
Alma Mater Studiorum · Università di Bologna
Campus di Cesena

Scuola di Ingegneria e Architettura

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

Towards Security-Aware
Aggregate Computing

Tesi in

Ingegneria dei Sistemi Software Adattativi Complessi

Relatore:

Prof. MIRKO VIROLI

Correlatore:

Prof. ALESSANDRO ALDINI

Presentata da:

GIACOMO MANTANI

Anno Accademico 2015-2016

Sessione III





KEYWORDS

Aggregate Computing

Trust Systems

Field Calculus

Information Security

Distribute Systems





A coloro che…

…mi hanno aiutato nella realizzazione di questo lavoro,

in ordine alfabetico:

Aldini Alessandro

Casadei Roberto

Francia Matteo

Mantani Alessandra

Pianini Danilo

Viroli Mirko

…stimolano la mia passione verso la sicurezza informatica:

i ragazzi del gruppo CeSeNA Security

i miei colleghi di lavoro

…mi stanno sempre vicini:

la mia famiglia �

Jessica �





I, GIACOMO MANTANI confirm that the work presented in this thesis is

my own. Where information has been derived from other sources, I confirm

that this has been indicated in the thesis.





Abstract

Aggregate computing is a paradigm that tries to fully escape the single device

abstraction. It handles collective behaviour and interactions between devices

for developers.

Thanks to field calculus, aggregate programming can deal with mobile de-

vices deployed in physical space - situated. Every device can move and

change position deliberately.

Nowadays aggregate programming does not consider security threads, i.e. a

malevolent device that sends corrupted or unexpected data. This is a prob-

lem because such algorithms are, above all, deployed in critical systems where

human lives could be in danger. It is a priority to look at mitigation and

defense mechanisms.

This dissertation presents solutions and finally proposes ideas for new hybrid

approaches that use trust system.
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Chapter 1

Introduction

The essence of abstractions is preserving information that is rel-

evant in a given context, and forgetting information that is irrel-

evant in that context. – John V. Guttag

In a world of ubiquitous computing, technologies are almost everywhere:

bank transfert, communication services, transports and even medical equip-

ment. Devices are mobile and deployed in physical space, situated. Alto-

gether they create what in literature is often called pervasive continuum.

The medium is an amorphous computing medium, that (Abelson et al. 2000)

can be defined as:

a system of irregularly placed, asynchronous, locally interacting

computing elements.

Each unit belonging to the medium can i) be faulty: it is reasonable that

it may stop working, ii) be sensitive to the environment, iii) be able to

move itself around in space, iv) have computing power and a memory

system, v) be able to communicate with some neighbor units.

1



1.1 Collective behavior 1. Introduction

Pervasive continuum, as every other shared coordination medium must deal

with users that could behave inadequately or even with malevolent intents.

Information security tries to protect them from illegal uses and threads fo-

cusing on confidentiality, integrity and availability of a given system.

For the reasons aforementioned, this work aims at introducing security-aware

mechanisms and studying possible solutions in current aggregate program-

ming paradigm. Experiments and solutions proposed focus to a gradient

algorithm that evaluate the distance from a source. The gradient is chosen

because it is recognised as exemplary model of the computational field.

A gradient algorithm is the de-facto standard example and the proposed

improvements can be adapted to other scenarios without too much effort.

Before starting with the dissertation, in the next section common properties

and definitions about collective behaviour follows.

1.1 Collective behavior

Dealing with collective devices’ behavior can be more natural and intelligible

rather than dealing with each single unit and his interactions with neighbors.

The basic application of collective behavior is wave propagation. Wave prop-

agation with hop count1 is evocative of the gradients formed by chemical

diffusion. Unit A spreads a value to his neighbors forming a chain reaction

between nodes. In botanic it is also known as growing points concept.

A growing point is an activity of a group of neighboring compu-

tational particles that can be propagated to an overlapping neigh-

borhood. Growing points can split, die off, or merge with other
1In computer networking, a hop is one portion of the path between source and desti-

nation.
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growing points. As a growing point passes through a neighbor-

hood, it may modify the states of the particles it visits. We can

interpret this state modification as the growing point laying down

a particular material as it passes. The growing point may be sen-

sitive to particular diffused messages, and in propagating itself,

it may exhibit a tropism toward or away from a source, or move

in a way that attempts to keep constant the “concentration” of

some diffused message. Particles representing particular materi-

als may “secrete” appropriate diffusible messages that attract or

repel specific growing points. - (Abelson et al. 2000)

The characteristics mentioned above recall what (Hewitt & Jong 1984) have

stated as properties of every open system:

1. Asynchronous communication for coordination.

2. Ability to deal with large quantities of diverse information.

3. Concurrent unplanned dynamics.

4. Decentralized control, local decisions should be made.

5. Possible inconsistency of information throughout time.

6. Each component needs to keep track only of its own state and how to

relate with neighbors.

7. Principle of locality:2 the effect of any event is local.

8. Reliability: failures of individual components should be irrelevant.

2In physics, the principle of locality states that an object is only directly influenced by
its immediate surroundings.



1.2 Summary of chapters 1. Introduction

Accordingly to (Beal & Bachrach 2006), abstraction layers between

single devices and the higher level aggregate system are:

• Global, higher level that controls the regions’3 behavior, also called

computational field (Beal & Viroli 2016);

• Local, amorphous coordination medium in which the behavior of each

node is specific;

• Discrete, a network of devices that exchange messages with their

neighborhoods.

Devices aggregation can be done through i) spatial and time coordination

or ii) network structure. Specific constructs dictate how data is exchanged

and manipulated across regions. Local operations and interactions allow

collaboration between individual computational devices.

1.2 Summary of chapters

The outline of the thesis is as follow. Chapter 2 gives a background on

aggregate programming, its paradigm, involved abstractions and properties.

Chapter 3 gives an overview about misbehaviours and the attacks that can

occur in aggregate computing systems and, more generally, in distributed

system. Chapter 4 gives a background on trust systems and a description

of two of the main algorithms, Eigentrust and Peertrust. Chapter 5 shows

the results of experiments in which attacks are simulated in various scenarios.

Chapter 6 proposes solutions to mitigate attacks investigated in the previ-

ous chapter such as i) using an external trust system, ii) developing filter

functions and iii) creating an embedded local trust system in each node.

3Aggregation of several computational units



Chapter 2

Aggregate Programming

Aggregate programming is a paradigm applied to design, create and maintain

complex distributed systems. The aim is to fill up all developers needs when

dealing with time, space and an enormous amount of devices interconnected.

Such systems are also called the pervasive continuum (Zambonelli et al. 2011)

for being:

• distributed,

• dense,

• mobile,1

• heterogeneous.

It is conform to the following principles useful for distributed programming

framework, mentioned by (Beal & Viroli 2016):

1. Have mechanisms for robust coordination under the hood.

2. Composing different modules and subsystems must be simple and

transparent.
1been able to be moved from one place to another

5



2.1 Background 2. Aggregate Programming

3. Coordination mechanisms could be different between modules, regions

and times.

