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Scuola di Scienze
Dipartimento di Fisica e Astronomia

Corso di Laurea Magistrale in Fisica

Statistical and network-based methods for the
analysis of chromatin accessibility maps in single

cells

Relatore:

Prof. Daniel Remondini

Correlatore:

PD Dr. Karsten Rippe

Presentata da:

Daniele Tavernari

Anno Accademico 2015/2016





Acknowledgements

Alla mia famiglia, i miei genitori Patrizia e Roberto, mio fratello Riccardo,
i miei nonni, i miei zii, i miei cugini, devo i più importanti insegnamenti, e
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Sommario

In questo lavoro, metodi provenienti dalla Fisica, dalla Statistica e dalla
Teoria dei Grafi sono stati impiegati per caratterizzare ed analizzare profili
di apertura e accessibilità della cromatina ottenuti con la tecnica ATAC-seq
in singole cellule, nella fattispecie linfociti B provenienti da tre pazienti affetti
da Leucemia Linfocitica Cronica.

Una pipeline bioinformatica è stata sviluppata per processare i dati di
sequencing ed ottenere le posizioni accessibili del genoma per ciascuna cellula.
La quantità di regioni aperte e la loro distribuzione spaziale lungo il DNA
sono state caratterizzate. Infine, l’apertura simultanea nelle stesse singole
cellule di regioni regolatrici è stata impiegata come metrica per valutare
relazioni funzionali, e in questo modo grafi tra enhancer e promoter sono
stati costruiti e le loro proprietà sono state analizzate.

La distribuzione spaziale lungo il genoma di regioni aperte consecutive
ricapitola proprietà strutturali come gli array di nucleosomi e le strutture a
loop della cromatina. Inoltre, i profili di accessibilità delle regioni regolatrici
sono significativamente conservati nelle singole cellule. I network tra enhan-
cer e promoter forniscono un modo per caratterizzare la rilevanza di ciascuna
regione regolatrice in termini di centralità. Le statistiche sulla connettività
tra enhancer e promoter confermano il modello di relazione uno-a-uno come il
più frequente, in cui un promoter è regolato dall’enhancer ad esso più vicino.
Infine, anche il funzionamento dei superenhancer è stato indagato.

In conclusione, ATAC-seq si rivela un’efficace tecnica per indagare l’a-
pertura del DNA in singole cellule, i cui profili di accessibilità ricapitolano
caratteristiche strutturali e funzionali della cromatina. Al fine di indagare i
meccanismi della malattia, il panorama di accessibilità dei lifociti tumorali
può essere confrontato con quello di cellule sane e cellule trattate con farmaci
epigenetici.

5





Abstract

Introduction Physical and mathematical modeling find a wide range of
application in many fields of natural sciences.

In Genomics and Epigenetics, the advent of Next Generation Sequencing
technologies has paved the way for the development of a variety of high-
throughput experimental assays. Based on DNA or RNA sequencing, these
techniques are capable of generating a huge amount of data at many levels
and for many features and biological mechanisms, such as whole genome
sequence, gene expression, protein binding, DNA methylation, chromatin
conformation and accessibility.

As a consequence, the bottleneck of genomic research is gradually shifting
to the data analysis. In this framework, a current challenge is to develop
physical, statistical and computational methods to characterize such huge
amount of data, remove biases and extract meaningful features and patterns
which can give insights into biological mechanisms. In cancer research, a
deeper understanding at the system level of such mechanisms in healthy and
tumor cells is essential to develop and enhance therapeutic approaches in
Personalized Medicine.

Methods In this work, methods from Physics, Statistics and Graph The-
ory have been employed to characterize and analyze chromatin accessibility
profiles obtained with ATAC-seq technique in single cells. The cells investi-
gated were B-lymphocytes coming from three patients affected by Chronic
Lymphocytic Leukemia.

A customized bioinformatic pipeline has been developed to process raw
sequencing data and obtain accessible loci in each single cell. The distribution
of the number of open regions as well as their spatial distribution along the
genome have been characterized. Finally, the occurrence of accessible loci in
regulatory regions such as promoters and enhancers have been investigated;
their co-occurrence in the same single cells have been employed as a metric
for functional linkages, and in this way enhancer-promoter networks have
been constructed and their properties could be analyzed.
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Results The variability of the number of open regions reveals a remarkable
heterogeneity across the single cells.

The distribution along the genome of accessible loci recapitulates known
structural properties such as nucleosome arrays and chromatin loops.

Despite the heterogeneity mentioned above, the accessibility of regulatory
regions is highly conserved across the single cells. Moreover, cells coming
from the same patients show more similar patterns than inter-patient sets of
cells.

Enhancers-promoters networks provided a tool to explore the relevance
of each regulatory element with centrality metrics. Statistics of enhancer-
promoter connectivity confirmed that the most frequent linkage model is
the one-to-one, in which one promoter is regulated by its closest enhancer.
However, exceptions are not rare.

Superenhancers functioning was also investigated, and peaks of localized
accessible chromatin within them have been found.

Discussion ATAC-seq technique is a valuable tool to investigate open chro-
matin in single cells. Accessibility profiles recapitulate structural features of
chromatin and can be employed to assess functional relationships between
regulatory elements. In order to investigate the mechanisms of the disease,
the accessibility landscape of CLL B-lymphocytes can thus be compared with
healthy controls and tumor cells treated with epigenetic drugs.
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Introduction

Chronic Lymphocytic Leukemia (CLL) is the most common leukemia among
adults in the western world, with a share of 40% of all types [1].

CLL is a malignancy of B-lymphocytes, which grow in an uncontrolled
manner and accumulate in the blood, bone marrow and other lymphoid tis-
sues. Despite the homogeneous morphological phenotype, the clinical out-
come of CLL is variable. CLL is also known to be an epigenetic disease [2],
and one of the main alterations that it causes is the deregulation of enhancers.

As a consequence, a complete and accurate characterization of the epigenome
of CLL B-lymphocytes is essential to understand the mechanisms of the dis-
ease and how to treat it in the most precise and effective way. This task has
to be accomplished at the various levels of epigenetic marks: DNA methy-
lation, histone modifications, protein binding, chromatin conformation and
accessibility.

At least three kinds of comparisons in terms of epigenetic profiles are pos-
sible: tumor cells versus healthy controls, tumor cells belonging to different
patients and tumor cells before and after treatment with epigenetic drugs.

In this framework, this work is a result of the analysis of open chromatin
profiles assayed at the single cell level in CLL B-lymphocytes with ATAC-
seq technique. These experiments have been performed in the research group
Genome Organization and Function, headed by PD Dr. Karsten Rippe and
member of the Bioquant and the German Cancer Research Center, in Hei-
delberg.

The first chapter provides a generic introduction to the biological features
and mechanisms involved, such as chromatin architecture, epigenetic marks
and regulation of gene expression; in the second chapter, various methods and
techniques for data analysis are introduced, from fields such as mathematics,
bioinformatics and statistics; the third chapter deals with the analysis of
many statistical properties of open chromatin profiles; in the fourth chapter
the construction and the analysis of enhancer-promoter networks is reported;
the fifth and final chapter contains the conclusions and the future directions
that might follow this work.
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Chapter 1

Structure and regulation of the
human genome

1.1 Overview

In molecular biology, the genetic material that carries the information used
for growth, development, functioning and reproduction of a living organism
is referred to as genome. The genome consists of Deoxyribonucleic acid
or DNA, a long polymer made of repeated units called nucleotides. Each
nucleotide is composed of a sugar, called deoxyribose, a phosphate group
and a nitrogenous base, which can be either an adenine (A), a thymine (T),
a cytosine (C) or a guanine (G). In the human genome, the frequency of C
or G (”GC-content”) is 40%. The nucleotides are joined to one another by
covalent bonds between the sugar of one nucleotide and the phosphate of
the next. The DNA polymer thus formed is bound to another polymer via
hydrogen bonds between the nitrogenous bases, which are paired in a specific
manner (A with T, C with G). The resulting pair of complementary DNA
molecules is structured as a double helix, with a pitch of 3.4 nm and a radius
of 1 nm [3]. The information is therefore encoded in the sequence of base
pairs (bp) along the double helix.

Another nucleic acid implicated in various biological roles is the RNA,
which is also a polymer of nucleotides but differs from the DNA for the
sugar (the ribose instead of the deoxyribose), for one of the four types of
nitrogenous bases (the thymine is replaced by the uracil (U)) and for the
structure, which has a single filament instead of the double helix.

The flow of genetic information is summarized by the central dogma of
molecular biology [4]: the DNA is transcribed into RNA, and the RNA is
then translated into proteins. In this context, it is possible to define a gene
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as a region or locus of the genome that undergoes transcription into mes-
senger RNA (mRNA). Not all the genes give rise to protein synthesis, since
some of them get transcribed into RNA that is not translated (”non-coding
RNA” or ncRNA) but has regulatory or structural functions. The number of
protein-coding genes in the human genome is roughly 20000, but the num-
ber of translated proteins is much higher. This increase is achieved through
a process termed alternative splicing : the transcribed RNA is divided into
subregions called introns and exons, and only the sequence resulting from a
subsampling of the exons gets translated. Different subsamples of the exons
coming from the same gene give rise to different proteins [5].

1.2 Chromatin and spatial organization of the

genome

The human genome contains approximately 3.2·109 base pairs and undergoes
many levels of spatial folding and compaction [6]. To this end, proteins such
as histones and transcription factors (TFs) interact with the DNA molecule
in order to form a large macromolecular complex termed chromatin [5]. The
primary functions of chromatin are therefore to package the DNA into a
smaller volume to fit in the cell nucleus, to allow DNA replication, transcrip-
tion, recombination and repair and to control gene expression 1.1.

Figure 1.1: The chromatin complex (licence: Wikimedia Commons)

There are three main levels of chromatin organization [5]:
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1. the DNA wraps around histone proteins in 147-bp coils and the result-
ing nucleosomes arrange in a ”beads on a string” structure;

2. multiple histones cluster into arrays of 30 nm termed fibers

3. fibers further package into metaphase chromosomes during mitosis and
meiosis

The densely packed form of chromatin is called heterochromatin and is tran-
scriptionally inactive, while in the lightly packed euchromatin the DNA dy-
namically unfolds from the histones to allow spatially and temporally regu-
lated gene expression 1.2.

Figure 1.2: The levels of organization of chromatin (licence: Wikimedia Com-
mons)

Recent studies [7] [8] have shown intermediate levels of spatial organiza-
tion. The genome is compartmentalized into Topologically Associating Do-
mains (TADs) of a few Megabases: within a TAD, which is usually delimited
by binding sites of the CTCF transcription factor (known as an ”insula-
tor” protein), the genomic loci are in closer proximity than between different
TADs. On a smaller scale (∼ 100 kbp), chromatin ”loops” bring distal ge-
nomic elements into spatial contact; consecutive loops form ”rosette”-like
structures with many sequences clustered as a ”hub”.

1.3 Regulation of gene expression

1.3.1 Regulatory elements

The regulation of gene expression includes the series of mechanisms by which
cells activate, increase, decrease or cease the production of specific gene prod-
ucts. Gene regulation is involved in cell type development and differentiation,
as well as responses to environmental stimuli and may be the main driver
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of phenotypic divergence in evolution. Non coding DNA is largely responsi-
ble for it through interaction with the transcriptional regulatory machinery,
which consists of proteins and RNA molecules [5].

Regulatory elements can be classified by their position relative to the
genes they control:

i cis-regulatory elements are found in the vicinity (up to a few Megabases)
of the genes they regulate, and typically function as binding sites for one
or more transcription factors;

ii trans-regulatory elements may regulate the expression of distant genes,
even in an allele-independent way; they are the DNA sequences that
encode the transcription factors which compose the regulatory machinery.

As an additional subdivision, cis-regulatory elements can be classified as
promoters or enhancers. Promoters are sequences found around the Tran-
scription Start Sites (TSSs) of genes, and are therefore defined as TSSs +/-
500-1000 bp. The role of promoters is to toggle the start of transcription by
recruiting RNA polymerase if they are bound by TFs. On the other hand,
enhancers are sequences that can be up to a few Megabases upstream or
downstream of the TSS. The binding of transcription factors on them can
either intensify or repress transcription of their target genes.

Enhancers can have a variable size, ranging from 100-200 bp to several
kbp. Bigger enhancers, namely the ones that are longer than roughly 18
kbp, are termed superenhancers. It is still unclear whether they function as
a single element or as an array of independent smaller enhancers close to
each other.

1.3.2 Epigenetic marks

Since all the cells of an organism share the same genome, gene expression
regulation requires inputs outside of the DNA. Epigenetics is the field that
studies how gene expression is controlled by modifications, spatial folding
and accessibility of the chromatin complex. The epigenome is only partially
inheritable, it is strongly influenced by environmental stimuli and can be
altered in disease conditions. The most important epigenetic marks and
mechanisms are listed below [5].

• DNA methylation is the process by which methyl groups (−CH3) are
attached to DNA, thus modifying its function. In mammalian cells,
DNA methylation occurs at cytosine residues of CpG dinucleotides,
at the 5-carbon (5mC). This modification is set and maintained by
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a set of enzymes, the DNA methyltransferases (DNMTs). CpG sites
are present throughout the genome but they are preferentially found
at gene rich loci. DNA methylation in promoter regions can lead to
stable gene silencing either by directly interfering with the binding of
TFs or by inducing specific repressing chromatin states.

• Histone modification is a post-translational modification that alters
histones in a nucleosome. Each nucleosome is composed by two copies
of four core histones (H2A, H2B, H3 and H4), each of which can undergo
enzymatic additions of acetyl (COCH3) or methyl groups. Histone
modifications are related to promoter and enhancer activity: active
promoters show a high level of H3K4me3 (tri-methylation of lysine 4 in
histone H3), while active enhancer are characterized by H3K4me1 and
H3K27ac (acetylation of lysine 27 in histone H3).

