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Abstract

Questo lavoro di tesi nasce con lo scopo di fornire una inquadratura generale del

campo di studi relativo ad i sistemi quantistici aperti.

Esattamente come avviene nel caso della termodinamica, questo tipo di approfondi-

mento vuole tenere conto delle interazioni che un qualunque sistema quantistico può

sviluppare con l'ambiente esterno.

La prima parte del lavoro intende introdurre il lettore all'argomento; in queste prime

sezioni si trattano anche alcuni argomenti più concettuali di rilevanza prettamente

�sica, come ad esempio il fenomeno dell'entenglement o del quatum eraser.

La seconda parte presenta un approccio geometrico, allo scopo di chiarire come ven-

gono a modi�carsi in questo nuovo contesto le strutture geometriche entro cui si

sviluppa il sistema quantistico interagente, intendendo con ciò sia le orbite unitarie,

sia gli spazi formati dagli stati puri e dagli stati misti.

In�ne, la parte �nale della tesi sviluppa questi argomenti in due circostanze applica-

tive, relative all'insieme delle matrici densità rispettivamente di dimensione due e

tre. Nello speci�co, queste due trattazioni analizzano specialmente le problematiche

relative all'evoluzione temporale aperta , ossia quel tipo di evoluzione osservabile es-

clusivamente in caso di interazione del sistema quantistico con un ambiente esterno,

e che per questo si discosta dalle usuali evoluzioni unitarie descrivendo invece una

traiettoria che permette il passaggio dall'una all'altra di queste orbite.

3





Contents

Introduction 7

1 Open quantum systems 9

1.1 Canonical Foundations of Quantum Mechanics . . . . . . . . . . . . . 9

1.2 Density matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Gleason's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Schmidt decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 The GHJW theorem and quantum eraser . . . . . . . . . . . . . . . . 18

2 Generalized measurement 23

2.1 POVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Neumark's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 GHJW with POVMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Evolution of density matrix 29

3.1 Evolution without coupling . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Evolution with coupling . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Dynamical maps . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 UDM: Universal Dynamical Maps . . . . . . . . . . . . . . . 33

3.2.3 POVM as a UDM . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Lindblad equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Geometrical approach 45

4.1 Projective Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Kähler Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Reali�cation of the Hilbert space . . . . . . . . . . . . . . . . . . . . 47

4.4 Geometry of pure states . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Geometry of mixed states . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Q-bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6.1 The Bloch sphere . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6.2 Unitary evolution on the Bloch sphere . . . . . . . . . . . . . 54

4.6.3 Open evolution on the Bloch sphere . . . . . . . . . . . . . . . 56

5



5 Q-trits 63

Conclusions 79

Appendix 81

A Quantum Markov process: mathematical structure 83

Bibliography 88

6



Introduction

This work belongs to the recent attempts to describe open quantum systems. An

open quantum system is a quantum system that is free to interact with the environ-

ment or with other systems. Because of the disturbing nature of the measuring pro-

cess and because of the arising di�culties on completely isolating physical systems

from the external world, this argument has lot of applications to concrete contexts.

Indeed, the study of open systems is useful in �elds such as quantum optics, quan-

tum measurement theory, quantum statistical mechanics, quantum cosmology and

semi-classical approximations. Moreover, the study of composite quantum systems

is at the heart of quantum computation and quantum information, where concepts

like entanglement can have applications in quantum teleportation or superdense

coding. In fact, by the development of quantum information science, there has been

a strong revival in the study of open systems aimed at further understanding the

impact of decoherence phenomena on quantum information protocols. Considering

the relevance of the subject, the goal of the �rst part of this thesis work is to sum-

marize and clarify the general approach to the argument, from both the algebraic

and the geometric points of view.

Density matrices are the most important objects in the theory of open systems, so

that chapter 1, following the line of [10], will introduce these matrices and show

how to manipulate them. The consistency of resolving quantum problems with this

formalism will be ensured by Gleason's theorem, that will justify us to calculate

quantum probabilities with the help of density operators. The Schmidt decompo-

sition, together with its main corollary, the GHJW theorem, will provide us the

necessary tools for expanding in a useful way a composite quantum state, initially

expressed in the form of a direct product of density matrices of the distinct sub-

systems. These two theorems will allow a formal interpretation of the presence of

the entanglement phenomenon between subsystems, intended as a condition over the

Schmidt number of the whole state of the system. Moreover, the GHJW theorem has

some important implications on the interpretation of quantum eraser phenomenon,

that we will discuss.

In chapter 2 we will see how the interactions between subsystems modify the mea-

suring process, allowing the use of Positive Operators Valued Measures, or POVMs,

that are measures ruled by positive operators that have not to be orthogonal, in
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contrast with the usual measures governed by orthogonal projectors, described as

Positive Valued Measures, or PVMs, in standard quantum mechanics. Starting from

a generic POVM , Neumark's theorem will ensure us the possibility of always recon-

structing an extended system whose the POVM is the result of orthogonal measures.

In chapter 3 we will speak about open evolutions. The theoretical discussion about

foundations of open time evolutions will follow the criteria used by [11], in which

the open evolution is governed by linear maps, called Universal Dynamical Maps, or

UDMs, that connect density matrices to density matrices. The equations and the

theorems of this chapter will have the purpose of describing in detail the properties

of these maps, showing also the constraints that we will need to impose to make the

evolution physically consistent. Amongst these constrains, besides conditions on the

possible form of the starting state, we will present the Markovian approximation,

that has the objective of keeping under control the disturb coming from the envi-

ronment during the evolution.

Then, in chapter 4, we will make some considerations about the geometrical na-

ture of the spaces involved in the study of open systems. In fact, identify quantum

states with density matrices instead of vectors transfers the geometrical settings of

spaces of physical states from the usual Hilbert space to more complicate types of

manifolds. In particular, we will see that the space of pure density matrices, as well

as mixed one and their unitary orbits, become Käler manifolds, that are manifolds

that admit a metric and a symplectic structure. For this �rst part of the chapter

we will limit us to enunciate the statements of the theorems, reminding the reader

to [8] for demonstrations. The end of the chapter will be reserved for an example of

application to 2x2 density matrices of these geometrical concepts, taken from [8].

Finally, the last chapter of this work will present the study of 3x3 density matrices,

with a special attention to the dynamical issues. Indeed, after a contextualization of

the argument, we will apply a new parametrization in time for the Kraus operators

in the solution of Lindblad equation, showing how the open trajectories de�ned by

this parametrization can connect di�erent unitary orbits in the space of 3x3 density

matrices. Both analytical and numerical calculations and checking will be performed

to �nd and verify the consistency of this parametrization. Our hope is to contribute

with the intuitions applied in this particular case to the generalization of the treat-

ment for density matrices of any dimension, that will be a natural continuation of

this type of research.
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Chapter 1

Open quantum systems

To avoid burdening the reading , we underling now that, for the whole chapter, we

will use [10] as main reference text.

1.1 Canonical Foundations of Quantum Mechanics

Before we consider in depth the properties of open quantum systems, it can be use-

ful to recall the main principles of quantum theory. We can summarize this by a

schematic list of 3 points:

1. States are identi�ed by rays in a Hilbert Space H.

A ray is de�ned as an equivalence class of the vectors of the space H that

di�er by a multiplication of a nonzero complex scalar. Usually, to represent a

ray, one selects a representative of the class that has a unit norm, like:

〈ψ|ψ〉 = 1

2. Observables are identi�ed as self-adjoint operators on H and measures are or-

thogonal projections, or PVM.

An operator is a linear map that takes vectors into vectors on H. Because

of the properties of Hilbert spaces, each self-adjoint operator has always a

spectral decomposition, that means that its eigenvectors form a complete or-

thonormal basis for H. So, we can express a generic observable A in the

following way:

A =
∑
µ

aµPµ

where the {aµ}µ are the eigenvalues of A and the {Pµ}µ are orthogonal pro-

jectors with the canonical properties:

PµPν = δµνPν and
∑
µ

P µ = 1

9



Performing a measure of an observable on the quantum system means project-

ing the initial state into a speci�c orthogonal direction given by these projec-

tors Pµ and the possible outcomes of the measure are the di�erent eigenvalues

{aµ}µ. In fact the probability of getting the numerical outcome aµ comes from

the expression:

prob(aµ) = 〈ψ|Pµ |ψ〉

and the normalized state reached by the system after the measuring process is

:
Pµ |ψ〉

〈ψ|Pµ |ψ〉
1
2

This measure obtained by the process illustrated above if often called Projected

Valued Measure, or brie�y PVM.

3. Evolution is unitary.

The evolution of a quantum system is completely described by the observable

H called Hamiltonian. In the Schrödinger picture, with the time dependence

carried by the states, for the evolution we have the famous equation:

d

dt
|ψ(t)〉 = −iH |ψ(t)〉

that leads to the de�nition of a unitary operator of evolution:

U(t) = e−itH

satisfying:

|ψ(t+ dt)〉 = U(t) |ψ(t)〉

1.2 Density matrix

The most common use of quantum mechanics is to consider features of a state in a

single quantum system, typically assumed to be isolated. According to the principles

of the theory, as we said, the state of the system is represented by a ray of a Hilbert

space and the results of measuring correspond to eigenvalues of certain self-adjoint

operators on that Hilbert space. With these assumptions, the evolution of the state,

regulated by the famous Schrödinger equation, is a unitary evolution . However, if

the system is not isolated anymore, but considered just part of a larger system, then

(contrary to the axioms):

1. States are not rays.
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2. Measurements are not orthogonal projections.

3. Evolution is not unitary.

Indeed, if we are looking at a subsystem of a larger quantum system, even if the

state of the larger system is still a ray, the state of the subsystem needs not to be;

in general, the state is represented by a density operator, called density matrix. In

the case where the state of the subsystem is a ray, we say that the state is pure.

Otherwise the state is mixed. Assuming that these basilar notions are still known

by the reader, we skip the formal demonstrations and we just summarize the �ve

properties that have to be satis�ed by a pure density matrix:

1. ρ is bounded

2. ρ is self-adjoint : ρ = ρ†

3. ρ is positive

4. tr(ρ) = 1

5. ρ2 = ρ

Moreover, is important to recall also that, if the density matrix ρ represents a pure

state, then it can be expressed as:

ρ = |ψ〉 〈ψ| (1.1)

where |ψ〉 ∈ H , so that any pure density matrix can be always interpreted as a

projector on the subspace of H generated by |ψ〉.
The property number 5 is the way to distinguish a pure state from a mixed one. In

fact we have:

Theorem 1.2.1.

ρ is associated with a pure state i� ρ2 = ρ

Moreover

Theorem 1.2.2.

ρ is associated with a pure state i� tr(ρ2) = 1, otherwise tr(ρ2) ≤ 1
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When we consider a mixed state, we may interpret ρmixed as describing an en-

semble of pure quantum states. In future, we will refer to a general state of the

larger quantum system (the system and the environment) with the ket |ψAB〉 that
is:

|ψAB〉 =
∑
i,µ

aiµ |iA〉 ⊗ |µB〉 (1.2)

where {|iA〉} , {|µB〉} are orthonormal bases for HA and HB, the Hilbert spaces

of systems A and B respectively. Of course we will have also:
∑

i,µ |aiµ|2 = 1

This means that the Hilbert space of the whole open system is HA

⊗
HB.

It is now easy to verify what is the action of an operator related just to the

system A on the state |ψAB〉; considering an operator M = MA ⊗ 1B we will get

the expectation value:

〈M〉 = 〈ψAB|MA ⊗ 1B |ψAB〉

=
∑
j,ν

a∗jν(〈jA| ⊗ 〈νB|)MA ⊗ 1B
∑
i,µ

aiµ(|iA〉 ⊗ |µB〉)

=
∑
j,i,µ

a∗jµaiµ(〈jA|MA |iA〉)

= trA(MAρA)

(1.3)

where:

ρA ≡ trB(|ψAB〉 〈ψAB|) (1.4)

So we say that the density operator ρA for subsystem A is obtained by per-

forming a partial trace over subsystem B of the density matrix (in this case a pure

state) for the combined system AB. This way of describe the subsystem A is the

most complete one we could reach; indeed we can say that ρA provides a complete

physical description of the state of subsystem A, because, di�erently from a single

vector of the Hilbert space HA, it characterizes all possible states of A.

1.3 Gleason's theorem

Operating with these mathematical instruments may induce the question if the

density matrix formalism is really necessary to describe quantum world, even when

we are studying an isolated system. An interesting way to answer this question is

given by the Gleason's theorem. This important theorem was proved by Gleason

during the course of an investigation on the possible existence of new axioms for
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quantum theory that would give statistical predictions di�erent from the standard

rule (1.3) illustrated in the previous section.

Gleason's theorem starts from the premise that it is the task of quantum theory

to assign consistent probabilities to all possible orthogonal projections in a Hilbert

space (in other words, to all possible measurements of observables). A state of

a quantum system, then, is a mapping that takes each projection (P 2 = P and

P = P †) to a nonnegative real number less than one:

P ⇒ p(P ) with 0 ≤ p(P ) ≤ 1 (1.5)

This mapping must have the properties:

1. p(0) = 0

2. p(1) = 1

3. if P 1P 2 = 0 then p(P 1 + P 2) = p(P 1) + p(P 2)

The fundamental property is the last one, that has not a trivial physical content,

that can be proved experimentally by virtue of the strong superposition principle of

quantum mechanics. A concrete example can be founded in [9].

Under these assumptions, the statement of the theorem is the following:

Theorem 1.3.1 (Gleason's theorem).

If A is a quantum system, represented by an Hilbert space HA with dimensions n,

then, for any possible map of type (1.5) it always exists a unique , hermitian, positive

ρ with trA(ρ) = 1 such that:

p(P ) = trA(ρP ) ∀P (1.6)

i� n>2

It is important to notice that the density matrix ρ depends only on the prepara-

tion of the physical system A (it does not depend on the choice of the projectors P ).

Thus, the density matrix formalism is really necessary, if we want to represent

observables as self-adjoint operators in Hilbert space, and to consistently assign

probabilities to all possible measurement outcomes. Roughly speaking, the require-

ment of additivity of probabilities for mutually exclusive outcomes is so strong that

we are inevitably led to the expression (1.6).

The case of the two dimensional space is more complicated because there just are

not enough mutually exclusive projections in two dimensions. To better understand
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the point behoves us to return to the original question hidden inside this theorem:

�nd all the real nonnegative functions f(u) such that, for any complete orthonormal

basis {em}m of HA , one has:

∑
m

f(em) = constant (1.7)

A function of this kind was called by Gleason a frame function. If this summation

equals to one, then the physical meaning of such a function f(u) is the probability

of �nding a given quantum system in state u ; so, this interpretation of f(u) is in

agreement with one of the main postulate of quantum mechanics. Imposing the

latter equals to a generic constant, like Gleason did , means giving a little di�erent

mathematical description of the quantum postulates, that directly leads to density

matrix and to the statement of his theorem. Another way to express the result (1.6)

of this theorem using frame functions is the following:

f(u) =
∑
mn

ρmnumun (1.8)

where f is a frame function, u a unit vector of the Hilbert space and ρ is a non-

negative matrix with unit trace.

Now we are able to prove why the two dimensional space is so special. In a two

dimensional vector space unit vectors correspond to points on a unit circle, and can

be denoted by an angle θ. So, the general form of a frame function in such a space

is:

f(u) = f(θ) + f(θ +
π

2
) (1.9)

To show the problems that appear in this space, we execute a Fourier expansion

of this function:

f(θ) + f(θ +
π

2
) =

∑
n

cne
inθ(1 + ein

π
2 ) (1.10)

To have a frame function, this expression must be a constant. Therefore, the

only values of n allowed in the Fourier expansion are n = 0 , and those n for which

ein
π
2 = −1, namely, n = ±2,±6,±10 , etc. There is an in�nity of possible forms for

frames functions in a two dimensional real vector space, consequently the uniqueness

does not hold.

With three or more dimensions instead, there are may more alternative ways to

partition unity, but even if it can seem strange, there is less freedom, because the

orthonormal bases are intertwined: a unit vector u may belong to more than one

basis. Anyway, each unit vector must have a single expectation value, f(u) = 〈uu†〉,

14



irrespective of the choice of the basis in which it is included, that imposes severe

constraints on the possible forms of f(u).

For the interested reader , a complete prove of this theorem is reported in [5] .

Gleason's theorem is a powerful argument against the hypothesis that the stochas-

tic behavior of quantum tests can be explained by the existence of a subquantum

world, endowed with �hidden variables� whose values unambiguously determine the

outcome of each test. If it were indeed so, then, for any speci�c value of the hid-

den variables, every elementary test (yes-no question) would have a unique, de�nite

answer; and therefore every projector Pu would correspond to a de�nite value, 0

or 1. Therefore the function f(u) = 〈Pu〉 too would everywhere be either 0 or 1

(its precise value depending on those of the hidden variables). Such a discontinu-

ous function f(u) is radically di�erent from the smooth distribution (1.6) required

by Gleason's theorem. This means that (1.6) cannot be valid, in general, for an

arbitrary distribution of hidden variables; and therefore, a hidden variable theory

must violate the quantum mechanics postulates that support Gleason's theorem, as

long as the hidden variables have not been averaged over. This conclusion was �rst

reached by Bell.

1.4 Schmidt decomposition

Now that we have left behind some conceptual problems well solved by Gleason's

theorem, we can present a very useful tool to operate with the world of density

matrices and open systems: the Schmidt decomposition. Starting from an open

pure state of the standard form (1.2) we can reach, by using this decomposition, a

useful way to express the density matrices of the two systems involved. So we start

giving to (1.2) a new expression by a de�nition:

|ψAB〉 =
∑
i,µ

aiµ |iA〉 ⊗ |µB〉 ≡
∑
i

|iA〉 ⊗ |̃iB〉 (1.11)

Here {|iA〉} and {|µB〉} are orthonormal bases for HA and HB respectively, but to

obtain the second equality we have de�ned:

|̃iB〉 ≡
∑
µ

aiµ |µB〉 (1.12)

Note that, in this new form, the set {|̃iB〉} does not need to be orthonormal.

