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Abstract
L’argomento della tesi è una disuguaglianza Lp per trasformate di martingala.
La trasformata di una martingalaXn si ottiene moltiplicando le sue differenze
per una sequenza prevedibile Hn, ottenendo così la sequenza delle differenze
della martingala trasformata (H ·X)n.
E’ interessante che siano stati identificate le stime esatei in Lp per queste
trasformate.

Nella presente tesi si discuterà sulla tecnica di dimostrazione, dovuta al
probabilista Burkholder
Questa si sviluppa due parti: (i) la prova della disuguaglianza tramite una
"funzione di Bellman" a due variabili con determinate proprietà e (ii) la prova
dell’esistenza di tale funzione, che viene costruita esplicitamente.
Ciò che è sorprendente è che Burkholder sia stato in grado di individuarla.

La ricerca si è successivamente ampliata ad altre disuguaglianze, con ap-
plicazioni a vari problemi di analisi stocastica, generalizzando i risultati e le
idee di Burkholder in differenti contesti. Si tratta di un campo di ricerca
corrente in continuo sviluppo.
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This thesis is about some sharp inequalities for martingale transforms. The
martingale transform acts on a martingale Xn by multiplying its difference
sequence times a fixed bounded, predictable process Hn, obtaing the differ-
ence sequence of the transformed martingale (H ·X)n.
It came as a surprise that sharp Lp bounds of such transforms could be found
and proved.

In this thesis shall explain Burkholder’s technique of proof.It rests on two
steps: (i) the inequality holds if a suitable, two-variables "Bellman function"
with certain properties is known and (ii) the existence of such Bellman func-
tion is proved.
What is surprising is the fact that Burkholder was able to find an explicit
expression for the Bellman function for the problem Lp estimates we consider.

Much research has been done later, extending Burkholder’s methods and
ideas to various inequalities, applying it to various problems in stochastic
analysis, extending it to different contexts.
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Introduction

In this thesis I’m going to introduce some selected concepts about Martin-
gales, aiming to prove very important theorems about optimality, in partic-
ular the Burkholder’s Theorem.

After preliminary notions then I’ll introduce the Doob’s optional stopping
theorem, first for submartingales uniformely integrable and then for martin-
gales, exhibiting the conditions under which the theorem holds. To follow
the famous application: the Secretary Problem.

The main topic are the Burkholder’s Lp sharp inqualities for martingale
transforms [4][5] for 1 < p <∞.
The martingale transform acts on a martingale Xn by multiplying its dif-
ference sequence times a fixed bounded, predictable process Hn, obtaing the
difference sequence of the transformed martingale (H ·X)n.
The Burkholder results and ideas about that are nowdays important: the
"method of Bellman’s functions" [6], which is a direct generalization of Burkholder’s
method, is a current area of intensive and important research.
Burkholder’s proof rests on two steps:
I. The inequality is proved if a two-variables "Bellman’s function" z = U(x, y)
having certain properties exist.
II. The existence of such function is proved [4], or, even better, the function
is exhibited [5][2]. Once the function U is exhibited, verifying its relevant
properties is an long, but standard exercise in multivariable calculus.
What is surprising is the fact that Burkholder was able to find it.
A few remarks about the proof are in order.
First, I have considered the case of dyadic martingales only, because I thought
some passages were more transparent in this case and because the modern
theory of Bellman functions is set in the dyadic setting (the proof extends
without changes to the general case of discrete martingales).
Second, I give the proof for p ≥ 2 only beacuse I thought it was enough to
consider one range of the exponent to get acquainted with the techniques
(the proof for 1 < p ≤ 2 is similar in spirit, but is is does not simply follows
from "passing to the conjugate exponent").
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Third, I did not put in the thesis the sequence of examples showing that the
constant is the best one. Because of the short time writing I preferred to
concentrate on the presentation of the main result.



Chapter 1

Martingales and Prerequisites

Before beginning our discussion on specific properties of Martingales, we
need to remember some important prerequisites such as the conditional ex-
pectiation, i.e. given information, the way in which the probability of events
changes.

Notation: We’ll use Xn instead of {Xn}n≥0 such as in [1].

1.1 Conditional Expectation and Probability
Definition 1.1 (Conditional Expectation). Given are a probability space
(Ω,F0, P ), a σ − field F ⊂ F0, and a random variable X ∈ F0 with
E | X |<∞, we define the conditional expectation ofX given F , E (X | F),to
be any random variable Y such that:

(i) Y ∈ F , i.e., Y is F -measurable,
(ii) for all A ∈ F ,

∫
AX dP=

∫
A Y dP .

Any Y satisfying (i) and (ii) is said to be a version of E (X | F). The first
thing to be settled is that the conditional expectation exists and is unique.

Proof. , if Y’ also satisfies (i) and (ii) then∫
A Y dP=

∫
A Y

′ dP for all A ∈ F .

Taking A = {Y − Y ′ ≥ ε > 0}, we see

0=
∫
AX −X dP=

∫
A Y − Y ′ dP ≥ ε.

so P (A) = 0. Since this holds for all ε we have Y ≤ Y ′ a.s., and interchang-
ing the roles of Y and Y ′, we have Y=Y ′ a.s.

9
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(Technically, all equalities such as Y=E (X | F) should be written Y=E (X | F)
a.s.).

Lemma 1.1.1.
If Y satisfies (i) and (ii), then it is integrable.

