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Abstract

Constructing a data mining workflow depends at least on the collected dataset and the
objectives of users. This task is complex because of the increasing number of available
algorithms and the difficulty in choosing the suitable and parametrized algorithms. More-
over, in order to decide which algorithm has the best performances, data scientists often
need to use analysis tools to compare performances of different algorithms. The purpose
of this project is to lay the foundations of a software system that leads the construction of
such workflows into the right direction toward the best ones.
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Chapter 1: Introduction

1.1 Supervised Classification

Mobile sensors and social networks are only a few examples of applications that gen-
erate a huge amount of data each day. Such a collected big data can be analysed and
new valuable knowledge can be extracted from it. The overall goal of data mining is to
extract valuable information from datasets in order to retrieve new knowledge for further
use. In the data mining field there exist several problems, one of which is the supervised
classification problem. In order to explain better what supervised classification means,
Table 1.1 reports an extract of the Iris dataset. Iris is a genus of one flowering plant,
and its genus is defined according to the sepal length, sepal width, petal length and petal
width of each flower. In the Iris dataset, each flower is one row of the dataset. In this
example, there are three genuses: Iris-setosa, Iris-versicolor and Iris-virginica. In the first
six rows of the dataset the Iris genus is known, but in the last one it is unknown. The goal
of classification is to predict the right Iris genus for each flower where we do not know
its genus, in this case the last row of the dataset. Predictions are made by a classification
algorithm. Supervised classification means that before predicting the Iris genus, the clas-
sification algorithm needs to learn some rule from the flowers with a known Iris genus.
That is, the algorithm needs to be trained in order to build a model that knows how to
predict the Iris genus. Let K be the subset of the flowers with a known Iris Genus, in this
example the first six rows of the dataset. Once we choose a classification algorithm and
we build a model that is able to predict the Iris genus, how can we know if the predicted
genuses are the correct ones? We need to evaluate whether the predictions done by the
model are good or not. We can check the performances of the model by making it predict
the Iris genuses of the flowers that we already know. To this purpose, we divide K in two
datasets, K1 and K2, such that K1 ∩K2 = /0 and K1 ∪K2 = K. K1 is the training set, and
it is used to train the classification algorithm and to build the model, while K2 is the test
set, and it is used check if the predictions done by the training model correspond with the
acutal Iris genus of the flower. In order to check the performances of the model, we can
calculate the accuracy, which is the percentage of correct predicted instances of the test
set. After the evaluation, if the accuracy obtained by the model is good, the same model
can be used to predict the Iris genus of the flowers with an unknown genus. Otherwise,
we should build a different model that leads to a better accuracy during the evaluation of
the model.
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1. Introduction

Sepal Length
(cm)

Sepal Width
(cm)

Petal Length
(cm)

Petal Width
(cm)

Iris Genus

... ... ... ... ...
5.1 3.5 1.4 0.2 Iris-Setosa
4.9 ? 1.4 0.2 Iris-Setosa
6.4 3.2 4.5 1.5 Iris-Versicolor
6.9 3.1 4.9 1.5 Iris-Versicolor
6.5 3.0 5.2 2.0 Iris-Virginica
6.2 3.4 5.4 2.3 Iris-Virginica
6.3 3.1 4.2 1.8 ???
... ... ... ... ...

Table 1.1: Subset of Iris Dataset

1.1.1 Vocabulary

This section aims to define well the terminology used in this report to refer to clas-
sification problems. For non-data scientist readers, it may be not so easy to understand
fully the concepts illustrated here if they do not know the proper terminology. Further-
more, different terminologies are used in other books or articles, so sometimes it is hard
to understand well the content of an article if the terminology is not well specified. The
Iris dataset shown in Table 1.1 is used as an example dataset. The terminology used in
this report can be summarized in the following terms:

• Instance: each row of the dataset is one instance.

• Attribute: each column of the dataset is one attribute. Examples of attributes are:
”sepal length”, ”sepal width”, ”petal length”, ”petal width” and ”Iris genus”.

• Missing Value: each instance contains one value for each attribute. If, for any
attribute, the value is not known, it is a missing value. An example of a missing
value is the value ”sepal width” of the second instance.

