpath_follow_t follow,

int set_epoch);

These functions use umview_realpath always storing an absolute path in the

path variable while trying to consume as less memory as possible.

The first one, umview_absolute_path, simply resolves the path contained

in the path argument returning the address of a string storing the absolute

path.

The second one, path_from_fd, is used to obtain an absolute path when

the intercepted system call is one of the at-type, such as linkat, unlinkat,

newfstatat and so on. The variable’s address storing the absolute path is

the return value of the function.

The last one, get_hte_from_path, returns the address of the hashtable ele-

ment representing the module in charge of dealing with that path. The path

argument is a double pointer because if it is a relative path it will be resolved

and stored in the path variable. If setepoch is 1 and an element is found
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the virtual epoch will be set to the hashtables element one (epochs will be

discussed in the relevant chapter).

6.9 The Epoch Unit

The epoch unit is yet one of the other features that UMView inherited

from its former implementation with minor changes due to the new multi-

thread environment.

UMView uses an extensive timestamping system to differentiate between

epochs. Epochs in UMView work like a version control system for pro-

cesses/textquoteright views, as a matter of fact every change in the view

of a process results in a change of the process/textquoteright current epoch.

Actually two type of epochs are used to timestamp events.

• virtual_epoch: this is the tracer-thread specific epoch, which means

that different tracer-threads can have different epochs at the same time.

This epoch can be both set back or updated;

• epoch_now: this is the unique global epoch shared by all tracer-threads.

This epoch is a monotonic counter, it cannot be set back;

An epoch is just a counter which is incremented every time a change in the

process/textquoteright view occurs and UMView obviously offers a set of

API to deal with epochs.

void update_vepoch();

epoch_t update_epoch();

epoch_t set_vepoch(epoch_t e);

epoch_t get_vepoch();

epoch_t get_epoch();

epoch_t matching_epoch(epoch_t service_epoch);
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• update_vepoch(): updates the current virtual epoch to the value of

the global epoch;

• update_epoch(): increments the value of the global epoch by one and

returns its previous value;

• set_vepoch(epoch_te): sets the value of the virtual epoch to the one

contained by e and returns its previous value;

• get_vepoch(): returns the value of the virtual epoch;

• get_epoch(): returns the value of the global epoch;

• matching_epoch(epoch_tservice_epoch): if the virtual epoch is con-

sistent with the service epoch it returns the matching epoch;

UMView using the Epoch unit allows the virtualization nesting for mod-

ules. The idea is that each operation on a process/textquoteright view has

an associated timestamp. When a tracee executes a system call more than

one module could be eligible for processing the call, what happens is that

the module having the most recent timestamp is chosen.

In this way if several filesystems have been mounted at the same location the

latest mount operation is the one seen by the tracee.

Once a module is chosen to process the intercepted system call the virtual

epoch is moved back to the M epoch (which is the one of the module), as

a matter of fact every time a module is loaded, the process/textquoteright

view changes and the event is timestamped. In such a way all the system

calls generated by the module will be captured by purelibc and executed in

the environment at the time of M , this means that only the view changes

older than the M epoch will be considered and not the more recent ones[5].

As an example we might consider the following situation: both the virtual

and global epochs are 8; The user mounts a FS FS1 on /mnt by the module
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M1 and both the epochs now advance to 9. /mnt/image (inside FS1) is the

image of the file system FS2, the user mounts it again on /mnt by the module

M2, both the epochs are now 10.

When a user process reads /mnt/somefile, UMView finds out that that this

file is inside the mountpoint subtree of both M1 and M2.

The mount of FS2 is the most recent and the module M2 is thus selected.

Module M2s implementation of read is called and the virtual epoch is moved

back to 9. M2 needs to read /mnt/image which is again in the subtree of both

mountpoints. This time the second mount cannot be considered because is

too recent for the current virtual epoch, thus M1s read is called.

6.10 The FS Unit

The FS unit is used by UMView to keep track of the filesystem informa-

tion of every tracee, which include the root of the filesystem and the current

working directory.