• Chromatin remodeling refers to the rearrangement of chromatin from
a densely packaged state to a transcriptionally accessible one, allowing
TFs to bind regulatory sequences and control gene expression. Chro-
matin remodeling is achieved either through histone modifications or
with ATP-dependent complexes.

• Non-coding RNA such as miRNA, siRNA, piRNA and lncRNA are
also known to regulate gene expression at the transcriptional and post
transcriptional level.

1.4 Experimental assays

Recent advances in molecular biology, both on the technological side and on
the understanding of principles, have led to the development of novel experi-
mental assays capable of generating huge amounts of data with standardized
and automated protocols.

Many of these methods rely on Next Generation Sequencing techniques,
which are capable of generating Gigabytes to Terabytes of genomic data in
a limited amount of time. As a consequence, in parallel to the optimization
of the experimental techniques, computational and statistical approaches are
required for extensive data analysis, and these methods will be explored in
more detail in the next chapter.

DNA sequencing One of the primary sources of data in Genomics and
Epigenetics is constituted by the DNA sequences. DNA sequencing is the
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process of experimentally determining the order of nucleotides within a DNA
molecule.

Over the last few decades, the yield (in terms of base pairs sequenced
per run) of sequencing machines has dramatically increased, outpacing the
Moore’s law for Big Data with massively parallel Next Generation Sequenc-
ing (NGS) technology [9]. Conversely, the cost per Gigabase has fallen: the
3 billion dollars required for the first sequenced human genome in 2001 have
plummeted to less than 1000 dollars in 2014. These advantages allowed the
implementation of population-scale sequencing and laid the foundations for
personalized genomic medicine and sequencing-aided clinical decision mak-
ing.

The main step in NGS is the incorporation, catalyzed by DNA poly-
merase, of fluorescently labeled deoxyribonucleotide triphosphates (dNTPs)
into DNA template strands during sequential cycles of DNA synthesis. In-
stead of sequencing a single DNA fragment at a time, this process is extended
across millions of fragments in a massively parallel fashion. The NGS exper-
imental workflow includes 3 steps [9]:

1. Library preparation. The DNA is randomly fragmented and tagged
with sequencing adapters. The resulting fragments are amplified by
Polymerase Chain Reaction (PCR) cycles, which produce identical
copies of the DNA templates.

2. Cluster generation. The library is loaded into a flow cell, where frag-
ments are captured by oligonucleotides bound to the surface and com-
plementary to the library adapters. DNA is amplified again with a
process termed clonal bridge amplification, and clusters of identical
fragments are thus formed.

3. Sequencing. In a process called ”sequencing by synthesis”, dNTPs bind
specifically to the subsequent nucleotides, are excited with a light source
and the emitted color defines the base pair. For each emission, the
intensity of the color in a given cluster defines the quality of the call.
This process is performed simultaneously for millions of clusters in a
massively parallel fashion.

The final results are therefore the sequencing reads of each fragment, which
come with a fixed length.

Sequencing can be performed in two ways:

• ”Single-End” (SE): for each fragment, only one end is sequenced, up
to the read length;
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• ”Paired-End” (PE): both ends of each fragment are sequenced in op-
posite directions. in this way, the amount of data is ideally twice as
much as for Single-End sequencing. Additionally, Paired-End reads al-
low to determine the length of the original DNA fragments and leverage
the accuracy of subsequent bioinformatic steps, such as aligning to a
reference genome.

In both cases, if the sequencing read length is bigger than the size of the frag-
ment, part of the adapter is also sequenced. This effect is known as adapter
contamination and it requires a trimming step in the bioinformatic pipeline
in order to get rid of the portion of adapters reported in the sequencing data.

DNA sequencing is important not only for whole genome reconstructions
or variant calling, but also for experimental assays of epigenetic marks.

A recent development in the field is single cell sequencing, which pro-
vides a higher resolution of cellular heterogeneity. Single cell sequencing
requires cells isolation, which can be achieved with automated microfluidics
platforms: bulk of cells are divided into wells of small volumes (nL-pL) with
microtubules; the DNA content of each single cell is then amplified with
PCR and barcoded before sequencing, in order to retrieve to which cell the
sequencing reads belong.

RNA-seq RNA-seq is a recently developed approach to transcriptome pro-
filing that uses deep-sequencing technologies [10]. The transcriptome is the
complete set of transcripts, namely all species of RNA, and their quantity,
for a specific developmental stage or physiological condition of a cell. RNA-
seq provides a powerful tool to investigate many aspects of gene expression:
the transcriptional structure of genes in terms of their start sites and 5 and
3 ends; splicing patterns and other post-transcriptional modifications; the
changes of the expression levels of each transcript during development and
under different conditions.

RNA-seq is realized by high-throughput sequencing of the so called com-
plimentary DNA (cDNA), namely the DNA sequence corresponding to the
RNA molecule. There are essentially three general steps to prepare a cDNA
library for RNA sequencing:

1. RNA isolation. RNA is isolated from tissue and mixed with deoxyri-
bonuclease (DNase), an enzyme capable of digesting DNA. In this way,
the amount of genomic DNA is reduced.

2. RNA selection. Depending on the type of experiment, the isolated RNA
can either be kept as it is, filtered to remove ribosomal RNA (which
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constitutes over 90% of RNA in a cell) or selected to bind specific DNA
sequences.

3. cDNA synthesis. the RNA is reverse transcribed to cDNA. Reverse
transcription results in loss of strandedness, which can be avoided with
chemical labeling. Fragmentation and size selection are performed to
purify sequences that are of appropriate length for the sequencing ma-
chine. The final cDNA fragments are then barcoded and sequenced.

Transcript levels for each gene are then determined with various data
analysis techniques.

ChIP-seq Chromatin immunoprecipitation followed by massively parallel
sequencing (ChIP-seq)is a method to identify mammalian DNA sequences
bound by transcription factors and other proteins in vivo and in a genome-
wide fashion [11]. The process can be summarized in four steps:

1. DNA and associated proteins are cross-linked with formaldehyde fixa-
tion, thus strengthening their bond;

2. the DNA-protein complexes are sheared into 500 bp fragments by son-
ication or enzymatic digestion, using a micrococcal nuclease;

3. DNA fragments are selectively immunoprecipitated from the cell with
the use of an antibody specific to the protein of interest;

4. the resulting fragments are purified by reversing the cross-linking of the
DNA-protein complex, usually through heating;

5. the final DNA fragments are tagged with adapters and sequenced;

6. a subsequent computational analysis allows to determine the DNA se-
quences enriched against the background, which represent the ones as-
sociated with the protein of interest.

Enriched DNA sequences resulting from ChIP-seq experiments can be ana-
lyzed to look for characteristic patterns of nucleotides referred to as ”motifs”.
For a protein of interest, the motif represents a sequence to which the protein
is more likely to bind. Promoters and enhancers are thus enriched for motifs
associated to transcription factors.

ChIP-seq can also be used to map histone modifications across the genome.
A series of ChIP-seq experiments targeting H3K4me1, H3K27ac and H3K4me3
can provide the profiles necessary to detect the epigenetic patterns of regu-
latory sequences. ChIP-seq is therefore a powerful probe for detecting active
enhancers and promoters genome-wide.
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MNase-seq MNase-seq is a method for determining the positions of nu-
cleosomes across the genome [12].

Micrococcal nuclease (MNase) is an enzyme capable of digesting nucleic
acids. However, the nucleosome structure protects the DNA wrapped around
the histone complex, making it resistant to the enzymatic digestion. As a
consequence, the addition of MNase to the DNA leaves undigested footprints
of about 150 bp, which is the length of the DNA wrapped around the histone
octamers. Sequencing each end of these fragments and mapping them onto
a reference genome is thus sufficient to find nucleosome positioning genome-
wide.

DNase-seq DNase-seq is a method to find open chromatin regions in the
genome [13].

It takes advantage of an enzyme, Deoxyribonuclease I (DNase I), which se-
lectively digests nucleosome-depleted regions, whereas condensed and wrapped
DNA is more resistant.

Open regions of chromatin are therefore preferentially and more fre-
quently fragmented; as a consequence, the mapping of these fragments onto
a reference genome allows to find the positions of open chromatin regions.
Given the fact that some condensed regions can also be fragmented by chance,
peak calling approaches performed on all the aligned reads give rise to the
so called hypersensitive sites (HS), which are the regions most reliably and
frequently open in the ensemble of cells considered.

A disadvantage of DNase-seq is that it usually requires a high quantity of
input material (several millions of cells), on the one hand for the experimental
assay itself and on the other hand to find the hypersensitive sites. However,
a recent modification of the experimental technique has managed to apply
DNase-seq to single cells [14].

ATAC-seq Assay for Transposase-Accessible Chromatin followed by high-
throughput sequencing (ATAC-seq) is a novel technique developed by Buen-
rostro et al [15] to determine open regions of chromatin.

ATAC-seq takes advantage of a hyperactive prokaryotic enzyme, the Tn5
transposase, which is loaded in vitro to the cells. Transposases are a class
of enzymes which catalyze the insertion of short DNA sequences (the trans-
posons) into a genome. These transposons can be part of the same genome
or external nucleotide sequences: in this case, the Tn5 transposase is loaded
with sequencing adapters; as a consequence, its addition allows to simulta-
neously fragment and tag the DNA with adapters. This process is called
”tagmentation” [16] and its principle is also employed in standard DNA se-
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quencing.
In ATAC-seq, the Tn5 integrates only into regions of accessible chromatin,

and therefore the resulting fragments come from nucleosome-depleted loci.
After a PCR amplification step, the fragments can be sequenced to map open
regions of the genome (Figure 1.3).

ATAC-seq profiles consistently overlap with DNase-seq hypersensitive
sites and in some cases can also be used to identify transcription factor bind-
ing sites without ChIP-seq: CTCF, for example, has been shown to exhibit
a peculiar pattern of ATAC-seq signal [15].

The main advantage with respect to DNase-seq is that ATAC-seq is feasi-
ble with low input material, and therefore it can be reliably applied to single
cells (scATAC-seq) without particular restrictions [17].

Figure 1.3: ATAC-seq technique (licence: Wikimedia Commons)

WGBS Whole Genome Bisulfite Sequencing (WGBS) is a technique that
allows to map the pattern of DNA methylation across the genome.

Treatment of DNA with bisulfite (HSO−3 ) converts cytosine residues to
uracil, but leaves 5-methylcytosines unaffected. Thus, the specific changes
introduced in the DNA sequence by the bisulfite treatment depend on the
methylation status of individual cytosine residues, yielding information about
the methylation status of a segment of DNA at the single nucleotide resolu-
tion [18].

DNA methylation was previously investigated in a targeted manner for
relatively small genomic regions; with the advent of WGBS, genome-wide
mapping has become feasible.

26



3C, Hi-C Chromosome Conformation Capture techniques are used to an-
alyze the spatial organization of chromatin in cell nuclei. They quantify the
number of interactions between genomic loci that are nearby in 3D space, but
may be separated by many nucleotides in the linear genome. First, the cell
genomes are cross-linked, ”freezing” existing interactions between genomic
regions. The genome is then cut into fragments. Next, random ligation is
performed in order to quantify the proximity of fragments, because fragments
are more likely to be ligated to nearby mates.

The first method, 3C, was developed in 2002 by Dekker et al. [19]. It is
capable of quantifying experimentally the interactions between a single pair
of genomic loci, for example two candidate regulatory elements. As a conse-
quence, it was a low-throughput technique. On the other hand, the recently
developed Hi-C technique [20] uses high-throughput paired end sequencing,
which retrieves short sequences from each end of each ligated fragment. As
a consequence, all possible pairwise interactions can be found.

ChIA-PET Chromatin Interaction Analysis by Paired-End Tag Sequenc-
ing (ChIA-PET) is a technique that incorporates chromatin immunoprecip-
itation, chromatin proximity ligation, Paired-End tags and high-throughput
sequencing to determine long-range chromatin interactions genome-wide [21].

The ChIA-PET method combines ChIP-based methods and Chromosome
Conformation Capture to extend the capabilities of both approaches. The
issues of non-specific interaction noise found in ChIP-seq are solved by son-
icating the ChIP fragments in order to separate random attachments from
specific interaction complexes. Chromatin proximity ligation based on 3C
and Paired-End sequencing allows then to map anchor regions of the same
protein on the DNA strand, thus directly revealing three dimensional folding
structures of chromatin such as loops and rosettes.

1.5 Enhancer-promoter targeting

Active regulatory elements need to be accessible and nucleosome-free in order
to harbor transcription factors. As a consequence, they should overlap DNase
I hypersensitive sites or ATAC-seq peaks. Moreover, as mentioned before
active enhancers have flanking regions with nucleosomes carrying H3K4me1
and H3K27ac, with low levels of H3K4me3; conversely, active promoters are
marked by high levels of H3K4me3 and low H3K4me1, and can also be defined
as regions surrounding Transcription Start Sites. TSS can be mapped with
transcription (RNA-seq) data. As a consequence, active regulatory sequences
can be defined as regions with specific patterns of histone modifications which
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overlap open chromatin loci [5]. Enhancer elements have also been shown to
have low levels of DNA methylation [22].