• Numeric Attribute: one attribute is numeric if it contains only numeric values. Ex-
amples of numeric attributes are ”sepal length”, ”sepal width”, ”petal length” and
”petal width” are numeric attributes.

• Nominal Attribute: one attribute is nominal if it contains only categories (text val-
ues). ”Iris genus” is an example of nominal attribute.

2



1. Introduction

Figure 1.1: General Supervised Classification Workflow

• Class Attribute: it is one attribute of the dataset that identifies the class of each
instance. In the classification problems, the class attribute must be nominal, it
cannot be numeric. In the Iris dataset, the class attribute is ”Iris genus”.

• Class Label: each instance contains one class label, which is the value of the class
attribute. An example of class label is ”Iris-Setosa”.

• Multi-Class vs Binary-Class Problem: If the class attribute contains more than two
distinct categories, the classification problem is a multi-class problem. Otherwise,
it is a binary class problem (called also two-class problem).

• Classifier: synonym of ”classification algorithm”.

1.1.2 Supervised Classification Workflows

A supervised classification process can be defined as a workflow of phases, as shown
in Figure 1.1. An optional pre-processing to apply to the dataset is the first phase. The
purpose of pre-processing is either to make the dataset compatible with the classification
algorithm that we want to apply on it, or to modify the data in order to expect better
accuracies when predicting classes. Typical pre-processing techniques are:

• Data Selection: only the relevant attributes are selected from the dataset.

• Data Cleaning: for example, if the dataset contains some missing values and the
chosen classifier cannot deal with missing values, we need to replace them with
another value.

3



1. Introduction

• Data Transformation: the original data is transformed into a different kind of data.
For example, numeric attributes may be discretized into nominal attributes, or trans-
formed into a different scale, etc...

After the pre-processing phase, we need to choose a classification algorithm to apply
on the pre-processed dataset. In the data mining literature there exist a lot of classifi-
cation algorithms, each one with different performances. Some algorithms have some
parameters to be set, and different values assigned to these parameters may change the
performances of the classification algorithm. The last phase of the workflow is the evalu-
ation of results. Once we have defined a pre-processing technique, chosen a classifier and
set its parameters, we want to test whether the workflow will lead to good performances
or not with an evaluation method. The simplest evaluation method is to train the classifier
on one training set, to test it on one test set, and to calculate the accuracy obtained as
performance indicator. Anyway, the accuracy obtained on only one test set may not be
a good performance indicator, because it may not represent well the future instances to
be predicted. In order to have an evaluation more statistically sound, we may train and
test the classifier on several training sets and test sets. An evaluation method that does
this is the N-fold cross validation, which evaluates for N times a classifier on different
training sets and test sets. Let K be the dataset used in the evaluation phase, where in
each instance the class label is known. Then, K is divided into N folds, K1,K2, ...,KN ,
and for N times, (N-1) folds are used as training set and 1 fold is used as test set. The
final accuracy is the average of the N accuracies found on each of the N test sets. If the
accuracy obtained during the evaluation is good enough, the evaluated model can be used
to predict future instances with unknown class labels, otherwise it should be changed.
There are three ways to change the workflow:

1. change the pre-processing technique applied to the original dataset

2. choose a different classifier

3. set different values to the parameter

Each one of these changes leads to a different workflow that can obtain better or worse
accuracies in the evaluation phase.

1.2 Motivations

When there is a classification problem to be solved, data scientists, according to their
knowledge and to their experience, know the best practices that solve it the best. They

4



1. Introduction

know how to manipulate the problem and which algorithms will probably lead to the best
results. On the other hand, non-expert users neither know the best practices nor have
any experience in the data mining field. Both for data scientists and non-expert users,
there exist a lot of platforms that help them in building workflows. Section 1.2.1 reports
the state of the art of such existing systems. Currently, we are implementing a system
that leads users into the right direction in finding their most suitable workflow, depending
on the problem to be solved. Section 1.2.2 reports the differences among the existing
platforms and the system that we are implementing, called ROCKFlows 1.

1.2.1 State Of The Art

Data scientists can use platforms like Weka [6], Orange [10], KNIME [11], Rapid-
Miner [12] and ClowdFlows [14] [15], in order to build workflows more easily. On these
platforms, users can create and execute workflows by selecting a set of components and
by connecting them. Figure 1.2 shows an example of a workflow built on Weka’s knowl-
edge flow, which allows to build workflows by dragging and dropping components on the
screen and to connect them easily by using arrows.