Proof. Letting A={Y > 0} ∈ F , using (ii) twice, and then adding

∫
A Y dP=

∫
AX dP ≤

∫
A | X | dP ,∫

Ac −Y dP=
∫
Ac −X dP ≤

∫
Ac | X | dP .

So we have E | Y |≤ E | X |.

1.1.1 Properties
Theorem 1.1.2.
(a) Linearity of Conditional Expectation:

E(aX + Y | F)=aE(X | F) + E(Y | F),

(b) If X ≤ Y then

E(X | F) ≤ E(Y | F),

(c) If Xn ≥ 0 and Xn ↑ X with E(X) <∞ then

E(Xn | F) ↑ E(X | F).

Observation 1.
By appying the last result to Y1 − Yn we see that if Yn ↓ Y and we have
E | Y1 |,E | Y |<∞ then E(Yn | F) ↓ E(Y | F).

Proof. To prove (a), we need to check that the right-hand side is a version og
the left. It clearly is F -measurable. To check (ii), we observe that if A ∈ F
then by linearity of the integral and the defining properties of E(X | F) and
E(Y | F),∫

A {aE(X | F) + E(Y | F)} , dP=a
∫
AE(X | F) dP+

∫
AE(Y | F) dP=

=a
∫
AX dP+

∫
A Y dP =

∫
A aX + Y dP
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which proves (a).

Using the definition∫
AE(X | F) dP=

∫
AX dP ≤

∫
A Y dP=

∫
AE(Y | F) dP .

Letting A = {E(X | F)− E(Y | F) ≥ ε > 0}, we see that the indicated set
has probability 0 for all ε > 0, and we have proved (b).

Let Yn = X −Xn. It suffices to show that E(Yn | F) ↓ 0.
Since Yn ↓, (b) implies Zn ≡ E(Yn | F) ↓ a limit Z∞.If A ∈ F then∫

A Zn dP=
∫
A Yn dP .

Letting n −→ ∞, noting Yn ↓ 0, and using the dominated convergence
theorem gives that

∫
A Z∞ dP=0 for all A ∈ F , so Z∞ ≡ 0.

Theorem 1.1.3.
If F ⊂ G and E(X | G) ∈ F then E(X | F) = E(X | G).

Proof. By assumption E(X | G) ∈ F . To check the other part of definition
we note that if A ∈ F ⊂ G then∫

AX dP=
∫
AE(X | G) dP .

Theorem 1.1.4 (Tower property).
If F1 ⊂ F2 then E(E(X | F2) | F1)=E(X | F1).

Proof. Noticing that E(X | F1) ∈ F2, and if A ∈ F1 ⊂ F2 then∫
AE(X | F1) dP=

∫
AX dP=

∫
AE(X | F2) dP .

Theorem 1.1.5.
If X ∈ F and E | X |,E | XY |<∞ then

E(XY | F)=XE(Y | F).

Proof. The right-hand side ∈ F , so we have to check the tower property. To
do this, we use the usual four-step procedure. FIrst, suppose X = 1B with
B ∈ F . In this case, if A ∈ F∫

A 1BE(X | F) dP=
∫
A∩B E(Y | F) dP=

∫
A∩B Y dP=

∫
A 1BY dP ,
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so the tower property holds. The last result extends to simple X by linearity.
If X, Y ≥ 0, let Xn be simple random variables that ↑ X, and use the
monotone convergence rheorme to conclude that∫

AXE(Y | F) dP=
∫
AXY dP .

To prove the result in general, split X and Y into their positive and negative
parts.

1.1.2 Regular Conditional Probabilities
Definition 1.2 (Regular Conditional Probabilities). Let (Ω,F , P ) be
a probability space, X : (Ω,F)→ (S,S) a measurable map, and G a σ-field
⊂ F . µ : ΩxS → [0, 1] is said to be a regular conditional distribution
for X given G if
(i) For each A,ω → µ(ω,A) is a probability measure on (S,S).
(ii) For a.e. ω,A→ µ(ω,A) is a probability measure on (S,S).
When S = Ω and X is the identity map, µ is called a regular conditional
probability.

1.2 Martingales

When we are talking about gambling, the stochastic process martingale is
representing the notion of a fair game, in which we have no profit or loss for
every gamble on average, regardless of the past gambles.
In other words we can think about martingale Xn as the fortune at time n
of a gambler who is betting on a fair game; submartingale as the outcome
on a favorable game and supermartingale on a unfavorable game.
Martingales are not used just for gambling but they have applications on
stochastic modelling. Let see some more formal definitions and important
theorems about it.

1.2.1 Martingales, supermartingales, submartingale
Definition 1.3 (Filtration). An increasing sequence of σ-fieds Fn.

Definition 1.4 (Adapted process). A sequence Xn is said to be adapted
process to Fn if Xn ∈ Fn for all n.
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Definition 1.5 (Martingale). A sequence Xn is said to be martingale (with
the respect to Fn) if
(i) E | Xn |<∞,
(ii) Xn is adapted to Fn,
(iii) E(Xn + 1 | Fn)=Xn for all n.

Example. Simple random walk. Consider the successive tosses of a fair
coin and let ξn = 1 if nth tossis heads and ξn = −1 if nth toss is tails. Let
Xn = ξ1 +ξ2 + ...+ξn and Fn = σ(ξ1, ...ξn) for n ≥ 1, X0 = 0 and F0={∅,Ω}.