1.5.1 The relevance of enhancers in diseases

Experimental assays have revealed a high degree of spatiotemporal cell type
specificity of enhancers, whereas promoters appear to be more conserved
across time points and developmental lineages [23]. It is thought that en-
hancers bound by critical lineage-specifying transcription factors help to
establish the precise order of expression of both protein-coding genes and
non-coding RNAs. As a consequence, changes in enhancer sequences, ac-
tivity and targeting can be associated with diseases [23]. Single Nucleotide
Polymorphisms (SNPs) can impact the binding of transcription factors, thus
altering gene expression [22]. SNPs, somatic mutations and chromosomal re-
arrangements that relocate enhancers have been found to drive diseases such
as Burkitts lymphoma, acute myeloid leukemia and also non-hematopoietic
cancers [23]. Chronic lymphocytic leukemia (CLL) has also been indicated
as an epigenetic disease, since it is associated with a deacetylation of H3K27,
that causes enhancers to inactivate.

Mutated or variant enhancers, when associated with a particular disease,
may become potential therapeutic targets for epigenetic drugs [23]. Impor-
tantly, the cell type specificity of enhancers may enable more precise therapy
in the framework of personalized medicine, which is becoming a feasible op-
tion as the costs of sequencing experiments decrease.

1.5.2 Targeting models

As reported before, enhancers can be located at long distances upstream or
downstream of target promoters/genes. Multiple models have been proposed
to explain enhancer-promoter targeting. The two most common models are
”scanning or tracking”, in which TF-containing protein complexes bind at an
enhancer and diffuse along the genome to search for a target promoter, and
”looping”, in which an enhancer is brought into direct contact to its target
promoter by chromatin loops [23].

The ”scanning” model implies that an enhancer should regulate exclu-
sively the nearest active promoter. However, experimental evidences suggest
that long-range interactions in which an enhancer bypasses multiple promot-
ers to regulate a more distally located gene are also possible, therefore this
model is not sufficient to explain the phenomenon. Moreover, recent studies
on multiple nuclear architecture have provided further evidence in support
of the ”looping” model [23].
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Chromatin loops occurs through protein-protein interactions mediated by
transcription factors bound at the two ends of the loop. Structural proteins
such as CTCF and proteins of the cohesin complex intervene in the formation
and stabilization of the loop (Figure 1.4).

Figure 1.4: The structure of a chromatin loop (licence: Wikimedia Commons)

At both the global level and within a given cell type, the number of
enhancers is bigger than the expressed genes. Therefore, enhancer-promoter
interactions are not limited to one-to-one relationships: rather, an enhancer
can contact multiple promoters and vice versa. Enhancer specificity suggests
that a gene can be regulated by different enhancers in different cell types. As
a consequence, enhancer targets have to be identified in a cell type specific
manner.

1.5.3 Assaying enhancer-promoter linkages

There are two possible classes of methods to assay enhancer-promoter tar-
geting:

1. methods based on physical interactions;

2. methods based on gene expression association.

The first class requires the use of chromosome conformation capture tech-
niques. In Hi-C experiments, it has been found that only a small subset of
chromatin interactions can be associated with enhancer-promoter linkages.
As a consequence, Hi-C alone is not sufficient for the purpose. One way to
increase resolution is to focus only on a subset of interactions of interest, us-
ing methods such as the previously described ChIA-PET. This method can
be used to map all interactions at a subset of enhancers bound by a specific
TF (for example CTCF) or showing RNA polymerase [23].
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Chromatin compartmentalization arising from Hi-C experiments have
suggested that enhancers are restricted to regulating promoters within spec-
ified chromatin boundaries, namely within TADs. CTCF is known to act as
an insulator and can be found at TAD boundaries as well as in chromatin
loops. However, CTCF binding sites are also located inside a loop. These by-
passed CTCFs could be involved in enhancer-promoter interactions of other
cell types, but this mechanism is unclear. Moreover, spatial contact does not
necessarily imply a functional linkage, therefore methods based on physical
interactions alone are not sufficient to describe enhancer-promoter targeting,
although they provide valuable insights.

For the second class of methods, epigenetic techniques allow to correlate
enhancer activity with target gene expression across different cell types and
conditions. Activity can be assessed through assays for DNA accessibility, hi-
stone modifications or DNA methylation levels, while gene expression is mea-
sured with RNA-seq. These correlation-based analyses provide approaches to
predict individual putative enhancer-gene linkages on a genome-wide scale,
although some of these could be indirect.

1.5.4 Co-occurrence of open chromatin as a targeting
model

In this work, an additional method based on histone modifications and open
chromatin maps assayed at the single cell level is proposed.

As reported before, one of the main issues for some experimental tech-
niques is the high number of input cells required. The inability to distinguish
between individual cells is particularly detrimental when the goal is to inves-
tigate enhancers activity, since as reported before they exhibit temporal and
cell cycle stage specificity. When large groups of cells are assayed together,
this heterogeneity is masked and the predictions for enhancer-promoter link-
ages are less accurate.

Fortunately, ATAC-seq technique overcomes this limitation and allows
single cell assays. As a consequence, with enhancers and promoters annotated
via histone modification patterns, it is possible to evaluate which regulatory
regions are accessible together in each single cell. If co-occurrence of open
chromatin in two regulatory regions is recurrent across many single cells, then
the two elements are likely to have a functional relationship. This feature
can be robustly assessed with pairwise correlation scores.

In this way, putative chromatin networks between enhancers and pro-
moters can be constructed and their change in disease conditions can be
investigated, thus giving additional insights into epigenetic alterations and
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possible therapeutic strategies to address them.
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Chapter 2

Statistical and computational
methods for genomic data
analysis

2.1 Overview

Novel high-throughput experimental techniques such as Next Generation Se-
quencing yield a considerable amount of data, which allows the investigation
of biological principles in a more systematic and robust way. To this end,
data analysis requires tailored statistical as well as computational methods
to be developed.

Here some of these techniques are introduced, with a focus on the ones
that have been employed for the experimental data analyzed in this work.

2.2 Bioinformatic processing

Raw sequencing data is basically constituted by the sequence of nucleotides
and the quality scores. Developing algorithm and pipelines to extract mean-
ingful information is a challenge in Genomics and Epigenetics, since the enor-
mous amount of data requires fine tuning and optimization to keep the com-
putational times and costs low. Moreover, each experimental technique can
give rise to biases in the data which have to be addressed throughout the
whole downstream analysis.

The bioinformatic pipeline is specific for the type of experimental data
available and the purpose of the analysis. However, some basic steps are
performed most of the times, such as quality control, alignment to a reference
genome, peak calling and visualization.
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Quality control Data coming from NGS machines is usually in FASTQ
format, which is a flat text file with four lines for each read. The first line
contains meta information about the instrument name, the run ID, the lo-
cation on the flowcell, the index sequence and whether it is Single-End or
Paired-End. The second line is the raw read sequence, with an ”N” where
it was not possible to determine the base. The third line includes an op-
tional description. The fourth line contains the Phred quality score for each
nucleotide in hexadecimal ascii code, which is defined as

Q = −10 · log10(P ) (2.1)

where P is the probability that the call was incorrect. As a consequence,
scores above 30 are considered high, since the probability of sequencing error
is below 10−3. The quality usually decreases towards the end of the read,
since random trimmings of the fragments in the cluster accumulate, making
the signal more heterogeneous. However, this is usually a problem only for
long reads.

Tools such as FASTQC [24] provide summaries for quality assessments.

Alignment to a reference genome The most fundamental step is to
align the raw reads to a reference genome assembly, in order to find which
positions and which chromosomes they were fragmented from. Reference
genomes have been constructed over the years from a large amount of se-
quencing data, and the assembly have been performed by concatenating par-
tially overlapping reads. A version of the human genome often used as a
reference is Human Genome 19 (hg19).

The most popular tools are Bowtie and Bowtie2 [25], which are fast and
memory-efficient implementations of string alignment algorithms. It is pos-
sible to tune many parameters, such as the maximum number of mismatches
allowed, how to handle low quality base calls and whether or not multiple
aligning positions for a single read must be reported. For Paired-End reads,
a maximum allowed length of the fragment can also be set. The alignment
process is randomized in order to avoid mapping bias.

As reported before, it is possible that if the read length is bigger than
the size of the fragment, the adapter at the opposite end (or part of it)
can also be sequenced and therefore the read can not be mapped (adapter
contamination). To solve this problem, substrings of the adapter can be
trimmed from the raw data after the first mapping, and the resulting shorter
reads can be remapped.

Alignments are reported in SAM format, with all the information on the
mapping results and the positioning of each read (chromosome, start and
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end points, ”+” or ”-” strand). With Samtools [26] it is possible to convert
SAM files into a compressed binary version, namely the BAM format. A
minimal and easy to read file format termed BED is also available; BED files
can be generated with Bedtools [27] and contain only the information on the
location and strand of the mapped reads.

From the alignment files, a metric termed coverage can be determined:
the coverage describes the average number of reads that align to or ”cover”
known reference bases.

Peak calling As reported before, many experimental techniques generate
reads which map genome-wide, but that can be enriched in certain genomic
loci of interest. To extract these regions, a peak calling approach is required.
Peak calling is equivalent to finding the genomic positions whose coverage is
greater than the background in a statistically significant way.

Model-Based Analysis of ChIP-seq (MACS) [28] is a powerful software to
identify statistically significant enriched genomic regions in ChIP-seq, DNase-
seq and ATAC-seq data. MACS computes a background model as a random
Poisson distribution with local lambda, which means that each enrichment is
assessed locally. In this way, if the coverage is not uniform along the genome,
peaks found in regions of low coverage are also detected.

The program yields the peak summits, their extension, the p-value and
the fold enrichment against the background. The user can thus choose a
cutoff and only keep higher peaks.

Visualization Integrative Genome Viewer (IGV) [29] is one of the most
common tools to visually inspect mapped reads and called peaks. It allows
to load multiple tracks from a variety of formats and the indexing of big files
makes the browsing fast and memory-efficient.

Tracks loaded can be explored at any scale, from single nucleotide up to
whole genome or whole chromosome. In this way, coverage of genomic loci
of interest can be easily browsed, and the results of many experiments can
be overlaid and inspected. For example, ChIP-seq alignment files or called
peaks can be overlaid for different histone modifications: enhancer regions
will show a good overlap between H3K4me1 and H3K27ac tracks, as shown
in Figure 2.1.
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Figure 2.1: IGV snapshot for H3K4me1 (upper track), H3K4me3 (middle
track) and H3K27ac (lower track)

2.3 Statistical methods

2.3.1 Probability distributions

In Statistics, a probability distribution is a function which describes a random
phenomenon in terms of the probabilities of events [30].

A discrete probability distribution, also known as probability mass func-
tion (PMF), assigns probabilities p to an enumerable set of N different events
characterized by an ordered, real variate xi, such that

N∑
i=1

p(xi) = 1 (2.2)

On the other hand, in a continuous probability distribution the probability
P to find the random variable x in the interval [x1, x2] is given by

P (x1 < x < x2) =

∫ x2

x1

f(x)dx (2.3)

where f(x) is known as probability density function (PDF). A discrete prob-
ability distribution can be described as continuous if one takes into account
a set of Dirac delta functions.

Distributions have characteristic quantities associated to them that can
be derived as moments. The n-th moment of f(x) and p(x) respectively is

µn = E(xn) =

∫ ∞
−∞

xnf(x)dx (2.4)

and

µn = E(xn) =
∞∑
k=1

xnkp(xk) (2.5)

The first moment is the mean µ; the second moment is the variance σ2, which
is related to the width of the distribution; the third moment is the skewness,
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which is a measure of asymmetry; the fourth moment is termed kurtosis and
it is related to the shape of the tails of the distribution.

The Gaussian distribution The Gaussian or Normal distribution with
mean µ and variance σ2 is defined as

N(x|µ, σ) =
1√
2πσ

e
−

(x− µ)2

2σ2 (2.6)

Many distributions arising from natural phenomena are well approximated by
the Normal distribution. The reason is the effect of the central limit theorem,
according to which the mean value of a large number N of independent
random variables, obeying the same distribution with variance σ2

0, approaches
a Normal distribution with variance σ = σ2

0/N .
The central limit theorem applies also when the individual variates follow

different distributions provided that the variances are of the same order of
magnitude.

The Negative Binomial distribution The Negative Binomial is a dis-
crete probability distribution of the number of successes k in a sequence of
independent and identically distributed Bernoulli trials (a random experi-
ment with two possible outcomes, ”success” with probability p or ”failure”
with probability 1− p) before a specified number of failures r occurs.

The probability mass function of the Negative Binomial is

NB(k|r, p) =

(
k + r − 1

k

)
· (1− p)rpk (2.7)

Its mean and its variance are respectively

µ =
pr

1− p σ2 =
pr

(1− p)2 (2.8)

The Negative Binomial can be used as an alternative to the Poisson dis-
tribution to model count data. It is especially useful for discrete data over an
unbounded positive range whose sample variance exceeds the sample mean.
In such cases, the observations are overdispersed with respect to a Poisson
distribution, for which the mean is equal to the variance, thus making the
Poisson distribution not an appropriate model. Since the negative binomial
distribution has one more parameter than the Poisson, this second parameter
can be used to adjust the variance independently of the mean. This effect
rises from the fact that the data is affected by an unobserved heterogeneity.
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The Negative Binomial has been successfully employed in gene expression
experiments [31]. One of the goal of RNA-seq data analysis is to find genes
that are differentially expressed across groups of samples, and the statistical
approaches have to account for small replicate numbers, discreteness, large
dynamic range and the presence of outliers. In this context, read counts can
be modeled as following a negative binomial distribution.

This approach can be extended for other comparative high-throughput
sequencing assays, including ChIP-seq, chromosome conformation capture
and chromatin accessibility experiments.

The Beta distribution The Beta distribution is a continuous probability
distribution defined on the interval [0, 1] and parametrized by two positive
shape parameters, α and β.