Although such platforms are useful for data scientists, they may be a little bit com-
plex for non-expert users. For them, it may be more helpful a system that either solves
automatically the problem, or advise a set of suitable workflows to use, or suggests the
components to select. Big companies have proposed their own cloud platforms, which
aim to be such a system. The IBM Watson platform [18] offers an interface to analyze
unstructured data (such as text files) and take as input questions in plain English. Then,
the system presents answers to the questions submitted by analyzing automatically the
dataset given by the user. Amazon’s product [17] is a black box similar to the IBM’s
platform, but it is focused on supervised classification and regression problems. The
workflow is built and executed automatically by the platform, and minimal responsibil-
ity for the choice of the workflow is left to the users. On the other hand, the solution
proposed by Microsoft Azure [16] is different both from IBM’s and from Amazon’s plat-
form. Instead of finding the solution automatically for users, it gives them advices on
which components to select, based on the known machine-learning best practices. Figure
1.3 shows the Microsoft cheat sheet that orients users in choosing the proper classification
algorithm, in case of two-class classification problems.

Finally, there exists a system born in the academic world, named MLBase [13]. It aims
to free users from the algorithm choice by building a sophisticated cost-based model. It
provides early answers to the users, then it keeps working in background while users use

1ROCKFlows stands for Request your Own Convenient Knowledge Flows.
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Figure 1.2: Example of a Workflow built on Weka’s Knowledge Flow.

the system, in order to optimize and to improve the workflow.

1.2.2 ROCKFlows Features

ROCKFlows aims to lay the foundations of a system intended both to data scientists
and to non-expert users. Data scientists are free to build their desired workflows, while
non-expert users can ask the system to select automatically components of the workflow.
For example, if data scientists want to use a specific algorithm, they are free to choose it.
Similarly, if non-expert users do not know which algorithm is better to use, the system
will select one of the most suitable algorithm depending on their dataset. With respect
to the Weka knoledge flow (Figure 1.2), users do not need to select and to connect the
components with arrows. Once the components are selected, ROCKFlows knows how
to connect them and how to build the workflow. Similar to the IBM Watson platform,
ROCKFlows asks users questions in plain english, and they answer by choosing one on
the available pre-built answers. Figure 1.4 reports an example of questions / answers

6
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Figure 1.3: Microsoft Azure cheat sheet that orients users in choosing the proper
classification algorithm, in case of two-class classification problems

Figure 1.4: GUI of ROCKFlows: questions are asked in plain english, and users answer
by selecting pre-built answers

asked by the GUI of ROCKFlows.
With respect to the solution proposed by Microsoft Azure (Figure 1.3), ROCKFlows

aims to consider workflows which does not correspond necessarily to knwon best prac-
tices. Our purpose is to explore more the space of the solutions of machine learning
workflows. For example, in the two-class classification problem, Microsoft Azure advise
only nine algorithms, depending on the dataset properties, on the speed of training and
on the level of accuracy that users want. Finally, with respect to MLBase, the objective
of ROCKFlows is not to keep working in background in order to improve the workflows
advised to the users. ROCKFlows aims to predict right away the most suitable workflows,

7



1. Introduction

without comparing all the possible workflows in background in order to find the best one.

1.3 Goals Of The Internship

The work done for this internship is the theoretical research that there is behind
ROCKFlows. For starters, we face only the supervised classification problem. The main
goal of this internship is to define a strategy that let ROCKFlows predict right away the
most suitable workflows to the users, without comparing the performances of different
workflows as the Amazon or MLBase solutions do. To reach this goal, ROCKFlows needs
to know in advance the performances that workflows will have on the user’s dataset, that
is, it should be able to skip the evaluation phase. From users’ point of view, the most
suitable workflow can be either the one who reaches the best accuracy on their datasets,
or the one who reaches a good accuracy by respecting, in the same time, some users’ con-
straints. Users’ constraints may concern the performances of the execution of workflows,
for example, the total time of execution of workflows or the amount of RAM occupied by
the process executing the workflow. To this purpose, the second goal of this internship is
to predict both the time of execution of a workflow and the memory used by the process
executing it, depending on the user’s dataset.