Each tracer-thread use a structure of type umview_fs_t which is visible

only inside the FS unit but accessible through a set of APIs.

typedef struct umview_fs_t {

pthread_rwlock_t lock;

char *cwd;

char *rootdir;

size_t cwd_len;

size_t rootdir_len;

size_t count;

int path_rewrite;

} umview_fs_t;

• lock: mutex used for sharing the umview_fs_t structure;
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• cwd: the current working directory. All functions operating on this

field are capable of autoresizing cwd on-demand;

• rootdir: the root of the filesystem. All functions operating on this

field are capable of autoresizing rootdir on-demand;;

• cwd_len: the length of the string allocated to contain cwd;

• rootdir_len: the length of the string allocated to contain rootdir;

• count: used for reference counting;

• path_rewrite: not yet used (it will be used to implement chroot with-

out root permissions);

The following is the available set of APIs used by UMView to interact

with the FS unit:

umview_fs_t *umview_fs_create_fs(umview_fs_copy_method_t copy_method);

char *umview_fs_get_cwd();

void umview_fs_set_cwd(char *wd);

char *umview_fs_get_rootdir();

void umview_fs_set_rootdir(char *dir);

umview_fs_t *umview_fs_get_fs();

void umview_fs_set_fs(umview_fs_t *fs);

void umview_fs_destroy_fs();

void umview_fs_readlock();

void umview_fs_unlock();

There is a pair of getter/setter functions to interact with the cwd and rootdir

fields which are capable of auto-resizing the fields if needed.

There is also a pair of getter/setter functions to set or retrieve the current

umview_fs_t structure used in a tracer-thread.

The umview_fs_readlock and umview_fs_lock functions are used to obtain
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the mutex of the FS structure and have therefore to be used whenever there

is a necessity to read a specific field of the structure.

6.10.1 FS Structure Creation

The most interesting function in the FS unit is umview_fs_create_fs.

umview_fs_t *umview_fs_create_fs(umview_fs_copy_method_t copy_method);

This routine takes as its only input argument a umview_fs_copy_method_t

parameter which is an enumerated type allowing the values FS_NEW, FS_COPY

and FS_REFERENCE; according to the supplied value umview_fs_create_fs

will either create a new FS structure, make a full copy of the one belonging to

the calling process or a create a reference of the calling process/textquoteright

one. The newly created structure will be returned as the function’s return

value. FS structures can thus be shared between tracer-threads if the tracee

child has been created with a clone system call having the flag CLONE_FS.

The only place where umview_fs_create_fs is used at the moment is

when UMView needs to create a new tracer-thread in order to trace a child

the tracee has just spawned.

6.11 The FD Table Unit

The FD Table unit is used to keep track of the file descriptors used by

the tracee and to implement virtual file descriptors.

Each tracer-thread owns a structure of type umview_fd_table_t which

is visible only inside the FD table unit but accessible through a set of APIs.

typedef struct umview_fd_table_t {

pthread_rwlock_t lock;
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size_t count; /* this table can be shared by threads */

size_t first_free_fd; /* first usable fd */

size_t size;

int to_close_on_exec;

umview_fd_entry_t *table;

} umview_fd_table_t;

• lock: mutex used for sharing the umview_fd_table_t structure;

• count: used for reference counting;

• last_free_fd: number of the first usable file descriptor;

• size: allocated size of the table variable;

• to_close_on_exec: 1 if this table contains some file descriptors which

are to be closed on the execution of an execve system call;

• table: the actual table containing informations about the open file

descriptors. All functions operating on this field are capable of autore-

sizing table on-demand;

The following is the structure of each entry of the file descriptor table:

typedef struct umview_fd_entry_t {

hashtable_obj_t *ht;

short int tracked;

short int close_on_exec;

umview_fd_type_t type;

void *private;

char *path;

} umview_fd_entry_t;

• ht: a hashtable element associated with this file descriptor entry;
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• tracked: 1 if this file descriptor is kept track of by UMView;

• close_on_exec: 1 if this file descriptor has been created with the O_

CLOEXEC flag set;

• type: the file descriptor entry type. It is an enumerated type allowing

values FD_REAL, FD_VIRTUAL and FD_KERNEL.

A file descriptor of type FD_KERNEL is opened and used only by the

tracee and not virtualized by UMView or its loaded modules.

A FD of type FD_REAL is opened by either UMView directly or one of

the loaded modules.

A FD of type FD_VIRTUAL is a VFD.

• private: pointer to data associated with a FD_REAL or FD_VIRTUAL

file descriptor;

• path: string variable containing the path associated to the file descrip-

tor. The associated FD’s path is stored only if the FD is either FD_REAL

or FD_VIRTUAL;

6.11.1 Tracking File Descriptors

The role of the FD Table unit is to keep track of all the FDs used by

the tracee, therefore every FD opened either directly by the tracee or by a

UMView’s module gets its place in the UMView file descriptor table.

The function used to keep track of a single file descriptor is umview_fd_open.

int umview_fd_open(char *path, int fd, hashtable_obj_t *hte,

umview_fd_type_t fd_type, int close_on_exec);

When calling umview_fd_open if fd_type is either FD_VIRTUAL or FD_REAL

the path variable must point to a dynamic allocated string containing the
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path associated to the FD and hte must point to a hashtable element repre-

senting a module. If instead fd_type is FD_KERNEL both path and hte must

be NULL.