The probability density function is

Beta(x|α, β) =
1

B(α, β)
xα−1(1− x)β−1 (2.9)

where the normalization coefficient

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
(2.10)

is the Beta special function.

The beta distribution has been applied to model the behavior of random
variables limited to intervals of finite length in a wide variety of disciplines.

Especially, the beta distribution has been shown to provide a good model
for distances between random points. Srinivasa and Haenggi [32] have proven
that the distribution of the distance to the n-th neighbor from an arbitrarily
chosen point in a population of independently and uniformly distributed
points in a set W of arbitrary shape is a beta distribution.

Mixture models A mixture model is a probabilistic model for representing
the presence of subpopulations within an overall population. It corresponds
to the mixture distribution of two or more probability distributions describing
the individual subpopulations.

For example, a Gaussian Mixture Model is a probabilistic model that
assumes all the data points are generated from a mixture of a finite number
of Gaussian distributions (in general multivariate) with unknown parameters
[33].
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The model is defined as a weighted sum of M Gaussian density compo-
nents given by

p(x|λ) =
M∑
i=1

ωig(x|µi,Σi) (2.11)

where x is a D-dimensional data vector, ωi, i = 1, . . . ,M are the mixture
weights and each Gaussian component is defined as

g(x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

{
−1

2
(x− µi)′Σ−1i (x− µi)

}
(2.12)

with mean vector µi and covariance matrix Σi. The mixture weights are
constrained to

M∑
i=1

ωi = 1 (2.13)

In Genomics, Mixture Models are applied when subpopulations or bi-
modal effects are expected in the data. For example, they have been recently
employed in gene expression experiments with transcripts coming from two
species [34].

Inverse participation ratio The inverse participation ratio (IPR) is a
metric which can be used to identify the flatness or, conversely, the sharpness
of an empirical distribution. It is defined as

IPR =
1∑N
i p

2
i

(2.14)

where pi is the probability for value (or bin, in a histogram representation)
i. If the distribution is sharp, showing one or a few peaks well above a
background, the IPR has a small value, tending towards 1, which is obtained
for a given k such that

p(i=k) = 1 p(i 6=k) = 0 (2.15)

On the other hand, if the distribution is flat the IPR tends towards the total
number of values or bins N , which is the case for

pi =
1

N
∀i ∈ {1, ..., N} (2.16)

Inverse participation ratio is frequently applied in various fields of Physics
as a measure of localization [35] [36] [37].
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2.3.2 Correlation coefficients

Two random variables or two sets of data have an association if they are
statistically related. As a particular case of association, correlation implies
a dependence, linear or monotony. Formally, dependence refers to any situ-
ation in which random variables do not satisfy a condition of probabilistic
independence, therefore it does not necessarily imply causality.

Correlation assessments are applied extensively in many fields of biologi-
cal and natural sciences.

Pearson correlation coefficient Pearson product-moment correlation co-
efficient is a measure of the linear dependence between two variables obtained
by dividing their covariance by the product of their standard deviations.

The population correlation coefficient rX,Y between two random variables
X and Y with expected values µX and µY and standard deviations σX and
σY is defined as

rX,Y =
cov(X, Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
(2.17)

The sample correlation coefficient, on the other hand, is obtained by substi-
tuting the expected values with finite sums over the n terms:

rx,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.18)

where x̄ and ȳ are the sample means of n variates.
As a consequence, rxy = 1 represents total positive correlation, rxy = −1

total negative correlation or anticorrelation and rxy = 0 no correlation.
Statistical significance of the Pearson correlation coefficient can be as-

sessed with permutation tests, bootstrap or with a statistical test.
In the null case of no correlation, the statistic

t = r ·
√
n− 2

1− r2 (2.19)

is distributed like a Student’s t-distribution with ν = n−2 degrees of freedom
[38]. As a consequence, the significance is higher for high numbers of terms
n and great values of correlation.

Spearman correlation coefficient Spearman’s rank correlation (ρ) is a
nonparametric measure of statistical dependence between the ranking of two
variables, i.e. the relative positioning of the observations within them. It is
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calculated as the Pearson correlation coefficient between the ranked variables
RankX , RankY :

ρ =
cov(RankX , RankY )

σRankXσRankY
(2.20)

While Pearson’s correlation assesses only linear relationships, Spearman’s
correlation is suitable also for monotonic relationships. Significance can be
calculated similarly as for the Pearson correlation coefficient.

The Phi coefficient The Phi coefficient φ is a measure of association
between binary variables, which is equivalent to the Pearson’s correlation
coefficient between them. Given the 2x2 contingency table

Vector-2

Vector-1 1 0

1 a b
0 c d

Table 2.1

The Phi coefficient is defined as

φ =
ad− bc√

(a+ b)(c+ d)(a+ c)(b+ d)
(2.21)

φ is related to a χ2 statistic with (2− 1)x(2− 1) = 1 degree of freedom as

χ2 = n · φ2 (2.22)

and this equation allows to evaluate significance. Similarly to other correla-
tion metrics, φ is significant if its value or the number of observations n are
high.

2.3.3 Stochastic processes

A stochastic process is a probability model used to describe phenomena that
evolve over time or space. As opposed to a deterministic process, it represents
evolution of a system described by a variable whose change is subject to a
random variation.

A stochastic process can be formalized as the joint probability density
function of a collection of random variables X(t) representing the evolution
in time (or, depending on the system, space) from the initial state to state
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at the time point t. This evolution is not deterministic, therefore it can’t
be described with a differential equation. In the most extreme cases, for
two different time points t1 and t2, the variables X(t1) and X(t2) can even
be stochastically independent, although processes of interest usually show
correlation between the states.

Stochastic processes can be classified as

• Markovian or non-Markovian, if each state depends uniquely on its
immediately previous one or not;

• with discrete or continuous time points

• with discrete or continuous state values

Stochastic processes can be described with stochastic differential equa-
tions, in which fluctuating terms with certain statistical properties are su-
perimposed to a deterministic equation. They are used to model real systems
for which the randomness and stochasticity can not be neglected.

Random walk The random walk is a well known stochastic process which
describes a succession of random steps. It is an example of Markov chain
with discrete time points and states.

In one dimension, it represents the movement of a particle in one of the
two directions, with probability p and 1− p. As a consequence, the state at
time ti only depends on the state at time ti−1.

Formally, given a succession of independent random variables Z1, Z2, ...
which can take either the value +1 or −1 with probabilities p and 1 − p
respectively, the random walk Sn can be defined as the series

Sn =
n∑
j=1

Zj (2.23)

which corresponds to the position after n steps of the walk. The mean value
is

E(Sn) =
n∑
j=1

E(Zj) = 0 (2.24)

whereas the expected translation distance E(|Sn|) after n steps is of the order
of
√
n.

The random walk has been used as a model for both DNA sequences and
biological networks for disease gene identification [39] [40].
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Hidden Markov model A hidden Markov model (HMM) is a statistical
model in which the system is assumed to be a Markov process with unob-
served states.

In simpler Markov models the state is directly visible to the observer,
and therefore the state transition probabilities are the only parameters. In
a hidden Markov model, the state is not directly visible, but the output,
dependent on the state, is visible. Each state has a probability distribution
over the possible outputs. Therefore, the sequence of outputs generated by
an HMM gives some information about the sequence of states.

Formally, the observed output sequence can be denoted as X = x1x2...xL
and the underlying state sequence as Y = y1y2...yL, where yn is the underly-
ing state of the n-th observation xn. Each output takes on a finite number
of possible values from the set of observations O = {O1, O2, ..., ON} and each
state takes one of the values from the set of states S = {1, 2, ...,M}.

As a Markov chain, the state j only depends on state i occurring at the
immediately previous time point. The probability for making the transition
from i to j is termed transition probability t(i, j). The initial state probability
is defined as π(i) = P{y1 = i{, for all i ∈ S}. Finally, the emission probability
that the n-th observation xn = x only depends on the underlying state yn,
hence P{xn = x|yn = 1{= e(x|i) for all possible observation, states and time
points.

The three probability measures completely specify an HMM, and this set
of parameters can be denoted as Θ.

Therefore, the probability that the HMM will generate the observation
sequence X = x1x2...xL with the underlying state sequence Y = y1y2...yL
can be computed as

P{X, Y |Θ{= P{X|Y,Θ{P{Y |Θ{ (2.25)

where

P{X|Y,Θ{= e(x1|y1)e(x2|y2)...e(xL|yL) (2.26)

P{Y |Θ{= π(y1)t(y1, y2)t(y2, y3)...t(yL−1, yL) (2.27)

The model can be learned given the output sequences by finding the
best set of transition and emission probabilities with parameter estimation
algorithms such as maximum likelihood estimators.

Hidden Markov models frequently find applications in Genomics [41]. An
useful implementation is the automatic chromatin state discovery and char-
acterization realized by the ChromHMM software [42].

As reported before, histone modification marks assayed with ChIP-seq
experiments are characteristic of chromatin states with different functional
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roles, such as promoters and enhancers. ChromHMM is based on a multivari-
ate Hidden Markov Model that allows to learn such hidden chromatin states
directly from histone marks, modeled as outputs, by estimating the transition
and emission probability parameters. As input, it receives a list of aligned
reads for each chromatin mark, which are automatically converted into pres-
ence or absence calls for each mark across the genome, based on a Poisson
background distribution. ChromHMM then outputs both the learned chro-
matin state model parameters and the state assignments for each genomic
position, thus providing an efficient way to automatically extract enhancer
and promoter regions from ChIP-seq experiments.

2.4 Fourier analysis

In mathematics, Fourier analysis is the study of the way general functions
can be represented by sums of simpler trigonometric functions, and it finds
applications in many fields of science, engineering and computation. The
Fourier transform can be an efficient computational tool for accomplishing
certain common manipulations of data or, in other cases, it is itself of intrinsic
interest [38]. In signal processing, the decomposition into periodic functions
provides insights into characteristic frequencies and their contribution to the
signal.

For a one dimensional continuous function f(x) of a real variable x, the
Fourier transform F (u) is a linear operation defined as

F (u) =

∫ ∞
−∞

f(x)e−i2πuxdx (2.28)

Similarly, the inverse transform expresses the original function in terms of
its Fourier transform as

f(x) =

∫ ∞
−∞

F (u)ei2πuxdx (2.29)

where x is the variable of the spatial or temporal domain and u of the fre-
quency domain.

If, on the other hand, the domain is discrete, such as for a set of M
sampled data points, the Discrete Fourier Transform (DFT) is defined as a
Fourier series:

F (u) =
M−1∑
x=0

f(x)e−i2πux/M (2.30)
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and the inverse DFT is

f(x) =
M−1∑
x=0

F (u)ei2πux/M (2.31)

In this way, the frequency components of a periodic or semi-periodic signal
can be investigated.

An efficient implementation of the Discrete Fourier Transform is the
Fast Fourier Transform (FFT), which reduces the computational costs from
O(M2) to O(M logM).

Genomes show periodicities at many levels, from DNA sequences to chro-
matin organization. As a consequence, Fourier analysis is a powerful tool in
Genomics, and it is applied frequently. For example, differential analysis of
genomic sequences belonging to genes or to non coding regions have pointed
to a different Fourier spectrum capable of predicting gene positioning [43].

2.5 Graph models

For structured data, graphs provide an intuitive yet effective model which is
frequently adopted in many fields of science.

In Genomics, graphs are frequently applied to model biological interac-
tions at many levels.

For example, Gene Regulatory Networks is a class of graphs defined by
collections of molecular regulators that interact with each other and with
other substances in the cell to govern the gene expression levels of mRNA
and proteins. These regulators can be DNA, RNA or proteins, and the
interactions can be direct or mediated by RNAs or proteins. The study of
such networks can provide insight into the underlying biological principles
and allow in silico predictions and experiments, such as how gene expression
is affected if one or more nodes of the network are disrupted.

More frequently, graphs have been applied to chromatin conformation
data. Hi-C experiments provide chromosome-wise and genome-wide maps of
interactions between genomic loci, which can be modeled as networks. In this
way, the structure and folding principles of chromatin can be investigated by
analyzing the properties of the graphs.

2.5.1 Basic definitions

A graph or network, denoted as G = (V,E) consists of a finite and non-empty
set of vertices or nodes V and a set of edges E, which are 2-element subsets
of V , namely node pairs [44].

45



Graphs can be undirected if the edges are symmetric or directed if they
rather have an orientation, from one node to the other. If the edges represent
relationships of variable intensity they are associated with weights, and in
this case the graph is termed weighted. An undirected graph is connected if
for each pair of vertices there exist a path composed by one or more edges
that connect them. A bipartite graph is a graph whose vertex set can be
partitioned into two subsets V1 and V2 such that the edges connect only
nodes belonging to V1 to nodes belonging to V2.

The connectivity degree of a node is the number of nodes it is connected
to or, for weighted graphs, the sum of the weights of the edges it shares.

2.5.2 Matrix representations

A natural and useful way to represent graphs is in matrix form.

Adjacency matrix A non weighted graph with N nodes can be repre-
sented with a square N×N adjacency matrix A where for each pair of nodes
i, j Ai,j = 1 if i and j are connected and Ai,j = 0 otherwise. If the graph is
weighted, Ai,j = wi,j, namely the value of the edge between i and j.

The adjacency matrix is symmetric for undirected graphs, and the main
diagonal contains only 0′s if the graph does not have loops (nodes connected
to themselves).

Link matrix The link matrix is a L × 2 matrix where L is the number
of edges in the graph. Each row contains the first and the second node
connected by each edge. It provides an efficient representation for sparse
graphs, i.e. for graphs with a small number of edges which would give rise
to a sparse adjacency matrix.