Aggregate programming is currently used in different domains such as wire-

less sensor networks, crowd safety (Beal et al. 2015), disaster relief op-

erations, construction of resilient enterprise systems and network security.

These fields have a common characteristic; they have computing devices

distributed throughout a physical space. For that reason aggregate

programming is always accompanied by the term spatial computing.

It can be also applied to networks that are not closely tied to space, such

as enterprise service networks for services recovery from failures (Clark et al.

2015).

Nevertheless, it is possible to exploit the aforementioned characteristics in

network security. Aggregate programming in network security is inspected

by (Paulos et al. 2013).

2.1 Background

Aggregate programming derives from Field Calculus, a core set of succinct-

ness constructs which models device behavior and interactions. Thanks to

his succinctness it is possible to do mathematical analysis on it. Neverthe-

less, the field calculus’s syntax and semantics are expressive enough to be

universal (Beal & Viroli 2016).

In physics, a field is a region in which each point (scalar) is affected by a

force (vector) (Britannica n.d.). In this work the terms region and field are

used interchangeably. A deeper formalization of field notion is described by

(McMullin 2002). In mathematics scalars and vectors are indeed quantities
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that are used to describe the motion of objects.

The word computational means “ability to compute” both of the device

by itself and in conjunction with other neighbor devices, exploiting local-to-

global interactions. Computation is a pure function over fields (see Figure

2.1): the conception of state is integrated in the one of time.

Figure 2.1: How to compute a channel using pure functions

The first computational field model was proposed by (Tokoro 1990). His

model aims to solve many large and complex problems of different nature

in an open-ended distributed environment, rising the level of abstraction to

have a coarse-grained view of the system.

More recent works clarify what a computational field is and how to use

it. In particular (Damiani et al. 2016) have presented i) a small universal

calculus of aggregate-level field calculus, ii) core fundamentals constructs and

concepts in order to develop sophisticated APIs, both general and domain-

specific, for programming distributed systems.



2.2 Abstractions 2. Aggregate Programming

Formally and briefly a field is a space-time structure defined as:

ϕ : D 7→ V

where:

• D is the events domain, and an event E is a triple ⟨δ, t, p⟩ formed by

a device δ “firing” at time t in position p

• V are the field values

See (Damiani et al. 2016) for a more formal and complete syntax.

2.2 Abstractions

It is possible to differentiate aggregate programming in five different layers:2

• Application code

• Developer APIs

• Resilient Coordination Operators

• Field Calculus Constructs

• Device Capabilities

Application code is where developers operate through user-friendly devel-

oper APIs. APIs encloses the sequence of instructions of resilient coordina-

tion operators and field calculus constructs.

A good starting point is the official repository (Pianini 2017) and a forked

version with many useful functions collected in a library, protelis-lang (Fran-

cia [Online; accessed: March 2017]). There are APIs that handle:
2Higher level of abstraction first
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• coordination, such as spreading, shared timer, timer replication, accu-

mulation, tree, graph and more,

• state, such as applying a function while a condition is true, cyclic timer,

invoking a function periodically, exponential back-off filter, holding

value until timeout and more,

• utilities, such as verifying if a device is on the edge, hood wrapping,

min, max and more.

One of the main advantages is the possibility to leave message passing be-

tween nodes behind the scene. Behavior results from these APIs and the

following coordination operators.

Resilient coordination operators (Beal & Viroli 2014):

• Gradient-cast: builds a distance-gradient from a source according to

a metric. It spreads information across space, potentially further orga-

nizing and computing as it proceeds. This operator is a generalization

that cove and build accumulated values on it. The G operator may

be thought of as executing two tasks i) computes of a field of shortest-

path distances from a source region and ii) computes an accumulation

of values along the gradient of the distance field away from the source.

• Converge-cast: collects information distributed across space by accu-

mulating values down the gradient3 of a potential field. Combining

with G it is possible to obtain a general “summary” operator that ag-

gregates the values of a region and then spreads it throughout space.

• Time-decay: summaries information throughout time by decaying ac-

cumulated values, i.e. it can be useful in monitoring actions for a given

time τ . 2].
3the unique vector field whose dot product with any vector v at each point x is the

directional derivative of a scalar function f along v



2.2 Abstractions 2. Aggregate Programming

• Sparse-choice: creates partitions and selects sparse subsets of nodes

in space. It breaks symmetry by exploiting a frequently used self-

organization principle, mutual inhibition. Devices compete against one

another to become local “leaders”. For example, it can be used to des-

ignate a representative device in a sensor network to act as a collection

point and relay to the consumers of the network’s sensor data.

Field calculus constructs are formed by:

• nbr (= neighborhood), typically application-specific, it is used to ob-

tain values from the nearest devices (i.e., physical proximity, wireless

connectivity..);

• rep (= repeat), time evolution, is a construct for dynamically changing

fields, that uses a model in which each device evaluates expressions

repeatedly in asynchronous rounds;

• if, domain restriction, is a space-time branching construct used for

example to spread different computation tasks in different regions of

the medium. In addition, as depicted in the Figure 2.2 below

Figure 2.2: If representation

Device capabilities, such as sensors and actuators that collect data from

the physical world and supply upper levels.



2. Aggregate Programming 11

Recap:

Function Space Time

Structure nbr rep

Aggregation C T

Spreading G T

Symmetry breaking S random

Restriction if if

Higher levels can express:

• Complex spreading, aggregation, decay functions.

• Spatial leader election, partitioning, consensus.

• Distributed spatio-temporal sensing and situation recognition.

• Dynamic spreading - eg: code deployment.

• Implicit/explicit device selection of what the code is executed by.

• Creation of sub-groups or collective teams based on the selected code.

2.3 Properties

Each aggregate programming system must have also core properties such

as safety and resilience, guaranteed as much as possible by coordination

operators.

(Lamport 1977) has defined safety as a property that - states that something

will not happen. The basic method of proving safety is to prove consistent

behavior of functionalities. (Lamport 1977) also explains a simple formaliza-

tion of proving safety as:



2.3 Properties 2. Aggregate Programming

If F : S → S is multivalued function and D ⊂ S and F (D) ⊂
D =⇒ F n(D) ⊂ D ∀n > 0 where F n is the composition of

F with itself n times and F takes the current program state into

its next state.

Safety is a characteristic of systems and not of their components. The state

of safety in any system is always dynamic.

The property of resilience is the ability to adapt and self-organize after

changing conditions, such as node failures, node mobility or evolution of

the network topology. As (Tanenbaum & Van Steen 2007) said, resilience

incorporates techniques by which one or more processes can fail without seri-

ously disturbing the rest of the system. Changing the word “processes” with

“devices” makes the definition valid for aggregate programming or more gen-

erally for all distributed systems.

Self-organization is the spontaneous often seemingly purposeful formation

of spatial, temporal, spatio-temporal structures or functions in systems com-

posed of few or many components. The concept of self-organization was

discussed by (Ashby 1947) and by (Foerster von H 1987) within his “Cyber-

netics of second order”. It was also discussed in thermodynamics (Nicolis

et al. 1977) and (Heylighen & others 2001). A systematic study of self-

organization phenomena is performed in the interdisciplinary field of syner-

getics (Haken 1977) that is concerned with a profound mathematical basis

of self-organization as well as with experimental studies of these phenomena.