6.11.2 FD Collisions

Since the FD unit tries to keep track of any kind of open FD collisions

between FD_KERNEL or FD_REAL FDs and FD_VIRTUAL ones can occur.

To better understand how collisions can happen it is useful to discuss

an example; a module creates the VFD FD1 with value 3, consequently the

same module opens a real FD FD2 and the Kernel returns the value 3. At

this point we have a collision because the position 3 of the file descriptor

table is already occupied by FD1 and FD2 cannot be stored in the same

position.

To solve FD collisions the FS unit uses the following routine.

static int fd_solve_collision_nolock(int fd)

{

int newfd = umview_fd_get_free_fd_nolock();

newfd = r_dup2(fd, newfd);

if (newfd == -1) {

perror("assertion failed in fd_solve_collision_nolock()");

pthread_exit(NULL);

}

r_close(fd);

return newfd;

}

The mechanism is quite simple, every time a collision occurs the FS unit uses

the umview_fd_get_free_fd_nolock to find the first usable file descriptor
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position and performs a dup2 system call to duplicate the just created file

descriptor into the new position.

Going back to the example, UMView would call fd_solve_collision_

nolock on FD2 which would get the new value 4, in such a way both FD1

and FD2 can be stored causing no collision.

6.11.3 FD Table Creation

The FD Table unit’s function to create a FD table works similarly to the

one used for creating FS structures in the FS unit.

umview_fd_table_t*

umview_fd_create_table(umview_fd_copy_method_t copy_method);

This function takes as its only input argument a umview_fd_copy_method_t

parameter which is an enumerated type allowing the values FD_TABLE_NEW,

FD_TABLE_COPY and FD_TABLE_REFERENCE; according to the supplied value

umview_fd_create_table will either create a new FD table structure, make

a full copy of the one belonging to the calling process or a create a reference

of the calling process’ one. The newly created structure will be returned

as the functions return value. FD tables, just like the real ones, can thus

be shared between tracer-threads if the tracee child has been created with

a clone system call having the flag CLONE_FILES. The only place where

umview_fd_create_table is used at the moment is when UMView needs

to create a new tracer-thread in order to trace a child the tracee has just

spawned.

6.11.4 FD Table API

The following is the complete set of API offered by the FD Table unit,

including some of the functions which have just been described in depth.
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umview_fd_table_t *umview_fd_get_table();

int umview_fd_get_free_fd();

void umview_fd_close_on_exec();

int umview_fd_is_tracked(int fd);

void umview_fd_set_table(umview_fd_table_t *newtable);

umview_fd_table_t*

umview_fd_create_table(umview_fd_copy_method_t copy_method);

void umview_fd_destroy_table();

umview_fd_entry_t *umview_fd_get_hte(int fd);

int umview_fd_is_virtual(int fd);

int umview_fd_open(char *path, int fd, hashtable_obj_t *hte,

umview_fd_type_t fd_type, int close_on_exec);

void umview_fd_close(int fd);

char *umview_fd_get_path(int fd);

int umview_fd_get_type(int fd);

int umview_create_fd(int close_on_exec, void *private);

void *umview_fd_set_private(int fd, void *private);

void *umview_fd_get_private(int fd);

The majority of the API functions have already been covered, the remaining

ones have self-explanatory names.

6.12 The UMView System Call Table

UMView has its unique system call list, this decision comes from the ne-

cessity of having a stable and UMView’s specific reference.

System calls are added to the list as soon as they are implemented in UMView’s

core, at the time being the supported system calls are the one shown in table

5.1.
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6.12.1 UMView Configuration File

UMView employs a single configuration file to manage the supported

system calls. This file has the following structure:

syscalls... :CFunction, WINFunction, WOUTFunction, Pchoice, Pwrap

Each line describes a single or a set of system calls, as matter of fact the

first element delimited by the semicolon is a comma-separated list of system,

the first of this list is considered as the UMView system call of the set. Af-

ter the semicolon there must be a comma-separated list of functions name

which indicate in order: the CFunction for the set of system calls, the WIN-

Function, the WOUTFunction, the Pchoice function and the Pwrap function.

The following is a snippet from the current UMView’s configuration file.

lstat, stat, newfstatat, fstat: lstat, lstat, virtual, NULL, NULL

access, faccessat: access, access, virtual, NULL, NULL

readlink, readlinkat: readlink, readlink, virtual, NULL, NULL

access, faccessat: access, access, virtual, NULL, NULL

readlink, readlinkat: readlink, readlink, virtual, NULL, NULL

6.12.2 Build Scripts

CFunction and WFunction Generation

During CMake execution a python script residing in scripts/wrappers_

gen.py is called, this script is in charge of creating the header files include/

wrappers.h and include/choices.h which export CFunctions, WFunc-

tions, Pchoice and Pwrap functions.

