
Alma Mater Studiorum · Università di Bologna

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI
Corso di Laurea Specialistica in Informatica

JOLIE:
a Service-oriented Programming Language

Tesi di Laurea
in

Linguaggi di Programmazione

Relatore:
Chiar.mo Prof. Gianluigi Zavattaro

Correlatore:
Dott. Ing. Claudio Guidi

Laureando:
Fabrizio Montesi

Sessione I
Anno Accademico 2009/2010

Sommario

Il Service-Oriented Computing (SOC) è un paradigma per la programma-

zione di applicazioni distribuite basato sulla composizione di servizi. I servizi

sono entità computazionali autonome che possono essere descritte, pubblica-

te e dinamicamente reperite allo scopo di costruire funzionalità sempre più

complesse. Al giorno d’oggi la tecnologia di riferimento per il SOC è Web

Services, un insieme di specifiche aperte che si concentra su interoperabilità

e compatibilità delle infrastrutture software. Questi risultati sono ottenu-

ti, principalmente, attraverso l’adozione del formato XML e del protocollo

HTTP come strato sottostante per le comunicazioni.

Uno degli aspetti più importanti del SOC è la composizione. Le interfac-

ce pubbliche esposte da ogni servizio permettono la composizione di questi

ultimi in workflow (flussi di lavoro) complessi, in modo da implementare

funzionalità che riutilizzino quelle già offerte dai singoli servizi. La composi-

zione di servizi viene attualmente effettuata tramite due approcci differenti:

l’orchestrazione e la coreografia.

Nell’orchestrazione un singolo servizio, chiamato orchestratore, è respon-

sabile per la composizione ed il coordinamento degli altri servizi al fine di

completare un dato compito. La coreografia, invece, descrive le interazio-

ni tra i vari servizi, che eseguono una strategia globale per raggiungere un

obiettivo senza un punto di controllo centralizzato. Per queste ragioni viene

detto che l’orchestrazione offre un punto di vista locale, mentre la coreo-

grafia globale. Al momento i linguaggi di riferimento per l’orchestrazione

e la coreografia sono, rispettivamente, WS-BPEL e WS-CDL. WS-BPEL e

1

WS-CDL non offrono definizioni formali del loro comportamento. Una seria

conseguenza di questo è il fatto che la semantica di BPEL può risultare am-

bigua in alcuni casi: ambienti di esecuzione per BPEL diversi possono dare

esito ad esecuzioni diverse dello stesso programma.

In questa tesi viene presentato il linguaggio JOLIE. JOLIE è un proget-

to open source, pubblicamente reperibile per uso e consultazione. JOLIE

è un linguaggio di programmazione orientato ai servizi, attraverso il quale

possono essere programmati sia semplici servizi che complessi orchestratori,

supportando un notevole grado di scalabilità. JOLIE è stato sviluppando se-

guendo delle specifiche formali, offerte dal calcolo di processi SOCK, cos̀ı da

permettere di ragionare formalmente su programmi sviluppati con esso.

Ogni programma JOLIE definisce un servizio ed i servizi possono essere

facilmente composti in modo da formarne di più complessi. Uno dei più

evidenti vantaggi offerti dal linguaggio è rappresentato proprio dalle sue pri-

mitive per la composizione. I meccanismi offerti di aggregation, embedding e

redirection permettono l’implementazione di tre differenti patterns di compo-

sizione il cui comune denominatore è il fatto che la loro applicazione restitui-

sce sempre un servizio. Questo avvicina i concetti di servizio e di architettura

di servizi, introducendo la possibilità di creare gerarchie (servizi contenenti

altri servizi).

Un altro aspetto importante del linguaggio JOLIE è la sua elegante sepa-

razione tra il behaviour (comportamento) di un servizio e le sue informazioni

di deployment. Lo stesso behaviour può essere riutilizzato con diversi mezzi

e protocolli di comunicazione, ed i collegamenti verso altri servizi possono

essere cambiati dinamicamente. JOLIE supporta l’introduzione di nuovi pro-

tocolli e mezzi di comunicazione attraverso lo sviluppo di semplici librerie

Java, chiamate JOLIE extensions. La capacità di poter estendere le possili-

bità di comunicazione si è dimostrata un fattore chiave nell’integrazione di

JOLIE con un ampio spettro di tecnologie. Grazie a questo JOLIE può essere

usato per creare applicazioni orientate ai servizi attraverso l’orchestrazione

di applicazioni legacy non basate, ad esempio, sulle specifiche Web Servi-

ces. Una importante conseguenza di questo punto è la possibilità di creare

programmi JOLIE che agiscano come web server per applicazioni Web 2.0.

Sommario dei capitoli

Nel capitolo 1 vengono presentati i concetti chiave del service-oriented

computing, con riferimento particolare alle specifiche Web Services. Le prin-

cipali specifiche Web Services vengono riportate, seguite da uno studio dei

concetti più importanti concetti alla base del paradigma. Le definizioni espo-

ste di service behaviour (flusso delle attività) e service engine (esecuzione

delle sessioni) vengono utilizzate alla fine del capitolo per dare la definizione

cardine di servizio.

Nel capitolo 2 viene riportato il calcolo di processi SOCK, la teoria di

riferimento per la semantica del linguaggio JOLIE. La sintassi e la semantica

del calcolo vengono presentate. In particolare la semantica – strutturata sui

tre livelli di service behaviour, service engine e service network – possiede

una intuitiva relazione con i concetti esposti nel primo capitolo.

Nel capitolo 3 vengono presentati i costrutti base del linguaggio JOLIE.

Le principali primitive di comunicazione e di composizione delle attività ven-

gono presentate, assieme alla potente sintassi per la manipolazione di dati

strutturati.

Nel capitolo 4 vengono riportati aspetti più avanzati del linguaggio,

particolarmente legati alle architetture di sistemi orientati ai servizi. In par-

ticolare i costrutti di aggregation, embedding e redirection vengono esposti,

in ambito statico e dinamico.

Nel capitolo 5 vengono presentati i costrutti linguistici e la loro seman-

tica relativamente ai meccanismi per la gestione di errori offerti da JOLIE.

Il capitolo offre prima un raffinamento di sintassi e semantica del calcolo di

processi SOCK, per poi mostrare i risultati l̀ı ottenuti siano stati trasposti

nel linguaggio JOLIE.

Nel capitolo 6 viene offerta una descrizione dell’implementazione del lin-

guaggio. Le componenti principali dell’implementazione – Parser, Runtime

Environment, OOIT e Communication Core – vengono riportate e descritte.

Nel capitolo 7 vengono introdotte alcune importanti tecniche di pro-

grammazione orientate ai servizi che sono state sperimentate attraverso il

linguaggio JOLIE. Le tecniche fanno particolare riferimento ai costrutti di

aggregation, embedding e redirection, e vengono corredate di esempi.

Introduction

Service-Oriented Computing (SOC) is a paradigm for programming dis-

tributed applications by means of the composition of services. Services are

autonomous, self-descriptive computational entities that can be dynamically

discovered and composed in order to build more complex functionalities. As

of today the most prominent technology based on SOC is Web Services [49],

a set of open specifications that focuses on interoperability and compatibility

with existing infrastructures. This is mainly obtained, respectively, through

the adoption of the XML [45] document format and by using HTTP [46] as

the underlying transport protocol for communications.

One of the most important aspects in SOC is composition. The public

interfaces exposed by each service allow for the composition of the latter in

complex workflows, in order to implement functionalities that reuse those

that are already offered by the single services. At the present service compo-

sition can be modelled following two different approaches: orchestration and

choreography.

In orchestration a single service, called orchestrator, is responsible for

composing and coordinating the other services in order to complete the de-

sired task. Choreography, instead, describes the interactions between the

various services, which execute a global strategy in order to achieve the de-

sired result without a single point of control. For these reasons it is said that

orchestration offers a local viewpoint whereas choreography offers a global

viewpoint. At the present the most credited language for dealing with ser-

vice orchestration is WS-BPEL [37] (BPEL for short). On the other hand,

i

ii INTRODUCTION

the reference language for choreography is WS-CDL [50]. However both lan-

guages lack formal foundations, thus undermining the applicability of formal

reasoning on programs produced with them. A serious consequence of this

fact is that BPEL semantics can be ambiguous in some cases; indeed, dif-

ferent engines for the BPEL language could lead to different executions, as

noted in [30].

In the recent years SOC has been, and continues to be, the target of

a rising interest both from the Industry and the Academy. In particular,

the Industry focused on interoperability through the establishment of stan-

dard specifications (such as WS-Addressing [48], WS-Coordination [38] and

WS-Security [39]) and integration with existing technologies in order to favor

adoption. Academia, on the other hand, has contributed greatly to the under-

standing of service-oriented systems by means of formal models, where con-

currency theory usually plays an important role. These foundational studies

are critical in order to perform precise analyses of service-oriented systems,

but they usually are very abstract and finding connections between them

and real programming languages for service-oriented programming (such as

BPEL) can be nontrivial. Academic research is currently following two di-

rections. The former one is to perform formal studies in order to enhance

already existing technologies. For instance, various attempts have been made

for defining precise semantics for BPEL [31, 40]. This approach leverages the

existing user base for the target technology, leading to a potentially higher

adoption and feedback from users. However, the whole set of features of-

fered by BPEL is pretty extensive and many works that follow this approach

present only a subset of the actual BPEL primitives. The latter direction

follows the opposite trail, by starting a formal model and build, from scratch,

a new technology based upon its semantics. The advantage of this second

option lies in the potential for a clearer separation of concepts and a more

solid framework.

In this thesis the JOLIE programming language is presented. JOLIE is an

open source project [14], publicly available for consultation and use [24]. To

INTRODUCTION iii

the best of the author’s knowledge, JOLIE is the first full-fledged program-

ming language based upon the service-oriented programming paradigm. By

means of JOLIE it is possible to implement both simple services and complex

orchestrators, scaling from handling a few clients to very high numbers of

connections with invokers and composed services.

JOLIE has been developed by following the aforementioned second path.

Indeed, its base semantics follows the formal specifications of the SOCK [20,

17] process calculus. The SOCK calculus was born as a general model for

designing service-oriented systems, and has been developed by taking in-

spiration from the constructs present in renowned process calculi such as

CCS [32] and well established technologies such as Web Services. One of the

most contradistinctive elements of SOCK is its extensive set of primitives.

This is different from the majority of process calculi, where minimality is of

critical importance. SOCK, however, strives to maintain a balance between

minimality and the level of comprehensiveness that is needed to model real

services in a faithful manner. In turn, this makes SOCK particularly suitable

to be a base for the implementation of a general language for service-oriented

programming such as JOLIE. The fact that JOLIE is based upon a process

calculus has been fundamental, e.g., in the development of a solid theory

and implementation for error handling [18, 19, 33], which are exposed in

Chapter 5.

JOLIE offers a programmer-friendly syntax, resembling those of C and

Java, that allows for the fast prototyping of services and their subsequent

step-by-step incremental refinement. This is in contrast with the XML-

based syntax provided by BPEL which, because of its complexity, is often

handled by means of graphical tools. Particular effort has been put into

making structured data handling powerful and intuitive. This is because in

service-oriented systems it is often the case that one has to handle structured

documents (such as XML ones).

Every JOLIE program defines a service, and services can be easily com-

posed in order to form even more complex ones. Indeed, among the most

iv INTRODUCTION

prominent advantages of JOLIE are its powerful primitives for service com-

position. The offered mechanisms of aggregation, embedding and redirection

allow for the implementation of three different composition patterns whose

common denominator is the fact that they always yield another service. This

blurs the difference between the concepts of service and service-oriented ar-

chitecture, introducing the possibilities of creating hierarchies (services con-

taining other services) and building seamless bridges between services that

use different interaction protocols or data encodings.

Another important aspect of JOLIE is the elegant separation between

the service behaviour and its deployment information. The same behaviour

can be used with different communication mediums and protocols. Bindings

toward other services can change dynamically, including their communica-

tion medium and protocol specifications. Support for new communication

means can be added by developing simple Java libraries, called JOLIE exten-

sions. The ability to extend its communication capabilities has proven to be

a key factor in integrating JOLIE with a wide range of existing technologies.

Thanks to this JOLIE can be used to create service-oriented applications even

by orchestrating legacy applications that do not support the Web Services

specifications. An important consequence of this point is the possibility to

create a JOLIE program to act as a server for Web 2.0 applications.

INTRODUCTION v

Structure of the thesis

This thesis is structured as follows:

• Chapter 1 presents the key concepts of service-oriented computing, with

references to the Web Services specifications;

• Chapter 2 reports the SOCK process calculus, the theoretical framework

that defines the base semantics of JOLIE;

• Chapter 3 presents the basic language constructs of JOLIE;

• Chapter 4 presents more advanced features of the language, particularly

related to the architecture of a service-oriented system;

• Chapter 5 reports the constructs and semantics of the error handling

mechanisms of JOLIE;

• Chapter 6 describes the implementation of the language;

• Chapter 7 introduces some important service-oriented programming

techniques that have been experimented with JOLIE.

Finally, at the end, conclusions and future work are reported.

Contents

Introduction i

1 Background and key concepts 1

1.1 Service-Oriented Computing and Web Services 1

1.1.1 Service composition: orchestration and choreography . 3

1.2 Key concepts: a definition for service 3

1.2.1 Behaviour . 4

1.2.2 Engine . 6

1.2.3 Service description . 10

1.2.4 Service definition . 11

2 Foundations 13

2.1 Service behaviour layer . 14

2.2 Service engine layer . 18

2.3 Service network layer . 20

3 Language basics 23

3.1 Basic behavioural constructs 25

3.1.1 Communication statements 25

3.1.2 Process composition 26

3.1.3 Internal synchronization links 27

3.2 Handling data . 28

3.2.1 Expressions . 30

3.2.2 Flow control constructs 31

vii

viii INTRODUCTION

3.2.3 Dynamic variable paths 32

3.2.4 Deep copy and aliases 34

3.3 Basic deployment constructs 35

3.3.1 Interfaces and message types 35

3.3.2 Communication ports 38

3.4 Procedures and inclusions . 42

3.4.1 Procedures . 42

3.4.2 Source code inclusion 43

3.5 Session management . 44

3.5.1 Execution modalities, session starting and initialization 44

3.5.2 Session state and synchronization 45

3.5.3 Correlation sets . 46

4 Advanced features 49

4.1 Dynamic port configuration 49

4.1.1 Rebinding and binding registries 50

4.1.2 Dynamic parallel composition 53

4.2 Embedding . 55

4.2.1 Java services . 58

4.3 Redirection . 60

4.4 Aggregation . 62

4.5 Dynamic system composition 65

5 Fault and compensation handling 67

5.1 Key concepts . 67

5.2 Foundations for dynamic error handling 71

5.3 Dynamic error handling in JOLIE 77

6 Implementation 87

6.1 Interpretation algorithm . 88

6.2 Input parsing and abstract syntax tree 89

6.3 Execution: OOIT and Runtime Environment 90

Index ix

6.4 Communications . 91

7 Programming techniques and examples: using JOLIE 93

7.1 Interceptors and wrappers . 93

7.1.1 Interceptors . 94

7.1.2 Wrappers . 98

7.2 Service mobility patterns . 99

7.3 SoS: service of services pattern 100

7.3.1 MetaService . 101

7.3.2 Example . 105

Conclusions 107

Bibliography 110

Chapter 1

Background and key concepts

Service-Oriented Computing (SOC) is a paradigm for programming dis-

tributed applications by means of the composition of services. Services are

autonomous, self-descriptive computational entities that can be dynamically

discovered and composed in order to build more complex functionalities.

This chapter offers an overview of SOC in its most renowned definition,

developed inside the scope of the Web Services technology. Afterwards, a

more conceptual description of the service-oriented paradigm, derived from

foundational studies, is provided. The latter description is relevant w.r.t. this

thesis because its definitions have been inspired both by SOCK, the process

calculus behind JOLIE, and practical experience with the JOLIE language

itself.

1.1 Service-Oriented Computing and Web Ser-

vices

As of today the most prominent technology based upon SOC is Web

Services, a set of open specifications that focuses on interoperability and

compatibility with existing infrastructures. This is mainly obtained, respec-

tively, through the adoption of the XML [45] document format and by using

HTTP [46] as the underlying transport protocol for communications.

1

2 1. Background and key concepts

The base set of specifications offered by Web Services addresses the prob-

lems of data exchange, service description and service discovery. These spec-

ifications are briefly presented in the following.

• SOAP: Simple Object Access Protocol [47]. This specification

defines the data format Web Services must use for reading and writing

messages.

• WSDL: Web Service Description Language [51]. This specifica-

tion deals with the description of a Web Service interface. A WSDL

document defines how a service may exchange messages with other ser-

vices. The fundamental concepts of this specification are those of oper-

ation and port. Operations represent the basic communication primi-

tives that services can exploit for exchanging messages. There are four

operation types, each one related to a specific communication pattern:

– One-Way: the service receives a message;

– Request-Response: the service receives a message, and sends a

correlated response message;

– Notification: the service sends a message;

– Solicit-Response: the service sends a message, and receives a cor-

related response message.

Operations are coupled with message types and then grouped into port

types. Finally, port types are joined with binding information so to

define a port. As such, ports contain all the necessary data for telling

how a service can interact with the rest of the distributed system.

• UDDI: Universal Description Discovery and Integration [36].

This specification defines a standard interface for service registries. A

service registry allows for the dynamic discovery of other services in the

distributed system: services can call the registry and perform queries

so to get binding information for the services they are looking for.

1.2 Key concepts: a definition for service 3

1.1.1 Service composition: orchestration and choreog-

raphy

One of the most important aspects in SOC is composition. Indeed, the

fact that services offer a public interface in a distributed system allows for

their composition in complex workflows, so to implement functionalities that

reuse those that are already offered by the composed services. At the present

service composition can be modeled by following two different approaches:

orchestration and choreography.

In orchestration a single service, called orchestrator, is responsible for

composing and coordinating the other services in order to complete the de-

sired task. Choreography, instead, deals with the description of the interac-

tions between the various services, which execute a global strategy in order to

achieve the desired result without a single point of control. For these reasons

it is said that orchestration offers a local viewpoint whereas choreography

offers a global viewpoint.

The different viewpoints offered by choreography and orchestration are

both useful in the implementation of a service-oriented system. Choreogra-

phy is better suited for the description of interaction protocols and of complex

distributed sessions, whereas orchestration allows the programmer to focus

on the implementation of each single service. Moreover, the two approaches

allow to choose the most convenient viewpoint when one has to perform

the verification of different system properties. Deadlock-freedom of a service

system, for instance, is usually checked at the level of choreography whereas

performance evaluation of services can be better examined at the level of

orchestration. The reference Web Services languages for orchestration and

choreography are, respectively, WS-BPEL [37] and WS-CDL [50].