Now let us suppose that the {|iA〉} basis is chosen to be the basis in which the

density matrix ρA is diagonal:

ρA =
∑
i

pi |iA〉 〈iA| (1.13)
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But, as we already know from (1.4), we can get this matrix also by performing a

partial trace:

ρA = trB(|ψAB〉 〈ψAB|)) = trB(
∑
i

|iA〉 ⊗ |̃iB〉
∑
j

〈jA| ⊗ 〈j̃B|)

=
∑
i,j

|iA〉 〈jA|
∑
k

(〈k|̃iB〉 〈k|j̃B〉)

=
∑
i,j

|iA〉 〈jA|
∑
k

(〈̃iB|k〉 〈k|j̃B〉) =
∑
i

∑
j

|iA〉 〈jA| (〈̃iB|j̃B〉)

(1.14)

and, because the two di�erent expressions must coincide, we must have:

〈̃iB|j̃B〉 = δijpi (1.15)

then we have proved that the base {|̃iB〉} is orthogonal. To get also the normalization

condition we just have to rearrange the de�nition of the base:

|̃iB〉 ≡
∑
µ

aiµ
√
pi |µB〉 (1.16)

this operation is always permitted because these coe�cients, taken from the sum-

mation (1.13) that de�nes the density matrix, are all di�erent from zero. After all

we obtain a new expression for the open state:

|ψAB〉 =
∑
i

√
pi |iA〉 ⊗ |̃iB〉 (1.17)

given in a particular base of HA

⊗
HB.

This form is the Schmidt decomposition of the open pure state |ψAB〉. Any open

pure state can be expressed in this form, but of course the basis used depends on the

pure state that is being expanded. In general, we can not simultaneously expand

two di�erent states of the whole system HA

⊗
HB using the same orthonormal base

of HA and HB . Using the last equation, we can also evaluate the partial trace over

HA to obtain the density matrix of the system B:

ρB = trB(|ψAB〉 〈ψAB|) =
∑
i

pi |̃iB〉 〈̃iB| (1.18)

We see then that ρA and ρB have the same nonzero eigenvalues. Of course there is

no reason for HA and HB to have the same dimension, so the null eigenvalues can

be di�erent in the two systems.

Anyway, in a context with no degeneration of the nonzero eigenvalues there is

only an easy and unique way to construct the Schmidt decomposition of the initial

state |ψAB〉: we need to diagonalize the operators ρA and ρB and to pair up the

eigenstates that correspond to the same eigenvalues. But, if ρA has degenerate

nonzero eigenvalues, then we need more information than that provided by ρA

and ρB to determine the Schmidt decomposition; we need to know which |̃iB〉 gets
paired with each |iA〉. So it still remains an ambiguity (deriving to the unitary

transformations that connect the eigenstates depending on the same eigenvalues )

on the possible basis used by this type of construction.
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1.5 Entanglement

We consider now a quantum system A that interacts with another system B (that

can be our environment). In this case A and B become entangled, that is, correlated.

The entanglement destroys the coherence of a superposition of states of A, so that

some of the phases in the superposition become inaccessible if we look at A alone.

We may describe this situation by saying that the state of system A collapses ( it is

in one of a set of alternative states, each of which can be assigned a probability).

We mathematically de�ne the concept of Entanglement in the following way:

De�nition 1.1 (Entanglement).

Given a state |ψAB〉 of the whole system A+B, one says that the subsystems A and

B are entangled if it is not possible to express the whole state as a direct product

of the states of the two subsystems:

|ψAB〉 = |φA〉 ⊗ |χB〉 (1.19)

otherwise, the state is said separable.

The Schmidt decomposition provides an interesting mathematical criterion to

characterize the delicate physical notion of entanglement. In fact, considering a

state of the whole system (compose by A: the physical system of interest, and B:

the environment) the presence of this type of connection between its subsystems can

be distinguished by looking at the Schmidt number.

De�nition 1.2 (Schmidt number).

The Schmidt number is the number of nonzero eigenvalues in a Schmidt decompo-

sition of a state.

From this de�nition, it follows the rigorous formalization of the criterion:

Theorem 1.5.1.

Given a state |ψAB〉 of the whole system, one can show that the subsystems A and

B are entangled i� the Schmidt number of |ψAB〉 is greater than 1.

The prove of this theorem comes in a straightforward way from the above de�-

nitions.

Even if the two concepts of pureness and separability are strictly connected, it is

important to not make confusion between them. Any state of the whole system AB

is, by de�nition, a ray, and than a pure state; but the separability is just linked to

the pureness of the states of his subsystems. Indeed, a separable open pure state is

a direct product of pure states in HA and HB and can be written in the form:

|ψAB〉 = |φA〉 ⊗ |χB〉 (1.20)

Thus, the reduced density matrices ρA = |φA〉 〈φA| and ρB = |χB〉 〈χB| are pure. As
we said , any state that cannot be expressed as such a direct product is entangled;

then ρA and ρB are mixed states.
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1.6 The GHJW theorem and quantum eraser

The Schmidt decomposition is also a good starting point to achieve the GHJW

theorem. In fact, the GHJW theorem is an almost trivial corollary to the Schmidt

decomposition. This theorem, even if it is quite immediate in a mathematical sense,

has a lot of relevant implications on the physical concept of coherence between states

of a quantum system , giving a simple and illuminating explanation of the Quantum

eraser issue. The phenomenon of quantum eraser is a critical point that could be

used, as lot of scientists did, to questioning the all-pervading information content of

a system enclosed inside a density matrix . This phenomenon is strictly connected

with the entanglement one, and consists on the possibility of restoring coherence on

a system that was initially in a incoherent superposition of states just because of

entanglement with another system or environment. A clear example to consider this

argument is a simple system A of a spin particle, interacting with environment. We

can start with an initial state of this system that is an incoherent superposition of

spin up |↑z〉 and spin down |↓z〉 along the ẑ axis. As we know, this type of state can
not be expressed in a unique vector or ray formalism, because of the stochastic nature

of ensemble of pure states. What we can do to label this condition is reporting the

corresponding density matrix ρA = 1
2
1A that, as we said in chapter 1, characterizes

all the possible states of A . This last incoherent superposition is really di�erent

between a coherent superposition, like for example:

|↑x, ↓x〉 =
1

2
(|↑z〉 ± |↓z〉) (1.21)

The main di�erence between them is the role played by the phase: in the case of

a coherent superposition, the relative phase of the two states has observable conse-

quences (distinguishes |↑x〉 from |↓x〉). In the case of an incoherent superposition,

the relative phase is completely unobservable. The superposition becomes incoher-

ent if the system A becomes entangled with another system B, and B is inaccessible.

Heuristically, the states |↑z〉 and |↓z〉 can interfere (the relative phase of these states

can be observed) only if we have no information about whether the spin state is

|↑z〉 or |↓z〉. More than that, interference can occur only if there is in principle no

possible way to �nd out whether the spin is up or down along the z-axis. Entangling

spin A with the system B destroys interference, (causes spin A to decohere) because

it becomes possible in principle for us to determine if spin A is up or down along ẑ

by performing a suitable measurement on system B.

Now, considering the incoherent superposition of the spin example above, we can

�nally get into quantum eraser. As we already said, if an observer of the system

B makes a measure of the z-spin, then, because of incoherence, the other observer

in A immediately learns what is his state of spin along the z-axis. But, if the B-

observer, after that z-measure, does not look at the result and instead makes an

ulterior measure along the x-azis, communicating the results at his colleague on A,
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the situation completely changes. Indeed, the measure of the spin along the x di-

rection on B "erases" the initial state of incoherence on A, and, after this exchange

of information, it becomes impossible to learn something about the z-spin of the

system A by operating on the system B. Yet incoherence is not irreversible, that

is, we can always create a coherent superposition of some ensemble of states in the

subsystem A by projecting the whole A+B-state with a suitable measure on a pure

state in the subsystem B. Thus, measuring the B spin on x-axis yields on A the state

(1.21), which is a coherent superposition of spin up and spin down along z-axis. So,

from this prospective, it is easy to see how this phenomenon can be used against the

claim of density matrix of describing completely all the possible states of the system

A. Since the information received from B-observer enables A-observer to recover a

pure state from the incoherent initial mixture, how can we hold that everything can

we know about A is encoded in ρA? A possible answer to this interesting question

is saying that the two following distinct settings:

� knowledge of ρA

� knowledge of ρA plus information coming from B

are physically di�erent.

This type of solution seems to con�rm another time the concrete and physical con-

sistency of information.

After this discussion, we are now ready to approach the GHJW theorem and see

how this theorem can formalize and generalize the concepts illustrated above. As we

said, any density matrix can be realized as an ensemble of pure states; for a density

matrix ρA, we consider one such realization:

ρA =
∑
i

pi |φi〉 〈φi| (1.22)

where, of course:
∑

i pi = 1

In this equation is really not necessary to consider an orthonormal basis, and we

limit to assume just the normalization condition. From this point, we can now

construct a state that is often called puri�cation of ρA. To make the latter we have

to associate to HA another Hilbert space HB of dimension at least equal to those

of HA, with one orthonormal basis, and then we can identify the puri�cation of the

density matrix with a state of the tensorial product HA

⊗
HB, here represented

by |ΦAB〉1. Anyway this state has not to be generic, it must satisfy the following

condition:

trB(|ΦAB〉1 〈ΦAB|1) = ρA (1.23)

19



Starting from the same density matrix ρA, as we will see in details, there are a lot

of possible puri�cations, and that is way of the subscript "1" on the state. Knowing

that, we can de�ne this puri�cation to have the following Schmidt decomposition:

|ΦAB〉1 =
∑
i

√
pi |φi〉 ⊗ |αi〉 (1.24)

Where {|αi〉}i is an orthonormal basis of HB.

It is easy to check that with this choice the request above is veri�ed. So, with this

puri�cation it becomes possible to obtain an eigenstate of the system A making an

orthogonal measure on B.

To generalize the notion of a quantum eraser, we wish to see that in the state |ΦAB〉1
we can realize a di�erent ensemble interpretation of ρA by performing a di�erent

measurement of B. To see that, we start choosing another basis in (1.22), like

{|ψj〉}j (as before not necessarily orthogonal) and then we write:

ρA =
∑
µ

pµ |ψµ〉 〈ψµ| (1.25)

and this expression is nothing more than another realization of the same density

matrix ρA as an ensemble of pure states.

With this change of basis it also changes the puri�cation, that becomes:

|ΦAB〉2 =
∑
µ

√
pµ |ψµ〉 ⊗ |βµ〉 (1.26)

Where {|βi〉}i is another orthonormal basis of HB.

Thus we have two di�erent equations that satisfy the same trace constraint on the

system B. It follows that the connection between the two states |ΦAB〉1 and |ΦAB〉2
must be in the form of an operator that does nothing on subsystem A and keeps the

trace on the subsystem B invariant, something like:

|ΦAB〉1 = (1A ⊗UB) |ΦAB〉2 (1.27)

where UB is an unitary operator that preserves the trace on B. It acts transforming

the orthonormal basis {|βi〉}i into another orthonormal one:

|γµB〉 = UB |βµB〉 (1.28)

Combining the two equations (1.27) and (1.28) one easily reaches:

|ΦAB〉1 =
∑
µ

√
pµ |ψµ〉 ⊗ |γµ〉 (1.29)

We see then, comparing this last equation with the �rst expression of |ΦAB〉1, (1.24),
that there is a single puri�cation such that we can realize either the {|φi〉}i ensemble
or the {|ψµ〉}µ ensemble by choosing to measure the appropriate observable in system

B. This �nal consideration is the deepest meaning of the GHJW theorem, enunciated

almost at the same time by Gisin, Hughston, Jozsa and Wootters. We can know

present the theorem in its formal shape:
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Theorem 1.6.1 (GHJW theorem). Let ρA be a density matrix in a Hilbert space

HA of dimension n, then it is possible to introduce another Hilbert space HB with

dimension at least equal to n to construct states |ΦAB〉i of the tensorial product

HA

⊗
HB ( called puri�cations of ρA ) such that:

1. |ΦAB〉i =
∑

j

√
pj |iAj〉 ⊗ |iBj〉 , ∀i

where ∀i , {|iAj〉}j is a normalized basis of HA and {|iBj〉}j is a orthogo-

nal basis of and HB

2. ρA = trB(|ΦAB〉i 〈ΦAB|i) , ∀i

3. ∀i, j ; i 6= j ∃ UB such that UBU
†
B = 1 and |ΦAB〉i = (1A ⊗UB) |ΦAB〉j

As we can see, this theorem is a direct consequence of the ambiguity contained

in the Schmidt decomposition, that allows to associate the same eigenvectors of the

system A to di�erent orthonormal eigenvectors of the system B, related each other

by unitary transformations. In fact, the degenerate Schmidt decompositions that

support the validity of the GHJW theorem are the following ones: (allowed by the

same trace condition on B)

|ΦAB〉1 =
∑
k

√
λk |k〉 ⊗ |k′1〉

|ΦAB〉2 =
∑
k

√
λk |k〉 ⊗ |k′2〉

(1.30)

where the λk's are the eigenvalues of ρA , the |k〉's are the corresponding eigenvectors
and {|k′1〉}k and {|k′2〉}k are both orthonormal bases linked by a unitary operator

UB in the usual way. At the end of this discussion it is clear in what sense this

theorem characterizes the general quantum eraser; in fact after the preparation of

the state in the (1.24) conformation measuring B in the {|γµ〉}µ basis erases the

crucial information concerning whether the state A is in the state |φi〉 or |φj〉 that
was accessible before by appropriate measure on the system B.
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Chapter 2

Generalized measurement

2.1 POVM

We are now ready to discuss one of the main important consequence of the intro-

duction of open quantum systems. As we had already seen, even if the whole system

preserves the original statements of the ordinary quantum mechanics (states are still

rays, evolution is always unitary) the subsystem of our interest, often called here

the A system, has di�erent properties. At the beginning of this work, we said that

on this system A measurements are not orthogonal. We are now showing the details

about this claim; indeed we will see that in this context the measuring process is rep-

resented by a non-orthogonal Positive Operator Valued Measure (usually shortened

by the acronym POVM) and not by the usual PVM described in section 1.1. This

treatment has of course a relevant physical interest because, in a real situation of

an experimental measure, it is impossible to isolate completely the system (even the

same measuring set up can often play the role of an irremovable "external" font of

disturb ), and so it is necessary to consider the interaction between the object of the

experimentation and the environment. So we start our presentation introducing as

always the environment B, represented here by a quantum system in a known state

ρB. Likewise, the initial state of our system A is represented by the density matrix

ρA
i (the index i shows that a lot of possible con�gurations can be considered at this

starting point and it is useful to keep track of this initial choice for the continuation

of the discussion). Thus, the combined state of the original whole quantum system

is ρB ⊗ ρiA, that in components becomes :

(ρB ⊗ ρiA)αr,βs = (ρB)α,β(ρiA)r,s (2.1)

where the Greek letters refer to environment B and Latin ones to the system A.

Now we perform a measure on the whole system. From the principles of quantum

mechanics we know that such a measure is represented by an orthogonal resolution

of the identity. Di�erent outcomes correspond to orthogonal projectors {Pµ}µ which
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satisfy:

PµPν = δµνPν and
∑
µ

Pµ = 1 (2.2)

Moreover, in this measure, the probability of the outcome ”µ” with an initial prepa-

ration ”i” of the system A, here identi�ed by (P )µi, is:

(P )µi = trAB[Pµ(ρB ⊗ ρiA)] =
∑
αr,βs

(Pµ)αrβs(ρB)α,β(ρiA)r,s (2.3)

and this can be written as:

(P )µi = trA(Aµρ
i
A) (2.4)

where

(Aµ)rs ≡
∑
α,β

(Pµ)αrβs(ρB)βα (2.5)

is an operator acting on the Hilbert space HA.

So we can see from (2.4) that we have realized a way to express the outcome of

a measuring process on the whole system A + B just working with operators of

the subsystem A, the {Aµ}µ. These hermitian matrices, which in general do not

commute, satisfy: ∑
µ

Aµ = 1A (2.6)

in fact, from (2.4), for each component rs we get:

(
∑
µ

Aµ)rs =
∑
α,β

(
∑
µ

Pµ)αrβs(ρB)βα =
∑
α,β

δαrβs(ρB)βα = (δ)rs
∑
α

(ρB)αα = δrs

(2.7)

The set of {Aµ}µ is called a Positive Operator Valued Measure (POVM), because

each Aµ is a positive operator. They are Hermitian and positive, but the main

di�erence between these POVMs and the usual PVMs is that the {Aµ}µ are not

necessarily orthogonal and normalized . Concretely, if a usual projector has the

form:

Pµ = |ψµ〉 〈ψµ| (2.8)

then an operator of rank one composing a POVM is in the form:

Aµ = λµ |ψAµ〉 〈ψAµ| (2.9)

where the states {|ψAµ〉}µ are not orthogonal and the λµ are generic complex coef-

�cients.

This fact implies that the number of available preparations and the number of

available outcomes may be di�erent from each other, and also di�erent from the

dimensionality of Hilbert space HA.
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It can be proved that, using only POVMs composed of operators of rank one, the

required number, n, of di�erent Aµ satis�es the inequality:

N ≤ n ≤ N2 (2.10)

where N is the dimensionality of the subspace of HA spanned by the di�erent prepa-

rations ρiA. The prove of this claim can be founded in [4].

Another question that we can ask ourselves is: how does a general measurement

ruled by a POVM a�ect the quantum state and the density matrix of the subsys-

tem A? To answer, we choose a speci�c con�guration ρiA and we remove the "i"

index that is then super�uous. We know that, performing a non orthogonal general-

ized measure on this con�guration, the outcome (P )µi ≡ pµ occurs with probability

trA(AµρA); then, summing over the all the possible outcomes of this kind of measure

yields:

ρA
→

measuring ρAPOVM =
∑
µ

|ψAµ〉 〈ψAµ|λµ 〈ψAµ|ρA |ψAµ〉

=
∑
µ

(√
λµ |ψAµ〉 〈ψAµ|

)
ρA

(√
λµ |ψAµ〉 〈ψAµ|

)
=
∑
µ

√
AµρA

√
Aµ

(2.11)

and this is another relevant di�erence from the orthonormal projective case, where

a measure encoded by the projector operators {Pµ}µ modi�es the density matrix of

the system in a conventional way:

ρA
→

measuring ρAPVM =
∑
µ

PµρAPµ (2.12)

The method just exposed is the right one to generalize the concept of measuring

for open quantum systems; now we want to understand if this treatment is also

invertible, or, in another words, if it is always possible, starting from a generic

POVM, to construct an extended system whose the POVM is the result of orthogonal

measures. The clari�cation of this doubt is given by Neumark's Theorem.

2.2 Neumark's theorem

We immediately give the statement of the theorem brie�y described in the section

above.

Theorem 2.2.1 (Neumark's theorem).

Let HA to be Hilbert space in which is de�ned a set {Aµ}µ of positive operators such
that

∑
µAµ = 1A.