We claim that Xn, n ≥ 0, is a martingale with the respect to Fn. To prove
this, we observe that Xn ∈ Fn,E | Xn |<∞, and ξn+1 is independent of Fn,
so using the linearity of conditional expectation and Bayes’ Formula:

E(Xn+1 | Fn)=E(Xn | Fn)+E(ξn+1 | Fn)=Xn + Eξn+1=Xn

Note that, in this, example, Fn=σ(X1, ..., Xn) and Fn is the smallest filtration
that Xn is adapted to.

Definition 1.6 (Supermartingale). A sequence Xn is said to be super-
martingale (with the respect to Fn) if
(i) E | Xn |<∞,
(ii) Xn is adapted to Fn,
(iii) E(Xn+1 | Fn) ≤ Xn for all n.

Example. If the coin tosses considered above have P (ξn = 1) ≤ 1/2
then the computation just completed shows E(Xn+1 | Fn) ≤ Xn, i.e., Xn is a
supermartingale. In this case, Xn corresponds to betting on an unfavorable
game.

Definition 1.7 (Submartingale). A sequence Xn is said to be submartin-
gale (with the respect to Fn) if
(i) E | Xn |<∞,
(ii) Xn is adapted to Fn,
(iii) E(Xn+1 | Fn) ≥ Xn for all n.

1.2.2 Doob’s decomposition Theorem
The Doob’s decomposition theorem says that in a probability space we can
make an almost surely decomposition from every Fn-adapted stochatic pro-
cess Xn with E | Xn |<∞ to a martingale and a predictable process.
It’s worth considering this result about submartingales and supermartingales.



14 CHAPTER 1. MARTINGALES AND PREREQUISITES

Theorem 1.2.1 (Doob’s decomposition of submartingales).
Any submartingale Xn, n ≥ 0 can be written in a unique way as Xn=Mn+An,
where Mn is a martingale and An is a predictable increasing sequence with
A0 = 0.

Proof. We want Xn=Mn + An, E(Mn | Fn− 1)=Mn− 1, and A − n ∈
Fn− 1. So we must have:

E(Xn | Fn−1)=E(Mn | Fn−1)+E(An | Fn−1)=

=Mn− 1 + An=Xn−1 − An−1 + An.

and it follows that:
(a) An − An−1=E(Xn | Fn−1)−Xn−1,
(b) Mn=Xn − An.
Now A0 = 0 and M0=X0 by assumption, so we have An and Mn defined for
all time and we have proved uniqueness.
To check that our recipe works, we observe that An − An−1 ≥ 0 since Xn

is a submartingale and induction shows An ∈ Fn− 1. To see that Mn is a
martingale, we use (b), An ∈ Fn− 1 and (a):

E(Mn | Fn− 1)=E(Xn − An | Fn−1)=

=E(Xn | Fn−1)− An=Xn−1 − An−1=Mn−1.

Which completes the proof.

Observation 2.
If we want to decompose a supermartingale Xn we’ll obtain a martingale Mn

and a predictable decreasing sequence An with A0 = 0, the proof is similar.

1.2.3 Predictable sequences and the impossibility of
beating the system

Suppose that {Hn : n ≥ 1} is the stake of a gambler on game (at time) n.
The gambler has to base his decision on Hn on the history of the game up
to time n− 1 (we are saying that Hn is Fn−1-measurable).

Definition 1.8 (Predictable Sequence). Let Fn, n ≥ 0 be a filtration.
Hn is said to be a predictable process if Hn ∈ Fn−1 for all n ≥ 1.
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In practice, supposing that the game consists of flipping a coin and that for
each dollar the gambler bets he wins one dollar when the coin comes up
heads and loses his dollar when the coin comes up tails.

The winnings at time n are Hn(Xn −Xn−1) and the total winnings up to
the time n are given by (H ·X)n=

∑n
m=1 Hm(Xm −Xm−1).

Example. Martingale. This is a famous gambling system defined by
H1 = 1 and for n ≥ 2,

Hn = 2Hn−1 if Xn−1 −Xn−2=−1 and Hn=1 if Xn−1 −Xn−2=1.

In other words the gambler doubles his bet when he loses, so if he loses k
times and then wins, the net winning will be −1− 2...− 2k=1. This system
seems to be a "sure thing" as long as P ((Xm −Xm−1) = 1).

We want to know if the gambler can chose Hn such that the expected total
winnings are positive.

Definition 1.9 (Martingale Transform of Xn by Hn). The process (H ·
X)n is called martingale transform of Xn by Hn.

Theorem 1.2.2 (No way to beat on unfavorable game).
Let Xn, n ≥ 0, be a supermartingale. If Hn ≥ 0 is predictable and each Hn

is bounded then (H ·X)n is a supermartingale.

Proof. Using the fact thtat contitional expectation is linear, (H ·X)n ∈ Fn,
Hn ∈ Fn−1, and Theorem 1.1.5, we have

E((H ·X)n+1 | Fn)=(H ·X)n+E(Hn+1(Xn+1 −Xn) | Fn)=

=(H ·X)n+Hn+1E((Xn+1 −Xn) | Fn) ≤ (H ·X)n.

Since E((Xn+1 −Xn) | Fn) ≤ 0 and Hn+1 ≥ 0.

