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Abstract

Nel 2008, due articoli della rivista sportiva Autosport rilevarano dettagli di
una nuova sospensione meccanica nota con il nome di ”J-damper” che era
entrata in Formula Uno e che aveva offerto in termini di prestazioni significa-
tivi aumenti di maneggevolezza e aderenza. Si trattava di un ”inerter”, la cui
origine sta nel lavoro accademico su circuiti meccanici ed elettrici realizzati
dal prof. Malcolm C. Smith del Department of Engineering presso University
of Cambridge UK. Gli Inerter sono particolari dispositivi meccanici con la
proprietá che la forza applicata ai punti fissi, detti terminali, é direttamente
proporzionale all’accelerazione. Tale dispositivo ha offerto nuove possibilitá
per il controllo meccanico passivo in una varietá di applicazioni ed é tuttora
impiegato in F1 e in altre parti del settore automotive ma potenzialmente
potrebbe avere molte altre applicazioni.

Nel caso dei rotori (es. turbine, motori elettrici, la girante di un propul-
sore etc.) non vi sono al momento applicazioni per cui risulta molto in-
teressante capirne le potenzialitá. Pertanto l’obiettivo di questa tesi, in
parte svolta all’estero presso l’Institute Of Sound Vibration Research (ISVR)
dell’Universitá di Southampton é stato quello di studiare le performance e la
stabilitá, tramite modelli matematici e simulazioni numeriche, di un sistema
con diverse configurazioni di inerter.

In particolare, nella prima parte di questa tesi, sono state sviluppate le
equazioni della dinamica dei rotori utilizzando il linguaggio Maple. Nella
seconda parte della tesi, dopo aver introdotto l’inerter, si é studiato la sta-
bilitá di un sistema molla, smorzatore e inerter collegati fra loro in parallelo,
di un sistema molla, smorzatore e inerter collegati fra loro in serie e di altre
combinazioni possibili. Sono stati analizzati sistemi a diversi gradi di
libertá (1GdL, 2GdL, 4GdL, 5GdL e 6GdL) e ricavate le frequenze naturali in
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funzione dell’inertanza. Infine, nell’ultima parte della tesi, per comprendere
meglio il concetto dell’inerter si é costruito presso i laboratori dell’University
of Southampton un fluid inerter e si é realizzato un banco prova per testare
l’inerter.

In questa tesi si é dimostrato la validitá delle equazioni della dinamica
dei rotori ricavate nella prima parte del lavoro; si é inoltre dimostrato che
anche nel caso dei rotori l’inerter abbassa le frequenze naturali del sistema.
Infine i risultati sperimentali del Fluid Inerter, ottenuti a diversi valori di
ampiezza e frequenza, hanno dimostrato che l’oggetto costruito si comporta
effettivamente come un inerter.

In qualitá di relatore autorizzo la redazione della tesi in lingua inglese e
mi faccio garante della qualitá linguistica dell’elaborato.

Prof. Ing. Alessandro Rivola
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Chapter 1

Introduction

1.1 Work Introduction

In 2008, two articles in Autosport revealed details of a new mechanical sus-
pension component with the name ”J-Damper” which had entered Formula
One Racing and which was delivering significant performance gains in han-
dling and grip. The autosport articles revealed that the J-Damper was in
fact an ”inerter” and that its origin lay academic work on mechanical and
electrical circuits at Cambridge University [1]. McLaren was interesed to try
out the idea and signed an agreement with the University for exclusive rights
in Formula One for a limited period. The inerter was raced for the first time
by Kimi Raikkonen at the 2005 Spanish Grand Prix, who achieved a victory
for the McLaren F1 team [1].

An inerter is a two-terminal mechanical device which applies force be-
tween its terminals proportional to the relative acceleration between them
[1], similar to a spring and damper which apply forces proportional to the
relative displacement for the spring and velocity for the damper between
their terminals. A new word inerter was coined to describe such device. The
constant of proportional is called the inertance and has the units of kilo-
grams (i.e, dimensions of mass) Inerters have become a hot topic in recent
years especially in veihicle [2], train [3], building suspension system [4] etc.
but in the case of the rotors (i.e turbines, electric motors) doesn’t exist any
applications at the moment. Hence, it is very interesting to investigate the
potential for the application of an inerter on rotordynamic systems.
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2 CHAPTER 1. INTRODUCTION

Therefore the aim of this thesis is to study perfomance and stability of
a Rigid Rotor on flexible supports, through mathematical and numerical
simulations, with different configurations of inerter. The thesis was partly
carried out at Institute of Sound Vibration Research (ISVR) at the University
of Southampton.

In this thesis takes into consideration the process of creating adequate
models of simple rotor system in order to examine their lateral vibration
both in the absence of any applied forces and in presence of external ex-
citation forces. The equation of motion for the rotor system are obtained
and manipulated using the software Maple while the free and forced lateral
response are numerically evaluated using Matlab. The configuration of the
studied system is such that the rotor shaft is supported at its extremities by
two bearings called bearing 1 and bearing 2. Both supports are given hor-
izontal and vertical stiffness (or damping or inerter). The numerical value
was chosen accordingly with the book Dynamics of Rotating Machines [5]
and two different cases are considered. Case A is suitable to model the be-
haviour of a rigid Rotor on Isotropic Flexible supports while case B simulates
a rigid Rotor on Anisotropic Flexible supports.

The first objective of this thesis is to develop the correct set of analytical
equations to model the dynamics of a rotor with an inerter. A validation for
the analytical modelling is provided in Appendix D. The second objective
of this thesis is to study fundamental influence of inerter on the natural fre-
quencies of vibrations system. The fact that inerter can reduce the natural
frequencies of vibration system is theoretically demostrated in Chapter 6.
Moreover the effectiveness of using the inerter to reduce the natural frequen-
cies is also addressed. Finally, the ultimate aim of the thesis was to assemble
an inerter. A fluid inerter was built at the Dynamics Laboratory of ISVR
at the University of Southampton. It has been shown theoretically that the
object built actually behaves as a inerter.

The thesis is structured as following: in Chapter 2 and 3 the dynamics
of a rigid rotor on flexible support are studied. The analytical equations of
the motion for the 4 Degrees of Freedom rotor system are found for both
the Isotropic and Anisotropic supports configurations. The effect of viscous
damping in the bearing is then introduced and illustrated by means the
Campbell Diagram through some numerical examples. Furthermore, in the
first part of this thesis it is examined how the rotor-bearing systems responds
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to external forces. In particular, the response to a mass eccentricity is inves-
tigated for Isotropic and Anisotropic Supports.

In the second part of this thesis (Chapter 4, 5 and 6) the Inerter is intro-
duced. The inertance of a Passive Mechanical Inerter, the inertance of Hy-
draulic Inerter and the inertance of Fluid Inerter are examined and studied.
Chapter 5 highlights the reported Performance Benets of employing Inerters
which can be found in literature [2], [9], [11], [15] and [16]. In the Chapter 6,
the Dynamics of Rotating Machines with Inerter are studied starting with a
simple single degree of freedom System and then raising the complexity to a
final 6 DoFs System with Inerter.

Finally, in the third and last part of this thesis (Chapter 7) is presented
the mechanical design of a fluid inerter and investigated its modelling and
experimental behaviour. The fluid inerter it is built in the Dynamics Lab-
oratory of ISVR and it is realized as test bench for some experiments. In
Chapter 7 the tests on the fluid inerter under different loads, amplitudes and
frequencies are presented.
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Chapter 2

Free Lateral Response

2.1 Rigid Rotor on Flexible Support

A uniform rigid rotor, that is considered in this thesis for our study, is shown
in Figure(2.1). The rotor has a length of 0.5m and a diameter of 0.2m and is
made from steel with a density of 7810 . It is supported at the ends by two
bearings: bearing 1 and bearing 2 as indicated in Figure(2.1). The rotor is
to be considered symmetric because the bearings are arranged at the same
distance from the center of rotor. For all cases considered the distance of the
bearings from the center of rotor was 0.5m. In this study only symmetric
rotor is analysed.

The mass of rotor is:

m = ρπD2L

4
= 7810 · π · 0.22 · 0.5

4
= 122.68kg (2.1)

and the polar and diametral inertias are:

IP =
mD2

8
=

122.68 · 0.22

8
= 0.6134kg ·m2 (2.2)

Id =
IP
2

+
mL2

12
= 2.8625kg ·m2 (2.3)

This value of mass of the rotor and these values of polar and diametral
inertias will be used in all study models in this thesis.

5



6 CHAPTER 2. FREE LATERAL RESPONSE

Figure 2.1: Rigid Rotor on Elastic Support

2.2 Dynamic of a Rigid Rotor on Flexible

Support

To develop the equations of the motion for this system, it is possible to use
an energy method (e.g Lagranges equations) or, alternatively, directly, apply
Newtons second law of motion.

Figure 2.2: Rigid Rotor on elestic support

This Rotor has four degrees of freedom because it can translate in the
directions Ox and Oy and it also can rotate about these axes. Practitioners
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often term the translation and rotation as bounce and tilt motion, respec-
tively. It is chosen to describe the movement of the rotor in terms of the
displacements of its center of mass in the directions Ox and Oy, x and y,
respectively, and the clockwise rotations about Ox and Oy, β and α, respec-
tively.

The equations of motion for a Rigid Rotor on Flexible Supports are ob-
tained using the software Maple 2015; The partial code of Maple that it is
used for develop the equations of motion is reported in following script:

1 >restart: with(MBSymba r6):
2 >with(LinearAlgebra):
3

4 %First define the body frame:
5 >linear modeling({x(t),y(t),alpha(t), beta(t)}); ...

%rotations due to bearings elastiticy
6 >Omega; %constant spin velocity
7 >BF := translate(x(t),y(t),0) * rotate('X',alpha(t)) * ...

rotate ('Y',beta(t)) *
8 rotate('Z',Omega*t);# * translate(r,0,0);
9

10 %definition of rotor mass properties
11 >rotor := .................... show(rotor);
12

13 %Center of gravity:
14 >G := make POINT(BF, 0, 0, 0); show(G);
15

16 %Right Bearing
17 >R := make POINT(BF,0,0, b): show(R):
18 >FxR := -kX2*comp X(R,ground):
19 >FyR := -kY2*comp Y(R,ground):
20 >bearing R := make FORCE( .................): show(bearing R);
21

22 %Left Bearing
23 >L := make POINT(BF,0,0,-a): show(L):
24 >FxL := -kX1*comp X(L,ground):
25 >FyL := -kY1*comp Y(L,ground):
26 >bearing L := make FORCE( .................): show(bearing L);
27

28 %Newton Equation
29 >eqnsN := newton equations(................): show(%);
30

31 %Euler Equation
32 >eqnsE := euler equations(..................,CoM(rotor)):
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33

34 >project(eqnsE,BF): show(%):
35 >q := [x(t),y(t), alpha(t), beta(t)]; nq:=nops(q); ...

generalized coordinates
36 >qdot := map(diff,q,t):
37 >qdotdot := map(diff,qdot,t):
38

39 %Equation of Motion
40 >qeqns := [comp X(eqnsN), comp Y(eqnsN), comp X(eqnsE), ...

comp Y(eqnsE)]: <%>;
41 ..........
42 text
43 ...........

The equations of motion for a rigid rotor on flexible support obtained by
using Maple 2015 are:

mẍ+ (kx1 + kx2)x+ (−akx1 + bkx2)α = 0

mÿ + (ky1 + ky2)y + (aky1 − bky2)β = 0

Idα̈− IpΩβ̇ − (akx1 + bkx2)y + (a2kx1 + b2kx2)α = 0

Idβ̈ + IpΩα̇ + (aky1 − bky2)y + (a2ky1 + b2ky2)β = 0

(2.4)

Letting: 

kxT = kx1 + kx2

kyT = ky1 + ky2

kxC = −akx1 + bkx2

kyC = −aky1 + bky2

kxR = a2kx1 + b2kx2

kyR = a2ky1 + b2ky2

where the subscripts T,C and R have been chosen to indicate transla-
tional, coupling between displacement and rotation and rotational stiffness
cofficients. Then, the equation of the motion can be written more concisely
as: 

mẍ+ kxTx+ kxCα = 0

mÿ + kyTy − kyCβ = 0

Idα̈− IpΩβ̇ + kxCx+ kxRα = 0

Idβ̈ + IpΩα̇− kyCy + kyRβ = 0

(2.5)
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The last system with the equations of the motion shows that there is
elastic coupling between the first and third equations as well as the second
and fourth equations. Futhermore, gyroscopic couples introduce a coupling
between the 3th and 4th equations. Thus, we conclude that all these are
coupled.

2.3 Isotropic Flexible Support

Let us assume that the flexibility of the bearing support is the same in both of
the transverse directions; that is, the bearing supports are isotropic. Letting:

kxT = kyT = kT
kxC = kyC = kC
kxR = kyR = kR

It is possible to simplify the Equation[2.4] using these simplifying relation-
ships: 

mẍ+ kTx+ kCα = 0

mÿ + kTy − kCβ = 0

Idα̈− IpΩβ̇ + kCx+ kRα = 0

Idβ̈ + IpΩα̇− kCy + kRβ = 0

(2.6)

if kC = 0 which implies that kxC = 0 and kyC = 0 the relationships
become: 

mẍ+ kTx = 0

mÿ + kTy = 0

Idα̈− IpΩβ̇ + kRα = 0

Idβ̈ + IpΩα̇ + kRβ = 0

(2.7)

The first two equations uncoupled give:

ω1 = ω2 =

√
kT
m

(2.8)

The second pair of equations is coupled; letting:
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α(t) = α0e
ωt (2.9)

and
β(t) = β0e

ωt (2.10)

The last two natural frequencies are:

ω3 = −IpΩ
2Id

+

√(
IpΩ

2Id

)2

+
kR
Id

(2.11)

and

ω4 =
IpΩ

2Id
+

√(
IpΩ

2Id

)2

+
kR
Id

(2.12)

These natural frequencies are dependent on the speed of rotation. As this
speed tends to zero, the natural frequencies become identical to the second
pair of roots of Equations [2.7]:

For example, if Ω = 0 the natural frequencies are:

ω3 = ω4 =

√
kR
Id

(2.13)

2.4 Anisotropic Flexible Support

For general flexible supports, the task is to solve Equation[2.6], repeated here
for convenience: 

mẍ+ kxTx+ kxCα = 0

mÿ + kyTy − kyCβ = 0

Idα̈− IpΩβ̇ + kxCx+ kxRα = 0

Idβ̈ + IpΩα̇− kyCy + kyRβ = 0

(2.14)

These are the equations of motion for a flexibly supported with differing
stiffness proprieties in the x and y directions.