Then it exists an extended Hilbert space K and on it a set of orthogonal projectors

{Pµ}µ satisfying
∑

µPµ = 1K such that, ∀µ, Aµ is the result of projecting Pµ from

K into HA.
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Proof. We can restrict our attention to operators:

Aµ = |uµ〉 〈uµ| (2.13)

that are of rank one, because any other case can be obtained from this general

one. Because they are of rank 1, we know that the number N of this operators

is N ≥ n where n is the dimension of the Hilbert space HA (the case N = n is

represented by orthogonal operators). Let us now extend the original vector space

HA by introducing N − n unit vectors {|vs〉}s=n+1:N , orthogonal to each other and

to the all |uµ〉 from equation (2.13):

|wµ〉 ≡ |uµ〉+
s=N∑
s=n+1

cµs |vs〉 (2.14)

it is clear that the number of these equations (N) is greater than the number of

unknown complex coe�cients cµs (N-n). By de�nition, the {|wµ〉}µ 's must form an

orthonormal basis for an enlarged Hilbert space K of dimension N , so they must

satisfy:

〈wν |wµ〉 = 〈uν |uµ〉+
s=N∑
s=n+1

cνscµs = δνµ (2.15)

Anyway, the {|uµ〉}µ 's are not arbitrary: they obey the closure property
∑

µAµ =

1A, that in components it becomes explicitly:∑
µ

(|uµ〉)i(|uµ〉)j = δij (2.16)

where i and j run from 1 to n (the number of dimensions of the original Hilbert

space, HA). Writing also equation (2.15) in components gives:

∑
i

(|uν〉)i(|uµ〉)i +
s=N∑
s=n+1

cνscµs = δνµ with (µ, ν = 1, .., N) (2.17)

We can now build up the square N ×N matrix M :

M =


(|uα〉)1 . . . (|uα〉)n cα,n+1 . . . cα,N

(|uβ〉)1 . . . (|uβ〉)n cβ,n+1 . . . cβ,N
...

...
...

...

(|uN〉)1 . . . (|uN〉)n cN,n+1 . . . cN,N

 (2.18)

The �rst n columns are the (|uλ〉)i, which are given, and theN−n remaining columns

are the unknown cλs. We can see then that equation (2.17) , in this notation, simply

says that M is a unitary matrix. The �rst n columns, which satisfy the consistency

requirement (2.16), can be considered as n orthonormal vectors in a N-dimensional

space. There are then in�nitely many ways of constructing N−n other orthonormal

vectors for the remaining columns. We thereby obtain explicitly the N orthonormal

vectors {|wµ〉}µ de�ned above. Their projections into HA are the {|uµ〉}µ of the

beginning, that compose ρA.
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At the end of this chapter we show how the possibilities of POVMs can increase

the power of the already note GHJW decomposition.

2.3 GHJW with POVMs

As we know from section 1.6, if we have two Hilbert spaces , HA and HB, the

instrument of GHJW decomposition allows us, starting from a generic open state of

the form:

|ΦAB〉 =
∑
µ=1

√
pµ |ψAµ〉 ⊗ |βBµ〉 (2.19)

to realize an ensemble of up to N pure states by measuring an appropriate observable

on HB.

Then, we represented such an ensemble as a density matrix ρA like the following

one:

ρA =
∑
µ

pµ |ψAµ〉 〈ψAµ| (2.20)

Nevertheless , if the dimension of HA was N , that was granted only for a Hilbert

space HB of at least the same dimension N , just because of the nature of the

orthogonal measure performed on B. But, if we introduce the possibility of make a

POVM on B, then we can reduce the minimum size of dimensions of HB up to an

integer number n such that
√
N ≤ n ≤ N , as we can see from the expression (2.10)

.

Therefore, we may rewrite the same state |ΦAB〉 as:

|ΦAB〉 =
∑
µ

√
pµ |ψAµ〉 ⊗ |β̃Bµ 〉 (2.21)

where |β̃B〉µ are the orthogonal projections of the old |βBµ〉 's of equation (2.19)

(those vectors that belonged to the space HB of N dimensions) onto the new support

of ρB of n dimensions. We may now perform the POVM on the support of ρB with

Aµ = |β̃Bµ 〉 〈β̃Bµ |, and thus prepare the state |ψAµ〉 with probability pµ.
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Chapter 3

Evolution of density matrix

3.1 Evolution without coupling

So far, we have not discussed the evolution in time of the density operator. At the

beginning of this work we claimed that evolution of open systems is not necessarily

unitary. To conclude the part of the thesis dedicated to the foundation of open

quantum systems we want to present and justify this important last deviation from

the usual principles of quantum mechanics. We will also see later that this type

of evolution can be connected in a very interesting way to the tool of POVM just

presented in the previous chapter. We begin by looking at the most simple case,

concerning two non-interacting subsystems A and B. This can be useful to become

familiar with the evolution of the density matrices before the situation becomes

more tricky with interaction. So, considering the usual two subsystems A and B

(environment) and their respective Hilbert spaces HA and HB, let us suppose that

the Hamiltonian on HA

⊗
HB has the form:

HAB = HA ⊗ 1B + 1A ⊗HB (3.1)

this assumption is the mathematical condition for absence of interaction between A

and B, so that each of them evolves independently. The time evolution operator for

the combined system is:

UAB(t) = UA(t)⊗UB(t) (3.2)

and it decomposes into two separate unitary time evolution operators acting on each

system. In the Schrödinger picture of dynamics, then, an initial pure state of the

kind of equation (1.2) of the open system evolves as:

|ψAB(t)〉 =
∑
i,µ

aiµ |iA(t)〉 ⊗ |µB(t)〉 (3.3)

where |iA(t)〉 = UA(t) |iA(0)〉 and |µB(t)〉 = UB(t) |µB(0)〉.

If UA(t) and UB(t) are unitary, {|iA(t)〉}i and {|µB(t)〉}µ are orthogonal bases of HA

29



and HB respectively. Then, from this expression, we can obtain the law of evolution

of density matrix ρA just taking the trace of the projector |ψAB(t)〉 〈ψAB(t)| on the

space HB:

ρA(t) =
∑
µ,i,j

aiµa
∗
jµ |iA(t)〉 〈jA(t)| (3.4)

that can be clearly simpli�ed in the form:

ρA(t) = UA(t)ρA(0)U
†
A(t) (3.5)

In particular, in the basis in which ρA(0) is diagonal, we have:

ρA(t) =
∑
a

paUA(t) |ψAa(0)〉 〈ψAa(0)|U †
A(t) (3.6)

So we can see that each state in the ensemble evolves forward in time governed by

UA(t). The equation above shows that, if on the original preparation of the system

A the probability of �nding the state |ψAa(0)〉 was pa, then, after the evolution that

carries to the time t, that probability is the same of �nding the state |ψAa(t)〉. This
last statement really explains well the meaning of not coupling between subsystems.

3.2 Evolution with coupling

3.2.1 Dynamical maps

In this section we will study the evolution of subsystems that are free to interchang-

ing information with each other so that it is impossible to factorize the evolution

operator in two separate parts like we have done in equation (3.2) . We will give

particular attention to this argument just because this is the main object of study

of this whole work.

So, what we really want to �nd is a dynamical map acting on a generic density ma-

trix de�ned on HA which connects the density matrix of the subsystem A at times

t0 and t1:

♣(t0,t1) : ρA(t0)→ ρA(t1) (3.7)

We know that a similar type of map has to depend not only on the unitary evolution

operator of the whole system UAB(t1, t0) but also on the properties of the system

B and A themselves. So, it seems convenient to divide , for the initial state of the

whole system A+B , the correlated and the uncorrelated part [13] :

ρAB(t0) = ρA(t0)⊗ ρB(t0) + ρcorr(t0) (3.8)

where the ρcorr(t0) symbolizes all the possible starting interactions between A and

B but it has no physical meaning for the subsystems considered separately, so that

[13] :

trA(ρcorr(t0)) = trB(ρcorr(t0)) = 0 (3.9)

About the presence of the correlation term, we have the following theorem:
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Theorem 3.2.1.

Let the density matrix of subsystem A to be pure: ρA = |ψA〉 〈ψA|, then, in the whole

system density matrix, ρAB = ρA ⊗ ρB + ρcorr, the term ρcorr = 0

Proof. We can consider the density operator ρAB. If this density matrix is pure,

then it has to be of the form:

ρAB = |ψA〉 〈ψA| ⊗ |φB〉 〈φB| (3.10)

and so ρcorr = 0. So, assume that ρAB is mixed. Thus, we can write it as a convex

combination of pure matrices:

ρAB =
∑
µ

pµ |αABµ〉 〈αABµ| (3.11)

but, because we know from hypothesis that ρA is pure, then we must have:

trB[
∑
µ

pµ |αABµ〉 〈αABµ|] ≡
∑
µ

pµρ
A
µ (3.12)

to be pure.

(Here we have de�ned the ρAµ = trB[|αABµ〉 〈αABµ|], that are operators acting on

HA).

The only two possibilities to satisfy this request are:

1. pµ = 1 for µ = µ′ and pµ = 0 for each other µ 6= µ′

2. ρAµ = ρA for all µ

For the case (1) we immediately get, from equation (3.11) :

ρAB = |αABµ′〉 〈αABµ′| (3.13)

that proves the theorem. Then, the case (2) remains.

In that case we can expand each |αABµ〉 with a Schmidt decomposition |αABµ〉 =∑
i λµ,i |uAµ,i〉 ⊗ |vBµ,i〉 , and then obtain:

ρA = ρAµ = trB[|αABµ〉 〈αABµ|]

=
∑
i

λµ,i
2 |uAµ,i〉 〈uAµ,i| ∀µ

(3.14)

and then the last equation can be reformulated to be independent from µ:

ρA =
∑
i

λi
2 |uAi〉 〈uAi| (3.15)
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Finally, because ρA has to be pure, we must have λi = 1 for i = i′ and λi = 0 for

all i 6= i′. Therefore we �nally get:

ρAB = |uAi′〉 ⊗ |vBi′〉 (3.16)

Anyway, we already know from the previous section that the evolution of the

whole system must satisfy:

ρAB(t1) = UAB(t1, t0)ρAB(t0)U
†
AB(t1, t0) (3.17)

Thus, as we have always done, if we want to reach the expression of ρA(t1) it will

be su�cient to perform the trace of this last expression on the subsystem B :

ρA(t1) = trB[UAB(t1, t0)ρAB(t0)U
†
AB(t1, t0)] (3.18)

Therefore we can substitute the explicit form of ρAB(t0) provided by equation (3.8)

in the last expression , obtaining:

ρA(t1) = trB{UAB(t1, t0)[ρA(t0)⊗ ρB(t0) + ρcorr(t0)]U
†
AB(t1, t0)}

=
∑
i

λi trB[UAB(t1, t0)(ρA(t0)⊗ |ψBi〉 〈ψBi|)U †
AB(t1, t0)]

+ trB[UAB(t1, t0)(ρcorr(t0))U
†
AB(t1, t0)]

=
∑
α

Kα(t1, t0)ρA(t0)Kα
†(t1, t0) + δρ(t1, t0)

≡ ♣(ρA(t0))

(3.19)

where α is a double index : α = i, j so that:

Ki,j(t1, t0) =
√
λi 〈ψBj|UAB(t1, t0) |ψBi〉 (3.20)

and we have used the spectral decomposition ρB(t0) =
∑

i λi |ψBi〉 〈ψBi|.
The term δρ(t1, t0) is de�ned as:

δρ(t1, t0) ≡ trB[UAB(t1, t0)(ρcorr(t0))U
†
AB(t1, t0)] (3.21)

The positivity requirement of density operators forces each term in the dynamical

map to be interconnected and dependent on the state upon which it acts; this means

that a dynamical map with some values of Ki,j(t1, t0) and δρ(t1, t0) may describe

a physical evolution for some states ρA(t0) and an unphysical evolution for others.

This characteristic makes working with this type of evolution very delicate and

complex. Anyway, to try to give some regularity and some more general rules to

this maps D. Salgado and D. M. Tong reached independently an important theorem

that gives a useful description of these mathematical objects:
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Theorem 3.2.2.

Any kind of time evolution of a quantum state ρA(t0) can always be written in the

form:

ρA(t1) =
∑
α

Kα(t1, t0,ρA(t0))ρA(t0)Kα
†(t1, t0,ρA(t0)) (3.22)

Proof. Let us give a very simple proof; we can imagine an operator that we will call

Uchange that can act on tensor product in the following way:

Uchange(HA

⊗
HB) = HB

⊗
HA

Uchange(ρA ⊗ ρB)Uchange
† = ρB ⊗ ρA

(3.23)

Thus, given an original density matrix at time t0 of the system A, ρA(t0), and a

�nal matrix ρA(t1) that we want to get at time t1 after the evolution , we construct

the state of HA

⊗
HA:

ρA(t0)⊗ ρA(t1) (3.24)

So, we can see that the �nal operator at time t1 can be also written as:

ρA(t1) = tr2[Uchange(ρA(t0)⊗ ρA(t1))Uchange
†] (3.25)

where tr2 denotes the partial trace with respect to the second member of the com-

posed state in the tensor product. Finally, by taking the spectral decomposition of

ρA(t1) in the central term of the above equation we obtain an expression of the form

(3.22)

Note that this decomposition is clearly not unique.

This theorem shows that, reducing the domain of a dynamical map, it is always pos-

sible to obtain another dynamical map without the inhomogeneous term δρ(t1, t0).

3.2.2 UDM: Universal Dynamical Maps

Using the concept of dynamical maps, what we really want to reach is a way of

treating the evolution of a quantum system, let us say A, independently from the

particular starting con�guration ρA(t0) in which it is prepared. So, the tool that

we are searching for is a linear, positive de�ned map ♣(t1,t0) called a Universal

Dynamical Map or UDM that could satisfy:

♣(t1,t0)ρA(t0) ≡
∑
α

Kα(t1, t0)ρA(t0)K
†
α(t1, t0) = ρA(t1) (3.26)

where the operators Kα(t1, t0) do not depend here from the initial matrix ρA(t0).

In addition we observe that the normalization condition of the trace trA[ρA(t1)] = 1

imposes that: ∑
α

K†
α(t1, t0)Kα(t1, t0) = 1A (3.27)

So, the following important theorem can inform us on the speci�c starting conditions

that could realize our goal:
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Theorem 3.2.3. A dynamical map ♣(t1,t0) is a UDM if and only if it is induced

from an extended system A+B with the initial condition ρAB(t0) = ρA(t0)⊗ρB(t0)

where ρB(t0) is �xed for any ρA(t0).

Proof. The �rst implication is really straightforward; indeed the condition �xed by

the hypothesis implies directly the dynamical map loses its dependence on ρA(t0)

and so becomes an UDM. For the other implication we start considering for hypoth-

esis the existence of a UDM as de�ned in (3.26). Then, we suppose the original

density matrix of the whole system A+B to be of the form:

ρAB(t0) = ρA(t0)⊗ |ψB〉 〈ψB| (3.28)

for each possible ρA(t0) ; and try to verify if it is allowed.

(If we consider ρB(t0) as a mixed density matrix we can proceed with the same

treatment, just by the use of the ensemble representation of any mixed operator).

To prove that let us look at the de�nition of the operators {Kα(t1, t0)}α given in

(3.20) ; with this hypothesis, they become:

Kα(t1, t0) = 〈φαB|U(t1, t0) |ψB〉 (3.29)

where {〈φαB|}α is a generic basis for HB.

We can see that this condition �xes only a few elements of U(t1, t0) and the following

equation shows also that it preserves the necessary unitary constraint, in fact:∑
α

Kα
†(t1, t0)Kα(t1, t0) =

∑
α

〈ψB|U †(t1, t0) |φαB〉 〈φαB|U(t1, t0) |ψB〉

= 〈ψB|U †(t1, t0)U(t1, t0) |ψB〉

= 1A

(3.30)

So, it is always possible, for an UDM of this type, to de�ne an U(t1, t0) such that the

original density matrix of the whole system can be: ρAB(t0) = ρA(t0)⊗|ψB〉 〈ψB|

We can summarize and clarify what we have said up to now by means of the

following diagram:

ρA(t0)⊗ ρB(t0)
U(t1,t0)−−−−→ ρAB(t1)

trB

y ytrB
ρA(t0) −−−−→

♣(t1,t0)

ρA(t1)

It is now the moment to explain why UDMs are so important in physic and what

kind of properties they have.

Linearity and complete positivity

As we already said, UDMs are requested to be linear and positive. Linearity is fun-

damental because of the possibility of treating any mixed density matrix that evolves
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in time as the sum of the evolutions of its pure parts in the ensemble interpretation.

Positivity is fundamental and necessary to preserve the positivity condition on any

density matrix. However, as we will see, a normal concept of positivity for an op-

erator is really not su�cient for a UDM. One has to resort to the new concept of

complete positivity. To make clear this argument we present a mental experiment.

Suppose that, in addition of our usual two systems A and B, another system C

is involved in our discussion. The system C is completely invisible to our eyes,

that means that it never interacts neither with A nor with B. So, we can write the

evolution operator of the whole system (A+B+C) as:

UABC = UAB ⊗UC (3.31)

Thus, considering at t0 an initial density matrix of the whole system ρABC(t0) it

evolves until time t1 like:

ρABC(t1) = UAB(t1, t0)⊗UC(t1, t0)ρABC(t0)U
†
AB(t1, t0)⊗U †C(t1, t0) (3.32)

We are now interested in the density operator concerning only the subsystem A+B,

then we perform on this last expression a trace on the space HC , getting:

ρAB(t1) = trC [UAB(t1, t0)UC(t1, t0)ρABC(t0)U
†
AB(t1, t0)U

†
C(t1, t0)]

= UAB(t1, t0)trC [ρAB(t0)]U
†
AB(t1, t0)

(3.33)

Therefore, as expected, we can see that the presence of the system C does not

perturb the dynamics in any way.

Nevertheless, if we suppose that the evolution of the density matrix ρAB(t0) is ruled

by a UDM, then we know from theorem 3.2.3 that the initial density operator must

be in the form:

ρAB(t0) = ρA(t0)⊗ ρB(t0) ∀ρA(t0) (3.34)

and the introduction of the system C unavoidably transforms the last equation in:

ρABC(t0) = ρAC(t0)⊗ ρB(t0) ∀ρAC(t0) (3.35)

We can now study the evolution of the system A+C performing the trace of the last

equation on HB:

ρAC(t1) = trB[UAB(t1, t0)UC(t1, t0)ρAC(t0)ρB(t0)U
†
AB(t1, t0)U

†
C(t1, t0)]

=
∑
α

Kα(t1, t0)UC(t1, t0)ρAC(t0)U
†
C(t1, t0)K

†
α(t1, t0)

(3.36)

where we have used the spectral decomposition of ρB(t0) and then the {Kα(t1, t0)}α
in the same usual way of equations (3.19) and (3.20).

Looking to this last expression it becomes clear that:

ρAC(t1) = ♣A(t1,t0) ⊗](t1,t0)[ρAC(t0)] (3.37)
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where ](t1,t0)[·] ≡ UC(t1, t0)[·]U †C(t1, t0) is the normal unitary evolution of the sys-

tem C and ♣A(t1,t0) is an UDM on the system A.