Observation 3.
The same result is obviously true for submartingales and for martingales (in
the last case, withouth the restriction Hn ≥ 0).
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1.2.4 Stopping Time
Now we are interessed to introduce a new concept of time, closely related
to the concept of a gambling system, noticing the property of martingales
E(Xn)=E(X0), n ≥ 0, which can be extended to E(XN)=E(X0), N ≤ n.
We can think of stopping time as the time a gambler stop gambling,
considering that the decision to stop the game at time n must be measurable
with the respect to the information the gambler has at that time.

Definition 1.10 (Stopping Time). A random variable N is said to be a
stopping time if {N = n} ∈ Fn for all n <∞.

Observation 4.
If we have Hn=1{N≥n}, then {N ≥ n}={N ≤ n− 1}c ∈ Fn−1, so Hn is pre-
dictable, and it follows from Theorem 1.2.1 that (H ·X)n=XN∧n −X0 is a
supermartingale.

Theorem 1.2.3.
Let X = {Xn : n ≥ 0} be a martingale and N a stopping time w.r.t. X, then
the stopped process X̂=

{
X̂n : n ≥ 0

}
is a martingale, where:

X̂:=

Xn, if N > n

XN , if N ≤ n
= XN∧n.

Since X̂0 = X0, we conclude that E(X̂n)=E(X0), n ≥ 0.

Proof. (i) Since | X̂n |≤ max0≤k≤n | Xk | ≤| X0 | +...+ | Xn |, we conclude
that E | X̂n |≤ E(| X0 |) + ...+ E(| Xn |) <∞.
(ii) by definition of X̂.
(iii) It is sufficient to use Fn=σ {X0, ...Xn} since σ

{
X̂0, ...X̂n

}
⊂ Fn by

the stopping time property that {N > n} is determined by {X0, ..., Xn}.
Noticing that both X̂n = Xn and ˆXn+1=Xn+1 if N > n, and X̂n+1=X̂n if
N ≤ n yelds

X̂n+1=X̂n+(Xn+1-Xn)1{N≥n};

Thus
E(X̂n+1 | Fn)= X̂n+E((Xn+1 −Xn)1{N≥n} | Fn)=

=X̂n+1{N≥n}E((Xn+1 −Xn) | Fn)=

=X̂n+1{N≥n} · 0= X̂n.
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Theorem 1.2.4.
If N is a stopping time and Xn a supermartingale, then XN∧n is a super-
martingale.

Theorem 1.2.5.
If Xn is a submartingale and N is a stopping time with P (N ≤ k) = 1 then

EX0 ≤ EXN ≤ EXk.

Proof. The Theorem above implies that XN∧n is a supermartingale, so it
follows that

E(X0)=(EXN∧0) ≤ E(XN∧k)=E(Xn).

To prove the other inequality, let Kn=1N<n=1N ≤ n− 1. Kn is predictable,
so Theorem 1.2.2 implies (K · X)n=Xn − XN∧n is a submartingale and it
follows that

E(Xk)− E(XN)=E((K ·X)n) ≥ E((K ·X)0)=0.

1.2.5 Convergence
This gives sufficient condition for the almost sure convergence of martingales
Xn to a limiting random variable.

Theorem 1.2.6.
If Xn is a submartingale w.r.t. Fn and ϕ is an increasing convex function
with E | ϕ(Xn) |≤ ∞ for all n, then ϕ(Xn) is a submartingale w.r.t. Fn.
Consequently:
(i) If Xn is a submartingale then (Xn − a)+ is a submartingale.
(ii) If Xn is a supermarginale then Xn ∧ a is a supermartingale.

Proof. By Jensen’s inequality and the assumpions

E(ϕ(Xn+1) | Fn) ≥ ϕ(E(Xn+1) | Fn)) ≥ ϕ(Xn).

Theorem 1.2.7 (Upcrossing inequality).
If Xm,m ≥ 0, is a submartingale then

(b− a)EUn ≤ E(Xn − a)+ − E(X0 − a)+ .
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Proof. Let Ym = a+ (Xm− a)+. By Theorem above, Ym is a submartingale.
Clearly, it upcrosses [a, b] the same number of times that Xm does, and we
have (b− a)Un ≤ (H · Y )n), since each upcrossing results
in a profit ≥ (b−a) and a final incomplete upcrossing (if there is one) makes
a nonnegative contribution to the right-hand side. Let Km = 1−Hm.
Clearly, Yn−Y0=(H ·Y )n + (K ·Y )n, and it follows from Theorem 1.2.2 that
E(K · Y )n ≥ E(K · Y )0=0 so E(H · Y )n ≤ E(Yn − Y0), proving the desired
inequality.

Theorem 1.2.8 (Martingale Convergence Theroem).
If Xn is a submartingale with supE(X+

n ) <∞ then as n→∞, Xn converges
a.s. to a limit X with E | X |<∞.

Proof. Since (X − a)+ ≤ X++ | a |, the upcrossing inequality implies that
E(Un) ≤ (| a | +E(X+

n ))/(b− a).
As n ↑ ∞, Un ↑ U the number of upcrossing of [a, b] by the whole sequence,
so if supE(X+

n ) <∞ then E(U) <∞ a.s.
Since the last conclusion holds for all rational a and b,

∪a,b∈Qlim inf Xn < a < b < limsupXn has probability 0
and hance lim supXn=lim inf Xn a.s., i.e., limXn exists a.s. Faout’s lemma
guarantees E(X+) ≤ lim inf E(X+

n ) <∞, so X < infty a.s.
To see X > −∞, we observe that

E(X−n )=E(X+
n )− E(Xn) ≤ E(X+

n )− E(X0);
(since Xn is a submartingale), so another application of Fatou’s lemma shows

E(X−) ≤ lim infn→∞E(X−n ) ≤ supnE(X+
n )− E(X0) <∞.