The “Complexity” (Bar-Yam 1997) field is, at least partly, also concerned

with self-organization.



Chapter 3

Misbehavior and attacks

“We cannot choose our external circumstances, but we can always

choose how we respond to them” - Epictetus

This chapter starts with the inspection of the meaning of misbehaviour and

how it can occur. Next paragraphs are about attacks’ taxonomy and defini-

tions. In particular, attacks that are only strictly related with distributed

systems and aggregate computing. It is not intended to be a fully observa-

tion of all attacks patterns but just an overview of plausible strategies used

with malevolent intent.

3.1 Misbehaviours

A distributed system is constructed from a set of relatively inde-

pendent components that form a unified, but geographically and

functionally diverse entity. Nevertheless, distributed systems re-

main difficult to design, build, and maintain. - Rob Pike, Dennis

M. Ritchie

13



3.1 Misbehaviours 3. Misbehavior and attacks

In a distributed system each independent component can obviously leave the

system or fault and stop working.

Misbehavior is a generic term to say that something does not operate as it

should. Node misbehaviour can occur:

• by i) intentionally (malevolent) or ii) accidentally performing an action

that is not allowed.

• by failing to perform an action due to lack of data and/or resources or

hardware faults.

This research takes a look only to misbehaviours that does not affect not

faulty nodes, directly or indirectly. Note that nodes are able to communicate

with each other only through message passing, the only medium disposable.

During message passing there are three ways in which nodes can influence

one another:

• by not receiving a message.

• by receiving a malformed message.

• by receiving a well formed message but with bad data.

The last two are slightly different; the first one is about the structure and

the syntax of the message, whereas the latter is about the semantics, the

meaning of the message.

Common distributed system properties (Gray 1986), such as availability,

reliability and fault-tolerance are already taken into account by aggregate

programming. Unfortunately these properties do not often take into account

problems that occurs with intentionally produced misbehaviours.
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3.2 Attacks

Misbehavior, as seen in the previous section is a generic term. It is possible

to differentiate a much broader range of intentional misbehaviours, com-

monly called attacks. Attacks can leverage fundamental system properties,

come up with really smart ideas and be really unpredictable. In this sec-

tion an overview and a taxonomy of plausible attacks in a typical WSN and

aggregate programming scenario is presented.

Each time an attack is described, it is important to keep in mind which is

the purpose and who is the target. From a security perspective it is a good

practice to think about the knowledge required and what is the amount of

time and/or resources needed by an attacker to accomplish his malevolent

intents.

An attack can be done by a single or a group.

3.2.1 From a single entity

Single malevolent entities attacks are:

• Corruption, altering data randomly or forged.

• Selective misbehaving, exchange valuable and good information to

someone and erroneous or bad to others.

• On-off, an entity may behave badly and well alternatively.

3.2.2 From multiple cooperating entities

In addition to the single and isolated malevolent entity, there could be co-

operating ones. Attack efficiency is obviously greater and the system can



3.2 Attacks 3. Misbehavior and attacks

be drastically negatively affected. In literature, cooperating attacks are also

called collusions, and they are:

• Driving down: malevolent entities outnumber the good one, dictating

the system.

• Malicious collectives with camouflage: malevolent groups collectively

send positive information about a malicious agent. This attack is also

called ballot stuffing and it is well-represented by (Mármol & Pérez

2009).

• Malicious spies: a subtle malevolent collectives with comouflage where

entities behave always correctly in order to gain trust from good peers

and from this “status quo” they give positive feedback to other malev-

olent entities in the network.

3.2.3 Attacks properties

The previously mentioned attacks’ taxonomies, were created accordingly to

the following properties:

• Attack intent: An enemy may have several different goals when try-

ing to subvert a system.

• Targets: Security threats can focus their efforts on a subset of entities

belonging to the system, on (non-)specific individual targets.

• Required knowledge : The amount of information that has to be

gathered or collected from the system in order to effectively perform

an attack Thus, some threats will require a comprehensive knowledge

about the whole system or about some particular entities, while some

other threats will work properly with a small knowledge.
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• Cost: The less expensive an attack is, the more beneficial is its appli-

cation. The cost of running an attack is not necessarily pecuniary, but

it can be also measured in terms of resources or time.

• Algorithm dependence: Some security threats take advantage of

a specific algorithm or of the model vulnerability and exploits it in

order to create a great damage to the system. Other attacks are more

generic and, consequently, applicable in a wider set of scenarios or

environments.

• Detectability: The later an attack is detected, the greater might be

the damage. That is the reason why most of the threats try not to

induce suspicion as much as possible, i.e., they do not cause drastic

changes in the system, but they rather make slight ones. In some way,

the ability to detect an attack or threat is an evaluation of its resilience

and effectiveness. If the collaboration between attackers increases, as

well as their gathered knowledge about the system, it is more difficult

to detect or prevent them.

3.3 Possible mitigations

In order to catch the aforementioned misbehaviours and attacks, a refac-

toring of entities/nodes behavior’ is needed within the standard framework

used. Some reasonable mitigations could be:

• Injecting memories in each node concerning previous received data in

order to detect not common messages. Unsupervised learning mecha-

nism can be used.

• Adding filters that drop not conformed messages.

• Using a trust system and reputation model, so that a message from an

un-trusted or unknown entity could be dropped or used with caution.
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Chapter 4

Trust Systems

Trust research range over different domains and topics such as sociology,

economics, philosophy, psychology, organizational management, autonomic

computing, communications and networking (Cho et al. 2011). It is a real

multidisciplinary concept with a term not yet completely formalized. Accord-

ing to Cambridge Dictionary (Dictionary [Online; accessed: March 2017]),

trust is defined as “to believe that someone is good and honest and will not

harm you, or that something is safe and reliable”.

Trust can be perceived as someone/something’s reliability or as a willing

dependence, decision.

4.1 Background

Trust is a one-directional relationship between two peers that can be called

trustor and trustee. The trustor is the entity that has the ability to make

assessments and decisions based on the information received and on its past

experience with the trustee.

19



4.1 Background 4. Trust Systems

Trust can be differentiated into two macro areas i) IT security and ii)

soft-security (Jøsang 2007). The latter deals with human interactions and

it relates to psychological factors. For this reason it is not considered in this

study, which aims at pragmatic and practical approaches.

Reputation is often related to trust but these two concepts differ. The for-

mer is a collective feedback-delivered quantity which is shared by the whole

community, The latter is a personal and subjective opinion that can be seen

as a score based only on direct experience.

A trust metric must has the following characteristics (Cho et al. 2011):

• It should be established referring to potential risks.

• It should be context-dependent.

• It should be based on its own interest.

• It should be easily adaptable, dynamic and constantly updating.

• It should mirror the system reliability.