Making some considerations about this last equation we can conclude that the

temporal evolution of the two subsystems A and C happens undisturbed, as a tensor

product, independently from the dimensions of HC and from the characteristics of

C . However, the requirement of positivity must hold if we want that ρAC(t1) can

be a density matrix. Then the following operator:

♣A(t1,t0) ⊗](t1,t0) = [♣A(t1,t0) ⊗ 1A]⊗ [1C ⊗](t1,t0)] (3.38)

must be positive; but because 1C⊗](t1,t0) is a unitary operator, what we are asking

for is the positivity of:

♣A(t1,t0) ⊗ 1A (3.39)

This is what we call the requirement of complete positivity, and it is really much

stronger than the usual positivity. Since we can never dismiss the possible existence

of some extra system C, out of our control, a UDM must always be completely

positive. Therefore, a formal de�nition of a UDM is a (trace-preserving) linear map

which is completely positive. The reverse statement, that claims that any possible

complete positive linear map can always be written as (3.26) has been proved by

Kraus in [7]. That is why sometimes the expansion of a generic UDM in the form

of (3.26) is called Kraus decomposition and the operators {Kα(t1, t0)}α are called

Kraus operators.

UDMs as Contractions

In this section we will see an interesting property of UDMs that will allow us to

distinguish the maps with a concrete physical meaning from the others. To discuss

about this property, we have to consider a generic self-adjoint operator T acting

on the Hilbert space HA as an element of the Banach space � of the trace-class

operators, with the norm is de�ned as:

||T || = tr[
√
TT †] = tr[

√
T 2] (3.40)

We know that, amongst these operators, the physical density matrices are the opera-

tors ρA which are also positive-semide�nite and with tr(ρA) = 1, so that ||ρA|| = 1;

we indicate this subspace of � with the symbol �+
1.

So then, to look for dynamic maps we can focus our attention on the dual space �∗

composed by all the possible linear applications of the kind ♣(�)→ �.

This space is a Banach space too, with the induced norm:

||♣|| = sup x∈�
||x||6=0

||♣(x)||
x

= sup x∈�
||x||=1

||♣(x)|| (3.41)

36



In particular we are interested in the ones that send the subspace �+
1 into itself;

indeed these ones preserve the physics of the system, as a UMD has to do. Before

introducing the main theorem that enforces this requirement, we recall the de�nition

of a contraction on a Banach space.

De�nition 3.1 (contraction). A linear operator ♣ on a Banach space �, is said to

be a contraction if:

||♣(x)|| ≤ ||x|| ∀x ∈ � (3.42)

Then we can present the important theorem:

Theorem 3.2.4. A linear map ♣ ∈ �∗ leaves invariant �+
1 if and only if it pre-

serves the trace and is a contraction on �, so that

||♣|| ≤ 1. (3.43)

Proof. If ♣ ∈ �
∗ leaves invariant �+

1, it means that it conserves the trace of its

arguments. Moreover, from the de�nition of the trace norm (3.40), we can write:

||♣(x)|| = ||x|| ∀x|x is positive ∈ � (3.44)

that proves that, for the positive operators, ♣ is a contraction. To prove de�nitively

the �rst implication of the theorem we have now to consider the action of ♣ on neg-

ative operators. Anyone of these operators, that we call σ, can be always described

by:

σ = σ+ − σ− (3.45)

where we have: σ+ =
∑

i λi |ψi〉 〈ψi| with λi ≥ 0

σ− = −
∑

j λj |ψj〉 〈ψj| with λj < 0
(3.46)

{|ψα〉}α=i+j is an orthogonal basis for the Hilbert space HA considered for the de�-

nition of �.

We note that both the operators σ+ and σ− are positive de�ned. Moreover, because

of the de�nition of the norm trace and the orthogonality of {|ψα〉}α we obtain:

||σ|| =
∑
α

|λα| = ||σ+||+ ||σ−|| (3.47)

and these considerations allow us to achieve the following result:

||♣(σ)|| = ||♣(σ+ − σ−)|| ≤ ♣(||σ+||) +♣(||σ−||) = ||σ+||+ ||σ−|| = ||σ|| (3.48)

that reproduces the de�nition of a contraction. Then we have proved the �rst

implication of the theorem.

Conversely, if we assume that ♣ is a contraction and preserves the trace, then for

ρ ∈ �+
1 we have the following chain of inequalities:

||ρ|| = tr(ρ) = tr(♣(ρ)) ≤ ||♣(ρ)|| ≤ ||ρ|| (3.49)
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So it follows that the inequalities become equalities : ||♣(ρ)|| = ||ρ|| = tr(♣(ρ)) =

||♣(ρ)||. Since ρ ∈ �+
1 if and only if ||ρ|| = tr(ρ) = 1, the last equality implies that

♣(ρ) ∈ �+
1 for any ρ ∈ �+

1.

Inverse of a UDM

Another important question that one can ask about UDMs is the following: is that

kind of time evolution reversible ? We are wondering if, given an UDM like ♣(t1,t0) is

it always possible to �nd another UDM ♣(t0,t1) of the same physical system A such

that:

♣(t1,t0)♣(t0,t1) = ♣(t1,t0)♣(t1,t0)
−1 = 1A (3.50)

The answer of such a doubt is provided by the following theorem:

Theorem 3.2.5. If ♣(t1,t0) is an UDM, then it can be inverted by another UDM if

and only if it is unitary.

Proof. To start the demonstration we recall what we have said in the previous sec-

tion: any UDM has to be a contraction on the Banach space of trace-class operators

de�ned over the Hilbert space HA. So, given ♣(t1,t0), if it really exists its inverse, we

must have:

||σ|| = ||♣(t1,t0)
−1♣(t1,t0)(σ)|| ≤ ||♣(t1,t0)(σ)|| ≤ ||σ|| (3.51)

where σ is a generic element ∈ �.
As we can see from this chain of inequalities , it follows that, for any invertible UDM

one �nds:

||♣(t1,t0)(σ)|| = ||σ|| (3.52)

From this condition it is easy to prove also that an invertible UDM must transform

pure matrices in pure matrices. Suppose that |ψ〉 〈ψ| is a pure density operator and

♣(t1,t0)(|ψ〉 〈ψ|) is not. Then it is always possible to write ♣(t1,t0)(|ψ〉 〈ψ|) as a convex
combination of pure matrices:

♣(t1,t0)(|ψ〉 〈ψ|) = p ρ1 + (1− p)ρ2 (3.53)

but then considering the inverse of the above expression, we would get:

|ψ〉 〈ψ| = p ♣(t1,t0)
−1(ρ1) + (1− p)♣(t1,t0)

−1(ρ2) (3.54)

Since ♣(t1,t0) is considered to be a bijective operator and ρ1 and ρ2 are pure, we

would have ♣(t1,t0)
−1(ρ1) 6= ♣(t1,t0)

−1(ρ2) and then we would reach an expression of

the pure density operator |ψ〉 〈ψ| as a convex combination of other density matrices.

We know that this situation is unacceptable. So the hypothesis we have made is

wrong, and pure matrices are always sent in other pure ones by an invertible UDM.

Now we take a speci�c expression of an element σ of �:

σ =
1

2
(|ψ1〉 〈ψ1| − |ψ2〉 〈ψ2|) (3.55)
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where |ψ1〉 〈ψ1| and |ψ2〉 〈ψ2| are two arbitrary pure density operators.

Because we have just proved that the invertible ♣(t1,t0) transforms pure operators in

pure ones, we can write:

♣(t1,t0)(σ) = ♣(t1,t0)[
1

2
(|ψ1〉 〈ψ1| − |ψ2〉 〈ψ2|)] =

1

2
( ˜|ψ1〉 ˜〈ψ1| − ˜|ψ2〉 ˜〈ψ2|) (3.56)

where ˜|ψ1〉 ˜〈ψ1| = ♣(t1,t0)(|ψ1〉 〈ψ1|) and ˜|ψ2〉 ˜〈ψ2| = ♣(t1,t0)(|ψ2〉 〈ψ2|) are two pure

density operators too.

The eigenvalues equation for σ reads:

σ(α |ψ1〉+ β |ψ2〉) = λ(α |ψ1〉+ β |ψ2〉) (3.57)

where α and β are generic complex coe�cients.

Replacing σ with the expression of (3.55) and projecting this last equation into the

two subspaces spanned by |ψ1〉 and |ψ2〉 we get respectively :λ = +1
2

√
1− | 〈ψ2|ψ1〉 |2

λ = −1
2

√
1− | 〈ψ2|ψ1〉 |2

(3.58)

At this point it is immediate to calculate the trace norm of this operator:

||σ|| =
∑
i

|λi| =
√

1− | 〈ψ2|ψ1〉 |2 (3.59)

Thus, using equation (3.52), valid for any element of �, we get:

||♣(t1,t0)(σ)|| =
√

1− | 〈ψ̃2|ψ̃1〉 |2 = ||σ|| =
√

1− | 〈ψ2|ψ1〉 |2 (3.60)

Therefore:

| 〈ψ̃2|ψ̃1〉 | = | 〈ψ2|ψ1〉 | (3.61)

Finally, exploiting the Wigner's theorem [2], we can a�rm that a transformation

that satis�es the above condition must be of the form:

♣(t1,t0)(σ) = V σV † (3.62)

where V has to be a unitary or anti-unitary operator. Because the anti-unitary case

is incompatible with the complete positive condition, only the unitary one remains.

Extending this type of demonstration to a σ composed by more than two pure

density matrices is really straightforward, and requires the same treatment.

Anyway, the exclusive use of unitary UDM is really unnecessary; the reversible

maps represent indeed the most conventional type of evolution, and often the most

interesting and realistic properties are involved when one considers the not unitary

case.
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3.2.3 POVM as a UDM

The last property we presented allows us to connect the concepts of POVM and

UDM. As we have seen, these two mathematical instruments become necessary in

the study of open systems. We start by considering the time evolution of the state

|ψA〉 included in an initial state |ψA〉 ⊗ |φB〉 of the open system A+B:

|ψA〉 |φB〉→t

∑
α

Kα |ψA〉 |αB〉 (3.63)

where {|αB〉}α is an orthonormal basis of the subsystem B and the {Kα}α are the

Kraus operators governing the transformations of density matrices for the subsystem

A in such a unitary evolution of the whole system.

This is a correct way of writing an evolution for the states of subsystem A. Indeed,

replacing here the expression of the {Kα}α of equation (3.29), (we know, by means

of theorem 3.2.3, that (3.29) is the right de�nition for the Kraus operators of any

UDM) we obtain:

|ψA〉 |φB〉→t

∑
α

〈αB|
(
UAB(t1, t0)[|φB〉 ⊗ |ψA〉]

)
|αB〉

= trB

(
UAB(t1, t0)[|φB〉 ⊗ |ψA〉]

) (3.64)

Thus, once we reach the state (3.63) , we can perform an orthogonal measure onto

the basis {|αB〉} on the system B. From this measure, we can get the outcome α

with probability p(α) :

p(α) = 〈ψA| (Kα
†Kα) |ψA〉 (3.65)

and this last equation can be rearranged in the form:

p(α) = trA(AαρA) (3.66)

where ρA = |ψA〉 〈ψA| and Aα = Kα
†Kα.

We can now note that from the de�nition of the {Kα}α it follows that the {Aα}α
do not necessarily commute for di�erent values of α. Therefore, equation (3.66)

could be the result of a POVM, as we can see comparing the latter with equation

(2.4). Indeed, the {Aα}'s are evidently positive, and the necessary condition for a

POVM: ∑
α

Aα = 1A (3.67)

is provided by the Kraus normalization condition:∑
α

Kα
†Kα = 1A (3.68)

So, we have just realized a POVM that, according with the equation (2.11) of

chapter 2, can modify the starting density matrix ρA once that the measurement is
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performed, in the following way:

ρA
→

measuring ρAPOVM =
∑
α

√
AαρA

√
Aα (3.69)

but the transformation above of the density matrix ρA is really the same that we

could reach with the help of Kraus operators {Kα}α :

ρA
→

time evolving ♣(t0,t)(ρA) =
∑
α

Kα(t0, t)ρAKα
†(t0, t) (3.70)

Therefore, at the end we can claim that every POVM has a unitary representation,

which means that one can always obtain the POVM on the subsystem A by making

evolve in time the whole system with a unitary evolution and then performing an

orthogonal measurement on B. We can summarize the previous statement saying

that, as we can directly see from (3.69) and (3.70), the act of a POVM on A

always corresponds to the evolution ruled by a certain UDM on this subsystem.

3.3 Lindblad equation

At this point we know a lot of details about time evolution of density matrices in

open systems; but a key question is still unresolved: is it possible to formalize this

evolution with the help of a di�erential equation? What is the form of such di�eren-

tial equation? Trying to answer to these questions brings out some critical problems

hidden inside the mathematical structure and de�nition of UDMs. We know that,

between two time coordinates t2 ≥ t1 , while the whole system is transforming in

a usual unitary way, the starting density matrix ρA(t1) of the subsystem A evolves

as:

ρA(t2) = ♣(t2,t1)(ρA(t1)) =
∑
α

Kα(t2, t1)ρA(t1)K
†
α(t2, t1) (3.71)

and we have also just learned, by means of theorem (3.2.3), that this type of

evolution is granted only if, at initial time t1, the density operator of the whole

system A+B is in the form of a tensor product like:

ρAB(t1) = ρA(t1)⊗ ρB(t1) (3.72)

where ρB(t1) is �xed for any possible ρA(t1).

Up to here, there is no evidence of a problem. Nevertheless, looking more care-

fully at the process of evolution, one may ask himself: what happens if the state of

the system at time t1 is the result of another, previous, evolution started at t0 ≤ t1?

That is the most appropriate doubt that may come out when one is trying to de-

scribe correctly time evolution. If this hypothesis is true, and we think that also the

�rst evolution was ruled by an UDM, then we have to assume, in the same way as

41



we have done before, that ρAB(t0) was in the form of equation (3.72).

Therefore we have to write, for the density operator of the whole system at time t1:

ρAB(t1) = U(t1, t0)ρAB(t0)U
†(t1, t0) = U(t1, t0)

[
ρA(t0)⊗ρB(t0)

]
U †(t1, t0) (3.73)

and so emerges clearly the problem: from the above equation there is no warranty

for this last density operator at time t1 to be in the correct form of (3.72). Thus,

at this time, it falls the main requirement of theorem (3.2.3). This fact means that,

starting from an UDM type of evolution (on our example, t0 → t1), in general, is

not always permitted to perform another one immediately consecutive ( t1 → t2).

Notice that, instead, what is always allowed is the direct evolution from t0 → t2,

governed by an unique UDM ♣(t2,t0); indeed, for this type of evolution, the initial

condition (3.72) is fully satis�ed.

Therefore, as a di�erence with the dynamics of isolated systems, it is clear that

these di�culties arising from the continuity of time for UDMs makes impossible to

formulate the general dynamics of open quantum systems by means of di�erential

equations which generate families of UDMs. That was the mathematical explana-

tion, but it is possible to justify the arising of these troubles also in a more physical,

intuitive and informal way. Moreover, spending some words on this argument can

be really instructive to understand also the formal solution that we will adopt to

solve these problems. In fact we can claim that at the origin of the problem is

the fact that the two subsystems develop correlations ρcorr during the evolution.

The key point is that, di�erently from what happens in isolated systems, where the

Shrödinger equation needs only the initial condition to be solved, here, the environ-

ment (or, equivalently, the other system B) retains a memory of informations for a

while, and can transfer it back to subsystem A. This implies the leak of linearity

and the impossibility of �nd a general equation.

Anyway, to untie these delicate and overwhelming complications, we can make a

reasonable approximation, that allows us to manage and control the general dy-

namic in a linear and useful way. Once that we have understood the root of the

problem, we can �x it assuming that the memory of the environment is su�ciently

short to forget all the past informations before they can �ow again into the dynamic.

Heuristically, we are limiting ρcorr to be insigni�cant at any time of the evolution.

Mathematically speaking, this assumption goes under the name of Markovian evo-

lution. A more detailed and formal treatment of this argument can be found in the

appendix , at the end of this work. Anyway, if we embrace this approximation, we

recover the composition law for the UDM:

♣(t2,t0) = ♣(t2,t1)♣(t1,t0) ∀t2 ≥ t1 ≥ t0 (3.74)

and this condition directly leads us to the possibility of determining the ♣(t,t′) by

resolving a di�erential equation, often called master equation.
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The derivation of such an equation that we present on this section is more physical;

a more mathematical approach is given in the appendix.

So we start considering a UDM-evolution of a density matrix ρ expressed in its

Kraus decomposition:

ρ(t) =
∑
α

Kα(t)ρ(0)K†α(t) (3.75)

Now we consider only the �rst order,that means:

ρ(t) = ρ(0) +O(dt) (3.76)

Then, looking at equation (3.75), we can try to make a useful choice of the Kraus

operators that satisfy the above equality. We notice that the following assumptions:

K0 ≡ 1 + (−iH +R)dt

Kα ≡
√
dtLα with α > 0

(3.77)

where R and H (that is the canonical Hamiltonian of the system considered) are

both Hermitian operators, are a perfect consistent choices.

We see that the operator R is completely determined by the Kraus normalization

condition; indeed, with this choice of Kraus operators we get:

1 =
∑
α

Kα(t)K†α(t) = 1 + dt
(
2R+

∑
α>0

L†αLα
)
∀t (3.78)

and then :

R = −1

2

∑
α>0

L†αLα (3.79)

at this point we can substitute this expression of the Kraus operators into equation

(3.75) and, by writing ρ(t) = ρ(0) + ρ̇dt , we can identify the derivate in time of

the density matrix evolution with:

ρ̇ ≡ Lt(ρ) = −i[H ,ρ] +
∑
α>0

(
LαρL

†
α −

1

2
{L†αLα,ρ}

)
(3.80)

This is the master equation of the dynamic, and the symbol Lt is called Linbladian.

Looking at the equation it is fairly clear that tr(Lt)(ρ) = 0, so that the trace of

the density operators is always preserved. The complete positivity is less evident,

but it follows directly from the Kraus representation that has led to the �nal ex-

pression. Thus, the process described by this master equation correctly transforms

density matrices in density matrices, and it expresses a UDM. We can try to en-

ter a bit more deeply into the physical meaning of this master equation. The �rst

term, −i[H ,ρ] expresses the canonical unitary evolution of operators, completely

described by the initial condition ρ and by the Hamiltonian of the system involved.

So, the presence of all the other terms that we �nd in the sum depends directly

from the interaction that our subsystem develops with the environment during the

evolution. In particular, each contribution LαρL
†
α represents the probability that
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occurs a quantum jump that leads the environment from the initial �xed state to the

state |α〉 of a certain orthonormal basis. These operators, Lα, that here are time-

independent because of our cutting o� at the �rst order, are often called Lindblad

operators. Notice that here it is crucial to assume the Markovian approximation,

that makes sure that this probability is proportional to dt, so that it can increase

linearly in time. The �nal term 1
2
{L†αLα,ρ} is needed to keep satis�ed the normal-

ization condition in case of no quantum jumps occurs in the environment.

