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Abstract

Machine learning is an approach to solving complex tasks. Its adoption is growing
steadily and the several research works active on the field are publishing new interesting
results regularly.

In this work, the scattering network representation is used to transform raw images
in a set of features convenient to be used in an image classification task, a fundamen-
tal machine learning application. This representation is invariant to translations and
stable to small deformations. Moreover, it does not need any sort of training, since its
parameters are fixed and only some hyper-parameters must be defined.

A novel, efficient code implementation is proposed in this thesis. It leverages on
the power of GPUs parallel architecture in order to achieve performance up to 20×
faster than earlier codes, enabling near real-time applications. The source code of the
implementation is also released open-source.

The scattering network is then applied on a complex dataset of textures to test
the behaviour in a general classification task. Given the conceptual complexity of the
database, this unspecialized model scores a mere 32.9 % of accuracy.

Finally, the scattering network is applied to a classification task of the medical field.
A dataset of images of skin lesions is used in order to train a model able to classify
malignant melanoma against benign lesions. Malignant melanoma is one of the most
dangerous skin tumor, but if discovered in early stage there are generous probabilities
to recover. The trained model has been tested and an interesting accuracy of 70.5 %
(sensitivity 72.2 %, specificity 70.0 %) has been reached. While not being values high
enough to permit the use of the model in a real application, this result demonstrates the
great capabilities of the scattering network representation.



Sommario

Il machine learning è un approccio alla risoluzione di problemi complessi. Il suo
utilizzo è in costante crescita e i diversi lavori di ricerca attivi nel settore pubblicano
regolarmente nuovi, interessanti risultati.

In questo lavoro si adopera la rappresentazione scattering network per trasformare
immagini grezze in un insieme di features utilizzabili per la classificazione di immagini,
un’applicazione fondamentale del machine learning. Questa rappresentazione è invarian-
te per traslazioni ed è stabile alle piccole deformazioni. Non necessita inoltre di alcun
tipo di addestramento, poiché i suoi parametri sono fissi e solo alcuni iper-parametri
devono essere definiti.

In questa tesi è proposta una nuova ed efficiente implementazione del codice. Essa
sfrutta la potenza dell’architettura parallela delle GPU per raggiungere performance fino
a 20 volte più veloci dei codici precedenti, consentendo la realizzazione di applicazioni
quasi in tempo reale. Il codice sorgente dell’implementazione è inoltre rilasciato open-
source.

La scattering network è poi applicata ad un dataset complesso di texture per testar-
ne il comportamento in un problema generico di classificazione. Data la complessità
concettuale del database, questo modello non specializzato raggiunge un mero 32.9 % di
accuratezza.

Infine, la scattering network è applicata ad un problema di classificazione in ambi-
to medico. Un dataset di immagini di lesioni della pelle è utilizzato per addestrare un
modello che possa classificare melanomi maligni contro lesioni benigne. Il melanoma ma-
ligno è uno dei più pericolosi tumori della pelle, ma, se scoperto in uno stadio precoce,
le probabilità di cura sono elevate. Il modello addestrato è stato testato ed è stata rag-
giunta un’interessante accuratezza del 70.5 % (sensibilità 72.2 %, specificità 70.0 %). Pur
non essendo valori abbastanza elevati da permettere l’utilizzo del modello in un’applica-
zione reale, i risultati dimostrano le grandi possibilità della rappresentazione scattering
network.
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CHAPTER 1

Introduction

In the last decade, the world faced with the concept of “big data”. This term refers to
the great mole of organized, accessible and growing information coming from assorted
groups of measures. The introduction of this concept was made possible by the incessant
evolution of electronics and information technology. Electronics contributed making
available cheap and fast sensors for every needing: imaging, chemical analysis, physical
measures are only some examples. Information technology, in its turn, provided the
software and hardware platforms to analyze obtained information. New devices, with
different architectures (CPU, GPU, DSP, FPGA, ...) and with increasing power in terms
of FLOPS, are available every day.

Many approaches were used during the years to analyze this data. The ultimate
goal is to use data to understand a trend and, consequently, make predictions and take
decisions. Statistics has always been used for this purpose. But even if simple statistics
approaches were usually enough to deal with a limited amount of controlled data in the
past, the challenge of analyzing “big data” is to extrapolate information in situations
that were not represented by available data, thus to be able to generalize.

“Machine learning” is a term that can be heard around every day. This approach
consists in training a model to make predictions basing on parameters learned from
available data. Classical approaches, intead, have the difference of having little or none
information of data included in the structure of the model. Therefore, machine learning
algorithms are able to generalize, and well.

Many applications are now based on machine learning and the medical field is no
exception. Histological and cytological images can be analyzed by an algorithm that
detects and classifies each single cell. This helps physicians to classify microscopy samples
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faster. CAD systems (Computer Aided Detection/Diagnosis system) based on machine
learning are present in many areas, for example to automatically recognize masses and
microcalcifications in mammograms [1].

In this thesis, the “scattering convolutional network” concept is used. This method,
proposed by S.Mallat and J.Bruna in [2, 3], allows to create a representation of a signal (in
our case an image) that is invariant to translations and stable to deformations. Backed
by the important results obtained by the wavelets proposed by the same Mallat, the
scattering convolutional network offers an interesting way to extract features of a signal,
that should allow a machine learning algorithm to learn a generalization of the problem.
Chapter 2 starts with an introduction to what a “machine learning algorithm” is and
then explains the scattering convolutional network algorithm.

One of the contributions of the thesis work is the realization of the scattering network
algorithm in code capable of running on GPUs, thus improving time performance over the
original serial code. Chapter 3 shows how an efficient implementation has been studied
over several revisions, with analysis of compatibility tests and the final performance
improvement. Moreover, the written source code has been released open source with
the hope to help other researchers in future studies or applications with the scattering
network algorithm.

The interest then moved to classification. In this task, the theory of scattering net-
works suggests that they are able to create a discriminable representation with important
stabilities. Chapter 4 presents the general methodology used to train and test a classifier,
with punctual details on the actual procedure used in the following two applications.

Since studies on scattering networks appeared to work well in recognizing patterns and
textures, the algorithm has been firstly tested in Chapter 5 to extract features from the
recent “Describable Textures Dataset” [4]. This application was mainly a first attempt
to understand the possibilities of the algorithm toward a more practical application.

A medical field where machine learning is still at an early stage is dermatology. A
particular task where it is gradually acquiring interest is melanoma classification. The
investment on this problem arises from the possibility to cure by biopsy a malignant
melanoma if it is detected in the early phase of development. Therefore, if an automatic
system could perform a preliminary diagnosis, possible malignant melanoma could be
discovered in time to be treated. Chapter 6 sets out an attempt to classify a skin lesion
(nevi) to be either a benign lesion or a malignant melanoma. This task is dealt with
a model based on a scattering network representation and a SVM classifier. A recent
valuable database from the ISDIS (International Society for Digital Imaging of Skin) [5]
is used. The main intention of this application was not to try to reach a state-of-the-art
comparable results, but to test if the general purpose scattering network algorithm could
give interesting results in an application of practical utility and of common interest.

The work of thesis was mainly developed in Bioretics’ offices[6], a start-up company
whose primary interest is solving imaging and computer vision problems.

2



CHAPTER 2

Machine Learning and Scattering Convolutional

Networks

Machine learning is the field of computer science that tries to create algorithms that are
able to learn from a set of data. Mitchell [7] wrote a definition of a learning algorithm:

Definition 2.1. A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks T, as
measured by P, improves with experience E.

We can recognize in the experience E the big data available nowadays, that can spread
over a great range of fields. The concept of performance measure P is also very broad,
as it ranges from objective metrics to individual judgments. Nevertheless, measure P
is usually specific to the task T. Tasks, instead, can be usually grouped by their type.
Most common kinds of task are classification, regression, clustering, density estimation
and feature reduction.

In this work, we will deal mainly with classification. A classification task consists of
assigning an input sample to a category (also called class, whose name is defined label).
Thus, a machine learning algorithm needs to learn a function f : Rn → {1, . . . , k}, which
map the n dimensional input to one of the k categories. A common, but complex, example
of classification is image recognition, in which the algorithm is required to output a label
for the input image.

At the baseline, a classification task consists of a measure of similarity. Simple Eu-
clidean distance is generally unable to discriminate and give good measures of similarities
on real world data where intra-class variability is relevant.
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Continuing with the example of image classification, there is a great variability in
images belonging to the same class, due to rigid and non-rigid transformations. In fact,
a simple operation like a translation can create a great variation of the value of each
pixel of the image. This intra-class variability is an obstacle to classification and must
be eliminated in order to have a more informative measure of similarity. The general
approach to this problem is based on Kernel Methods [8], who consist of projecting input
data x in a new representation Φ(x). This could allows to build a representation that is
invariant to some transformations. History of physics teaches that most modern theory
are founded on the presence of symmetries and thus invariants in a system. Having a
representation of this could easily lead to good subsequent results.

In the image field, rigid transformations such as translations, scaling and rotations
are generally uninformative for classification. Therefore a good representation should
be invariant to this kind of deformations. In fact, they are usually caused only by the
relative pose of the object with respect to the camera, an information that in most
application is in inconspicuous. On the other side, non-rigid deformations may induce
both intra-class and inter-class variability. For example, a non-rigid deformation could
transform a “1” into a “7”, and thus changing the outcome of a digits recognition system.

A good representation Φ(x) for classification should therefore not be deformation
invariant, but stable to small deformations [3]. This will allow to discriminate between
different classes with a kernel classifier. In fact, the kernel will permit to handle the
small deformations.

The stability to deformations is expressed as a Lipschitz continuity condition. Given
a deformation Lτx(u) = x(u− τ(u)) where x is an image, u the position inside the image
and τ(u) the function that gives the deformation, we can express the gradient of the
transformation ∇τ(u), whose norm |∇τ(u)| measures the amplitude of the deformation.
Therefore, a representation Φ(x) is stable to deformations if it is Lipschitz continuous
relative to the deformation metric:

‖Φ(Lτx)− Φ(x)‖ ≤ C‖x‖ sup
u
|∇τ(u)|

where ‖x‖ =
∫
|x|2du.

Getting rid of variance due to small deformations, a good representation must pre-
serve (and enhance) the discriminability that lays in information given by high-order
moments.

2.1 Toward Scattering Convolutional Networks

The problem is to find a “good” representation Φ(x) for the data, as expressed before. It
should be stable to additive noise and small deformations and it should carry information
of high-order moments for discriminability. In the treatment we will also impose the
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stronger requirement to the representation to be (locally) translation invariant. Features
for this representation could be extracted by filtering with wavelet filters the input signal.

Wavelets are wave-like functions localized in both space and frequency [9] and thus
they are stable to deformations. Given a single band-pass wavelet ψ(u), it is possible to
build a bank of multiscale directional wavelets:

ψ2jr = 22jψ(2jr−1u)

where j ∈ Z and r ∈ G, with G a finite rotation group in R2. Let’s denote λ = 2jr for a
simpler notation. An example of a filters bank of this kind can be seen in Figure 2.1.

Figure 2.1: A filter bank of complex Gabor wavelets with 4 scales and 8 orientations.
Only the real part is displayed.

Given a family of wavelets {ψλ(u)}λ, the operation of convolving a signal x with each
wavelet ψλ is called wavelet transform and is defined {x ? ψλ}λ where each element of
the set is called wavelet coefficient.