It is helpful to express these equations in the matrix form as:

Mq̈ + ΩGq̇ +Kq = 0 (2.15)
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where:

M =


m 0 0 0
0 m 0 0
0 0 Id 0
0 0 0 Id

 (2.16)

G =


0 0 0 0
0 0 0 0
0 0 0 Ip
0 0 −Ip 0

 (2.17)

K =


kxT 0 0 kC
0 kyT −kyC 0
0 −kyC kyR 0
kxC 0 0 kxR

 (2.18)

and

q =
[
x y β α

]T
(2.19)

The mass and stiffness matrices, M and K, respectively, are symmetric,
positive definite matrices. In contrast, the gyroscopic matrix G is skew-
symmetric. To determine the roots of Equations[2.14], the equations must
be rearranged in the following form:[

ΩG M
M 0

]
d

dt

{
q
q̇

}
+

[
K 0
0 −M

]
d

dt

{
q
q̇

}
=

{
0
0

}
(2.20)

This equation can be written as:

Aẋ+Bx = 0 (2.21)

where:

x =

{
q
q̇

}
(2.22)

ẋ =
d

dt

{
q
q̇

}
(2.23)

A =

[
ΩG M
M 0

]
(2.24)
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B =

[
K 0
0 −M

]
(2.25)

Looking for solutions of the form x(t) = x0e
st, then ẋ = sx0e

st; Thus, the
Equation[2.21] become:

sAx0 = −Bx0 (2.26)

This is an 8x8 eigenvalue problem and it must be solved numerically. In
our cases the partial Matlab code shown below is used to risolve this problem;
If the system is described by n coordinates (4 in this case, but in the next
chapter were used 5 and 6 coordinates), then there are 2n roots in the form
of n complex conjugates pairs. Each pair of complex conjugate rapresents
one natural frequency. Thus, for Rigid Rotor:

s1 = +jω1

s2 = +jω2

s3 = +jω3

s4 = +jω4

s5 = −jω5

s6 = −jω6

s7 = −jω7

s8 = −jω8

(2.27)

where si and s4+i form complex conjugate pair for each i. Corrisponding
to these roots are n complex conjugate pairs of eigenvectors. For each pair
of eigenvectors, the first n elements correspond to a mode of system.

This script is shows the Matlab code that I use to resolve Eigenvalue
problem.

1 % Rigid rotor on two flexible isotropic support.
2 %dimensions of rotor
3 L = 0.5; a = L/2; b = L/2;
4 D=0.2;
5 rho=7810;
6 m = rho*pi*Dˆ2*(L/4);
7 Ip = (m*Dˆ2)/8;
8 Id = Ip/2 + (m*Lˆ2)/12;
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9 kT = 2*10ˆ6;
10 kR = 125*10ˆ3;
11 kC = 0;
12

13 omega=[0:100:4000]*2*pi/60;
14 omega n=zeros(4,length(omega));
15

16 for i=1:length(omega)
17 M = diag([m m Id Id]);
18 G = [0 0 0 0;0 0 0 0;0 0 0 Ip;0 0 -Ip 0];
19 Z = zeros(4,4);
20 A = .................
21 .................
22 end

2.5 The Effect of Damping

Figure 2.3: Rigid Rotor with Damping

Now the effect of viscous damping in the bearings is considered in compar-
ison with the previous case where it had only stiffness as shown in Figure[2.1].
Assuming that a viscous damper is placed in parallel with each spring element
supporting the bearing.
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If c is the viscous damping coefficient and is defined as the force required
to produce a unit velocity accross the damping element, let:

cxT = cx1 + cx2

cyT = cy1 + cy2

cxC = −acx1 + bcx2

cyC = −acy1 + bcy2

cxR = a2cx1 + b2cx2

cyR = a2cy1 + b2cy2

(2.28)

Using these definitions, susbstituting Equation[2.28] into Equation[2.14]
and rearranging these equations the result is:

mẍ+ cxT ẋ+ cxCα̇ + kxTx+ kxCα = 0

mÿ + cyT ẏ − cyC β̇ + kyTy − kyCβ = 0

Idα̈− IpΩβ̇ + cxC ẋ+ cxRα̇ + kxCx+ kxRα = 0

Idβ̈ + IpΩα̇− cyC ẏ + cyRβ̇ − kyCy + kyRβ = 0

(2.29)

The following script reports the limited Maple Code used to obtain the
Equations [2.29].

1 >restart: with(MBSymba r6):
2 >with(LinearAlgebra):
3

4 %First define the body frame:
5 >linear modeling({x(t),y(t),alpha(t), beta(t)}); ...

%rotations due to bearings elastiticy
6 >Omega; %constant spin velocity
7 >BF := translate(.......................);# * ...

translate(r,0,0);
8

9 %definition of rotor mass properties
10 >rotor := make BODY(...................); show(rotor);
11

12 %Center of gravity:
13 >G := make POINT(BF, 0, 0, 0); show(G);
14

15 %Right Bearing
16 >R := make POINT(....................): show(R):
17 >FxR := -kX2*comp X(R,ground)-cX2*diff(comp X(R,ground),t):
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18 >FyR := -kY2*comp Y(R,ground)-cY2*diff(comp Y(R,ground),t):
19 >bearing R := make FORCE( ......................): ...

show(bearing R);
20 ...............
21 %text
22 ...............
23 %Newton Equation
24 >eqnsN := newton equations(.......................): show(%);
25

26 %Euler Equation
27 >eqnsE := ...

euler equations(.........................,CoM(rotor)):
28

29 >project(eqnsE,BF): show(%):
30 >q := [x(t),y(t), alpha(t), beta(t)]; nq:=nops(q); ...

generalized coordinates
31 >qdot := map(diff,q,t):
32 >qdotdot := map(diff,qdot,t):
33

34 %Equation of Motion
35 >qeqns := [................................]: <%>;
36 ...............
37 %text
38 ...............
39 end

2.6 Natural Frequencies - Campbell Diagram

Due to Gyroscopic effects, the roots of the characteristic equation (i.e., the
eigenvalues) vary with rotational spees. This is not the only reason why the
eigenvalues vary with rotational speed. For example, hydrodynamic bearing
have stiffness and damping properties that vary with rotational speed; these,
in turn, effect the eigenvalues.

It is convenient to illustrate graphically the way in which the roots change
with rotational speed. Graps can be plotted that show these changes in
various ways. Typically, the rational speed is plotted on the x-axis and the
imaginary part of the roots, or the natural frequencies are plotted on the
y-axis.

Campbell Diagram can also illustrate the relationship between resonances
and parameters as well as rotational speed. In this way, the effect of varying
a bearing stiffness or rotor-inertia propriety may be examined.
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Figure 2.4: Campbell Diagram

2.6.1 Example Campbell Diagram

In this Example [Ref. [5]-Ex. 3.7.1] the natural frequencies maps are plot-
ted of rotor spin speed up to 2000 rev/min for the rigid rotor described in
Chapter [2], supported by the following bearing stiffnesses:

• A) : kx1 = 1.0MN/m, ky1 = 1.0MN/m, kx2 = 1.0MN/m, ky2 =
1.0MN/m.

• B) : kx1 = 1.0MN/m, ky1 = 1.0MN/m, kx2 = 1.3MN/m, ky2 =
1.3MN/m.

• C) : kx1 = 1.0MN/m, ky1 = 1.5MN/m, kx2 = 1.0MN/m, ky2 =
1.5MN/m.

• D) : kx1 = 1.0MN/m, ky1 = 1.5MN/m, kx2 = 1.3MN/m, ky2 =
2.0MN/m.

Case A

The natural frequency map for this system is shown in Figure(2.5). In this
case therefore the first and the second equations of Equation[2.6] are uncou-
pled from the rest of system and are independent of rotational speed.
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Figure 2.5: Campbell Diagram: case A

The stiffnesses in the x and y direction are identical; therefore, the two
natural frequencies that are derived from these two equations are identical
and are equal to approximately 20Hz. At zero rotational speed, the third
and fourth equations are uncoupled; hence, the two natural frequencies that
are derived from these equations also are identical. Once the rotor begins
to spin, the third and fourth equations become coupled due to gyroscopic
effects and the two natural frequencies separate.

Case B

The natural map for this system is shown in Figure(2.6). In this case kC 6= 0
and all of the equation are coupled, expet when Ω = 0.

All natural frequencies are influenced by gyroscopic effects. Two fre-
quencies decrease with rotational speed; the other two frequencies increase,
although the increase from approximately 20Hz is barely perceptible. In this
case, all of the equations are coupled and frequency line do not intersect.
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Figure 2.6: Campbell Diagram: case B

Case C

The natural frequency map for this system is shown in firgure (2.7). In this
example kxC = kyC = 0. The first and the second equations are uncoupled
from the rest of the system and they are independent of rotational speed. At
zero rotational speed, the third and fourth equations are also uncoupled and
the two natural frequencies derived from them are also distinct. When rotor
begins to spin, the map shows that one of these natural frequencies increases
and the other decreases, due to gyroscopic effects.

Case D

The natural frequency map for this system system is shown in Figure(2.8).
In this case, kxC 6= 0 and kyC 6= 0 so that all of the equations are coupled,
except when Ω = 0. From the natural frequency map, we see that all of the
frequencies are influenced by gyroscopic couples and frequency lines do not
intersect.
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Figure 2.7: Campbell Diagram: case C

Figure 2.8: Campbell Diagram: case D
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2.6.2 Example Campbell Diagram with Damping

The rigid rotor of Chapter[2] is supported by bearings with the following
dynamics proprieties: 

kx1 = 1.0MN/m

ky1 = 1.0MN/m

kx2 = 1.0MN/m

ky2 = 1.0MN/m

cx1 = 1.0 kNs/m

cy1 = 1.0 kNs/m

cx2 = 1.2 kNs/m

cy2 = 1.2 kNs/m

(2.30)

The aim of this example is to plot the variation of the damping factors,
ξ, and the natural frequencies with rotational speed in the range 0 to 500
rev/min. The eigenvalue problem is solved for various rotor speeds to deter-
mine the roots si. Now, because

{
si, si+4

}
= −ξiωi ± jωdi, it is possible to

deduce ξ.

Figure (2.10) shows that the damping factors of the two higher modes
become identical at 194.60 rev/min. The natural frequencies of the two
higher modes are identical below 194.60 rev/min and the bifurcate.

In the Figure (2.10) the modal damping ratios and natural frequencies
against rotor spin speed are plotted:
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Figure 2.9: Campbell Diagram

Figure 2.10: Damping Ratio
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Chapter 3

Forced Lateral Response

3.1 Introduction

In Chapter 2 methods are presented to determine the dynamic characteris-
tics of a rotor-bearing system, such as the natural frequencies and damping
factors. In this chapter, it is examined how rotor-bearing systems respond
to force. The most common forces acting in rotating machines are lateral
forces and moments whose frequency is identical to rotor speed or multiples
of rotor speed. A force whose frequency is identical to rotor speed is said
to be a synchronous force. The most significant lateral forces and moments
are usually caused by an imperfect distribution of mass in the rotor. As the
rotor spins about its equilibrium position, forces and moments are generated
that are called out-of balance forces and moments. The direction of these
forces and moments is fixed relative to the rotor; therefore, their direction
rotates with the rotor. Thus, the excitation frequency in any plane, lateral to
the axis of the rotor, is locked to the speed of rotation; for this reason, they
are synchronous forces and moments. Due to manufacturing tolerances and
other factors, it is not possible to ensure that rotor are perfectly balanced.

3.2 Modeling Out-of-Balance Forces

To begin with it is necessary to examine the synchronous response of a rotor
to out of balance forces. The analysis is developed in terms of a rigid rotor
but extends readily to flexible rotor. To determine the effect of out of balance
mass on the rigid circular rotor shown in Figure(2.1), it is initially assumed

23
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that the center of mass of the rotor is displacement a distance from the shaft
centerline at equilibrium. Considering the displacement of the rotor center
of mass along axes Ox and Oy, Figure (3.1) shows the equilibrium position,
O ; the instantaneous position of the disturbed roto centerline, S; and the
position of the mass center of the rotor, G. Note that |SG| = ε.

Figure 3.1: Displacement of the rotor

The instantaneous angle between the line SG( which represents a line on
the rotor ) and the Ox axis is Φ, and the istantaneous angle between the line
OS and the Ox axis is then Φ− Θ. The distance |OS| , which is calculated
during the analysis, is the amplitude of the whirl of the rotor. The center of
mass of the rotor moves xG and yG in the X and Y directions, respectively,
whereas the centerline of the rotor deflects x and y in the corresponding
directions at the flexible bearings. Now, from Figure (3.1), it is shown that:

xG = x+ εcosΦ (3.1)

yG = y + εsinΦ (3.2)
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Differentiating these equations twice with respect to time and noting that
ε is constant gives:

ẍG = ẍ+ ε(−Φ̈cosΦ− Φ̈sinΦ) (3.3)

ÿG = ÿ + ε(−Φ̈sinΦ− Φ̈cosΦ) (3.4)

In deriving the previous equation, the analysis can not be restricted to
the case of a rotor spinning with a constant angular velocity. Now if this
semplification is introduced , then at constant speed of rotation Ω, Φ̇ = Ω
and Φ̈ = 0. Thus,

ẍG = ẍ− εΩ2cosΩt (3.5)

ÿG = ÿ − εΩ2sinΩt (3.6)

The equations of the motion for the free vibration of this rotor, including
damping at the supports and gyroscopics effects, are given in Equation[2.29]
and are repeated here for convenience:

mẍ+ cxT ẋ+ cxCα̇ + kxTx+ kxCα = 0

mÿ + cyT ẏ − cyC β̇ + kyTy − kyCβ = 0

Idα̈− IpΩβ̇ + cxC ẋ+ cxRα̇ + kxCx+ kxRα = 0

Idβ̈ + IpΩα̇− cyC ẏ + cyRβ̇ − kyCy + kyRβ = 0

(3.7)

For the rotor being considered, the center of mass is offset from the shaft
centerline at equilibrium by a small quantity ε, and the displacement of the
center of mass is given by xG and yG. However, the displacement of the
springs and dampers (at the bearings) are still in terms of x and y.