Laplacian matrix The Laplacian matrix is defined as L = D − A, where
A is the adjacency matrix of the graph and D is the diagonal matrix con-
taining each node’s connectivity degree. The Laplacian matrix is an useful
representation for certain types of network analysis, for example for finding
the disconnected components and subgraphs.

2.5.3 Centrality metrics

Analyzing a graph often involves assessing the relevance of its nodes. This
can be accomplished through various centrality measures.
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Degree centrality The simplest metric for the centrality of a vertex j is
its connectivity degree, also termed degree centrality CD. As reported before,
it is calculated as the number of nodes connected to the given vertex or the
sum of the edge weights shared by it, in case of a weighted graph:

CD(j) =
∑

k|(j,k)∈E

wj,k (2.32)

For a directed graph, degree centrality is divided into indegree and out-
degree, taking into account the direction of the edges connected to the given
vertex.

The distribution of the degree centrality provides information about prop-
erties of the graph such as scaling and global connectivity.

Betweenness centrality The betweenness centrality CB quantifies the
number of times a node j acts as a bridge along the shortest path between
two other nodes. It can be defined as

CB(j) =
∑
s 6=j 6=t

σst(j)

σst−tot
(2.33)

where σst−tot is the total number of shortest paths from node s to node t and
σst(j) is the number of those paths that pass through j.

The betweenness centrality of a node scales with the number of pairs of
nodes (excluded the given node itself) as implied by the summation indices.
As a consequence, the metric can be rescaled by dividing by (N − 1)(N −
2)/2 such that CB ∈ [0, 1]. This is particularly advisable when comparing
betweenness centralities across different graphs.

Salience centrality Another metric based on shortest paths is salience
centrality [45]. For a given node j, the collection of shortest paths to all
other nodes defines the shortest-path tree T (j). T (j) can be represented as a
N×N matrix with 1′s in the positions associated with the links belonging to
at least one of the shortest paths and 0′s elsewhere. Salience can be defined
as the average shortest path tree

S =
1

N

∑
k

T (k) (2.34)

and salient centrality CS as the sum of the salience of each link shared by
the given node j.
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Chapter 3

Statistical properties of open
chromatin profiles and
chromatin loops

3.1 Chromatin accessibility in single cells -

state of the art

Following very recent technological development, single cell high-throughput
experiments are gaining popularity in Genomics. The ability to assay single
cells allows to investigate biological mechanisms with an unprecedented ac-
curacy, since the issues concerning the effects of smoothing introduced by the
heterogeneous ensembles of cells are thus overcome. Most notably, single cell
sequencing gives insights into cell-cell heterogeneity, thus providing a new
framework to characterize cell state in a more precise way.

While single-cell RNA-sequencing is now mature and frequently adopted,
development of assays for chromatin accessibility in single cells has been
realized only in the last two years.

3.1.1 scDNase-seq

Jin et al. [14] managed to overcome the limitation of the high input material
requirement of DNase-seq technique with scDNase-seq. Single cells were
separated by flow cytometry. To prevent loss of the extremely small amount
of DNase I hypersensitive DNA released by DNase I digestion of single cells,
a large amount of circular plasmid DNA as carrier DNA was added. Before
sequencing, the fragments were amplified by PCR with a method capable of
increasing the amplification of genomic DNA versus carrier DNA.
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The technique was applied to tumor samples coming from patients af-
fected by thyroid cancer as well as to normal cells.

Since DNase-seq experiments on ensembles of cells were also performed,
the DNase I hypersensitive sites (DHSs) could be compared. Each single cell
showed an occupancy of 35-59% of the ensemble DHSs.

By integrating single cells RNA-seq experiments, it could be found that
the single-cell DHSs predict enhancers that regulate cell specific gene expres-
sion programs and the cell-to-cell variations of DHS are predictive of gene
expression.

Finally, a comparison of the DHSs in tumor versus normal samples de-
tected thousands of tumour-specific DHSs, many of which were associated
with promoters and enhancers critically involved in cancer development.

3.1.2 scATAC-seq

Developed by Buenrostro et al. [17], scATAC-seq is a fast and relatively cheap
technique to assay single cell open chromatin profiles. The experimental pro-
cedure, described previously, is less complicated and only require an efficient
way to isolate single cells.

Buenrostro et al. realized the isolation with a programmable microfluidics
platform, which divided the cells into wells that could be observed under
an optical microscope and hosted the complete reaction procedure. In this
way, single cells from K562 chronic myelogenous leukaemia and GM12878
lymphoblastoid cell lines were investigated.

Single cells accessibility profiles overlapped known DHSs, and cell-cell
heterogeneity was explored.

Single cell ATAC-seq was also performed by Cusanovich et al. [46] with
a combinatorial indexing approach and without physically dividing the cells.
First, populations of cell nuclei were molecularly barcoded in each of many
wells. Then intact nuclei were pooled, diluted, and redistributed to a second
set of wells, where a second barcode was introduced. Because the overwhelm-
ing majority of nuclei pass through a unique combination of wells, they are
compartmentalized by the unique barcode combination that they receive.
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3.2 Investigation of primary leukemia B-lymphocytes

with scATAC-seq

3.2.1 Chronic Lymphocytic Leukemia - overview

Chronic Lymphocytic Leukemia (CLL) is the most prevalent type of leukemia
in the western world, accounting for ∼ 40% of all adult leukemias [1]. Its
incidence increases with age and reflects a combination of environmental and
genetic factors.

CLL is a malignancy of mature clonal B-lymphocytes that grow in an
uncontrolled manner and accumulate in the blood, bone marrow and other
lymphoid tissues for extensive periods of time. Despite the homogeneous
morphological and immunological phenotype, the clinical outcome of CLL is
variable, reflecting the existence of two main disease subtypes, defined by the
mutational status of the variable region of the immunoglobulin (Ig) genes.
Mutated Ig chain (IGHV-M) is associated with a good prognosis, whereas
CLL with unmutated IGHV (IGHV-UM) is known to be more aggressive
[1] [2]. The current standard therapies for CLL involve combinations of
chemotherapy and drugs impacting B-cell receptor (BCR) signaling, such as
ibrutinib [1].

CLL is also known to be an epigenetic disease, since it shows subtype-
specific epigenome signatures [2] and remarkably elevated levels of histone
deacetylase (HDAC) isoenzymes [47]. As reported before, histone acetylation
is a modification associated with enhancer activity; its depletion can therefore
significantly affect gene expression regulation, even though it is not fully
understood how these processes are involved in CLL clinical development.
Nevertheless, there are epigenetic drugs known as HDAC inhibitors (HDACi)
capable of counteracting histone deacetylaytion, for example panobinostat
[48]. These drugs could provide effective and less aggressive therapeutic
alternatives to chemotherapy, treating the disease in a targeted and precise
way.

As a consequence, in order to more deeply understand the mechanisms of
the disease and to implement the new approaches mentioned, detailed char-
acterizations of the epigenetic profiles and heterogeneity of CLL are needed.

3.2.2 ATAC-seq experiments

In this work, raw data coming from scATAC-seq assays performed on B-
lymphocytes of CLL patients are analyzed. ATAC-seq experiments have
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been performed1 in the laboratories of Genome Organization and Function
research group of the Bioquant and the German Cancer Research Center
(DKFZ), in Heidelberg, as part of a project aiming at characterizing the
disease with various techniques such as ChIP-seq, RNA-seq and ATAC-seq,
both in ensembles of cells and at the single cell level.

For scATAC-seq, cells from three patients (who will be referenced as B01,
B02 and B03 ) have been investigated. Both Single-End and Paired-End
sequencing have been performed, with a read length of 51 bp. The quantities
of single cells for each experiment are summarized in Table 3.1.

Patient # Single-End # Paired-End

B01 89 48 + 74
B02 38 -
B03 65 + 85 70 + 47

Table 3.1: Composition of data set. ”+” denotes the presence of two biolog-
ical replicates.

3.2.3 Bioinformatic processing of raw data

Raw data coming from the sequencing facilities were in FASTQ format. Se-
quencing quality has been inspected with FastQC tool [24] and have turned
out to be above 30. The high quality was also due to the short read length.

Single-End reads for each single cell have been aligned to a a refer-
ence human genome (hg19) with Bowtie [25], allowing for a maximum of
2 mismatches. Reads not mapping uniquely (i.e., to multiple locations of
the reference genome) were discarded. Paired-End reads were aligned with
Bowtie2 [49], which is known to perform better than Bowtie for Paired-
End data, allowing fragments up to 2000 bp to align. Bowtie2 has a more
advanced strategy to score aligned reads than Bowtie: since discarding non-
uniquely mapping reads with mismatches can be too conservative and there-
fore it can lead to throw away a lot of data, Bowtie2 assigns a score to each
alignment based on how ”unique” it is. As a result, alignments with a low
score can be filtered out afterwards. In this case, a threshold of 10 has been
chosen. A significant number of reads presented adapter contamination, con-
taining the whole Tn5 transposase adapter or a substring of it. These reads

1by Dr. Jan-Philipp Mallm, Lara Klett and Sabrina Schumacher, all members of
Genome Organization and Function research group headed by PD DR. Karsten Rippe
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were trimmed with a custom Python [50] script, taking advantage of Biopy-
thon [51] library functions, and then aligned again.

The resulting .sam files were converted to .bam with SAMtools [26], sorted
and indexed with IGVtools for visualization on IGV Genome Browser [29].
A second conversion to .bed format was performed and reads mapping to
mitochondrial DNA were removed.

For each read, the true insertion position of the Tn5 transposase was cal-
culated as the read start plus 4 bp for the ”+” strand and minus 4 bp for
the ”-” strand. The 29-bp binding region was then determined by extending
the insertion position by 14 bp on both sides with a Perl [52] script. After-
wards, exact duplicates (i.e. regions with the same start and end positions)
were collapsed to one entry in each single-cell .bed file, since they mostly
constituted PCR amplification artifacts. In this way, however, insertions in
homologous chromosomes that might have by chance occurred in the same
genomic positions were lost, but this distortion is marginal.

After this processing, unusual peaks of mapped reads in certain genomic
regions were found. This phenomenon was clearly an artifact since many
(> 10 − 20) reads occurred at a distance of 4-6 bp, and this can’t be ex-
plained biologically, since a single cell can contain a maximum of 4 copies
of the genome (when the cell is in a replicative state). It turned out that
these regions overlapped the High Mappability Islands thus defined by the
ENCODE [22] consensus blacklist of hg192. These blacklisted regions are
located within highly repetitive portions of the genome but nevertheless a
lot of sequencing reads from various experiments usually manage to pass the
uniquely mapping filter, thus generating a biased high signal. All of the reads
falling within them were therefore removed.

In many cases more than 4 insertions still occurred within a 51-bp win-
dow on the same strand orientation. This effect was probably caused by
random trimmings of the fragments during the PCR amplification. A second
collapsing operation was therefore performed on the data.

These pre-processing steps had to be performed in such an accurate way
because given the low amount of reads, even relatively small artifacts could
have a high impact on the downstream analysis.

3.2.4 Tn5 sequence specificity

As mentioned before, ChIP-seq data have shown that transcription factors
are more likely to bind specific patterns of nucleotides known as motifs. In

2http://www.broadinstitute.org/~anshul/projects/encode/rawdata/

blacklists/hg19-blacklist-README.pdf
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order to verify whether or not the Tn5 transposase have a similar sequence
preference, all the 29-bp insertion regions from all the single cells have been
aggregated and the actual sequences have been extracted from hg19 with
getFasta function of BEDtools [27]. A Position Weight Matrix (PWM), a
4× 29 matrix with relative frequencies of each of the 4 nucleotides along the
insertion region, has thus been calculated with Biopython functions [51] and
is represented in Figure 3.1.

Figure 3.1: Tn5 transposase sequence specificity

As expected, the plots of complementary nucleotides (A-T, C-G) are sym-
metric with respect to the exact insertion position since the sequencing of
the ”+” or the ”-” strand is equally probable. It can be noticed that the
frequencies are closer to their average values in the human genome (with a
GC content of ∼ 40%) at the boundaries of the binding region. On the other
hand, there are fluctuations around the exact insertion position, even though
there is no clear predominance and no frequency exceeds 0.4. The PWM cal-
culated here is consistent with the one reported by Buenrostro et al [15]. In
conclusion, a binding specificity is present but it is not too prominent.
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3.3 Statistical properties and characterization

3.3.1 Single-End data

The downstream data analysis has been performed with MATLAB [53]. After
all the filtering operations, the number of unique insertions in a single cell
ranges from a minimum of 2588 to a maximum of 252438. The histogram
distribution with 60 bins of the total number of insertions is shown in Figure
3.2 with various fitting functions. Particularly, as previously mentioned the
Negative Binomial has been used in literature to model count data [31].

Figure 3.2: Histogram of total insertions across cells

Despite having followed the same experimental procedure, the average
number of insertions differs patient-wise, with patient B02 yielding about
twice as much as patient B01. The reason for this heterogeneity of the
insertion efficiency is not clear, but the right tail values are hypothesized to
represent chromatin that completely unfolded, causing the Tn5 transposase
to insert anywhere. As a consequence, cells with a number of insertions 3
standard deviations (calculated with the Negative Binomial fit) above the
average were discarded as well as cells with less than 0.2 times the average.
With these thresholds the number of single cells decreases from 277 to 265.

3.3.2 Paired-End data

A similar analysis performed on Paired-End data showed only one clear out-
lier, which had a number of insertions more than 10 times above the average.
Given the fact that with Paired-End sequencing both the ends of each DNA
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fragment are detected, Paired-End data show a significantly higher average
number of insertions than Single-End (after filtering, 37830 versus 26440),
thus enabling a more robust analysis.

The composition of the data set after the filtering operations is summa-
rized in Table 3.2.