If the wavelet set covers the entire frequency plane (as illustrated in Figure 2.2), the
wavelet transform is stable to deformations and invertible.

In particular, the wavelet transform is linear, so it is translation covariant, not in-
variant. [3] shows that a non-linearity is needed to build a translation invariant repre-
sentation. This is chosen to be the modulus operation, a point-wise non-linearity that
preserves deformation stability and conserves the energy. Conceptually, the modulus
smooths the complex wavelet coefficients, pushing high frequencies to lower ones.

U [λ]x = |x ? ψλ|
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Figure 2.2: Representation of a uniform and complete covering of the frequency plane
by a set of scaled and rotated wavelets.

A translation invariant representation is obtained by applying the only linear operator
stable to translation: the average. For the classification task, it’s often better to have
a local stability. This means having a local averaging, i.e. a blurring operator φ2J on a
spatial window of size 2J . The result is a translation invariant wavelet coefficient:

SJ [λ]x = |x ? ψλ| ? φ2J

Unluckily, this operation will kill the high-order moments that lead to discriminability.
Lost information can be recovered by applying this same procedure to U [λ]x, obtaining:

SJ [λ1, λ2]x = ||x ? ψλ1| ? ψλ2| ? φ2J

where ψλ1 and ψλ2 belong to the same wavelets family. This procedure can be applied
iteratively to extract wavelet coefficients of higher order moments.

Any sequence p = (λ1, λ2, ..., λm) is called a “path” of length m, hence:

SJ [p]x = ||||x ? ψλ1| ? ψλ2|...| ? ψλm| ? φ2J

This approach naturally creates a convolutional network structure.

2.2 Scattering Convolutional Network

The scattering convolutional network is the representation composed of all coefficients
SJ [p]x for paths p that have a length m ≤ mmax = M .
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Given a signal x, all coefficients SJ [p]x are obtained from a layered structure, where
the scattering propagator UJx = {x ? φ2J , |x ? ψλ|}λ is iteratively applied to obtain the
path p. An illustration of a scattering convolutional network can be seen in Figure 2.3.

Figure 2.3: A graph representation of a scattering neural network from [2]. Scattering
propagator UJ is applied to f to compute U [λ1]f and outputs S[0]f . UJ is then applied
to every U [λ1] to obtain the second layer of the scattering and relative outputs. This
iteration is repeated up the required depth.

The signal representation offered by scattering networks has several important prop-
erties.

First of all, no parameter needs to be learned to perform the transformation. Only
some hyper-parameters could be selected with some tests. This is opposed to common
convolutional neural networks, where the filters need to be learned from the data with
the back-propagation algorithm.

Secondly, it is invariant to translations up to 2J because of the final averaging win-
dows. This property is essential in image classification where a small translation rarely
influences the category.

Then, as previously stated, with a suitable set of wavelets the representation is stable
to deformations. This guarantees that small deformations that shouldn’t affect classifica-
tion result can be completely managed by a kernel classifier. Some further works on the
scattering network included stability to other particular transformations. For example,
in [10] a further stability to rotations is inserted in the structure of the representation by
combining signals scattered from different rotations of the filters. Other stabilities could
be included if the mathematical formulation could be given. Beside that, this work will
only deal with the classic formulation of the scattering network.

Finally, it has been proved that, with a proper set of wavelet, the scattering operator
UJx is contractive, in the sense that ‖UJx−UJy‖ ≤ ‖x− y‖ and it also preserves signal
norm ‖UJx‖ = ‖x‖. Therefore it can be shown that energy of last layers converges to
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zero when mmax increases. This is important in numerical applications because it allows
to keep the network depth low with a negligible loss of energy.

A common set of wavelets used for the scattering network representation is based on
scaled and rotated Gabor Wavelets (an example is shown in Figure 2.1). These wavelets
are basically a Gaussian function modulated by a complex exponential. Other kinds of
wavelets have been used, for instance Haar wavelets [11].

Considering Gabor wavelets, an analogy with the visual system of mammals can
be proposed. In fact, Hubel and Wiesel [12] and subsequent studies suggested that
primary visual cortex V1 is formed by neurons whose response has the same kind of
shape of Gabor wavelets. These neurons are organized in hypercolumns (Figure 2.4),
and the position of each neuron in the column defines the orientation, the scale and the
location of the patterns of light that it recognizes. Scattering convolutional networks
follows a similar approach, decomposing the input signal by the response of scaled and
rotated Gabor wavelets, although the translation (location) is chosen to be an invariant
by construction.

Figure 2.4: An illustration of hypercolumns in the primary visual cortex. Each box is
a neuron that responds to a particular orientation and scale of light patterns. From [13].

2.3 The Algorithm

Illustration of Figure 2.3 suggests to calculate the scattering network representation
iterating layer by layer, i.e. increasing the length of paths p.

Let’s call Λm
J the set of all paths p = (λ1, ...λm) of length m. We define also the set

of all U and SJ computed for paths of length m as U [Λm
J ] = {U [p]x}p∈Λm

J
and SJ [Λm

J ] =
{SJ [p]x}p∈Λm

J
. Finally let’s define the set ΛJ = {λ = 2jr : r ∈ G+, j ∈ Z, j ≥ −J}

The scattering network representation of a signal x can be computed with the base
Algorithm 1.

The algorithm is iterative and uses previously calculated U [Λm−1
J ] to compute new

data at layer m. In this way, each path p is composed step by step to avoid the evaluation
of the same expressions multiple times.
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Algorithm 1 Scattering Network Algorithm

1: U [Λ0
J ]← x

2: for m = 1 toM do . for each layer
3: Compute every U [Λm

J ] = {|U [Λm−1
J ] ? ψλ|}λ∈ΛJ

. band-pass filtering and modulo
4: Output every SJ [Λm

J ]x = U [Λm−1
J ]x ? φ2J . output low-pass filtering

5: end for

This version of the algorithm is also expressed in a very synthetic style. A real
implementation of the algorithm should make sure to iterate over every path p and every
filter ψλ. If the value of parameters M , J and L grows, the number of operations to
perform increase exponentially with M. It can be seen that the total number of elements
U [p] and SJ [p] is 1 + (J · L)M , giving a total of 2 · [1 + (J · L)M ] convolution operations.

Starting from this pseudo-code, a real implementation of the scattering network al-
gorithm can use several expedients to achieve good performance. Some of theme are
exposed in subsequent paragraphs.

2.3.1 Downsample

When a signal is passed through a bandpass or a lowpass filter, it may be possible to
uniformly downsample it without losing information, according to the Shannon-Nyquist’s
rule. For example, a half band lowpass filter would allow to discard every other sample,
because after the filtering the signal has the highest frequency half of the original one (as
illustrated in Figure 2.5). This allows to remove redundant information with the benefit
of having a more compact representation.

0 π
2

π 3π
2

2π

0.0

0.5

1.0

1.5

2.0
Spectrum of Original Signal

0 π
2

π 3π
2
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0.5

1.0
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Spectrum of Filtered Signal

0 π
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π 3π
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Figure 2.5: An illustration of the FFT spectrum after a low-pass filtering (center) and
a downsample (right).

In the scattering network, both ψ2J and φλ are filters that lower the frequency band
of the signal (except when j of λ is 0). The averaging with ψ2J allows to downsample
SJ [p]x at intervals 2J . Instead, band-pass filters φλ reduce frequency band with respect
to the scale j of the filter, therefore U [p]x can be sampled at intervals 2j.
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Using this technique, if the signal x is an image of N pixels, the coefficient SJ [p]x
will have only 2−2JN elements.

The application of this method to the algorithm previously described will allow to
compute simpler operations. Indeed, the signals size will decrease through paths. How-
ever, some care must be used to decide the right sample interval at each step of each
path. Final signals must not be subsampled at intervals more than 2J in total.

2.3.2 Pre Computing Filters

The wavelet filters bank {ψλ(u)}λ∈ΛJ
is fixed and reused several times during the exe-

cution of a scattering network. Therefore, a major optimization is to pre-calculate the
filters from the required hyper-parameters M , J and L of the scattering network. As
this operation could take a remarkable amount of time, wavelet filters banks could also
be cache stored on disk to improve performance in multiple runs.

Filters can be generated in the spatial space or in the frequency space. The first
method does not need to know the original image size to create filters. Instead, in order
to create filters directly in the Fourier space, a fundamental requirement is the previous
knowledge of the image size. This way, the filter generator can create the appropriate
filters for each possible subsample of the original signal throughout the scattering paths
of the network.

2.3.3 Reduced Scattering Transform

In [3], authors showed that scattering energy is concentrated along frequency-decreasing
paths p. This means that all paths where index j decreases can be omitted from com-
putation with negligible loss of energy and thus quality of the representation for classifi-
cation. Instead, this approach allows to implement a noticeably faster algorithm, where
lots of paths are discarded (in particular those with low j that contains larger signals
in the downsample approximation, which are the ones that would require more time to
be computed). The resulting representation is called “Reduced Scattering Transform”
and derives directly from the original algorithm by adding checks on which λ to use to
compute new U [Λm

J ].

2.3.4 Convolution Filtering and Convolution Theorem

The convolution operation is clearly the most present and time consuming operation in
the proposed algorithm.

Let’s recall from [14] that given two continuous functions f(t) and h(t) of the con-
tinuous variable t, the convolution is defined as:

f(t) ? h(t) =

∫ ∞
−∞

f(τ)h(t− τ)dτ
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Applying the Fourier transform to f(t) ? h(t) gives the Fourier pair:

f(t) ? h(t)⇔ F (ω)H(ω)

and a similar procedure would also give:

f(t)h(t)⇔ F (ω) ? H(ω)

These two pairs are called the Convolution Theorem. It states that a convolution in
one of the spaces is equivalent to a point-wise multiplication in the other space.

The convolution theorem applies also to discrete signals, but periodicity problems
may arise. Discrete functions have a periodic Fourier spectrum, as explained by the
“sampling theorem”, so the convolution with the convolution theorem would give a
periodic convolution, also called “circular convolution”. This creates a “wrap-around
error” at boundaries, where data from adjacent periods interfere. A simple way to get
rid of this error is an appropriate padding, as explained in the next section.

As explained in [15], performing convolution with the convolution theorem is known
as “fast convolution” because the problem is O(N logN) complex due to the Fast Fourier
Transform, whereas standard convolution is (at least) O(N2). In practical implementa-
tions, there is not a commonly shared approach toward the problem because peculiarities
of different architectures (CPU, GPGPU, dedicated hardware, ...) can be exploited in
each approach.

The “fast convolution” approach definitely offers best performance for large signals
and filters, but it has some downsides too, such as the “wraparound error” problem, a
relatively lower numerical precision and a considerable larger memory requirement.

Nevertheless, this approach has been used in our implementation because some details
of the scattering network algorithm can boost performance with this approach, as further
explained in Chapter 3.

2.3.5 Padding

When talking about convolution, a major problem arises at borders. The issue is that a
finite discrete signal (e.g. an image) is not defined outside its boundaries. Therefore the
convolution with a filter is undefined outside the borders of the signal.

Several ways to handle this problem had been proposed and each one rely on some
requirements of the problem or knowledge of the data outside boundaries [16, 17].