Thus, replacing ẍ by ẍG and ÿ by ÿG in Equation [3.7], the Equation [3.7]
becomes: 

mẍG + cxT ẋ+ cxCα̇ + kxTx+ kxCα = mεΩ2cosΩt

mÿG + cyT ẏ − cyC β̇ + kyTy − kyCβ = mεΩ2sinΩt

Idα̈− IpΩβ̇ + cxC ẋ+ cxRα̇ + kxCx+ kxRα = 0

Idβ̈ + IpΩα̇− cyC ẏ + cyRβ̇ − kyCy + kyRβ = 0

(3.8)

Substituting for and from Equations [3.8] and rearranging gives:
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
mẍ+ cxT ẋ+ cxCα̇ + kxTx+ kxCα = 0

mÿ + cyT ẏ − cyC β̇ + kyTy − kyCβ = 0

Idα̈− IpΩβ̇ + cxC ẋ+ cxRα̇ + kxCx+ kxRα = 0

Idβ̈ + IpΩα̇− cyC ẏ + cyRβ̇ − kyCy + kyRβ = 0

(3.9)

Equations [3.9] shows that the lateral offset of the mass center from the
equilibrium position causes out of balance forces to act the system. Thus,
it can develop the equations of the motion for a system with a disk or rotor
with an offset either by modifying the position of the center of mass or
more directly by adding forces on the right-hand side of the Equations [3.9],
whichever is more convenient.

3.3 Response for Isotropic Supports

Example Response to a Mass eccentricity for

Isotropic Supports

In this example it is found the response to a mass eccentricity of 0.1mm and
it is plotted the Campbell Diagram. It is referred at esercise 6.2.1 of the book
[5]. It is considered the rotor in the Chapter[1]. The stiffness coefficients are:

• kT=1000+1300=2300 kN/m

• kR=0.252 · 1000 + 0.252 · 1300 = 143.75kN/m

• kC=−0.25 · 1000 + 0.25 · 1300 = 75kN

Similary,

• cT=23 Ns/m

• cR=1.4375 Nms

• cC=0.75 kN
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Firstly, using the Equations [2.6] for Isotropic bearings, it is considered
the free lateral vibrations to calcolate the natural frequencies and to obtained
the Campbell Diagram:

mẍG + cxT ẋ+ cxCα̇ + kxTx+ kxCα = 0

mÿG + cyT ẏ − cyC β̇ + kyTy − kyCβ = 0

Idα̈− IpΩβ̇ + cxC ẋ+ cxRα̇ + kxCx+ kxRα = 0

Idβ̈ + IpΩα̇− cyC ẏ + cyRβ̇ − kyCy + kyRβ = 0

(3.10)

It is helpful to express these equations in the matrix form as:

Mq̈ + (ΩG+ C) q̇ +Kq = 0 (3.11)

where:

M =


m 0 0 0
0 m 0 0
0 0 Id 0
0 0 0 Id

 (3.12)

K =


kT 0 0 kC
0 kT −kC 0
0 −kC kR 0
kC 0 0 kR

 (3.13)

C =


cT 0 0 cC
0 cT −cC 0
0 −cC ccR 0
cC 0 0 cR

 (3.14)

G =


0 0 0 0
0 0 0 0
0 0 0 Ip
0 0 −Ip 0

 (3.15)

and,

q =
[
x y β α

]T
(3.16)

The mass and the stiffness matrices, M and K, respectively, are sym-
metric, positive definite matrices. In contrast, the gyroscopic matrix G is
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skew-symmetric. To determine the roots of the Equations [3.10], it is neces-
sary to rearrange the equation in the following form:[

C + ΩG M
M 0

]
d

dt

{
q
q̇

}
+

[
K 0
0 −M

]{
q
q̇

}
=

{
0
0

}
(3.17)

This is an 8x8 eigenvalue problem and it must be solved numerically.
Forming and solving Eigenvalue problem using Matlab it is possible to obtain
the following mass, stiffness and gyroscopic matrices:

M =


122.68 0 0 0

0 122.68 0 0
0 0 2.86 0
0 0 0 2.86

 (3.18)

K =


2.3 · 106 0 0 75 · 103

0 2.3 · 106 −75 · 103 0
0 −75 · 103 1.44 · 105 0

75 · 103 0 0 1.44 · 105

 (3.19)

C =


23.00 0 0 0.75

0 23.00 −0.75 0
0 −0.75 1.44 0

0.75 0 0 1.44

 (3.20)

G =


0 0 0 0
0 0 0 0
0 0 0 0.61
0 0 −0.61 0

 (3.21)

The natural frequency map for this system is shown in Figure (3.2).
In this case it has only one unbalance and it is possible to calculate the

response relative to that unbalance. In Matrix notation, Equation [3.8] can
be written as:

Mq̈ + (ΩG+ C) q̇ +Kq = F (3.22)

where:

F =


mεΩ2cosΩt
mεΩ2sinΩt

0
0

 = <


mε
−jmε

0
0

Ω2ejΩt (3.23)
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Figure 3.2: Campbell Diagram for response to a mass eccentricity

The steady-state solution is found by assuming a response of the form
q(t) = <(q0e

jΩt). Thus,[
−Ω2 [M ] + jΩ (Ω [G] + [C]) + [K]

]
q0e

jΩt = Ω2b0e
jΩt (3.24)

where,

b0 =


mε
−jmε

0
0

 (3.25)

and, hence:

q0 =
[
−Ω2 [M ] + jΩ (Ω [G] + [C]) + [K]

]−1
Ω2b0 (3.26)

where:

FRF =
1

[−Ω2 [M ] + jΩ (Ω [G] + [C]) + [K]]
(3.27)
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FRF is defined Frequency Response Function. The Response can be ob-
tained as a function of rotational speed which is shown in Figure (3.3).

The figure shows that there are two peaks in the response; the speeds of
rotation at which these peaks occur are called critical speeds. They occur
when the frequency of the out of balance force is close to the natural frequency
of the rotor-bearing system.

Figure 3.3: Response of a Rigid Rotor

To find the Response of the rigid rotor the following partial Matlab Code
is used:

1 %TRANSFER FUNCTION
2 omega=[0:10:4000]*2*pi/60;
3 epsilon=0.1*10ˆ-3; %eccentricity
4

5 %FRF%
6 for i=1:length(omega)
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7 H(:,:,i)=.........................;
8 end
9

10 %X e Y Displacements%
11 H11(1,:)=H(1,1,:);
12 H22(2,:)=H(2,1,:);
13 X=abs(H11);
14 Y=abs(H22);
15

16 figure(2);
17 subplot(2,1,1);
18 semilogy(omega*60/(2*pi),X);
19 grid;
20 hold on
21 semilogy(omega*60/(2*pi),Y,'--');
22 legend('Response in the x directions (solid)','Response in ...

the y directions (dashed)');
23 xlabel('Excitation Frequency \omega (rev/min)');
24 ylabel('RESPONSE MAGNITUDE (m)');
25 axis([0 3500 10ˆ-6 10ˆ0])
26 title('RESPONSE OF A RIGID ROTOR 4DoF');
27

28 subplot(2,1,2);
29 plot(omega*60/(2*pi),(-angle(H11))*180/pi);
30 grid;
31 hold on
32 plot(omega*60/(2*pi),(-angle(H22))*180/pi,'--');
33 axis([0 3500 0 200])
34 xlabel('Excitation Frequency \omega (rev/min)');
35 ylabel('PHASE (\circ)');
36 end

3.4 Response for Anisotropic Supports

Example Response to a Mass eccentricity for

Anisotropic Supports

This example aims at determining the unbalance response over the speed
range 0 to 4000rev/min. The dimensions of the rotor are the same of the
last example but in this case it has different value of damping in bearing 1
and bearing 2.
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The horizontal and vertical support stiffnesses are:

• kx1=1.0 MN/m

• ky1=1.5 MN/m

• kx2=1.3 MN/m

• ky2=1.8 MN

respectively at bearing 1 and bearing 2. The damping value in the hor-
izontal and vertical supports at both bearings are proportional to the stiff-
nesses and are:

• cx1=20 Ns/m

• cy1=30 Ns/m

• cx2=26 Ns/m

• cy2=36 Ns/m

respectively at bearing 1 and bearing 2. To solve this problem the equa-
tions of motion is wiritten in the matrix form:

Mq̈ + (ΩG+ C) q̇ +Kq = F (3.28)

where:

M =


122.68 0 0 0

0 122.68 0 0
0 0 2.86 0
0 0 0 2.86

 (3.29)

K =


2.3 · 106 0 0 75 · 103

0 3.3 · 106 −75 · 103 0
0 −75 · 103 175 · 103 0

75 · 103 0 0 1.44 · 105

 (3.30)

C =


46 0 0 1.5
0 66 −1.5 0
0 −1.5 3.5 0

1.5 0 0 2.88

 (3.31)
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G =


0 0 0 0
0 0 0 0
0 0 0 0.61
0 0 −0.61 0

 (3.32)

and,

q =
[
x y β α

]T
(3.33)

F =


mεΩ2cosΩt
mεΩ2sinΩt

0
0

 = <


mε
−jmε

0
0

Ω2ejΩt (3.34)

Firstly, the free solution response is solved to determine the natural frequen-
cies and the Campbell Diagram. Forming and solving Eigenvalue problem
using Matlab it has the following natural frequency Maps and Damping Ra-
tios Diagram:

Figure 3.4: Campbell Diagram for Response to a mass eccentricity
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It is clear from the Campbell Diagram, shown in Figure (3.4), that when a
rotor resonance frequency is coincident with the rotational speed, a maximum
response to out-of-balance is occured. These maximum responses are the
system critical speed; thus, there are four critical speeds in this four degrees
of freedom model of a system.

Figure [3.5] shows the response in the X and Y directions. It shows
that the maximum response in the X and Y directions occurs at different
frequencies because the stiffnesses in the two directions are different from one
another.

Figure 3.5: Response of a Rigid Rotor for Anisotropic case



Chapter 4

Inerter

4.1 Introduce to Inerter

In 2008, two articles in Autosport revealed details of a new mechanical sus-
pension component with the name J-Damper which had entered Formula
One racing and which was delivering significant performance gains in han-
dling and grip. The Autosport articles revealed that the J-Damper was in
fact an inerter and that its origin lay in academic work on mechanical and
eletrical circuits at Cambridge University. An inerter is a two-terminal me-
chanical device which applies force between its terminals proportional to the
relative acceleration between them [1], similar to a spring and damper which
apply forces proportional to the relative displacement for the spring and ve-
locity for the damper between their terminals. Inerter was first introduced
by Malcom C. Smith in his paper [1] and patened [2]. The idea originated
from the extension of force-current analogy[2] for mechanical and elettrical
circuits where an inductor is analogous to a spring, a resistor is to a damper
and capacitor is to inertia as shown in Figure (4.1) and Figure (4.2). It
is known that the correspondence is perfect in the case of the spring and
damper. A fact which is also known, but frequently glossed over, is that
there is a restriction in the case of the mass. All the above elements ex-
cept the mass have two terminal (for a mechanical element the terminals are
the attachment points which should be freely and independently movable in
space). In contrast, the mass element has only one such terminal-the center
of mass. This implies that a mass is equivalent to a grounded capacitor, but
there is no mechanical analogue for a general capacitor whose one terminal

35
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is not necessarily grounded. This poses a restriction if it is needed to derive
an equivalent mechanical circuit from given elettrical one. To bypass this
restriction a new mechanical modelling element was proposed by Smith[1].
The elements has two terminals, and has the proprety that the applied force
at the terminals is proprotional to the relative acceleration between them. A
new word inerter was coined to describe such device. The constant of propor-
tional is called the inertance and has the units of kilograms (i.e, dimensions
of mass)

4.2 Background on the Inerter

The are two well-known analogies between mechanical and eletrical system,
namley the Force-Voltage Analogy and Force-Current Analogy. In the force-
current analogy, the spring, damper and mass of mechanical systems are
analogues of the inductor, resistor and capacitor of eletrical systems, as shown
in Figure (4.1). Furthermore, the mass is one terminal element for which
the displacement, velocity and the acceleration are measured relative to the
ground. Therefore, eletrical systems with ungrounded capacitors do not have
a direct analogy to mechanical systems composed of springs, dampers and
masses. As a result, the achievable performance of a passive mechanical
system is restricted.

To remedy the situation a network called the inerter was proposed as an
ideal mechinacal two terminal elment with following dynamic equation:

The ideal inerter is a two-terminal mechanical device with the propriety
that the equal and apposite force F applied at the terminals is proportional
to the relative acceleration between the nodes:

F = b (v̇2 − v̇1) = b (ẍ2 − ẍ1) (4.1)

where F rappresents the applied force between two mechanical terminals
and b is the constant of proportianality called inertance which ha units of
kilograms, while v1 and v2 are the velocity of two terminals. The storeg
energy in the inerter is equal to 1

2
b (v2 − v1)2. With the invention of the

inerters, the new force-current analogy can be shown as Figure (4.2), such
that all passive network impedances can be mechanically realized by inerter,
dampers and springs.

The first inerter device was a rack and pinion inerter [9], in which the
mechanical power was transferred by gears. Next, ball-screw inerters were
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Figure 4.1: Force-Current Analogy

Figure 4.2: Passive network impedences
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proposed in refernces[1] to [20] that had slightly different working principles.
To demostrate their perfomance benefits for mechanical systems inerters have
been applied to car suspensions[2], motorcycle steering [3], train suspensions
[4] and building vibration control system [5]. The performance of these sys-
tems has been shown to be significantly improved by inerters.

Figure 4.3: Rack and Pinions Inerter

4.3 Inertance of Inerter

Any device wich satisfies this mathematical property of Equation [4.2] can be
termed as an inerter where with b is indicated the costant of proportionality
called ”inertance”.Inertance ha units of kilograms (i.e dimensions of mass)
and is obtained for three different Inerter.

F = b (v̇2 − v̇1) = b (ẍ2 − ẍ1) (4.2)
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Figure 4.4: Ballscrew inerter made at Cambridge University
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4.3.1 Inertance of Passive Mechanical Inerter

The inerter is the device that satisfies the Equation [4.2], but to used in sus-
pension system, should have small mass, finite linear travel no attachament
with the phisical ground and should be compact. One simple method to
achieve that as in [] is to convert the relative linear motion between the two
terminals into the rotary motion of flywheel by using rack and pinion or a
ball screw.