Commonly , a family of UDMs that satis�es the Markovian requirement in the

form of equation (3.74) is called a Quantum Dynamical Semigroup. The formal

de�nition is:

De�nition 3.2 (Quantum Dynamical Semigroup). A Quantum Dynamical Semi-

group is a family of linear maps {♣t, t ≥ 0} such that:

1. ♣t is a UDM

2. ♣s ◦ ♣t = ♣t+s

3. Tr[♣t(ρ)A] is a continuous function of t for any density matrix ρ of the system

(without the environment) and for any hermitian and bounded operator A

de�ned on the Hilbert space of the system.

Finally, now that we have presented some of the fundamentals properties of open

systems, concerning measuring and time evolution, in the following sections we will

apply this treatment to concrete cases, the world of 2x2 and 3x3 density operators

, trying to individuate the correct and explicit expressions of the Kraus decomposi-

tion and the Lindbladian for this type of systems.

Nevertheless, before we can analyzing the concrete examples, we have to present

some of the geometric implications that the universe of open systems induces. In-

deed, observing by a geometrical point of view, it is possible to formalize the spaces

of density matrices in a really instructive way, that, characterizing the possible orbits

of the dynamics, could shed light on the deeper meanings and distinctions between

unitary and open evolutions.
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Chapter 4

Geometrical approach

Before getting into the discussion, we premise that this geometric overture, on our

purpose, has the goal of clarify some features that will be used to study the concrete

examples in the next following sections. Thus, the attention of the reader is directed

towards the most important results about the description of the orbits, and the most

formal mathematical details, as well as the demonstrations of the theorems, are here

omitted, in order to simplify the presentation. A more detailed description of these

arguments can be found in [8].

4.1 Projective Hilbert space

We begin to discuss what are the geometrical consequences of working with equiva-

lence classes on a Hilbert space, not with vectors, which means working with rays.

When we do that, we are considering the Projective Hilbert space.

In the following, we will work with �nite dimensional Hilbert spaces, which are

enough for our future discussions.

De�nition 4.1 (Projective Hilbert space). The Projective Hilbert space is de�ned

as:

P(H) = {[|Ψ〉] : |Ψ〉 , |Φ〉 ∈ [|Ψ〉]⇔ |Ψ〉 = λ |Φ〉 ; |Ψ〉 , |Φ〉 ∈ H0, λ ∈ C0} (4.1)

where C0 is de�ned as C− {0}.

This mathematical object is obtained starting from an Hilbert space H of dimen-

sions n, quotienting it by the two multiplication operations, respectively by a norm

of a complex number and by a phase, so that to implement the equivalence of the

states belonging to the same ray. The procedure can be schematically illustrated in
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the following way:

R+ −−−→ H0 = H − {~0}y
U(1) −−−→ S2n−1y

P(H)

With this de�nition, the original Hilbert space gains a structure of a principal �ber

bundle, with P(H) as a base space, and a typical �ber C0 = U(1)× R+ .

De�nition 4.2 (Principal �ber bundle). A principle �ber bundle is composed by:

1. a t-dimensional manifold T , called total space.

2. an m-dimensional manifold M , called base space.

3. a map π : T →M , called projection, such that π is a surjective and continuous

function.

4. a topological space F , called typical �ber, such that F is omeomorphic to all

the spaces π−1(m),∀m ∈M , that are called �bers.

The base can also be part of the total space, i.e T = M ×N , and the latter is

an important particular case of principle �ber.

The Hermitian structure of H allows the association of the equivalence class [|Ψ〉]
with the rank-one projector de�ned in the previous sections.

4.2 Kähler Manifold

This new framework carries the sca�olding of Quantum mechanics from the usual

Hilbert space, that was a linear vector space, to a new geometric context that is

no more linear, because is described by manifolds. Then, it becomes necessary to

update all the Quantum quantities to a tensorial formulation. Even if this work has

not the purpose of study all the details of this updating process, there is a concept

we really need to de�ne.

De�nition 4.3 (Kähler Manifold). Let K be a real, even dimensional, manifold on

which we de�ne a complex structure.

A complex structure J on a manifold is a map on the tangent bundle TK such that:

J : TK → TK; J0(v) ≡ iv ∀v ∈ TK (4.2)
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so that :

J2 = −1n (4.3)

Then, let ω be a closed two-form, called symplectic form, satisfying the compatibility

condition:

ω(x, Jy) + ω(Jx, y) = 0; ∀x, y ∈ TK (4.4)

We notice that, starting from this two-form, we can de�ne another one, that we call

g :

g(x, y) ≡ ω(x, Jy) → ω(x, y) = −g(x, Jy) ∀x, y ∈ TK (4.5)

It is easy to see that g is symmetric and, i� ω is non-degenerate, also g is. Thus, in

this case, g represents a metric for TK.

The analog of equation (4.4) for g becomes:

g(x, Jy) + g(Jx, y) = 0; ∀x, y ∈ TK (4.6)

Also , J2 = −1n implies:

ω(Jx, Jy) = ω(Jx, y); g(Jx, Jy) = g(x, y) ∀x, y ∈ TK (4.7)

A tensorial triple (g, J, ω) , with g a metric, that satis�es the above requirements,

is said an admissible triple.

Finally, we can a�rm that K is a Käler Manifold if it admits an admissible triple

with a positive metric.

We have introduced this notion because it is possible to show that the space

of pure density matrices, as well as the unitary orbits of each mixed matrix, are

Kähler Manifold. Physically speaking, the Kähler manifold is the perfect setting in

which one can operate, because of the possibility of de�ning a metrical vector space

and a symplectic structure, from which can follow the de�nition of an Hamiltonian

function and, consequently, the birth of a sensible physical system. Therefore, what

we will do in the following sections of this chapter is to construct the conditions

to a�rm that the spaces of density matrices, pure or mixed ones, as well as their

unitary orbits, present this type of structure.

4.3 Reali�cation of the Hilbert space

We want now to study a procedure that allows to transform the original Hilbert space

of n dimension into a 2n vector space that admits a structure of Kähler manifold.

This procedure is ofter called reali�cation , and the vector space obtained, H<, that

is also a Kähler manifold, is called the reali�ed of H.

The latter is a real vector space that coincides with H as a group, (Abelian group

under addition) but in which only multiplication by real scalars is allowed. Skipping

the formalities, we can say that, if we choose a basis on H ' Cn, like {~e1, ~e2, ..., ~en}
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the corresponding basis in H< becomes: {~e1, ~e2, ..., ~en, i~e1, i~e2, ..., i ~en} and so H '
R2n.

Once the basis is chosen, the reali�cation of a generic vector in H is given by:

~x = (uk + ivk)~ek ∈ H → ~y = (u1, u2, .., un, v1, v2, .., vn) ∈ H< (4.8)

Of course, this transformation involves also all the observables and operators. Brie�y,

we can say that if , chosen a basis, a generic Hermitian operator A acting on H can

be represented as:

A = α + iβ (4.9)

where α and β are real n × n matrices; then we can present the corresponding

reali�ed operator A< as the 2n× 2n matrix:

A< =

(
α −β
β α

)
(4.10)

The properties (A+B)< = A< +B< and (AB)< = A<B< can be easily checked,

so that the set of all the linear operators that are reali�cations of complex operators

on H is both a subspace of the vector space of all the linear operators on H< as well

as a subalgebra of the associative algebra GL(2n,<).

Finally, the operation of multiplication by the imaginary unit on H is interpreted

by the linear operator J , whose representation in any basis of H< is:

J =

(
0n×n −1n×n

1n×n 0n×n

)
(4.11)

with the property:

J2 = −12n (4.12)

The choice of this particular letter to symbolize this operator is not casual, in fact it

establishes a complex structure on H<, considered as a manifold. Making an explicit

choice of coordinates, such that two generic vectors of H becomes: ~x = (u, v) and

~y = (u′, v′), we can operatively introduce the quantities:

g(x, y) = uu′ + vv′ and ω(x, y) = uv′ − vu′ (4.13)

The two corresponding di�erential forms, g and ω, together with the already dis-

cussed complex structure, constitute an admissible triple for H<, with a positive

metric.

4.4 Geometry of pure states

Operating, as we said, in the projective Hilbert space, in this section we want to

understand what are the properties of the space just composed by the pure density

matrices and their unitary orbits. In the previous chapters we have de�ned a pure
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density matrix as a ray, that could be associated with a rank-one projector, like

|ψ〉 〈ψ|. Now, we need a way to characterize the set of these projectors with all their

unitary orbits , that will be the space of pure density matrices. To give a geometrical

description to the latter, we have to �nd a way to portray the unitary evolution, so

we want to de�ne the co-adjoint action of unitary group U(n). We start recalling

the de�nition of the Lie algebra u(n) :

De�nition 4.4. The Lie algebra of U(n) can be de�ned as u(n) := TeU(n), that

is the tangent space to U(n) at the identity e ∈ U(n), equipped with a bilinear

operation [·, ·] : u(n) × u(n) → u(n), called Lie bracket that satis�es the following

axioms:

� Alternativity:

[x, x] = 0 ∀x ∈ u(n)

� Jacobi identity:

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 ∀x, y, z ∈ u(n)

From this de�nition we immediately note that the dimension of u(n) is the same

of U(n).

We now present a useful connection between u(n) and U(n) , claiming that, for every

element U ∈ U(n), it is always possible to write:

U = eu for some u ∈ u(n); (4.14)

more details in theory of Lie groups , Lie algebras and their representations can be

found in [14]. Therefore because any element U ∈ U(n) acting on a Hilbert space

is a unitary operator , from the equation above it follows that every element of the

Lie algebra u(n) has to be anti-Hermitian.

We can now de�ne the adjoint action of the group as the map:

De�nition 4.5 (Adjoint action of U(n)).

Ad :u(n)→ u(n)

Ad(T ) ≡ UTU †
(4.15)

where U ∈ U(n) and T ∈ u(n) .

The co-adjoint action of U(n) is the same concept, considered from the starting

point of the dual space of the Lie algebra, u(n)∗. This dual space represents the

space of all the n-dimensional Hermitian operators, thus the co-adjoint action, that

is the geometrical transposition of the concept of an unitary evolution, is the main

object of our interest. Moreover, the adjoint action, as well as the co-adjoint action
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of U(n), because of the properties of the group, are actions that preserve the metric

and the symplectic form, so that the triple and the Kähler structure remain valid.

According to the pairing of spaces and dual spaces, between u(n) and u(n)∗ there is an

isomorphisfm mediated by a scalar product that connects anti-Hermitian operators

with Hermitian ones:

〈A, T 〉 =
i

2
Tr(AT ) ∀A ∈ u(n)∗, T ∈ u(n)

u(n) 3 T −→
iso

iT ∈ u(n)∗
(4.16)

With this isomorphisfm, it is easy to check that also u(n)∗ is a Lie algebra, and

that the co-adjoint action of the U(n) group can be de�ned in the same way of the

adjoint one:

De�nition 4.6 (Co-adjoint action of U(n)).

CoAd :u(n)∗ → u(n)∗

CoAd(T ) ≡ UTU †
(4.17)

where U ∈ U(n) and T ∈ u(n)∗ .

So, now that we know how to operate for implementing the concept of unitary

evolution, we want to operate with the co-adjoint action of U(n) over the set of

projectors of rank one, that we denote by W(H)1 = {|x〉 〈x| | |x〉 ∈ H − {~0}}.
The co-adjoint action over W(H)1 foliates the latter into the spaces:

Wr
1 = {|x〉 〈x| | 〈x|x〉 = r, |x〉 ∈ H − {~0}} (4.18)

one for each possible value of the norm r.

This result is completely consistent, because we know that a unitary transformation

does not change the norm of vectors.

Then, at the end, if we want to consider just the space of pure density matrices,

inclusive of all their unitary orbits, we only have to put r = 1 and we get the space:

W1
1.

At this �nal point, de�ning the correct tensorial quantities that could build up the

appropriate admissible triple, is possible to demonstrate this last theorem, that here

we just limit to present :

Theorem 4.4.1. The space of pure states W1
1 is a Kähler manifold.

The prove of the latter can be found in [8].

In particular, the Kähler structure of W1
1 comes from the structure of the reali�ca-

tion H< of the original Hilbert space H.
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4.5 Geometry of mixed states

Our goal in this section is to extend the treatment we have used for pure states to

mixed ones. As we will see, the procedure is here much trickier.

We start by introducing the space of non-negatively de�ned operators P(H)n:

P(H)n = {ρ|ρ = TT † T ∈ gl(H)} (4.19)

where the subscript n represents the dimension of H.

We note that: ρ ∈ P(H)n → ρ ∈ u(H)∗.

From this de�nition, we can separate the spaces of mixed matrices with the same

rank. That means de�ning:

P(H)n
k = {ρ|ρ = TT †, Rank(ρ) = k, T ∈ gl(H)} (4.20)

Adding to these de�nition the condition on the trace gives back the corresponding

spaces for density matrices:

D(H)n = {ρ|ρ ∈ P(H)n|Tr(ρ) = 1} and D(H)n
k = {ρ|ρ ∈ P(H)n

k |Tr(ρ) = 1}
(4.21)

Notice that the space of density matrices D(H)n is a convex cone in u(H)∗. In

fact, every matrix in D(H)n can be written as a convex combination of pure states,

then the pure states are the extreme points of D(H)n. The details about these

considerations can be founded in [1].

As we have done for the space of pure states, we now report a theorem that clari�es

the geometrical nature of these spaces D(H)n
k for each possible value of k ≤ n:

Theorem 4.5.1. The spaces D(H)n
k of density states of rank k ≤ n are smooth

and connected submanifolds in u(H)∗. Moreover the strati�cation into submanifolds

of D(H)n
k is maximal; i.e. every smooth curve in the space of Hermitian matrices

which lies entirely in D(H)n is such that:

γ(t) ∈ D(H)n
k → γ(t) ∈ Tγ(t)D(H)n

k (4.22)

The interested reader can �nd the demonstration in [6].

Now that we have understood the properties of the starting spaces, we need a feature

to characterize the unitary orbits that arise from these spaces, and that is the

purpose of the next two fundamental theorems:

Theorem 4.5.2. Let ρ1 and ρ2 two density matrices on H ' Cn , then ρ1 and ρ2 are

unitarly equivalent ( i.e. ρ2 = Uρ1U
† for some unitary matrix U) if and only if ρ1

and ρ2 have the same spectrum; that is the same eigenvalues including multiplicity.

Moreover we have: Tr[(ρ2)
r] = Tr[(ρ1)

r] ∀r = 1, 2, ..., n

This theorem has a really deep implication. In fact this statement means that

every unitary orbit can be identi�ed by a unique diagonal matrix like:

ρrappresentative = diag(λ11n1×n1 , λ21n2×n2 , ..., λr1nr×nr) (4.23)
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where a particular criterion of ordering is chosen to dispose the eigenvalues on the

diagonal, so as to remove any ambiguity.

Therefore, all the possible orbits are distinguished by the possible values of these

eigenvalues, that, as we already know, have to satisfy the constraints : λi ∈ [0, 1] ∀i =

1, 2, .., r and
∑r

i λi = 1. Anyhow, there is still an in�nity of possible combinations,

so that we can conclude that U(n) partitions the set D(H)n into in�nite (an un-

countable) family of orbits or strata.

The second theorem that we present clari�es the dimensions and the nature of these

strata, and it will be essential later for our studies about concrete examples of 2x2

and 3x3 density matrices.

Theorem 4.5.3. Let U(n) act on D(H)n by the co-adjoint action and let ρ a den-

sity matrix with r ≥ 1 eigenvalues λi with multiplicity ni ; then the orbit of ρ is

homeomorphic to the manifold:

U(n)/[U(n1)× U(n2)× × U(nr)] (4.24)

of real dimension n2 −
∑r

i ni
2.

As consequence of this last theorem we have for the orbit of a pure matrix of a

n-level quantum system:

U(n)/[U(1)× U(n− 1)] = D(H)n
1 =W(H)1

1 (4.25)

as we expected.

The last remaining question to clarify is if these strata could be considered as valid

physical settings, that means, if they admit a structure of Kähler manifold.

As we expected, the answer to this question is a�rmative, and a complete prove can

be found in [8] . We just present the result, the �nal theorem that concludes this

chapter .

Theorem 4.5.4. For the orbit Oρ of every density matrix ρ ∈ D(H)n
k with k ≤ n,

is always possible to �nd an admissible triple (JOρ , ηOρ , γOρ) such that Oρ is a Kähler

manifold.

We can now �nally translate the theoretical structure examined up to here in a

practical example: the density matrices 2x2, related to two level quantum systems,

or Q-bits.

4.6 Q-bits

Because we know from the last section that each unitary orbit can be identi�ed with

a representative diagonal density matrix, we can always report a generic 2x2 density
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matrix at his unitarly equivalent form:

ρ =

(
p0 0

0 1− p0

)
(4.26)

Where p0 is a probability, so that 0 ≤ p0 ≤ 1.

4.6.1 The Bloch sphere

The �rst issue we need to deepen the argument is a tool to represent these matrices in

a more useful way, the so called Bloch Sphere. We know that a generic 2x2 matrix

can always be expressed as a combination of the Pauli matrices and the identity

matrix. The representation that we will use is the following:

ρ(~R) =
1

2
(12 +R1σ1 +R2σ2 +R3σ3) (4.27)

that in a matrix form becomes:

ρ(~R) =
1

2

(
1 +R3 R1 − iR2

R1 + iR2 1−R3

)
(4.28)

In this way we have established a connection between the <3 vectors ~R = (R1, R2, R3),

usually called Bloch vectors and the density matrices for Q-bits. The explicit form

of this connection is:

Ri = Tr(σiρ(~R)) (4.29)

To make the latter physically consistent we have to impose the positivity of ma-

trix (4.28), so that:

detρ(~R) ≥ 0→ 1

4
(1− |~R|2)→ |~R|2 ≤ 1 (4.30)

This condition is really su�cient to satisfy the positivity request, because the possi-

bility of two negative eigenvalues is excluded by the constraint tr[ρ(~R)] = 1. Then,

we have limited the possible region of this biunique connection to a unit 3-ball on

<3 , that is traditionally called Bloch sphere, even if it is actually a ball. The edge

of this ball, given by the condition detρ(~R) = 0 → |~R|2 = 1 consists of the 2x2

density matrices with one eigenvalue equal to zero and the other equal to one, that

are the pure states. Therefore the edge corresponds to the spaceW(H)1
1 previously

de�ned in section 4.4.