Patient # Single-End # Paired-End

B01 79 48 + 74
B02 38 -
B03 63 + 85 70 + 46

Table 3.2: Filtered data set

Paired-End data retain information not only on the positions of acces-
sible chromatin but also on DNA fragments. Fragment lengths have been
calculated with a Perl script, and their distribution is shown in Figure 3.3.

Figure 3.3: Distribution of fragment lengths

It can be noticed that the distribution has a remarkable periodicity of
∼ 200 bp. The peaks corresponding to integer multiples of 200 bp represent
fragments whose two ends are located at opposite sides of an array of one or
more nucleosomes, since DNA is wrapped around them for ∼ 147 bp. As a
consequence, fragments whose length is significantly different from a multiple
of 200 bp are less likely to occur, and therefore less frequent.
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A zoom-in of the fragment length distribution over the small lengths is
reported in Figure 3.4.

Figure 3.4: Distribution of fragment lengths - zoom-in

Another type of periodicity can be seen here, with peaks every ∼ 10 bp.
This feature reflects the pitch of the DNA double helix, which has a similar
size.

To assess these periodicities in a more accurate way, it is possible to per-
form a Fourier analysis. The counts of the fragment length distribution can
be interpreted as a semi-periodic signal with spatial periods. A Fast Fourier
Transform of this signal, shown in Figure 3.5, yields a decaying Fourier spec-
trum, since the signal itself is not purely periodic. The most intense compo-
nent is the zero frequency, also referred to as ”continuous component”, but
two peaks are also present: the first one is located around a frequency of
0.006 bp−1, which gives a period of 167 bp, whereas the second one corre-
sponds to a frequency of 0.0941 bp−1 and consequently a period of around
10.6 bp. These values are therefore even closer to the theoretical ones for the
nucleosome arrays and the DNA helical pitch respectively.

Fitting the Fourier spectrum with a power law (Figure 3.6) shows a be-
havior of S(f) ∼ f−0.82. This exponent is consistent with the model of ”pink
noise” or ”1/f noise”, for which the low frequency components are dominant,
as in this case.

Both the nucleosome and the helical periodicities have also been reported
in other studies [16] [15] [17].
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Figure 3.5: Fourier spectrum for the fragment length distribution

Figure 3.6: Power law fitting of the Fourier spectrum
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3.4 Characteristic distances and chromatin loops

In Genomics, distances between features along the DNA can reveal statistical
properties related to biological features, and as reported before stochastic
processes such as random walks and HMM provide good model for such
features.

For example, Paci et al. [54] investigated the distances between each din-
ucleotide along the genome for many species. A significant difference was
found between mammals and other species for the distribution of the CG
dinucleotide distances, pointing to the fact that the different functional role
of DNA methylation in mammals is reflected by its peculiar statistical prop-
erties.

3.4.1 Distributions of insertion distances in scATAC-
seq data

Since Tn5 transposase insertions tag only open and uncondensed regions of
the DNA, it can be hypothesized that the its spatial distribution along the
genome is capable of revealing structural properties of chromatin.

It has already been shown by the fragment length distribution in Paired-
End data that nucleosomes protect the DNA, thus making it inaccessible; in
order to investigate if this feature can be seen also for higher-order struc-
tures at bigger length scales, it is possible to calculate the distances between
consecutive insertions of the transposase and observe the shape of the distri-
bution they give rise to.

As shown in Figure 3.7 for Single-End data, this distribution is clearly
dominated by small distances, probably since a given open region could host
many close by insertions. As a consequence, a distribution of the distances
in logarithmic scale (with a base of 10), plotted in Figure 3.8, can be more
informative.

It can be noticed that the latter is remarkably bimodal.
The first peak, located around an exponent of 3, shows the small oscil-

lations characteristic of the nucleosome periodicity, the first of which is, as
expected, close to 200 bp.

On the other hand, the second peak is very pronounced and is located
around an exponent of 5. This peak can be hypothesized to represent a char-
acteristic order of magnitude for the length of chromatin loops. As previously
mentioned, loops have actually a length of about 105 bp. Moreover, they are
known to bring distal regulatory elements into close spatial proximity, and a
necessary condition for their activity is their accessibility. As a consequence,
it is reasonable that the two ends of a loop are simultaneously open.
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Figure 3.7: Distance distribution up to 10000 bp

Figure 3.8: Distribution of logarithmic distances - SE data
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In order to quantify the peaks, a Gaussian Mixture Model has been fitted
to the data with MATLAB gmdistribution.fit, and the resulting function has
been overlaid to the plot as a red line.

Bayesian parameter estimation with Expectation-Maximization algorithm
yields the parameters

λ = {ωi, µi,Σi} i = 1, . . . ,M (3.1)

In this case, the model is fitted on 1-dimensional data (the logarithmic dis-
tances) for two Gaussians

p(x|ω1, µ1, σ1, ω2, µ2, σ2) = ω1
1√

2πσ1
e
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2σ2
1

)
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e
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2σ2
2

)

(3.2)
The resulting parameter values are reported in Table 3.3.

ω µ σ

Peak 1 0.37 2.9572 0.4482
Peak 2 0.63 4.8581 0.3322

Table 3.3

A similar trend can be noticed in Paired-End data (Figure 3.9a). How-
ever, in this case the oscillations caused by the nucleosome periodicity are
more pronounced in the first peak.

The irregular shape does not make the distribution for Paired-End data
a good candidate for a Gaussian Mixture Model fit. As a consequence, a
standard Gaussian fit can be performed on the distribution truncated around
the second peak. This fitting and the following ones have been realized with
R package fitdistrplus [55] [56]. In Figure 3.9 the fit and the P-P plot of
empirical versus estimated probability are shown.

The parameter values and the goodness of fit calculated with a Kolmogorov-
Smirnov test (K-S gof) are reported in 3.4.

µ σ K-S gof

5.1294 0.5468 0.024

Table 3.4

The second peak of Paired-End data is therefore only slightly greater than
the corresponding one in Single-End data.
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In order to validate this feature of chromatin accessibility maps, Paired-
End data originated from another scATAC-seq experiment on cells from K562
cell line (Buenrostro et al., 2015 [17]) have been downloaded and analyzed
in the same way.

The distribution of logarithmic distances is very similar to the one pre-
sented before for CLL samples (Figure 3.10a.

The results of the Gaussian fit of the second peak (Figure 3.10) are re-
ported in Table 3.5.

µ σ K-S gof

4.9654 0.5375 0.036

Table 3.5

From the three datasets, the characteristic exponent of the second peak
can therefore be estimated by their average value µATAC and its standard
deviation as σATAC =

∑3
i=1 σ

2
i /3:

µATAC = 4.98 σATAC = 0.28 (3.3)
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(a) Distribution of logarithmic distances - PE data

(b) Gaussian fit of the second peak

(c) P-P plot of the Gaussian fit

Figure 3.9: Paired-End scATAC-seq distances
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(a) Distribution of logarithmic distances - PE data

(b) Gaussian fit of the second peak

(c) P-P plot of the Gaussian fit

Figure 3.10: Paired-End scATAC-seq distances, Buenrostro et al.
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3.4.2 Distributions of anchor region distances in ChIA-
PET data

In order to validate this characteristic length, ChIA-PET data for proteins
involved in chromatin loops have been downloaded from GEO database [57]
and analyzed. Experiments have been performed on a variety of cell lines
(Table 3.6) in many labs [58] [59] [60] [61] [62] [63].

Protein Cell line

CTCF GM12878, HeLa, K562, MCF-7
ESR1 MCF-7

POLR2A HCT116, HeLa-S3, MCF-7, NB4
RAD21 GM12878
RNAPII GM12878, HeLa, HUVEC, K562, MCF-7
SMC1 T-ALL

H3K4me1 K562
H3K4me3 K562
H3K27ac K562

Table 3.6

Proteins analyzed have been selected according to their known structural
or functional role:

• CTCF and ESR1 are transcription factors; CTCF is known to act as
an insulator between TADs or chromatin loops;

• POLR2A and RNAPII are RNA polymerases involved in transcription;

• RAD21 and SMC1 are proteins belonging to the cohesin complex, which
is known to tight together the two ends of chromatin loops;

• H3K4me1, H3K4me3 and H3K27ac are histone modifications associ-
ated, as mentioned before, with the activity of enhancers and promot-
ers.

The distributions of anchor distances for all the proteins taken into ac-
count but RNAPII (in Figure 3.11) show a peak around 105 bp. For POLR2A
there is a peak also around 108 bp. Histograms and Gaussian fits are shown
in Figure 3.12.

The parameters resulting from the fits are summarized in Table 3.7.
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Figure 3.11: RNAPII

Protein µ σ K-S gof

CTCF 5.1371 0.5302 0.02
ESR1 4.867 0.612 0.06

RAD21 5.174 0.408 0.02
SMC1 5.124 0.464 0.04

H3K4me1 4.981 0.290 0.06
H3K4me3 4.979 0.400 0.08
H3K27ac 4.945 0.288 0.06
POLR2A 4.739 0.556 0.07

Table 3.7

The average value of the exponent for ChIA-PET data and its standard
deviation result

µChIA−PET = 4.99 σChIA−PET = 0.16 (3.4)

As a consequence, µATAC and µChIA−PET turn out to be very close to each
other,

µATAC = 4.98± 0.28 ≈ µChIA−PET = 4.99± 0.16 (3.5)

thus suggesting that ATAC-seq insertions occur often at the two ends of a
chromatin loop, whose characteristic length is around 100 kbp.
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(a) CTCF (b) ESR1

(c) RAD21 (d) SMC1

(e) H3K4me1 (f) H3K4me3

(g) H3K27ac (h) POLR2A

Figure 3.12: ChIA-PET distances
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3.4.3 Null model for insertion distances

In order to investigate which is the distribution of distances under the null
hypothesis of uniformly distributed insertions, a null model has been created.

For each single cell, the same number of insertions as for the scATAC-seq
experiments has been spread randomly over a segment of unitary length. The
distances between consecutive insertions have been calculated and aggregated
for all the cells. The resulting distribution in both linear and logarithmic scale
has been then investigated.

In Figure 3.13 and 3.14 the null models overlaid to the original scATAC-
seq distributions are shown for Single-End and Paired-End data respectively.
It can be noticed that the null model has a good correspondence to the second
peak of the experimental data in both cases.

As reported before, the beta distribution provides a good model for ran-
dom variables limited to intervals of finite length. In this case, the distances
are limited by the finite length of the human genome, around 3.2 · 109 bp.
As a consequence the null model can be fitted with a beta distribution: with
the domain in logarithmic scale y = log1 0(x), the beta distribution becomes

Beta(y|α, β) =
1

B(α, β)
10yα · (1− 10y)β−1 · ln(10) (3.6)

For Single-End data, a fit with this function on the null model yielded the
parameters

α = 0.684± 0.016 β = (2.59± 8) · 104 (3.7)

whereas for Paired-End data they are

α = 0.811± 0.008 β = (9.71± 0.12) · 103 (3.8)

Therefore, the second peak of scATAC-seq data, although consistent with
chromatin loop lengths, can be explained also with a random process.

In conclusion, the analysis of the distances between scATAC-seq inser-
tions results in a bimodal distribution. The first peak, for short range dis-
tances, shows the periodicity characteristic of nucleosome arrays, which are
more pronounced in Paired-End data since the second end of each DNA frag-
ment is always hit. The second peak at long range distances is on the one
hand consistent with a characteristic length for chromatin loops assayed with
ChIA-pet, and on the other hand can be modeled with a beta distribution
derived from random ”cuts” on a segment of finite length. This points to the
fact that a share of scATAC-seq insertions occur with the maximum entropy
along the DNA, and since this subset is consistent with chromatin loops it
might be possible that these features occur with the maximum entropy as
well in the genome.
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Figure 3.13: scATAC distance distribution and null model - SE data

Figure 3.14: scATAC distance distribution and null model - PE data

69





Chapter 4

Enhancer-Promoter correlation
networks

4.1 Regulatory elements in CLL B-lymphocytes

As reported before, regulatory elements such as promoters and enhancers
are associated with characteristic histone modification profiles. Promoter
sequences carry a high level of H3K4me3, whereas enhancers are associated
with high levels of H3K4me1 and H3K27ac marks.

As a consequence, the combination of different ChIP-seq experiments for
various histone marks and a computational analysis of the profiles provide a
way to predict the location and extension of regulatory sequences in a given
cell type.

ChIP-seq experiments and analyses have been performed1 on Chronic
Lymphocytic Leukemia B-lymphocytes for target proteins including H3K4me1,
H3K4me3 and H3K27ac in the laboratories of the Computational Oncology
group, which affiliates to the Theoretical Bioinformatics division at the Ger-
man Cancer Research Center (DKFZ), Heidelberg.

The segmentation of promoter and enhancer regions have been realized
with ChromHMM software described before. ChromHMM yielded a total of
238820 enhancer-like and 62065 promoter-like regions in the genome. An ad-
ditional promoter list can be obtain from the annotated 23143 Transcription
Start Sites (TSSs) of the RefSeq database [64]: as reported before, promoter
regions can be defined as TSSs +/- 1000 bp.

The number of regulatory regions for each chromosome correlates with the
chromosome length (r = 0.67− 0.78, depending on the region set), as can be
noticed in Figure 4.1 for RefSeq promoters. In some cases chromosomes show

1by Dr. Naveed Ishaque, PostDoc in the mentioned group
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a higher density of enhancers or promoters: chromosome 19, for example, is
gene-rich and therefore it shows an above average abundance of regulatory
regions with respect to its size.