Figure 4.5: Passive Mechanical Inerter

The mechanism is considered that has a flywheel with rotational inertia
J (in the unit of kg ·m2), a ball srew with lead l[m/rev], a gear ratio of 1 r
between the nut (or pinion) and the flywheel. Assuming tha the rotational
inertia of the screw and other gears is negligible compared to that of the
flywheel, angular acceleration and angular velocity of the flywheel is given
by:

α =
2π

l
· r · (ẍ2 − ẍ1) (4.3)

ω =
2π

l
· r · (ẋ2 − ẋ1) (4.4)

By conservation of energy, the power input through linear motion should
be equal to the power output through rotational motion, therefore:

F (ẋ2 − ẋ1) = Tω (4.5)

F (ẋ2 − ẋ1) = J
2π

l
· r · (ẍ2 − ẍ1) · 2π

l
· r · (ẋ2 − ẋ1) (4.6)
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F =

(
2π

l
r

)2

· J · (ẍ2 − ẍ1) (4.7)

and comparing the Equation [4.7] with the Equation [4.2] we can calcu-
lated the inertance from this type of inerter:

F =

(
2π

l
r

)2

· J · (ẍ2 − ẍ1) = b (ẍ2 − ẍ1) (4.8)

b =

(
2π

l
r

)2

J (4.9)

thus, the constant b is the inertance measured in [kg] .

4.3.2 Inertance of Hydraulic Inerter

The proposed hydraulic inerter is a closed hydraulic system that consists of
a hydraulic motor, a hydraulic cylinder and a connection pipe, as shown in
Figure (4.6).

Figure 4.6: Hydraulic Inerter

The working principle of the hydraulic inerter is similar to a hydropower
generator, as shown in figure (4.7). Two terminals of the hydraulic inerter
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are the hydraulic cylinder (terminal 1) and the piston (terminal 2). F is the
applied force, and x is the relative displacement of the two terminals. When
F is positive, the piston moves rightwards relative to the cylinder and the
pressure P2 (P3) is higher than the pressure P1 (P4). The hydraulic motor
is operated by the pressure difference between P3 and P4, and the fluid flows
through the pipes. Similarly, when the apllied force F is negative, the piston
and the hydraulic motor move in the reverse direction.

Figure 4.7: Dynamics of Cylinder - Hydraulic Cylinder

Figure 4.8: Dynamics of Cylinder - Hydraulic Cylinder

To construct the hydraulic inerter, a double-rod cylinder is used, such
that the volume of the cylinder remains costant. As illustrated in Figure
(4.8), the dynamics of the cylinder is as follows:

(F − f) = A (P2 − P1) +mẍ (4.10)

where f is the friction force, A the area of the piston, m the mass of
the piston and rod and ẍ the acceleration of the piston. For the inerter
applications, the mass of the componenet is normally much less than the
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inertance and can be neglected. Suppose the friction is small, the Equation
[4.10] can be semplified as:

F = A (P2 − P1) (4.11)

The input flowrate Qin of the hydraulic cylinder is defined as:

Qin = Au2 = Aẋ (4.12)

where ẋ is the velocity of the piston. On the other hand, the input flow
drives the motor, and the amount is proprotional to the angular velocity of
the motor, as in the following:

Qin = Dθ̇ (4.13)

where D is the units of m3 and θ̇ is the angular velocity of the motor.
Combining Equations [4.12] and [4.13] gives:

Aẋ = Dθ̇ (4.14)

Taking the derivate of the Equation [4.14] results in:

θ̈ =
A

D
ẍ (4.15)

In the ideal case, there is no energy loss in the power trasmission, i.e.
the input power is equal to the output power of the mechanism, as in the
following:

Fẋ = T θ̇ (4.16)

where T = Iθ̈ is the output torque of the motor, in which I is the moment
of inertia of the motor and the flywheel. Thefore, substituting Equation [4.14]
and [4.15] into Equation [4.16] gives:

F = T
θ

x
= Iθ̈

θ

x
= I

(
A

D

)2

ẍ = bẍ (4.17)

i.e the ideal system inertance of the hydraulic device is:

b = I

(
A

D

)2

(4.18)
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which can be modified by tuning the flywheel I, the hydraulic cylinder A
and the hydraulic motor D.

4.3.3 Inertance of Fluid Inerter

A Schematic diagram of the new implementation is shown in Figure (4.9) and
(4.10). The cylinder body and the piston rod are the two device terminals,
their relative motion driving fluid through the helical channel.

Figure 4.9: Fluid Inerter

The channel fluid velocity is scaled up from the piston velocity by the
ratio of the areas of the channel and the piston. Thus, the device inertance
can be increasing by reducing the area of the channel or increasing the area
of the piston, both of which increase the fluid velocity for given rate of strut
movement.

Consider a Piston and cylinder driving fluid through a helical tube sur-
roinding the cylinder, as shown in Figure (4.10).
Let:
A1= annular area of the main cylinder
A2= channel cross sectional area
l = channel length
ρ = fluid density

Let F be the equal and opposite force applied to the terminals and x be
the relative displacement between them. An ideal inerter is described by the
following equation:
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Figure 4.10: Schematic of external-helix fluid inerter

F = bẍ (4.19)

where b is the inertance (costant of proportionality) in the unit of kg.
We first neglect any dissipative effect due to fluid viscosity and density and
consider the fluid as incompressible. If u is the mean velocity of the fluid in
the helical path, we have:

ẋA1 = uA2 (4.20)

by conservation of volume. The stored energy of the fluid in the helical
path given by:

stored energy =
1

2
ρA2lu

2 (4.21)

and the stored energy in an ideal inerter is:

stored energy (ideal inerter) =
1

2
bẋ2 (4.22)

which suggests the following approximate value for the device inertance:

1

2
ρA2lu

2 =
1

2
bẋ2 (4.23)

b = ρA2l
u2

ẋ2
(4.24)



46 CHAPTER 4. INERTER

From Equation [4.20] we have:

ẋ = u
A2

A1

(4.25)

substituiting the value of ẋ in the Equation [4.24] we have:

b = ρA2l
u2(
uA2

A1

)2 = ρl
A2

1

A2

(4.26)

Thus, the inertance of ideal inerter for a fluid inerter device is:

b = ρl
A2

1

A2

(4.27)

This calculation only considers the inertia of the fluid flowing in the chan-
nel and neglects the inertia of the fluid in the piston chamber and the inertia
of the piston itself. Large inertance values are possible increasing the length
of helix-channel or using fluid with high density. This prototypes of Inerter
have been constructed for this thesis in Dynamics Laboratory at University
of Southampton and It will be described in Chapter 7.

Figure 4.11: Prototype of fluid inerter



Chapter 5

Performance Benefits
Employing Inerters

What we know of the inerter

Inerters have become a hot topic in recent years especially in vehicle, train,
building suspesion system, etc. The first use of inerter is reported in [1].
This Chapter reported results of different suspension designs with different
configuration of the element like spring, damper and inerter for simple pas-
sive mechanical struts. Automotive suspensions are design to provide many
functions such a vibration isolation of the passenger compartment from road
inputs and control vertical tire loads to optimize braking, acceleration and
handling. This interest in improved and optimized suspension has become
great interest in the academic community and auto manufactures.

5.1 Suspension Struts

In this chapter it is introduced a few simple networks as candidates for a
suspension strut each of which contains at most one damper and one in-
erter.Figure (5.1a) shows the conventional parallel spring-damper arrage-
ment. In figure (5.1b) there is the relaxation spring kb in series with damper.
Figures (5.1c), (5.1d) shown a parallel spring-damper augmented by an in-
erter in parallel or in series with the damper. In figure (5.1e) is proposed with
a pair of springs of stiffness k1, which we call centring springs. Figure(5.1f) is
similar but allows for unequal springs k1 and k2. Figure (5.1g), (5.1h) differ

47
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from (5.1e), (5.1f) by having an additional relaxation spring kb.

Figure 5.1: The eight suspension layout

The mechanical admittance Y (s) for two of these layouts (layout S3 and
S7) is now given for illustration:

Y3 (s) =
k

s
+ c+ bs (5.1)

and

Y7 (s) =
k

s
+

1
s
kb

+ s
cs+k1

+ s
bs2+k1

(5.2)

where b is the value of inertance.
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5.2 Vehicle Suspension-The quarter-car model

In general, a good suspension should provide a comfortable ride and good
handling for a reasonable range of suspension deflections.The specific crite-
ria used depend on the purpose of the vehicle. In the [12] to evaluate ride
comfort and handling have used the frequency response function Hsprung and
Htire for a Quarter-car model. Quarter-car is a simplified model focusing on
one wheel and one equivalent sprung mass to study only the vertical dynam-
ics of a vehicle assuming that all the four wheels are decoupled as Figure (5.2).

The component of the quarter-car are:

• sprung mass ms is usually one-fourth of the vehicle’s chassis mass.

• mus is unsprung mass, includes the mass of the wheel and parts of
suspensions not resting on the spring.

• ks is the passive stiffness in the suspension.

• cs is the passive damping in the suspension.

• zs and zus are the vertical displacement of the sprung mass and un-
sprung mass respectively from the equilibrum position.

• zr rappresents the displacement due to road surface irregularities.

In order to analyze such systema and obtain their frequency response
functions, it would be easier to consider a quarter car model with a general
admittance Y (s) as shown in Figure (5.3).

The admittance of common components is given in Table.

Component Admittance Y(s)

Spring kp
kp
s

Damper dp dp
Inerter b bs

The equation of the motion in the Laplace transformed domain are:

mss
2ẑs = F̂s − sY (s) (ẑs − ẑu) (5.3)
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Figure 5.2: Quarter-car model for behicle suspension

and

mus
2ẑu = sY (s) (ẑs − ẑu) + kt (ẑr − ẑu) (5.4)

In the [15] will fix the parameters of the quarter-car model as follow:
ms = 250 kg, mu = 35 kg, kt = 150 kN/m. In the following section we report
the perfomance measures the reported in [].

5.3 Perfomance measures

There are a number of pratical design requirements for a suspension system
such as passenger comfort, handling, tyre normal loads, limits on suspension
travel etc. which require careful optimisation. In the simplified quarter-car
model these can be translated approximately into the specifications on the
disturbance response from Fs and zr to zs and zu.

We now consider in according with [] this several basic measures:

• parameter J1 is the body vertical acceleration (RIDE COMFORT).
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Figure 5.3: Quarter-car model with a general admittance

• parameter J3 is the dynamic tyre road.

Optimisation of J1

The results of optimation are shown in figure (5.4). It was found the the
relaxation spring kb did not improve helpful to reduce J1. This left five of
the eight struts in Figure (5.1) to be considered. Optimisation for layouts S1,
S3, and S4 appears to be convex in the free parameters. Both the parallel
(S3) and series (S4) arrangements gave improvements over the conventional
strut (S1) for the full range of static stiffness with S4 giving the biggest
improvement for stiff suspensions. It should be noted that the parallel ar-
rangement gives lower values of inertance than the series arrangement. For
example, at the midrange value of k = 60 kN/m we have b = 31.27 kg and
b = 333.3 kg, respectively.

For layouts S5 and S6, the optimisation problem appears no longer to
be convex in the parameters. The NelderMead simplex method was used for
various starting points. Solutions were found which gave a clear improvement
on the series arrangement S4 particularly for softer suspensions. For the
arrangement S6 the improvement was at least 10% across the whole stiffness
range. For much of the range, k1 and k2 were about 1

3
and 1

12
of the static
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stiffness, respectively.

Figure 5.4: The optimisation of J1 on: layout S1 (bold), layout S3
(dashed), layout S4 (dot-dashet), layout S5 (dotted) and layout S6 (solid)

Optimisation of J3

The results of optimisation are shown in Figure (5.6). Here it was found that
the relaxation spring kb helped to reduce J3 for lower values of static stiffness.
Indeed, the conventional strut S2 is a noticeable improvement on S1 for softer
suspensions. Again optimisation for layouts S1, S2, S3, and S4 appears to
be convex in the free parameters. The results show an improvement in J3

with parallel (S3) and series (S4) arrangements if the static stiffness is large
enough, with the series arrangement again giving the biggest improvement.

For layouts S5 and S6, the optimisation problem appears no longer to be
convex in the parameters. The NelderMead simplex method was again used
for various starting points. As before, the use of centring springs in layouts
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Figure 5.5: The optimisation of J1 on: k1 in layout S5 (solid), k1 in layout
S6 (dashed), k2 in layout S6 (dot-dashed),

S5 and S6 gave further improvements over the ordinary series arrangements
S4. The use of a relaxation spring kb in S7 was needed to extend the benefits
to softer suspensions.
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Figure 5.6: The optimisation of J3 on: layout S1 and S2 (bold), layout S3
(dashed), layout S4 (dot-dashet), layout S5 (dotted) and layout S7 (solid)



Chapter 6

Dynamics of Rotating
Machines with Inerter

6.1 Introduction

In the previous chapter the dynamics of a rigid rotor rotating with four degree
of freedom was introduced and the use of the new application called Inerter
was described. The objective of this chapter is to study the fundamental
influence of the inerter on the natural frequencies of vibrations system. The
fact that inerter can reduce the natural frequencies of vibration system is
theoretically demostrated in this chapter and the question of how to effi-
ciently use inerter to reduce the natural frequencies is also adressed. The
traditional methods to reduce the natural frequencies of an elastic system
are either deacreasing the elastic stiffness or increasing the mass of vibration
of the system. It will be shown below that a parallel-connected inerter can
also effectively reduce the natural frequencies.

6.2 SDoF Rotor System with Inerter

A SDoF Rotor System with inerter is shown in Figure (6.1). The equation
of motion of free vibration system of this system is:

(m+ vx1 + vx2) ẍ+ kx = 0 (6.1)

or

55
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Figure 6.1: Single dregree of freedom

(m+ vy1 + vy2) ẍ+ ky = 0 (6.2)

Transformation of the above equation into the standard form for vibration
analysis yields to:

ẍ+ ω2
nx = 0 (6.3)

or

ÿ + ω2
ny = 0 (6.4)

where:

ωn =

√
k

m+ vx1 + vx2

(6.5)

or

ωn =

√
k

m+ vy1 + vy2

(6.6)

is called the natural frequency of the undamped system.