The term trust and trustworthiness have different meanings. Trust is a

belief and trustworthiness is the actual probability that varies from zero

(distrusted) to one (trusted). The perceived or estimated trustworthiness

of a potential cooperation partner is the basis for the trustor’s decision to

whether or not to cooperate. Figure 4.1 shows some important relationships.
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Figure 4.1: Trust levels: The horizontal axis is the subjective probability, i.e. the level of trust,
whereas the vertical axis is the objective probability, i.e. the level of trustworthiness. The t
on the horizontal axis marks the trust threshold, so there is trust whenever the subjective
probability is greater than t.

A crucial observation now is that a trust level ≥ t (resp. ≤ d) is not enough

for engaging in cooperation (Solhaug et al. 2007).

Obviously, trust per se is related with risk calculation and the aforementioned

probabilities are important metrics to cope with (Jøsang & Presti 2004).

(Solhaug et al. 2007) conclude that trust is generally neither proportional

nor inversely proportional to risk.

There are a multitude of applications of trust system such as EigenTrust (see

Section 4.2.1), PeerTrust (see Section 4.2.2), BTRM-WSN and PowerTrust.

Most of them are surveyed by (Mármol & Pérez 2009) with a notable de-

scription and worth comparison.
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(Mármol & Pérez 2009) try to enumerate the fundamental steps needed in a

typical trust system as follows:

1. Collecting information.

2. Aggregating all the received information properly and somehow com-

puting a score for every peer in the network.

3. Selecting the most trustworthy messages and assessing a posteriori the

satisfaction updating the score.

4. (Optional) A last step, “punishing1 or rewarding” can be carried out,

adjusting consequently the global trust (or reputation).

Once misbehaving nodes are detected, their neighbors can use trust informa-

tion to avoid cooperation with them as if they are an obstacle.

4.2 Trust Systems overview

It is worth to mention at least two of the main trust algorithms before

proposing a solution. In the following sections a brief summary of two trust

algorithms - i) EigenTrust and ii) PeerTrust - follows:

4.2.1 EigenTrust

EigenTrust Algorithm (Kamvar et al. 2003) was proposed in 2003. The

algorithm has been incrementally developed with additional features in each
1Bucchegger and Le Boudec think that liars, node that report inaccurate testimonials,

should not be shamed or punished. The reason is that punishing these messages discourage
honest reporting of observed misbehavior. Since there are always at some point a node
that is bound to be the first witness of another node that misbehave, thus starting to
deviate from public opinion could be punished wrongly.



4. Trust Systems 23

revision. The basic EigenTrust algorithm has a simple centralized reputa-

tion calculation strategy, while the advances include distributed, transitive

and secured strategies for global calculations. An overview of the distributed

strategy of the algorithm follows. (Kamvar et al. 2003) have a deeper de-

scription.

The next example can be easily adapted to other contexts such as aggregate

programming devices or nodes.

Consider a P2P system consisting of n peers. Each time peer i exchanges

information with peer j, it rates the communication as sat(i, j) if positive,

and unsat(i, j) if negative, and keeps a record for the number of each. Then

the trust value sij is defined as:

sij = sat(i, j) − unsat(i, j) (4.1)

In order to aggregate local trust values, it is necessary to normalize them in

some manner. Otherwise, malevolent peers can assign arbitrarily high local

trust values to other malevolent peers, and arbitrarily low local trust values

to good peers, subverting the system easily. The trust value sij is normalized

as follows:

cij = max(sij, 0)∑
j max(sij, 0)

(4.2)

Normalized local trust value ⟨cij⟩ ensure that all values will be between 0

and 1.

Usually, there are some peers that are known to be trustworthy in any P2P

system, so they are identified at an early stage of the system life as a set of

pre-trusted peers, P . This is especially important for inactive peers or those
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who recently joined the system, as they do not trust any peer. Thus, the

trust value is redefined as:

cij =


max(sij ,0)∑
j

max(sij ,0) if ∑j max(sij, 0) ̸= 0

pi otherwise
(4.3)

where

pi =


1

|p| if i ∈ P

0 otherwise
(4.4)

Peer i’s global reputation is given by the local trust values given to it by

other peers, weighted by the global reputation of the assigning peers. Let C

be the matrix [cij] and −→ci a vector defined as follows:

C =



c1,1 c1,2 · · · c1,j · · · c1,m

c2,1 c2,2 · · · c2,j · · · c2,m

... ... . . . ... . . . ...

ci,1 ci,2 · · · ci,j · · · ci,m

... ... . . . ... . . . ...

cm,1 cm,2 · · · cm,j · · · cm,m


, −→ci =



ci,1

ci,1
...

ci,j

...

ci,m


(4.5)

Having this, tik represents the trust that peer i places in peer k based on

asking his friends, and defined as:

tik =
∑

j

cijcjk (4.6)

In matrix notation, −→
ti is the vector containing the values tik.
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−→
ti = CT −→ci =

(
n∑

j=1
cijcj1, . . . ,

n∑
j=1

cijcjk, . . . ,
n∑

j=1
cijcjm

)
(4.7)

By querying his friends’ friends, peer i gets a wider view of peer’s k reputa-

tion, that is:

−→
ti = (CT )2−→ci (4.8)

Going on in this way, after a large enough number m of queries, peer i will

get the same eigenvector −→
ti = (CT )m−→ci , as every other peer in the system.

Additionally, authors propose more sophisticated ways of computing this

eigenvector based on pre-trusted peers.

(Kamvar et al. 2003) consider that a peer who is honest providing something

is also likely to be honest in reporting its local trust values, which is not

necessarily always true.

There is also a distributed version where all peers in the network cooperate

to compute and store the global trust vector in order to reduce computation,

storage and message overhead for each peer.

4.2.2 PeerTrust

PeerTrust (Xiong & Liu 2004) is a trust and reputation model that combines

several important aspects related to the management of trust and reputation

in distributed systems, such as:

• The feedback a peer receives from other peers

• The total number of transactions of a peer

• The credibility of the recommendations given by a peer
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• The transaction context factor

• The community context factor

This accurate aggregation is performed through the following expression,

representing the trust value of peer u:

T (u) = α
I(u)∑
i=1

S(u, i)CR(p(u, i))TF (u, i) + β × CF (u) (1)

where

• I(u) denotes the total number of transactions performed by peer u

with all other peers;

• p(u, i) denotes the other participating peer in peer uith’s transaction;

• S(u, i) denotes the normalized amount of satisfaction peer u receives

from p(u, i) in its iith transaction;

• CR(v) denotes the credibility of the feedback submitted by v;

• TF (u, i) denotes the context factor of the adaptive transaction for

peer uith’s transaction;

• and CF (u) denotes the context factor of the adaptive community for

peer u.

On the other hand, the credibility of v from w’s point of view, is computed

as:

Cr(p(u, i)) = Sim(p(u, i), w)∑I(u)Sim(p(u,j),w)
j=1

(2)

where
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Sim(v, w) = 1−

√√√√√√ ∑
x∈IJS(v,w)

∑I(x,v)
i=1 S(x, i)
I(x, v)

−
∑I(x,w)

i=1 S(x, i)
I(x, w)

2/
|IJS(v, w)|

(3)

and respectively:

• I(u, v) denotes the total number of transactions performed by peer u

with peer v;

• IS(v) denotes the set of peers that have interacted with peer v;

• IJS(v, w) denotes the common set of peers that have interacted with

both peer v and w, computed as IS(v) ∩ IS(w).