1.2 Key concepts: a definition for service

The Web Services specifications are vast and do not offer formal defi-

nitions of the entities involved in a service-oriented architecture. For this

4 1. Background and key concepts

reason various efforts have been made into distilling the key concepts upon

which SOC is based. The work performed in this thesis has been relevant in

one of these efforts, which is reported in [21]; there, a first attempt at pre-

senting service-oriented computing as a full-fledged programming paradigm

is made. The definitions reported in that attempt are useful for a better

understanding of the following chapters and, as such, they are also briefly

presented in this section.

The central definition that is going to be exposed here is that of service,

the most important concept of the service-oriented paradigm. The definition

of service for the W3C Working Group [5] is:

“A service is an abstract resource that represents a capability of

performing tasks that form a coherent functionality from the point

of view of provider entities and requester entities. To be used, a

service must be realized by a concrete provider agent.”

This definition is correct but one could argue that it is too abstract because

too many things could be a service. Before giving a more precise defini-

tion of service the concepts of service behaviour, engine and description are

presented, as they are integral parts of it.

1.2.1 Behaviour

Defining the behaviour of a service requires the introduction of two other

basic concepts: service activities and their composition in a workflow. Ac-

tivities represent the basic functional elements of a behaviour, whereas their

composition represents the logical order in which they can be executed.

Work-flow composition is a key aspect of the service-oriented programming

paradigm, coming from the business process language WS-BPEL. Behaviours

are defined as follows:

The behaviour of a service is the definition of the service activities

composed in a workflow.

1.2 Key concepts: a definition for service 5

Service activities are grouped in three categories:

• communication activities : they deal with message exchanges between

services;

• functional activities : they deal with data manipulation;

• fault activities : they deal with faults and error recovery.

Communication activities

Communication activities are called operations, as in WSDL. Operations

are divided into input operations and output operations. The former provide

a means for receiving messages from an external service where the latter are

used for sending messages. Their definitions resemble those already seen for

WSDL:

• Input operations

– One-Way: it is devoted to receive a message.

– Request-Response : it is devoted to receive a request message

and to send a response message back to the invoker.

• Output operations

– Notification: it is devoted to send a message.

– Solicit-Response: it is devoted to send a request message and

to receive a response message from the invoked service.

Output operations require the specification of a target endpoint to which

the message has to be sent. At the level of behaviour such an endpoint

abstractly refers to a service. Such service is referred to as receiving service.

Functional activities

Functional activities allow for the manipulation of internal data by pro-

viding all the basic operators for expressing computable functions.

6 1. Background and key concepts

Fault activities

Fault activities are devoted to the management of faults and are briefly

reported in the following list.

• Fault raising: it deals with the signalling of a fault.

• Fault handler: it defines the activities to be performed when a fault

must be handled.

• Termination handler: it defines the activities to be performed when

an executing activity must be terminated before its ending.

• Compensation handler: it defines the activities to be performed for

reverting a successfully finished activity.

1.2.2 Engine

An engine is a machinery able to create, execute and manage service

sessions. The concept of session is crucial to service-oriented programming

and must be addressed before giving a definition of service engine.

Session

The definition of session follows:

A service session is an executing instance of a service behaviour

equipped with its own local state.

A key element of the service-oriented programming paradigm is session iden-

tification. In general a session is identified by a part of its own local state,

which can be programmatically defined by means of correlation sets. Cor-

relation sets is a mechanism provided by WS-BPEL; it has been formalized

in SOCK, COWS [29] and [44]. In order to explain this mechanism, a sim-

ple notation is introduced in the following. A session is represented by a

couple (P, S); P represents a behaviour in a given formalism and S repre-

sents the local state. States are modelled functions from variables to names,

1.2 Key concepts: a definition for service 7

S : V ar → V alues, where V ar is the set of variables and V alues the set of

values1. Now, let us consider two sessions with same behaviour but different

local states S1 and S2:

s1 := (P, S1) s2 := (P, S2)

s1 is said to be not distinguishable from s2 if S1 = S2
2. Now, let us consider

both S1 and S2 as a composition of states defined on disjoint domains:

S1 = S11 ⊕ S12 S2 = S21 ⊕ S22

where ⊕ is a composition operator over states3. If S11 and S21 are the cor-

relation sets, respectively, for s1 and s2 then the two sessions are said to be

not distinguishable by correlation iff S11 = S21.

Session management

Session management involves all the actions performed by a service engine

in order to create and handle sessions. In order to achieve this task, a service

engine provides the following functionalities:

• Session creation. Sessions can be created in two different ways:

– when an external message is received on a particular operation of

the behaviour. Some operations can be marked as session initia-

tors. When a message is received on a session initiator operation,

a session can be started.

– when a user manually starts it. A user can launch a service en-

gine which immediately executes a session without waiting for an

external message. Such a session is denoted as firing session.

1For the sake of brevity, both states and messages are represented as flat mappings

from variables to values. The introduction of structured and typed values does not alter

the insights presented here.
2Let Σ be the set of states, then equality for states is defined as =: (Σ × Σ) where

S1 = S2 if D = Dom(S1) = Dom(S2) ∧ ∀x ∈ Dom(S1) S1(x) = S2(x)
3⊕ : Σ×Σ → Σ where S1⊕S2(x) = S1(x) if x ∈ Dom(S1), S2(x) if x ∈ Dom(S2)∧x /∈

Dom(S1), undefined otherwise

8 1. Background and key concepts

• State support. The service engine also provides the support for ac-

cessing data which does not reside into a session local state: the global

state and the storage state. Summarizing, it is possible to distinguish

three different kind of data resources, here called states, that can be

accessed and modified by a session:

– a local state, which is private and not visible to other sessions.

This state is deleted when the session finishes;

– a global state which is shared among all the running sessions.

This state is deleted when the engine stops;

– a persistent state which is shared among all the running ses-

sions and whose persistence is independent from the execution of

a service engine (e.g. a database or a file).

• Message routing. Since a session is identified by its correlation set,

the engine must provide the mechanisms for routing the incoming mes-

sages to the right session. The session identification issue is raised

every time a message is received. For the sake of generality, it is not

possible to assume that some underlying application protocol such as

WS-Addressing [48] or other transport protocol identification mecha-

nisms such as HTTP cookies are always used for identifying sessions.

Correlation sets can be used as a generalization of the various mech-

anisms used for routing incoming messages. Its functioning can be

summarized as follows. A message M can be seen as a function from

variables to values: M ∈ Σ. Similarly to states, it is possible to define

correlation sets for messages. Let us consider M = M1 ⊕ M2, where

M1 is the correlation set for message M , and a correlation function

c : V ar → V ar which maps message variables to state variables. Then,

a message M must be routed to the session s whose state is S = S1⊕S2,

where S1 is the correlation set, if:

∀x ∈ Dom(M1), c(x) ∈ Dom(S1) ⇒
S(c(x)) = M(x) ∨ S(c(x)) is undefined

1.2 Key concepts: a definition for service 9

Informally, a message can be routed to a session only if its correlated

data corresponds to that of the session. The correlation function, c,

is the concrete means used by programmers for defining correlation.

For each incoming message it is possible to define a specific correla-

tion function and the correlation set, which identifies the session, is

indirectly defined by the union of the codomains of all the defined cor-

relation functions. In the case that the correlation set is not correctly

programmed more than one running session could be correlated to an

incoming message, causing the session which has to receive the message

to be nondeterministically selected.

• Session execution. Session execution deals with the actual execu-

tion of a created session behaviour equipped with all the required state

supports. Sessions can be executed sequentially or concurrently. The

majority of existing technologies share the idea that sessions are to be

executed concurrently, but the sequential case allows for the controlling

of some specific hardware resource which needs to be accessed sequen-

tially. As an example, consider a cash withdrawal machine which starts

sessions sequentially due to its hardware nature. Such an aspect can

be very important from an architectural point of view, because it can

raise system deadlock issues if not considered properly, as it has been

shown in [16].

Engine definition

The definition of service engine can now be presented, leveraging the

previous ones:

An engine is a machinery able to manage service sessions by pro-

viding session creation, state support, message routing and ses-

sion execution capabilities.

10 1. Background and key concepts

1.2.3 Service description

A service description provides all the necessary information for interacting

with a service. Service descriptions are composed by two parts: interface and

deployment.

Interface

Service interfaces contain abstract information for performing compat-

ibility checks between services, abstracting from low-level details such as

communication data protocols and transports. Interfaces are structured on

three different levels:

• Functional. It reports all the input operations used by the behaviour

for receiving messages from other services or applications. An operation

description is characterized by a name, and its request and response

message types. Tracing a comparison with the Web Services technology,

this level is well represented by the WSDL specifications [51]. At this

level, only message type checks on the interface are required in order

to interact with a service.

• Workflow. It describes the workflow of the behaviour. In a workflow,

input operations could not be always available to be invoked but they

could be enabled by other message exchanges by implementing some of

high level application protocol. Thus, it is fundamental to know how a

service workflow behaves in order to interact with it correctly. In the

Web Services technology this level could be provided by means of an

Abstract-BPEL [37] description; WSDL 2.0 specifications [4] provide

Message Exchange Patterns (MEP) which allows for the description of

custom service interaction patterns.

• Semantics. It offers semantic information about the service and the

specific functionalities provided by it. It is usually provided by using

some kind of ontology with specific languages such as OWL-S [2].

1.2 Key concepts: a definition for service 11

Service interfaces are strictly related to service discovery, which is a key

element of the service-oriented programming paradigm. Discovery issues are

addressed by search and compatibility check algorithms over interface repos-

itories, also called registries. These algorithms differ depending on which

interface type is considered.

Deployment

The deployment part is in charge of binding the service interface with

network locations and protocols. A service, e.g., could receive messages by

exploiting the HTTP protocol or the SOAP over HTTP one, but the choice

is potentially unlimited because new protocols may always be created. This

task is achieved by means of port declarations. There are two kinds of ports:

input ports and output ports. The former allow for the declaration of all

the input endpoints able to receive messages exhibited by the service engine,

whereas the latter bind target location and transport protocol to the receiving

services of the behaviour. In other words, output ports allow for the concrete

connection with the services to invoke. In general, a port can be defined as

follows:

A port is an endpoint equipped with a network address and a com-

munication protocol joined to an interface whose operations will

become able to receive or send messages. Ports which enables

operations to receive requests are called input ports. Conversely,

ports that enable output communications toward other services

are called output ports.

A service engine needs to be joined with deployment information in order

to receive and send messages.

1.2.4 Service definition

The definition of service is based upon all the aforementioned concepts:

12 1. Background and key concepts

A service is a deployed service engine whose sessions animate a

given service behaviour.

Chapter 2

Foundations

The JOLIE language is based upon a theoretical framework featuring a

process calculus for service orchestration, SOCK [20, 17] (Service-Oriented

Computing Kernel), thus enabling for formal reasoning on JOLIE programs.

To the best of the author’s knowledge, SOCK is the only calculus offering

a native primitive for performing Request-Response communications. This

is important for two reasons; on the one hand, it allows for a more direct

mapping between SOCK and its implementation in JOLIE and, on the other

hand, it has proven to play a special role in the study of some behaviours, e.g.

error handling. More details about the latter point are given in Chapter 5.

SOCK is a calculus for modeling service-oriented systems, inspired by

WSDL and BPEL. Its primitives include both uni-directional (One-Way)

and bi-directional (Request-Response) WSDL communication patterns, con-

trol primitives from imperative languages, and parallel composition from

concurrent languages. SOCK is structured on three layers: (i) the service

behaviour layer specifies the actions performed by a service, (ii) the service

engine layer deals with state, service instances and correlation sets, and (iii)

the service network layer allowing different engines to interact. The three

layers are described in detail in the following sections.

13

14 2. Foundations

2.1 Service behaviour layer

The service behaviour layer describes the actions performed by services.

Actions can be operations on the state (SOCK has a state like that of many

imperative languages), or communications according to the One-Way and

Request-Response communication patterns. Basic actions can be composed

using composition operators. In SOCK services are identified by the name of

their operations, and by their location. Locations are managed at the service

network layer. In order to model those aspects the following (disjoint) sets

are used: V ar, ranged over by x, y, for variables, V al, ranged over by v, for

values, O, ranged over by o, for One-Way operations, and OR, ranged over by

or for Request-Response operations. Also, Loc is a subset of V al containing

locations, ranged over by l. A corresponding subset of V ar, V arLoc, contains

location variables and is ranged over by z. Finally, vectors are represented

through this notation: k⃗ = ⟨k0, k1, ..., ki⟩.
The syntax for service behaviour processes, ranged over by P, Q, . . . , is de-

fined in Table 2.1. SC denotes the set of service behaviour processes. 0 is the

inactive process. Outputs can be Notifications o@z(y⃗) or Solicit-Responses

or@z(y⃗, x⃗), corresponding, respectively, to the client side of One-Way and

Request-Response communication patterns. A Notification operation o@z(y⃗)

invokes the operation named o (with o ∈ O) of a service located at the loca-

tion stored in location variable z. Also, y⃗ is a vector of variables containing

the values to be communicated during the invocation. Similarly, a Solicit-

Response operation or@z(y⃗, x⃗) invokes using a Request-Response communi-

cation pattern operation or (now or ∈ OR, since names of Request-Response

operations are different from names of One-Way operations) of a service lo-

cated at the location stored in location variable z. Again y⃗ is a vector of

variables containing the values to be communicated during the invocation.

In addition, now x⃗ is the vector of variables that will be assigned the val-

ues received as answer of the invocation. Dually, inputs can be One-Ways

o(x⃗) or Request-Responses or(x⃗, y⃗, P) where the notations are as above, with

y⃗ containing values to be sent and x⃗ containing variables that will receive

2.1 Service behaviour layer 15

ϵ : : = o(x⃗) | or(x⃗, y⃗, P) ϵ : : = o@z(y⃗) | or@z(y⃗, x⃗)

P,Q, . . . : : = ϵ input

ϵ output

x := e assignment

P ; Q sequential composition

P |Q parallel composition∑
i∈W ϵi; Pi nondeterministic choice

if χ then P else Q deterministic choice

while χ do (P) iteration

0 null process

or(x⃗) response in solicit

Exec(P, or, y⃗, l) Request-Response execution

Table 2.1: Service behaviour syntax

the communicated values. Additionally, P is the process to be executed be-

tween the request and the response. Essentially, a Notification o@z(y⃗) will

interact with a One-Way o(x⃗) located at the location stored in z, and values

in variables y⃗ will be sent and copied inside variables in x⃗. Consider in-

stead a Solicit-Response or@z(y⃗, x⃗) and a corresponding Request-Response

or(x⃗1, y⃗1, P). After the invocation values from y⃗ are copied into x⃗1. Then

process P is executed on the server side. Finally the answer in y⃗1 is sent back

to the client and copied into variables x⃗. Only at this point the execution at

the client side can continue.

Assignment x := e assigns the result of the expression e to the variable

x ∈ V ar (state is local to each behaviour). The syntax of expressions is not

presented: by assumption they include the arithmetic and boolean opera-

tors, values in V al and variables. Var is a function that given an expression

e computes the set of variables in e, and JeK is the evaluation of ground

expression e. χ ranges over boolean expressions. P ; Q and P |Q are, re-

16 2. Foundations

spectively, sequential and parallel composition.
∑

i∈I ϵi; Pi is input-guarded

non-deterministic choice: whenever one of the input operations ϵi (either a

One-Way or a Request-Response) is invoked, continuation Pi is executed.

Also, while χ do (P) models iteration.

The two last operators in Table 2.1 are not part of the static syntax, but

they are used to give semantics to the calculus. The former, or(x⃗) is used to

wait for the response in a solicit-Response interaction. Note that, although it

looks similar, it is not a One-Way, since operation or is a Request-Response

one. The latter, Exec(P, or, y⃗, l) is a running Request-Response: P is the

running process, or the operation name, y⃗ the vector of variables to be used

for the answer, and l the client location. The operation name and the client

location are needed to send back the answer.

Semantics. The service behaviour layer does not deal with state, leaving

this issue to the service engine layer. Instead, it generates all the transitions

allowed by the process behaviour, specifying the constraints on the state

that have to be satisfied for them to be performed. The state, and the

conditions on it, are substitutions of values for variables. σ is used to range

over substitutions, and [v⃗/x⃗] for the substitution assigning values in v⃗ to

variables in x⃗. Given a substitution σ, Dom(σ) is its domain.

The semantics follows the idea exposed above: the labels contain all the

possible actions, together with the necessary requirements on the state. For-

mally, let Act be the set of actions, ranged over by a. In order to simplify

the interaction with upper layers, structured labels of the form ι(σ : θ) are

used, where ι is the kind of action while σ and θ are substitutions containing

respectively the assumptions on the state that should be satisfied for the

action to be performed and the effect on the state.

Definition 2.1.1 (Service behaviour layer semantics). →⊆ SC ×Act× SC

is the least relation which satisfies the rules of Tables 2.2 and is closed w.r.t.

structural congruence ≡, the least congruence relation satisfying the axioms

in Table 2.3.

2.1 Service behaviour layer 17

(One-WayOut)

o@z(x⃗)
o(v⃗)@l(l/z,v⃗/x⃗:∅)−−−−−−−−−→ 0

(Request-Response)

Exec(0, or, y⃗, l)
↓or(v⃗)@l(v⃗/y⃗:∅)−−−−−−−−−→ 0

(One-WayIn)

o(x⃗)
o(v⃗)(∅:v⃗/x⃗)−−−−−−→ 0

(Request)

or(x⃗, y⃗, P)
↑or(v⃗)@l(∅:v⃗/x⃗)−−−−−−−−−→ Exec(P, or, y⃗, l)

(Solicit)

or@z(x⃗, y⃗)
↑or(v⃗)@l(l/z,v⃗/x⃗:∅)−−−−−−−−−−−→ or(y⃗)

(Solicit-Response)

or(x⃗)
↓or(v⃗)(∅:v⃗/x⃗)−−−−−−−→ 0

(Request-Exec)

P
a−→ P ′

Exec(P, or, y⃗, l)
a−→ Exec(P ′, or, y⃗, l)

(Assign)

Dom(σ) = Var(e) JeσK = v

x := e
τ(σ:v/x)−−−−−→ 0

(If-then)

Dom(σ) = Var(χ) JχσK = true

if χ then P else Q
τ(σ:∅)−−−→ P

(Else)

Dom(σ) = Var(χ) JχσK = false

if χ then P else Q
τ(σ:∅)−−−→ Q

(Iteration)

Dom(σ) = Var(χ) JχσK = true

while χ do (P)
τ(σ:∅)−−−→ P ; while χ do (P)

(No-Iteration)

Dom(σ) = Var(χ) JχσK = false

while χ do (P)
τ(σ:∅)−−−→ 0

(Sequence)

P
a−→ P ′

P ; Q
a−→ P ′; Q

(Parallel)

P
a→ P ′

P | Q
a→ P ′ | Q

(Choice)

ϵi
a−→ Qi i ∈ I∑

i∈I ϵi; Pi
a−→ Qi; Pi

Table 2.2: Rules for service behaviour layer

Rule One-WayOut defines the solicit operation: the first part of the

label, o(v⃗)@l is the actual action. Here l is the location of the invoked service,

taken from variable z. The other two arguments define the effect and the

requirements on the state respectively. Substitution [l/z, v⃗/x⃗] specifies that

this transition can be performed only if the state assigns value l to variable

z and values in v⃗ to variables in x⃗. This assumption will be checked by the

service engine layer. The empty substitution ∅ specifies that the operation

does not affect the state. Rule One-WayIn corresponds to the One-Way

operation. Here there are no conditions on the state, but a state update

is required by the label: values in v⃗ should be assigned to variables in x⃗.