1.4 Challenges

As explained in Section 1.1.2, when we build a classification workflow we need to
choose at least three components:

• An optional pre-processing technique to apply to the dataset

• A classification algorithm to choose

• The values for the parameters requested by the classifier

The first challenge of this internship is the high variability coming from the construc-
tion of workflows. Each modification to one of these three components leads to a different
workflow. So, even if we would like to compare all the possible workflows among them
in order to find the most suitable for the user, it would be impossible because of the huge
time that we should wait. This is also one of the hot topic research in the data mining
field. In terms of accuracy, predictions of workflows would be easier if, among all the
classification algorithms that exist in the literature, only one of them had always better

8
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accuracies than the others. That is, the construction of workflows would be easier if we
had to select only one classifier because it is always the best regardless the users’ datasets.
Unfortunately, the No-Free-Lunch Theorem [2] states that the best classifier will not be
the same for each dataset. The same holds for the pre-processing choice. The applica-
tion of a pre-processing technique on the user’s dataset changes the performances of the
algorithms of classification, and in the data mining literature there does not exist one pre-
processing technique that guarantees always the best performances than the others. The
second challenge of this project is to know in advance the performances that workflows
will have during their execution, without doing the evaluation phase. That is:

• How can we predict the accuracy that a workflow will have on users datasets,
without doing the evaluation phase?

• How can we predict the total time of execution that a workflow will have on users
datasets, without doing the evaluation phase?

• How can we predict the memory usage that the process executing the workflow will
have on users datasets, without doing the evaluation phase?

9





Chapter 2: Related Work

The most related work to the research done for this internship is the paper written
by M.F.Delgado et al. (2014): Do we Need Hundreds of Classifiers to Solve Real World
Classification Problems? Journal of Machine Learning Research 15 3133-3181. This
paper does not consider all the phases of a general workflow as we do in this project,
it is focused on the choice of the best classification algorithm for solving supervised
classification problems. In order to know which classifiers work best in general, the
authors have tested 179 classifiers on 121 datasets, of which 117 coming from the UCI
repository [5]. About the 179 classifiers, they have tested the implementation of the same
algorithms done on different frameworks, such as R [7], Weka [6], C and Matlab (by
using the Neural Network Toolbox) [8].

Regarding the pre-processing, they have applied the same pre-processing to each
dataset. At first they have converted all the nominal attributes into numeric attributes by
using a simple quantization: if a nominal attribute x may take discrete values {v1, ...,vn}
when it takes the discrete value vi it is converted to the numeric value i ∈ {1, ...,n}. Then,
they have standardized each attribute, so in the end each attribute is numeric, where its
mean is equal to zero and its standard deviation is equal to one. Finally, they have re-
placed all the missing values with the value 0. Apart from these operations, they have not
done any further pre-processing. For each classifier, the authors have reported the values
assigned to its parameters. Anyway, some parameters need to be tuned on the specific
dataset before being assigned. In this case, the authors have tuned them on a validation
dataset, which is extracted by each of the tested dataset before evaluating the algorithm.
The validation dataset is formed by one training set and by one test set. The training set
contains the 50% of the total number of instances of the dataset, while the test set con-
tains the remaining 50%. About the datasets of the UCI repository [5], some of them are
already separated in one training set and one test set, while others are defined in a unique
file. For the evaluation phase, the authors have decided to use two different evaluation
methods. If the dataset is defined in a unique file, the classifier (with the tuned parameter
values) is evaluated with a 4-fold cross validation, otherwise, it is trained on the given
training set and tested on the given test set.

As results of the paper, the authors have reported a final ranking of the 179 classifiers,
where for each classifier they have calculated the Friedman rank [3], the average accuracy
obtained on the 121 datasets and the Cohen k [4] as performance indicators. From their
experiments, the authors have found that the algorithm that obtained the best results is
Random Forest implemented in R and accessed via caret, which achieves 94.1% of the
maximum accuracy, while the second best one is the SVM with Gaussian kernel imple-
mented in C using LibSVM, which achieves 92.3% of the maximum accuracy. As conclu-

11



2. Related Work

sion, they have compared the families of classifiers. They say that random forest is clearly
the best family of classifiers (3 out of 5 bests classifiers are RF), followed by SVM (4 clas-
sifiers in the top-10), neural networks (5 members in the top-20) and boosting ensembles
(3 members in the top-20). In order to make the experiments reproducible, the authors
have made their 121 pre-processed datasets available for download 1. Furthermore, for
each dataset, they have also published two files: conxuntos.dat defines the validation
dataset used for the parameter tuning of the algorithms, while conxuntos kfold.dat

defines the folds used by the 4-fold cross validation.