Preposition 1:
The natural frequency ωn of an SDoF Rotor System is deacreasing func-

tion of the inertance v. Thus, inerter can reduce the natural frequency of an
SDoF Rotor System.
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6.3 TDoF Rotor System with Inerter

Figure 6.2: Single dregree of freedom

In this section is considered the rotor system shown in Figure (6.2) and it
is investigated the general influence of the inerter on the natural frequencies
of a vibration system.

The equation of motion for free vibration of this system are:{
(m+ vx1 + vx2) ẍ+ (kx1 + kx2)x = 0

(m+ vy1 + vy2) ÿ + (ky1 + ky2) y = 0
(6.7)

or in a compact form:

Mẍ+Kx = 0 (6.8)

where M is called the inertia Matrix and K the stiffness matrix:

M =

[
m+ vx1 + vx2 0

0 m+ vy1 + vy2

]
(6.9)

K =

[
kx1 + kx2 0

0 ky1 + ky2

]
(6.10)
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The two natural frequencies can be obtained by solving the characteristic
equation:

∆ (ω) =
∣∣K −Mω2

∣∣ (6.11)

∆ (ω) = (m+ vx1 + vx2)(m+ vx1 + vx2)ω4 − (ky1 + ky2)(m+ vx1 + vx2)ω2+

+ (ky1 + ky2)(m+ vx1 + vx2)ω2 + (kx1 + kx2)(ky1 + ky2) = 0

in compact form:

αω4 + βω2 + γ = 0 (6.12)

where:

α = (m+ vx1 + vx2)(m+ vx1 + vx2) (6.13)

β = (kx1 + kx2)(m+ vy1 + vy2) + (ky1 + ky2)(m+ vx1 + vx2) (6.14)

γ = (kx1 + kx2)(ky1 + ky2) (6.15)

Thus, the two natural frequencies are:ωn1 =

√
−β+
√
β2−4αγ

2α

ωn1 =

√
−β−
√
β2−4αγ

2α

(6.16)

For rigid rotor descripted in Section [2.1] and for the following value of
stiffness we have the inertance diagram for 2DoF Rotor System reported in
Figure (6.3): 

kx1 = 1 · 106N/m

ky1 = 1 · 106N/m

kx2 = 1.3 · 106N/m

ky2 = 1.3 · 106N/m

Using the following partial Matlab Code:
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1 %Characteristics of the rotor
2 L = 0.5; a = L/2; b = L/2;
3 D=0.2;
4 rho=7810;
5 m = rho*pi*Dˆ2*(L/4);
6 Ip = (m*Dˆ2)/8;
7 Id = Ip/2 + (m*Lˆ2)/12;
8

9 %Stiffness
10 kX1=1.0*10ˆ6;
11 kY1=1.0*10ˆ6;
12 kY11=1.0*10ˆ6;
13 kX2=1.3*10ˆ6;
14 kY2=1.3*10ˆ6;
15

16 kxT=kX1+kX2;
17 kxC=-a*kX1+b*kX2;
18 kxR=aˆ2*kX1+bˆ2*kX2;
19 kyT=kY1+kY2;
20 kyC=-a*kY1+b*kY2;
21 kyR=aˆ2*kY1+bˆ2*kX2;
22

23 %inertance%
24 v=0:10:500;
25

26 alpha=(m+2*v(j))*(m+2*v(j));
27 beta=-(kX1+kX2)*(m+2*v(j))-(kY1+kY2)*(m+2*v(j));
28 gamma=(kX1+kX2)*(kY1+kY2);
29

30 omeg 1=s............................;
31 omega n=............................;
32 freq 1(j)=real(omega n/(2*pi));
33 omeg 2=.............................;
34 omega n=s...........................;
35 freq 2(j)=real(omega n/(2*pi));
36

37 disp(['Natural Freq 1= ' num2str(freq 1(j)) ' Hz '])
38 disp(['Natural Freq 2= ' num2str(freq 2(j)) ' Hz '])
39 end
40

41 % Inertance diagram %
42 figure(1);
43 plot(v,freq 1(:));
44 hold on
45 plot(v,freq 2(:),'--');
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46 hold on
47

48 legend('Mode 1','Mode 2');
49 title('Inertance Diagram at 4000 rpm - 2DoF')
50 xlabel ('v=inertance [kg]')
51 ylabel ('Natural Frequency [Hz]')
52 grid on
53 %end

The inertance diagram of an TDoF Rotor System is reported in the fol-
lowing Figure.

Figure 6.3: Inertance Diagram - 2DoF

Preposition 2:

The natural frequency ωn of an TDoF Rotor System with two inerter are
deacreasing function of the inertance vx1 and vx2. Thus, inerter can reduce
the natural frequency of an TDoF Rotor System like dimostred in the Figure
(6.3).
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6.4 System of 4DoF with Inerter

This Rotor has four degrees of freedom as it can translate in the directions
Ox and Oy and it also can rotate about these axes. Practitioners often term
the translation respectively and rotation as bounce and tilt motion. It is
chosen to describe the movement of the rotor in terms of the displacements
of its center of mass in the directions Ox and Oy, x and y, respectively, and
the clockwise rotations about Ox and Oy, β and α, respectively.

Figure 6.4: Rotor System with Inerter - 4DoF

The equation of motion are:

(m+ 2v)ẍ+ (cx1 + cx2)ẋ+ (kx1 + kx2)x+ (acx1 − bcx2)β̇ + (akx1 − bkx2)β = 0

(m+ 2v)ÿ + (cy1 + cy2)ẏ + (ky1 + ky2)y + (−acy2 + bcy1)α̇ + (−aky2 + bky1)α = 0

(a2vy2 + b2vy1 + Id)α̈ + (a2cy2 + b2cy1)α̇ + IpΩβ̇ + (−acy2 + bcy1)ẏ+

+(a2ky2 + b2ky1)α + (−aky2 + bky1)y = 0

(a2vx2 + b2vx1 + Id)β̈ + (a2cx2 + b2cx1)β̇ − IpΩβ̇ + (acx2 − bcx1)ẋ+

+(a2kx2 + b2kx1)β + (akx2 − bkx1)x = 0

(6.17)

in this case it has simmetric rotor and the bearing supports are isotropic;
the inertance (constant of proportianality) is equal in vertical and horizontal
directions; the equation of motion becomes:
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
(m+ 2v)ẍ+ cxT ẋ+ kxTx = 0

(m+ 2v)ÿ + cyT ẏ + kyTy = 0

(a2vy2 + b2vy1 + Id)α̈ + cRα̇ + IpΩβ̇ + kRα = 0

(a2vx2 + b2vx1 + Id)β̈ + cRβ̇ − IpΩα̇ + kRβ = 0

(6.18)

Letting: 

kxT = kx1 + kx2

kyT = ky1 + ky2

kxC = −akx1 + bkx2

kyC = −aky1 + bky2

kxR = a2kx1 + b2kx2

kyR = a2ky1 + b2ky2

(6.19)

and 

cxT = cx1 + cx2

cyT = cy1 + cy2

cxC = −acx1 + bcx2

cyC = −acy1 + bcy2

cxR = a2cx1 + b2cx2

cyR = a2cy1 + b2cy2

(6.20)

Consider of a rigid rotor on isotropic supports, the support stiffness and
damping are the same in the both x and y directions. Thus:

{
kxT = kyT = kT

cxT = cyT = cT
(6.21)

Then the equation of motion can be written more concisely as:


(m+ 2v)ẍ+ cT ẋ+ kTx = 0

(m+ 2v)ÿ + cT ẏ + kTy = 0

(a2vy2 + b2vy1 + Id)α̈ + cRα̇ + IpΩβ̇ + kRα = 0

(a2vx2 + b2vx1 + Id)β̈ + cRβ̇ − IpΩα̇ + kRβ = 0

(6.22)
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It is helpful to express these equations in matrix form as:

Mq̈ + (C + ΩG) q̇ +Kq = 0 (6.23)

where:

M =


m+ vx1 + vx2 0 0 avx2 − bvx1

0 m+ vy1 + vy2 −avy2 + bvy1 0
0 −avy2 + bvy1 a2vy2 + b2vy1 + Id 0

avx2 − bvx1 0 0 a2vx2 + b2vx1 + Id


(6.24)

K =


kx1 + kx2 0 0 akx2 − bkx1

0 ky1 + ky2 −aky2 + bky1 0
0 −aky2 + bky1 a2ky2 + b2ky1 0

akx2 − bkx1 0 0 a2kx2 + b2kx1

 (6.25)

C =


2cx1 + 2cx2 0 0 2acx2 − 2bcx1

0 2cy1 + 2cy2 −2acy2 + 2bcy1 0
0 −2acy2 + 2bcy1 2a2cy2 + 2b2cy1 0

2acx2 − 2bcx1 0 0 2a2cx2 + 2b2cx1


(6.26)

G =


0 0 0 0
0 0 0 0
0 0 0 IP
0 0 −IP 0

 (6.27)

and,

q =
[
x y β α

]T
(6.28)

The mass, damping and the stiffness matrices, M , C and K are symmetric
and positive definite matrices. In contrast, the gyroscopic matrix G is skew-
symmetric. To determine the roots of Equations [6.23], it must rearrange the
equation in the followig form:[

C + ΩG M
M 0

]
d

dt

{
q
q̇

}
+

[
K 0
0 −M

]{
q
q̇

}
=

{
0
0

}
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This is an 8x8 eigenvalue problem was formed and solved numerically.
The Eigenvalue problem using Matlab has the following Mass, Stiffness and
Gyroscopic matrices obtained used the following data:



m = 122.68 kg mass of rotor

a = b = 0.25mdistance of the bearing from the center of rotor

kx1 = ky1 = kx2 = ky2 = 1 · 106MN/mStiffness

cx1 = cy1 = 10Ns/mDamping

cx2 = cy2 = 10Ns/mDamping

vx1 = vy1 = vx2 = vy2 = 60 kg Inertance

IP = 0.6134 kgm2 Polar inertia

Id = 2.8625 kgm2Diametral inertia

Ω = 4000 rev/min rotor speed

(6.29)

Mass, Stiffness and gyroscopic matrices are:

M =


242.68 0 0 0

0 242.68 0 0
0 0 10.36 0
0 0 0 10.36

 (6.30)

K =


2.3 · 106 0 0 75 · 103

0 2.3 · 106 75 · 103 0
0 −75 · 103 1.44 · 105 0

75 · 103 0 0 1.44 · 105

 (6.31)

C =


23 0 0 0.75
0 23 −0.75 0
0 −0.75 1.44 0

0.75 0 0 1.44

 (6.32)

G =


0 0 0 0
0 0 0 0
0 0 0 0.61
0 0 −0.61 0

 (6.33)
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Solving the Eigenvalue problem using Matlab the natural frequencies that
depends of value of inertance can be obtained. In the Figure (6.6) it is
reported the influence of inertance on natural frequencies of vibration system
that behave similary as in Chapter [6.3], using the same matlab code:

Figure 6.5: Campbell Diagram - 4DoF with Inerter

Preposition 3:
The natural frequency ωn of an 4DoF Rotor System with four inerter are

deacreasing function of the inertance v. Thus, inerter can reduce the natu-
ral frequency of an 4DoF Rotor System as dimonstrated in the figure (6.6).
However, we can obtain the same result by increasing the total mass of the
rotor without the introduction of four inerter. Thus, we conclude that this
case is not very interesting for the purpose of our studies.
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Figure 6.6: Inertance Diagram - 4DoF with Inerter

Forced Response

Like in Example [3.4] it has only one unbalance and it can calculated the
response relative to that unbalance. In Matrix notation, the Equation [6.23]
can be written as :

Mq̈ + (C + ΩG) q̇ +Kq = F (6.34)

where:

F =


mεΩ2cosΩt
mεΩ2sinΩt

0
0

 = <


mε
−jmε

0
0

Ω2ejΩt ε = 0.1 · 10−3
[
m
]

(6.35)

The steady-state solution is found by assuming a response of the form
q(t) = <

(
q0e

jΩt
)
. Thus the equation become:[

−Ω2[M ] + jΩ(Ω[G] + [C] + [K])
]
q0e

jΩt = Ω2b0e
jΩt (6.36)
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where:

b0 =


mε
−jmε

0
0

 (6.37)

and, hence:

q0 =
[
−Ω2[M ] + jΩ(Ω[G] + [C] + [K])

]−1
Ω2b0 (6.38)

where:

FRF =
1[

−Ω2[M ] + jΩ(Ω[G] + [C]) + [K]
] (6.39)

The response can be obtained as a funcion of rotational speed which is
shown in Figure (6.7). This response is similar at the response shown in
Figure (3.3). Also in this case it has two peaks in the response, thus two
critical speeds because it is examined the Isotropic case. It can be concluded
that the inerter in parallel configuration with stiffness and damping dont
effect to reduce the peak of resonance. The only effect is that the second
peak of the reasonance occurs earlier than the case without Inerter. The same
result it can get going to increare the mass of rigid rotor without introduce
an inerter.

Figure 6.7: Response of Rigid Rotor - 4DoF with Inerter
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6.5 System of 5DoF with Inerter

This system is different from previus cases because it has 5DoF as shown
in Figure (6.8). Firstly, the equation of the motion for this system are in-
troduced using Maple. This rotor has five degree of freedom because it can
translate in the directions Ox and Oy and it can also rotate about these axes.
The fifth degree of fredoom is given by the introduction of the inerter.

The partial code of Maple that it is used for delevop the equation of the
motion in reported in the following script:

Figure 6.8: Rigid Rotor - 5DoF with Inerter

1 %1st define the body frame
2 >linear modeling({x(t),y(t),alpha(t), beta(t)}); ...