18 2. Foundations

P | Q ≡ Q | P P | 0 ≡ P

P | (Q | R) ≡ (P | Q) | R 0; P ≡ P ⟨0⟩ ≡ 0

Table 2.3: Structural congruence

State updates are performed by the service engine layer. The solicit and the

One-Way operations are synchronized in the service network layer.

Similarly rules Solicit and Request start a solicit-response opera-

tion. The main difference between the solicit-response and the notification

is that the solicit-response leaves an operation waiting for the response. The

Request-Response instead, after invocation, becomes an active construct ex-

ecuting process P , and storing all the information needed to send back the

answer. The execution of P is managed by rule Request-Exec. When the

execution of P is terminated, rule Request-Response sends back the an-

swer, exploiting the stored information about the name of the operation and

the location of the invoker. This synchronizes with rule Solicit-Response

on the client side, concluding the communication pattern.

The other rules in Table 2.2 are standard, apart from the fact that the

label stores the conditions on the state. For instance assignment x := e

produces an internal step, and requires to update the state by assigning

value v to variable x, provided that the state provides a substitution σ for

variables in e such that the evaluation of eσ is v.

2.2 Service engine layer

In a service engine, all the executed sessions of a service behaviour are

joined by a state and a correlation set.

The service engine calculus syntax is:

I ::= (P,S) | I |I Y ::= c ◃ P [I]

where P is a service behaviour process, S is a state and c is a correlation set,

i.e. a subset of V ar.

2.2 Service engine layer 19

A state is for us a substitution of values for variables. Given a state S
and a substitution σ we say that S satisfies σ, written S ⊢ σ, if σ is a subset

of S. We also write S(x) = ⊥ when x is undefined in state S.

Semantics. The lts rules for service engine state layer follow.

(Engine-State 1)

P
ι(σ:v⃗/x⃗)−−−−→ P ′,S ⊢ σ, ι ̸= τ

(P,S)
ι(v⃗/x⃗:S(x⃗))−−−−−−→ (P ′,S �[v⃗/x⃗])

(Engine-State 2)

P
ι(σ:∅)−−−→ P ′,S ⊢ σ

(P,S)
ι−→ (P ′,S)

(Engine-State 3)

P
τ(σ:v⃗/x⃗)−−−−−→ P ′,S ⊢ σ

(P,S)
τ−→ (P ′,S �[v⃗/x⃗])

(Engine-State 4)

P
ι−→ P ′, ι ∈ {th(f), inst(H)}

(P,S)
ι−→ (P ′,S)

Rule Engine-State 1 verifies that the condition σ on the state is satis-

fied and updates it with [v⃗/x⃗]. The old values are tracked in the label since

they are needed to check correlation of messages. The second rule is simpler,

since it deals with actions that do not update the state and do not require

correlation. The third one deals with assignments. Rule Engine-State 4

treats faults or compensation installations that reach service engine.

When an input is received by a service engine, it is possible that several

sessions are waiting on the same operation. The session chosen for message

delivery depends on the values of the correlated variables. Given two values

v and w, a variable x and a correlation set c, v is correlated to x coherently

with c, written v/x ⊢c w, if any of the following conditions hold:

• the variable x belongs to c and its actual value is w = v,

• the variable x belongs to c and w = ⊥,

• the variable x does not belong to c.

Rules for service engine correlation lts layer follow.

(Correlated)

I
ι(v⃗/x⃗:w⃗)−−−−→ I ′, v⃗/x⃗ ⊢c w⃗

I
ι,c−→ I ′

(NotCorrelated)

I
ι−→ I ′

I
ι,c−→ I ′

(Par)

I
ι,c−→ I ′

I|I ′′ ι,c−→ I ′|I ′′

20 2. Foundations

The first rule ensures that an input is received by a correlated session,

while the second one deals with actions that need no correlation. In this case

any correlation set is fine. The last rule deals with parallel composition.

The following defines rules for session execution and creation:

(Exec)

I
ι,c−→ I ′

c ◃ P [I]
ι−→ c ◃ P [I ′]

(Spawn)

(P,S⊥)
ι,c−→ (P ′,S), ̸ ∃Si ∈ extr(I).(P,Si)

ι,c−→ (P ′,S ′
i), ι ∈ In

c ◃ P [I]
ι−→ c ◃ P [I|(P ′,S)]

In rule Spawn S⊥ is the state undefined on all variables and extr(I) is a

function extracting all states occurring in I. The first rule allows to execute

an existing session, while the second spawns a new session provided that an

input that cannot be handled by the available sessions is received.

A service engine may be equipped with additional information, such as

a directive for imposing the sequential execution of sessions. The reader

interested in the complete semantics of SOCK for service engines is referred

to [16, 17].

2.3 Service network layer

The service network layer allows for the composition of different engines

into a system. The engines are composed in parallel and equipped with a

location that allows for their unambiguous identification. The syntax is:

E ::= Y @l | E ∥ E

A service engine system E can be a located service engine Y @l or a parallel

composition of them. The semantics is defined by the rules in Table 2.4 and

closed w.r.t. the structural congruence ≡ therein.

Rule Lift propagates an action to a located engine. Rule NormalSync

allows to synchronize an output with the corresponding input (according

2.3 Service network layer 21

(Lift)

Y
ι−→ Y ′

Y @l
ι−→ Y ′@l

(NormalSync)

Y @l′
λ@l−−→ Y ′@l′ Z@l

λ′
−→ Z ′@l compl(λ, λ′)

Y @l′ ∥ Z@l
τ−→ Y ′@l′ ∥ Z ′@l

(Par-Ext)

E1
ι→ E ′

1

E1 ∥ E2
ι→ E ′

1 ∥ E2

(Solicit-RequestSync)

Y @l′
↑or(v⃗)@l−−−−−→ Y ′@l′ Z@l

↑or(v⃗)@l′−−−−−→ Z ′@l

Y @l′ ∥ Z@l
τ−→ Y ′@l′ ∥ Z ′@l

(CongrE)

E1 ≡ E ′
1 , E ′

1

γ→ E ′
2, E ′

2 ≡ E2

E1
γ→ E2

where compl(o(v), o(v)), compl(↓ or(v), ↓ or(v)), compl(or(f), or(f)).

E1 ∥ E2 ≡ E2 ∥ E1 E1 ∥ (E2 ∥ E3) ≡ (E1 ∥ E2) ∥ E3

Table 2.4: Rules for service network layer

to the predicate compl), checking that the location of the receiving process

is the desired one. Rule Solicit-RequestSync additionally checks the

correctness of the guess in the input label about the location of the invoking

process. The location is needed only for Request-Response, since it is used

by the server to send back the answer. Finally rule Par-Ext deals with

parallel composition.

Chapter 3

Language basics

This chapter is devoted to the exposition of the basic language constructs

of JOLIE.

A JOLIE program is composed by two parts, a behavioural part and a de-

ployment one. The behavioural part contains the workflow definition of the

orchestrator, whereas the deployment part contains directives for the execu-

tion engine and specifies information for the integration of the orchestrator

in a service-oriented architecture. This separation is provided so to allow for

the reuse of existing behavioural definitions in different service environments

(by changing the deployment information) and for the reuse of deployment

information with compatible workflows. The offered syntax maps nicely to

the layered structure of SOCK: the service behaviour layer is represented by

the behavioural part and the service engine layer by the deployment part.

As the service network layer is only a semantic layer, there is no correspond-

ing JOLIE syntax for it. Instead, this layer is implemented by a part of the

interpreter (specifically the Communication Core, which is responsible for

performing communications, see Chapter 6).

As far as the behavioural language is concerned, it is possible to inter-

act with other services by means of communication primitives inspired by

WSDL operations (One-Way, Request-Response, Notification and Solicit-

Response), to synchronize internal parallel processes, to use the classic while

23

24 3. Language basics

loop instruction and the if-then-else conditional statement. Moreover, the

programmer is allowed to compose statements in a workflow by making se-

quences, parallelisms and non-deterministic choices. Using its communica-

tion primitives and its compositional operators, JOLIE can compose other

services by exploiting their input operations.

As far as the deployment language is concerned, its grammar structure is

composed by two main parts. The first part contains the deployment direc-

tives (execution modality, the state mode (persistent or not persistent) and

the correlation set of the orchestrator; these directives map the same features

provided by the service engine layer of SOCK for dealing with sessions and

service statefulness. The second part deals with interfaces and contains all

the information needed for interaction with other services: operations, port

types, data protocols and communication endpoints.

The structure of a JOLIE program is given by the following syntax:

Program ::= Deployment Behaviour

The definitions of nonterminals Deployment and Behaviour are exposed

in the following sections. For the sake of clarity, the exposition follows a

step-by-step augmentation of the definitions of the nonterminals.

Comments are processed before code execution and can be introduced

in JOLIE code by means of the same syntax currently in use in the Java

language:

// This is an inline comment

/*

This is a multiline

comment

*/

Another feature that is processed before code execution is constant defini-

tion. Constants can be defined within the constants block, to be introduced

in the program preamble, e.g.:

constants {

3.1 Basic behavioural constructs 25

MyFirstConstant = 2,

MySecondConstant = "Hello , world!"

}

3.1 Basic behavioural constructs

A JOLIE program must define a main procedure, which represents its entry

point for execution. The main procedure may contain any kind of Process.

Moreover, it can be preceded or succeeded by definitions of auxiliary proce-

dures and initialization code (whose meaning will be exposed afterwards in,

respectively, 3.2.2 and 3.5.1). In the following the Kleene star ∗ is used to

indicate zero or more repetitions.

Behaviour ::= BehaviouralBlock∗ main { Process }
BehaviouralBlock∗

BehaviouralBlock ::= define id { Process } Definition

| init { Process } Initialization code
id represents an identifier, following the same rules for identifiers given by

the Java language.

Processes define the activities to be performed by the service. The most

basic process is the no-op one, which simply does nothing:

Process ::= nullProcess

3.1.1 Communication statements

The most important behavioural statements are those for performing

communications. JOLIE features two communication patterns, inspired by

WSDL and formalized in SOCK:

• One-Way: the endpoint receives a message;

• Request-Response: the endpoint receives a message, and sends a re-

sponse back to the caller.

26 3. Language basics

The two communication patterns can be implemented by using four state-

ments, which follow the semantic rules seen in Chapter 2:

Process ::= . . .

| InputStatement

| OutputStatement

InputStatement ::= op(x) One-Way

| op(x)(y) { Process } Request-Response

OutputStatement ::= op@OPort(x) Notification

| op@OPort(x)(y) Solicit-Response
Statement One-Way is used to receive a message for operation op in variable

x. Statement Request-Response is used to receive a message for operation op

in variable x, execute a Process and then send back a response to the caller

containing the value of variable y. Notification and Solicit-Response are the

dual of the former ones, to be used, respectively, for sending a message to a

One-Way statement or to a Request-Response one. These output statements

make use of an output port name in order to refer to the binding information

necessary for communicating with the desired peer. Output ports will be

explained later on in 3.3.2.

Communication statements can make use of variable paths and expres-

sions. These concepts, along with an updated syntax for the statements of

interest, are going to be exposed in 3.2.1.

3.1.2 Process composition

Processes can be composed in sequences, parallels and (input guarded)

nondeterministic choices, as seen in SOCK. The syntax for sequential and

parallel compositions follows:

Process ::= . . .

| Process ; Process Sequence

| Process | Process Parallel

where sequential composition has higher priority (i.e. binds more tightly).

Input guarded nondeterministic choices can be constructed with the fol-

3.1 Basic behavioural constructs 27

lowing syntax:

Process ::= . . .

| NDInputChoice∗

NDInputChoice ::= [RecvStatement] { Process }
For instance, an implementation of a nondeterministic could look like this:

[logMessage(message)] {

log@InternalLogger(message)

}

[doNothing ()] {

nullProcess

}

The semantics is the same as in SOCK: when one of the input statements

in the choice receives a message, the associated process is executed and the

other possible branches are deactivated.

3.1.3 Internal synchronization links

Parallel processes can synchronize by means of synchronization links:

Process ::= . . .

| linkIn (id) Link in

| linkOut (id) Link out
linkIn is a blocking statement that waits for a signal on the same id to be

fired by a corresponding linkOut statement. linkIn is a blocking primitive,

whereas linkOut is not.

Let us consider the following example, which composes activities A and

B:

main

{

{

A;

linkOut(startB)

}

28 3. Language basics

|

{

linkIn(startB);

B

}

}

This program would first execute A, then fire a signal for startB. The signal

would be received by instruction linkIn(startB), and then B would finally

be executed.

3.2 Handling data

JOLIE variables are implicitly typed: there is no need to declare their

type in advance, as in C or Java. Furthermore their types are dynamic: they

can change at runtime depending on the values that the program assigns to

them. For instance the following code, where we assign data of two different

types to the same variable, is valid:

x = 3;

x = "Hello , world!"

It is possible to make vectors of values using a syntax that resembles those

of other famous languages:

vector [0] = 32;

vector [1] = "John";

vector [2] = "Smith"

As shown in the example, different elements of the same vector can be of

different type (in this case, the first element is an integer and the last two

are strings).

JOLIE data structures are organized as trees, similarly (but not equiva-

lently) to XML. The dot operator can be used to access subnodes of a specific

3.2 Handling data 29

variable:

person.name = "John Smith";

person.age = 32

It is easy to understand how JOLIE data structures work by comparing them

to XML trees. For instance, the structure created in the last example would

be equivalent to:

<person>

<name>John Smith</name>

<age>32</age>

</person>

Access to variables is generalized by the concept of variable path. A

variable path points to the position of a node in a JOLIE data tree. Variable

paths are defined by the following syntax:

VariablePath ::= id SubPath

| id[Expression] SubPath

SubPath ::= . VariablePath

| ϵ
where terminal id represents a variable identifier token, defined as in Java

language, and nonterminal Expression represents an expression (it will be

defined more precisely later). The value of the expression is used as index for

accessing vectors. Note that whenever a vector index is not specified, JOLIE

implicitly considers it to be zero.

In order to make repetitive access to a variable tree less tedious a with

construct is provided:

Process ::= . . .

| with(VariablePath) { Process }
Inside a with block a particular form of variable paths is available, that

of prefixed variable path. These variable paths start with a dot, and will

be prefixed with the variable path specified inside the round parenthesis at

the beginning of the with construct. Prefixed variable paths can be used

30 3. Language basics

anywhere a variable path is expected, but are valid only inside a with block.

For instance, the following code is semantically equivalent to that shown in

the last example:

with(person) {

.name = "John Smith";

.age = 32

}

3.2.1 Expressions

The simplest form of expression is a variable path or a value:

Expression ::= VariablePath

| integer | double | string
where integer, double and string values are expressed as in the Java language.

Expressions can be constructed by using the classical arithmetic operators:

Expression ::= . . .

| VariablePath + VariablePath Sum

| VariablePath - VariablePath Subtraction

| VariablePath * VariablePath Multiplication

| VariablePath / VariablePath Division
where the operator priority is the same as in the Java language. Still sim-

ilarly to Java, summing strings returns their concatenation. Increment and

decrement unary operators, with the same semantics for numbers of C and

Java, along with explicitation of priority are provided:

Expression ::= . . .

| (Expression)

| ++ VariablePath Pre-increment

| VariablePath ++ Post-increment

| -- VariablePath Pre-decrement

| VariablePath -- Post-decrement
One can also make use of casts in order to convert values to given types and

of type check operators for checking the type of a variable.

3.2 Handling data 31

Expression ::= . . .

| int(VariablePath) Cast to integer

| double(VariablePath) Cast to double

| string(VariablePath) Cast to string

| is int(VariablePath)

| is double(VariablePath)

| is string(VariablePath)
Furthermore, a native operator for determining the length of a vector is pro-

vided:
Expression ::= . . .

| # VariablePath Vector length
Expressions are mostly used in assignments, as shown in the following:

Process ::= . . .

| VariablePath = Process Assignment

Now that variable paths and expressions have been presented, the final

syntax for input and output communications can be exposed:

InputStatement ::= op(VariablePath) One-Way

| op(VariablePath)

(Expression)

{ Process } Request-Response

OutputStatement ::= op@OPort(Expression) Notification

| op@OPort(Expression)

(VariablePath) Solicit-Response

3.2.2 Flow control constructs

Execution flow can be controlled by means of some classical imperative

constructs, too. Their behaviour is governed by the value of some condition;

conditions can be written by composing expressions in the usual way:

32 3. Language basics

Condition ::= Expression

| (Condition)

| ! Condition

| Expression Comparator Expression

Comparator ::= < | <= | > | >= |== | !=
JOLIE supports loop programming through the for and while constructs:

Process ::= . . .

| for(Process , Condition , Process)

{ Process } For loop

| while(Condition) { Process } While loop
Deterministic choices can be implemented through the classic if-then-else

mechanism:
Process ::= . . .

| IfStatement

IfStatement ::= if(Condition) { Process } ElseIf If-then-else

ElseIf ::= else IfStatement

| else { Process }
| ϵ

3.2.3 Dynamic variable paths

Variable paths may be defined by exploiting the evaluation of some ex-

pressions: such cases are called dynamic variable paths. Expressions can be

used only for referencing subnodes, thus the syntax extension for dynamic

variable paths is introduced in nonterminal SubPath:

SubPath ::= . . .

| .(Expression) VariablePath Dynamic sub path

| .(Expression)[Expression]

VariablePath (with vector index)
In order to clarify the semantics of this particular construct let us see the

following example, where we assign to variables x, y and z the value from

person.age:

person.age = 30;

3.2 Handling data 33

x = person .("age");

key = "age";

y = person .(key);

z = person .("a" + "ge")

Dynamic variable paths are useful for implementing tables. Consider the

case in which, for instance, a service offers the possibility to get the popu-

lation number of some cities. One could use a tree for storing information

about the cities, as in the following (for the sake of simplicity, here such

information is statically defined):

cities.Copenhagen.population = 530902;

cities.Munich.population = 1326807;

cities.Rome.population = 2731996

Then, one could expose a Request-Response operation getCityPopulation

that receives a city name and returns the related population number:

getCityPopulation(cityName)(population) {

population = cities .(cityName). population

}

Another important feature enabled by dynamic variable paths is the pos-

sibility to iterate through the subnodes of a given variable path. This is made

possible in conjunction with another flow control construct, foreach:

Process ::= . . .

| foreach(VariablePath : VariablePath)

{ Process } Foreach loop
The foreach loop iterates through all the subnode names of the second vari-

able path, assigning each name to the first variable path. Recalling the

previous example, a foreach loop could be used in order to iterate through

all the stored city names:

i = 0;

foreach(cityName : cities) {

34 3. Language basics

names[i] = cityName;

i++

}

At the end of the loop, names would be a vector containing all the store city

names.