Chapter 2

Martingales in Optimisation
Problem

2.1 Optional Stopping Theorem
Now we want to find the conditions under which we can prove that if Xn is
a submartingale, M ≤ N are stopping times, then E(XM) ≤ E(XN). The
key to this is the following definition:

Definition 2.1 (Uniformly Integrable). A collection of random variables
Xi, i ∈ I, is said to be uniformly integrable if

limn→∞(supi∈I E(| Xi |), | Xi |) > M).

A trivial example of a uniformly integrable family is a collection of random
variables that are dominated by an integrable random variable, i.e., | Xi |≤ Y
where E(Y ) < 1.

Theorem 2.1.1.
If Xn is a uniformly integrable submartingale then for any stopping time
N ,XN∧n is uniformly integrable.

Proof. X+
n is a submartingale, so Theorem 1.2.5 implies E(X+

N∧n) ≤ E(X+
n ).

Since X+
n is uniformely integrable, it follows from the definition that

supnE(X+
N∧n) ≤ supnE(X+

n ) <∞.
Using the Martingale Convergence Theorem now givesX+

N∧n → Xn a.s. (here
X∞=limnXn) and E | XN |<∞. With this established, the rest is easy. We
write

E(| XN∧n |;| XN∧n |> K)=E(| XN |;| XN |> K,N ≤ n)+
E(| XN |;| XN |> K,N > n)

19
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Since E | XN |≤ ∞ and Xn is uniformly integrable, if K is large then each
term is ε/2.

From the last computation in the proof above, we get:

Theorem 2.1.2.
If E|XN | <∞ and Xn1(N>n) is uniformly integrable, then XN∧n is uniformly
integrable.

From the Theorem 2.1.1 we also immediately get:

Theorem 2.1.3.
If Xn is a uniformly integrable submartingale then for any stopping time
N ≤ ∞, we have E(X0) ≤ E(XN) ≤ E(X∞), where X∞= limXn.

Proof. Theorem 1.2.5 implies E(X0) ≤ E(XN∧n) ≤ E(Xn).
Letting n→∞ and observing that Theorem 2.1.1 implies XN∧n → XN and
Xn → X∞ in L1 gives the desired result.

Theorem 2.1.4 (Optional Stopping Theorem).
If L ≤M are stopping times and YM∧n is uniformly integrable submartingale,
then E(YL) ≤ E(YM) and

YL ≤ E(YM | FL).

Proof. Use the inequality E(Xn) ≤ E(X∞) in Theorem 2.1.3 with Xn=YM∧n

and N = L. To prove the second result, let A ∈ FL and N =

L, on A

M, on Ac

is stopping time.
Using the first result now shows E(YN) ≤ E(YM). Since N = M on Ac, it
follows from the last inequality and the definition of conditional expectation
that

E(YL;A) ≤ E(YM ;A)=E(E(YM | FL);A).

Taking Aε={YL − E(YM | FL) > ε}, we conclude P (Aε) = 0 for all ε > 0
and the desired result follows.

It is worth considering the stopping theorem on martingales, explicating
the conditions that make sure that we have E(Xn)=E(X0):
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Theorem 2.1.5 (Doob’s optional stopping Theorem).
Let T be a stopping time and Xn a martingale. Then XT is integrable and
E(XT )=E(X0)
if one of the following conditions holds:
(i) T is bounded,
(ii) T is almost surely finite and X is bounded,
(iii) E(T ) <∞ and there is K > 0 such that, | Xn −Xn−1 |≤ K for all n.

Proof. We assume thatXn is a supermaringale. ThenXT∧n is a supermartin-
gale by Theorem 1.2.4 and in particular, it is integrable,
and E(XT∧n)−X0) ≤ 0.
For (i) E(XT ) ≤ E(X0) follows by chosing n=N .
For (ii) E(XT ) ≤ E(X0) letting n→∞ and use dominated convergence.
For (iii) we observe that | XT∧n −X0 |=|

∑T∧n
k=1 (Xk −Xk−1) |≤ KT and we

can use dominated convergence to have E(XT ) ≤ E(X0).
Applying the previuos considerations to supermartingales −Xn we have the
statement.

Example. The first run of three sixes. We have a fair die throw-
ing independently at each time step.
A gambler wins a fixed amount of money as soon as the first rum of three
consecutive sixes appear. We want to know which is the mean number of
throws until the gambler wins for the first time.
Let X1,X2,... be the sequence of random variables representing the outcomes
of the throws.
We have P (Xi = k)=1/6 for every k ∈ {1, ..., 6}. Let F(n)=σ(X1, ..., Xn)
and T be the first time three consecutive sixes appear.
T is a stopping time and we are looking for E(T ).
Before each time n a gambler bets 1ethat the nth throw will show six.
If he loses, he leaves, if he wins he receives 6e, all of which he bets on the
event that (n + 1)st throw will be six again and so on if he loses he leaves
and if he wins he will bet in the third throw and so forth.
T is a stopping time satisfying condition (iii) of Doob’s optional stopping
theorem, so we have E(T )=6 + 62 + 63=258 which is the expected money
spent by the gamblers.
At time T the last gambler won 6e,the one before 36eand the one before
216e.All other gamblers have lost their post.