Additionally this model introduces a trust-based peer selection scheme.

A simple rule for peer w to decide whether to have an interaction with peer

u or not could be T (u) > Tthreshold(w), where the value of Tthreshold(w)
depends on several factors such as the importance of the transaction, or the

disposition of w to trust unknown peers or not, among many others.
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Chapter 5

Experiments

The road to learning by precept is long, but by example short and

effective. Lucius Annaeus Seneca

This chapter adds together the knowledge gathered from the previous chap-

ters and tries to to find out how to develop solutions by following the scien-

tific method. Solutions tackle some security issues in a common aggregate

programming algorithm: the gradient.

A gradient field is often associated with the function distance-to. Function

distance-to takes as its input a source field and returns a new field that

maps each node to the estimated distance from the nearest source device.

A source is a field holding specific values that differentiate it from other

fields. Similarly in these experiments malevolent nodes have a value that

differentiates them from possible other sources and devices.

It is important to be aware that in real scenarios malevolent nodes could use

fake identities. It is not possible to identify good peers from bad ones be-

fore adding an authentication algorithm. Proposed solutions must somehow

differentiate and identify “fake” nodes. Nevertheless, algorithms’ mentioned

29
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before checks and filters which values each peer sends to his neighbours.

The scenario tested is on a grid-like network in which malevolent nodes send

erroneous values such as:

1. Camouflage as a real source:

• with a different distance from the real one;

• with an incremental number of nodes in it;

• in groups/crowds.

2. Send corrupted values to their neighbours.

The first sections start with a brief overview of the used languages:

• Protelis Language (Par. 5.1)

• Scala (Par. 5.3)

and technologies:

• Alchemist Simulator (Par. 5.2)

• scafi (Par. 5.3)

• SciPy (Par. 5.4)

The next following sections are about the experiments and simulations, in

which malevolent area change:

• distance from source (Par. 5.5.1)

• size (Par. 5.5.2)

• number of (Par. 5.5.3)

• sent values (Par. 5.5.4)
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The last sections are about solutions (Par. 5.6):

• Solution one: External Trust System (Par. 5.6.1)

• Proposed Solution two: Filter Functions (Par. 5.6.2)

• Proposed Solution three: Local Trust system (Par. 5.6.3)

5.1 Protelis Language

The goal of the Protelis language is to make resilient networked systems easy

to build for complex and heterogeneous networks as for single machines and

cloud systems. This is accomplished by separating the different tasks and

making some of the hard and subtle parts automatic and implicit. A few of

the key design decisions behind Protelis are:

• It is a language because there are a lot of subtle and easy ways to break

a distributed system. Creating a language, rather than just a library,

lets complexity be handled implicitly, so there is no opportunity to

make mistakes.

• It is hosted in and integrated with Java, an advantage thanks to its

large pre-existing ecosystem and libraries.

• It looks as much practical as Java in order to make it easier to learn

and adopt.

• It ensures safe and resilient composition because its core is field calcu-

lus, the theoretical model discussed in 2.1.

Protelis emerged from the synthesis of several prior projects:

• Proto, an aggregate programming language created by Jacob Beal and

Jonathan Bachrach.
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• Field calculus, a distillation of aggregate programming models by

Mirko Viroli, Ferruccio Damiani, and Jacob Beal

• The Alchemist Simulator project, led by Danilo Pianini and Mirko

Viroli.

5.2 Getting a visual representation: Alchemist

Alchemist is an extensible “meta-simulator”, inspired by stochastic chem-

istry (i.e. kinetic Monte Carlo) and tailored to pervasive computing and

distributed systems. It provides a flexible meta-model, on which developers

should bind their own abstractions. An abstraction is also called incarnation

or extension. In this research the Protelis language1 incarnation is used in

order to use field calculus constructs.

Alchemist is available on Maven Central. It is possible to import all the

components using the it.unibo.alchemist:alchemist groovy artifact. If

you do not need the whole Alchemist machinery but just a sub-part of it,

you can restrict the set of imported artifacts by using as dependencies the

modules you are actually in need of.

Using Gradle build system2 it is only required to specify in the Groovy3

script named build.gradle which alchemist version to use:

compile ’it.unibo.alchemist:alchemist:ALCHEMIST_VERSION’

Groovy is an optionally typed and dynamic language, with static-typing and
1protelis.github.io ([Online; accessed: March 2017])
2gradle.org ([Online; accessed: March 2017])
3www.groovy-lang.org ([Online; accessed: March 2017])

protelis.github.io
gradle.org
www.groovy-lang.org
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static compilation capabilities. An example of build script is structured as

follows:

1

2 dependencies {

3 compile ( ”it.unibo.alchemist:alchemist:$alchemistVersion” )

4 }

5

6 task runAlchemist(type: JavaExec) {

7 classpath = sourceSets.main.runtimeClasspath

8 classpath ”src/main/protelis”

9 classpath ”src/main/java”

10 maxHeapSize = ”8g”

11 main = ”it.unibo.alchemist.Alchemist”

12 args(

13 ”-y”, ”src/main/yaml/${simulation}.yml”,

14 ”-g”, ”src/main/effects/${simulation}.aes”,

15 ”-t”, ”500”,

16 ”-e”, ”data/exportedData”

17 )

18 dependsOn(compileJava)

19 }

20

21 defaultTasks(”runAlchemist”)

22

It is possible to get ready for the first simulation using the Protelis incarna-

tion only by cloning and running Protelis-Sandox repository (Francia [Online;

accessed: March 2017]).

This work has used Alchemist only to have a visual representation of how

an attack scenario looks like. Simulations have been done using scafi, as

sections below will further inspect. Alchemist network topology and scafi

match.

Experiment sources can be found at GitHub (github.com/jak3/

Protelis-Sandbox [Online; accessed: March 2017]).

github.com/jak3/Protelis-Sandbox
github.com/jak3/Protelis-Sandbox
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5.3 Data extraction and simulations: scafi

scafi is an aggregate programming framework for Scala. It provides:

1. a Scala-internal DSL for expressing aggregate computations and field

calculus semantics in a correct and complete way;

2. a distributed platform developed over the Actor Model of Akka toolkit4,

supporting the configuration and execution of aggregate systems;

3. flexible API.

Scala is a general-purpose programming language with the following main

characteristics:

• it runs on the JVM and integrates with the Java ecosystem seamlessly;

• it is a pure OOP: every value is an object and every operation is a

method call;

• unlike Java, Scala has many features of functional programming lan-

guages that integrate smoothly with the object-oriented paradigm;

• has an advanced type system supporting algebraic data types, covari-

ance and contravariance, higher-order types, and anonymous types;

• is designed to be a “scalable” language, by keeping things simple while

complexity grows;

• has a powerful and expressive static type system with type inference.

scafi provides a reasonably fast Virtual Machine for the scafi DSL and it

comes with a basic simulator that allows execution of aggregate algorithms

locally. In this research it is used to simulate attacks scenarios and data

extraction for statistic purpose and plotting.
4akka.io ([Online; accessed: March 2017])

akka.io
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5.4 Plotting: matplotlib

Plotting has been done using matplotlib from SciPy. SciPy is a Python-based

ecosystem of open-source software for mathematics, science, and engineering.