A first approach is to limit output region only to those pixels that are far enough from
borders to have the convolution value exactly defined. In this way, output image have a
smaller size than input image by the filter size minus one (“Blurring with cropping” in
Figure 2.6).

The opposite method is to pad the input image, i.e. to add a border around the
input image, so that pixels outside boundaries are actually defined. There are different
methods to establish the value of those pixels.
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The simplest one is to add zeros (“zero-padding”) outside the image. This approach
is useful if the signal is supposed to go to zeros outside the region where it is defined. A
variation is to pad with the supposed value, different from zero. For any variation, many
discontinuities are created at borders. This method can create dark borders around
convolved image as seen in Figure 2.6.

If the signal is supposed to be periodic, the “wrap-padding” will add paddings that
are copies of the image on the other side of the axis, like a modulo operation on the
position. This method also creates discontinuities.

Finally, a common approach with real-world image is the “symmetric-padding”, where
the padding is a reflection with respect to the border. Discontinuities of the first deriva-
tive are created at borders but this approach usually creates nice-looking borders on
images.

Original Image

Blurring with cropping

Zeropadding

Blurring with zeropadding

Symmetric padding

Blurring with symmetric padding

Figure 2.6: Illustration of several kind of padding and the result of a convolution with
a Gaussian blurring filter.
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CHAPTER 3

GPU Implementation of Scattering

Convolutional Networks

One of the main purpose of this thesis is to implement the scattering network algorithm
with a code that can run efficiently on a GPGPU.

The planning of the code has been guided by some objectives.

First of all, the implementation needed to be easy and fast to prototype. At the same
time, high performance were required to obtain interesting results. Therefore the Python
language has been chosen for its interpreted scripting nature that allows to prototype
fast, the generous number of highly optimized, open source modules, and the previous
experience of the author with this programming language. For the GPU side, CUDA[18]
framework has been chosen to perform the parallel computations.

The desired code would have been packegable as a Python module to allow distribu-
tion and reuse of the code. With this idea, the API of the module should have been as
simple as possible, giving to the module the hard work of handling complex phases of
the overall method.

Lastly, the complete module should produce results compatible with the Matlab code
published by [3], to allow those who already use that implementation to switch seamlessly
to the parallel high performance version.

This chapter begins with an overview of the world of computing on GPU, followed
by the review of some software tools used in this work. After that, the development
history of the produced software is described. Finally, compatibility and performance
tests results are exposed.
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3.1 GPU computing with CUDA

Last decade have seen a tremendous increase of GPUs performance. As the name say,
Graphics Processing Units arise from the demand of specialized chips to perform graphics
computation. However, since the advent of frameworks like CUDA and OpenCL, GPU
could be used for general purpose computing, speeding up computations of scientific
research, engineering, medicine and other fields. The power of GPUs comes from the
massively parallel computing that can be performed on these devices.

We will go into details of the CUDA framework, that is used in this work to efficiently
parallelize the scattering network algorithm.

In CUDA, the parallel portion of the application is called kernel. Multiple instances
of a kernel can be executed concurrently and each instance is called a thread. Threads are
organized in blocks, a 1- 2- or 3-dimensional group of threads. Blocks are also organized
in a grid. Each level of this hierarchy is executed on the respective hardware level.
A CUDA-capable GPU can execute one or more grids of blocks. On the GPU, many
Streaming Multiprocessors (SMs) handle the execution of the blocks. SMs are composed
of many CUDA cores, the base ALU of a GPU. Each thread is run on a CUDA cores.

Therefore parallelization happens at thread level. Each thread run the same portion
of code, but can elaborate different data. For example, let’s consider the element-wise
sum of two vectors on N elements each. A 1-D block of N threads can be launched
and every thread will add together one couple of elements of the vector. This kind of
parallelization is called SIMT (Single Instruction Multiple Threads),

Figure 3.1: Grid of thread blocks. From the Cuda Programming Guide [19].

Multiple operations on a set of data can be chained by concatenating many kernels.
If flow of input data is continuous, it can be considered a stream and all kernels can
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run in parallel to perform operations on every item of the stream. This approach of
performing parallelization is called stream processing and allows to achieve simple form
of parallelization.

Parallel computation can be executed from a serial code running on the CPU through
the CUDA API.

It’s worth pointing out some downsides of computing on GPU. First of all, CPU and
GPU usually use different hardware memories, therefore memory copy must be performed
at the beginning of the computation to move data from RAM to GPU memory and at the
end to get results back to RAM. This copy can take a non negligible time, thus computing
on GPU is profitable only if the speedup obtained by the parallelization is enough to
ignore the transfer time. A second important point is that GPU architecture have an
intrinsic high latency to start computing a thread but can achieve higher throughput
compared to CPU. A common solution to both this problem is an efficient application
of the stream processing paradigm to overlap memory copies and computations.

Figure 3.2: A sequential approach (top) and the overlapping of copy of data and thread
execution (bottom). Latter approach can speedup execution. From the Cuda C Best
Practices Guide [20].

Standard CUDA API are available in C, but bindings and wrappers for many different
languages are available.

3.2 Software Tools

Python ecosystem is rich of modules for almost any application. Many of them present
core functions written in a compiled language and offer a Python interface to those
functions. This method allows to achieve high computational efficiency despite using a
simple and flexible interpreted language.

In this work, high performance have been looked for in four main modules: Numpy,
PyCuda, Scikit-Cuda and OpenCV.
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3.2.1 Numpy

Numpy [21] is a Python package for scientific computing that expose a powerful N-
dimensional array object that can be used to perform most common and advanced
mathematical operations between arrays. The core of the module is written in C to
achieve high performance while exposing a simple interface in Python.

3.2.2 PyCuda

PyCuda [22] package gives access to Nvidia’s CUDA [18] API. The package can be used
in two primary ways.

The first is to use the GPUArray1 object that exposes an interface like Numpy’s
“ndarray” but stores and compute data on the GPU. Most common methods of Numpy
are reimplemented in GPU code to take advantage of parallel architectures. For example,
all point-wise operations (e.g. abs, sin, cos, ... ) and simple scans/reductions (e.g. min,
max, sum, ...) are readily available. PyCuda will handle seamless all operations required
by the CUDA API, like instantiating the context, moving data from RAM to GPU
memory, creating and running CUDA kernels and getting back results to CPU memory.
Instant benefits are usually obtained for large arrays.

The other way to use the module is to write custom CUDA kernels. This approach
is suggested to developers that already know how to write own code for GPU but that
wants to use a convenient and fast framework that handles all the background work and
that allows to concentrate on the actual computing code. In particular, GPUArray’s
ElementWiseKernel object allows to create a kernel that runs a user-defined operation
on every element of the array. PyCuda will handle automatically the JIT (just-in-time)
compilation of the kernel, its launch with suitable grid-size and block-size and eventual
for-loops within the kernel around the code to achieve optimal performance. At necessity,
all CUDA’s driver API are available to perform more sophisticated tasks.

3.2.3 Scikit-Cuda

Scikit-cuda[23] is a wrapper to many functions of CUDA, cuBLAS, cuFFT and cu-
SOLVER libraries. It allows to run functions defined in those libraries directly in Python
with the help of PyCuda to handle the movement of data to/from the GPU. In this work
it has been used primarily for the cuFFT binding. cuFFT 2 is a library that provide an
interface to compute FFTs on NVIDIA GPUs. Because the FFT is in operation that
can be greatly parallelized, GPUs can yield to important benefits in terms of execution
time.

1https://documen.tician.de/pycuda/array.html Accessed on 11/14/2016.
2https://developer.nvidia.com/cufft Accessed on 11/14/2016.
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3.2.4 OpenCV

The most famous library for computer vision is OpenCV [24]. Its Python bindings has
been used in first revisions of the code to perform mainly the symmetric padding. This
operation was seen to be faster with this library than the Numpy implementation.

During the development, though, the latest version of the library (v 3.1.0) was used
to handle images from the loading, saving, resizing and color converting.

3.3 Development

The GPU implementation was developed by writing a prototype of the software and
iteratively enhancing it by fine-tuning slowest parts. In the history of this process, three
main revisions of the software are reported below to disclose encountered problems and
solutions found.

3.3.1 First implementation

The first implementation of the code was based on a quasi-straightforward conversion
from Matlab code to Python code with the use of GPU capabilities only on the critical
step of the convolution in the Fourier space.

The algorithm worked layer-wise, iterating over each layer m to compute new coeffi-
cients SJ [p]x and U [p]x.

It was clear that almost always at each layer there were multiple signals U [p] with
the same size (possibly reduced from the original size by the subsample steps). Since
cuFFT implementation is known to work good in batches of signals of same shape3, this
feature was exploited.

At each layer, the algorithm searches for paths whose size is the same and it groups
them. Next, each group of signals is elaborated sequentially. Every signal in the group
is padded and then they are stacked in a 3-dimensional Numpy array that is copied
to GPU in a GPUArray. This array is fed into the cuFFT’s FFT routine to compute
the transformation in batch. Then the history of every signal is checked and they are
multiplied by the appropriate filters, saving results in a new 3-d GPUArray. This array
of filtered spectrums is inverse transformed still in batch to obtain wavelet transformed
signals. Always on the GPU, the module operation is performed element-wise. Finally,
data are copied back from GPU to CPU memory where unpadding and downsample
operations were performed.

Performance of this first version were not great, with a very little speedup compared
to Matlab code. Most of the time was spent transferring data to and from the GPU and
launching kernels. Indeed, GPU functions need to have enough computational work to

3http://docs.nvidia.com/cuda/cufft/#accuracy-and-performance Accessed on 11/14/2016.
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execute so that the overhead time, required by the operation of launching computation
and the time-extensive memory copy, is negligible with respect to the actual computa-
tion time. The proposed algorithm requires plenty of memory movements so the GPU
capabilities are not used at the maximum of their possibilities. This is due to the fact
that there were not enough signals of the same shape in each layer to elaborate together.

Nevertheless, this implementation did not require any knowledge of GPU program-
ming, because the only encounter with GPU-related functions is the necessity to call
functions to move memory to and from the GPU. Thanks to the Python modules used,
this is operation was very easy and others functions ran on the GPU had same syntax
of ones that would have ran on the CPU.

3.3.2 Second Revision

The second revision of the code took advantage of the observation that the scattering
network graph did not need to be forcingly walked layer by layer, but that each path
can go on alone, with the only necessity to have completed all paths at the end of the
execution.

With this consideration, it can be seen that graph could be walked in such a way that
all intermediate signals with the same size are computed at the same iteration. This is
accomplished by performing scattering convolution always on those image that have the
bigger shape, that are those with the smallest overall downsample rate. If the graph is
represented such that filters are scattered left to right according to the increasing j, it’s
clear that the graph is walked “diagonally”, from top left to bottom right.

The implemented algorithm creates and keep a queue of intermediate signals, i.e.
incomplete paths. It iterates until there are no more elements in the list by first searching
the maximum shape of signals in the list and then grouping all signals with that shape.
Those signals are also removed from the list. Then the appropriate filter size for this
shape is selected from pre-calculated filters and signals are symmetrically padded and
moved to the GPU in stack as in the previous version of the code. The stack is then
transformed to the Fourier space and after that each spectrum is point-wise multiplied
with appropriate filters. Like before, signals are transformed back in the spatial space
with the batched IFFT and the modulo is applied point-wise. The next step is to copy
back filtered signals to CPU, where unpadding and downsample is applied. For each
signal in the group, if it ended its path it is copied to an output stack, otherwise the
intermediate output is added back to the queue list, and another iteration is performed.