2.1 Critics

The results reported into the paper are very interesting and show that, generally, there
are some families of classifiers that work better than the others. Since in general we ob-
tain good performances with the Random Forest or Svm families of classifiers, we could
base the choice of the classification algorithm only by considering these two families of
classifiers. Anyway, their experiments present five points that may change the results
reported by the authors:

1. In the evaluation phase, they use two different evaluation methods in order to cal-
culate the same final ranking of classifiers. If the choice of the evaluation method
affects the results of the evaluation, it will affect also the final ranking of the clas-
sifiers reported by the authors. For example, the authors could have obtained a
different ranking of classifiers if they had used the 4-Fold cross validation method
also on the datasets already separated into one training set and one test set. So,
the first critic can be expressed by the following questions: What is the impact of
the evaluation method used for the evaluation phase? Can we find significant dif-
ferences in the final ranking of classifiers if we consider two different evaluation
methods?

2. They perform only one pre-processing technique, because they say: the impact
of these transforms can be expected to be similar for all the classifiers; however,
our objective is not to achieve the best possible performance for each data set
(which eventually might require further pre-processing), but to compare classifiers
on each set. The second critic can be expressed by the following questions: What
if the impact of the pre-processing is not similar for all the classifiers? Can we find

1http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/data.tar.gz
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significant differences in the final ranking if we consider also other pre-processing
techniques?

3. Some Weka classifiers cannot work directly on the pre-processed datasets made
by the authors, because they can work only on nominal attributes. In this case,
Weka converts automatically the numeric attributes into nominal attributes in order
to make the dataset suitable for these classifiers. The Weka classifiers that can work
only on nominal attributes are the following:

• weka.classifiers.bayes.BayesNet

• weka.classifiers.rules.OneR

• weka.classifiers.meta.Bagging OneR

• weka.classifiers.meta.MultiBoostAB OneR

The consequence of this is that the results obtained by these classifiers refer to
datasets different from the ones used by the authors, so maybe the final ranking
of classifiers has been affected by this. As we wondered in the previous critic, if
the impact of pre-processing is significant, we might find a different final ranking
if we test the classifiers that can work also on numeric attributes on the dataset
pre-processed by Weka that contain only nominal attributes.

4. In the pre-processing technique used by the authors, they have replaced the missing
values with the value 0. Anyway, some algorithms can manage missing values, so
for them it is not necessary to replace them. So, the third critic can be expressed by
the following questions:What is the impact of missing values on these algorithms?
Can we find significant differences in the ranking for the classifiers that can manage
missing values, if we do not replace them?

5. They have tested some meta-classifiers implemented in Weka with the default base
classifier, the zeroR classifier [?]. This classifier always predicts the mode of the
nominal attributes, that is, in case of the class labels, it predicts always the most
frequent class of the dataset. This is the reason why in the final ranking reported
into the paper, the following meta-classifiers have bad results:

• weka.classifiers.meta.Grading

• weka.classifiers.meta.MultiScheme

• weka.classifiers.meta.Vote
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• weka.classifiers.meta.Stacking: the authors use the stacking ensemble method
only with one zeroR base classifier, while the method is intended to test sev-
eral base classifiers, not only one.

• weka.classifiers.meta.StackingC: the same reason as Stacking.
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Chapter 3: Strategy of Research

In order to skip the evaluation phase and to predict the best workflows on untested
datasets, ROCKFlows needs to know at least what their performances are on some datasets.
Basing on the information retrieved, we can find some rules that allow the system to pre-
dict the performances of the workflows on untested datasets, without doing the evaluation
phase. To this purpose, we have defined a strategy that can be summarized in four phases:

1. Experiments (Section 3.1): each workflow is tested on some datasets and its perfor-
mances are retrieved and stored in Excel files.