In particular, these are some of the core packages:

• NumPy: Base N-dimensional array package.

• SciPy: Fundamental library for scientific computing.

• Matplotlib: Comprehensive 2D Plotting.

• IPython: Enhanced Interactive Console.

• Sympy: Symbolic mathematics.

• pandas: Data structures & analysis.

To get a glimpse of its simplicity, the source code used to plot error functions

follow:

1

2 def plotError(metadata, errors):

3 plt.grid(True)

4 plt.title(metadata[’title’])

5 plt.xlabel(metadata[’lx’])

6 plt.ylabel(metadata[’ly’])

7 plt.margins(x=0.04, y=0.04)

8 plt.tight_layout()

9 plt.xticks(metadata[’x’])

10

11 x = metadata[’x’]

12 z = np.polyfit(x, errors, 3)

13 f = np.poly1d(z)

14 # Return evenly spaced numbers over a specified interval

15 x_new = np.linspace(x[0], x[-1], 100)

16 y_new = f(x_new)

17 plt.plot(x, errors, ’--or’, x_new, y_new)

18
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5.5 Simulations

As previously mentioned, the different types of malevolent behaviour that

are considered are:

1. Fake source at different distance from the real one (Section 5.5.1).

2. Fake source of different size (also referred as magnitude) (Section

5.5.2).

3. Number of fake sources (Section 5.5.3).

4. Degree of maliciousness of the fake source: using lower values in a

gradient algorithm has a greater impact on the system (Section 5.5.4).

Each section has:

• a visual representation that helps to grasp the scenario, thanks to

Alchemist;

• a snipped scala code used to run the simulation and export data;

• a plot, useful as a recap and forecast of other similar scenarios.

Error function is calculated as follows:

ϵ = |µhealthy − µmisbehaviour|
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5.5.1 Distance

Alchemist Screenshots

Figure 5.a

In (Figure 5.a)5 the first image from left shows an healthy gradient in which

source field is at the center of the red area. Subsequently a malevolent field

was added and nodes were highlighted with white. From left to right, it is

possible to see the damage that a fake source produces at different distances.

The more each simulated gradient colors differ from the first picture, the

greater the network was influenced.

scafi code snippet

1

2 object DemoSecurity extends AggregateProgram with MyLib {

3

4 def isSource = sense[Boolean](”source”)

5 def isFake = sense[Boolean](”fake”)

6

7 def gradient(source: Boolean)(expr:Double): Double = {

8 rep(Double.MaxValue) {

9 distance =>

10 mux(isFake) { expr }

11 { mux(isSource) { 0.0 } {

12 minHood {

13 nbr { distance } + nbrRange()

14 }

15 }

16 }

17 }

5All images are captured after the gradient was stabilized.
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18 }

19

20 def main = gradient(isSource){ 0.0 }

21 }

22

23 object DemoSequenceLauncher extends App {

24 for (a <- 0 to 15) {

25 val net = simulatorFactory.gridLike(n = 15, m = 15,

26 stepx = 1, stepy = 1,

27 eps = 0.0, rng = 1.1)

28

29 net.addSensor(name = ”source”, value = false)

30 net.chgSensorValue(name = ”source”,ids = Set(3),value=true)

31

32 net.addSensor(name = ”fake”, value = false)

33 net.chgSensorValue(name = ”fake”,ids = Set(a),value = true)

34

35 net.executeMany(node = DemoSecurity, size = 10000,

36 (n,i) => {})

37 }

38 }

Chunk of an output file:

0.0 1.0 1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

1.0 2.0 2.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

2.0 3.0 3.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

3.0 4.0 4.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

4.0 5.0 5.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

5.0 6.0 6.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0

6.0 7.0 7.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

7.0 8.0 8.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

8.0 9.0 9.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0

It is also possible to use just Alchemist instead of using both. Source code

to simulate a fake source at a different distance from the real one can be

done with the following Protelis file:

1

2 module distance

3

4 let res = rep (d <- 100) {

5 mux(env.has(”fake”)) { 0 } else{

6 mux (env.has(”source”)) { 0 } else {

7 minHood(nbr(d) + self.nbrRange())

8 }}};
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9 env.put(”distanceTo”, res);

10 res

11

and Yaml configuration:

1

2 incarnation: protelis

3

4 network-model:

5 type: EuclideanDistance

6 parameters: [0.5]

7

8 pools:

9 - pool: &distance

10 - time-distribution: 1

11 program: distance

12 - time-distribution: null

13 program: send

14

15 displacements:

16 - in:

17 type: Grid

18 parameters: [-10, -10, 10, 10, 0.25, 0.25, 0.1, 0.1]

19 contents:

20 - in:

21 type: Rectangle

22 parameters: [5, 5, 5, 5]

23 molecule: viri

24 concentration: ”Fake”

25 - in:

26 type: Rectangle

27 parameters: [-2, -2, 2, 2]

28 molecule: source

29 concentration: true

30 programs:

31 - *distance
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Simulations results
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Figure 5.1

At a first look, it is possible to think that the more the fake source is near

to the real one the greater the damage will be. However Figure 5.1 proves

otherwise. It is rational because, in a gradient based on a distance-to algo-

rithm, malevolent nodes near a source have values with a lower δ. Far away

from the source, nodes have a high internal value and they are clearly more

influenced by a neighbor that sends 0.0 as distance value. Error increases

with an exponential growth until the fake source exits the gradient.
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5.5.2 Magnitude

Alchemist Screenshots

Figure 5.b

A healthy gradient can be seen in the previous section (Section 5.5.1). Malev-

olent nodes are represented in white6, firstly fewer than the real ones and

gradually more.

scafi code snipped

1

2 object DemoSecurity extends AggregateProgram with MyLib {

3

4 def isSource = sense[Boolean](”source”)

5 def isFake = sense[Boolean](”fake”)

6

7 def radius(x: Double, r: Int): Double = {

8 if (x < r) return 0

9 else return x

10 }

11

12 def gradient(source: Boolean)(expr:Double): Double = {

13 rep(Double.MaxValue) {

14 distance =>

15 mux(isFake) { expr }

16 { mux(isSource) { 0.0 } {

17 minHood {

18 nbr { distance } + nbrRange() }

19 }

20 }

21 }

22 }

23 def main = gradient(isSource){

6All images are captured after the gradient was stabilized.
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24 G[Double](isSource, 0,

25 (x: Double) => radius(x, 2), 1)

26 }

27

28 }

29

30 object DemoSequenceLauncher extends App {

31

32 def Magnitude() {

33 val boss = 25*5+15

34

35 def getBad(c: Int, r:Int, size: Int): Set[Int] = {

36 var init = Set[Int]()