When handling tables one may need to remove some subnodes from a

tree or to check if a given subnode is present. These issues are addressed,

respectively, by the undef and is defined commands:

Process ::= . . .

| undef(VariablePath)

Expression ::= . . .

| is defined(VariablePath)

3.2.4 Deep copy and aliases

Data structures can be entirely copied from one variable to another in a

single step through the deep copy operator:

Process ::= . . .

| VariablePath << VariablePath Deep copy
For instance, the following code copies the entire person tree into another

variable:

personCopy << person

Moreover, a variable may be an alias for another variable. This is useful

in order to link some tree to another one without having to perform a copy of

the latter. Whenever a variable path is followed, for each subnode containing

an alias the latter is resolved and the path resolution continues. The syntax

for aliases is:
Process ::= . . .

| VariablePath -> VariablePath Variable path alias

3.3 Basic deployment constructs 35

3.3 Basic deployment constructs

In order to communicate with other services one must precede the be-

havioural definition of a JOLIE program with its associated deployment in-

formation. Deployment information can be defined by using various instruc-

tions, which can be freely alternated and can include source code from other

files:
Deployment ::= DeploymentInstruction∗

DeploymentInstruction ::= Include Inclusion
The main deployment instructions available are those for defining interfaces,

message types and communication ports.

3.3.1 Interfaces and message types

Interfaces are sets of operations equipped with information about their

request and, in the case of Request-Response operations, response types.

Therefore, message types are here exposed before interfaces and then reused

afterwards in the explanation for their definition.

Message types

Message types1 are introduced in the deployment part of JOLIE programs:

DeploymentInstruction ::= . . .

| type id : TypeDefinition
where id is the name for referring to the message type afterwards in other

parts of the program.

The simplest possible message type definitions are those using a native

type. Native types do not define any kind of structure. JOLIE currently

supports various native types:

NativeType ::= int | double | string | raw | void | any
Native types raw, void and any deserve a clarification:

1The first version of the implementation for message types has been developed by E.

Ciotti in [13].

36 3. Language basics

• raw is meant for the transmission of raw data streams, under the form

of byte arrays;

• void means that no value may be contained by the variable;

• any tells that any native type assumed by the variable will be accepted.

A TypeDefinition may simply specify a native type:

TypeDefinition ::= NativeType

The most notable feature offered by JOLIE message types is the possi-

bility to define data structures. This is obtained by defining subnodes of a

specific type following a tree-like structure:

TypeDefinition ::= . . .

| NativeType

{ SubTypeList }
| NativeType { ? } Untyped subnodes

| id Type link

| undefined Shortcut for any:{?}
SubTypeList ::= SubType

| SubType SubTypeList

SubType ::= . id Cardinality

: TypeDefinition

Cardinality ::= [int , int] Range

| [int , *] Lower-bound

| * Shortcut for [0,*]

| ? Shortcut for [0,1]

| ϵ
where Untyped subnodes specifies that a node may have any kind of subtree.

Type link may be used to refer to an already defined type (identified by id),

so to reuse previous definitions. Moreover, Cardinality allows for the def-

inition of the number of possible occurrences of a subnode (so to check the

length of subnode vectors).

Below some message type examples are reported. The first one defines a

Person type with three subnodes: name, age and phoneNumber, the latter

3.3 Basic deployment constructs 37

having an unbounded number of occurrences. Person is then reused in the

definition of type Family, associated to a cardinality that imposes at least

one occurrence of that subnode.

type Person:void {

.name:string

.age:int

.phoneNumber*:string

}

type Family:void {

.address:string

.person [1,*]:Person

}

Interfaces

Interfaces are collections of operation types. Each operation type is com-

posed by an operation name, a request type and, if it is a Request-Response

operation, a response type. Request and response types can be defined ei-

ther by using a native type, keyword undefined or the name of a previously

defined type. The grammar for interfaces follows:

DeploymentInstruction ::= . . .

| interface id { OperationGroup }
OperationGroup ::= OneWay: OneWayList

| RequestResponse: RRList

OneWayList ::= OneWayOp

| OneWayOp , OneWayList

OneWayOp ::= id (OpMessageType)

RRList ::= RequestResponseOp

| RequestResponseOp , RRList

38 3. Language basics

RequestResponseOp ::= id (OpMessageType)

(OpMessageType)

OpMessageType ::= id | undefined | NativeType

Let us consider an extension of example 3.3.1, where the message types

definitions are followed by an interface that refers to them:

type Person:void {

.name:string

.age:int

.phoneNumber*:string

}

type Family:void {

.address:string

.person [1,*]:Person

}

interface PeopleRegistryInterface {

OneWay:

addNewFamily(Family)

RequestResponse:

getFamilyByAddress(string)(Family),

getPersonByName(string)(Person)

}

3.3.2 Communication ports

Communication ports define how communications with other services are

actually performed. Two kinds of ports are supported:

• input ports: they deal with exposing input operations to other services;

3.3 Basic deployment constructs 39

• output ports: they define how to invoke a set of operations of other

services.

Intuitively, the two concepts are the counterparts of each other. Conse-

quently, their syntaxes are quite similar. Ports are based upon the three

fundamental concepts of location, protocol and interface.

A location expresses the communication medium, along with its config-

uration parameters, a service uses for exposing its interface (in the case of

an input port) or contacting another service (in the case of an output port).

Examples of communication mediums are TCP/IP sockets, Unix sockets,

Bluetooth communication channels, local memory channels, etc. A protocol

defines how data to be sent or received should be, respectively, encoded or de-

coded following an isomorphism. Examples of protocols are SOAP, SODEP

(a binary protocol specifically developed for JOLIE), HTTP forms, etc. Fi-

nally, a port must specify the interface that is accessible through it. The

syntax for writing ports strictly resembles this composition:

DeploymentInstruction ::= . . .

| inputPort id { PortInstruction∗ }
| outputPort id { PortInstruction∗ }

PortInstruction ::= Location: " URI "

| Protocol: id ProtocolConfiguration

| Interfaces: InterfaceList

InterfaceList ::= id

| id , InterfaceList

ProtocolConfiguration ::= { AssignmentList }
AssignmentList ::= AssignmentStatement

| AssignmentStatement ;

AssignmentList

A location is specified through a URI (Uniform Resource Identifier), which

must indicate the communication medium the port has to use and its related

parameters, in this form: medium:parameters. JOLIE currently supports

four mediums: btl2cap (Bluetooth L2CAP), localsocket (Unix local sock-

40 3. Language basics

ets), rmi (Java RMI) and socket (TCP/IP sockets). Protocols are referred

by name, with the possibility of defining some additional configuration for

them. This configuration is given by means of assignments, which are to

be treated as inside a with block (which implicitly points to the configura-

tion tree of the related protocol). Currently supported protocols are HTTP,

HTTPS, GWT-RPC [1], SOAP, SODEP [3], SODEPS and XML-RPC [6].

It is possible to use the syntax shown so far to implement working JOLIE

programs. Let us consider the following example, where two listings are

given. The first one defines a service that offers an operation for performing

the summation of some (integer) numbers, whereas the second one is a client

designed to invoke the former. The programs are complete: they include

both behavioural and deployment information, so they are executable and

would function as expected.

Listing 3.1: A service offering an operation for summing numbers

type SumRequest:void {

.number [2,*]:int

}

interface SumInterface {

RequestResponse:

sum(SumRequest)(int)

}

inputPort SumInput {

Location: "socket:// localhost:80/"

Protocol: soap

Interfaces: SumInterface

}

main

{

3.3 Basic deployment constructs 41

while(1) {

sum(request)(result) {

for(result = 0; i = 0,

i < #request.number , i++)

{

result = result + request.number[i]

}

}

}

}

Listing 3.2: A client requesting the sum of some numbers

type SumRequest:void {

.number [2,*]:int

}

interface SumInterface {

RequestResponse:

sum(SumRequest)(int)

}

outputPort SumService {

Location: "socket:// localhost:80/"

Protocol: soap

Interfaces: SumInterface

}

main

{

request.number [0] = 3;

request.number [1] = 5;

42 3. Language basics

request.number [2] = 1;

// response will be 10

sum@SumService(request)(response)

}

3.4 Procedures and inclusions

Code reuse is mostly implemented in service-oriented architectures through

modularization in services, which are then composed as needed. However,

programmers writing complex service definitions may need some more basic

features for reusing code. JOLIE provides two main features for this purpose:

procedure definition and source code inclusion.

3.4.1 Procedures

The definition of procedures callable by other code is performed using the

aforementioned Definition syntactic rule. Procedures can be simply invoked

with their name:
Process ::= . . .

| id
For instance, the following is a possible usage of a procedure definition:

define sumProcedure

{

sum = x + y

}

main

{

x = 1;

y = 2;

sumProcedure

3.4 Procedures and inclusions 43

}

Note that, unlike in other major languages, procedures do not possess a local

variable state. Details about this matter are described in 3.5.2.

3.4.2 Source code inclusion

Source code inclusion is a mechanic similar to the #include directive of

the C language preprocessor, through which one can include the content of

another file. JOLIE interprets a file inclusion by substituting the inclusion

statement with the content of the file. File inclusions can be freely used both

in the behavioural and deployment parts. The syntax for inclusions follow:

Include ::= include " string "

where string must be a filepath identifying the file to be included.

If the provided filepath is absolute, JOLIE will directly retrieve it. How-

ever, in most cases, relative paths are more useful. In such cases JOLIE will

try to resolve the given filepath following some rules, interrupting the search

as soon as the first valid result is obtained:

• the relative path is resolved w.r.t. the same directory that contains the

file with the include statement of interest;

• if the including file is contained within a special archive such as a JAR

(Java Archive), the path is resolved w.r.t. the position of the including

file in the archive;

• for each library path or archive passed as a command line parameter,

the path is resolved w.r.t. it;

• the path is resolved w.r.t. the directory containing the installed JOLIE

standard include library;

• for each inclusion path passed as a command line parameter, the path

is resolved w.r.t. it.

44 3. Language basics

3.5 Session management

A session represents an executing instance of a service behaviour. Sessions

are one of the most important concepts in service-oriented computing: they

allow for a service to be always available to multiple invocations. Focus

on session management is particularly stressed in the JOLIE language. In

listing 3.1 the service offering the sum operation is made reiteratively available

by means of a while block; that is not an encouraged programming practice:

a cleaner way to obtain this mechanic is using sessions.

3.5.1 Execution modalities, session starting and ini-

tialization

JOLIE provides three modalities for executing sessions:

• single: only a single session is executed; this is the default modality;

• sequential: sessions are executed sequentially, so a new session may

start only when there is no currently executing session;

• concurrent: all sessions are executed in parallel, and new sessions are

started as soon as they are requested.

Programmers can specify the desired modality through the execution in-

struction, in the deployment definition:

DeploymentInstruction ::= . . .

| execution { ExecutionModality }
ExecutionModality ::= single | sequential | concurrent

A session is initiated when the first input operation statement programmed

within the behaviour is invoked. The statement is executed and then the

workflow that follows it is run.

Given that, a service offering multiple session creations through the se-

quential or the concurrent modality may still need to perform some kind of

initialization, and such initialization may need to receive some input from

3.5 Session management 45

an external service. In those cases the programmer would not want these

input statements to start any session, but simply be executed once during

the initialization phase. The init blocks address this issue. Code inside

these blocks is run before that inside the main procedure and can not start

sessions.

3.5.2 Session state and synchronization

Each session has its own local variable state, thus the programmer gen-

erally does not need to worry about race conditions between sessions on

variable accesses. Nevertheless, a global variable state is provided in order to

share data among different sessions. The global variable state can be used

by prefixing a variable path with keyword global, like in the following:

global.myGlobalVariable = 3; // A global variable

myLocalVariable = 1 // A local variable

Using the global state introduces the problem of managing concurrent

access to global variables. This can be handled through the synchronized

construct:
Process ::= . . .

| synchronized (id) { Process }
which ensures that only one executing process at a time will enter any

synchronized block sharing the same id.

The differentiation between local state and global state w.r.t. sessions

is a peculiar approach to variable state handling. Indeed, in other more

known languages variable state is usually dictated by the position of their

declaration w.r.t. code blocks or function definitions. JOLIE, instead, does

not require variables to be declared in advance and variables in the same

sessions are always shared among all the activities of the same session. This

approach stresses out the importance that JOLIE gives to a programming

style that focuses on sessions and operation invocations, different from those

based upon code block nesting or functions.

46 3. Language basics

3.5.3 Correlation sets

JOLIE supports session correlation following the semantics of SOCK. Cor-

relation sets are a mechanism for relating each incoming message to the ses-

sion it is intended for. The correlation set of a service is to be specified in

the deployment definition:

DeploymentInstruction ::= . . .

| cset { CorrSet }
CorrSet ::= CorrVar | CorrVar , CorrSet

CorrVar ::= VariablePath

| VariablePath : VariablePathList

VariablePathList ::= VariablePath

| VariablePath VariablePathList

In addition to the syntax provided in SOCK, JOLIE allows for the specifi-

cation of multiple variable paths in which a correlation variable may occur.

This is useful because the same correlation variable may be included in dif-

ferent parts of messages, depending on the invoked operation. In order to

clarify this point, let us consider an example in which a service supports the

management of simple chat rooms. Each chat room is identified by a uni-

vocal name. Invokers may start new chat rooms, close existing chat rooms

and send messages to all the people in a chat room. The behavioural pseu-

docode and the correlation set definition for such a service may look like the

following:

cset {

adminToken ,

roomName:

creationRequest.room.name

message.roomName

enterRequest.roomName

}

3.5 Session management 47

execution { concurrent }

main

{

createRoom(creationRequest)(adminToken) {

getSecureToken@SecurityHelper ()(adminToken)

};

keepRun = 1;

while(keepRun) {

[enterRoom(enterRequest)(clientToken) {

... insert client in chat room ...

}] { nullProcess }

[sendMessage(message)] {

... send message to

all clients in chat room ...

}

[closeRoom(adminToken)] {

keepRun = 0

}

}

}

Sessions are created by calling the createRoom operation, which generates a

secure adminToken token and returns it to the invoker. Then, the program

enters into a loop that ends only when the closeRoom operation is called by

someone that knows the administration token. Sessions can also be referred

to by their room name. A room name can appear in different variable paths,

as specified by the cset definition, but they are all considered as the session

room name.

Chapter 4

Advanced features

In this chapter more advanced mechanisms offered by JOLIE are shown,

with particular emphasis on aspects regarding bindings and service architec-

tures.

4.1 Dynamic port configuration

Input and output ports offer some configuration capabilities at runtime,

which can be accessed by the behavioural code of a program. In particular,

input ports allow for their protocol configuration to be read and/or written

through some special variables. Output ports allow even more, permitting

their location, protocol and protocol configuration to be changed.

Input port protocol configurations may be accessed through the

global.inputPorts.inputPortName.protocol structure, where inputPort-

Name is intended to be substituted with the name of the input port of in-

terest. This feature is useful for protocols which may need to know some

additional information at runtime for operating correctly, such as the HTTP

protocol in some cases regarding the sending of responses.

The dynamicity offered by output ports is more expressive and is meant

to be used so to implement a technique known as rebinding, explained in

details in the following.

49

50 4. Advanced features

4.1.1 Rebinding and binding registries

The location and protocol (along with its configuration) of an output

port represent its binding information. Binding information describes how

to reach another service, in order to communicate with it. JOLIE comes with

a type definition for bindings in its standard library:

type Binding:void {

.location:string

.protocol:string { ? }

}

Binding information of an output port can be accessed by means of a variable

path starting with its name. For instance, the following would print the

location and protocol name of output port Printer:

include "console.iol"

interface PrinterInterface {

OneWay:

printText(string)

}

outputPort Printer {

Location: "socket:// printerservice:8000/"

Protocol: sodep

Interfaces: PrinterInterface

}

main

{

println@Console(Printer.location)();

println@Console(Printer.protocol)()

}

4.1 Dynamic port configuration 51

where println is an operation for printing on the running console, offered

by the Console service of the JOLIE standard library. Binding information

may be entered at runtime by making simple assignments:

outputPort Printer {

Interfaces: PrinterInterface

}

main

{

Printer.location =

"socket:// printerservice:8000/";

Printer.protocol = "sodep"

}

The fact that JOLIE represents port information using such data struc-

tures paves the way for very elegant transmission of bindings. Let us consider

an example where a binding registry offers a getBinding operation that is

meant to return the binding information for contacting a service, where ser-

vices are identified by name. Its interface is stored in a file, Registry.iol,

to be included by client applications:

// Registry.iol

interface RegistryInterface {

RequestResponse:

getBinding(string)(Binding)

}

outputPort Registry {

Location: "socket:// registry.com:80/"

Protocol: soap

Interfaces: RegistryInterface

52 4. Advanced features

}

The code of a service implementing such an interface could look like the

following:

// Registry.ol

include "Registry.iol"

execution { concurrent }

inputPort RegistryInput {

Location: "socket:// registry.com:80/"

Protocol: soap

Interfaces: RegistryInterface

}

init

{

with(global.bindings.LaserPrinter) {

.location = "socket:// printerservice:8000/";

.protocol = "sodep"

};

with(global.bindings.InkJetPrinter) {

.location = "socket:// otherprinter:80/";

.protocol = "soap"

}

}

main

{

getBinding(name)(global.bindings .(name)) {

nullProcess

4.1 Dynamic port configuration 53

}

}

Finally, a client using such registry would call getBinding and receive its

result on an output port variable path:

include "console.iol"

include "Registry.iol"

interface PrinterInterface {

OneWay:

printText(string)

}

outputPort Printer {

Interfaces: PrinterInterface

}

main

{

getBinding@Registry("LaserPrinter")(Printer);

printText@Printer("My text")

}

4.1.2 Dynamic parallel composition

JOLIE offers a primitive for performing dynamic parallel compositions, i.e.

parallel compositions whose width is determined at runtime. This is obtained

by replicating a Process for a number of times that is given by an expression.

The instruction that enables this behaviour is the spawn primitive:

54 4. Advanced features

Process ::= . . .

| spawn (VariablePath over Expression)

SpawnInClause { Process }
SpawnInClause ::= in VariablePath

| ϵ
The spawn primitive creates a parallel composition by replicating the given

Process by a number of times equal to the integer evaluation of the passed

Expression. Each spawned process possesses its own local state, so that

they do not interfere with each other. Because of this, an optional in clause

is provided; the in clause causes the spawned processes to put the value of

their local variable, pointed by the VariablePath immediately after the in

keyword, in an element of the vector variable, pointed by the same path, of

the activity that encloses the spawn block. Moreover, each spawned process

is identified by an integer which goes from 0 to n− 1, where n is the integer

evaluation of the passed Expression. The spawned processes can read their

own identifier by accessing the variable pointed by the first VariablePath.