%rotations due to bearings elastiticy
3

4 >BF := translate(......... * rotate ...
('Y',beta(t))*.....set frame name(BF,'BF'):

5

6 %Definition of rotor mass properties
7 >rotor := make BODY(..........); show(rotor);
8

9 %Right Bearing
10 >GR := make POINT(ground, 0, 0, a); show(GR);
11 >PR := make POINT(BF, 0, 0, a); show(PR);
12 >∆ := comp Y(PR, ground)-comp Y(GR, ground);
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13 >eta := comp X(PR, ground)-comp X(GR, ground);
14

15 >FY R := -kY2*∆-cY2*(diff(∆, t));
16 >FX R := -kX2*eta-cX2*(diff(eta, t));
17

18 %bearing force
19 >bearing PR := make FORCE(..........): show(bearing PR);
20

21 %Left Bearing
22 >............
23

24 %Newton Equations
25 eqnsN := newton equations({rotor,bearing PR,bearing PL}): ...

show(%);
26 eqnNL := kY11*yL(t)+cY1*(diff(yL(t), t)) = ...

kY1*∆1+vL*(diff(∆1, t, t));
27

28 %Euler Equations
29 >eqnsE := ...

euler equations({rotor,bearing PR,bearing PL},CoM(rotor)):
30 >show(eqnsE);
31 .....................
32 %text
33 .....................
34 %State space formulation:
35 >interface(rtablesize = 20);
36 >xx,xeqns := first order(qeqns,q,t);
37 <xx>,<xeqns>;
38 >implicit state space(...........);
39 end

The equations of the motion for this system using the script are:

mẍ+ (cx1 + cx2) ẋ+ (kx1 + kx2)x+ (acx2 − bcx1) β̇ + (akx2 − bkx1) β = 0

(m+ vL) ÿ − vLÿL + cy2ẏ − ky1yL + (ky1 + ky2) y + (−aky2 + bky1)α+

−acy2α̇ + vLbα̈ = 0

(b2vL + Id) α̈ + cy2a
2α̇ + (a2ky2 + b2ky1)α− b (ky1yL + vLÿL) + β̇IpΩ+

+vLbÿ − acy2ẏ + (−akx2 − bx1) = 0

Idβ̈ − α̇IpΩ + (a2kx2 + b2kx1) β + (a2cx2 + b2cx1) β̇ + (acx2 − bcx1) ẋ+

+ (akx2 − bkx1)x = 0

ky11yL + cy1ẏL = ky1 (αb+ y − yL) + vL(α̈b+ ÿ − ÿL)

(6.40)
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The procedure to determine the Campbell Diagramm and Forced Lateral
Response is very similar to the previus case. This case has a system of
5DoF, thus it has 5 natural frequencies and 5 critical speeds. The data for
this system are the same used in [6.29]. In this case mass, stiffness and
gyroscopic matrices are:

M =


122.68 0 0 0 0

0 182.68 15.00 0 −60.00
0 15.00 6.61 0 −15.00
0 0 0 2.86 0
0 −60.00 −15.00 0 60.00

 (6.41)

K =


2.3 · 106 0 0 75 · 103 0

0 2.3 · 106 −75 · 103 0 −1.0 · 106

0 −75 · 103 1.44 · 105 0 −2.5 · 105

75 · 103 0 0 1.44 · 105 0
0 −1.0 · 106 −2.5 · 105 0 2.0 · 106

 (6.42)

C =


46 0 0 1.50 0
0 26.00 −6.50 0 0
0 −6.50 1.63 0 0

1.50 0 0 2.88 0
0 0 0 0 20.00

 (6.43)

G =


0 0 0 0 0
0 0 0 0 0
0 0 0 0.61 0
0 0 −0.61 0 0
0 0 0 0 0

 (6.44)

Solving the Eigenvalue problem in Matlab, is found that the natural frequen-
cies depends of value of inertance. To determine these frequencies it is used
an inertance v=60kg and it has been obtanined the Campbell Diagram shown
in Figure (6.9); In the Figure (6.10) it is reported the influence of inertance
on natural frequencies of 5DoF vibration system. It can be observed that
also in this case, by increasing the value of inertance, the natural frequencies
decreases up to a value of 100kg.
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Figure 6.9: Campbell Diagram - 5DoF with Inerter

Figure 6.10: Inertance Diagram - 5DoF with Inerter
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Subsequently the first frequency continues to decrease with increasing of
the inertance while the others remain almost constant. Then, is calculated
the Forced Lateral Response as in previous case using the same equations:

FRF =
1[

−Ω2[M ] + jΩ(Ω[G] + [C]) + [K]
] (6.45)

Figure 6.11: Response of a Rigid Rotor - 5DoF with Inerter

The response can be obtained as a funcion of the rotational speed which
is shown in Figure (6.11). This response is similar to the response shown in
Figure (3.5). Also in this case there are five peaks in the response as our
system, has five Degree of freedom, thus five critical speeds. Looking at the
diagram it can also say that the magnitude of the first frequency response,
with the introduction of the inerter, is reduced along the x-axis.
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Equation of motion

The equations of motion for this system of 5DOF were obtained, as mentioned
earlier, using Maple. To confirm of what has been achieved is correct in terms
of equations and formulas the stiffness and inertance are given the following
values:

ky1 = 1 · 1012N/m (to infinity)
v = 0.001 kg (to zero)

Then, using the data [6.29] are obatained the results of the 4dof system.
This allowed us to confirm that the equations developed by Maple for the
system to 5DOF are fair and the results obtained are reliable.

6.6 System of 6DoF with Inerter

To develop the equations of motion for this system, the Maple script is used
as for 5DoF system. This case has two inerters, one for each bearing. They
are positioned both along the y-axis. This rotor has six degree of freedom
because it can translate in the directions Ox and Oy and it also can rotate
about these axes. The fifth and sixth degree of fredoom are given by the
introduction of the inerter.

Figure 6.12: Rigid Rotor - 6DoF with Inerter
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The Equations of the motion obtained using Maple for this system are:



mẍ+ (cx1 + cx2) ẋ+ (kx1 + kx2)x+ (acx2 − bcx1) β̇ + (akx2 − bkx1) β = 0

(m+ vL+ vR) ÿ − vLÿL − vRÿR − ky2yR − ky1yL + (ky1 + ky2) y+

+(−aky2 + bky1)α + (−avR + bvL)α̈ = 0

(a2vR + b2vL + Id) α̈ + (−avR + bvL)ÿ + (a2ky2 + b2ky1)α− b (ky1yL + vLÿL) +

+ (−aky2 + ky1) y + IpΩβ̇ + a (ky2yR + vRÿR) = 0

Idβ̈ − α̇IpΩ + (a2cx2 + b2cx1) β̇ + (acx2 − bcx1) ẋ+ (akx2 − bkx1)x+

+ (a2kx2 + b2kx1) β = 0

ky11yL + cy1ẏL = ky1 (αb+ y − yL) + vL(α̈b+ ÿ − ÿL)

ky22yR + cy2ẏR = ky2 (−αa+ y − yR) + vR(−α̈a+ ÿ − ÿR)

(6.46)

where vL = is the left inerter and vR = is the right inerter.

The procedure to determine the Campbell Diagramm and Forced Lateral
Response is very similar to the previus case. In this case it has a system with
6DoF, thus it has six natural frequencies and six critical speeds. The data
for this system are:



m = 122.68 kg

a = b = 0.25m

kx1 = ky1 = 1 · 106MN/m

kx2 = ky2 = 1 · 106MN/m

cx1 = cy1 = 10Ns/m

cx2 = cy2 = 13Ns/m

v = 60 kg Inertance

IP = 0.6134 kgm2

Id = 2.8625 kgm2

Ω = 4000 rev/min rotor speed

(6.47)

In this case for 6DoF Rigid Rotor system with inerter mass, stiffness
and gyroscopic matrices are:
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M =


122.68 0 0 0 0 0

0 242.68 0 0 −60.00 −60.00
0 0 10.36 0 15.00 −15.00
0 0 0 2.86 0 0
0 −60.00 15.00 0 60.00 0
0 −60.00 −15.00 0 0 60.00

 (6.48)

K =


2.3 · 106 0 0 75 · 103 0 0

0 2.3 · 106 −75 · 103 0 −1.3 · 106 −1.0 · 106

0 −75 · 103 1.44 · 105 0 3.25 · 105 −2.5 · 105

75 · 103 0 0 1.44 · 105 0 0
0 −1.3 · 106 3.25 · 105 0 2.6 · 106 0
0 −1.0 · 106 −2.5 · 105 0 0 2.0 · 106


(6.49)

C =


46 0 0 1.50 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1.50 0 0 2.88 0 0
0 0 0 0 26.00 0
0 0 0 0 0 20.00

 (6.50)

G =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0.61 0 0
0 0 −0.61 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (6.51)

Solving the Eigenvalue problem using Matlab the natural frequencies depend
on value of the inertance. To determine these frequencies it is used an iner-
tance v=60kg and it is obtanined the following Campbell Diagram reported
in Figure(6.13):

As for the case in 5DOF also for this system with 6DoF it is seen the trend
of the frequencies with the inertance. It is noted immediately that in this
case the frequencies continue to decrease with the increase of the inertance.
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Figure 6.13: Campbell Diagram - 6DoF with Inerter

Preposition 4: The natural frequency ωn of an 6DoF Rotor System
with two inerter are deacreasing function of the inertance vx1 and vx2. Thus,
inerter can reduce the natural frequency of an 6DoF Rotor System like di-
mostred in the figure (6.14).

Forced Response

As in previous case it can calculated the Forced Lateral Response. The
response can be obtained as a funcion of rotational speed which is shown in
Figure (6.14). This response is similar at the response shown in Figure (3.5).
Also in this case it has six peaks in the response because our system, has six
Degree of freedom, thus six critical speeds. Looking at the diagram it can be
also infered that the magnitude of the first and second frequency response,
with the introduction of the inerter, is reduced along the x-axis.

FRF =
1[

−Ω2[M ] + jΩ(Ω[G] + [C]) + [K]
] (6.52)
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Figure 6.14: Inertance Diagram - 6DoF with Inerter

Figure 6.15: Response of a Rigid Rotor - 6DoF with Inerter
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Equation of motion

The equations of motion for this system of 6DOF were obtained, as mentioned
earlier, using Maple. To confirm of what has been achieved is correct in terms
of equations and formulas the stiffness and inertance are given the following
values:

ky1 = 1 · 1012N/m (to infinity)
ky2 = 1 · 1012N/m (to infinity)
v = 0.001 kg (to zero)

Then, using the data [6.29] are obatained the results of the 4dof system.
This allowed us to confirm that the equations developed by Maple for the
system to 6DOF are fair and the results obtained are reliable.



Chapter 7

Design of Fluid Inerter

7.1 Introduction

This chapter presents the mechanical design and implementation of a fluid in-
erter realized in Dynamics Laboratory at Institute of Sound Vibration (ISVR)
at University of Southampton.

7.2 Fluid Inerter Modelling

Consider a piston and cylinder driving fluid through a helical tube surroind-
ing the cylinder, as shown in Figure (7.1)

Figure 7.1: Piston and Cylinder fluid inerter

Let F be the equal and opposite force applied to the terminals and x be
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the relative displacement between them. An ideal inerter is described by the
following equation:

F = bẍ (7.1)

where b is the inertance (costant of proportionality) in the unit of kg.
The inertance of ideal inerter [13] for a fluid inerter device is:

b = ρl
A2

1

A2

(7.2)

where A1 is annular area of the main cylinder, A2 is channel cross sec-
tional area, ρ is fluid density and l is channel length.

Large value of inertance are depends by:

• ρ density of the fluid inerter: the value of inertance depends on the
fluid: with low density (i.e air) the inertance will be low while with
high density (i.e oil or water) the value of the inertance will be higher
compared to the first case.

• l channel length: the value of inertance depends on l, increasing l
increases the inertance of the system and deacreasing l deacreases the
inertance b.

• A1

A2
ratio of the piston area to the channel area: increasing A1 increases

also the inertance of the system and increasingA2 reduces the inertance.

To build the fluid inerter the following cylinder double acting both double
ended was used. The cylinder has the following characteristics:

• Piston area A1 = 1.1 · 10−3m2

• Channel area A2 = 28.2 · 10−6m2

• Channel length: 1.68m

• Cylinder Type: Double Acting Double Ended Rod

During the experiment the copper pipe was replaced by a rubber tube to
have less losses in the curved parts. Once built, the inerter was placed on a
test bench for testing.
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Figure 7.2: Cylinder fluid inerter

Figure 7.3: Caracteristics of Cylinder fluid inerter

Figure 7.4: Copper pipe and Rubber tube
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Figure 7.5: Cylinder with copper pipe and rubber tube

Figure 7.6: Fluid Inerter - Test Bench
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7.3 Test Bench

The schematic of the test bench realised at the University of Southampton
is the following:

Figure 7.7: Schematic of experiment with fluid inerter

where the characteristics of the individual components of the scheme are:

Hydraulic shaker of Fairey Industry

Figure 7.8: Hydraulic Shaker
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Equipment:

The hydraulic shaker assembly is comprised of:

• 1 shaker unit

• 1 hydraulic pump

• 1 servo controller

It should be noted that it is difficult to determine exactly which specifi-
cation of shaker is being used, the situation being further complicated by the
hydraulic pump producing 800 psi (pump is specified max 1000 psi) rather
than the 3000 psi stated in the documentation.

Force:

From the available documentation on the low thrust vibration the maximum
force (adjusted for pressure difference) is between 890 to 2850N.

Stroke:

The absolute maximum movement that can be obtained by the shaker is 100
mm, though this reduces with frequency. At 5 V peak to peak at a gain of
5, which was the input limit for smooth motion during testing, stroke was
seen to be 40mm at 1Hz reducing with frequency to approximately 20mm at
10Hz.

Hydraulic Cylinder:

The Hydraulic cylinder (Double Acting Double Ended Rod-28-2) used to
realize the inerter has the dimensions shown in Figure (7.10).

• BORE: 1 + 3/4 [inch]

• ROD: 1/2 [inch]

• PORT: 1/4 [inch]

To calculate the inertance of the ”Fluid Inerter” the following Matlab
Code was used:
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Figure 7.9: Hydraulic Cylinder

1 %Inertance:
2

3 BORE=1+3/4;
4 ROD=1/2;
5 PORT=1/4;
6

7 Db=(BORE/0.039370)*(10ˆ-3);
8 Dr=(ROD/0.039370)*(10ˆ-3);
9 D2=(PORT/0.039370)*(10ˆ-3);

10

11 rho=950 density of particolar oil;
12 l=1.42; % in meter
13

14 A1=(Dbˆ2-Drˆ2)*(pi/4) % Piston Area
15

16 A2=(pi/4)*D2ˆ2 %Channel Area
17

18 b=rho*l*(A1ˆ2/A2) %valore in kg
19 %b = 86.5119kg

Kistler Gauge Force:

The Kistler Gauge Force is a component force sensor for measuring dynamic
and quasi-static forces in z direction. Measuring range 0-90000N, Tempera-
ture -196-200C.

• Very compact

• Extremely high rigidity
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• Threshold < 0, 01N , indipendent of measuring range.