2. Analysis (Section 3.2): we analyse how much the accuracy obtained by the work-
flows on each dataset is good, without considering only the average accuracy as
value of comparison.

3. Significant Impacts on Classifier Performances (Chapter 4): by using the Analysis
phase, we study which factors have a significant impact on the performances among
different workflows. By replicating partially the experiments done by Delgado et
al. (Section 2), we want to find an answer to the questions presented in critics #1,
#2 and #4 of Section 2.1.

4. Predictions (Chapter 5): by exploiting the results retrieved in the Analysis phase
(Section 5.1), we want to find some rules that allow to predict the performances of
workflows on untested datasets, without doing the evaluation phase. Hence, we can
predict the workflows that, allegedly, will reach the best accuracy (Section 5.1) on
untested datasets. Similarly, we want to predict the total time of execution of each
workflow and the memory usage of the process executing it (Sections 5.2 and 5.3).

3.1 Experiments

The research done for this internship is based on the experiments reported in Section
2. We have replicated in part the experiments of Delgado et al., but we have limited our
experiments on the Weka’s platform (version 3.6.14), by testing 65/179 classifiers imple-
mented with the Weka’s APIs on 101/121 datasets of the UCI repository [5]. Anyway,
since this project is focused on workflows and not only in classifiers, we have extended
the experiments done by the authors by considering 12 pre-processing techniques along
with the original dataset (without pre-processing). For each algorithm we have set the
same parameters reported by the authors, hence, except for the parameters of the classi-
fier LibSvm, we do not tune the parameters before testing the classifier on each dataset.
Hence, we define a workflow as a 2-tuple (pi,c j) composed by:
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3. Strategy of Research

• p: the choice of a sequence of pre-processing techniques applied to the dataset

• c: the choice of the algorithm of classification

Any variation to pi or to c j defines a different workflow that the system may take into
account when predicting the best workflow to the users. For research sake reproducibility,
we have made available the code used to do the experiments. 1

3.1.1 Datasets (D)

In our experiments, we have tested 101/121 datasets coming from the UCI repository
[5]. In the rest of this report, the set of 101 datasets is referred as D.

Since we based our experiments on Weka’s platform, we have defined each dataset
dk ∈D in .arff files, which is the format used by Weka to read them. In the UCI repository,
for each dataset is given its raw data and the description of the problem, which explains
what each attribute refers to. Generally, each nominal attribute is represented with a range
of numbers, where each number refers to a specific category. For example, an attribute
Size that have categories small, medium, large can be expressed as three numbers: 0,1,2
}. Since datasets in the UCI repository are not in the .arff format, we had to define
manually the categories for each nominal attribute. Likewise, we have set a numeric
attribute only when its values are real numbers, for example, the measure coming from
a sensor. In our experiments, the difference between numeric and nominal attributes
is very important because the nature of the attributes of the dataset defines which pre-
processing techniques are applicable on them, as explained in Section 3.1.2. Moreover,
from the description of datasets, we have removed all the instance identifiers, that is, all
the attributes that present a unique value for each instance. We have done this manual
pre-processing because the identifiers may affect the results obtained by the experiments.

Dataset Properties

Furthermore, in our experiments it is important to know the structure of the datasets,
which we identify with the following properties:

• Number of Attributes

• Number of Instances

• Number of Classes: 2 (binary-class problem) or more (multi-class problems)

1https://github.com/ROCKFlows/experiments-public/tree/master/sourceCode

16
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• Type of Attributes: nominal, numeric or both of them.

• Missing Values: Does the dataset contain any missing value?

Dataset List

Table 3.1 shows the set of datasets D used in our experiments, along with the prop-
erties of each dataset. For reproducible research sake, we have made the 101 datasets
available for public download. 2