Dynamic parallel composition is particularly useful when one needs to

invoke multiple services whose number is not statically known. Consider,

e.g., an activity that needs to perform a query to multiple travel agencies

in order to get the best available offer. This can be easily implemented by

means of a spawn block:

spawn(i over #bindings) in travelPlan {

TravelAgency << bindings[i];

getTravelPlan@TravelAgency(request)

(travelPlan)

}

After executing this code one would obtain a travelPlan vector, which

would have been populated by the spawned processes with their own sin-

gle travelPlan results. The single result of a spawned processes identified

by i can be accessed by referring to the element at position i in travelPlan.

4.2 Embedding 55

4.2 Embedding

Embedding is a powerful mechanism for executing multiple services in the

same virtual machine. A distinction is made between the embedder and the

embedded service. The former is a service that embeds the latter. Embedding

is very useful for handling the granularity of an SOA, for two reasons:

• services in the same virtual machine may communicate using fast local

memory communication channels;

• embedding introduces a hierarchy of services, where the embedder is

the parent service of the embedded ones; whenever a service terminates

all its embedded services are recursively terminated.

The advantage of the first point lies in that one can build lightweight

and reusable services that are designed to be embedded by more complex

orchestrators, without influencing negatively performance as would be the

case in more widespread technologies such as BPEL. The second point allows

the programmer to design an orchestrator so to load all its dependencies

explicitly at start-up, and leave the burden of terminating them when the

orchestrator ends its execution to the JOLIE engine.

Embedding blurs the boundaries between the concepts of service and

SOA: a single service may indeed embed an entire service-oriented architec-

ture. Embedded services can, nonetheless, transparently continue to expose

their interfaces to the outer world through their own input ports.

56 4. Advanced features

The syntax for embedding is:

DeploymentInstruction ::= . . .

| embedded { EmbeddingBlock∗ }
EmbeddingBlock ::= EngineType :

EmbeddedInstructionList

EngineType ::= Jolie | Java
EmbeddedInstructionList ::= EmbeddedInstruction

| EmbeddedInstruction ,

EmbeddedInstructionList

EmbeddedInstruction ::= " string " | " string " in id
EngineType expresses the engine needed to load the service to embed.

JOLIE currently supports embedding services written in JOLIE itself or in

Java 1. In the case of a JOLIE service, one must point the filepath where

its source code can be found. Command line parameters can also be passed

before the filepath. In the case of a Java service, the fully qualified name of

the class from which the service should be instantiated must be written.

Local memory communications are enabled by means of the local com-

munication medium and the optional in clause of EmbeddedInstruction.

In such cases no protocol definition is needed. In order to illustrate this

point, let us consider the following example, where a simple Echo service

gets embedded:

// Echo.ol

execution { concurrent }

interface EchoInterface {

RequestResponse:

echo(string)(string)

}

1Experimental support for JavaScript is in development, but still unstable and as such

not reported here.

4.2 Embedding 57

inputPort EchoInput {

Location: "local"

Interfaces: EchoInterface

}

main

{

echo(message)(message) {

nullProcess

}

}

// Embedder.ol

include "console.iol"

interface EchoInterface {

RequestResponse:

echo(string)(string)

}

outputPort Echo {

Interfaces: EchoInterface

}

embedded {

Jolie:

"Echo.ol" in Echo

}

main

58 4. Advanced features

{

echo@Echo("Hello , world!")(response);

// Will print "Hello , world!"

println@Console(response)()

}

4.2.1 Java services

JOLIE supports embedding Java code that follows its specifications for

Java Services. Embedding Java Services is particularly useful for reusing

existing Java code, perform some task where computational performance

is important or interoperating with some existing legacy software. A Java

Service can be written by extending the JavaService class, provided by

the JOLIE runtime environment library (in package jolie.runtime). Most

services of the JOLIE standard library are implemented in Java.

Each method of an embedded Java service is seen as an operation from the

embedder. Services written in Java are automatically considered as executing

with a concurrent modality. Commodity transformations are provided for

basic data types such as int, double and string. Structured data must

be handled, instead, with the Value class provided by the JOLIE runtime

package. The Value class offers methods for accessing subnodes in a manner

consistent with the language semantics of JOLIE.

The following is an example of a simple service which calculates and

returns the length of a string:

package example;

import jolie.runtime.JavaService;

public class MyService extends JavaService

{

4.2 Embedding 59

public Integer length(String request)

{

return request.length ();

}

}

Such a service can be embedded and called as one would do with JOLIE

services:

interface MyServiceInterface {

RequestResponse:

length(string)(int)

}

outputPort MyService {

Interfaces: MyServiceInterface

}

embedded {

Java:

"example.MyService" in MyService

}

main

{

length@MyService("Hi")(l);

println@Console(l)() // Will print 2

}

60 4. Advanced features

A

B

C

/ A

/ B

/ C

M / ?
M

Figure 4.1: Service M redirects messages to services A, B and C depending

on the target destination of the message (M/A, M/B or M/C).

4.3 Redirection

Redirection allows for the creation of a master service acting as a single

communication endpoint to multiple services, called resources. The master

service receives all the messages meant for the system that it handles. This

is obtained by binding an input port of the master service to multiple output

ports, each one identifying a service by means of a resource name. Invokers

send messages to the master service specifying also the intended resource

name. The main advantages of such an approach are:

• the possibility to provide a unique access point to the system clients. In

this way the services of the system could be relocated and/or replaced

transparently w.r.t. the clients;

• the possibility to provide transparent communication protocol trans-

formations between the invoker and the master and the master and the

rest of the system.

4.3 Redirection 61

In order to understand the second advantage better, consider Fig. 4.1 and

suppose that A speaks a certain protocol pa. Now suppose that a client needs

to interact with A, but it does know only a different protocol: pm. The client

could then call M with destination M/A using protocol pm (known by M),

and leave to M the task of transforming the call message into an instance of

pa before sending it to A.

The syntax for setting up a master service follows:

DeploymentInstruction ::= . . .

| inputPort id

{ PortInstruction∗

InputPortInstruction∗ }
InputPortInstruction ::= Redirects:

RedirectionList

RedirectionList ::= Redirection

| Redirection , RedirectionList

Redirection ::= id => outputPortId
where outputPortId ranges over output port identifiers and the form id =>

outputPortId associates a resource name to an output port. The example in

Fig. 4.1 can be implemented by means of that syntax:

outputPort ServiceA {

Location: "socket://www.somelocationA.com/"

Protocol: soap

Interfaces: InterfaceA

}

outputPort ServiceB {

Location: "socket://www.somelocationB.com/"

Protocol: sodep

Interfaces: InterfaceB

}

62 4. Advanced features

outputPort ServiceC {

Location: "socket://www.somelocationC.com/"

Protocol: http

Interfaces: InterfaceC

}

inputPort MasterInput {

Location: "socket:// masterservice.com:8000/"

Protocol: sodep

Redirects: A => ServiceA , B => ServiceB , C => ServiceC

}

Calling a master service for one of its resources is done by introducing the

resource name in the location used by the invoker, followed by the resource

name separator !/:

outputPort A {

Location: "socket:// masterservice.com:8000/!/A"

Protocol: sodep

Interfaces: InterfaceA

}

4.4 Aggregation

Aggregation is a composition of services where their interfaces are joined

together and published as unique. Therefore, aggregation deals with the

grouping of more services under the same interface. The mechanism is similar

to redirecting, but there are not resource names visible from the point of

view of the client; the client, instead, sees a unique service, the master one,

which exhibits an interface by providing the functionalities of the resource

services. Differently from redirecting, which maintains the different interfaces

of each composed service separated, in this case the client looses the details

4.4 Aggregation 63

A

B

C

o p 1 @ M
M

o p 1 @ A

o p 1
o p 2
o p 3

o p 1

o p 2

o p 3

Figure 4.2: In aggregation the master service publishes the union of all the

service interfaces it aggregates. Interfaces are here represented with dotted

rectangles. The message on operation op1 to service M is actually redirected

to service A.

64 4. Advanced features

of each single service used behind aggregation. The main advantage of such

a composition approach deals with the possibility to completely hide the

system components to the client.

The syntax for aggregation is:

InputPortInstruction ::= . . .

| Aggregates: OutputPortList

OutputPortList ::= outputPortId

| outputPortId , OutputPortList
Thus, one could easily implement a scenario such as that represented in

Fig. 4.2 with the following code:

outputPort ServiceA {

Location: "socket://www.somelocationA.com/"

Protocol: soap

Interfaces: InterfaceA

}

outputPort ServiceB {

Location: "socket://www.somelocationB.com/"

Protocol: sodep

Interfaces: InterfaceB

}

outputPort ServiceC {

Location: "socket://www.somelocationC.com/"

Protocol: http

Interfaces: InterfaceC

}

inputPort MasterInput {

Location: "socket:// masterservice.com:8000/"

Protocol: sodep

4.5 Dynamic system composition 65

Aggregates: ServiceA , ServiceB , ServiceC

}

An input port that makes use of aggregation can still expose an interface

of its own. If conflicts are present, i.e. the service interface contains an

operation that is exposed by one of the aggregated output ports, they are

resolved in favour of the direct input port interface.

4.5 Dynamic system composition

The aforementioned service composition techniques (dynamic binding,

embedding, redirection and aggregation) can be used statically or at run-

time. In the static case all the services are composed before their execution

and the composition never changes during the execution of all the system.

On the contrary, if the composition of the system changes at runtime, the

system is said to be dynamically composed. Dynamic composition is strictly

related to the concept of service mobility. Service mobility deals with the

representation of a service in some data format, its transmission from one

service to another and then its execution in the service container of the re-

ceiver. Note that this does not imply that a service can be moved while

it is executing: JOLIE provides mechanisms for moving service definitions,

but session and state mobility must still be implement manually by the pro-

grammer. In the following some cases of dynamic composition are, for the

sake of brevity, briefly described. They can all be implemented using oper-

ations provided by the JOLIE standard library through the Runtime service,

which is distributed with the language runtime environment and is publicly

consultable.

Dynamic embedding. Let us consider a service which needs to receive

software updates for a certain functionality. One may encapsulate that func-

tionality in an embedded service. Then, when a software update is issued,

the embedder service may unload the embedded one, receive the updated

66 4. Advanced features

service to embed and dynamically embed the received service.

Dynamic redirecting and aggregation. Let us consider the case that

a resource service faults or needs maintenance without affecting the service

availability from the client point of view. It is sufficient to install a fresh

resource service and to put it in the master service in place of the faulty

one.

Chapter 5

Fault and compensation

handling

This chapter presents the error handling mechanisms provided by the

JOLIE language. Error handling in service-oriented applications can be quite

complicated, due to their concurrent nature. For this reason, a foundational

study on SOCK has been conducted. The key concepts behind error han-

dling in SOCK and JOLIE are reported first, followed by a description of the

theoretical study performed w.r.t. SOCK. Finally, the constructs offered by

JOLIE for fault handling are presented.

5.1 Key concepts

Fault handling in SOC involves four basic concepts: scope, fault, termina-

tion and compensation. A scope is a process container denoted by a unique

name and able to manage faults. A fault is a signal raised by a process to-

wards the enclosing scope when an error state is reached, in order to allow for

its recovery. Termination and compensation are mechanisms exploited to re-

cover from errors. Termination is triggered when a scope must be smoothly

stopped, whereas compensation is triggered to undo the effect of a scope

whose execution has already successfully terminated. Recovery mechanisms

67

68 5. Fault and compensation handling

S C O P E

P r o c e s s
F a u l t

 h a n d l e r
T e r m i n a t i o n

h a n d l e r
C o m p e n s a t i o n

h a n d l e r

Figure 5.1: Handlers in a scope

are implemented by exploiting handlers which contain processes to be ex-

ecuted when faults, terminations or compensations are triggered. Handlers

are defined within a scope which represents the execution boundaries for their

application. There are three kinds of handlers: fault handlers, termination

handlers and compensation handlers. Fault handlers are executed when a

fault is triggered by the internal process of the scope, termination handlers

are executed when a scope is reached by a fault raised by an external pro-

cess and, finally, compensation handlers can be explicitly invoked by another

handler for recovering the activities of a child scope whose computation has

already successfully finished. Fig. 5.1 shows all the elements composing a

scope. A language managing error recovery via statically defined scopes (such

as BPEL) should provide a primitive like scopeq(P,FH, T H, CH) where q

is the scope name, P the executing process and FH, T H and CH are, re-

spectively, the fault, termination and compensation handlers. When a fault

is raised, it is propagated and it causes the termination of all the other ac-

tivities inside the same scope. After that, if the fault handler for that fault

is defined, the scope executes it, otherwise it forwards the fault to the outer

scope. It is worth noting that a terminating activity could be a scope, and

in this case its termination handler should be executed. Also, some linguis-

tic primitive, such as comp(q), can be used to require the execution of the

compensation handler of the scope named q. Fig. 5.2 provides an intu-

itive representation of handler mechanisms where numbers represent ordered

events and stm1,stm2,...,stmn represent a list of generic statements. A scope

A encloses a generic process P and two scopes B and C. At 1 scope C fin-

5.1 Key concepts 69

S C O P E A

P

S C O P E B S C O P E C

F H

T H

C H

F H

T H

C H

F H

T H

C H1

2

f au l t

3

4

5

S u c c e s s

s t m 1 ;
s t m 2 ;
s t m 3 ;
.. . .
. . . .
. . . .
s t m n ; C H

Figure 5.2: Handler mechanisms

ishes successfully by promoting its compensation handler to be executable

by the enclosing scope A. At 2, process P raises a fault which is propagated

to scope B. B is assumed to be still in execution when reached by the fault

so, at 3, it executes its termination handler and terminates. At 4 the fault

handler of scope A is executed and, at 5, it compensates scope C (supposing

that the handler specifies so).

In some cases static declaration of handlers is not enough to easily model

a given scenario. Let us consider the following pseudo-code:

scopeq(while(i < 100)(if i%2 = 0 then P else Q),FH, T H, CH)

Scope q contains a loop which executes 100 cycles. Even cycles execute pro-

cess P whereas odd cycles execute process Q. If scope q is reached by a

fault, in order to correctly recover its activities, it has to remember their

exact sequence and recover them in the desired order. One can use some

bookkeeping variables, but as far as the complexity of the code increases the

bookkeeping becomes more complex and error-prone. In order to address this

problem JOLIE makes use of dynamic handling, which allows to update han-

dlers as far as the computation progresses. Each scope contains a function H
associating fault handlers to fault names and termination and compensation

handlers to scope names.

Technically, dynamic handling is addressed by an installing primitive,

70 5. Fault and compensation handling

inst(H), which updates the current handler function with H. Thus, the

handler code can be updated depending on the current state of the scope.

The example above could be rewritten by exploiting the dynamic handler

mechanism as:

scopeq(while(i < 100)

if i%2 = 0 then P ; inst([q 7→ P ′; cH])

else Q; inst([q 7→ Q′; cH])

,H)

where cH allows to recover the previously installed handler with the same

name. In this case when P is executed the termination handler is updated

with process P ′, which specifically recovers process P (inst([q 7→ P ′; cH])),

whereas if Q is executed the termination handler is updated with Q′. When

reached by a fault, scope q executes the last installed termination handler,

thus recovering the whole sequence of activities. Different strategies can

easily be programmed. Notice that in the example above it should never be

the case that an execution of P has been completed and its compensation

has not been installed, since otherwise the compensation would not be up-

to-date. This can be obtained in the dynamic scenario by giving precedence

to the inst primitive, while the same can not be done for the bookkeeping

code needed in the static framework.

In this scenario, when a scope successfully terminates, the last defined

termination handler becomes its compensation handler. It is worth noting

that there is no ambiguity between the two handlers since they are triggered

in different ways. Termination handler is executed by the scope itself which

stops its normal code (in Fig. 5.2 scope B stops and executes its termina-

tion handler), whereas the compensation handler is always executed by the

enclosing scope (in Fig. 5.2 the fault handler of the scope A executes the

compensation of scope C) . This allows also to trivially simulate the static

approach with the dynamic one: the construct scopeq(P,FH, T H, CH) can

be simply rephrased as scopeq(inst(FH); inst(T H); P ; inst(CH)) in which

the fault and termination handlers are installed before the execution of the

5.2 Foundations for dynamic error handling 71

activity, and the compensation handler at the end.

5.2 Foundations for dynamic error handling

In this section the SOCK calculus is extended by adding to its service

behaviour layer the aforementioned primitives for fault and compensation

handling.

Syntax. The following additional sets are used: Faults, ranged over by f ,

for faults, and Scopes, ranged over by q, for scope names. q⊥ ranges over

Scopes∪{⊥}, whereas u ranges over Faults∪Scopes∪{⊥}. Here ⊥ is used to

specify that an handler is undefined. H denotes a function from Faults and

Scopes to processes extended with ⊥, i.e. H : Faults∪Scopes → SC ∪{⊥}.
In particular, the function associating Pi to ui for i ∈ {1, . . . , n} is written

as [u1 7→ P1, . . . , un 7→ Pn]. The extended syntax for processes is defined in

Table 5.1. Note that the syntax for outputs ϵ has changed, since now the

solicit-response or@z(y⃗, x⃗,H) includes a handler update H, whose purpose

will be clarified later.

In addition to the new solicit-response primitive there are five new static

constructs, and other auxiliary constructs to help the definition of the se-

mantics. Handlers are installed by inst(H), where H is a partial function

from fault and scope names to processes: H(f) = ⊥ is used to specify that

H is undefined on fault name f . {P}q defines a scope named q and executing

process P . This is a shortcut for {P : H0 : ⊥}q where H0 is the function that

evaluates to ⊥ for all fault names (i.e., at the beginning no fault handler is

defined) and to 0 for all scope names (i.e., the default termination or compen-

sation handler has no effect). The third parameter is the name of a handler

waiting to be executed: at the beginning no handler has to be executed, thus

⊥ is used. Primitives throw(f) and comp(q) respectively raises fault f and

asks to compensate scope q. cH is a placeholder for the previously installed

handler with the same name, to be used inside a handler update.

Well-formedness rules. Informally, comp(q) and cH occur only within

72 5. Fault and compensation handling

ϵ : : = o(x⃗) | or(x⃗, y⃗, P) ϵ : : = o@z(y⃗) | or@z(y⃗, x⃗,H)

P, Q, . . . : : = ϵ input

ϵ output

. . . other standard ops.

{P}q scope (for {P : H0 : ⊥}q)

inst(H) install handler

throw(f) throw

comp(q) compensate

cH current handler

Exec(P, or, y⃗, l) Request-Response execution

{P : H : u}q⊥ active scope

or(x⃗,H) response in solicit

or⟨x⃗,H⟩ dead response in solicit

⟨P ⟩ protection

or!f@l fault output

Table 5.1: Service behaviour syntax with faults

handlers, and q can only be a child of the enclosing scope. Also, for each

inst(H), H is undefined on all scope names q but the one of the nearest en-

closing scope, i.e. a process can define the termination/compensation handler

only for its own scope. Finally, it is assumed that scope names are unique.