Figure 4.1: Number of RefSeq promoters vs chromosome lengths

4.2 Accessibility of regulatory elements in sin-

gle cells

4.2.1 Overlap between open chromatin and regulatory
elements

As previously reported, active regulatory sequences require to be open and
accessible in order to harbor transcription factors and regulate gene expres-
sion. As a consequence, an overlap between them and ATAC-seq insertion
profiles is expected.

With the available enhancer and promoter lists, this overlap can be com-
puted as the average share of scATAC-seq insertions occurring within them
across the single cells. The percentages of open regulatory regions can also
be computed, in two ways: the average number of open enhancers/promoters
in a single cell and the percentage of open enhancers/promoters for the ag-
gregated data set, obtained by merging all the insertion positions for all the
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single cells. These quantities can be defined as follows, both for Single-End
and Paired-End data:

Ssc = 〈# insertions within regulatory elements

# total insertions
〉average over all single cells

(4.1)

Ecsc = 〈# open enhancers

# total enhancers
〉average over all single cells (4.2)

Ecaggr = {# open enhancers

# total enhancers
}aggregated data set (4.3)

The last two definitions can be naturally extended also to ChromHMM
promoters Pc and RefSeq promoters Pr.

The results are reported in Table 4.1 and Table 4.2.

ChromHMM enhancers ChromHMM promoters RefSeq promoters

Ssc, Single− End 18.2% 20.0% 14.9%
Ssc, Paired− End 17.0% 17.6% 13.2%

Table 4.1

Single-End Paired-End

Ecsc 1.60% 1.17%
Ecaggr 73.5% 70.8%
Pcsc 5.28% 4.10%
Pcaggr 79.9% 76.9%
Prsc 10.5% 8.14%
Praggr 94.2% 91.0%

Table 4.2

As a consequence, 30-38% of scATAC-seq insertions occur within active
regulatory regions. 5-10% of total promoters and only 1-2% of total enhancers
are open, on average, in a single cell. On the other hand, if one pools all the
single cells in an aggregated data set, 77-94% of promoters and 71-74% of
enhancers are represented.

In conclusion, the accessibility of enhancers and promoters shows a re-
markable heterogeneity between each single cell, probably due to different
cell states.
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4.2.2 Genome-wide accessibility matrices

Enhancer and promoter lists can be merged together and a binary genome-
wide matrix of accessibility M can be constructed. This matrix has a number
of rows equal to the number of single cells and a number of columns equal
to the number of regulatory sequences, enhancers or promoters. Each entry
Mi,j has a ”1” if the region j is open in cell i, i.e. if at least one scATAC-seq
insertion is present, otherwise Mi,j = 0. The binarization comes from the
fact that the accessibility of a region is a binary phenomenon, and the fact
that one region can have more than one insertion is probably simply due to
the stochasticity of the events.

The two alternative definitions of promoters reported above give rise to
two different merged enhancer-promoter lists, one with ChromHMM en-
hancers and ChromHMM promoters and the other with ChromHMM en-
hancers and RefSeq promoters. As a consequence, four accessibility matrices
can therefore be constructed, given the two different types of experimental
data (Single-End and Paired-End).

In Figure 4.2 the accessibility matrix for ChromHMM enhancers-RefSeq
promoters and Single-End data is shown.

Promoter/Enhancer accessibility matrix

0.5 1 1.5 2 2.5

Promoter/Enhancer regions ×105

50

100

150

200

250

S
in

g
le
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e

lls

Figure 4.2: Accessibility matrix
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It is possible to notice that some of the regulatory regions are open in
most of the cells, yielding vertical stripes, while others are blank. The cells
with highest total insertion efficiency also show the highest number of open
promoters/enhancers.

4.2.3 Accessibility patterns across patients

In order to evaluate patient-patient heterogeneity one might compare the
open chromatin patterns for promoter regions across cells of the same pa-
tient (intra-patient) or belonging to different subjects (inter -patient). This
analysis has been performed on Single-End profiles since data for three pa-
tients were present (versus two in Paired-End data).

A promoter pattern Ppatient can be defined as a 1D vector whose elements
are the ratios of open regions for each promoter across the cells of the given
patient s:

Ps =

(∑
i∈sm(i, 1)

Ns

, . . . ,

∑
i∈sm(i, k)

Ns

, . . . ,

∑
i∈sm(i, Npromoters)

Ns

)
(4.4)

whereNs is the number of cells belonging to patient s, and k = 1, . . . , Npromoters

are the indices of promoter regions in the accessibility matrix. A compari-
son between the promoter open chromatin patterns of different patients s1
and s2 can be performed by calculating Pearson’s and Spearman’s sample
correlation coefficients between them:

rPearson(Ps1, Ps2) =
cov(Ps1, Ps2)

σPs1σPs2

(4.5)

rSpearman(Ps1, Ps2) =
cov(rank(Ps1), rank(Ps2))

σrank(Ps1)σrank(Ps2)

(4.6)

Since the distributions of values of these promoter patterns are skewed
towards the left, they can’t be assumed as Gaussian, and therefore rank cor-
relation metrics are more suitable. Standard deviations can be calculated by
repeating the evaluations on 10 subsampled data sets. Tables 4.3 and 4.4 re-
port the inter -patient correlation scores thus calculated, taking into account
both the promoter definitions reported above (RefSeq and chromHMM re-
spectively).

As reported before, significance can be assessed via a t-test with the

statistic t = r
√

N−2
1−r2 with N − 2 degrees of freedom for rPearson, and with

exact permutation tests for rSpearman. In all cases the p-value was negligible.
The resulting correlation values suggest a consistency between the pat-

terns of open chromatin in promoter regions of the different patients. As
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RefSeq
Coefficient B01-B02 B01-B03 B02-B03

rPearson 0.67± 0.02 0.71± 0.03 0.70± 0.03
rSpearman 0.70± 0.03 0.68± 0.04 0.68± 0.03

Table 4.3

chromHMM
Coefficient B01-B02 B01-B03 B02-B03

rPearson 0.68± 0.02 0.70± 0.04 0.69± 0.03
rSpearman 0.64± 0.03 0.64± 0.04 0.61± 0.02

Table 4.4

a further validation step, the calculations can be repeated on a randomly
shuffled accessibility matrix for promoters. As expected, all the resulting
correlation scores are very close to zero.

A similar analysis can be done to assess the intra-patient consistency. In
this case, one can randomly sample in two groups of equal or similar size
the single cells belonging to a given patient and then calculate the pairwise
correlations of the resulting promoter patterns. To increase randomization
and avoid getting a biased splitting, this procedure can be repeated many
times, so that more reliable correlation scores result from averaging over the
different subsamples. In this way, standard deviations can also be calculated.
The results for the intra-patient consistency thus evaluated for 10 subsamples
are reported in Tables 4.5 and 4.6

RefSeq
Coefficient B01 B02 B03

rPearson 0.905± 0.003 0.915± 0.007 0.947± 0.003
rSpearman 0.831± 0.002 0.840± 0.007 0.866± 0.004

Table 4.5

The correlation scores are therefore significantly higher within the pa-
tients than between them, suggesting a clearer consistency between cells be-
longing to the same subject, as would be biologically expected. To further
validate this result and avoid any possible bias due to the fact that the num-
ber of cells for intra-patient is lower than for inter -patient evaluation, it
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chromHMM
Coefficient B01 B02 B03

rPearson 0.922± 0.004 0.928± 0.008 0.953± 0.003
rSpearman 0.734± 0.003 0.741± 0.007 0.704± 0.003

Table 4.6

is possible to apply the randomized subsampling approach to inter -patient
correlation assessments as well. It turns out that even for cell groups of
the same size, intra-patient correlation scores are consistently higher than
inter -patient ones.

4.3 Analysis of correlation networks

4.3.1 Co-occurrence of open chromatin across the sin-
gle cells

The binary accessibility matrices as the one reported in Figure 4.2 show
which regulatory regions are open in which single cells. As mentioned, each
column reports the pattern of accessibility for an enhancer or a promoter.

As mentioned before, if an enhancer regulates a promoter, both of them
need to be accessible in order to harbor transcription factors. As a con-
sequence, it can be hypothesized that two regulatory elements showing the
same accessibility pattern, i.e. being consistently open or closed in the same
single cells, might have a functional relationship.

This relationship can be assessed by measuring the statistical association
between the pair of columns of the accessibility matrix. Since they are binary
vector, rank correlation is unfeasible and the most appropriate metric is the
Phi coefficient, which in practical terms matches the Pearson correlation
coefficient.

Co-occurrence of open chromatin can be assessed for each pair of columns,
thus creating a symmetric square correlation matrix C where entry Ci,j is
the Phi coefficient between regulatory elements i and j.

However, since inter-chromosomal enhancer-promoter targeting are bio-
logically unlikely, the correlation matrices can be constructed in a chromosome-
wise fashion, by limiting the pairwise correlation assessment only to regula-
tory elements belonging to the same chromosome.

In this way, 22 (one for each chromosome, discarding X and Y) correlation
matrices can be constructed for each enhancer-promoter list and each type
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of experiment (Single-End and Paired-End). In order to explore differences
between patients, patient-wise matrices can also be derived by limiting the
correlation assessment to the subset of rows corresponding to cells of each
patient.

Correlation matrices between close regulatory elements can also be de-
rived as block matrices along the main diagonal of the chromosome-wise
correlation matrices.

In Figure 4.3, two examples of correlation matrices are reported. The
values of the Phi coefficients are represented with the heatmap shown on the
right of each matrix. The main diagonal has 1′s, since it represent the corre-
lation of regions with themselves. The blue rectangles overlaid to the matri-
ces represent the boundaries of Topologically Associating Domains (TADs)
found in literature [65] and derived from IMR90 cell line.

In order to avoid spurious correlations, each regulatory element was re-
quired to be accessible in at least 5% of the cells, otherwise it was removed.

Phi coefficient significance has been assessed with a χ2 test, as reported
before. Correlations whose p-value was below 0.05 were discarded and set to
zero.

4.3.2 Correlation networks

Correlation matrices can be interpreted as adjacency matrices of weighted
networks, where the nodes are constituted by enhancers and promoters and
the edge weights are the correlation scores. If enhancer-enhancer and promoter-
promoter correlations are ignored, the graphs are bipartite, only connecting
enhancers to their target promoters.

Submatrices extracted as blocks along the main diagonal of a correlation
matrix can also give rise to (sub-)graphs. One example is shown in Figure
4.4.

Indeed, even though correlations can occur between any two elements
along a chromosome, enhancers are known to regulate promoters up to a
few Megabases upstream or downstream the DNA. As a consequence, the
correlation scores that can be better explained from a biological point of
view are the ones which are relatively close to the main diagonal.

In support to this point, the dependence of the correlation values versus
the genomic distance between loci can be investigated. To this end, distances
up to 10 Mbp have been sampled into 100 bins of 100 kbp each. The average
correlation values related to each distance bin have thus been determined.
This assessment has been performed for each patient, promoter list and type
of experiment.
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(b) Patient B01, chromosome 1, Paired-End

Figure 4.3: Examples of block correlation matrices

Figure 4.5 reports the average correlation versus genomic distance for
Paired-End experiments. The data points have been fitted with a power law,
whose exponents are reported in Table 4.7.

It can be noticed that the average correlation scores are higher for dis-
tances up to 2-3 Megabases and afterwards they become substantially uni-
form and independent of the genomic distance. The same trend is present
by assessing distances up to 20 or 30 Mbp, thus it can be hypothesized that
after 2-3 Mbp a background of spurious correlations is reached. This feature
is in agreement with the fact that enhancer-promoter linkages occur more
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Figure 4.4: Example of correlation network in patient B03, chromosome 2,
Single-End data
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(b) B01, ChromHMM promoters
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(c) B03, RefSeq promoters
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(d) B03, ChromHMM promoters

Figure 4.5: Correlation versus genomic distance

frequently for elements closer than a few Megabases.

In this sense, these curves indirectly reflect the spatial folding of chro-
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Single-End Paired-End
Promoter B01 B02 B03 B01 B03

RefSeq −0.5± 0.2 −0.38± 0.12 −0.67± 0.15 −0.66± 0.07 −0.66± 0.12
HMM −0.43± 0.2 −0.31± 0.13 −0.58± 0.17 −0.82± 0.09 −0.97± 0.12

Table 4.7: Power law exponents of average correlation decay over genomic
distance

matin. It has been found [20] that for Hi-C data the probability of contact
as a function of genomic distance decreases as a power law with exponent
close to -1, thus suggesting a fractal globule-like folding of the DNA. In this
case, the exponents are slightly below the one reported for Hi-C contact, and
they are closer to -1 for Paired-End data, which should indeed reflect more
short-range correlations. For this reason, the following analyses have been
performed only on Paired-End data.

4.3.3 Centrality of enhancers and promoters

In order to quantify the relevance of enhancers and promoters, an approach
based on their role as nodes of these correlation networks can be adopted. In
fact, their centrality in the graphs can be investigated with different metrics.

Degree, betweenness and salience centrality scores have been calculated
for each regulatory region. In order to retain only those interactions that
are explainable biologically, the maximum distance allowed for a correlation
was set to 1, 2 and 3 Mbp, as suggested by the correlation-distance curves
reported before. As a consequence, the centrality of each node has been
assessed by sliding a 2, 4 and 6 Mbp window over the main diagonal of the
correlation matrices.

Figure 4.6 shows a matrix reporting the Spearman correlation between
various promoter centrality vectors. The centrality vectors have been calcu-
lated for Paired-End data of patients B01 and B03, maximum distance 1,
2 and 3 Mbp and with the three metrics mentioned. As a consequence, a
18× 18 symmetric correlation matrix is constructed.

It can be noticed that centrality vectors assessed for different maximum
distances are strongly correlated. On the other hand, the correlation is very
small for different patients. Finally, betweenness and salience centrality are
highly correlated, whereas degree centrality is substantially different.