Another interesting area of this ball is the center. The center of the Bloch Sphere
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is, by de�nition, given by ~R = (0, 0, 0) so that detρ(~0) = 1
4
. Applying the notation

used in the equation (4.26) and the trace one condition we get:

p0q0 =
1

4
and p0 + q0 = 1→ p0 = q0 =

1

2
(4.31)

Thus, the center of the Bloch Sphere corresponds to the density matrix:

ρ(~0) =

(
1
2

0

0 1
2

)
(4.32)

the latter is called the maximum entangled state that, being proportional to the

identity matrix, is invariant under the change of basis de�ned by the adjoint action

of an unitary matrix U , hence it is a �xed point of the co-adjoint action.

Choosing the particular basis {|0〉 , |1〉} we can identify the pure state , ρ0, corre-

sponding to the 3-vector ~Rρ0 = (0, 0, 1) ≡ P0 as the matrix:

ρ0 =

(
1 0

0 0

)
(4.33)

and then, to clarify what we have said up to here , we can represent the Bloch sphere

in �g. 4.1.

Figure 4.1: Bloch sphere with the maximum entangled state and the pure state ρ0. The coloration

has just an aesthetic purpose.

4.6.2 Unitary evolution on the Bloch sphere

Now that we have got a way to clearly visualize the density matrices we can analyze

the time evolution observing the paths on the Bloch sphere. As we know, concerning

these quantum objects, there are two di�erent types of possible evolutions, the uni-

tary and the open one. Starting just considering the unitary one, we can apply the
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important notions coming from the theorem (4.5.3) to categorize all the possible

unitary obits.

Because the distinct eigenvalues p0 and p0−1 are at maximum two, we have only

two distinct cases:

� p0 = 1
2

then the orbit is homeomorphic to:

U(2)/U(2)

so that the orbit has the dimension of a point, and concretely there is not an

evolution: the system keeps staying in the ME, blocked at the center of the

sphere.

� p0 6= 1
2

then we have an orbit homeomorphic to:

U(2)/[U(1)× U(1)] ∼ S2

Thus, interpreting the orbit of the �rst illustrated case as a 2-sphere of null ra-

dius, we can claim that all the orbits for the group U(2) are homeomorphic to a

2-sphere of �xed radius, concentric to the Bloch sphere. Furthermore, it is easy to

see that, varying the value of p0 from 0 to 1 we can reconstruct the full Bloch sphere.

Indeed, we know that co-adjoint action of the unitary group U(2) on our starting

density matrix ρ0 preserves the original determinant , and so, because of the men-

tioned connection between determinant and the modulus of 3-vectors on the Bloch

sphere, we immediately note that , starting any unitary evolution from a point of

the sphere with modulus R = |~R|, we will remain on a sphere centered on the origin

of the sphere and with radius R. Consequently, the set of all the unitary orbits, for

all the possible starting points inside the sphere, reconstructs the whole sphere.

By analogy with the considerations of section 4.5 the set composed by all the unitary

orbits excluding the edge of the Bloch sphere represents the space D(H)2
2 .

As we have done before, we graphically conclude this section showing in �g. 4.2

an example of the described unitary evolution on the Bloch sphere, where it has the

form of a rotation around the ME state, starting from the already considered point

P0.
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Figure 4.2: Unitary evolution of a pure state ρ0 on the Bloch sphere

The direction of the rotation depends on the particular unitary operator U used

to perform the evolution.

4.6.3 Open evolution on the Bloch sphere

More complicated than the unitary one, the open evolution has to be determined

trying to evaluate the correct UDM for the system. So, what we want to do is to

implement a time evolution that satis�es all the theoretical requests of UDMs that

we have showed in the previous chapter. What we know, from these properties, is

that the open evolutions1 connect pure states to mixed ones and so they are not

invertible. To make general this treatment we start from a generic initial state ρ(0)

of the form of the equation (4.26). Then we can imagine a general UDM ♣ that

operates in the following way:

ρ(0) =

(
p0 0

0 1− p0

)
−−−→
♣(t,t0)

ρ(t) =

(
p(t) 0

0 1− p(t)

)
(4.34)

where p(t) is a function of t that gives p(0) = p0 and that always satis�es 0 ≤ p(t) ≤ 1

in such a way that ρ(t) remains a density matrix at any time.

We now show one of the possible consequent choices of the Kraus operators, taken

from the thesis work in [8], where it has been used for solving the Lindblad equation.

This choice is the following:

1From now on, using this word in this context, we refer to the evolutions that are speci�cally not

unitary, just because the unitary ones has been already treated
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K1(t) =

√
1

2
+
e−t

2

(
1 0

0 1

)
; K2(t) =

√
1

2
− e−t

2

(
0 1

1 0

)
(4.35)

In fact, with straightforward calculation one can prove that:

K1
†(t)K1(t) +K2

†(t)K2(t) = 12 ∀t

K1(t)ρ0K1
†(t) +K2(t)ρ0K2

†(t) = ρ(t)
(4.36)

With this choice , the function p(t) introduced in the equation (4.34) becomes:

p(t) =
1

2
e−t(−1 + et + 2p0) =

1

2
+ e−t(p0 −

1

2
) (4.37)

It is now interesting looking at the Bloch vectors. Starting from the Bloch vector

corresponding to ρ(0) , ~R(0) = (0, 0, 2p0 − 1) , we get the Bloch vector at time t :

~R(t) = (0, 0, 2p(t)−1) and, comparing the modulus of these two di�erent <3 vectors

we note that, i� p0 6= 1
2
:

|~R(0)| = 2p0 − 1 > 2p(t)− 1 = e−t(−1 + et + 2p0)− 1 = |~R(t)| ∀t > 0 (4.38)

The latter is a really signi�cant inequality because it mathematically expresses the

irreversibility nature of this type of evolution. Indeed, increasing in time, the Bloch

vectors can only become nearer and nearer to the center of the sphere , never coming

back, converging to the ME state.

Anyway, with this parametrization of time t the ME state is only an asymptotic

state, as we can see from the following limit:

lim
t→∞

ρ(t) =

(
1
2

+ e−t(p0 − 1
2
) 0

0 1
2
− e−t(p0 − 1

2
)

)
=

(
1
2

0

0 1
2

)
(4.39)

Instead, if we think of starting from this �nal state, as we can see from the in-

equality (4.38) inserting the value p0 = 1
2
, we get |~R(t)| = 0 for any instant t, so

that there is no more evolution and the quantum system keeps staying in that �xed

state exactly like the unitary case.

Analyzing the evolution at di�erent times, that means evaluating the succession:

♣(t,0)(ρ(0)) = ρ(t),♣(t+ε,0)(ρ(0)) = ρ(t+ ε),ρ(t+ 2ε), . . . ,ρ(t+ nε) (4.40)
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where ε is a real number > 0 and n is an integer su�ciently big to get a sizable

number of points; we can draw the open evolution on the Bloch sphere as shown in

�g. 4.3.

Figure 4.3: Open evolution of a generic initial state P (0) on the Bloch sphere

Nevertheless, we have not considered yet the Markovian requirement. This inter-

pretation, as we have said before, is the one with more intuitive physical properties,

and it is the only one that allows to describe this open evolution with a Master

di�erential equation. The latter will allow us to analyze the general form of the

"derivative" ρ̇ ≡ Lt . Anyway, with a direct calculation one can see that the funda-

mental key at the heart of the Markovian approximation , in form of the following

equation:

♣(s,t)♣(t,0) = ♣(s,0) ∀s ≥ t ≥ 0 (4.41)

is satis�ed by the supposed time dependence of our open evolution, in fact:

♣(s,t) ◦ ♣(t,0) = ♣(s,t)(K1(t)ρ(0)K1
†(t) +K2(t)ρ(0)K2

†(t)) =

♣(s,t)

(
1
2
e−t (2p0 + et − 1) 0

0 1
2
e−t (−2p0 + et + 1)

)

=

(
1
2
e−s−t (2p0 + es+t − 1) 0

0 1
2
e−s−t (−2p0 + es+t + 1)

)
= ♣(s,0) ∀s ≥ t ≥ 0

(4.42)
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Graphically speaking, on the Bloch sphere, this means that the action of the com-

position of two consecutive open evolutions has the form shown in �g. 4.4

Figure 4.4: The starting point P (0) has p0 = 0.86 and we have considered t = 0.6 ,s = 2.4

We can also think of mixing open and unitary evolutions. The latter has relevant

di�erences depending on the order of the combination between the two evolutions.

Indeed, if we �rst perform the unitary evolution on a generic starting density matrix

ρ0 of the form of equation (4.26), and then the open evolution to the result, to be

consistent with the other inverted combination we need to modify the basis in which

the Kraus operators are written, just because , as we know, the unitary evolution

corresponds to a change of basis.

To prove this fact we show separately the two distinct cases and then we demonstrate

that they are equivalent.

� Open evolution before, unitary evolution after

For the open evolution we maintain the same Kraus operators previously de-

�ned in equation (4.35) ; for the unitary one, we use a generic unitary operator

U . So we have:

ρ1 = U(K1(t)ρ0K1
†(t) +K2(t)ρ0K2

†(t))U † = Uρ(t)U † (4.43)

� Unitary evolution before, open evolution after

As we said, we de�ne the changed Kraus operators:

K̃1(t) ≡ UK1(t)U † ; K̃2(t) ≡ UK2(t)U † (4.44)
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Thus, we perform the same unitary evolution on ρ0 , followed by an open

evolution ruled by the new Kraus operators :

ρ2 = K̃1(t)Uρ0U
†K̃1

†
(t) + K̃2(t)Uρ0U

†K̃2
†
(t) (4.45)

Replacing the de�nitions on the last equation it becomes clear that , only with these

prescriptions, the two di�erent procedures are equivalent, in fact we get:

ρ2 = U(K1(t)ρ0K1
†(t) +K2(t)ρ0K2

†(t))U †

= Uρ(t)U † = ρ1

(4.46)

We can now present in �g. 4.5 a graphic summary of these considerations on

the Bloch sphere, where the starting point is the same considered for the previous

picture:

Figure 4.5: The blue and the red lines represent the two equivalent types of composite evolutions.

At the end of these argumentations it is clear that, combining open and unitary

evolutions, it is always possible to reach any point of the Bloch sphere with the

modulus less then the modulus of the Bloch vector of the arbitrary starting point.

The latter give us the opportunity to construct in�nite patterns on the sphere, with

the only constraint to maintain the modulus of the Bloch vectors decreasing in time.

The last remaining question to deepen for the Q-bits case is the form of the

Lindbladian and the Lindblad operators for the open evolution. As we have done

in a previous chapter, we analyze the �rst order in time, for an in�nitesimal time

variation dt:

ρ(dt) =

(
1
2

+ e−dt(p0 − 1
2
) 0

0 1
2
− e−dt(p0 − 1

2
)

)
(4.47)
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Hence , the �rst order in a Taylor expansion is:

ρ(dt) =
1

2

(
2p0 − 2p0dt+ dt 0

0 2− 2p0 + 2p0dt− dt

)
(4.48)

and then we �nally get the Lindbladian:

ρ̇ = Lt(ρ) =
ρ(dt)− ρ(0)

dt
=

1

2
(1− 2p0)

(
1 0

0 −1

)
=

1

2
(1− 2p0)σ3 (4.49)

To conclude , we want to determinate the expression of Lindblad operators. From

equation (4.48) we can see that:

ρ(dt) = (1− dt

2
)12ρ0 +

dt

2
σ1ρ0σ1 (4.50)

Hence, comparing the latter with the result of equation (3.80) we deduce that the

�rst term in the sum corresponds to the normalization term proportional to the

identity matrix, and we remain with only one Lindblad operator:

L1 =

√
1

2
σ1 (4.51)

that correctly agrees with its de�nition from equation (3.77) and that returns, apply-

ing the Master equation without considering the part proportional to the identity,

the previous expression for the derivative of the open evolution:

ρ̇ ≡ Lt(ρ) = L1ρ0L1
† − 1

2
{L1

†L1,ρ0} =
1

2
(1− 2p0)σ3 (4.52)
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Chapter 5

Q-trits

Finally, the last content of this work is the study of the density matrices 3x3, related

to open quantum systems with 3 levels, often called Q-trits. The generic diagonal

density matrix in this context has the form:

ρ0 =

p0 0 0

0 q0 0

0 0 1− p0 − q0

 (5.1)

where p0, q0 ∈ [0, 1] and p0 + q0 ≤ 1 so that the trace condition is always respected.

Anyhow, the addition of this new degree of freedom implies the origin of further

complications concerning the unitary orbits, compared to the previous U(2) case,

that can be immediately understood applying to this new context the results of

theorem (4.5.3). In fact, because of the increased number of eigenvalues of ρ0, the

theorem yields three distinct types of orbit:

� p0 = q0 = 1
3

then the orbit is homeomorphic to:

U(3)/U(3)

so, we recover the orbit with the dimension of a point.

� ρ0 has two equal eigenvalues that di�er from the last remaining one (like, for

example p0 = q0 = 1
2
)

then we have a co-adjoint orbit homeomorphic to:

U(3)/[U(2)× U(1)]

which is a 4-dimension manifold.
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� ρ0 has every eigenvalue di�erent from each other, that means 3 distinct eigen-

values.

Therefore the co-adjoint orbit is homeomorphic to:

U(3)/[U(1)× U(1)× U(1)]

which is a 6-dimension manifold.

At the end of this list, it becomes evident that, almost about visualizing the orbits,

we are not able to represent them in an intuitive way anymore. We have to leave the

useful resource of the Bloch sphere, that can contain in a unique three dimensional

picture all the possible evolutions of the system, because the dimensions of these

new orbits are not accessible anymore. However, the intricacy is not con�ned to our

limits of visualization, as we will see with some sly manipulations.

In fact, also in this case, we can de�ne a connection between matrices and vectors,

building an extension of the concept of Bloch vectors. Any 3x3 density matrix can

be expanded on the algebra of Lie generators of SU(3) plus the identity matrix:

ρ =
1

3
13 +

1

2

8∑
k=1

sktk (5.2)

where the {sk}k are real parameters and the 8 matrices {tk}k that constitute the

basis of the Lie algebra su(3) can be chosen ad lib.

This procedure allows to associate to each matrix ρ a vector ~S(ρ) ∈ <8 such that

~S(ρ) = (s1, s2, .., s8).

In the reference [12] it is shown that each unitary orbit leaves invariant the modulus

of this vector, so that the distance from the center of <8 of each vector related to

di�erent matrices in the same unitary orbit remains unchanged.

Moreover, we know that the surface on <8 constituted by the vectors with the same

modulus is a 7-sphere. Nevertheless, taking as a starting point for the unitary orbit

a pure density matrix, that must have one eigenvalues equals to one and the other

two null, the theorem above claims that the co-adjoint orbit has to be omeomorphic

to a 4-dimension manifold. Therefore, we clearly infer that, unlike the showed U(2)

case, the unitary orbit of pure matrices ruled by the U(3) group is not a sphere, but

only a submanifold of a sphere.

This consideration, here naively solved by words, exempli�es e�ectively the com-

plexity of this setting, not only related to our di�culties on �guring spaces with

dimension higher then 3.
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However, we can select a particular way of visualizing the space of density matrices

that, even if it is just a section of the whole space of all the possible evolutions, it

is cleverly focused on the open scenery at the expense of the unitary one.

If we choose for the basis the Gell-Mann matrices:

t1 =

 0 1 0

1 0 0

0 0 0

 ; t2 =

 0 −i 0

i 0 0

0 0 0

 ; t4 =

 0 0 1

0 0 0

1 0 0

 ;

t5 =

 0 0 −i
0 0 0

i 0 0

 ; t6 =

 0 0 0

0 0 1

0 1 0

 ; t7 =

 0 0 0

0 0 −i
0 i 0

 ;

t3 =

 1 0 0

0 −1 0

0 0 0

 ; t8 =
1√
3

 1 0 0

0 1 0

0 0 −2



(5.3)

we note that any diagonal 3x3 density matrix in the form of (5.1) can be represented

just by the use of the identity matrix and the last two t3 and t8, so that:

ρ0 =
1

3
13 +

p0 − q0
2

t3 +
p0 + q0 − 2(1− p0 − q0)

2
√

3
t8 =

=
1

3

 1 0 0

0 1 0

0 0 1

+
p0 − q0

2

 1 0 0

0 −1 0

0 0 0

+
3p0 + 3q0 − 2

6

 1 0 0

0 1 0

0 0 −2


(5.4)

and then, because the coe�cient of the identity is always the same for all the ma-

trices, we can think of reducing the set of all the possible diagonal density matrices

to a 2-dimensional subspace of <8, spanned by all the vectors of the form:

~S(ρ0) = (p0 − q0,
p0 + q0 − 2(1− p0 − q0)√

3
) (5.5)

If we draw a graphic of this subspace, respecting the conditions p0, q0 ∈ [0, 1] and

p0 + q0 ≤ 1 , we get the triangle shown in �g. 5.1.
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Figure 5.1: the space of diagonal density matrices

The origin of this space is the maximum entangled state, (ME in �g. 5.1) :

~SME ≡ ~S(ρME) = (0, 0) → ρME =
1

3

 1 0 0

0 1 0

0 0 1

 (5.6)

the other three points pictured in �g. 5.1, P1 , P2 and P3 are the three extremal

pure density matrices:

~SP1 ≡ ~S(ρP1
) = (1,

1√
3

) → ρP1
=

 1 0 0

0 0 0

0 0 0


~SP1 ≡ ~S(ρP2

) = (−1,
1√
3

) → ρP2
=

 0 0 0

0 1 0

0 0 0


~SP3 ≡ ~S(ρP3

) = (0,− 2√
3

) → ρP3
=

 0 0 0

0 0 0

0 0 1



(5.7)

It is now important to dwell on what we have really done, from a conceptual point

of view, introducing this representation. As we know from the previous geometrical

treatment of chapter 4, each diagonal matrix corresponds to a unitary orbit, and

the orbits di�er depending on the spectrum, i.e. on its eigenvalues and their multi-

plicities. Therefore, parameterizing only the diagonal matrices, what we are doing

is preparing a setting that could ignore the ambiguity caused by the equivalence

of unitary orbits. Such a setting is the perfect surrounding for studying the open

evolutions, that can be thought exactly like the transformations that the system

performs passing from an unitary orbit to another. Of course, the illustrated one is

not the only way to parametrize the diagonal density matrices, and other solutions

are possible. Nevertheless, this particular choice is suited to our purposes, as we

will see soon.
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Anyway, the careful reader could object to these considerations the incontrovertible

observation that the three pure density matrices associated to the points showed

above belong to the same unitary orbit. That is true; in fact, even with these pre-

cautions, the unitary ambiguity is not completely removed, but just reduced to a set

of three points. To explain better this statement, it is su�cient to underline that,

considering all possible di�erent diagonal density matrices, we are always including

the three admissible permutations of the three distinct matrices with the same spec-

trum. Nevertheless, we know that these three matrices belong to a unique unitary

orbit, even if they produce three separate points on the set of �g. 5.1.