Semantics. As before, in order to define the semantics an extended syntax

is exploited. There {P : H : u}q⊥ is an active scope. An active scope may

have a handler function H specifying the installed handlers. Also, u is the

name of a handler waiting to be executed, or ⊥ if no handler is waiting to be

executed. This is needed, for instance, when scope q is killed while waiting

for the answer of a Request-Response interaction: the termination handler

for q has to be executed, thus q is written as third parameter. However, the

5.2 Foundations for dynamic error handling 73

termination handler is not executed immediately, but the answer from the

Request-Response is waited for. This answer may update the termination

handler. When the termination handler has to be executed, the updated

version is used. When a scope has failed its execution, either because it has

been killed from a parent scope, or because it has not been able to catch and

manage an internal fault, it reaches a zombie state. This is identified since

the name of the scope becomes ⊥. Scopes in a zombie state are no more able

to throw faults. This ensures that each scope may throw at most one fault.

Also, or(x⃗,H) is used to wait for the response in a solicit-response interac-

tion. H is installed iff a non faulty response is received, allowing to program

the compensation for the remote activity. If the remote activity has failed,

no compensation for it is required. or⟨x⃗,H⟩ is the corresponding zombie ver-

sion, which cannot throw faults. This is created when the normal version

is killed because of an external fault, again to ensure that no fault is raised

by dead activities. ⟨P ⟩ executes P in a protected way, i.e. not influenced

by external faults. This is needed to ensure that recovery from a fault is

completed even if another fault happens. Also, Exec(P, or, y⃗, l) is a running

Request-Response interaction (as for the calculus without faults). Finally,

or!f@l notifies fault f to the client (located at l) of a Request-Response pat-

tern. This is created when an executing Request-Response is killed because

of a local fault.

In the semantics, in addition to the structured actions introduced in

Chapter 2, the following unstructured actions are used:

{th(f), cm(q, P), inst(H)}

They represent, respectively, the propagation of fault f , the check that the

compensation code for scope q is P , and the request to apply handler update

H.

The service behaviour calculus does not deal with the actual values of

variables and locations but it models all the possible execution paths for all

the possible variable values and locations. The semantics follows this idea

by means of an infinite set of actions where external inputs, external outputs

74 5. Fault and compensation handling

and assignment actions report all the value substitutions for both variables

and locations except the actions o@l(v⃗/x⃗) and or@l(v⃗/x⃗, y⃗,) where locations

are defined. Formally, let Act be the set of actions, ranged over by γ, defined

as follows:

Act = In ∪ Out ∪ Internal

In = {o(v⃗/x⃗), or(v⃗/x⃗, y⃗, P)@l}
Out = {o@l/z(v⃗/x⃗), o@l(v⃗/x⃗), or@l/z(v⃗/x⃗, y⃗, ,)or@l(v⃗/x⃗, y⃗, })
Internal = {s, s̄, τ, th(f), cm(q, P), inst(H)}

Definition 5.2.1 (Service behaviour layer semantics). →⊆ SC ×Act× SC

is the least relation which satisfies the rules of Tables 2.2 (where th(f) is sup-

posed to never occur as label) and 5.2, and closed w.r.t. structural congruence

≡, the least congruence relation satisfying the axioms in Table 2.3.

The rules in Table 5.2 define the semantics of scopes, faults and compen-

sations. Operator � is used for updating the handler function:

(H�H′)(u) =


(H′(u))[H(u)/cH] if u ∈ Dom(H′) ∩ Dom(H)

(H′(u))[0/cH] if u ∈ Dom(H′), u /∈ Dom(H)

H(u) otherwise

where inst is a binder for cH, i.e. substitutions are not applied inside the

inst primitive.

Intuitively, the above definition means that handlers in H′ replace the

corresponding handlers in H, and occurrences of cH in the new handlers are

replaced by the old handlers with the same name. For instance, inst([q 7→
P |cH]) adds P in parallel to the old handler for q. Furthermore, cmp(H) de-

notes the part of H dealing with terminations/compensations, i.e. cmp(H) =

H|Scopes.

Rules Solicit and Solicit-Response replace the corresponding rules

in Table 2.2, ensuring that when the answer is received, handler update H is

installed. The handler update is not performed if a fault answer is received

5.2 Foundations for dynamic error handling 75

(see rule Receive-Fault). The internal process P of a scope can execute

thanks to rule Scope. Fault and compensation handlers are installed in the

nearest enclosing scope by rules AskInst and Install. According to rule

Scope-Success, when a scope successfully ends, its compensation handlers

are propagated to the parent scope. This is needed to allow the parent scope

to compensate the finished child. Compensation handlers of subscopes are

propagated too, to allow to recursively compensate them. Compensation

execution is required by rule Compensate. The actual compensation code

Q is guessed, and the guess is checked by rule Compensation. When the

compensation is executed, the corresponding handler is removed, so to en-

sure that it is not possible to compensate twice the same activity. Faults are

raised by rule Throw. A fault is caught by rule Catch-Fault when a scope

defining the corresponding handler is met. The name of the handler is stored

in the third component of the scope construct: the handler is executed only

after the activities in P ′ have been completed. These include, for instance,

waiting for response messages in Request-Response interactions, terminat-

ing subscopes, and terminating internal error recovery. This is managed by

the rules for fault propagation Throw-Sync, Throw-Seq, ReThrow and

Throw-RExec, and by partial function killable (see Table 5.3). Function

killable is applied to parallel components by rule Throw-Sync. This has

a double aim. On the one hand it guarantees that when a fault is thrown

there is no pending handler update, i.e. it gives priority to handler update

w.r.t. fault processing. This ensures that handlers are always up-to-date,

and solves the race condition issues discussed in 5.1. Technically this is ob-

tained by making killable(P, f) undefined (and thus rule Throw-Sync not

applicable) if some handler installation is pending in P . On the other hand

killable(P, f) computes the activities that have to be completed before the

handler is executed. In particular, when a sub-scope is terminated, its termi-

nation handler is marked as next handler to be executed (see the definition of

function killable for scopes). The latter may substitute a previously marked

fault handler, following the intuition that a request of termination has prior-

76 5. Fault and compensation handling

ity w.r.t. an internal activity such as fault processing. Also, if an Exec (i.e.,

an ongoing Request-Response computation) is terminated then the fault is

notified to the partner (this is why function killable needs as parameter the

name f of the fault). Finally, a receive waiting for the answer of a solicit-

response is preserved, thus preserving the pattern of communication, but

changed to its zombie version, ensuring that no other faults will be thrown.

The ⟨P ⟩ operator (defined by rule Protection) guarantees that the en-

closed activity will not be killed by external faults (because of the fifth rule

in the definition of function killable). Rule Scope-Handle-Fault executes

a handler for a fault. This is done only after the activities discussed above

have terminated. The fault handler is removed from the function H in order

to allow throw primitives for the same fault in the handler to propagate the

fault to the outer scope. Note that a scope that has handled an internal fault

can still end with success. Instead, a scope that has been terminated from the

outside is in zombie state. It can execute its termination handler thanks to

rule Scope-Handle-Term, and then terminate with failure (thus discard-

ing its compensation handlers) using rules Scope-Fail. Similarly, a scope

enters the zombie state when reached by a fault it cannot handle, as specified

by rule ReThrow. The fault is propagated up along the scope hierarchy.

Zombie scopes cannot throw faults any more, since rule Ignore-Fault has

to be applied instead of ReThrow. Rule Ignore-Fault is necessary only

for faults thrown by handlers, since no other fault can be generated by a zom-

bie scope. When an executing Request-Response is reached by a fault, it is

transformed into a fault notification (see the definition of function killable).

Fault notification is executed by rule Send-Fault, and it will interact with

the waiting receive thanks to rule Receive-Fault. When received, the fault

is ready to be rethrown at the client side, where it is treated as a local fault.

If the receive is in zombie state instead, the fault is discarded (rules Dead-

Solicit-Response and Dead-Receive-Fault are used instead of rules

Solicit-Response and Receive-Fault).

5.3 Dynamic error handling in JOLIE 77

5.3 Dynamic error handling in JOLIE

JOLIE offers the aforementioned fault handling mechanisms by means of

a new set of instructions, each one resembling the primitives that have been

introduced in SOCK:
Process ::= . . .

| throw(f) Throw

| throw(f , VariablePath) Throw (w/ data)

| install(Handlers) Install

| comp(s) Compensate

| cH Current handler

| scope(s) { Process } Scope

OutputStatement ::= . . .

| op@OPort(VariablePath)

(VariablePath)

[Handlers] Solicit-Response

Handlers ::= Handler | Handler Handlers

Handler ::= FaultNameList => Process

FaultNameList ::= f | f FaultNameList
where f ranges over fault identifiers and s over scope identifiers. Throw raises

a fault signal that can be equipped with extra data. Install performs a han-

dler update in the enclosing scope. Compensate compensates a successfully

finished scope. cH is a placeholder for referring to the previously installed

handler. Scope is the construct for creating scopes. Finally, the syntax for

performing solicit-response calls is extended with the possibility to install

handlers, following the updated semantics of SOCK.

The introduction of faults influences the grammar for defining interfaces,

too. In particular, Request-Response operations must now declare what

faults they may throw to callers:

78 5. Fault and compensation handling

RequestResponseOp ::= . . .

| id (OpMessageType)

(OpMessageType)

throws FaultDeclarationList

FaultDeclarationList ::= FaultDeclaration

| FaultDeclaration FaultDeclarationList

FaultDeclaration ::= f (OpMessageType)

An example showing how to define a service that may throw a fault

follows:

type DivideRequest:void {

.x:double

.y:double

}

interface MyInterface {

RequestResponse:

divide(DivideRequest)(double)

throws DivideByZero(void)

}

inputPort MyInput {

Location: "socket:// myinput.com:8000"

Protocol: sodep

Interfaces: MyInterface

}

main

{

divide(request)(response) {

if (request.y == 0) {

throw(DivideByZero)

5.3 Dynamic error handling in JOLIE 79

};

response = request.x / request.y

}

}

JOLIE supports all the concepts and semantics for dynamic handling that

have been exposed for SOCK. In the following the main features offered by

the JOLIE implementation are analyzed.

Automatic fault transmission – As in SOCK, faults that are thrown

from inside a Request-Response operation are automatically transmitted to

the caller. This is particularly useful in practical application programming,

because of the compositional nature of services; a service usually has to call

another service in order to compute the response for a request. This generates

a request chain that lasts until services that do not need to compose other

services to answer their own requests are met. In such a scenario, automatic

fault transmission is very useful because if an uncaught fault occurs in the

chain the initial client receives the same fault that occurred (in case there

are no renamings performed through rethrowing).

Dynamic code generation – The cH element implies that the language

must be able to generate behavioural code dynamically. Consider the follow-

ing example:

1) scope(s) {

2) install(f => i = i + 2);

3) install(f => i++; cH)

4) }

In (3) the install instruction contains a reference to the current handler. In

order to execute the instruction correctly, JOLIE must first replace cH; so,

the install instruction that gets executed at (3) is:

install(f => i++; i = i + 2)

The code (in this case i = i + 2) is said to be dynamically generated by the

80 5. Fault and compensation handling

interpreter at the time of installation.

Actual programming experience showed that dynamic code generation

must pay particular care to the evaluation of expressions: it is important,

for the programmer, to be able to refer to the variable state at the time of

handler installation. JOLIE offers this feature by means of the ^ operator,

which can be used to prefix a variable and freeze its state in a handler that

is going to be installed. In order to understand this concept, consider the

following JOLIE code:

scope(s) {

for(i = 0, i < 3, i++) {

install(f => println@Console(^i)(); cH)

};

throw(f)

}

The program cycles over the i variable, and once it completes the for block

it throws fault f, thus causing the installed fault handler to be executed. At

each iteration, the for body updates the fault handler for f by prefixing a

console output of ^i to the currently installed handler; at each installation,

the ˆ operator replaces the value of i with its current value. The final handler

for f, just before the throw instruction is reached, results then as:

println@Console(2)();

println@Console(1)();

println@Console(0)()

Structured fault data – JOLIE supports the association of structured

data to a fault signal. This ability can be used to attach additional infor-

mation to a fault, that can be retrieved and used later in the fault handler

execution. In order to do this, JOLIE extends the throw instruction to sup-

port an optional parameter: throw(f, VariablePath). This new primitive

attaches the data pointed by VariablePath to fault signal f and then raises

the latter. In the following a usage example is provided.

5.3 Dynamic error handling in JOLIE 81

scope(s) {

install(f =>

// This will print "Hello , world!"

println@Console(s.f.message)()

);

data.message = "Hello , world!";

throw(f, data)

}

Note that in order to refer to the fault data of f the scope name is exploited:

s.f.message. This is due to the fact that in SOCK and JOLIE variables

are shared, so if two scopes in parallel receive the same fault by their in-

ternal activities their respective fault data must be stored in two different

variables to avoid a memory race condition. In order to do so, the name of

the scope receiving the fault is used as a prefix. Note also that fault data is

transparently transmitted over the network in case of faults thrown inside a

Request-Response operation execution.

Basic safety properties – The dynamic fault handling mechanism de-

fines some basic properties that are always assured, reported in [19]. JOLIE

respects them and the programmer can make use of them in his or her rea-

soning about an orchestrator behaviour. The main properties are:

1. a scope ends successfully if it does not throw any fault upstream, i.e.

its internal process does not throw any fault or the scope handles all

of the faults thrown by its internal process;

2. a scope installs its compensations in the parent scope iff it ends suc-

cessfully;

3. a scope that is terminated by a sibling parallel process (i) does not end

successfully and (ii) does not throw any fault upstream anymore;

4. if a Solicit-Response process starts (i.e. it sends a request message) it

always waits for the response;

82 5. Fault and compensation handling

5. if a Request-Response process starts (i.e. it receives a request message)

it always supplies a response to the caller, be it a normal message or a

fault.

Properties (1), (2) and (3) offer to the programmer the means to safely

predict the behaviour of a scope. Properties (4) and (5) ensure that the

Request-Response pattern is always respected, even when the program has

to deal with fault handling.

Install statement priority – One of the most important aspects of dy-

namic handling is that the install primitive has priority w.r.t. fault process-

ing. This introduces the necessary determinism to assure that fault handling

behaviour is predictable by the programmer. JOLIE implements this mech-

anism exploiting its internal execution architecture, the Object-Oriented In-

terpretation Tree (OOIT), which will be detailed in Chapter 6. Consider the

following code:

scope(s) {

throw(f)

|

install(f =>

println@Console("Hello , world!")()

)

}

where the behaviour is composed by two processes in parallel: the former

throws a fault f, whereas the latter installs a fault handler for f. This

workflow is internally represented by the OOIT in Fig. 5.3. Basically, every

OOIT node is responsible for implementing a specific SOCK semantic rule.

Fault signals are propagated upwards in the tree. When the fault signal f

reaches the | node (i.e. the node representing the parallel composition), the

latter informs every other child node that the parallel composition is now in

a fault handling situation and waits for their confirmation. Normally, a node

aborts its execution and returns immediately, but this is not the case for a

5.3 Dynamic error handling in JOLIE 83

Figure 5.3: OOIT scope representation

node that has to perform a handler installation: an install node returns its

confirmation to the | node only after actually performing the installation.

Thus, the parallel composition is forced to wait for the handler installation

and it propagates the fault signal to the scope(s) node only afterwards.

84 5. Fault and compensation handling

(Solicit)

or@z(x⃗, y⃗,H)
↑or(v⃗)@l(l/z,v⃗/x⃗:∅)−−−−−−−−−−−→ or(y⃗,H)

(Solicit-Response)

or(x⃗,H)
↓or(v⃗)(∅:v⃗/x⃗)−−−−−−−→ inst(H)

(Scope)

P
a−→ P ′ a ̸= inst(H), cm(q′,H′)

{P : H : u}q⊥
a−→ {P ′ : H : u}q⊥

(AskInst)

inst(H)
inst(H)−−−−→ 0

(Throw)

throw(f)
th(f)−−−→ 0

(Compensate)

comp(q)
cm(q,Q)−−−−→ Q

(Install)

P
inst(H)−−−−→ P ′

{P : H′ : u}q⊥

τ(∅:∅)−−−→ {P ′ : H′ �H : u}q⊥

(Scope-Success)

{0 : H : ⊥}q
inst(cmp(H))−−−−−−−→ 0

(Scope-Fail)

{0 : H : ⊥}⊥
τ(∅:∅)−−−→ 0

(Scope-Handle-Fault)

{0 : H : f}q⊥

τ(∅:∅)−−−→ {H(f) : H�[f 7→ ⊥] : ⊥}q⊥

(Compensation)

P
cm(q,Q)−−−−→ P ′,H(q) = Q

{P : H : u}q′⊥

τ(∅:∅)−−−→ {P ′ : H�[q 7→ 0] : u}q′⊥

(Scope-Handle-Term)

{0 : H : q}⊥
τ(∅:∅)−−−→ {H(q) : H�[q 7→ 0] : ⊥}⊥

(Protection)

P
a−→ P ′

⟨P ⟩ a−→ ⟨P ′⟩

(Throw-Sync)

P
th(f)−−−→ P ′, killable(Q, f) = Q′

P |Q th(f)−−−→ P ′|Q′

(Throw-Seq)

P
th(f)−−−→ P ′

P ; Q
th(f)−−−→ P ′

(Catch-fault)

P
th(f)−−−→ P ′,H(f) ̸= ⊥

{P : H : u}q⊥

τ(∅:∅)−−−→ {P ′ : H : f}q⊥

(Ignore-fault)

P
th(f)−−−→ P ′,H(f) = ⊥

{P : H : u}⊥
τ(∅:∅)−−−→ {P ′ : H : u}⊥

(ReThrow)

P
th(f)−−−→ P ′,H(f) = ⊥

{P : H : u}q
th(f)−−−→ ⟨{P ′ : H : ⊥}⊥⟩

(Throw-RExec)

P
th(f)−−−→ P ′

Exec(P, or, y⃗, l)
th(f)−−−→ P ′| ⟨or!f@l⟩

(Send-Fault)

or!f@l
or(f)@l(∅:∅)−−−−−−−→ 0

(Receive-Fault)

or(x⃗,H)
or(f)(∅:∅)−−−−−→ throw(f)

(Dead-Solicit-Response)

or⟨x⃗,H⟩ ↓or(v⃗)(∅:v⃗/x⃗)−−−−−−−→ inst(H)

(Dead-Receive-Fault)

or⟨x⃗,H⟩ or(f)(∅:∅)−−−−−→ 0

Table 5.2: Rules for service behaviour layer: fault and compensation rules

5.3 Dynamic error handling in JOLIE 85

killable({P : H : u}q, f) = ⟨{killable(P, f) : H : q}⊥⟩ if P ≡/ 0

killable(P | Q, f) = killable(P, f) | killable(Q, f)

killable(P ; Q, f) = killable(P, f) if P ≡/ 0

killable(Exec(P, or, y⃗, l), f) = killable(P, f)| ⟨or!f@l⟩
killable(⟨P ⟩ , f) = ⟨P ⟩ if killable(P, f)

killable(or(y⃗,H), f) = ⟨or⟨y⃗,H⟩⟩
killable(P, f) = 0 if P ∈ {0, ϵ, ϵ, x := e, if χ then P else Q,

while χ do (P), or!f
′@l, or⟨y⃗,H⟩,∑

i∈W ϵi; Pi, throw(f), comp(q)}

Table 5.3: killable function

Chapter 6

Implementation

This chapter describes the architecture of the reference implementation

of the JOLIE language. Particular care has been put into making the final

result easily extendable.