Among most central genes there are some transcription factors (FOSL1,
ZNF763, ZNF554) and also genes involved in mechanisms characteristic of
B-cells. For example, PTPRCAP, a regulator of T- and B-lymphocyte activa-
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Figure 4.6: Correlation between centrality vectors

tion and ABHD16A, known to be involved in some aspects of immunity [66],
rank among the ones with highest degree centrality.

4.3.4 Statistics of enhancer-promoter connectivity

Correlation networks can give insights into enhancer-promoter connectivity
models. It is still unclear whether a gene is regulated by one or by multiple
enhancers, and whether one enhancer targets only one or more promoters. In
order to try to address these questions, it is possible to evaluate how many
strong correlations each element is subjected to.

By limiting again the assessments to a maximum distance of 3 Mbp, for
each promoter the number of enhancers correlating to it by more than a
certain threshold has been counted. Figure 4.7 reports the histogram for
patient B01, RefSeq promoters and threshold 0.3.

It can be noticed that the most frequent connection model is one promoter
to one enhancer. This feature is even more pronounced if stricter thresholds
are used. In fact, the probability of interaction with one or more enhancers
shows an exponential decay, with shorter characteristic lengths (and thus
steeper decays) for bigger thresholds. Figure 4.8 reports the exponential fits
of curves obtained with thresholds of 0.3, 0.4 and 0.5.

The same results are obtained for patient B03 and ChromHMM promoter
list.

A similar analysis can be repeated for enhancer regions, looking at how
many promoters they regulate. Also in this case, the one enhancer to one
promoter model is the most frequent. However, the exponential decays are
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Figure 4.7: Histogram of the number of enhancers connected to one promoter
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Figure 4.8: Exponential fits for promoters connection models
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less steep, as reported in Figure 4.9.
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Figure 4.9: Exponential fits for enhancers connection models

A direct comparison between the exponential decays of enhancer and
promoter connections is reported in Table 4.8. As a result, it happens more
frequently that an enhancer targets more than one promoter than that one
promoter is regulated by more than one enhancer.

Threshold
Region type 0.3 0.4 0.5

Promoter −0.86± 0.02 −1.96± 0.11 −2.9± 0.5
Enhancer −0.60± 0.01 −1.33± 0.07 −1.70± 0.15

Table 4.8: Decay constants for enhancer’s and promoter’s number of connec-
tions at different thresholds

Another analysis that can be performed is to check whether or not a
promoter is regulated by its closest enhancer. To do so, the enhancer with
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strongest correlation to each promoter can be determined. Figure 4.10 shows
the distribution of the number of enhancers ”skipped” by promoters. The
first bin corresponds to zero skipped enhancers, meaning that only 35% of
the times a promoter is regulated by its closest enhancer, and this number
is consistent to the ones reported in literature [23].

Figure 4.10: Histogram of number of skipped enhancers for each promoter

This feature is partially recapitulated by the distribution of the distances
between promoters and enhancers with strongest connections (Figure 4.11).
Around 31% of the times the distance is less than 200 kbp.

4.3.5 Investigation of superenhancers functioning

As mentioned before, a relevant question in gene regulation is about the
superenhancer functioning. Superenhancers, simply defined as ”large” (over
18 kbp long) enhancers, have been hypothesized to either function as a single,
big, enhancer or as multiple nearby enhancers.

Insight into this question can be provided by single cell open chromatin
profiles. The coverage of superenhancers, namely the positions of open chro-
matin for the aggregated single cells, can be investigated in order to possibly
find peaks of accessible chromatin within them; in this case, superenhancers
would be more likely composed by multiple, localized, nearby enhancers.

An example of scATAC-seq coverage in a superenhancer is shown in Fig-
ure 4.12. At least two, if not four peaks can be noticed, suggesting the
presence of an array of enhancers.
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Figure 4.11: Histogram of distances between promoters and enhancers with
strongest correlation
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Figure 4.12: Example of open chromatin coverage for a superenhancer

In other cases, a more uniform coverage is revealed. In order to assess
this in a systematic way, the inverse participation ratio reported before can
be used as a metric for localization. IPR can be calculated on the binned
coverage of each superenhancer, using the same number of bins set to 50.
Following its definition, it ranges from 1 to 50, and values close to 1 indicate
peaked distributions.

Figure 4.13 reports the distribution of values of inverse participation ratio.

86



Figure 4.14 shows the two superenhancers having the smallest and greatest
IPR respectively. It can be noticed that the distribution is slightly skewed
towards small values, corresponding to highly localized profiles. This would
point to the fact that superenhancers rarely act as single blocks but rather
as arrays of multiple smaller enhancers.

Figure 4.13: Histogram of inverse participation ratio values for superen-
hancers

(a) Smallest IPR (b) Greatest IPR

Figure 4.14: Superenhancers with extreme IPR
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Chapter 5

Conclusions and future
prospects

In the era of single cell Genomics, scATAC-seq has proven itself to be a valu-
able technique to investigate open chromatin in primary tumor cells with an
unprecedented precision. Accessibility profiles in single cells could be derived
for CLL B-lymphocytes and their analysis yielded information on chromatin
structure and mechanisms of gene expression regulation. Importantly, they
also provide the basis for comparisons with healthy cells and tumor cells
treated with epigenetic drugs, which would leverage the possibilities of Per-
sonalized Medicine.

Given the fact that the experimental technique is very recent, the process-
ing of raw sequencing data and their characterization presented a challenge
since no standard pipeline was well established in literature. Biases intro-
duced by PCR artifacts were removed and the sequence specificity of the Tn5
transposase was characterized.

Statistical analyses of open chromatin maps across the single cells reca-
pitulated known structural properties of chromatin architecture. The dis-
tribution of fragment lengths has shown two types of periodicity, one which
is characteristic of nucleosome arrays and the other representing the DNA
helical pitch. Moreover, the distances between consecutive open regions were
consistent with typical lengths of chromatin loops and could partially be ex-
plained with a null model of uniformly spread positions along the genome,
which follows a beta distribution.

As expected, a considerable share of open chromatin regions overlapped
regulatory sequences such as promoters and enhancers. The pattern of ac-
cessibility of promoters was substantially conserved when different subset of
cells were compared. Remarkably, intra-patient consistency was significantly
higher than inter-patient one.
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The accessibility profiles of enhancers and promoters across the single
cells provided a tool to assess functional relationships between regulatory
elements. In this way, chromosome-wise correlation networks could be con-
structed and analyzed. Correlation values decreased as a power law with
the genomic distance, in agreement with the fact that enhancers are known
to regulate promoters whose distance is within a few Megabases. From the
networks, the relevance of regulatory elements could be assessed with various
centrality metrics.

The statistics of enhancer-promoter connectivity were in substantial agree-
ment with known targeting models. The model according to which one pro-
moter is regulated only by its closest enhancer was indeed the most frequent,
but examples of one-to-many relationships have also been found. Moreover,
in some cases promoters ”skipped” enhancers in their neighborhood and were
most strongly linked to distal ones.

Finally, scATAC-seq coverage of superenhancers gave also insights into
their functioning. The frequent localization of open chromatin hotspots
within them pointed to the ”array-of-enhancers” model.

The features and analyses reported here are good candidates for compar-
isons between tumor samples and healthy controls. In particular, healthy
cells should show a higher number of active and accessible enhancers, since
CLL is associated with histone deacetylation. As a consequence, enhancer-
promoter networks should change and promoters should in principle show, on
average, higher values of centrality in healthy controls, especially for disease-
associated genes.

In addition, comparisons with tumor cells treated with epigenetic drugs
such as deacetylase inhibitor Panobinostat could give feedback on their ther-
apeutic efficacy. In the best case scenario, treated cells should recover a
healthy state and share similarities with healthy controls. If the response to
drugs is variable, open chromatin profiles in single cells could help patient
stratification.

In this framework, ATAC-seq is fast and affordable enough to be employed
for clinical decision making, and therefore it is a good candidate to play a
pivotal role in Personalized Medicine in the future.
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[2] André F Rendeiro, Christian Schmidl, Jonathan C Strefford, Renata
Walewska, Zadie Davis, Matthias Farlik, David Oscier, and Christoph
Bock. Chromatin accessibility maps of chronic lymphocytic leukaemia
identify subtype-specific epigenome signatures and transcription regula-
tory networks. Nature Communications, 7, 2016.

[3] James D Watson, Francis HC Crick, et al. Molecular structure of nucleic
acids. Nature, 171(4356):737–738, 1953.

[4] Francis Crick et al. Central dogma of molecular biology. Nature,
227(5258):561–563, 1970.

[5] Rippe (ed.) et al. Genome Organization And Function In The Cell
Nucleus. Wiley-VCH, 2011.

[6] Arthur Lesk. Introduction to genomics. Oxford University Press, 2012.

[7] Jesse R Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin
Shen, Ming Hu, Jun S Liu, and Bing Ren. Topological domains in
mammalian genomes identified by analysis of chromatin interactions.
Nature, 485(7398):376–380, 2012.

[8] HHQ Heng, SA Krawetz, W Lu, S Bremer, G Liu, and CJ Ye. Re-
defining the chromatin loop domain. Cytogenetic and Genome Research,
93(3-4):155–161, 2001.

[9] Illumina. An introduction to next generation sequencing technology
(and references). Technical report.

91



[10] Zhong Wang, Mark Gerstein, and Michael Snyder. Rna-seq: a revolu-
tionary tool for transcriptomics. Nature reviews genetics, 10(1):57–63,
2009.

[11] Gordon Robertson, Martin Hirst, Matthew Bainbridge, Misha Bilenky,
Yongjun Zhao, Thomas Zeng, Ghia Euskirchen, Bridget Bernier,
Richard Varhol, Allen Delaney, et al. Genome-wide profiles of stat1 dna
association using chromatin immunoprecipitation and massively parallel
sequencing. Nature methods, 4(8):651–657, 2007.

[12] Kairong Cui and Keji Zhao. Genome-wide approaches to determining
nucleosome occupancy in metazoans using mnase-seq. Chromatin Re-
modeling: Methods and Protocols, pages 413–419, 2012.

[13] Lingyun Song and Gregory E Crawford. Dnase-seq: a high-
resolution technique for mapping active gene regulatory elements across
the genome from mammalian cells. Cold Spring Harbor Protocols,
2010(2):pdb–prot5384, 2010.

[14] Wenfei Jin, Qingsong Tang, Mimi Wan, Kairong Cui, Yi Zhang, Gang
Ren, Bing Ni, Jeffrey Sklar, Teresa M Przytycka, Richard Childs, et al.
Genome-wide detection of dnase i hypersensitive sites in single cells and
ffpe tissue samples. Nature, 2015.

[15] Jason D Buenrostro, Paul G Giresi, Lisa C Zaba, Howard Y Chang,
and William J Greenleaf. Transposition of native chromatin for fast and
sensitive epigenomic profiling of open chromatin, dna-binding proteins
and nucleosome position. Nature methods, 10(12):1213–1218, 2013.

[16] Andrew Adey, Hilary G Morrison, Xu Xun, Jacob O Kitzman, Emily H
Turner, Bethany Stackhouse, Alexandra P MacKenzie, Nicholas C
Caruccio, Xiuqing Zhang, Jay Shendure, et al. Rapid, low-input, low-
bias construction of shotgun fragment libraries by high-density in vitro
transposition. Genome biology, 11(12):1, 2010.

[17] Jason D Buenrostro, Beijing Wu, Ulrike M Litzenburger, Dave Ruff,
Michael L Gonzales, Michael P Snyder, Howard Y Chang, and William J
Greenleaf. Single-cell chromatin accessibility reveals principles of regu-
latory variation. Nature, 523(7561):486–490, 2015.

[18] Yuanyuan Li and Trygve O Tollefsbol. Dna methylation detection: bisul-
fite genomic sequencing analysis. Epigenetics Protocols, pages 11–21,
2011.

92



[19] Job Dekker, Karsten Rippe, Martijn Dekker, and Nancy Kleckner. Cap-
turing chromosome conformation. science, 295(5558):1306–1311, 2002.

[20] Erez Lieberman-Aiden, Nynke L Van Berkum, Louise Williams, Maxim
Imakaev, Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R Lajoie,
Peter J Sabo, Michael O Dorschner, et al. Comprehensive mapping of
long-range interactions reveals folding principles of the human genome.
science, 326(5950):289–293, 2009.

[21] Melissa J Fullwood and Yijun Ruan. Chip-based methods for the iden-
tification of long-range chromatin interactions. Journal of cellular bio-
chemistry, 107(1):30–39, 2009.

[22] ENCODE Project Consortium et al. An integrated encyclopedia of dna
elements in the human genome. Nature, 489(7414):57–74, 2012.

[23] Lijing Yao, Benjamin P Berman, and Peggy J Farnham. Demystifying
the secret mission of enhancers: linking distal regulatory elements to
target genes. Critical reviews in biochemistry and molecular biology,
50(6):550–573, 2015.

[24] Simon Andrews et al. Fastqc: A quality control tool for high throughput
sequence data. Reference Source, 2010.

[25] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ul-
trafast and memory-efficient alignment of short dna sequences to the
human genome. Genome biology, 10(3):1, 2009.

[26] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan,
Nils Homer, Gabor Marth, Goncalo Abecasis, Richard Durbin, et al.
The sequence alignment/map format and samtools. Bioinformatics,
25(16):2078–2079, 2009.

[27] Aaron R Quinlan and Ira M Hall. Bedtools: a flexible suite of utilities
for comparing genomic features. Bioinformatics, 26(6):841–842, 2010.

[28] Yong Zhang, Tao Liu, Clifford A Meyer, Jérôme Eeckhoute, David S
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