Figure 7.10: Gauge Force

Mounting:

The load washers must be installed between two plane-parallel, rigid and fine-
machined (preferably ground) faces. This is necessary to achieve a good load
distribution on one hand and a wide frequency response on the other hand.
The load washers should always be installed under preload. The reasons are:

Figure 7.11: Mounting Sensor Type 9031A

• the sensor is fixed in this way
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• measuring compression and tension

• the faces are pressed together which allows to benefit fully

• of the rigidity of the sensor

Other Components:

Signal Generator:

Signal Generator. Hewlett Packard. 15 Mhz Function / Arbitrary wave form
generator

Figure 7.12: Signal Generator - Hewlett Packard

Oscilloscope:

Oscilloscope. HM 203-s. 20Mhz

Figure 7.13: Oscilloscope
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Preliminary operation:

• The hydraulic cylinder was fixed to the support with the help of a
Clevis Bracket designed for our inerter.

• The Kistel Gauge Force was mounted between the inerter and the
shaker with the help of two aluminum plates.

• The accelerometer PCB Piezotronics was insert in the inerter.

• The signal generator for position control of the shaker and the oscillo-
scope were used to observe the change of sinusoidal signal over time.

Matching between Shaker and Signal Generator:

The matching between volt and shaker position is measured positioning a
graduate scale in centimetre (from -10 cm to 10 cm) under the shaker as
shown in Figure (7.16)

Figure 7.14: Matching the displacement value on the graduate scale and
voltage value on the oscilloscope

The start position is 0 cm and the signal of transducer visualized on
the oscilloscope is 0 V. By moving the shaker using the Signal Generator
(Hewlett Packard), the transducer response in volt changes visualizing the
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corresponding voltage value on the oscilloscope. The measure matching in
centimetres is obtained reading the displacement on the graduate scale.

The matching scale from volt to cm was found to be 2V = 1cm and is
represented with a graph in the Figure (7.17):

Figure 7.15: Matching Volt-cm

Test Bench Complete:

In the following figure is reported the complete Test Bench realized for the
experiments in dynamics laboratory at University of Southampton.

7.4 Test and results

This part of the chapter presents the testing of the Fluid Inerter proper-
ties under different loads, amplitutes and frequencies. The Hydraulic Shaker
was employed to obtain under different load and dimensions the data men-
tioned above. The load range for this experiment is from 0 to 2850N and
the frequency range is from 0 to 5Hz. The Force Gauge 208/C01 and the
Accelerometer are used to obtain the Force and Inerter displacement under
this condition. The aim is to demostrate that a fluid inerter was realized.
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Figure 7.16: Test Bench configuration when completed

For this experiment, the parasitic damping caused by frictional losses in the
fluid can be considered to act in parallel to the device inertance as shown in
Figure (7.17).

Figure 7.17: Model of fluid inerter with parasitic damping

The force Fd due to parasitic damping is taken to be a function of the
strut velocity, and the force due to inertance is considered ideal and a linear
function of the acceleration:

F = Fd (ẋ2 − ẋ1) + b (ẍ2 − ẍ1) (7.3)

where x1 and x2 are the position of the device terminals and b is the iner-
tance of fluid inerter given by Equation [4.27] reported here for convenience.
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b = ρl
A2

1

A2

(7.4)

During the experiments different values of inertance are obtained by vary-
ing the channel length l. The density ρ of the oil (Engine oil SAE-30) used
is 950 kg/m3. Engine oils are generally formulated oils. The characteristics
of the oil used in the experiments in terms of kinematic viscosity and density
over temperature are shown in Figure (7.20).

Figure 7.18: Kinematic viscosity and Density over temperature

Force due to inertance

The force due to inertance can be obtained by solving the caratteristic equa-
tion of ideal inerter [4.19] repeated here for convenience:

F = bẍ (7.5)

Letting:
x = Acos(ωt) (7.6)

and differentiating this equation twice with respect to time gives:

ẍ = −ω2Acos(ωt) = −ω2x (7.7)

where A depends by the matching map shown in Figure (7.17) and ω
depends by frequency.
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Example For Voltage=10V the shaker dispalcement is |5| cm, thus A =
0.05m. If the frequency is 5Hz, ω = 5 · 2π = 31.42 rad/sec. Hence, the
acceleration is: ẍ = ω2 · A = 49.35m/s2. Now, if b = 60 kg, using the
equation [7.5] is possible to calculate the force due to inertance:

F = bẍ → F = 60 · 49.35 = 2961N

Experimental results of the fluid inerter

In the Dymanics Laboratory, a test bench for experiments was realised (Fig-
ure 7.7 and 7.8) and the results for testing the fluid inerter proprieties under
different load, amplitude and frequency are presented in this Section. From
the behaviour showed in the experimental results, in particular in test 1 to
5, it can be concluded that the device built is a fluid inerter.

Test 1:

The data used for this experiment are:

• Voltage=1.5 volt

• Frequency=1Hz

Sinusoidal responses from the testing of the external-helix inerter with Engine
oil SAE-30 are reported in the Figure (7.19).

Is possible to calculate the Equation [7.3] for each case. The force damp-
ing is calculated from the area of diagram Force-Displacement using the
following Equation:

Fd = c =
Area

π · ω ·maxdisp2
(7.8)

Where the area is calculated using Matlab. For this Test 1 the force
damping and the force due to inertance are reported following:

F1 = Fdamping + Finerter (7.9)

Fdamping = Fd (ẋ2 − ẋ1) (7.10)

Finerter = b (ẍ2 − ẍ1) (7.11)
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Figure 7.19: Test 1
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Figure 7.20: Force-Displacement diagram

Test 2:

The data used for this experiment are:

• Voltage=1.5 volt

• Frequency=2Hz

Sinusoidal responses and the diagram Force-Displacement from the test-
ing of the external-helix inerter with Engine oil SAE-30 are reported in the
Figure (7.23 and 7.22).

Test 3:

The data used for this experiment are:

• Voltage=1 volt

• Frequency=3Hz

Sinusoidal responses and the diagram Force-Displacement from the test-
ing of the external-helix inerter with Engine oil SAE-30 are reported in the
Figure (7.23 and 7.22).
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Figure 7.21: Test 2
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Figure 7.22: Test 2 and 3
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Figure 7.23: Test 3
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Figure 7.24: Test 4 and 5
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Test 4:

The data used for this experiment are:

• Voltage=2volt

• Frequency=2Hz

Sinusoidal responses and the diagram Force-Displacement from the test-
ing of the external-helix inerter with Engine oil SAE-30 are reported in the
Figure (7.25 and 7.24).

Test 5:

The data used for this experiment are:

• Voltage=4volt

• Frequency=5Hz

Sinusoidal responses and the diagram Force-Displacement from the test-
ing of the external-helix inerter with Engine oil SAE-30 are reported in the
Figure (7.24 and 7.26).

Test 6:

The data used for this experiment are:

• Voltage=7volt

• Frequency=3Hz

Sinusoidal responses and the diagram Force-Displacement from the test-
ing of the external-helix inerter with Engine oil SAE-30 are reported in the
Figure (7.27 and 7.28).
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Figure 7.25: Test 4
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Figure 7.26: Test 5
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Figure 7.27: Test 6
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Figure 7.28: Force-Displacement diagram

Conclusion Esperiment

From the behaviour showed in the experimental results, in particular in test
1 to 6, it can be concluded that the device built is a fluid inerter because the
Displacements and Forces are in opposite phase.
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This script is shows the Matlab Cod that I use to obtain the Force and
Displacment diagram reported in the Figure (7.21, 7.22, 7.23, 7.24, 7.25 and
7.26).

1 load file from nomefile.txt
2 num=dlmread('07v3hz.txt');
3 t=linspace (0,8,1024)';
4 y=num(:,1);
5 y1=num(:,2);
6

7 %Plot Force and displacement
8 figure(1); hold on;
9 plot(t,y); plot(t,y1);

10 xlabel ('Time [sec]')
11 ylabel ('Tension [V]')
12 title('Test 1: ')
13 grid on;
14

15 %Plot Force and displacement
16 figure(2);
17 subplot(2,1,1), plot(t,y);
18 xlabel ('Time [sec]')
19 ylabel ('Displacement [cm]')
20 title('Test 1: ')
21 subplot(2,1,2), plot(t,y1);
22 xlabel ('Time [sec]')
23 ylabel ('Force [kN]')
24 grid on;
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Conclusion

Since their for appearance reported in [1], Inerters have become a hot topic
in recent years, spreading to a variety of applications especially in vehicle
[2], train [3], building suspension system [4], etc. Automotive suspensions
are design to provide many functions ranging from vibration isolation of
the passenger compartment to control of road inputs and vertical tire loads
to optimize braking, acceleration and handling. The interest in improving
and optimizing suspensions has become of great importance in the academic
community and automotive manufactures. In Chapter 5 is reported a pre-
liminary optimisation study of the possible benefits of the application of an
inerter to an automotive suspension. For some relatively simple struts it
was shown that improvements could be obtained in a quarter-car vehicle
model across a wide range of static suspensions stiffnesses. Improvements
of about 10% or greater were shown for measures of ride, tyre normal load
and handling. Furthermore in case of rotors (i.e turbines, electric motors) no
existing applications is reported. It was hence very interesting to understand
the potentiality of inerter applications to rotordynamics systems. In this
thesis, mathematical and numerical simulations are used to investigate the
performance and stability of a rigid rotor on flexible supports with different
configurations of inerter. The experimental results conducted on a manufac-
tured inerter are also reported.

Firstly, the first part of this thesis (Chapter 2 and 3) developed the equa-
tions of the motion for a rigid rotor on flexible support using Maple code.
The Equations [2.6] represent the dynamics of the rotors for Isotropic Flexi-
ble Support and the Equations [2.14] represent the dynamics of the rotors for
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Anisotropic Flexible Support. In Chapter 2.5 the effect of viscous damping in
the bearing (Figure 2.3) was taken into consideration in order to obtain the
Equations [2.29].Then, Chapter 3 examined how the rotor bearings systems
respond to force and found the response to a mass eccentricity of 0.1mm.
The results is reported in the Figure 3.3 for Isotropic Supports and Figure
3.5 for Anisotropic Supports. It was then possible to define the critical speed
for the rotor system. It is clear from the Campbell Diagram, shown in Figure
(3.4), that there are four critical speeds in four degrees of freedom model of
a system.

The objective of the second part of this thesis (Chapter 6) is to study fun-
damental influence of inerter on the natural frequencies of vibrations system.
The fact that inerter can reduce the natural frequencies of vibration system
is theoretically demostrated in this chapter and the question that how to
efficiently use inerter to reduce the natural frequencies is also adressed. The
traditional methods to reduce the natural frequencies of an elastic system
are either deacreasing the elastic stiffness or increasing the mass of vibra-
tion system. It is shown in the Chapter 6 that a parallel-connected inerter
can also effectively reduce natural frequencies. From the Chapter 6 we can
conclude that:

Single DoF System with Inerter

For a S-DoF Rotor system with inerter shown in Figure (6.1), the equation of
motion of free vibration system is Equation [6.1]. The natural frequency ωn
of an SDoF Rotor System is deacreasing function of the inertance v. Thus,
inerter can reduce the natural frequency of an SDoF Rotor System.

Two DoF System with Inerter

For a 2-DoF Rotor system with inerter shown in Figure (6.2), the equation
of motion of free vibration system is Equation [6.7].The natural frequency ωn
of an TDoF Rotor System with two inerter are deacreasing function of the
inertance vx1 and vx2. Thus, inerter can reduce the natural frequency of an
TDoF Rotor System like dimostred in the Figure (6.3).
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4-DoF System with Inerter

For a 4 DoF Rotor system with inerter shown in Figure (6.4), the equation of
motion of free vibration system is Equation [6.17].The natural frequency ωn
of an 4DoF Rotor System with four inerter are deacreasing function of the
inertance v. Thus, inerter can reduce the natural frequency of an 4DoF Rotor
System like dimostred in the figure (6.6). However, the same result can be
obtained by increasing the total mass of the rotor without the introduction
of four inerter. Thus, it is concluded that the inerter increase the mass of
the rotor system.

5-DoF System with Inerter

For a 5-DoF Rotor system with inerter shown in Figure (6.8), the equation of
motion of free vibration system is Equation [6.40]. The natural frequency ωn
of an 5DoF Rotor System with one inerter in the y-direction are deacreasing
function of the inertance v. Thus, inerter can reduce the natural frequency
of an 5DoF Rotor System as proved in figure (6.10).

6-DoF System with Inerter

For a 6-DoF Rotor system with inerter shown in Figure (6.12), the equation
of motion of free vibration system is Equation [6.46].The natural frequency
ωn of an 6DoF Rotor System with two inerter are deacreasing function of the
inertance vx1 and vx2. Thus, Figure (6.14) shoes that the inerter can reduce
the natural frequency of a 6 DoF Rotor System.

The objective of the third and last part of this thesis (Chapter 7) it
is built in the Dynamics Laboratory of ISVR a Fluid Inerter (Figure 7.5
and 7.6). The fluid inerter implementation introduced in the Chapter [4]
and [5] is robust and durable due to its simple design. The device size is
comparable to ball screw implementations [2]. It is shown that the device
can be modelled as an ideal inerter in parallel with a parasitic damping
component. The inertance of the fluid inerter is estimated from the Equation
[7.2] and depends on the density of a fluid, on the channel length and on the
ratio of the piston area over the channel area. Changing these parameters
also change the value of the inertance. However, the value of annular area
and channel cross sectional area for the experiment are fixed. For this reason
the value of inertance depends only by the fluid density and channel length.
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In the Dymanics Laboratory, a test bench for experiments was realised
(Figure 7.7) and the results for testing the fluid inerter proprieties under
different load, amplitude and frequency are presented in Chapter 7 of this
thesis. From the behaviour showed in the experimental results, in particular
in test 1 to 6, it can be concluded that the device built is a fluid inerter.