37 for(i <- 0 to r) {

38 for (k <- 0 to r) {

39 init += c + (size * i + k)

40 }

41 }

42 return init

43 }

44

45 val badguys = Array(Set(boss), getBad(boss-26, 2, 25),

46 getBad(boss-(26*2), 3, 25),

47 getBad(boss-(26*3), 4, 25))

48

49 for(magnitude <- 0 to 8){

50 val net = simulatorFactory.gridLike(n = 15, m = 15,

51 stepx = 1, stepy = 1,

52 eps = 0.0, rng = 1.1)

53

54 net.addSensor(name = ”source”, value = false)

55 net.chgSensorValue(name = ”source”, ids = Set(25*3+5),

56 value = true)

57 net.addSensor(name = ”fake”, value = false)

58 net.chgSensorValue(name = ”fake”,

59 ids = getBad(boss-26,magnitude, 25),

60 value = true)

61 net.executeMany(node = DemoSecurity, size = 100000,

62 (n,i) => {})

63 }

64 }
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Plotting results
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Figure 5.2

Intuitively the greater the malevolent area size is, the more the system is

influenced by it.
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5.5.3 Crowds

Alchemist Screenshots

Figure 5.c

Crowds of malevolent areas surround the real source, starting from two fake

independent zones7 to end with six.

scafi code snipped

1

2 object DemoSecurity extends AggregateProgram with MyLib {

3

4 def isSource = sense[Boolean](”source”)

5 def isFake = sense[Boolean](”fake”)

6

7 def gradient(source: Boolean)(expr:Double): Double = {

8 rep(Double.MaxValue) {

9 distance =>

10 mux(isFake) { expr }

11 { mux(isSource) { 0.0 } {

12 minHood {

13 nbr { distance } + nbrRange()

14 }

15 }

16 }

17 }

18 }

19

20 def main = gradient(isSource){ 0.0 }

21

22 }

23

24 object DemoSequenceLauncher extends App {

25 def Crowd() {

7All images are captured after the gradient was stabilized.
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26 val init = 25*25/2

27 val pos = Set(init+10, init-10, init-25*3,

28 init+25*3, init-20*3, init+20*3)

29

30 for(b <- 1 to 7){

31 val net = simulatorFactory.gridLike(n = 15, m = 15,

32 stepx = 1, stepy = 1,

33 eps = 0.0, rng = 1.1)

34

35 net.addSensor(name = ”source”, value = false)

36 net.chgSensorValue(name = ”source”, ids = Set(init),

37 value = true)

38 net.addSensor(name = ”fake”, value = false)

39 net.chgSensorValue(name = ”fake”, ids = pos.take(b),

40 value = true)

41 net.executeMany(node = DemoSecurity, size = 100000,

42 (n,i) => {})

43 }

44 }

45

Simulations results
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Figure 5.3

As in the experiments done before with a malevolent area of different size,
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increasing the amount of fake sources leads to a much broader impact in the

error ratio.

5.5.4 Badness

Alchemist Screenshots

Figure 5.d

From left to right, malevolent nodes send the following corrupted negative

values that are
(

− 1, −5, −15, −25, −100
)

.

The first and the second snapshots are captured after the gradient was sta-

bilized while the following, during infection propagation instead. All nodes,

in a δ-time proportional to the negative value, will be red. Obviously a neg-

ative value has a deleterious effect on a distance-to algorithm. However,

negative values are easily detectable. An algorithm like distance-to where

distance between a point A and a point B can’t be negative, a simple filter

that drops those values solves the problem.

1

2 object DemoSecurity extends AggregateProgram with MyLib {

3

4 def isSource = sense[Boolean](”source”)

5 def isFake = sense[Boolean](”fake”)

6

7 def badness():Double = sense[Double](”badness”)

8 def gradient(source: Boolean)(expr:Double): Double = {

9 rep(Double.MaxValue) {

10 distance =>
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11 mux(isFake) { expr }

12 { mux(isSource) { 0.0 } {

13 minHood {

14 nbr { distance } + nbrRange()

15 }

16 }

17 }

18 }

19 }

20

21 def main = gradient(isSource, badness())

22 }

23

24 object DemoSequenceLauncher extends App {

25 def Badness() {

26 val boss = 25*5+15

27 val badness = Array(1.0,5.0,15.0,25.0,100.0)

28

29 for(b <- badness){

30 val net = simulatorFactory.gridLike(n = 15, m = 15,

31 stepx = 1, stepy = 1,

32 eps = 0.0, rng = 1.1)

33 net.addSensor(name = ”source”, value = false)

34 net.chgSensorValue(name = ”source”, ids = Set(25*3+5),

35 value = true)

36 net.addSensor(name = ”fake”, value = false)

37 net.chgSensorValue(name = ”fake”, ids = Set(boss),

38 value = true)

39 net.addSensor(name = ”badness”, value = -b)

40

41 net.executeMany(node = DemoSecurity, size = 100000,

42 (n,i) => {})

43 }

44 }
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Simulations results
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Figure 5.4

Independently from the amount of the negative value, it could be both -10

or -100, this overwhelms other nodes distance value. In the Figure 5.4, the

error is proportional to the negative value due to the chose error function.

5.6 Proposed solutions

It is necessary to prevent errors so that each node is aware of data received.

Data can be malformed, unstructured or specifically crafted with the purpose

of crushing the system or worse, with harmful intentions. An evaluation

strategy is needed in order to judge these messages.

Data evaluation can be done in different ways by incorporating an inter-

nal trust system or with other precautions. Since aggregate programming

scenarios evolve in time, trust values need to be updated accordingly.
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Solutions proposed are:

1. The use an external trust system that monitors nodes behaviour

and that instructs each of them about peers that can be trusted or

not.

2. The use of an internal filter function based on specific security met-

rics. For example, in a distance-to algorithm it is possible to drop

negatives values and/or values that differ too much from other neigh-

bours. Using a threshold η could be useful.

3. The use of a local trust system. Each node memorizes a list of

untrusted peers that, that is updated accordingly to their behaviour.

Security policy and learning algorithms can be used to update the

untrusteds’ list and to adapt it to different scenarios.

5.6.1 Solution one: External Trust System

From an engineering perspective, by using an external trust system a devel-

oper does not need to know how it was developed. Implementation details

are decoupled as well as interfaces in OOP. Nodes receive trust fields from

the outside, without having to bother to evaluate and update such scores.

Values that come from untrusted nodes will be ignored/discarded.

In order to simulate this solution scenario, it is required to set

Double.PositiveInfinity to fake (malevolent) peers. It is important

to remember that this particular gradient is a distance-to function, so

distance is equal to the lower value from a neighbour.