Observing these particular three points, we can note that the unitary matrices in-

volved in the the transformations are:

U12 =

 0 1 0

1 0 0

0 0 1

 ; U13 =

 0 0 1

0 1 0

1 0 0

 ; U23 =

 1 0 0

0 0 1

0 1 0

 (5.8)

such that:

ρP2
= U12ρP1

U12
† ; ρP3

= U13ρP1
U13

† = U23ρP2
U23

† ; (5.9)

Thus, considering the form of these matrices and the structure of the graphic, we

can conclude that, if we really want to remove the unitary ambiguity, we have to

consider only one of the three possible sections A1 , A2 and A3 of our triangle, as

we can see from �g. 5.2.

Figure 5.2: the three areas unitarly equivalent

Anyway, working with the whole triangle is just easier, and we can do it without

problems, just remembering these crucial considerations.

Finally, after these preparatory contextualizations, we are able to study the open

evolution. Because we are limiting ourselves to diagonal matrices, for the Kraus

operators we choose matrices that maintain the diagonal structure during the evo-

lution. Starting from this assumption, we pick up all the rotation matrices plus the
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identity:

R1 =

 0 0 1

1 0 0

0 1 0

 ; R2 =

 0 1 0

0 0 1

1 0 0

 ; R3 =

 0 0 1

0 1 0

1 0 0

 ;

R4 =

 0 1 0

1 0 0

0 0 1

 ; R5 =

 1 0 0

0 0 1

0 1 0


(5.10)

and we equip them with a suitable temporal dependence, as a unique multiplicative

function for all the operators, trying to retrace the same steps as for the U(2) case.

Nevertheless, because we do not really want to lose generality, we introduce a vector

~a = (a0, a1, a2, a3, a4, a5) ∈ <6 that represents a degree of freedom for the coe�cients

that could multiply these rotation matrices involved in the de�nition of Kraus op-

erators. Thus, each component ai of this vector , with i = 0, 2, .., 5, is associated

to the corresponding matrix Ri. The a0 term is the one in front of the identity

matrix. Introducing this vector of coe�cients ~a gives us the possibility of analyzing

and discern in the whole set of plausible combinations of coe�cients the correct

ones that respect all the UDMs conditions. De�ning the normalization parameter

n =
∑5

i=0 ai we can clarify what we have explained in words showing the selected

Kraus operators:

K1(t) =

√
a1

n+ 1
(1− e−t)R1 =

√
a1

n+ 1
(1− e−t)

 0 0 1

1 0 0

0 1 0

 ;

K2(t) =

√
a2

n+ 1
(1− e−t)R2 =

√
a2

n+ 1
(1− e−t)

 0 1 0

0 0 1

1 0 0

 ;

K3(t) =

√
a3

n+ 1
(1− e−t)R3 =

√
a3

n+ 1
(1− e−t)

 0 0 1

0 1 0

1 0 0

 ;

K4(t) =

√
a4

n+ 1
(1− e−t)R4 =

√
a4

n+ 1
(1− e−t)

 0 1 0

1 0 0

0 0 1

 ;

K5(t) =

√
a5

n+ 1
(1− e−t)R5 =

√
a5

n+ 1
(1− e−t)

 1 0 0

0 0 1

0 1 0



(5.11)

Moreover, the Kraus operator connected to the identity matrix is the following one:

K0(t) =

√
1 + a0 + (a0 − n)e−t

n+ 1
13×3 (5.12)
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but it could be expressed in a more intuitive way separating the part assimilable to

the other Kraus operators from the part connected with the normalization:

K0
1(t) +K0

2(t) =

√
a0

n+ 1
(1− e−t)13×3 +

√
1

n+ 1
(1 + ne−t)13×3 (5.13)

Because all the operations that involve Kraus operators are quadratic, the two dif-

ferent expressions are really equivalent, and we preferably use the last one.

With this speci�c choice of the operators, it is straightforward to verify that, for all

the possible values of the real vector ~a ∈ <6, we always have:

5∑
i=0

K†i (t)Ki(t) = 13 ∀t (5.14)

The last equality means that starting the evolution with these Kraus operators from

a generic diagonal density matrix ρ0 of the form (5.1), we have:

Tr (ρ(t)) = 1 ∀t,~a (5.15)

The above equality is the deepest reason that led us to this particular de�nition,

and all the normalization conditions have been imposed to this purpose.

Starting from ρ0 at time t = 0 , we are now able to calculate the open evolu-

tion at a generic time t, and this operation will depend on the components of ~a

considered from time to time:

♣~a(t,0)(ρ0) ≡ ρ~a(t) =
5∑
i=0

Ki(t)ρ0K
†
i (t) (5.16)

Anyhow, as we know, (5.14) is not the only condition that the open evolution has

to satisfy, and, the composition requirement, in the form of the known equation:

♣(s,t)♣(t,0) = ♣(s,0) ∀s ≥ t ≥ 0 (5.17)

appears to be really constraining, so that it considerably reduces the possible range

of the coe�cients in ~a. These calculations are really tiresome and voluminous and

can be solved numerically imposing the equivalence:

♣(s,t)♣(t,0) −♣(s,0) = 0 ∀t, s ≥ 0, ∀p0, q0 ∈ [0, 1] , p0 + q0 ≤ 1 (5.18)

for each one of the three diagonal term of the resulting matrix.

We have performed these calculations with the help of the software Mathematica.

These procedure yields seven di�erent non-trivial combinations of coe�cients and

some of them are really complex. When we mention the term combination we mean
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a relation between the components of ~a that could satisfy (5.18). Anyway, it is

possible to show that, for the majority of these combinations, it does not exist a

numeric range for the coe�cients in which the positivity of the eigenvalues is pre-

served for any time and any starting point inside the triangle. Therefore, they are

solutions that we have to reject. As an example of these considerations, we report

the combination:

~a =

(
1

2
(4a1 + a2 + 3a3 − 2), a1, a2, a3, a1 − a2 + a3,

1

2
(−2a1 − a2 − a3)

)
(5.19)

As we can see, in this particular solution of (5.18), the only coe�cients that are

free are a1 , a2 and a3 and the others are linear combinations of these three.

Nevertheless, evaluating the limit for t→∞ of the resulting open evolution♣~a(t,0)(ρ0),

we get:

lim
t→∞
♣~a(t,0)(ρ0) =


1
3

0 0

0 (2a1−a2+a3)(3p0−1)
6(a1+a3)

+ q0 0

0 0 −−3p0a2+a2+6a1(p0−1)+a3(3p0−5)
6(a1+a3)

− q0


(5.20)

and the system:
(2a1−a2+a3)(3p0−1)

6(a1+a3)
+ q0 ≥ 0

−−3p0a2+a2+6a1(p0−1)+a3(3p0−5)
6(a1+a3)

− q0 ≥ 0

a1 + a3 6= 0

∀p0, q0 ∈ [0, 1] , p0 + q0 ≤ 1 (5.21)

has no real solutions in a0, a1 and a2 .

The trajectory of this evolution is depicted in �g. 5.3.

Figure 5.3: The starting point P corresponds to the density matrix with eigenvalues: p0 = 0.1 ,

q0 = 0.15 ; the arrival point P ′ , that is the result of the open evolution, has instead p0 = 0.333 ,

q0 = −0.0542

Therefore, as we can see, the breaking of the positivity condition re�ects into the

overtaking of the borders of our triangle representing density matrices.
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Thus, the evaluation of systems of inequalities like (5.21) for all the seven combi-

nations leads us to just four combinations that satisfy also the positivity condition

for all the possible starting points in a certain range of the components of ~a:

~a1 = (2a1 + a3 − 1, a1, a1, a3,−a1,−a1) with a1 6= −a3
~a2 = (2a1 + a4 − 1, a1, a1,−a1, a4,−a1) with a1 6= −a4
~a3 = (2a1 + a5 − 1, a1, a1,−a1,−a1, a5) with a1 6= −a5
~a4 = (a1 − 1, a1, a1, a3, a3, a3) ∀a1, a3 ∈ <

(5.22)

Moreover, we can ascertain that, for all these four combinations, what really matters

is the relation between the components, that satis�es all the above constraints, and

not the speci�c value of the coe�cients, that does not infer the dynamic. To clarify

this fact we can consider the example of the evolution related to the combination ~a1

:

ρ~a
1

(t) =


1
2
e−t (2p0 − et(q0 − 1) + q0 − 1) 0 0

0 q0 0

0 0 −1
2
e−t (2p0 + et(q0 − 1) + q0 − 1)


(5.23)

this evolution is calculated keeping a generic expression of a1 and a3 but, as we can

clearly see, the components of ~a1 are not involved in the expression.

Therefore, it seems logical and useful to simplify the combinations above in (5.22),

choosing speci�c values for the coe�cients and preserving e�ectively the same dy-

namic. Then, at the end of this procedure, we come to the �nal four correct open

evolutions, in the following form:

~a1 = (0, 0, 0, 1, 0, 0) ; ~a2 = (0, 0, 0, 0, 1, 0) ; ~a3 = (0, 0, 0, 0, 0, 1)

~a4 = (0, 1, 1, 0, 0, 0)
(5.24)

So, now that we have found the right evolutions, we can analyze the details of

the dynamics. We can immediately see that the �rst three evolutions are related

to the three rotation matrices R3, R4 and R5 respectively, matrices that keep one

eigenvalue �xed and mix the other two. Indeed, the corresponding open evolutions

maintain unchanged in time one eigenvalue, and they describe straight orbits that are

always parallel to the sides of the triangle. We can now study this three evolutions

separately one by one :

� ~a1 = (0, 0, 0, 1, 0, 0) :

This particular combination is related to just one Kraus operator :

K3(t) =

√
1

2
(1− e−t)R3 (5.25)
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so that the orbit is described by the equation:

ρ~a
1

(t) = K0
2(t)ρ0K0

2†(t) +K3(t)ρ0K3
†(t) =

=


1
2
e−t (2p0 − et(q0 − 1) + q0 − 1) 0 0

0 q0 0

0 0 −1
2
e−t (2p0 + et(q0 − 1) + q0 − 1)


(5.26)

Expanding the Kraus operator to the �rst order around t = 0 we get the

Lindblad operator :

L3 =

√
1

2
R3 (5.27)

that leads us to the expression of the derivative of the evolution:

Lt(ρ) = ρ̇~a
1

= L3ρ0L3
† − 1

2
{L3

†L3,ρ0} =

=
1

2

 −2p0 − q0 + 1 0 0

0 0 0

0 0 2p0 + q0 − 1

 (5.28)

We can show these results with the graphic of �g. 5.4.

Figure 5.4: Open evolution using ~a1 . The starting point P corresponds to the density matrix with

eigenvalues: p0 = 0.8 , q0 = 0.15

The study of the possible ending points of trajectories is showed later.

� ~a2 = (0, 0, 0, 0, 1, 0):

This particular combination is related to just one Kraus operator :

K4(t) =

√
1

2
(1− e−t)R4 (5.29)
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so that the orbit is described by the equation:

ρ~a
2

(t) = K0
2(t)ρ0K0

2†(t) +K4(t)ρ0K4
†(t) =

=


1
2
e−t (p0 − q0 + et(p0 + q0)) 0 0

0 1
2
e−t (−p0 + q0 + et(p0 + q0)) 0

0 0 −p0 − q0 + 1


(5.30)

Expanding the Kraus operator to the �rst order around t = 0 we get the

Lindblad operator :

L4 =

√
1

2
R4 (5.31)

that leads us to the expression of the derivative of the evolution:

Lt(ρ) = ρ̇~a
1

= L4ρ0L4
† − 1

2
{L4

†L4,ρ0} =

=
1

2

 q0 − p0 0 0

0 p0 − q0 0

0 0 0

 (5.32)

We can show these results with the graphic in �g. 5.5.

Figure 5.5: Open evolution using ~a2 . The starting point P corresponds to the density matrix with

eigenvalues: p0 = 0.8 , q0 = 0.15

� ~a4 = (0, 0, 0, 0, 0, 1):

This particular combination is related to just one Kraus operator :

K5(t) =

√
1

2
(1− e−t)R5 (5.33)

so that the orbit is described by the equation:

ρ~a
4

(t) = K0
2(t)ρ0K0

2†(t) +K5(t)ρ0K5
†(t) =

=

 p0 0 0

0 1
2
e−t (−et(p0 − 1) + p0 + 2q0 − 1) 0

0 0 −1
2
e−t (et(p0 − 1) + p0 + 2q0 − 1)


(5.34)
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Expanding the Kraus operator to the �rst order around t = 0 we get the

Lindblad operator :

L5 =

√
1

2
R5 (5.35)

that leads us to the expression of the derivative of the evolution:

Lt(ρ) = ρ̇~a
3

= L5ρ0L5
† − 1

2
{L5

†L5,ρ0} =

=
1

2

 0 0 0

0 −p0 − 2q0 + 1 0

0 0 p0 + 2q0 − 1

 (5.36)

We can show these results with the graphic in �g. 5.6.

Figure 5.6: Open evolution using ~a3 . The starting point P corresponds to the density matrix with

eigenvalues: p0 = 0.8 , q0 = 0.15

Evaluating the limit for t→∞ for the orbit of each one of these three combinations

we can easily draw the graphic of the three asymptotes in �g. 5.7.

Figure 5.7: with the number j we have denoted the asymptote corresponding to the combination

~aj

We call them asymptotes because, starting from a generic point inside the triangle,
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the trajectory continues straight parallel to one of the sides converging to the reach-

able point belonging to one of the blue lines drawn in �g. 5.7 ( which one depends on

the combination chosen for the evolution, that, as we have already seen, determines

also the side of the triangle to follow) where the derivative of this speci�c evolution

goes to zero, and then the dynamic stops. The asymptotes, that are the bisectors of

the triangle, are composed by all the diagonal density matrices with two degenerate

eigenvalues. The sets of density matrices that compose these special lines are:

~a1 →


1−q0
2

0 0

0 q0 0

0 0 1−q0
2

; ~a2 →


p0+q0

2
0 0

0 p0+q0
2

0

0 0 −p0 − q0 + 1



~a3 →

 p0 0 0

0 1−p0
2

0

0 0 1−p0
2



∀p0, q0 ∈ [0, 1] , p0 + q0 ≤ 1

(5.37)

Starting the open evolution from one of these points only two of the three directions

showed are accessible.

We can also claim that the treatment is completely specular in each of the three

unitarly equivalent sections of the triangle, in fact we can see that, after a change

of basis ruled by the unitary matrices in (5.8) , the transformed Kraus operators

become:

U12K3(t)U12
† = K5(t) ; U12K4(t)U12

† = K4(t) ; U12K5(t)U12
† = K3(t)

U13K3(t)U13
† = K3(t) ; U13K4(t)U13

† = K5(t) ; U13K5(t)U13
† = K4(t)

U23K3(t)U23
† = K4(t) ; U23K4(t)U23

† = K3(t) ; U23K5(t)U23
† = K5(t)

(5.38)

Then, the ambiguity of the unitary orbits is reduced to an exchange of role amongst

these three operators, so that, for example, starting from the vertix P1 the ~a
1 evo-

lution is the unitary equivalent of starting from P2 the ~a
3 evolution.

The last combination remained, ~a4 , determines instead a completely di�erent type

of evolution.

This particular combination is related to the two Kraus operators :

K1(t) =

√
1

3
(1− e−t)R1 and K2(t) =

√
1

3
(1− e−t)R2 (5.39)
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so that the orbit is described by the equation:

ρ~a
4

(t) = K0
2(t)ρ0K0

2†(t) +K1(t)ρ0K1
†(t) +K2(t)ρ0K2

†(t) =

=


1
3
e−t (3p0 + et − 1) 0 0

0 1
3
e−t (3q0 + et − 1) 0

0 0 1
3
e−t (−3p0 + et − 3q0 + 2)


(5.40)

Expanding the Kraus operators to the �rst order around t = 0 we get the Lindblad

operators :

L1 =

√
1

3
R1 ; L2 =

√
1

3
R2 (5.41)

that lead us to the expression of the derivative of the open evolution:

Lt(ρ) = ρ̇~a
4

= L1ρ0L1
† − 1

2
{L1

†L1,ρ0}+L2ρ0L2
† − 1

2
{L2

†L2,ρ0} =

=


1
3
− p0 0 0

0 1
3
− q0 0

0 0 p0 + q0 − 2
3


(5.42)

As we can see, this is the only combination that changes all three the eigenvalues

during the evolution.

We can show these results with the graphic in �g. 5.8.

Figure 5.8: Open evolution using ~a4 . The starting point P corresponds to the density matrix with

eigenvalues: p0 = 0.8 , q0 = 0.15

This type of evolution always converges toward the Maximum Entangled State, that

is the asymptotic limit for every possible starting point.

The invariant nature of this evolution is evident also under unitary transformation,
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in fact we have:

U12K1(t)U12
† = U13K1(t)U13

† = U23K1(t)U23
† = K2(t)

U12K2(t)U12
† = U13K2(t)U13

† = U23K2(t)U23
† = K1(t)

(5.43)

We always have the possibility to mix ad lib all the four open evolutions showed

up to here. By way of example, in �g. 5.9 we show the resulting orbit obtained

by composing all the three progressions parallel to the sides, from one asymptote to

another one, with this very last evolution directed to the center.

Figure 5.9: Open mixed evolution using the coe�cients ~ai in each stretch denoted by the number

i . The starting point P corresponds to the density matrix with eigenvalues: p0 = 0.8 , q0 = 0.15

This procedure allows us to discover one relevant property that, similarly to the

U(2) case, is an interesting behavior of any possible open motion. Indeed, the mod-

ulus of the vector associated to each density matrix in the representation chosen

always decreases , regardless of the orbit constructed mixing the four correct evolu-

tions.

Regarding the de�nition of the components of the vector (5.5), we note that the

modulus, that has his maximum on the three vertices :

|~SP1| = |~SP2 | = |~SP3| =
√

4

3
(5.44)

and his minimum on the Maximum Entangled State:

|~SME| = 0 (5.45)

can be expressed in a useful way:

|~S(ρ)| = 2

√
1

3
− bρ = 2

√
maxρbρ − bρ (5.46)
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where bρ is the quadratic coe�cient of the characteristic polynomial pρ(x) of the

diagonal density matrix ρ, de�ned as:

pρ(x) = −x3 + bρx
2 − aρx+ cρ (5.47)

with :

cρ ≡ det(ρ)

aρ ≡ tr(ρ)

bρ ≡ ρ(1,1)ρ(2,2) + ρ(1,1)ρ(3,3) + ρ(2,2)ρ(3,3)

(5.48)

In a unitary evolution, because the spectrum remains the same, the three co-

e�cients of this polynomial do not change; instead, in an open evolution, even if

the value of the trace is constricted to 1, the other two coe�cients vary in time,

and, writing their expressions for all these four evolutions, it is possible to ascertain

that they are increasing during the motion; always increasing also considering mixed

evolutions from one asymptote to the other like the example showed in �g. 5.9.