As they are usually not needed for subsequent analysis, this approach doesn’t save
intermediate results U [p].

This evolution of the algorithm allowed to obtain a first interesting speedup relative
to CPU implementation. This is achieved by the more effective computation of the FFT
and IFFT, that are now executed with the largest possible batches of signals of the
same shape. Some memory problems arose because with some combinations of J , L and
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original image shape, in the firsts steps of the processing the memory required for the
IFFT was too large to fit in the not-so-big memory of GPU, especially low-end ones. To
mitigate this problem, a solution was found by limiting the size of the batch of signals
simultaneously computed: for each group, if its total number of pixels exceed a defined
threshold, the group was splitted. This allows to use most of the available GPU memory
without having fails during allocation.

Now that the convolution heavy computation is totally delegated to the GPU, the
main bottleneck of the process were other operations ran on the CPU, together with the
need to move memory to and from GPU too frequently. In particular, it was seen from
profiling the code that the padding, unpadding and downsample steps computed on the
CPU took about 20 % of the overall execution time.

3.3.3 Latest release

The further and last evolution of the algorithm solved bottlenecks of the last revision
and achieved highest performance.

This version is based on the good approach of crossing the scattering network di-
agonally, but it also delegate to the GPU all signals computations by creating custom
CUDA kernels and managing efficiently the memory allocation and copy.

In details, the concept of “signals container” is introduced: this is a Python object
that contains a GPUArray who store a stack of signals with the same shape (like the
concept of groups in previous revision). Moreover, the shape of the GPUArray is such
that it can store also the correct padding that is required to handle border problems of
convolution. Overall, the GPUArray is 3-dimensional, with a shape given by (B,wp, hp)
where B is the number of signals that will be stored, hp and wp the height and width of
the padded version of the signals (Figure 3.3).

A set of containers is created at initialization time, one for each downsample scale that
will be met during computation of the scattering network (basing on hyper-parameters
M , J , L and image shape). An additional container is prepended to the set to store the
original image, that is immediately copied to GPU.

The algorithm basically iterates over the set of containers.
For each containers it pads the image with a custom CUDA kernel created with the

“ElementwiseKernel” class offered by “PyCuda”, so it is run element-wise over all pixels
of signals and padding in the containers. For each pixel, it finds the location on the
original image coordinates: if the current pixel is already one of the original image, it is
copied in-place; otherwise, if it is one of the border, the corresponding pixel mirrored on
the border is copied. This method allows to efficiently and parallely apply the symmetric
padding directly on the GPU, without requiring any copy to CPU. No already existing
library with this functionality was found, so in previous versions of the code it was
required to move image back on CPU also to perform this operation with OpenCV’s
copyMakeBorder.
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Figure 3.3: Illustration of a “signals container”. A stack of B signals is saved in a 3D
GPUArray. The signal size is w × h, but a larger space wp × hp is allocated to hold the
symmetric padding.

Next, all signals in the container are transformed to the Fourier space in batch.
Filters are then loaded, and another custom CUDA kernel is called on each filter to be
multiplied for required signals. This allows to load pixels of each filter in GPU registers
only once for all the signals that requires that convolution.

Then the IFFT function is called always in batch to transform back signals.

The latest custom CUDA kernel handles operations of unpad, downsample and appli-
cation of the modulus. This phase is preceded by a preparation step where it is created
a list of associations between each convolved signal, related downsample factor and des-
tination container. Then, for each destination container, the custom CUDA kernel is
run. Basing on information related to source and destination shape, source and desti-
nation padding and downsample, it maps every source pixel to appropriate destination
pixel while applying modulo operation. Therefore the computation of the modulo is
performed only on useful pixels, while others are discarded.

When the iteration on the last container is concluded, its data (that at this point
are scattering coefficients SJ [p]) are copied back to the CPU memory and computation
is done.

Another feature of this implementation is that allocated GPU memory for containers
can be reused for subsequent transformations through the scattering network, so next
runs will not have to wait the time required for the memory allocation.

The realization of this approach definitely required CUDA programming skills and
knowledge on GPU coding best practices. Custom CUDA kernels are built exactly to
optimize the scattering network algorithm, so the implementation is ad-hoc. Previously
cited Python modules are used anyway for complex tasks, like the FFT/IFFT transform
and the possibility to create effective and simple element-wise kernels. Without those
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modules, the time required to write the code and its length and complexity would have
been certainly higher.

3.4 Packaging and distribution

Last version of the software was packaged as the Python module scatnetgpu.
The module have several dependencies:

q numpy>=1.11.0 Python library for CPU numeric computations

q scipy>=0.18.0 Python library used only to calculate the binomial coefficient

q pycuda>=2016.1.2 Python library for heavy computations on the GPU

q scikit-cuda>=0.5.1 Python library for the cuFFT wrapping

q octave framework, oct2py Python library, Scatnet Matlab code 4 required to load
the filter creation function of the original Matlab code through octave (necessary
as long as that part of the code is not ported to Python)

The main class available in the module is ScatNet. The class can be instantiated by
passing parameters M , J and L of the required scattering network. The resulting object
have the useful method transform that perform the scattering network transformation
of a given image (represented by a Numpy ndarray). This method takes care of creating
filters if they are not already present in cache, then it performs the transformation and
returns the result in form similar to the one of the Matlab code. If a batch of images needs
to be transformed, the method batch transform takes care of looping over the batch. If
given ndarray have 3-dimensions, the last one is considered to represent channels (e.g.
RGB, HSV, ...). Every channel is transformed alone, and resulting representations are
concatenated.

An additional utility function, stack scat output, takes the transformed represen-
tation and returns a 3-dimensional ndarray where each scattering output is stacked in
the first dimension, in addition to a list of meta-data to recognize the paths of the net-
work. This was useful for the later classification procedure, because the order of the
output is not important in this task.

The source code has been released open-source under MIT License and it’s available
at: https://github.com/oinegue/scatnegpu. From the link, the code can be reviewed,
downloaded, easily installed and modified. In this way, I hope to make available to other
researchers a fast (as further discussed in Section 3.6) implementation of the scattering
network algorithm, in order to continue studies for new uses of this representation and
to permit the realization of real-time applications.

4https://github.com/scatnet/scatnet Accessed on 11/19/2016
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3.5 Compatibility Tests

The GPU implementation was tested to be compatible with the reference Matlab code.
Tests were performed at many levels of aggregation, to check that any combination of
parameters leaded to compatible scattering coefficients in output.

Firstly, outputs of the GPU code and the Matlab code were compared pixel-by-pixel.
We are looking at the result of a machine computation, thus the analysis must take in
account that number are expressed in a floating point representation, as expressed in the
standard [25]. In this specific case, all computations are performed in single precision,
so each value is stored in memory with 32 bits.

The absolute difference |x1 − x2| between two machine numbers x1 and x2 can show
qualitatively if the results are nearly correct. To quantify the magnitude of the eventual
difference, it’s important to validate discrepancies of the results with respect to the
capabilities of the single precision floating point representation used.

A generic approach to this problem is to use the concept of Unit in Last Place (ULP)
[26]. Given a floating point number x whose exponent is E, it is defined ULP (x) =
(0.0...01)2× 2E. More intuitively, the ULP is the gap between x and its very next larger
floating point number. Therefore a method [27] to evaluate the difference between two
floating point numbers is to count how many ULPs there are between them. This count
is usually called NULP (Number of ULPs).

Figure 3.4 represents an example of the tests. It can be observed that both version
appears qualitatively similar in first two columns. Nevertheless, the absolute difference
is non zero almost everywhere. This may be due to the different implementations of
functions like the FFT/IFFT, to round-off error of the single precision floating point
representation used and to its propagation with the particular order of the operations
performed in the final revision of the algorithm. However, the NULP difference exposed
in the last column is limited. Considering the big number of operations involved in
the scattering network base algorithm, this result is considered acceptable. Therefore,
standing to this first result, the two algorithms are compatible.

The study followed by analyzing the biggest NULP difference in the output signals
of each path of a scattering network. Box plot of Figure 3.5 is built by computing the
maximum NULP difference of each path of a scattering network and collecting this result
for 100 different input images from the textures dataset used in Chapter 5. It’s clear
that even with a large set of images, the NULP difference between the two algorithms
remains low. Some outlier values reach higher difference. It was observed that these
discrepancies are higher in regions of images that are nearly black. This may be due to
round-off errors that for small numbers are amplified during the FFT/IFFT.

Compatibility has been tested over a range of different image sizes and scattering
network configurations, to check if the implementation was correct. The Figure 3.6 show
one of the tested scattering network configuration. It can be observed that the maximum
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Figure 3.4: Representation of the compatibility of the outputs for a polka dot image.
Original image size was 128 px × 128 px. Scattering network parameters were M = 2,
J = 2, L = 2. From left to right: output of Matlab code, output of GPU code, pixel-
wise absolute difference, NULP difference. From top to bottom, different paths of the
scattering network are shown.
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Figure 3.5: Maximum NULP difference between Matlab and GPU implementation for
each scattering path of a network with J = 3 and L = 1. 100 repetitions were run with
different images.
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Figure 3.6: Maximum NULP difference between Matlab and GPU implementation for
increasing image size with J = 3 and L = 1. 10 repetitions were run for each size.
Median value is displayed as a solid line.

24



NULP difference increases with the image size. It’s hard to define an objective threshold
for the compatibility of the results of a floating point calculation. Nevertheless, most
of the values stay below 500 NULP of difference. This value seems to be a good result
compared to the 224 values that are representable with the same exponent of a single
precision floating-point number.

If further accuracy is needed, the causes of the incongruity should be searched in every
function used in the algorithm, by comparing Matlab results with Python/CUDA results.
Moreover, the particular order of functions in the algorithm could lead to different round-
off errors that accumulates to create the different results.

3.6 Performance

Execution times of the scattering network algorithm were compared for both the GPU
implementation and the Matlab code running on the CPU. Tests were performed on the
following machines:

lenome notebook A personal notebook with a discrete graphic card

q Model: Lenovo Flex 2-14q CPU: Intel(R) Core(TM) i5-4210U CPU @ 1.70GHzq RAM: DDR3 1600 MHz 8 GBq GPU: Nvidia GeForce 840M

– Architecture: Maxwell

– CUDA cores: 384 CUDA

– Max Clock: 1.12 GHz

– Memory: DDR3 4 GBq OS: Ubuntu 15.10q CUDA version: 7.0q Matlab version: R2016bq Octave version: 4.0.0

phantom desktop An assembled desktop used for basic machine learning tasks

q CPU: AMD FX(tm)-8350 Eight-Core Processorq RAM: DDR3 1866 MHz 16 GBq GPU: Nvidia GeForce GTX 960

– Architecture: Maxwell
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– CUDA cores: 1024 CUDA

– Max Clock: 1.29 GHz

– Memory: GDDR5 2 GBq OS: CentOS 7.2.1511q CUDA version: 7.5

titano workstation An assembled workstation used for heavy machine learning tasks

q CPU: Intel(R) Core(TM) i7-5930K CPU @ 3.50GHzq RAM: DDR4 2133 MHz 32 GBq GPU: Nvidia GeForce GTX TITAN X

– Architecture: Maxwell

– CUDA cores: 3072 CUDA

– Max Clock: 1.08 GHz

– Memory: GDDR5 12 GBq OS: Ubuntu 14.04.5q CUDA version: 7.5

First of all, the execution time of the mere transformation function was measured
(ScatNet.transform for Python, scat for Matlab). Test was performed by running
the function in loop for 10 executions and measuring the mean time required for each
execution. The measuring was repeated 5 times and best result was reported to mitigate
possible breaking due to the operating system. Several combination of image size S,
filters scales J and rotations L were tried (an image of size S is intended to be a gray-
scale square image of size Spx× Spx).