More formally, let be Sn=(1 + 6 + ...+ 6k) the total stakes of all gamblers at
time n if there is a run of k sixes, and let Mn=Sn − n, in particular M0=1.
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Then {Mn} is a martingale, indeed
E(Mn+1Fn)=(5/6)(1− (n+ 1)) + (1/6)(6Sn + 1− (n+ 1))=Sn − n=Mn.
Need to argue that E(T ) <∞:
Observing T = k we need to have at least one number which is not six in
every tuple (X3m+1, X3m+2), X3m+3 for 3m+ 3 < k hence
P (T = k) ≤ (1 − 1/63)(k−3)/3=(215/216)(k−3)/3 so E(T )=∑∞k=1 kP (T = k)
converges.
We consider the stopped martingale MT , then considering that E(T ) < ∞
as we have seen and | MT

n −MT
n−1 |≤ 260, by part (iii) of Doob’s Optional

Stopping Theorem, we have 1=E(M0)=E(MT )=1 + 6 + 62 + 63 − E(T ).

2.1.1 The Secretary Problem
We consider a known number of items presented one by one in random order,
i.e. such that all n! possible orders being equally likely.
We can rank at any time the items that have so far been presented in order
of usefulness. As each item is presented we must either accept it, in which
case the process stops, or reject it, when the next item in the sequence is
presented and we have to do the same choice as before.
Our aim is to maximize the probability that the item we choose is the best
of the n items available.
Since we cannot never to go back and choose a previously-presented item
which, in retrospect, turns out to be best, we clearly need to balance the
danger of stopping too soon and accepting an item when an even better one
might be still to come, and the danger of going on too long and finding that
the best item was alreasy rejected.

Example. There are N candidates for a job interview. Let Xi be the ith
candidate. The boss interviews each in turn and he must decide wheter to
accept or reject the candidate, with not recall of an eventual rejected candi-
date.

Theorem 2.1.6.
Let Xi, i ∈ 1, ..., N be random variable uniformly distribuited on [0, 1], the
stopping time T ∗=inf {n > 0 : Xn > αn} maximises E(XT ), for αN=0 and
αn−1=1/2 + α2

n/2 for 1 ≤ n ≤ N .

Proof. We want to show that for any 0 ≤ α ≤ 1, we have E(Xn ∨ α)=1/2 +
α2/2. It sufficies to notice that
E(Xn ∨ α)=

∫ 1
0 x ∨ α dx=

∫ α
0 α dx+

∫ 1
α x, dx= α2 + 1/2− α2/2= 1/2 + α2/2

Now, for any stopping time T , the process Y defined by
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Y0=α0, and Yn=(XT∧n) ∨ αn for n ≤ 1

Is a submartingale, indeed, on the event {T ≤ n− 1}, we have

E(Yn | Fn−1)=E(XT∧n ∨ αn | Fn−1)=XT ∨ αn ≤ XT ∨ αn−1=Yn−1.

Using that αn is decreasing. On the event {T ≤ n− 1}, we have

E(Yn | Fn−1)=E(XT∧n ∨ αn)= α2
n/2 + 1/2

which shows the supermartingale property.
Let’ see that for T = T ∗ the process Y is a martingale. Indeed, on the
{T ∗ ≤ n− 1}, we have, from above,

E(Yn | Fn−1)=XT ∗ ∨ αn=XT ∗ as XT ∗ > αT ∗ ≥ αn−1 ≥ αn.

Noticing that Y n− 1=XT ∗ ∨ αn−1=XT ∗ , on the event T ∗ ≥ n we have, as
before,

E(Yn | Fn−1)=E(XT∧n ∨ αn)= α2
n/2 + 1/2=Yn−1.

In the end we show that for any stopping time T , we have E(XT ) ≤ E(XT ∗).
For this we use Doob’s optimal stopping theorem (noticing that all stopping
times are bounded), to see that, for arbitrary stopping times

E(XT ) ≤ E(XT ∨ αT )=E(YT ) ≤ E(Y0)=α0

and, for the special choice T ∗,

E(XT ∗)=E(XT ∗ ∨ αT ∗)=E(YT ∗) ≤ E(Y0)=α0

and this completes the proof.

2.2 Burkholder’s Sharp Lp Estimate for Mar-
tingale Tranfsorm

Before beginning our considerations about the Sharp inequality, we need to
introduce the space, the σ-algebra and the probability that we are going to
use.
Our space is Ω = (0, 1], on which we can define subintervals such ( (j−1)

2n , j
2n ]

with 1 ≤ j ≤ 2n, the probability is P (E) =| E | i.e. the Lebesgue-measure,
so P ((( (j−1)

2n , j
2n ]])=1/2n.

Let Fn=σ(( (j−1)
2n , j

2n ]), 1 ≤ j ≤ 2n, the ⋃nFn=F which is Borel-σ-algebra.
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Theorem 2.2.1.
Let Xn be a martingale in (Ω,Fn, P ) with the property that
supnE | Xn |p< +∞, 1 < p < +∞, then Xn is uniformly integrable (i.e.
there exist limn→∞Xn = X a.s. with X ∈ F=⋃nFn and Xn=E(X | Fn).

Theorem 2.2.2 (Burkholder’s Sharp Inequality).
Let Xn be a martingale with the property that
supnE | Xn |p< +∞, 1 < p < +∞ and let Hn be a predictable sequence such
that | Hn |≤ 1 a.s.
Let dn = Xn −Xn−1, n ≥ 1, and define the martingale transform
Yn=(H ·X)n=

∑n
m=1 Hm(Xm −Xm−1).