Future Work

This thesis has investigated the influence of an inerter on the natural frequen-
cies of a rotor systems with singe to multiple degrees of freedom, the fact
that inerter can reduce the natural frequencies of these system was clearly
demonstrated. Future work could consist in testing the inerter device built in
ISVR at high frequencies and to prove that even for these high frequencies it
behave like an Inerter. Furthermore, this thesis investigated only numerically
the application of an inerter to rotor dynamic systems. A natural prosecution
of the work is the installation of such a device in a rotor (for example in a
turbine). Experimental data should prove that the application of the device
increases the overall mass of the system and decreases its natural frequencies
in the case of a rotor too.
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Appendix A

Mode Shape - Isotropic Case

Figure A.1: Rigid Rotor on Elastic Support

In Appendix A are presented the Mode Shape of the 4DoF rotor system
which is described in Chapter [2]. The Mode Shape are obtained used the
following data:

• m = 122.68 kg (mass of the rotor)

• a = b = 0.25m (distance bearing)
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• kx1 = ky11 · 106MN/m (stiffness)

• kx2 = ky2 = 1.3 · 106MN/m (stiffness)

• IP = 0.6134 kgm2 (polar inertia)

• Id = 2.8625 kgm2 (diametral inertia)

• Ω = 4000 rev/min rotor speed

For this System the Undamped Frequencies are: Undamp.1=21.3270Hz,
Undamp.2=21.5794Hz, Undamp.3=29.5823Hz, Undamp.4=43.6158Hz. The
Natural Frequency Map for 4-DoF rotor system is shown in Figure (A.2)

Figure A.2: Campbell Diagram

where the critical speed are:

• Point A = 134.8402 rad/sec 21.4927 Hz

• Point B = 135.2749 rad/sec 21.5042 Hz

• Point C = 204.7548 rad/sec 35.2565 Hz
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• Point D = 253.6948 rad/sec 36.4615 Hz

The Eigenvectors of the system are reported in the following table:

Mode 1 Mode 2 Mode 3 Mode 4
x(t) 1.00 0.77 0.04 0.01
y(t) 1.00 0.77 0.04 0.01
α(t) 0.60 1.00 1.00 1.00
β(t) 0.60 1.00 1.00 1.00

The Mode Shape are:

Figure A.3: Mode Shape: Mode 1

In the Figure (A.3), (A.4), (A.5) and (A.6) BW indicated the ”Backward
Mode” and the FW indicated the ”Foward Mode”. In the plane (α, β),
the orbit is a circle. The mode rotates in a clockwise direction and because
the positive rotor spin has been defined to be counterclockwise, is called a
backward mode, otherwise the mode rotates in the counterclockwise direction
and is called a foward mode.

The following script reports the partial Maple code used to obtain the
Mode Shape.
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Figure A.4: Mode Shape: Mode 2

Figure A.5: Mode Shape: Mode 3
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Figure A.6: Mode Shape: Mode 4

1 %PLOTTING Mode Shapes
2 %Mode1:
3 %Right Bearing
4 >xR := proc (theta); Re((.25*U[4, ix]+U[1, ix])*exp(I*theta));
5 >yR := proc (theta); Re(((-1)*.25*U[3, ix]+U[2, ...

ix])*exp(I*theta));
6 %Left Bearing
7 >xL := proc (theta); Re(((-1)*.25*U[4, ix]+U[1, ...

ix])*exp(I*theta));
8 >yL := proc (theta); Re((.25*U[3, ix]+U[2, ix])*exp(I*theta));
9 %Center of Gravity:

10 >xG := proc (theta); Re(U[1, ix]*exp(I*theta));
11 >yG := proc (theta); Re(U[2, ix]*exp(I*theta));
12 %ORBIT SHAPE:
13 >L := plot3d([xL(theta), yL(theta), -.25], theta = 0 .. 2*Pi);
14 >R := plot3d([xR(theta), yR(theta), .25], theta = 0 .. 2*Pi);
15 >G := plot3d([xG(theta), yG(theta), 0], theta = 0 .. 2*Pi, ...

linestyle = dash);
16 Mod1 := plots[display](L, G, R, title = "Mode 1 in 3D", ...

titlefont = [COURIER, BOLD, 12], axes = NORMAL, ...
linestyle = dash);

17 %SHAFT SHAPE:
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18 >axis f := PLOT3D(CURVES(subs(data, [[0, 0, -b], [0, 0, ...
a]])));

19 >t1 := cat("Nat freq 1=", nat freq1, "Hz");
20 >axis m := PLOT3D(CURVES(subs(data, [[xL(0), yL(0), -b], ...

[xR(0), yR(0), a]])));
21 >M1 := plots[display](Mod1, axis f, axis m, axes = none, ...

title = t1, color = red, thickness = 2, caption = ...
typeset("Mode 1"));

22 %ORBIT SHAPE:
23 >L := plot3d([xL(theta), yL(theta), -.25], theta = 0 .. 2*Pi);
24 >R := plot3d([xR(theta), yR(theta), .25], theta = 0 .. 2*Pi);
25 >G := plot3d([xG(theta), yG(theta), 0], theta = 0 .. 2*Pi, ...

linestyle = dash);
26 Mod1 := plots[display](L, G, R, title = "Mode 1 in 3D", ...

titlefont = [COURIER, BOLD, 12], axes = NORMAL, ...
linestyle = dash);

27 %SHAFT SHAPE:
28 >axis f := PLOT3D(CURVES(subs(data, [[0, 0, -b], [0, 0, ...

a]])));
29 >t1 := cat("Nat freq 1=", nat freq1, "Hz");
30 >axis m := PLOT3D(CURVES(subs(data, [[xL(0), yL(0), -b], ...

[xR(0), yR(0), a]])));
31 >M1 := plots[display](Mod1, axis f, axis m, axes = none, ...

title = t1, color = red, thickness = 2, caption = ...
typeset("Mode 1"));

32

33 %Mode 2
34 mode2; ix := 7; q;
35 .................
36

37 %Mode 3
38 mode3; ix := 3; q;
39 ..................
40

41 %Mode 4
42 mode4; ix := 1; q;
43 Right Bearing
44

45 plots[display](matrix(2, 2, [[M1, M2], [M3, M4]]));



Appendix B

Mode Shape - Anisotropic Case

Figure B.1: Rigid Rotor on Elastic Support

In Appendix A are presented the Mode Shape of the 4DoF rotor system
which is described in Chapter [2]. The Mode Shape are obtained used the
following data:

• kx1 = 1 · 106MN/m (stiffness)

• ky1 = 1.5 · 106MN/m (stiffness)
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• kx2 = 1.3 · 106MN/m (stiffness)

• ky2 = 1.8 · 106MN/m (stiffness)

The Undamped Frequencies are: Undamp.1=21.44Hz, Undamp.2=22.43Hz,
Undamp.3=30.26Hz, Undamp.4=44.40Hz.

The Mode shape are:

Figure B.2: Mode Shape: Mode 1

The Mode Shape of Anisotropic Case are obtained using the same Maple
Code of Isotropic Case (Appendix A)
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Figure B.3: Mode Shape: Mode 2

Figure B.4: Mode Shape: Mode 3



122 APPENDIX B. MODE SHAPE - ANISOTROPIC CASE

Figure B.5: Mode Shape: Mode 4



Appendix C

Mode Shape - 4DoF with
Inerter

5.jpg

Figure C.1: Rotor System with Inerter

Using the data reported in Appendix A the Mode Shape of the 4DoF
rotor system with inerter are Shown in Figure (C.2, C.3, C.4 and C.5). As
demonstrated in Chapter [6]. The natural frequency ωn of an 4DoF Rotor
System with four inerter are deacreasing function of the inertance v.
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Thus, inerter can reduce the natural frequency of an 4DoF Rotor System
as dimonstrated in the figure (6.6). The natural frequencies of the system
are reported in the following table where vx1 = vx2 = vy1 = vy2 = v = 60kg:

Without Inerter With Inerter (v = 60kg)
Mode 1 21.32 Hz 14.84 Hz
Mode 2 21.57 Hz 15.23 Hz
Mode 3 29.58 Hz 17.46 Hz
Mode 4 43.63 Hz 21.01 Hz

The Mode Shape of this system are:

Figure C.2: Mode Shape: Mode 1
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Figure C.3: Mode Shape: Mode 2

Figure C.4: Mode Shape: Mode 3
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Figure C.5: Mode Shape: Mode 4



Appendix D

Equation of motion

This Appendix presents the accurancy of the Equations [6.40] and [6.46] ob-
tained using Maple for 5DoF and 6DoF rotor dynamic system. The Equa-
tions of the motion for 4DoF free vibration system, including damping at the
supports and gyroscopic effects, are given in Equation [2.29] and are repeated
here for convenience:

Figure D.1: 4DoF Rotor System
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
mẍ+ cxT ẋ+ cxCα̇ + kxTx+ kxCα = 0

mÿ + cyT ẏ − cyC β̇ + kyTy − kyCβ = 0

Idα̈− IpΩβ̇ + cxC ẋ+ cxRα̇ + kxCx+ kxRα = 0

Idβ̈ + IpΩα̇− cyC ẏ + cyRβ̇ − kyCy + kyRβ = 0

(D.1)

It is helpful to express these equations in matrix form as:

Mq̈ + (C + ΩG) q̇ +Kq = 0 (D.2)

The mass, damping and the stiffness matrices, M , C and K are symmetric
and positive definite matrices. In contrast, the gyroscopic matrix G is skew-
symmetric. To determine the roots of Equations [2.29], it must rearrange the
equation in the followig form:[

C + ΩG M
M 0

]
d

dt

{
q
q̇

}
+

[
K 0
0 −M

]{
q
q̇

}
=

{
0
0

}

This is an Eigenvalue Problem was formed and solved numerically. The
four Natural Frequencies obtained used the following data are:

m = 122.68 kg mass of rotor

a = b = 0.25mdistance of the bearing from the center of rotor

kx1 = ky1 = 1 · 106MN/mStiffness

kx2 = ky2 = 1.3 · 106MN/mStiffness

cx1 = ky1 = 10Ns/mDamping

cx2 = ky2 = 13Ns/mDamping

IP = 0.6134 kgm2 Polar inertia

Id = 2.8625 kgm2Diametral inertia

Ω = 4000 rev/min rotor speed

(D.3)

• First Natural Frequency: ωn1= 21.340 [Hz]

• Second Natural Frequency: ωn2= 21.570 [Hz]

• Third Natural Frequency: ωn3= 29.580 [Hz]

• Fourth Natural Frequency: ωn4= 43.620 [Hz]
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5DoF Rotor Dynamic System

This system is different from previus cases because it has 5DoF as shown in
Figure

Figure D.2: Rigid Rotor - 5DoF with Inerter

The equation of the motion for this system are introduced using Maple
and are repeated here for convenience:



mẍ+ (cx1 + cx2) ẋ+ (kx1 + kx2)x+ (acx2 − bcx1) β̇ + (akx2 − bkx1) β = 0

(m+ vL) ÿ − vLÿL + cy2ẏ − ky1yL + (ky1 + ky2) y + (−aky2 + bky1)α+

−acy2α̇ + vLbα̈ = 0

(b2vL + Id) α̈ + cy2a
2α̇ + (a2ky2 + b2ky1)α− b (ky1yL + vLÿL) + β̇IpΩ+

+vLbÿ − acy2ẏ + (−akx2 − bx1) = 0

Idβ̈ − α̇IpΩ + (a2kx2 + b2kx1) β + (a2cx2 + b2cx1) β̇ + (acx2 − bcx1) ẋ+

+ (akx2 − bkx1)x = 0

ky11yL + cy1ẏL = ky1 (αb+ y − yL) + vL(α̈b+ ÿ − ÿL)

(D.4)
To confirm of what has been achieved is correct in terms of equations and

formulas the stiffness and inertance are given the following values:
ky1 = 1 · 1012N/m (to infinity)
v = 0.001 kg (to zero)
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Then, using the data [D.3] are obatained the same results of the 4dof
system.

• First Natural Frequency: ωn1= 21.280 [Hz]

• Second Natural Frequency: ωn2= 21.560 [Hz]

• Third Natural Frequency: ωn3= 29.480 [Hz]

• Fourth Natural Frequency: ωn4= 43.520 [Hz]

• Fifth Natural Frequency: ωn4= 16000 [Hz]

This allowed us to confirm that the equations developed by Maple for the
system to 5DOF are fair and the results obtained are reliable.

6DoF Rotor Dynamic System

To develop the equations of motion for this system, the Maple script is used
as for 5DoF system. This case has two inerters, one for each bearing. They
are positioned both along the y-axis. This rotor has six degree of freedom
because it can translate in the directions Ox and Oy and it also can rotate
about these axes. The fifth and sixth degree of fredoom are given by the
inerter.

Figure D.3: Rigid Rotor - 6DoF with Inerter



131

The Equations are repeated here for convenience:



mẍ+ (cx1 + cx2) ẋ+ (kx1 + kx2)x+ (acx2 − bcx1) β̇ + (akx2 − bkx1) β = 0

(m+ vL+ vR) ÿ − vLÿL − vRÿR − ky2yR − ky1yL + (ky1 + ky2) y+

+(−aky2 + bky1)α + (−avR + bvL)α̈ = 0

(a2vR + b2vL + Id) α̈ + (−avR + bvL)ÿ + (a2ky2 + b2ky1)α− b (ky1yL + vLÿL) +

+ (−aky2 + ky1) y + IpΩβ̇ + a (ky2yR + vRÿR) = 0

Idβ̈ − α̇IpΩ + (a2cx2 + b2cx1) β̇ + (acx2 − bcx1) ẋ+ (akx2 − bkx1)x+

+ (a2kx2 + b2kx1) β = 0

ky11yL + cy1ẏL = ky1 (αb+ y − yL) + vL(α̈b+ ÿ − ÿL)

ky22yR + cy2ẏR = ky2 (−αa+ y − yR) + vR(−α̈a+ ÿ − ÿR)

(D.5)
To confirm of what has been achieved is correct in terms of equations and

formulas the stiffness and inertance are given the following values:

ky1 = 1 · 108N/m (to infinity)
ky2 = 1 · 108N/m (to infinity)
v = 0.001 kg (to zero)

Then, using the data [D.3] are obatained the same results of the 4dof
system.

• First Natural Frequency: ωn1= 21.260 [Hz]

• Second Natural Frequency: ωn2= 21.540 [Hz]

• Third Natural Frequency: ωn3= 29.380 [Hz]

• Fourth Natural Frequency: ωn4= 43.380 [Hz]

• Fifth Natural Frequency: ωn4= 16000 [Hz]

• Sixth Natural Frequency: ωn4= 16000 [Hz]

This allowed us to confirm that the equations developed by Maple for the
system to 6DOF are fair and the results obtained are reliable.