In Python, time was measured with the time.clock() function 5. In Matlab, the
couple of functions tic; <code>; tac; was used 6.

Figure 3.7 and Figure 3.8 reports measured performance of two extremities of param-
eters combinations, respectively a small network with J = 3, L = 4 and a large network
with J = 5, L = 8. Different image size were tried, from S = 32 to S = 1024 at steps of
∆S = 32. In both cases, the same overall trends are observed: GPU code is faster than
CPU code, more powerful GPUs scores faster results, Octave interpreter is slower than
Matlab interpreter.

Starting the analysis from the last point, the speed-up of Matlab with respect to
Octave is up to 4 times for small images and for both parameters configurations. Speedup

5https://docs.python.org/2/library/time.html#time.clock. Accessed on 11/18/2016.
6https://it.mathworks.com/help/matlab/matlab_prog/measure-performance-of-your-

program.html. Accessed on 11/18/2016.
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Figure 3.7: Execution time of the scattering network transform with M = 2, J = 3
and L = 4 at different image size S.
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Figure 3.8: Execution time of the scattering network transform with M = 2, J = 5
and L = 8 at different image size S.
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Figure 3.9: Speedup of the GPU implementation with respect to Matlab version for
the scattering network of Figure 3.7
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Figure 3.10: Speedup of the GPU implementation with respect to Matlab version for
the scattering network of Figure 3.8
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drops for big images, scoring similar results for the small network and a little speedup for
the large network. Better performance may be due to many optimizations of the Matlab
environment not present in Octave. For example, it was observed that many cores were
busy during Matlab execution while Octave run occupied only one core. This could mean
that in Matlab some functions used in the algorithm are parallelized (like the FFT or
matrix multiplications). A further study of the differences between the two environments
is beyond the scope of this work and then, because of the higher performance, subsequent
comparison will be based only on time measures in the Matlab environment.

Performance improvements of the GPU implementation relative to Matlab code de-
pends obviously on the specific GPU. In Figures 3.9 and 3.10 it can be seen that for the
entry-level GPU of lenome notebook, the speedup is around 2× for the small network
and peaks at more than 6× for the large one and small images, decreasing again to 2×
for bigger images.

Medium range GPU of phantom desktop have better performance. The small net-
work configuration shows a speedup from 3× up to more than 10×. Speedup increases
with image size, showing that the potential parallelism of the GPU is exploited when
occupancy of the cores is high. The big network shows a mean performance increase of
about 10×, with a peak when the Matlab code show an important slow-down at around
S = 256 px.

Top-level GPU of titano scores top performance with a general trend similar to that
of the previous graphic card, but with an additional speedup relative to the Matlab code,
up to 17× for the small network and 21× for the bigger one. Again, the computational
capabilities of these devices is not completely accessible for low complexity tasks (small
network and image sizes), but the performance gain is important for heavy calculations.

Looking at absolute values, the new GPU implementation can reach nearly real-time
performance in several combinations of parameters. For big networks, mid/high GPUs
scored less than 100 ms (10 FPS) for images up to 256 px. This result can be useful for
practical applications where a high rate of processed images is needed, like in industrial
environments or video processing.

All curves presents spikes at certain image sizes. They are due to the performance of
the FFT and IFFT algorithm at different signal sizes. In fact, standing to the documen-
tation of cuFFT7, the implementation is optimized for image sizes that can be factorized
as powers of small prime numbers, i.e. S = 2a3b5c7d. If the size can not be factorized
in this way, more computation are required and execution time increases. Figure 3.11
shows the described behaviour: time required to run an FFT varies greatly even chang-
ing image size of only 1 px. Due to the padding, this situation can happen despite the
initial image size. A better implementation of the algorithm could estimate the optimal
padding for this requirement. This optimization has not been implemented in the last
revision of the software because filters creation is still based on the original Matlab code.

7http://docs.nvidia.com/cuda/cufft/#accuracy-and-performance Accessed on 11/18/2016.
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Figure 3.11: Time required to run a single 2D FFT transform on a square gray-scale
image with cuFFT through Python bindings offered by Scikit-Cuda (averaged over 10
runs).

A final note is that many points are missing in the big network chart, at large image
sizes, in the GPU curves of lenome and phantom. Memory required to perform the
(I)FFT depends heavily on the image size and for some “unlucky” dimensions it could
be as large as 8 times the memory of the original signal 8. The (I)FFT in the algorithm
is run in batches, so the memory requirement may be too large to be allocated on the
limited memory of the GPU and so execution will fail for this sizes. Two methods are
possible to bypass the problem. The first is to limit the number of signals in the batch
and instead run multiple batches of (I)FFT. The second method is to split the image
in multiple patches, perform the scattering network transform on each patch and finally
recombine the outputs. The latter approach generalize better for very large images, but
requires attention to treat correctly the behaviours at borders.

Every code enhancement was guided by the time profiling of the previous version.
Each macro block of the algorithm was enclosed in a couple of stopwatch timers to
measure how much time was spent in each part of the code. In the following, the time
profiling of executions of the latest code on phantom is shown.

Table 3.1 reports the time profiling of a run of the small network of Figure 3.7
launched on phantom with image size 512 px. First observation is that more than half of
the time is used for the entire convolution operation (FFT, Element-wise Multiplication,
IFFT), that involves 67 % of the total computation. Surprisingly, the copy of the filters

8http://docs.nvidia.com/cuda/cufft/#cufft-setup. Accessed on 11/18/2016.
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IFFT 30% 20.8ms
FFT 22% 15.1ms
Filters copy CPU → GPU 18% 12.3ms
Element-wise Multiplication 15% 10.1ms
Unpad / Downsample / Modulus 7% 5.1ms
Symmetric Padding 3% 2.3ms
Containers Allocation 2% 1.1ms
Preparation 1% 0.6ms
Results copy GPU → CPU 1% 0.5ms
Image copy CPU → GPU 1% 0.4ms
Format Output Data 1% 0.4ms

Table 3.1: Time profiling of the Scattering Network algorithm on phantom’s GPU.
Image size was 512 px × 512 px, parameters were M = 2, J = 3, L = 4. Number of
scattering coefficients produced is 249856 Times averaged over 100 runs.
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IFFT 40% 100.0ms
Filters copy CPU → GPU 24% 60.5ms
Element-wise Multiplication 18% 44.8ms
FFT 8% 19.1ms
Unpad / Downsample / Modulus 4% 9.1ms
Preparation 2% 5.7ms
Containers Allocation 2% 4.3ms
Format Output Data 2% 4.0ms
Image copy CPU → GPU 0% 0.5ms
Results copy GPU → CPU 0% 0.4ms
Symmetric Padding 0% 0.2ms

Table 3.2: Time profiling of the Scattering Network algorithm on phantom’s GPU.
Image size was 512 px × 512 px, parameters were M = 2, J = 5, L = 8. Number of
scattering coefficients produced is 174336. Times averaged over 100 runs.
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Color Operation Percentage Time

Element-wise Multiplication 44% 27.1ms
IFFT 14% 8.5ms
FFT 11% 6.7ms
Preparation 10% 6.0ms
Format Output Data 7% 4.2ms
Containers Allocation 6% 4.0ms
Unpad / Downsample / Modulus 6% 3.4ms
Filters copy CPU → GPU 2% 1.5ms
Symmetric Padding 0% 0.2ms
Image copy CPU → GPU 0% 0.2ms
Results copy GPU → CPU 0% 0.1ms

Table 3.3: Time profiling of the Scattering Network algorithm on phantom’s GPU.
Image size was 32 px × 32 px, parameters were M = 2, J = 5, L = 8. Number of
scattering coefficients produced is 681. Times averaged over 100 runs.

from CPU to GPU is another important part of the transformation, that spends nearly
one fifth of the time moving filters. This is because filters in the Fourier space occupy
lot of memory and the memory transfer speed to and from the GPU is still one of the
main bottleneck of GPU programming.

It would be interesting to evaluate the possibility to create filters directly on the
GPU to avoid this memory copy, but the trade-off with the computation time required
for their creation may not worth the hassle.

At the opposite, operations like symmetric padding, unpadding, downsample and
modulus benefit a lot of the custom implementation in CUDA kernels. Their overall
contribution is about 10 % and hence does not influence essentially the overall timings.

The container allocation operation refers to allocating memory on the GPU device to
store intermediate results of the algorithm. If a batch of images needs to be transformed,
this operation is required only once because allocated memory would be reused, saving
a bit of time.

An analogous operation with the filters copy was not possible because the whole filter
bank is too big to be stored on the GPU when other memory intensive operations like
FFT/IFFT need to be performed.

Format Output Data represents the operation of organizing results like original Mat-
lab code does and Preparation is a group of operations that arrange the environment for
the execution of the algorithm. Finally, transferring input image from the CPU to GPU
and getting scattering coefficients back are cheap operations because the size of the data
is small.

Increasing network complexity changes marginally some of the percentages. Table
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3.2 show the profile of the larger network whose performance were presented on Figure
3.8. In this case, filters transfer to the GPU requires more time because the number of
filters is larger in this configuration.

A different behaviour can be seen if the input image size is reduced. Table 3.3 show
the time profiling of the transformation of an image of size 32 px × 32 px. In this case
filters size is really smaller than before, so filters copy time is far less influential (2 %).
It’s worth pointing out that the element-wise multiplication is the slower operation in
this case. This is due to the fact that a multiplication kernel is launched for each filter,
so if signals are small, the overhead of launching the kernel is too big to be overwhelm
by the actual computation. This passage has not be efficiently optimized to keep the
code more readable, but if better performance are needed a more complex custom CUDA
kernel could be wrote to efficiently apply the element-wise multiplication over all filters
with a single launch.
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CHAPTER 4

Training and Test Methodology of a Machine

Learning Problem

Training a machine learning algorithm requires many steps, organized in a severe struc-
ture to prevent logic errors. This chapter explains the general workflow of how to train
a machine learning algorithm and will point out the particular approach required for the
task of classification of images with the scattering network representation.

4.1 Train/test sets and cross-validation

A machine learning algorithm is trained on a set of data, usually called database or
dataset. Generally, samples of a database have to be used both for the training and for
the evaluation of the algorithm. It would be a methodological mistake to use same data
for both tasks. That procedure would cause the “overfitting”, a situation in which the
trained model can perfectly score on the whole database but would fail miserably when
seeing new data.

Therefore the first critical step is to split the database in two sets: a train set and a
test set. The train set will be used for all the training procedure, ranging from casual
tests, model selection, hyper-parameters search, untill the final training. The test set will
be used only at the very ending of the training to evaluate performance of the final trained
algorithm. It’s important to point out that the samples have to be chosen randomly,
so that the two sets will be composed of independent and identically distributed (i.i.d)
random samples.
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In this work the split has been chosen to be in a 70% / 30% proportion, meaning
that 7 random samples out of 10 of the whole database has been used for the training,
while the remaining 3 have been put apart and will be used only for the test.