JOLIE is implemented through an interpreter written in the Java lan-

guage. Source code gets parsed and transformed into objects implementing

the desired semantics. These objects are organized into a tree, called OOIT

(Object-Oriented Interpretation Tree), which is run inside a Runtime Envi-

ronment supporting its execution. A separate component, called Commu-

nication Core, is used in order to perform communications. The JOLIE in-

terpreter resulting architecture is thus composed by four main components,

here summarily described and then more deeply analyzed in the following

sections.

• Runtime Environment : it is responsible for instantiating the other com-

ponents and supporting the execution of the OOIT.

• Parser : it reads the input program and generates the OOIT.

• Object-Oriented Interpretation Tree (OOIT): a tree of objects that im-

plements the execution of the semantic rules relative to the input pro-

gram.

87

88 6. Implementation

Figure 6.1: A graphical representation of the JOLIE interpreter structure

• Communication Core: handles communications, allowing the other

components to treat input and output messages abstracting from the

underlying communication mediums and protocols.

The interpreter structure is graphically represented in fig. 6.1.

6.1 Interpretation algorithm

The JOLIE interpretation algorithm can be summarized in the following

steps:

1. Command line arguments are read, and the components needed for

parsing are started;

2. the source code in input is parsed and an Abstract Syntax Tree (AST)

is produced;

3. well-formedness, semantic checks and optimizations are performed on

the AST;

4. the AST is used in order to generate the OOIT and initialize the Com-

munication Core and Runtime Environment components;

6.2 Input parsing and abstract syntax tree 89

5. the Runtime Environment calls the run method of the radix node in

the OOIT (which corresponds to the main procedure).

6.2 Input parsing and abstract syntax tree

Input source code is tokenized through a scanner (implemented in

jolie.lang.parse.Scanner), which follows the behaviour of a DFA (Deter-

ministic Finite Automaton). The scanner reads its input through a generic

InputStream; thus, in principle, it could be used to parse input code from

resources that are not files, such as network-backed streams. Comments are

automatically filtered out, so that they do not reach the upper level (that of

the parser, presented in the following).

Extending the language for supporting new tokens can be done by adding

new elements to the Scanner.TokenType enumeration, which represents the

list of keywords in the JOLIE language. The actual implementation for read-

ing the token must be put inside the Scanner.getToken method.

The tokens are used by the JOLIE parser (jolie.lang.parse.OLParser),

implemented as a recursive descent parser, which checks if the source code

respects the grammar of the language and produces the respective Abstract

Syntax Tree (AST). Each node of the AST extends class

jolie.lang.parse.ast.OLSyntaxNode. Class OLSyntaxNode offers support

for obtaining parsing information, such as the line of source code from which

the node has been generated. Moreover, it is instrumental to the implemen-

tation of AST analyzers and transformers.

The Abstract Syntax Tree can be analyzed and/or transformed by means

of visitors [15]. JOLIE comes equipped with two visitors that are immediately

used after the parsing phase. The first one is OLParseTreeOptimizer, which

transforms the program AST into an optimized version by reducing, when

possible, the number of nodes and, in some cases, even by transforming some

code in more efficient versions. The second one is SemanticVerifier, which

performs well-formedness and semantic checks on the parsed program.

90 6. Implementation

6.3 Execution: OOIT and Runtime Environ-

ment

After the parsing phase has been performed, the AST is passed to an

OOITBuilder object. OOITBuilder reads the AST and produces the corre-

sponding OOIT.

The Object-Oriented Interpretation Tree (OOIT) is an object tree-like

data structure that defines the semantics for program execution. Each node

of the OOIT implements the jolie.process.Process interface. This design

has been chosen in order to allow programmers to implement semantic rules,

following the foundational studies in SOCK, in a reasonably encapsulated

manner. Indeed, each node is responsible for implementing the semantics

of a single statement or statement composer, and the implementation of a

semantic rule of SOCK is usually contained in a single class that implements

Process. The definition of interface Process follows:

public interface Process

{

public void run()

throws FaultException , ExitingException;

public Process clone(TransformationReason reason);

public boolean isKillable ();

}

where method run is meant to implement the semantics of the process node,

method clone is used in dynamic (at runtime) transformations of the OOIT

and method isKillable implements the killable predicate that has been

presented in 5.2.

Some process nodes may need to access the state of a session or some

other shared data structures. The Runtime Environment component of-

6.4 Communications 91

fers methods for accessing these structures without needing to worry about

race conditions. Moreover, the Runtime Environment handles parallel ex-

ecution by means of native threads. Created threads are traceable be-

cause they all extend the base jolie.JolieThread class. Threads respon-

sible for executing a part of the OOIT extend a subclass of JolieThread:

jolie.ExecutionThread. Execution threads handle the dynamic state of

scopes, managing the updates to fault, termination and compensation han-

dlers. Execution threads can be of two kinds: session threads

(jolie.SessionThread) and parallel threads

(jolie.runtime.ParallelThread). Session threads are used for handling

different sessions and retain a local state for variable values, whereas parallel

threads are used for handling parallel composition and refer to their parent

session thread for state handling.

6.4 Communications

The OOIT performs communications by exploiting the Communication

Core component (jolie.net.CommCore). The Communication Core is based

upon two main abstraction mechanisms, those of messages and channels.

A message (jolie.net.CommMessage) is formed by the following parts:

• a resource path, which is to be processed by the receiving party as

explained in 4.3;

• the name of the operation it is meant for;

• the (structured) data of the message, i.e. its content;

• optionally, if the message is meant to transmit a fault signal, a fault

name.

Messages are abstract: they do not contain information about encoding or

decoding using specific protocols.

92 6. Implementation

Channels (jolie.net.CommChannel) allow for the sending and receiving

of messages. As such, a channel is responsible for encoding/decoding a mes-

sage using the right format and then to send/receive it by means of the right

communication medium. Some channels (such as those using in-memory

local communications) do not encode/decode data at all, because they use

native JOLIE messages. Most channels, however, make use of data proto-

cols. A protocol (jolie.net.CommProtocol) specifies how messages should

be encoded or decoded. Examples of protocols are SOAP, SODEP or HTTP.

Protocols can be used by channels without needing to know their internal

details, exploiting a common interface. This allows for the free mixing of

protocols with communication mediums and is the key factor in supporting

the independency between the Location and Protocol elements in ports.

Support for new channels and protocols can be added by means of exten-

sions (or JOLIE extensions), which are simple JAR (Java Archive) files that

can be put inside the extensions directory in the JOLIE installation path.

A JOLIE extension may contain definitions for new channels and protocols,

whose names must be indicated in the JAR Manifest file.

Chapter 7

Programming techniques and

examples: using JOLIE

This chapter is devoted to showing some relevant programming techniques

that can be used with the JOLIE language in the design and implementation

of service-oriented software architectures.

7.1 Interceptors and wrappers

When dealing with large software infrastructures, it is often the case that

some services may need to be adapted in order to get integrated with the rest

of the architecture. Such adaptation may be related to the behaviour or the

deployment definition of the service (or both). Interceptors and wrappers

are programming patterns meant to address this kind of issue. The two

techniques are similar in their basic concepts but the architectures resulting

from their applications are different, and this may affect the interactions with

other services, as commented at the end of the section. In the following the

term legacy service is used to refer to the service that needs to get adapted.

93

94 7. Programming techniques and examples: using JOLIE

7.1.1 Interceptors

There are two kinds of interceptors: input interceptors and output inter-

ceptors. Input interceptors are used to adapt the input interface of the legacy

service by intercepting calls for it from other services, whereas output inter-

ceptors intercept calls coming out of the output ports of the legacy service.

In order to function properly, interceptors require that the rest of the system

possesses adequate binding information. In particular, input interceptors

usually take the place of the intercepted legacy service. As such, the location

of the legacy service needs to be changed to a new one, known by the input

interceptor, whereas the input interceptor takes the original location of the

legacy service. Output interceptors, instead, are usually meant to be used

only by the legacy service and not by the rest of the service-oriented architec-

ture. Because of this the location of the legacy service does not change, but

one must perform rebinding on it so to make it use the output interceptor.

Input interceptors

Deployment adaptation with an input interceptor can be easily addressed

by means of aggregation. This is obtained by exposing an input port with

different deployment information and by making it aggregating an output

port towards the legacy service. The following is an example that adapts

a legacy service by exposing its functionalities through the SOAP protocol,

in order to make it usable by Web Services. The code for the output port

definition and the main procedure are not reported: the first one can be of

any kind, because aggregation is independent from the used communication

medium and protocol, whereas the second one is not relevant because the

behaviour of the interceptor does not play any role.

outputPort LegacyService { ... }

inputPort InterceptorInput {

Location: "socket:// localhost:80/"

7.1 Interceptors and wrappers 95

Protocol: soap

Aggregates: LegacyService

}

main { ... }

Behavioural adaptation exploits the fact that aggregation gives prece-

dence to the interface of the aggregator. In this case, the aggregator exposes

a subset of the aggregated interface and implements it by itself. In order

to exemplify, let us consider a simple calculator service which exposes the

following interface:

interface CalculatorInterface {

OneWay:

shutdown(void)

RequestResponse:

sum(SumRequest)(int)

}

Integrating this service with some auditing mechanism may require, e.g., to

log each received call for the sum operation. This can be simply obtained

through the following interceptor:

execution { concurrent }

interface CalculatorInterface {

OneWay:

shutdown(void)

RequestResponse:

sum(SumRequest)(int)

}

interface SumInterface {

RequestResponse:

96 7. Programming techniques and examples: using JOLIE

sum(SumRequest)(int)

}

outputPort Calculator {

Location: Location_Calculator

Protocol: sodep

Interfaces: CalculatorInterface

}

outputPort Logger { ... }

inputPort InterceptorInput {

Location: "socket:// localhost:80/"

Protocol: soap

Interfaces: SumInterface

Aggregates: Calculator

}

main

{

sum(request)(response) {

sum@Calculator(request)(response);

log@Logger("Operation sum has been called")

}

}

The interceptor implements operation sum which, after calling calculator on

the same operation, performs the additional logging.

Following the same reasoning, one could also add new operations to the

exposed input port or hide some operations of the aggregated service. Adding

an operation can be easily done by exposing an additional interface in the

input port of the aggregator or by aggregating multiple output ports. Hiding

7.1 Interceptors and wrappers 97

an operation, instead, is obtained by modifying the interface of the aggre-

gated output port, i.e. by removing the operation of interest from it.

Output interceptors

Output interceptors capture outgoing calls issued by the legacy service

and then trigger some actions. In order to introduce this technique, let

us consider an example in which a legacy service relies on a mail server

for sending E-Mails. The objective is to perform some additional action,

e.g. saving a backup copy, whenever the legacy service uses the sendMail

operation of the mail server. Doing this with an input interceptor on the

legacy service could be hard because it is not known, a priori, when the

execution of one of its operations will cause an invocation for the sendMail

operation. Instead, one could use an output interceptor that is responsible

for intercepting calls to sendMail and performing the backup action:

execution { concurrent }

interface MailServerInterface { ... }

interface SendMailInterface {

RequestResponse:

sendMail(SendMailRequest)(void)

}

outputPort MailServer {

Location: Location_MailServer

Protocol: soap

Interfaces: MailServerInterface

}

outputPort BackupServer { ... }

98 7. Programming techniques and examples: using JOLIE

inputPort InterceptorInput {

Location: "socket:// localhost:9000/"

Protocol: soap

Interfaces: SendMailInterface

Aggregates: MailServer

}

main

{

sendMail(request)(response) {

sendMail@MailServer(request)(response)

|

backup@BackupServer(request)

}

}

7.1.2 Wrappers

While interceptors execute as siblings of the legacy service, a wrapper

executes a legacy service (the wrapped service) as an inner service by means

of embedding. Wrapping can be applied in all the scenarios considered above

with interceptors, and in a very similar way. Indeed, the only difference

between the two approaches lies on the resulting architecture. This fact

can be relevant: intercepted legacy services are still reachable by the rest

of the service system if some other service knows its new location, whereas

one can use the local communication medium in the case of wrapping in

order to completely isolate the legacy service. Moreover, the wrapper and

the wrapped services can be treated as a single unit: if the execution of the

wrapper gets terminated, the wrapped service is automatically terminated,

too. This is not the case with interceptors, where one must take care of

terminating also all the related interceptors when a legacy service is stopped.

7.2 Service mobility patterns 99

M

S

S l a v e s e r v i c e m o b i l i t y

o p 1
o p 2
...

S

M

M a s t e r s e r v i c e m o b i l i t y

o p 1
o p 2
...

Figure 7.1: Slave service mobility and Master service mobility.

7.2 Service mobility patterns

Service mobility is a direct application of dynamic embedding: service

definitions are transmitted over the network and embedded by the receiver.

Service mobility can be of two different kinds: slave service mobility and

master service mobility. A slave service provides simple functionalities; a

master service, instead, makes use of multiple slave services in its workflow.

In the slave service mobility pattern slave services are transmitted to and

embedded by a master service, whereas in the master service mobility the

master service is moved and embedded into the same execution engine of the

slaves. In the following both patterns are explained by referring to Fig. 7.1.

• Slave service mobility. Consider the case in which a service M (the

master service) defines a workflow that is dependent on some function-

alities that cannot be provided statically before execution time. M ,

instead, needs to obtain these functionalities at runtime and to use

them. In order for this to work, M must define an appropriate output

port for the functionalities it is looking for. Then, M asks a service

repository for downloading the functionalities it needs. The repository

sends a service S to M , and M dynamically embeds S. M has now

access to the functionalities offered by S, the slave service, and exploits

them to complete its workflow.

• Master service mobility. Consider the case in which a service S

(the slave service) possesses the functionalities that are needed for the

100 7. Programming techniques and examples: using JOLIE

execution of a workflow, but the workflow cannot be provided statically

before execution time. S needs to obtain the workflow at runtime and

to execute it, ensuring that the workflow makes use of the functional-

ities provided by S. Such a pattern is suitable, e.g., for implementing

the SENSORIA automotive scenario [43], where a car experiments a

failure and starts a recovery workflow for booking some services such

as the garage, the car rental and the truck one. A prototype of the

scenario has been implemented in JOLIE with a slave service on the

car and the master workflow which is downloaded from the car factory

assistance service. This way the recovery workflow can be changed and

maintained by the car assistance service without updating all the car

software periodically and, at the same time, it guarantees transaction

security by isolating some functionalities, such as the bank payment,

into the slave services of the car. In this case the downloaded workflow

is able to search for all the services it needs and it relies upon the slave

service car functionalities for the payment.

7.3 SoS: service of services pattern

The SoS pattern exploits both dynamic embedding and dynamic redi-

recting. A service is embedded at run-time if a client performs a resource

request to the master service. In this case the master service embeds the

requested service by downloading it from a repository and makes it available

to the client with a private resource name. The client will now be able to

perform invocations to its own resource by addressing its requests to the re-

source name it has received. The main advantage of this approach is that

one can provide an entire service as a resource to a specific client instead of

a single session of a service. This pattern has been used for implementing a

prototype of the SENSORIA finance case study [43], which models a finance

institute where several employees works on the same data. The SoS pattern

is there exploited for loading a service for each employee, which maintain its

7.3 SoS: service of services pattern 101

private data and, at the same time, can offer a set of functionalities. The

main advantage in this approach is that each functionality offered to the em-

ployee is able to open a session on its own service thus obtaining a private

complex resource made of a set of service sessions.

7.3.1 MetaService

MetaService, available in the JOLIE standard library, is a service that

is specifically designed for generalizing the application of the SoS pattern.

As such, MetaService offers an interface for performing dynamic embedding

and setting new redirections. For the sake of clarity here a simplified, yet

functional, version of MetaService is reported. The complete version can be

found in the JOLIE standard library [24].

The basic interface of MetaService follows:

type MetaData:void { ? }

type ServiceRecord:void {

.resourceName:string

.metadata:MetaData

}

type ServiceList:void {

.service [0,*]:ServiceRecord

}

type LoadEmbeddedJolieServiceRequest:void {

.resourceName:string

.definition:string

.metadata:MetaData

}

interface MetaServiceAdministration {

102 7. Programming techniques and examples: using JOLIE

RequestResponse:

getServices(void)(ServiceList),

loadEmbeddedService

(LoadEmbeddedJolieServiceRequest)(void)

throws EmbeddingFault ,

unloadEmbeddedService(string)(void)

}

The interface is composed by two operations:

• getServices: it returns a list of the currently loaded services;

• loadEmbeddedService: it receives a service definition to load, possibly

equipped with descriptive metadata, and the resource name to be given

to the loaded service;

• unloadEmbeddedService: it stops the service currently executing un-

der the passed resource name.

MetaService executes its sessions sequentially, because each operation

invocation causes accesses to global data structures in order for its response

to be computed. The main part of MetaService follows:

execution { sequential }

inputPort MetaService {

Location: MetaServiceLocation

Protocol: MetaServiceProtocol

Interfaces: MetaServiceInterface

}

main

{

[getServices ()(response) {

i = 0;

7.3 SoS: service of services pattern 103

foreach(s : global.services) {

if (

is_defined(global.services .(s). metadata)

) {

response.service[i]. metadata <<

global.services .(s). metadata

};

response.service[i]. resourceName = s;

i++

}

}] { nullProcess }

[loadEmbeddedJolieService(request)() {

scope(EmbedScope) {

install(

RuntimeException =>

throw(EmbeddingFault)

);

file.filename =

request.resourceName + ".ol";

file.content = request.definition;

writeFile@File(file)();

with(embedInfo) {

.type = "Jolie";

.filepath = file.filename

};

loadEmbeddedService@Runtime

(embedInfo)(handle);

with(port) {

.name = request.resourceName;

104 7. Programming techniques and examples: using JOLIE

.location = handle

};

setOutputPort@Runtime(port)();

redirection.outputPortName =

redirection.resourceName;

redirection.inputPortName =

"MetaService";

setRedirection@Runtime(redirection)();

global.services.