Then:
Yn is martingale in (Ω,Fn, P ), and

E | Yn |p≤ c(p)pE | Xn |p,

with c(p)=p∗ − 1=

p− 1, if p ≥ 2
p′ − 1, if 1 < p < 2, p′ such that 1/p+ 1/p′ = 1

p∗ = max {p, p/p− 1}.

Moreover by the Theorem above we have that
there exist Y=limn→∞ Yn = Y a.s. and then E | Y |p|≤ c(p)pE | X |p and
the constant c(p) is the best possible.

Proof. X : Ω = (0, 1]→ R is Borel-measurable, so if Xn=E(X | Fn) then
E(X | Fn)p=

∫ 1
0 | X(t) |p dt <∞.

E(X | Fn) is a random variable which is constant in I=((j − 1)/2n, j/2n]:

E(X | Fn)(t) =

(1/ | I |)
∫
I | X(t) | dt = (1/P (I))E(X1I), if t ∈ I

0, if t /∈ I

We prove that E | Y |p≤ c(p)pE | X |p by considering the function
V : R2 → R such that V (x, y) =| y |p −c(p)p | x |p, the goal is to show that
E(V (Xn, Yn)) ≤ 0.

To do that let introduce a the function U : R2 → R such that:
(a) U(x, y) ≥| y |p −c(p)p | X |p,
(b) U(x, 0) ≤ 0 for all x ∈ R,
(c) Taking a function R → R such that t 7→ U(x + th, y + tk) then this
function is concave for all x, y, h, t such that | k |≤| h |.

Let U(x, y)=αp(| y |p −(p∗ − 1)) | x |)(| x |)(| x | + | y |)p−1,
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with α=p(1− 1/p∗)p−1.

First, we show that (a),(b),(c) imply E | Yn |p≤ c(p)pE | Xn |p:

By (a) we have E(| Xn |p −(c(p) | Yn |p)) ≤ E(U(Xn, Yn)) then to prove
E(Xn, Yn) ≤ 0 it suffices to prove that EU(Xn, Yn) ≤ 0.
Let I ∈ Fn−1 and I+, I− ∈ Fn its left,right values.

E(U(Xn, Yn) | Fn−1)(I)=E(U(Xn−1 + dn, Yn−1 + dnHn) | Fn−1)(I)=

(Considering h = dn and k = dnHn we have | k |≤| h |)

by definition

=(1/2)U(Xn−1(I) + dn(I+), Yn−1(I) + dn(I+)Hn(I))+
+(1/2)U(Xn−1(I) + dn(I−), Yn−1(I) + dn(I−)Hn(I)). (**)

By (c) and definition of concavity we have (φ(a) + φ(b))/2 ≤ φ((a+ b)/2).
Let φ(t)=U(Xn−1(I) + t, Yn−1(I)Hn(I)t) and, in particular, we have
(φ(d(I+)) + φ(d(I−))/2 ≤ φ((d(I+) + d(I−))/2)=φ(0)
i.e. we have (φ(d(I+)) + φ(d(I−)) ≤ φ(0).
Then:

(**)=(1/2)U((Xn−1(I) + dn(I+), Yn−1(I) + dn(I+)Hn(I))+
+(Xn−1(I) + dn(I−), Yn−1(I) + dn(I−)Hn(I))) ≤

≤ U(Xn−1(I) + dn(I+)+dn(I−)
2 , Yn−1(I) + dn(I+)+dn(I−)

2 Hn)=
=U(Xn−1(I) + Yn−1(I)).

Consequently E(U(Xn, Yn) | Fn−1)(I) ≤ U(Xn−1(I), Yn−1(I)) and
calculatingE for both members we haveE(U(Xn, Yn))(I) ≤ E(U(Xn−1, Yn−1))(I).

Repeating this recursively we’ll obtain

E(U(Xn, Yn))(I) ≤ E(U(Xn−1, Yn−1))(I) ≤
≤ E(U(Xn−2, Yn−2))(I) ≤ ... ≤ E(U(X0, Y0))(I)=U(X0, 0) ≤ 0

by the property (b), concluding the first part of the proof.

Now we want to show that U(x, y) satisfies (a),(b),(c) for p ≥ 2 (the case
1 < p ≤ 2 is similar, even if not identical):

For (a):
Let x, y > 0 and p > 2 then V (x, y)=yp − (p− 1)pxp
and U(x, y)=p(1− 1/p)p−1[y − (p− 1)x][x+ y]p−1, we need to prove
V (x, y) ≤ U(x, y).
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U(x, y) and V (x, y) are both homogeneous functions so we can use a change
of variables:

x+ y=u, y=v · u, x=(1− v)u, with u ≥ 0 and 0 ≤ v < 1,
then:
V (x, y)=up[vp − (p− 1)p(1− v)p] and
U(x, y)=up[p(1− 1/p)p−1(v − (p− 1)(1− v))], we have:

V (x, y) ≤ U(x, y) iff vp− (p− 1)p(1− v)p ≤ p(1− 1/p)p−1(v− (p− 1)(1− v)).

Let φ(v)=vp − (p− 1)p(1− v)p and ψ(v)=p(1− 1/p)p−1(v − (p− 1)(1− v)),
which is a line for all 0 ≤ v ≤ 1, we need to show for 0 < v0 < v1 < 1:
i. ψ(v0)=φ(v0)=0,
ii.ψ′(v0) = φ′(v0),
iii.φ′′(v) ≤ 0 in [0, v1] and φ′′(v) ≥ 0 in [v1, 1],
iv.φ(1) < ψ(1).