After this split, the train set will be used to choose an optimal model. It this task,
it is required to have another set to be used for the “validation” of the model. As the
number of samples in the provided database is relatively small, a technique called “k-Fold
Cross-Validation” have been used. This approach divides the train set in k “folds”. Then
the model is trained using k−1 folds and validated on the remaining fold. The procedure
is looped over all combinations of folds and the performance measure is averaged and
returned.

Common applications of this approach are with 8 or 10 folds. The extreme case is
the “leave-one-out”, that consists of having a number of folds equals to the number of
samples.

The cross-validation is a computationally expensive method, but it can avoid wasting
useful data.

In this work the cross-validation have been done with 8 folds as a compromise between
computation time and dimension of the training set.

4.2 Pre-processing

Samples from the database may not be already suitable for the subsequent feature ex-
traction and classification steps. Therefore some kind of pre-processing needs to be done
on data to adapt them to the requirements of the learning algorithm.

A frequent requisite for image classification models is to have a fixed input image
size. This is due to the fact that the architecture of learned parameters cannot be used
with different sizes.

As the output size of the scattering network directly depends on the size of the input
image, it was necessary to take all images to the same size. This was accomplished by a
three steps resize to bring all different sizes present in the database to a common size.
Steps followed are:

q Down-scaling for an integer factor: this step simulate having a camera sensor
whose pixels size is an integer multiple of the original pixels size. This leads to an
averaging of the signal of adjacent pixel like the one that would be observed in a
physical situation.

q Shrink to the required size by keeping aspect ratio, so the maximum dimension of
the required size is equal to the minimum dimension of the shrinked image

q Crop to have the required size
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This approach allows to treat better the high frequency information that could be
discriminative for image classification.

The first two steps have been done with a bicubic interpolation to better preserve
edges.

The choice of the optimal size of the resize is not known a priori and it is neither a
parameter that is learned during the training. Therefore it is called an “hyper-parameter”
of the model. This “hyper-parameter” will be chosen by evaluating several possibilities
(i.e. sizes of 256 × 256, 512 × 512, 1024 × 1024) with the cross-validation method and
finding the one that gives best classification performance.

4.3 Data Augmentation

Machine learning algorithms generalize better the more are the data they are trained
on. In the image classification task, an effective technique used in several works is data-
augmentation, that consists on creating fake data to add to the training set.

The new fake data are helpful to the classifier to be better invariant to the transfor-
mations applied to original data to obtain fake data. An obvious requirement is that this
new data should belong to the same distribution as original ones, and this is achieved
by choosing optimal transformations for the supposed distribution.

Data augmentation of images is usually performed with small affine transformations
or a subset of them.

In particular, in this work a weak data augmentation has been performed by rotating
training data at multiples of 90◦. In this way the train set increased fourfold without
introducing artifacts because these rotations does not need any form of interpolation.
This choice was based on the fact that the category of analyzed images did not depend
on a particular orientation.

Following the methodological thinking of Section 4.1, data augmentation have been
performed only on the samples of the k−1 folds used for training in the cross-validation.

4.4 Feature Extraction

The scattering network representation proposed in Chapter 2 is a method of feature ex-
traction: a set of features is obtained by an input data with specific operations. There-
fore input data are projected in a new space where they are supposed to be invariant
or stable to specific transformations of the original space and, most important, better
discriminable.

This procedure is applied after the creation of the augmented training set: every
sample is transformed with a scattering network of given parameters “M”, “J” and “L”.
These are also “hyper-parameters” that will be selected with cross-validation.
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In this work several combinations of J ∈ {6, 7, 8}; L ∈ {6, 8} were tried to reach
highest classification performance. M was keep fixed to 2 because reference paper [3]
stated that the classification metrics did not really improve with more than 2 layers of
scattering, despite the extreme increase of the time required to apply the transformation.

4.5 Feature scaling

Sometimes it is required to transform features to make them more adequate to be an
input of the following classifier.

For the SVM classifier, it is always suggested to scale input data to be in the range
[−1, 1] or [0, 1]. This will speed up convergence and will prevent some possible numerical
imprecisions (but this is not a hard requirement).

The common approach to map features to the range [−1, 1] is to subtract the mean
over the train set and then divide for the maximum of the absolute values. This operation
is performed feature-wise (each feature for itself). Despite the analytically correctness,
this method may give some trouble if there are big outliers in the training set: small
but possibly important features would be scaled to a very small range and floating point
precision may not be enough to express their discriminability.

An alternative method is to suppose features distributed normally around the mean
and to scale data by 3 times the standard deviation σ (after having removed the mean µ).
With this scaling, about 99.7 % of data would be in the range [−1, 1] and only outliers
would remain outside it. Sometimes this approach (with different multiples of σ) is called
“standardization”.

In this implementation, the mean µ and the standard deviation σ are calculated
feature-wise on the features extracted from the augmented training set. Therefore these
are two parameters “learned” from the data.

4.6 Classifier training

The crucial step of a learning algorithm is the training of the estimator. In a supervised
learning context, this step consist on feeding processed features and linked labels to the
learning algorithm. Depending on the algorithm, the training can take a lot of time or
be almost instantaneous.

One of the most famous and appreciated learning algorithm for classification is the
Support Vector Machine proposed originally by Cortes and Vapnik [28].
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4.6.1 Support Vector Machine

Support Vector Machine (SVM) is a binary linear classifier. Given a set of training data,
a SVM represents samples as points in an N-dimensional space and builds a hyper-plane
that can discriminate new data between the two classes if they lay respectively on one
side or the other of the hyper-plane. The hyper-plane is chosen such that it creates the
widest possible gap between samples of the two classes, defined the hard-margin. The
larger is the margin, the better the hyperplane separates data. In the general case where
data are not linearly separable, the SVM uses a soft-margin formulation [29, 28], where
the hyperplane is allowed to misclassify some points, but a penalty is applied. This is
achieved using the so-called hinge loss. Overall, the SVM tries to minimize the following
optimization problem:

min
w

1

n

n∑
i=1

max (0, 1− yi(w · xi)) +
λ

2
‖w‖2

Usually, the misclassification cost parameter C is introduced instead of λ to scale the
empirical hinge loss. Those two are related by λ = 1

nC
. This gives the formulation:

min
w
C

n∑
i=1

max (0, 1− yi(w · xi)) +
1

2
‖w‖2

In this formulation, the parameter C can be considered a trade-off between a better
separation of the training data (large C) or a larger margin of the hyper-plane (small
C). Figure 4.1 explains visually this trade-off with a synthetic 2D binary classification
problem. Smaller values of C creates a higher margin, but some points are misclassified.
When C grows, less points are included in the smaller gap of the soft-margins and thus
the number of misclassified points is lower.
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Figure 4.1: Separation hyper-plane (solid) and soft margins (dashed) of a linear SVM
at different values of C.

Several ways have been proposed for solving this problem. Most famous are reducing
the minimization to a quadratic programming optimization problem, where the primal
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or dual problem can be solved.

More recent approaches are instead based on sub-gradient descent of the hinge loss
or coordinate descent.

SVMs can be generalized to learn non-linear classification by applying the kernel
trick. This approach uses the observation that during the optimization all input data
are used for computing pairwise inner products < x, x′ > and that a transformation of
the input points Φ(x) can be broadcasted in the inner product by computing a kernel
k(x, x′) =< Φ(x),Φ(x′) >. In this way, if a kernel function k(x, x′) could be given, the
representation Φ(x) is not really needed to be computed. An example of successful kernel
used in conjunction with SVM is the Radial Basis Function (RBF) kernel K(x, x′) =

exp(−‖x−x
′‖2

2σ2 ) that implicitly maps input data to a feature space with an infinite number
of dimensions.

Despite this possibility offered by SVMs, the kernel trick has not been used in this
work. Instead a simple linear SVM was used because dimensionality of the feature space
provided by scattering networks is enough large and kernel tricks wouldn’t bring in a
valuable increase of performance, while increasing computational complexity.

A final note should be done to a generalization of SVMs to deal with multiclassifica-
tion task. This is usually achieved by training multiple SVM binary classifiers in one of
the two configurations: one-vs-one or one-vs-rest. The former approach trains multiple
SVMs to discriminate between each pair of classes. Each classifier is than applied to
new data and the class with the higher number of winnings in classifications is the one
assigned to the data. The latter method trains SVMs to discriminate one class from all
the others. The winner class is the one that score the highest output function in it’s
classifier.

In this work SVM has been used to learn from the augmented train set represented
with the scattering network and scaled. The software implementation used in this work
offered some hyper-parameters to tune the model. In particular, the cost C has been
tried in the range from 10−6 to 10.

4.7 Implementation and practical details

The training and evaluation procedure described above had been followed with the help
of some Python scripts to automate some steps.

Despite the order of the operations described above, some steps that didn’t depend
directly on the train set were performed in batch before the actual cross-validation. This
allowed to speedup the grid-search of hyper-parameters because most of the computation
were already done and cached on disk.

The shrinking at different sizes was applied over the whole database with the software
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Imagemagick1 ran with GNU parallel [30] to use all cores available on the machine.
Data augmentation was performed on the fly while extracting features with the scat-

tering network. In details, a Python script loaded each shrinked image and applied the
3 rotations to obtain 4 images. Each channel of each rotated image was supplied to
the scattering network to obtain a feature vector of the scattering coefficients. Feature
vector of each channel of a single image were then concatenated and stored on disk with
an association to the original image, to the shrinking applied, to the rotation performed
and to the scattering network parameters used. This allowed to apply a scattering net-
work with the same parameters to a big batch of images all of the same size, improving
computation times as described in Subsection 3.3.3.

In this way, the script that performed cross-validation didn’t really computed the
data-augmentation and the scattering network, but simply loaded right feature vectors
from the disk. This technique allowed to avoid time wasteful multiple computations of
the same transformations.

The cross-validation procedure was based on the KFold class of Scikit-learn 2 [31].
The LIBLINEAR [32] library, in the multi-core implementation [33, 34], was used to

train the linear SVM model. The library allows to choose the values of several param-
eters, including optimization problem solver type, misclassification cost C, tolerance of
termination criterion epsilon, whether to include or not the bias and specific weights to
adjust C of different classes. Python binding of the library were helpful to automate the
cross-validation procedure.

1www.imagemagick.org. Accessed on 11/18/2016
2http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.

html. Accessed on 11/18/2016
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CHAPTER 5

Textures Classification

5.1 Database

In [3], the scattering neural network representation was tested for digits and textures
classification. In particular, the textures classification task required to classify images
from the CUReT texture database [35]. The database consists in photos of surfaces of
61 real-world samples taken at different poses and illumination conditions. Thus this
collection was primarily targeted to studies of the reflactance of different materials.

The use of a 2 layers scattering network, followed by PCA classifier, allowed to obtain
high classification results, with a percentage of errors as low as 0.2 %.