Thus, from the expression in equation (5.46), we immediately deduce the correct

decreasing behavior of the modulus of the vectors corresponding to density matrices,

that constitutes a similarity with the U(2) case.
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Conclusions

To brie�y summarize what we have done in each chapter of this work we present a

schematic list :

1. Following the line of [10] we have discussed the context of open quantum sys-

tems from an algebraic point of view, introducing the concepts of density ma-

trices, entanglement and quantum eraser. With Schmidt decomposition and

GHJW theorem we have studied how to express open states and how to relate

the di�erent parts that compose an open system.

2. We re�ected upon the measuring process in an open context, understanding

the necessity of a new treatment that led us to the de�nition of a POVM.

3. We have studied the open evolution of subsystems , coherently with the ap-

proach used by [11], discussing the requirements and the implications of work-

ing with UDMs. The Markovian approximation has been illustrated with its

physical meaning, and by means of this approximation it has been possible to

present the Lindblad equation. We have also noticed an interesting connection

between UDMs and POVMs.

4. We have recollected some geometrical results from [8] concerning the Kähler

structure of the space of pure states, mixed states, and the reali�cation of

Hilbert space. We have also showed an important way to describe the unitary

orbits and their geometrical properties, allowing to geometrically understand

the meaning of open evolutions. In the second part of this chapter we have

applied the theory for the concrete example of 2x2 density matrices, connected

with the Q-bits world.

5. Checking the analytical calculations with the help of the software Mathematica

we have found a new explicit formula to parametrize the Kraus operators for

the 3x3 density matrices. It has been showed that this particular formula

satis�es all the UDMs conditions, so that it has led us to correct solutions

of the Lindblad equation in that speci�c case. These solutions have been
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studied in detail and the corresponding open trajectories have been illustrated

in graphics with the help of the same software.

Open questions and the U(n) case

Just before concluding this work, we want to underline some implications on gener-

alizing the treatment used for the U(3) case for the U(n) problem.

Because of the generality of this procedure, and the self-normalizing nature of the

Kraus operators showed, the idea of using the rotation matrices equipped with op-

portune coe�cients that could satisfy all the UDMs properties can always be applied

in a generic dimension. The structure of the time-depending part of the Kraus opera-

tors could remain completely unchanged and it continues to appear valid, satisfying

automatically the trace one requirement at any time. The only obstacle to me-

chanically follow the same procedure is the complexity of the numeric calculation,

that could require softwares more and more performing. Indeed, in a n-dimensional

context we have n! permutation of the eigenvalues of density matrices, so that our

vector of coe�cients for Kraus operators becomes ~a ∈ <n! and, just to selecting all

the admissible combinations of the components that could satisfy the n-dimension

analogous of equation (5.18), we need a huge computing power.

Anyhow, resolving the U(3) case ensures us the existence of some known correct

motions also in higher dimensions. In fact, the four evolutions founded could be

reproduced almost identical when some eigenvalues of the n-dimensional density

matrix are kept �xed. Indeed, as we have seen previously, the �rst three evolutions

connected with ~a1, ~a2 and ~a3 resolve completely the eventuality of an evolution

characterized by only two eigenvalues free to change. Therefore, in a n-dimension

context, we can always think of using a Kraus operator like the following one:

Ki(t) =

√
1

2
(1− e−t)

(
1(n−3)×(n−3) 0

0 Ri

)
with i = 1, 2, 3 (5.49)

that, combined with the usual identity Kraus operator:

K0
2(t) =

√
1

2
(1 + e−t)1n×n (5.50)

gives us a correct open evolution.

Because all three R3 , R4 and R5 has a 1 on the main diagonal, the number of these

types of evolutions is : n!
(n−2)!2 .

At the same way, we can extend to n dimensions the last remaining U(3) evolution,

that moves three eigenvalues keeping the others �xed and that is related to the
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coe�cient vector ~a4. The latter can be done using the two Kraus operators:

K1(t) =

√
1

3
(1− e−t)

(
1(n−3)×(n−3) 0

0 R1

)

K2(t) =

√
1

3
(1− e−t)

(
1(n−3)×(n−3) 0

0 R2

) (5.51)

that, combined with the usual identity Kraus operator:

K0
2(t) =

√
1

3
(1 + 2e−t)1n×n (5.52)

gives us a correct open evolution.

The number of this type of evolutions is : n!
(n−3)!3! .

Therefore, by solving the U(3) case we have guaranteed

n!

(n− 2)!2
+

n!

(n− 3)!3!
=

1

6
n(n+ 1)(n− 1) (5.53)

valid solutions of Lindblad equation in any dimension.

Thus, our hope is that the basis lied by this work could help for the building of

an advantageous iterative method for a complete theorization of the generic U(n)

case that could curtail the burdensome amount of calculations.
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Appendix A

Quantum Markov process:

mathematical structure

We premise that, the attitude taken in treating these mathematical arguments is

not so rigorous here, but it pursues the objective of giving some brief but useful

clari�cations just about the tools that have been used on this work. For a more

depth approach to Quantum Markov process, the interested reader could consult

[3]. Before treating the quantum topic, we remind brie�y the concept of classical

Markovian process. We de�ne a stochastic process as a variableX that takes random

values depending from a parameter t (for our purpose, t can be considered as the

usual time):

De�nition A.1 (Stochastic process).

{X(t); t ∈ I ⊂ <} (A.1)

If we suppose that the I set is limited, and its elements can be labeled with integer

numbers, then we a�rm that the stochastic process X is a Markovian process if the

value assumed by X at any arbitrary time tn depends only on the value that X

took at time tn−1 , forgetting all the other values taken before that. Mathematically

speaking, in terms of conditional probabilities, we have:

De�nition A.2 (Markovian process).

p(xn, tn|xn−1, tn−1; . . . ;x0, t0) = p(xn, tn|xn−1, tn−1) ∀tn ∈ I (A.2)

Now we can imagine that the range I is continuous, so that xn−1, tn−1 ≡ x′, t′

can be considered as in�nitesimally close to xn, tn ≡ x, t. At this point, just from

the de�nition of conditional probability, we obtain:

p(x, t
√
x′, t′) = p(x, t|x′, t′)p(x′, t′) (A.3)

where we used the symbol
√

to represent the joint probability that the random

variable takes both the values x at time t and x′ at time t′. Therefore, to calculate
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the probability of p(x, t) we can just integrate the last expression with respect to x′

:

p(x, t) =

∫
dx′p(x, t|x′, t′)p(x′, t′) ≡

∫
dx′K(x, t|x′, t′)p(x′, t′) (A.4)

where we have de�ned p(x, t|x′, t′) ≡ K(x, t|x′, t′).
Then we can give the de�nition of an homogeneous Markovian process:

De�nition A.3 (Homogeneous Markovian process). A Markovian process is said

to be homogeneous i� K(x, t|x′, t′) is only a function of the di�erence between the

two time parameters involved, so that:

K(x, t|x′, t′) = Kt−t′(x|x′) (A.5)

Moreover, we can repeat the same process but involving three di�erent times

: t3 > t2 > t1 and three corresponding di�erent values of the random variable.

Applying the usual de�nition of conditional probability yields :

p(x3, t3
√
x2, t2

√
x1, t1) = p(x3, t3|x2, t2

√
x1, t1)p(x2, t2

√
x1, t1)

= p(x3, t3|x2, t2
√
x1, t1)p(x2, t2|x1, t1)p(x1, t1)

(A.6)

But the Markov condition (A.2) implies that:

p(x3, t3|x2, t2
√
x1, t1) = p(x3, t3|x2, t2) (A.7)

so that we have:

p(x3, t3
√
x2, t2

√
x1, t1) = p(x3, t3|x2, t2)p(x2, t2|x1, t1)p(x1, t1)

p(x3, t3
√
x2, t2|x1, t1)p(x1, t1) = p(x3, t3|x2, t2)p(x2, t2|x1, t1)p(x1, t1)

p(x3, t3
√
x2, t2|x1, t1) = p(x3, t3|x2, t2)p(x2, t2|x1, t1)

(A.8)

Now we can integrate the last equation with respect to x2, obtaining:

p(x3, t3|x1, t1) =

∫
dx2 p(x3, t3|x2, t2)p(x2, t2|x1, t1)

=

∫
dx2 K(x3, t3|x2, t2)K(x2, t2|x1, t1)

(A.9)

and this equation is called the Chapman-Kolmogorov equation:

De�nition A.4 (Chapman-Kolmogorov equation).

K(x3, t3|x1, t1) =

∫
dx2 K(x3, t3|x2, t2)K(x2, t2|x1, t1) (A.10)

We can see that, all that this equation claims is that, under Markovian hypoth-

esis, the evolution in time of the K(x, t|x′, t′) is governed by a composition rule. So

it becomes clear that this classical treatment can be easily extended to a quantum

setting. In fact, looking at the equation (A.4) , it can be easy to imagine the

K(x, t|x′, t′) as the propagators of time evolutions from time t′ to time t. Indeed,
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since they are conditional probabilities , one can say that K(x, t|x′, t′) connects the
probability p(x′, t′) to p(x, t). Moreover, because they are probabilities , they are

always positive and normalized. So it is really intuitive to identify, in a quantum

context, these K(x, t|x′, t′) with the UDMs ♣(t,t′). Therefore, in such a parallelism

, the role played here by the probabilities p(x, t) is played by the density operators

ρ(t).

Once we get into this quantum extension of the concepts above, we can try to

observe the behavior of the time evolution of density operators under Markovian

assumptions. To do that, for positive ε, we express the di�erence :

ρ(t+ ε)− ρ(t) = [♣(t+ε,0) −♣(t,0)]ρ(0) = [♣(t+ε,t) − 1]♣(t,0)ρ(0) = [♣(t+ε,t) − 1]ρ(t)

(A.11)

Then, assuming that the time evolution is su�ciently smooth, we can perform the

limit for ε → 0 of the above equation, trying to reach a linear di�erential equation

for ρ(t):

dρ(t)

dt
= lim

ε→0

ρ(t+ ε)− ρ(t)

ε
= lim

ε→0

♣(t+ε,t) − 1

ε
ρ(t) ≡ Ltρ(t) (A.12)

This equation is often called master equation and the operator Lt is the generator

of the evolution, or Lindbladian, de�ned by:

De�nition A.5 (Lindbladian).

Lt = lim
ε→0

♣(t+ε,t) − 1

ε
(A.13)

Under Markovian assumption , the form of the master equation is unique and it

is de�ned by the following, important, theorem, that concludes this appendix:

Theorem A.0.1.

A di�erential equation is a Markovian master equation if and only if it can be written

in the form:

dρ(t)

dt
= −i[H(t),ρ(t)]+

∑
k

γk(t)
[
Lk(t)ρ(t)L†k(t)−

1

2
{L†

k(t)Lk(t),ρ(t)}
]
(A.14)

where H(t) and Lk(t) are time-dependent operators and H(t) is self-adjoint. The

γk(t) are complex coe�cients that satisfy: γk(t) ≥ 0 ∀t, k.

Proof. We start considering a generic UDM, ♣(t2,t1) , with t2 > t1. We know that it

can expressed in a Kraus decomposition:

♣(t2,t1)(ρ) =
∑
α

Kα(t2, t1)ρKα
†(t2, t1) (A.15)

Now we choose a basis {Fj ; j = 1, 2, · · · , N2} for the space of the operators acting
on density matrices, that have dimension N2 , where N is the dimension of the
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density matrices. We want this basis to be orthonormal, and then we choose an

inner product between these operators, that we call the Hilbert-Schmidt (HS) inner

product:

(Fi,Fj)HS ≡ tr(FiFj) ≡ δij (A.16)

We make another particular choice : FN2 ≡ 1√
N
1N2 ; so that, because of the or-

thonormality of the basis, we get tr(Fj) = 0 ∀j 6= N2. With these premises,

expanding equation (A.15) in such a basis yields:

♣(t2,t1)(ρ) =
∑
j,k

cjk(t2, t1)FjρFk
† (A.17)

where the coe�cients :

cjk(t1, t2) =
∑
α

(
(Fj ,Kα(t2, t1))HS

)(
(Fk,Kα(t2, t1))HS

)∗
(A.18)

form a matrix N2 ×N2 that we call c(t2, t1).

c(t2, t1) is a semi-positive matrix; in fact, for every N2-vector v, we have:

(v, c(t2, t1)v) =
∑
j,k

v∗jcjk(t1, t2)vk =
∑
α

∣∣∣∣∑
k

vk(Fk,Kα(t2, t1))HS

∣∣∣∣2 (A.19)

Since we said that t2 > t1 we can pick t2 = t + ε and t1 = t, with ε real positive

number. Let us now calculate the expression of the Lindbladian in the usual way,

but expressing the UDM ♣(t+ε,t) in the Kraus decomposition with the basis showed

above:

Lt = lim
ε→0

∑
j,k

cjk(t+ ε, t)FjρFk
† − 1

ε
(A.20)

and now we can make use of the useful de�nition of the basis chosen, separating and

making explicit the di�erent components of this sum:

Lt(ρ) = lim
ε→0

[
1

N

cN2N2(t+ ε, t)−N
ε

ρ+

+
1√
N

N2−1∑
k=1

(ckN2(t+ ε, t)

ε
Fkρ+

cN2k(t+ ε, t)

ε
ρFk

†)+
+

N2−1∑
j,k=1

cjk(t+ ε, t)

ε
FjρFk

†
] (A.21)

and this allows us to de�ne some new time-dependents coe�cients ajk(t):

aN2N2(t) ≡ lim
ε→0

cN2N2(t+ ε, t)−N
ε

akN2(t) ≡ lim
ε→0

ckN2(t+ ε, t)

ε
for k = 1, 2, · · · , N2 − 1

ajk(t) ≡ lim
ε→0

cjk(t+ ε, t)

ε
for j, k = 1, 2, · · · , N2 − 1

(A.22)
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and then some useful operators:

M (t) =
1√
N

N2−1∑
k=1

akN2(t)Fkρ

G(t) =
1

N

aN2N2(t)

2N
1N2 +

1

2
[M †(t) +M(t)]

H(t) =
1

2i
[M †(t)−M(t)]

(A.23)

where the last one operator H(t) is clearly self-adjoint.

At this point, we can notice that, by means of these de�nitions, it is possible to

rearrange equation (A.21) in the form:

Lt(ρ) = −i[H(t),ρ] + {G(t),ρ}+
N2−1∑
j,k=1

ajk(t)FjρFk
† (A.24)

We can get an important improvement in this equation above by imposing some

properties of UDMs on the evolution. In fact, if we want that this Lindbladian

governs a UDM type of evolution, we have to ask tr(Lt) = 0, so that the trace of

density matrices does not change during the time evolution. Therefore we can write:

tr
(
Lt(ρ)

)
= tr

[(
2G(t) +

N2−1∑
j,k=1

ajk(t)Fk
†Fj
)
ρ

]
= 0 (A.25)

and from this expression immediately follows:

G(t) = −1

2

N2−1∑
j,k=1

ajk(t)Fk
†Fj (A.26)

so that (A.24) becomes:

Lt(ρ) = −i[H(t),ρ] +
N2−1∑
j,k=1

ajk(t)

[
FjρFk

† − 1

2
{Fk†Fj ,ρ}

]
(A.27)

At the end we notice that the semi-positive nature of the coe�cients cjk(t + ε, t)

ensures the same nature for the (N2 − 1)× (N2 − 1) square matrix ajk(t) in such a

way that it can be diagonalized , for any time t, by the action of one time-dependent

unitary matrix u(t); this is:

N2−1∑
j,k=1

umj(t)ajk(t)u
∗
nk(t) = γm(t)δmn ∀t (A.28)

where each eigenvalue is positive or null: γm(t) ≥ 0 ∀t,m.

Extending the same unitary transformation to the operators too:

Lk(t) ≡
N2−1∑
j=1

u∗kj(t)Fj (A.29)
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�nally leads to the desired result:

Lt(ρ) =
dρ(t)

dt
= −i[H(t),ρ(t)]+

∑
k

γk(t)
[
Lk(t)ρ(t)L†k(t)−

1

2
{L†

k(t)Lk(t),ρ(t)}
]

(A.30)

Since this di�erential equation is linear, there exists a continuous family of prop-

agators ♣(t,t′) satisfying:

♣(t2,t0) = ♣(t2,t1)♣(t1,t0) ∀t2 ≥ t1 ≥ t0

and

♣(t,t) = 1N2 ∀t

(A.31)

Even if we have currently used in the demonstration above the fact that these

operators are UDMs, formally prove that they really are UDMs needs not only

the trace preserving requirement (at �rst imposed in the demonstration and then

correctly satis�ed) but also the complete positivity one. Prove this last requirement

rigorously is a bit tricky, and we refer the interested reader to [11].

88



Bibliography

[1] BENGTSSON, I. , AND ZYCZKOWSKI, K. Geometry of quantum states.

Cambridge Press, 2006.

[2] BOGOLIUBOV, N. N., LOGUNOV, A. A., TODOROV, I. T. Intro-

duction to axiomatic quantum �eld theory. Benjamin Cummings, 1975.

[3] BREUER, H. P., PETRUCCIONE, F. The theory of open quantum

systems. OUP Oxford, 2007.

[4] DAVIES, E. B. IEEE Trans. Inform. Theory IT-24 (1978), 596.

[5] GLEASON, A. M. J. Math. Mech. 6. (1957), 885.

[6] GRABOWSKI, J., KUS, M., AND MARMO, G. J. Phys. A 381,

(2005), 10217

[7] KRAUS, K. States, E�ects, and Operations Fundamental Notions of

Quantum Theory, Lect. Notes Phys. 190. Springer, 1983.

[8] PASQUINI, S., Dynamical Evolution of Quantum States: a Geometri-

cal Approach. (2015), thesis work: http://amslaurea.unibo.it/id/eprint/9331.

[9] PERES, A. , Quantum Theory: Concepts and Methods. Springer, 1995.

[10] PRESKILL, J. Lecture Notes for Physics 229: quantum Information

and computation. California Institute of technology, 1998.

[11] RIVAS, A., AND HUELGA, S. F. Open Quantum Systems. An In-

troduction. Springer, 2012.

[12] SCHIRMER, S. G., ZHANG, T., AND LEAHLY, J. V. Orbits of

quantum states and geometry of Bloch vectors for n-level system J.Phys.A:

89



Math. Gen 37. (2004), 1389
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