Figure 2.1:
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Calculating the derivatives we obtain:
φ′(v)=p[vp−1 + (p− 1)p(1− v)p−1],
φ′′(v)=p(p− 1)[vp−2 − (p− 1)p(1− v)p−2].

To prove i. we notice that

φ(v0)=0 iff v0
1−v0

=p− 1 iff v0=p−1
p
=1/p′ ≥ 1/2.

Let just notice that ψ(v0) = 0.

To prove ii. we have

φ′(v0)=p[(p−1
p

)p−1 + (p− 1)p(1− (p−1
p

)p−1)=
=p(p− 1)p−1 1

pp−1 [1 + (p− 1)]=p2(1− 1/p)p−1

which is the slope of ψ, so we have ψ′(v0) = φ′(v0).

To prove iii. we notice that

φ′′(v1)=0 iff v1
(1−v1)=(p− 1)

p
p−2>p− 1= v0

(1−v0)

because p > p − 2 > 0 and then v1 > v0 because the function S
1−S is an

increasing function on positive quadrans.

To prove iv. we have that φ(1) = 1 and ψ(1)=p(1− 1/p)p−1= (p−1)p−1

pp−2 then:

φ(1) < ψ(1) iff (p− 1)p−1 > pp−2;

let prove that (x− 1)α − xα + αxα−1 ≥ 0 for all x ≥ 1 and for all α ≥ 1,

(x− 1)α − xα=
∫ 1

0
d
dt

(x− t)α−1 dt ≥
∫ 1

0 (−α)(x− t)α−1 dt ≥
≥
∫ 1

0 (−α)xα−1 dt=(−α)xα−1,

by this property, for all p ≥ 2 we have
(p − 1)p−1 ≥ pp−1 − (p − 1)pp−2=P p−2[p − (p − 1)]=pp−2 i.e. we proved
(p− 1)p−1 > pp−2 and so iv.

To prove this properties sufficies to prove the disequality.

For (b):
It is easy to see that U(x, 0)=p(1−1/p)p−1(−(p−1)x)(x)p−1 ≤ 0 when p ≥ 2.

For (c):
For all x, y, h, k ∈ R, x, y > 0, p ≥ 2 as before we have:
U(x, y)=p(1− 1/p)p−1[y − (p− 1)x][x+ y]p−1 and moreover
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〈
HessU(x, y)

(
h
k

)
,
(
h
k

)〉
=[Uxx(x, y)h] · h+ 2 [Uxy(x, y)h] · k + [Uyy(x, y)k] · k

is the directional concavity in direction (h,k).

Calculating the second derivatives we’ll obtain:
Uxx=−p(p− 1)[(p− 1)x+ y](x+ y)3,
Uxy=−p(p− 1)(p− 2)(x+ y)p−3x,
Uyy=p(p− 1)(x+ y)p−3[y − (p− 3)x],

then:
HessU(x, y)=[p(1− 1/p)p−1p(p− 1)(x+ y)p−3]

[
a b
c d

]
,

with a = −[(p− 1)x+ y], b = −(p− 2)x, c = y − (p− 3)x.
We have:〈
HessU(x, y)

(
h
k

)
,
(
h
k

)〉
=−[(p− 1)x+ y]h2 − 2(p− 2)xhk+ [y− (p− 1)x]k2=

=(y + x)(K2 + h2)− (p− 2)x(h2 + 2hk + k2)=
=(y + x)(K2 + h2)− (p− 2)x(h+ k)2 ≤ 0,

if | k |≤| h |.

Let G(t) = U(x+ ht, y + kt), then:
G′′(t)= [Uxx(x(t), y(t))h] · h+ 2 [Uxy(x(t), y(t))h] · k + [Uyy(x(t), y(t))k] · k,

with x(t) = x+ ht, y(t) = y + kt.
So G′′(t) ≤ 0 whenever | k |≤| h |.



Bibliography

[1] Durrett, Rick Probability: theory and examples. Fourth edition. Cam-
bridge Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, Cambridge, 2010. x+428 pp. ISBN: 978-0-521-76539-8

[2] Bañuelos, Rodrigo The foundational inequalities of D. L. Burkholder and
some of their ramifications. Illinois J. Math. 54 (2010), no. 3, 789-868
(2012).

[3] Peter Mörters, Lecture Notes on Martingale Theory.
http://people.bath.ac.uk/maspm/martingales.pdf

[4] D. L. Burkholder, Boundary value problems and sharp inequalities for
martingale transforms, Ann. Probab. 12 (1984), 647-702.

[5] D. L. Burkholder, Martingales and Fourier analysis in Banach spaces,
C.I.M.E. Lectures (Varenna (Como), Italy, 1985), Lecture Notes in Math-
ematics, vol. 1206, Springer, Berlin, 1986, pp. 61-108.

[6] Nazarov, F. L.(1-MIS); Trěil’, S. R.(1-MIS) The hunt for a Bellman func-
tion: applications to estimates for singular integral operators and to other
classical problems of harmonic analysis. (Russian. Russian summary) Al-
gebra i Analiz 8 (1996), no. 5, 32–162; translation in St. Petersburg Math.
J. 8 (1997), no. 5, 721-824.

29