Guided by this achievement, a test of the general purpose scattering network rep-
resentation on a newer database of textures was performed. The database used is the
“Describable Textures Dataset” (DTD) [4]. This database is composed of 47 categories
and 120 images for each category, for a total of 5640 images. Authors of the database
explain that the database was build after a vocabulary of 47 terms or categories to de-
scribe textures. These terms would allow to describe most of the textures and patterns
that can be found in the wild, i.e. not generated in a controlled environment. Therefore
many images of real world objects and scenes were searched and selected to build the
database. The result is a very heterogeneous database, where the intra-class variability
depends evidently on high level concepts. Some images belonging to a class per row are
showed in Figure 5.1. Authors of the database also reported the accuracy performance
of classification with state-of-the-art descriptors, encodings and classification methods.
Best results are 61.2 % with a shallow description based on SIFT and 66.7 % with a deep
representation obtained with convolutional neural networks.
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Figure 5.1: A sample of images from the DTD. One category per row is displayed. It’s
evident the great intra-class variability.

5.2 Classification Results

The procedure described in Chapter 4 was applied to the database. Images were all
scaled and cropped to a square size S = 256 px. Scattering network features were
extracted for different combinations of J and L. The one-vs-rest linear SVM classifier
was trained in an 8-fold cross-validation. Parameters that give higher mean accuracy in
the cross-validation were searched.

Table 5.1 reports achieved accuracies. Overall, classification performance are poorer
than those reported in [4]. However, this result was supposable because scattering con-
volutional networks offer an unspecialized representation of the input signal. Moreover,
it’s possible that the linear classificator that follows the representation is not enough to
assimilate the great abstracted variance included in this database. Finally, it’s worth
noting that SVM are, by construction, a binary classifier. In this case, the generaliza-
tion used for the multi-class problem is the one-vs-rest. Further studies could try other
methods to achieve a better discrimination of the multiple classes, like the one-vs-one
approach or the Crammer-Singer’s method [36].

To conclude this simple first test, the combination of hyper-parameters that gave the
best accuracy was used to train the model on the whole train set. Accuracy was then
measured on the test set that was picked at the beginning of the procedure. The overall
result is reported in Table 5.2. Accuracy grew a little, probably because more training
samples are used in this last train.
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S J L C Accuracy

256 6 6 1 · 10−6 0.194
256 6 6 1 · 10−4 0.299
256 6 6 1 · 10−2 0.256
256 6 8 1 · 10−6 0.214
256 6 8 1 · 10−4 0.316
256 7 6 1 · 10−6 0.155
256 7 6 1 · 10−4 0.272
256 7 6 1 · 10−2 0.263
256 7 8 1 · 10−6 0.165
256 7 8 1 · 10−4 0.294
256 7 8 1 · 10−2 0.262
256 8 6 1 · 10−6 0.127
256 8 6 1 · 10−4 0.238
256 8 6 1 · 10−2 0.265
256 8 8 1 · 10−6 0.138
256 8 8 1 · 10−4 0.256
256 8 8 1 · 10−2 0.277

Table 5.1: Performance evaluated with 8-fold cross-validation. Best accuracy is in bold.
S: input image size. J: n.scales of scattering networks filters. L: n.rotations of scattering
networks filters. C: cost parameter of SVM.

S J L C Accuracy

256 6 8 1 · 10−4 0.329

Table 5.2: Performance of the final model. S: input image size. J: n.scales of scattering
networks filters. L: n.rotations of scattering networks filters. C: cost parameter of SVM.
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CHAPTER 6

Melanoma Classification

6.1 Introduction

Malignant melanoma is a type of cancer that originates almost always from melanocytes.
These are pigment cells of the skin, responsible for the production on melanin and thus
bound to the skin color.

Several type of malignant melanoma (referred to herein only as “melanoma”) can be
characterized basing on many features, for example the diameter, the irregularity of the
borders and the spreading. Most common are: superficial spreading, lentigo malignant,
nodular, acral lentiginous, mucosal, desmoplastic.

The melanoma is a commonly curable cancer if detected in early stage [37]. The
primary treatment is excision biopsy, that can be performed to completely remove the
lesion. Further surgery will assessment the presence of eventual near metastasis. In this
case, the treatments can achieve a 98 % 5-year survival rate. If an accurate diagnosis is
not conducted early enough, the disease can reach the lymphatic system and thus spread
through the body. In this circumstance, the survival rate drops to 62%. The worst case
is the creation of metastases around the body: the survival rate falls to 16%.

First diagnosis is commonly performed with a non-invasive visual inspection. Expert
dermatologist performs the exam using the dermoscopy, a technique that employs a
dermatoscope [38]. This tool is a light-controlled, high-resolution magnifying imaging
device that can show clearly the lesion to the dermatologist. Dermatoscope works at
direct contact to the skin using a layer of gel applied to the skin or without any contact.
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The use of a transparent medium layer between the instrument and the skin permits to
have a better illumination of the subject lesion.

To recognize a melanoma among other skin lesions, experts usually follow classi-
fication schemes. One of them is the “ABCDE rule”, where “A” is for asymmetry,
“B” for borders, “C” for color, “D” for diameter, “E” for evolving. Odd behaviours of
these features relative to a lesion can warn about the possible presence of a melanoma.
More recently, other methods have obtained importance as simpler and/or more accurate
substitutes of the “ABCDE rule”. For example, studies shown that “pattern analysis”
outperform other approaches [39]. This method consists in searching predefined patterns
on the lesion that can be described by common analogous (e.g. “honeycomb”) and that
are more often associated with a melanoma. Overall, an expert dermatologist with the
help of a dermatoscope can achieve an absolute accuracy between 75 % and 84 % [37].

Nowadays, the wide-spread adoption of dermatoscopes allows to have a constantly
growing number of labelled high-resolution digital images that can be used to train ma-
chine learning algorithms. CAD (Computer Aided Diagnosis) systems, based on these
algorithms, could help dermatologists to perform better and faster melanoma classifica-
tion.

Many approaches followed in the years. A summary could be found in [40] and [37].
First implementations were based on the automation of classical schemes, by extracting
hand-coded visual features like colors, size, shape and jagged borders. Features were
than used to train a common classifier, directly or after the encoding with techniques like
BoVW. More recent works were instead based on deep learning approaches, supported
by the larger availability of labelled images. Some methods also used the interesting
approach of transfer learning, where visual features learned on datasets of real-world
images are used to fine-tune deep models on the specific task of melanoma classification.

Unfortunately, there is still a great discrepancy between results of different papers on
the subject. Many metrics can be found in literature, ranging from the mere accuracy
score, to more complex metrics like AUC or F-measures. Moreover, validity and repro-
ducibility of results are often arguable because of the small and/or not representative
size of the employed datasets.

An attempt to standardize the sector of automatic melanoma classification comes
from the “ISIC Archive” (explained in the next section). One classification result based
on this dataset can be found in [37]. In this work, authors reached a 93.1 % of accu-
racy (with 94.9 % sensitivity and 92.8 % of specificity) in melanoma vs. non-melanoma
classification, using a mixed transfer-learning method. Other recent results comes from
a challenge proposed at ISBI 2016 (International Symposium on Biomedical Imaging).
The “Skin Lesion Analysis Towards Melanoma Detection” challenge saw 78 submissions
from 38 groups [41] that contended in several phases. The challenge was based on a
subset of the complete archive, composed of 900 training images and 379 test images.
Among all the submissions, the best lesion classification result obtained was of 85.5 % of
accuracy (with 50.7 % sensitivity and 94.1 % of specificity).
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6.2 Database

A database obtained from the “International Skin Imaging Collaboration: Melanoma
Project” (ISIC) was used to train and evaluate the classification performance of a model
based on scattering networks.

The ISIC is a project of the “International Society for Digital Imaging of the Skin”,
with the purpose of publishing an open source public archive of skin images, which
could help to improve diagnostic skills of physicians, to educate common people about
melanoma and, above all, to create a big database for developers to train and test their
algorithms for skin cancer detection.

ISIC-Archive is publicly available online [42]. The archive is organized in datasets that
are collections of different studies from several clinics around the world. At time of writ-
ing, the archive hosts 12086 color images of skin lesions, of which 11301 are benign, 770
malignant cancer and 15 of unknown type. Of these, 9251 images are benign melanocytic
moles in children. Lesions diagnosis is guaranteed on either biopsy-confirmation, a doc-
umented history of being clinically benign over several moths or independent reviews of
four expert dermoscopists. Table 6.1 shows how each dataset is composed.

Dataset Total Images Benign Malignant Unknown

ISIC UDA-1 557 401 156 -
ISIC UDA-2 60 23 37 -
ISIC MSK-1 683 445 223 15
ISIC MSK-2 1534 1180 354 -
ISIC SONIC-1 9251 9251 - -

Table 6.1: Summary of images available at time of writing on the ISIC-Archive

Beyond malignant or benign classification, other clinical information are bundled
with each image, like the age of the patient, sex and localization of the lesion.

Along with clinical metadata, the ISIC-Archive contains segmentation data of each
image. These data were not used in this work, so that the proposed model could be
evaluated with the original image without any additional information.

Lesion images and metadata were downloaded from the ISIC-Archive using the API
interface provided by the website 1. A Python script was created to automate this task.

The dataset containing moles of children was not used in successive analysis because
it did not contain any malignant sample and so it could introduce a bias in the model.
Images with unknown diagnosis were also dropped.

Overall, the database prepared for the analysis included 2049 benign (negative) ex-
amples and 770 malignant (positive) examples, for a total of 2819 images. Same sample

1https://isic-archive.com/api/v1. Accessed on 11/18/2016.
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benign benign benign benign benign

malignant malignant malignant malignant malignant

Figure 6.1: Some examples of images found in the ISIC Archive. Images in top row
are benign lesions and those in the bottom row are malignant melanoma. Some frequent
artifacts can be seen. In the top center image, the lesion is partially occluded by some
hairs. In bottom left image, ticks of a ruler cover the lesion and some black borders are
present. In fourth image of bottom row, some gel bubbles create light glares.

images from the database are shown in Figure 6.1.

The two classes turned out to be highly imbalanced (as seen in Table 6.2). This
difference must be considered during training and evaluation of the classifier.

Class N. Samples Percentage (%)

Benign (negative) 2049 72.7
Malignant (positive) 770 27.3

Total 2819 100.0

Table 6.2: Summary of images available at time of writing on the ISIC-Archive

One issue found while preparing the database for the subsequent training was that
sample images were not all the same shape. Figure 6.2 shows histogram of pixels count
expressed in Megapixels. More than 1500 samples are 1024 px × 768 px = 0.75 Mpx
images from the MSK-2 dataset. The MSK-1 dataset forms the peak at about 27 Mpx,
while other datasets are spread at sizes lower than 10 Mpx. The preprocessing phase
(exposed in Section 4.2) took care of this problem.

50



0 5 10 15 20 25 30

MegaPixels

0

200

400

600

800

1000

1200

1400

1600

1800

N
um

be
r 

of
 Im

ag
es

Figure 6.2: Histogram of image resolution of samples used for the training.

6.3 Model training and results

The selected subset of the ISIC database was used to train a model composed of a
scattering network representation and a linear SVM, as exposed in Chapter 4.

It is worth noting that, as opposed to many authors, images were not prepared in
order to remove artifacts like hairs, gel bubbles or other artificial signs. Moreover, the
segmentation of the images is not used to confine the region of the lesion. This approach is
followed in order to consider the scattering network a general purpose approach, possibly
suitable for a wide range of problems without particular customizations.