Double.PositiveInfinity is the least significant value possible and corre-

spond to the furthest hypothetical value.
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1

2 def gradient(source: Boolean)(expr:Double): Double = {

3 rep(Double.MaxValue) {

4 distance =>

5 mux(isFake) { expr }

6 { mux(isSource) { 0.0 } {

7 minHood { nbr { distance } + nbrRange() }

8 }

9 }

10 }

11 }

12

13 def distanceToWithOracle(untrusted: Boolean): Double = {

14 gradient(isSource) { Double.PositiveInfinity }

15 }

16

Simulations Results

Improvements are notable in each of the previous experiments. In the fol-

lowing plots red dots represent error values obtained without the external

trust system and the green dots error values with it. Red and green curves

are both interpolations.
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Figure 5.5

5.6.2 Proposed Solution two: Filter Functions

Simulations Results

Remarkable results are feasible with few lines of code using a filter function,

builtin in every languages. This techniques alone ward off several security

threads. Even a single line of code can set error values to zero in the simu-

lation saw in section 5.5.4.

1

2 val nvs = field(nbr(mainb)).filter(_ < 0)

This solution preempt malevolent behaviour only by a developer deliberately

control. It is improbable to leave aside all possible threads but it deserve at-

tention, at least for the trade-off between spent developing time and results.
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5.6.3 Proposed Solution three: Local Trust System

Simulations Results

It is essential to consider that aggregate programming algorithms are reactive

to external changes and evolve in time. They dynamically update and each

node could move its position in space and change his behaviour. For this

reason, a local trust system must be adaptable to changes and be able to

recognize erroneous values (i.e. spikes) from good peers and to not increase

their trust score.

1

2 def distanceToWithLocalTrust()(expr: Double): Double = {

3

4 val threshold = 3 // varies between scenarios, can be trained

5

6 var nvs = getNeighboursField()

7 nvs = nvs.filterUntrusted()

8

9 // Evaluate mean value

10 var mn = mean(nvs.map(r => r._2))

11

12 // Filter new untrusted devices

13 val trusted = nvs.filter(isOutsideThreshold(_._2, threshold, mn))

14

15 // Evaluate new mean value

16 mn = mean(trusted)

17

18 rep( Double.MaxValue ){ _ =>

19 mux(isFake) { expr } { mux(isSource) { 0.0 } { mean } }

20 }

21 }
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Conclusion

“If we wait until we’re ready, we’ll be waiting for the rest of our

lives.” - Lemony Snicket, The Ersatz Elevator

Despite this thesis focuses only on a gradient algorithm, it is possible to

use the solutions aforementioned to deal with additional security thread in a

broader range of aggregate programming algorithms (Section 5.6.1, Section

5.6.2 and Section 5.6.3).

Following the path of these examples and using current technologies dis-

cussed above, it is possible to discuss, design and develop new security-aware

aggregate programming algorithms.

A noteworthy idea come up during a conversation and it is reported as a

roadmap in the following section.
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6.1 Future work: Roadmap

Further trust system implementations could exploit the function recentTrue:

1

2 def recentTrue(state: Boolean, memoryTime: Double): Boolean = {

3 rtSub(timer(10) == 0, state, memoryTime)

4 }

5

This function building block is the time-decay aggregate API, T, that sums

up information throughout time by decaying accumulated values.

1

2 def timer[V](length: V)

3 (implicit ev: Numeric[V]) =

4 T[V](length)

5

6 def limitedMemory[V,T](value: V, expValue: V, timeout: T)

7 (implicit ev: Numeric[T]) = {

8 val t = timer[T](timeout)

9 (if(ev.gt(t, ev.zero)) value else expValue, t)

10 }

11

12 def rtSub(start: Boolean, state: Boolean, memT: Double): Boolean = {

13 if(state) { true }

14 else {

15 limitedMemory[Boolean,Double](start, false, memT)._1

16 }

17 }

recentTrue let a developer know if a given device is True for at least δT time

unit. Mixing with proposed solutions (Section 5.6.1, Section 5.6.2, Section

5.6.3), a new version could take into account if a given device behaves badly

for a given δT time. If so, the device will be identified as malevolent and

banned from the system for a variable period of time.



Appendix 1: Dissertation
writing using Pandoc

This dissertation is almost written in Markdown1. The formal LaTeX2 rep-

resentation document was auto-genereted by Pandoc3.

6.2 About Pandoc

Pandoc is a universal markup document converter entirely written in

Haskell4. Pandoc can convert documents in markdown, reStructuredText,

textile, HTML, DocBook, LaTeX, MediaWiki markup, TWiki markup,

OPML, Emacs Org-Mode, Txt2Tags, Microsoft Word docx, LibreOffice

ODT, EPUB, or Haddock markup to

• HTML formats: XHTML, HTML5, and HTML slide shows using Slidy,

reveal.js, Slideous, S5, or DZSlides.

• Word processor formats: Microsoft Word docx, OpenOffice/LibreOffice

ODT, OpenDocument XML

• Ebooks: EPUB version 2 or 3, FictionBook2

• Documentation formats: DocBook, TEI Simple, GNU TexInfo, Groff

man pages, Haddock markup
1https://daringfireball.net/projects/markdown
2https://www.latex-project.org
3http://pandoc.org
4https://www.haskell.org
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• Page layout formats: InDesign ICML

• Outline formats: OPML

• TeX formats: LaTeX, ConTeXt, LaTeX Beamer slides

• PDF via LaTeX

• Lightweight markup formats: Markdown (including CommonMark),

reStructuredText, AsciiDoc, MediaWiki markup, DokuWiki markup,

Emacs Org-Mode, Textile Custom formats: custom writers can be

written in lua.

Pandoc understands a number of useful markdown syntax extensions, in-

cluding document metadata (title, author, date); footnotes; tables; defini-

tion lists; superscript and subscript; strikeout; enhanced ordered lists (start

number and numbering style are significant); running example lists; delim-

ited code blocks with syntax highlighting; smart quotes, dashes, and ellipses;

markdown inside HTML blocks; and inline LaTeX. If strict markdown com-

patibility is desired, all of these extensions can be turned off.

LaTeX math (and even macros) can be used in markdown documents. Sev-

eral different methods of rendering math in HTML are provided, including

MathJax and translation to MathML. LaTeX math is rendered in docx using

native Word equation objects.

Pandoc includes a powerful system for automatic citations and bibliogra-

phies, Many forms of bibliography database can be used, including bibtex,

RIS, EndNote, ISI, MEDLINE, MODS, and JSON citeproc. Citations work

in every output format.

Pandoc includes a Haskell library and a standalone command-line program.

The library includes separate modules for each input and output format, so

adding a new input or output format just requires adding a new module.

Pandoc is free software, released under the GPL by John MacFarlane.
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6.3 Motivations

Science uses writing since the early days to pass on knowledge to the new

generations. Internet and the World Wide Web have drastically aids the way

people communicate and share information.

English is adopted as a lingua franca in order to reach more readers.

It is essential, however, to reach also other types of readers, blind people.

Technologies such as screen readers help them to access digital information

but some data presentation formats are more accessible than others. The

widely used PDF format, for example, is really tricky to read. This is the real

motivation behind the use of a more accessible format such as Markdown or

HTML: being accessible as much as possible.

This is not a call to dismiss working with LaTeX and related generated

PDF documents. They have a really well structured format, awesome for

printing. This is a call to all academics to try to be aware as much as

possible of alternative solutions that help them in their vocation: spread

their knowledge to the world.
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