The script simply parses UMView’s configuration file to find out each

system call associated CFunction, WFunctions, Pchoice and Pwrap function.
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Table Generation

CMake also executes another python script scripts/syscall_table_

gen.py which parses UMView’s configuration file and creates the source file

containing UMView’s system call table src/umview/syscall_table.c on-

the-fly.

The UMView system call table is just an array of syscall_tab_entry

elements.

typedef struct syscall_tab_entry {

/* syscall number */

int sysno;

/* the choice function: this function tells the service which have to

* manage the system call */

hashtable_obj_t *(*choice_function)(syscall_descriptor_t *);

/* wrapin function: this function is called in the IN phase of the

* syscall */

void (*wrapin_func)(hashtable_obj_t *ht, syscall_descriptor_t *,

syscall_behaviour_t *);

/* wrapout function: this function is called in the OUT phase of the

* syscall */

void (*wrapout_func)(syscall_descriptor_t *, syscall_behaviour_t *);

/* purelibc choice function */

hashtable_obj_t *(*purelibc_choice)(syscall_descriptor_t *);

/* purelibc wrap function */

long int (*purelibc_wrap)(hashtable_obj_t *, syscall_descriptor_t *);

} syscall_tab_entry;

Each entry in the system call table tells how each UMView’s system call

have to be processed, in terms of which CFunction, WFunctions, Pchoice

and Pwrap functions have to be called by the Execute unit.
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6.13 The Arch System Call Table

The Arch system call table is specific for each architecture to which

UMView has been ported and is created by the scripts/archtable_gen.py

script during the execution of the CMake build system.

The arch table source file is created in src/umview/arch_table.c and

differently from the UMView’s system call one this table is an array of point-

ers of syscall_tab_entry elements.

6.13.1 CFunction and WFunctions Resolution

Each position i of the arch system call table represents the ith system call

of the target architecture and the syscall_tab_entry pointer contained in

that position points to an element of the UMView’s system call table.

Figure 6.5: CFunction and WFunctions resolution

This is exactly how the Execute unit chooses the CFunction and WFunc-

tions to use upon interception of a system call by the tracing unit, it simply

retrieves the address of both functions from the element of the UMView’s

system call table pointed by the arch table position of the intercepted syscall.
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In this way there are no delay penalties for the Execute unit and there’s also

no management effort for both the UMView and arch table since they are

automatically created by python scripts according to the UMView’s config-

uration file.



Conclusions and Future

Developments

UMView other than being a partial virtualization software brings to new

life the concepts introduced by View-OS which offers a new and broad vision

on virtualization and specifically on the virtualization we use every day on

our machines.

The aim of this dissertation was to design and develop a new modular

and flexible implementation of UMView which will hopefully be used to share

knowledge and ideas about partial virtualization.

UMView is a powerful piece of software whose possibilities and application

can only be bounded by the ideas of developers and users.

Nevertheless there is still is a long path ahead, as a matter of fact there is

much room for improvement in the work done during this dissertation.

The tracing unit could be vastly improved by adding support for new

(yet to come) tracing backends. Unfortunately, ptrace has not been designed

to implement partial virtualization and as a matter of fact UMView’s trac-

ing unit is more complicated than how it should be because it has to deal

with ptrace’s weirdnesses (from a partial virtual machine perspective). An

example is the code to manage entry to/exit from system call transition, this

could be eliminated if another tracing backend would be available because

UMView is not really interested in such transitions.
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In terms of coverage a lot of system calls are yet to be virtualized and

supported by UMView, including some harder system calls to deal with like

poll or select.

New WOUTFunctions should be implemented for each system call capable

of creating new file descriptors, otherwise the FD Table unit will not be able

to correctly perform its task.

In terms of what’s the future like for UMView there is a lot going on in

Virtual Square’s laboratory and UMView’s codebase is far to be frozen.

The following is a list of interesting ideas for UMView’s future:

• implement the possibility of executing the chroot command without

having root permissions;

• develop a Go library to allow writing UMView’s module in Go;

• develop a Python library to allow writing UMView’s module in Python;

• develop a C++ library to allow writing UMView’s module in C++;

• integrate fuse in the codebase as a way to manage system calls oper-

ating on file descriptors more efficiently;

• add support for the ARM architecture;

• add the possibility for module to add new virtual system calls;

• implement an inter-module communication mechanism in order to let

modules know when a certain event happens;
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