To obtain a unique size for the images, they were resized to squares of side S = 256 px
and S = 512 px. The cross-validation method was used in order to find best values for:
size S, filter scales J , filter orientations L and SVM cost C.

Table 6.3 reports accuracy, sensitivity, specificity, precision and ROC AUC for many
combinations of the hyper-parameters, estimated with an 8-fold cross-validation. First
observation is that despite the great range of parameters, there is not a great variability
between metrics. Secondly, it can be seen that metrics are generally below state-of-the-
art results reported in previous works.

Starting from the last point, results are quite those expected: the trained model is a
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general purpose system, not engineered in any way to consider the fact that it is trying
to classify melanomas. Therefore poor metrics compared to ad-hoc system are ordinary.

Going into details of the first consideration, the accuracy on the train folds of the
cross-validation was studied too. This value reached quite always high values, next to the
100 %, especially for larger C. With the linear classifier used, this means that the problem
could be separated nearly linearly. This may be due to the “curse of dimensionality”,
a phenomena that appears when having a high number of features and a (relative)
low number of examples. In this case the classification problem appears to be linearly
separable. SVM have the theoretical background to guarantee that the hyper-plane
with larger margin is found to try to reduce this “curse”, but an optimal trade-off
between misclassification cost and hyper-plane margin must be chosen. This is achieved
by optimally selecting the parameter C. Subsection 4.6.1 explained the behaviour of the
decision function on varying C.

In fact, it can be observed that values of C inside the range 10−4 and 10−2 gives a
bit higher performance than other values. In this case the model appears to generalize
better on the various validation folds. Therefore, a fine tuning on C was performed for
best combinations of other hyper-parameter found in the previous grid-search, that is
S = 512, J = 7 and L = 8. Results are shown in Table 6.4. A minor improvement on
accuracy, precision and ROC AUC score has been achieved, passing the limit of 70 % of
accuracy.

It is worth noting that other combinations of parameter J and L did not scored
much worse results than the best configuration found. This is an interesting property of
the scattering network representation that can be observed also on the texture dataset.
Usually, the best configurations of the scattering network are for at least 6 rotations
(hyper-parameter L) and a scale J such that S/k ≈ 2J , where k ∈ {1, 2, 3}. This be-
haviour has been seen also in other works that used this representation. This can be due
to the fact that size of the scattering coefficients is approximately S/2J , depending on
the original size and S on the scale of the filters J . Therefore, if that size is small, the
maximum translation invariancy is included in the representation, and better discrim-
inability is obtainable. This usually makes the research of hyper-parameters very limited
to few couples of J and L, speeding up the best model selection procedure.

Despite that, some more tests could be performed with different settings of the classi-
fier in order to obtain better results. For example, an uneven weight could be applied to
the misclassification cost of each class to try to adjust the trade-off between sensitivity
and specificity. In fact, in the medical field, it’s usually better to have a higher sensi-
tivity (i.e. recognizing all positive/malignant samples). Nevertheless, it can be observed
that the precision is always below 50 %, meaning that most of the lesions considered
malignant are instead benign.

A different approach could use a classifier that includes non-linearities, for example
a SVM with Radial Basis Function Kernel or a multi-layer perceptron. Non-linearities
could allow to learn more complex relations between the features. Despite that, this
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S J L C Accuracy Sensitivity Specificity Precision ROC AUC

256 7 6 1 · 10−6 0.641 0.625 0.647 0.410 0.636
256 7 6 1 · 10−4 0.682 0.740 0.660 0.460 0.700
256 7 6 1 · 10−2 0.683 0.708 0.674 0.459 0.691
256 7 6 1 · 100 0.668 0.643 0.678 0.439 0.661
256 7 6 1 · 101 0.653 0.606 0.671 0.419 0.638
256 7 8 1 · 10−6 0.640 0.659 0.632 0.413 0.646
256 7 8 1 · 10−4 0.681 0.731 0.661 0.458 0.696
256 7 8 1 · 10−2 0.688 0.672 0.695 0.463 0.683
256 7 8 1 · 100 0.658 0.613 0.675 0.425 0.644
256 7 8 1 · 101 0.644 0.599 0.662 0.409 0.630
256 8 8 1 · 10−6 0.614 0.566 0.633 0.377 0.600
256 8 8 1 · 10−4 0.669 0.711 0.653 0.445 0.682
256 8 8 1 · 10−2 0.683 0.695 0.679 0.459 0.687
256 8 8 1 · 100 0.659 0.616 0.675 0.426 0.646
256 8 8 1 · 101 0.654 0.618 0.668 0.422 0.643
512 7 6 1 · 10−6 0.658 0.659 0.657 0.429 0.658
512 7 6 1 · 10−4 0.692 0.724 0.679 0.469 0.702
512 7 6 1 · 10−2 0.693 0.665 0.704 0.468 0.684
512 7 8 1 · 10−6 0.665 0.672 0.662 0.438 0.667
512 7 8 1 · 10−4 0.695 0.738 0.679 0.474 0.708
512 7 8 1 · 10−2 0.691 0.651 0.707 0.465 0.679
512 8 6 1 · 10−6 0.648 0.638 0.651 0.417 0.645
512 8 6 1 · 10−4 0.683 0.738 0.662 0.461 0.700
512 8 6 1 · 10−2 0.678 0.688 0.674 0.453 0.681
512 8 6 1 · 100 0.670 0.627 0.687 0.440 0.657
512 8 8 1 · 10−6 0.642 0.652 0.638 0.414 0.645
512 8 8 1 · 10−4 0.682 0.742 0.659 0.460 0.700
512 8 8 1 · 10−2 0.685 0.656 0.697 0.459 0.676
512 8 8 1 · 100 0.667 0.597 0.695 0.434 0.646

Table 6.3: Performance evaluated with 8-fold cross-validation. Best metric are in bold.
S: input image size. J: n.scales of scattering network filters. L: n.rotations of scattering
network filters. C: cost parameter of SVM. ROC AUC: Receiver Operating Characteristic
Area Under Curve
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S J L C Accuracy Sensitivity Specificity Precision ROC AUC

512 7 8 1 · 10−6 0.665 0.672 0.662 0.438 0.667
512 7 8 5 · 10−6 0.673 0.704 0.661 0.449 0.683
512 7 8 1 · 10−5 0.681 0.722 0.665 0.457 0.693
512 7 8 5 · 10−5 0.689 0.735 0.671 0.466 0.703
512 7 8 1 · 10−4 0.695 0.738 0.679 0.474 0.708
512 7 8 5 · 10−4 0.703 0.722 0.695 0.481 0.709
512 7 8 1 · 10−3 0.696 0.699 0.695 0.473 0.697
512 7 8 5 · 10−3 0.691 0.668 0.700 0.466 0.684
512 7 8 1 · 10−2 0.691 0.651 0.707 0.465 0.679

Table 6.4: Fine-tuning over C. Performance evaluated with 8-fold cross-validation.
Best metric are in bold. S: input image size. J: n.scales of scattering network filters. L:
n.rotations of scattering network filters. C: cost parameter of SVM. ROC AUC: Receiver
Operating Characteristic Area Under Curve

approach was not followed in order to keep the model usable for a generic class of tasks.
In fact, the introduction of non-linearities usually implies that others hyper-parameters
should be searched. The dependence of classification results with respect to these hyper-
parameters is usually very unstable, therefore more robust, extended and task specific
tunings should be performed.

With regard to the SVM with RBF kernel, this approach was tried nevertheless to
confirm what was aforementioned in Subsection 4.6.1. Scattering network representation
creates a high dimensional space, where number of features is usually larger than the
number of samples. When this happens, classification performance of a linear kernel are
usually comparable to those of a non-linear one. This was tested by training a SVM
with RBF kernel with different combinations of parameters. Performance achieved were
comparable to those obtained with the linear SVM, therefore the latter model was chosen
in order to keep make the model more general purpose.

Finally, the parameters that allowed to achieve the best results of accuracy and ROC
AUC in cross-validation were used to setup the final model. This model was trained with
all the 70 % of the whole database that was put aside before for the training phase. The
trained model was finally tested on the test set and performance metrics are reported in
Table 6.5.

Final performance of the model are a little better than those found with the cross-
validation. Presumably the larger size of the train set allowed the model to assimilate
better the features space.

An ending note is about computational performance. The selected model is compu-
tational heavy. The feature extraction step required the usage of the Titan X GPU (see
Section 3.6) because of its large amount of memory (more than 4 GB were necessary).
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S J L C Accuracy Sensitivity Specificity Precision ROC AUC

512 7 8 1 · 10−6 0.705 0.722 0.700 0.443 0.711

Table 6.5: Performance of the final model. S: input image size. J: n.scales of scattering
network filters. L: n.rotations of scattering network filters. C: cost parameter of SVM.
ROC AUC: Receiver Operating Characteristic Area Under Curve

The scattering network in this configuration outputs 22416 features for a grayscale image,
therefore 67248 for a RGB image.

Nevertheless, the total duration of the inference of the model is about 1 s per image
with the proposed GPU implementation. This time permits to have a near real-time
classification of a mole. An automatic model of this kind could be used in an application
where a fast and gross classification is needed. Nevertheless, a better sensitivity is
mandatory in the medical field, therefore some more studies for a better classification
should be performed before.

Finally, a simpler configuration of the parameter could be used to train a model
capable of running on a consumer-level GPU, like the one of a laptop. For example,
the model with S = 256, J = 7, L = 6, C = 1 · 10−4 in Table 6.3 achieved performance
comparable to the selected one, while being much simpler (with 9590 features produced
by the scattering network).

55



56



CHAPTER 7

Conclusions

In this work, the scattering convolutional network has been studied in the context of
machine learning. A scattering convolutional network permits to build a signal repre-
sentation that is invariant to translations and stable to deformations.

After summarizing the theoretical structure and predominant qualities of this trans-
formation, a high efficiency GPU code implementation has been proposed. The code
takes advantage of the parallel architecture of GPUs to optimize most of the opera-
tions involved in the algorithm, especially the crucial convolutions with filters. This was
implemented in the form of the convolutional theorem, by leveraging on the highly par-
allelizable Fast Fourier Transform and matrix multiplication. The implementation has
been successfully tested for compatibility with the serial code published by the group
of the authors of the scattering network representation. Moreover, high performance
has been achieved, by reaching a speedup up to 20× with respect to the original code.
The reduction of the computing time would allow nearly real-time application of this
representation and more efficient future studies.

The scattering network has been applied to the classification task in two problems.
Firstly, a test was conducted on a recent texture dataset to evaluate representation
capabilities of the scattering network on a noticeably abstract classification problem. A
linear SVM has been used as the classifier of the model. Results were inferior to the
best models evaluated on the dataset, but considering the complexity of the database,
the general purpose model based on scattering network obtained interesting outcomes.

Finally, a practical medical problem have been challenged: the malignant melanoma
recognition. Melanoma is one of the deadest skin tumor, but if it is identified early the
chance of recovering are substantial. A novel dataset of skin lesions has been used to
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train the same previous model based on scattering network representation and linear
SVM. The model produced interesting classification results despite not being a system
specialized in the task.

Overall the scattering network has proved to be an interesting method of transforming
generic raw images in order to create a representation useful for subsequent analysis,
particularly in classification tasks.

Hopefully the proposed GPU code will allow researchers to perform more studies on
this representation and to discover more fields of application.
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