(redirection.resourceName). metadata

<< request.metadata

}

}] { nullProcess }

[unloadEmbeddedService(resourceName)() {

if (

is_defined(global.services .(resourceName))

) {

service -> services .(resourceName);

r.resourceName = request;

r.inputPortName = "MetaService";

removeRedirection@Runtime(r)();

removeOutputPort@Runtime(request)();

callExit@Runtime

(service.privates.handle)()

undef(global.services .(resourceName))

}

}] { nullProcess }

}

The three operations are put in a nondeterministic input choice. This, cou-

pled with the sequential execution of sessions, ensures that only one of these

7.3 SoS: service of services pattern 105

operation bodies is executed at a time. The global.services tree stores

information about each loaded service. The most interesting part is the

body of operation loadEmbeddedService. There, the received definition is

first written into a file and then loaded as an embedded service by means of

the Runtime service (provided by the JOLIE standard library). After that,

an output port bound to the newly created service is created, and then

used to dynamically set up a redirection through the setRedirection op-

eration. Finally, the global services data structure is updated. Intuitively,

operation unloadEmbeddedService reverts the situation created by a call to

loadEmbeddedService.

7.3.2 Example

Let us consider a simple example, in which a company offers to customers

the possibility to execute services by means of service mobility. Each cus-

tomer has a certain amount of allowed time: each loaded service can not

execute for more time than what the customer is allowed for, and when the

service terminates the allowed time gets proportionally decreased. Such a ser-

vice could be offered by means of an orchestrator that composes MetaService

in order to load and unload the services sent by the customers. The following

is a possible prototype where, for the sake of brevity, only the relevant parts

of the behavioural and deployment definitions are reported:

cset { sid }

execution { concurrent }

main

{

login(request)(sid) {

authenticate@AccountManager

(request)(account);

synchronized(SessionCreation) {

106 7. Programming techniques and examples: using JOLIE

sid = global.sid++

}

};

startService(startRequest)() {

loadEmbeddedService@MetaService

(startRequest)();

setNextTimeout@Time(account.allowedTime)

};

[timeout ()] { nullProcess }

[stopService(sid)] { nullProcess };

{

unloadEmbeddedService@MetaService

(startRequest.resourceName)()

|

updateAllowedTime@AccountManager(account)()

}

}

The service is executed in a concurrent modality, so to allow for multiple

client sessions. First, the customer is required to login. An AccountManager

service is composed and is responsible to handle customer accounts. After

the customer has been successfully authenticated, a session id sid is sent

to the customer. The session id is in the service correlation set, so the

customer can use it to refer to the created session later. The startService

operation is then made available, which can be called in order to start a new

service; the latter is loaded by composing MetaService. When the service is

successfully embedded, the Time service is used in order to handle a timeout

that is set to the allowed time of the customer. This timeout is used in

the following nondeterministic choice, where either the timeout occurs or

the stopService operation gets called first. In both cases the service gets

unloaded and, concurrently, the account allowed time gets updated.

Conclusions

The JOLIE language represents, to the best of the author’s knowledge, the

first attempt at the implementation of a full-fledged programming language

that is entirely based upon the service-oriented programming paradigm. The

distinguishing difference between JOLIE and other industrial service-oriented

languages, such as BPEL, is that one of the aims of JOLIE is to be ubiquitous,

targeting various application environments based upon different communica-

tion technologies. The effort put in making it a general approach to service

orchestration is especially visible from the level of abstraction that it of-

fers in communications. Furthermore, the fact that the JOLIE interpreter is

lightweight extends its applicability and opened up the possibility to experi-

ment with new levels of granularity in service-oriented architectures; perhaps

the most important consequence of this experimentation is that it brought the

intuition for the creation of the architecture-related mechanisms described in

Chapter 4: aggregation, embedding and redirection. The mechanisms and

programming techniques that have been developed in JOLIE have already

been of inspiration for other works within the scopes of evolvability [35] and

adaptability [26]. Moreover, the presented dynamic error handling mecha-

nisms, which allow for error handlers to be updated at runtime, fit nicely the

dynamic nature of long running transactions in service systems and has been

proven to possess interesting expressiveness results [28].

This thesis, which has been partially conducted under the scope of Eu-

ropean Project SENSORIA [43], has already been validated during its de-

velopment by means of academic publications and industrial application; a

107

108 CONCLUSIONS

brief survey will follow.

The separation between the behavioural and deployment parts in JOLIE

programs is reported in [34]. Dynamic fault and compensation handling

has been first studied from a foundational point of view in [18, 19]. Its

implementation and implications in the JOLIE language are presented in [33].

JOLIE has also been used to implement a distributed architecture for the

management of virtual machines [7]. Finally, and perhaps most importantly,

the progresses on SOCK and JOLIE are continuously laying the foundations

for studying the peculiarities of the service-oriented programming paradigm.

The first results of this study have been reported in [21].

On the industrial side JOLIE is the reference development language of

italianaSoftware s.r.l. [23], an IT company offering service-oriented solutions.

Among the developed software applications one can cite CentralWatcher,

a software for the integration of phone switches with service-oriented sys-

tems where the embedding mechanism plays a key role, and Guide One

Page [41], a Web 2.0 portal for tourism whose backend is entirely supported

by JOLIE (even the server that communicates with the web browser, by means

of the JOLIE HTTP protocol). Other applications are QtJolie, a C++ library

for handling communications with JOLIE services developed in the scope of

the KDE project [25], and Vision, a software for handling the distributed

synchronization of presentations that can be found in the JOLIE public source

code repository.

Related work Other languages for service programming equipped with a

formal semantics and in topic with this thesis are Blite [30] and PiDuce [11].

Blite focuses on supporting Web Services and BPEL, while JOLIE represents

a more general approach to service-oriented programming, considering also

service-oriented technologies that are not based upon XML, legacy applica-

tions and mechanisms that are not present in BPEL specifications. Moreover,

Blite compiles its programs to BPEL code; this brings the risk to compro-

mise the advantage given by the formality of its semantics, because the actual

CONCLUSIONS 109

execution is done by BPEL engines, which do not come with formal speci-

fications. PiDuce, instead, proposes a model inspired to the π-calculus [42],

based on channels and not on correlation sets. As such, its connection to-

wards the Web Service technology is less intuitive. The language does not

offer mechanisms for code mobility, where JOLIE features the transmission

and execution of service definitions.

Future work

Future work comprises both foundational and technological developments.

The SOCK process calculus will be updated in order to better model the

advanced features offered by JOLIE w.r.t. state handling and architectural

composition. This work will be succeeded by the development of a theory

for manipulating JOLIE interface definitions, in order to study more powerful

operators for their composition and, in turn, enhance the aggregation mech-

anism. This step would open up the possibility to create general interceptors

(or wrappers) that modify the interface of the intercepted (or wrapped) ser-

vice without needing to know its entire interface definition. For instance,

one could create a standard service for adding authentication capabilities to

a legacy service.

Subsequently, the preliminary work that has been conducted for study-

ing formal relations between orchestration and choreography in [27] will be

extended so to create a framework for choreography-driven programming

based upon JOLIE. Such a framework will be coupled with development tools

and an Integrated Development Environment (IDE) based upon formal no-

tions of End-Point Projection (EPP) [10, 22, 27] and Global View Extraction

(GVE). EPP and GVE allow, respectively, for the automatic translation of

a choreography definition into skeleton code that defines the necessary com-

munications for each end-point and its reverse, i.e. mapping end-point code

into a choreography definition. EPP and GVE provide what is best known as

round-trip engineering: existing source code can be abstracted and converted

110 7. Programming techniques and examples: using JOLIE

into a specification, subjected to software engineering methods and then con-

verted back. Establishing relations such as EPP and GVE in a sound manner

is important so to ensure that system properties are safely preserved when

going from choreography to orchestration and vice versa. As such, the formal

background of the JOLIE language makes the latter a very good candidate

for being a target language for projection. The high grade of granularity that

embedding introduces makes it interesting to consider relations such as that

presented in [9], where the authors present a notion of conformance between

choreography and orchestration in which a choreography role can be mapped

to multiple orchestrators. This is relevant because in practice it is often the

case that a JOLIE service makes use of several small sub-services in order to

function. Moreover, dynamic error handling will surely need to be introduced

in the choreography language connected to JOLIE. This will cause the need

to update the current notions of choreography correctness.

EPP can be mixed with concepts such as session types [22] and service

contracts [12] in order to achieve the automatic composition of the services

needed for implementing the global specification [8]. Indeed, one can define

a notion of EPP that maps a choreography to a set of session types or con-

tracts and then make use of some registry for performing a lookup of services

available in the network that would be conformant to them. This fact moti-

vates an investigation for the adaptation of these techniques to JOLIE. Such

an investigation will lead to the development of a language for expressing

JOLIE behavioural types (or contracts).

Ultimately, the exposed service mobility features will be further developed

in order to offer more powerful adaptation mechanisms. This will lead to

the implementation of native primitives for dynamic embedding and it will

also need to be considered in the design of the aforementioned choreography

language, under the form of services as first-class values.

Bibliography

[1] Google Web Toolkit. http://code.google.com/webtoolkit/.

[2] OWL-S: Semantic Markup for Web Services. http://www.w3.org/

Submission/OWL-S/.

[3] SODEP: Simple Operation Data Exchange Protocol. http://www.

jolie-lang.org/wiki.php?page=Sodep.

[4] Web Services Description Language (WSDL) Version 2.0. http://www.

w3.org/TR/wsdl20/.

[5] Web Services Glossary. http://www.w3.org/TR/ws-gloss/.

[6] XML-RPC. http://www.xmlrpc.com/.

[7] P. Anedda, M. Gaggero, S. Manca, O. Schiaratura, S. Leo, F. Montesi,

and G. Zanetti. A general service oriented approach for managing virtual

machines allocation. In Proceedings of ACM Symposium on Applied

Computing (SAC), 2009, pages 2154–2161, 2009.

[8] Mario Bravetti, Ivan Lanese, and Gianluigi Zavattaro. Contract-Driven

Implementation of Choreographies. In Proceedings of TGC 2008, pages

1–18, 2008.

[9] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreog-

raphy and Orchestration conformance for system design. In Proceedings

of 8th International Conference on Coordination Models and Languages

111

112 BIBLIOGRAPHY

(COORDINATION 2006), volume 4038 of Lecture Notes in Computer

Science, pages 63–81, 2006.

[10] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured

Communication-Centred Programming for Web Services. In Proceed-

ings of ESOP 2007, volume 4421 of Lecture Notes in Computer Science,

pages 2–17. Springer-Verlag, 2007.

[11] Samuele Carpineti, Cosimo Laneve, and Luca Padovani. PiDuce - A

project for experimenting Web services technologies. Science of Com-

puter Programming, 74(10):777–811, 2009.

[12] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of

contracts for Web services. ACM Trans. Program. Lang. Syst., 31(5),

2009.

[13] Elvis Ciotti. Implementazione di un sistema di tipi per JOLIE (Im-

plementation of a type system for JOLIE. Msc. thesis, Department of

Computer Science, University of Bologna.

[14] Free Software Foundation (FSF). GNU Lesser General Public License.

http://www.gnu.org/licenses/lgpl.html.

[15] R. Johnson J. Vlissides G. Erich, R. Helm. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[16] C. Guidi and R. Lucchi. Programming service oriented applications.

In UBLCS-2008-11, Technical Report, Department of Computer Sci-

ence, University of Bologna, 2008. http://www.cs.unibo.it/pub/TR/

UBLCS/2008/2008-11.pdf.

[17] Claudio Guidi. Formalizing languages for Service Oriented Computing.

PhD. thesis, Department of Computer Science, University of Bologna,

2007. http://www.cs.unibo.it/pub/TR/UBLCS/2007/2007-07.pdf.

BIBLIOGRAPHY 113

[18] Claudio Guidi, Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro.

On the interplay between fault handling and request-response service

invocations. In Proceedings of ACSD 2008, pages 190–198, 2008.

[19] Claudio Guidi, Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro.

Dynamic Error Handling in Service Oriented Applications. Fundamenta

Informaticae, 95(1):73–102, 2009.

[20] Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi, and Gi-

anluigi Zavattaro. SOCK: A Calculus for Service Oriented Computing.

In Proceedings of ICSOC 2006, pages 327–338, 2006.

[21] Claudio Guidi and Fabrizio Montesi. Reasoning About a Service-

oriented Programming Paradigm. In Proceedings of YR-SOC 2009,

pages 67–81, 2009.

[22] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-

chronous session types. In Proceedings of POPL 2008, pages 273–284,

2008.

[23] italianaSoftware s.r.l. italianaSoftware. http://www.

italianasoftware.com/.

[24] JOLIE. JOLIE: Java Orchestration Language Interpreter Engine. http:

//www.jolie-lang.org/.

[25] KDE. The K Desktop Environment. http://www.kde.com/.

[26] Ivan Lanese, Antonio Bucchiarone, and Fabrizio Montesi. A Frame-

work for Rule-based Dynamic Adaptation. In Proceedings of TGC 2010,

5th International Symposium on Trustworty Global Computing, Lecture

Notes in Computer Science. SV, 2010.

[27] Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro.

Bridging the Gap between Interaction- and Process-Oriented Choreogra-

phies. In Proceedings of Sixth IEEE International Conferences on Soft-

114 BIBLIOGRAPHY

ware Engineering and Formal Methods (SEFM 2008), pages 323–332.

IEEE Computer Society, 2008.

[28] Ivan Lanese, Catia Vaz, and Carla Ferreira. On the Expressive Power of

Primitives for Compensation Handling. In Proceedings of ESOP 2010,

Lecture Notes in Computer Science. SV, 2009. To appear.

[29] A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of

Web Services. In Proc. of 16th European Symposium on Programming

(ESOP’07), volume 4421 of Lecture Notes in Computer Science, pages

33–47. Springer, 2007.

[30] Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. A Formal

Account of WS-BPEL. In Proceedings of COORDINATION 2008, pages

199–215, 2008.

[31] Roberto Lucchi and Manuel Mazzara. A pi-calculus based semantics for

WS-BPEL. Journal of Logic and Algebraic Programming, 70(1):96–118,

2007.

[32] Robin Milner. A Calculus of Communicating Systems, volume 92 of

Lecture Notes in Computer Science. Springer, 1980.

[33] Fabrizio Montesi, Claudio Guidi, Ivan Lanese, and Gianluigi Zavattaro.

Dynamic Fault Handling Mechanisms for Service-Oriented Applications.

In Proceedings of ECOWS 2008, pages 225–234, 2008.

[34] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Composing

Services with JOLIE. In Proceedings of ECOWS 2007, pages 13–22,

2007.

[35] Fabrizio Montesi and Davide Sangiorgi. A model of evolvable compo-

nents. In Proceedings of Fifth Symposium on Trustworthy Global Com-

puting (TGC 2010), 2010. To appear.

BIBLIOGRAPHY 115

[36] OASIS. UDDI Specifications. http://www.oasis-open.org/

committees/uddi-spec/doc/tcspecs.htm.

[37] OASIS. Web Services Business Process Execution Language Version 2.0.

http://docs.oasis-open.org/wsbpel/.

[38] OASIS. Web Services Coordination. http://docs.oasis-open.org/

ws-tx/wscoor/2006/06.

[39] OASIS. Web Services Security. http://www.oasis-open.org/specs/

index.php#wssv1.1.

[40] Chun Ouyang, Eric Verbeek, Wil M. P. van der Aalst, Stephan Breutel,

Marlon Dumas, and Arthur H. M. ter Hofstede. Formal semantics and

analysis of control flow in WS-BPEL. Science of Computer Program-

ming, 67(2-3):162–198, 2007.

[41] Guide One Page. Guide One Page. http://www.guideonepage.com/.

[42] Davide Sangiorgi and David Walker. The π-Calculus. A Theory of Mo-

bile Processes. Cambridge University Press, New York, NY, USA, 2001.

[43] SENSORIA. Software Engineering for Service-Oriented Overlay Com-

puters. http://www.sensoria-ist.eu/.

[44] M. Viroli. Towards a Formal Foundation to Orchestration Languages.

In M. Bravetti and G. Zavattaro, editors, Proc. of 1st International

Workshop on Web Services and Formal Methods (WS-FM 2004), volume

105 of ENTCS. Elsevier, 2004.

[45] World Wide Web Consortium (W3C). Extensible Markup Language

(XML). http://www.w3.org/XML/.

[46] World Wide Web Consortium (W3C). HTTP - Hypertext Transfer Pro-

tocol. http://www.w3.org/Protocols/.

116 BIBLIOGRAPHY

[47] World Wide Web Consortium (W3C). SOAP Specifications. http:

//www.w3.org/TR/soap/.

[48] World Wide Web Consortium (W3C). Web Services Addressing. http:

//www.w3.org/TR/ws-addr-core/.

[49] World Wide Web Consortium (W3C). Web Services Architecture. http:

//www.w3.org/TR/ws-arch/.

[50] World Wide Web Consortium (W3C). Web Services Choreogra-

phy Description Language Version 1.0. http://www.w3.org/TR/2004/

WD-ws-cdl-10-20040427/.

[51] World Wide Web Consortium (W3C). Web Services Description Lan-

guage. http://www.w3.org/TR/wsdl.

Acknowledgments

This thesis marks the end of one of my most intense and fulfilling periods,

both professionally and personally speaking. While writing this last page I

feel satisfied and I look forward to turn it and start with the next chapter

of my life; still, I am really enjoying this moment and I want to thank the

people that made this possible.

My first words of thank go to my family.

I thank my wife, Maja, for her immense personal and intellectual support in

these years; for her great honesty and brilliancy, through which she enriches

me. Maja, you are an exceptional person. Thank you for our wonderful

relationship.

I thank my parents, Paolo and Irene, for raising me by giving me confidence

and freedom, and for all the love and trust I have received. I have no words

to express how precious these gifts are, and how much they helped me along

my way.

I thank my brother and sister, Marco and Dania, for being so joyful and

transmitting me the feeling that we can do anything. The support we share

for each other is a treasure to me.

Next, I thank all the people I worked with at the University of Bologna;

working with them has been a pleasure and a priviledge.

Thanks to Dr. Claudio Guidi for our endless and exciting discussions about

the service-oriented paradigm. Our journey still continues within italiana-

Software.

I thank my supervisor, Prof. Gianluigi Zavattaro, for being so knowledgeable

118 BIBLIOGRAPHY

and open to discussion, and for all the good advices he gave me.

I also thank Dr. Ivan Lanese for the many interesting technical debates,

occasionally followed by refreshing beer.

I extend my gratitude to Prof. Davide Sangiorgi, for his positive support to

the JOLIE project and our inspiring discussions about foundations for dis-

tributed systems.

Finally, I wish to thank Prof. Roberto Gorrieri for giving me the opportunity

of working in EU Project SENSORIA, which has been the starting point for

all my research.

Special thanks to all my friends at the Department of Computer Science

in Bologna, for all the lunches shared together and for making my days feel

lighter.

I must also thank the administrative staff of the same department; it is,

indeed, composed by great people.

I wish to thank also all my old friends from my hometown, for keeping in

touch while I were so busy, and all the friends that I made during these last

years for the fun we shared together.