3.1.2 Pre-Processing (P )

From each dataset dk ∈ D to test, several pre-processed datasets with different proper-
ties are created by applying a set of pre-processing techniques P to dk. In our experiments,
we have decided to test the original dataset along with 12 pre-processing techniques, that
is, from 1 to 12 pre-processed datasets may be created from the original one, depending
on if the pre-processing technique pi ∈ P is applicable to the original dataset (Section
3.1.2). Each pre-processing technique pi ∈ P may contain one or more operations, in
this case they are applied sequentially to the original dataset. The set of pre-processing
techniques P used in our experiments is reported in the following:

p0 No pre-processing (original dataset)

p1 {Discretize}

p2 {Replace Missing Values}

p3 {Replace Missing Values, Discretize}

p4 {Nominal To Binary}

p5 {Replace Missing Values, Nominal To Binary}

p6 {Attribute Selection}

p7 {Discretize, Attribute Selection}

p8 {Replace Missing Values, Discretize, Attribute Selection}

p9 {Nominal To Binary, Attribute Selection}
2https://github.com/ROCKFlows/experiments-public/tree/master/Resources/

datasets/work.tar.gz
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Dataset #Att. #Inst. #Cls. Att. Types M.V.

ac-inflam 6 120 2 Both no
ac-nephritis 6 120 2 Both no

adult 14 32561 2 Both yes
annealing 38 798 6 Both yes
arrhythmia 279 472 16 Both yes

audiology-std 69 171 18 Nominal yes
balance-scale 4 625 3 Numeric no

balloons 4 16 2 Nominal no
bank 16 4521 2 Both no
blood 4 748 2 Numeric no

breast-cancer 9 286 2 Nominal yes
bc-wisc 8 699 2 Nominal yes

bc-wisc-diag 29 569 2 Numeric no
bc-wisc-prog 32 198 2 Numeric yes
breast-tissue 9 106 6 Numeric no

car 6 1728 4 Nominal no
ctg-3classes 45 2126 3 Numeric yes
chess-krvkp 36 3196 2 Nominal no

congress-voting 16 435 2 Nominal yes
conn-bench-sonar 60 208 2 Numeric no
conn-bench-vowel 12 528 11 Both no

contrac 9 1473 3 Both no
credit-approval 15 690 2 Both yes
cylinder-bands 37 512 2 Both yes
dermatology 34 366 6 Both yes

echocardiogram 12 131 2 Both yes
ecoli 7 336 8 Numeric no

fertility 9 100 2 Numeric no
flags 28 194 8 Both no
glass 9 214 7 Numeric no

haberman-survival 3 306 2 Both no
hayes-roth 4 132 3 Numeric no

heart-cleveland 13 303 5 Both yes
heart-hungarian 13 294 2 Numeric yes

heart-switzerland 13 123 5 Numeric yes

Table 3.1: List of 101 tested datasets coming from the UCI repository. M.V. stands
for ”Missing Values”
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Dataset #Att. #Inst. #Cls. Att. Types M.V.

heart-va 13 200 5 Numeric yes
hepatitis 19 155 2 Both yes

hill-valley 100 606 2 Numeric no
horse-colic 22 300 2 Both yes

ilpd-indian-liver 10 583 2 Both no
image-segmentation 19 210 7 Numeric no

ionosphere 34 351 2 Numeric no
iris 4 150 3 Numeric no

led-display 7 1000 10 Nominal no
lenses 4 24 3 Nominal no
libras 90 360 15 Numeric no

low-res-spect 101 531 9 Numeric no
lung-cancer 56 32 3 Nominal yes

lymphography 18 148 4 Both no
magic 10 19020 2 Numeric no

mammographic 5 961 2 Numeric no
molec-biol-promoter 57 106 2 Nominal no

monks-1 6 124 2 Nominal no
monks-2 6 169 2 Nominal no
monks-3 6 122 2 Nominal no

mushroom 22 8124 2 Nominal yes
musk-1 166 476 2 Numeric no
musk-2 166 6598 2 Numeric no
nursery 8 12960 5 Nominal no
ozone 72 2536 2 Numeric yes

page-blocks 10 5473 5 Numeric no
parkinsons 22 195 2 Numeric no
pendigits 16 7494 10 Numeric no

pima 8 768 2 Numeric no
pb-MATERIAL 11 107 3 Both yes

pb-REL-L 11 107 3 Both yes
pb-SPAN 11 107 3 Both yes

pb-T-OR-D 11 107 2 Both yes
pb-TYPE 11 107 6 Both yes
planning 12 182 2 Numeric no

Continuation of Table 3.1
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Dataset #Att. #Inst. #Cls. Att. Types M.V.

post-operative 8 90 3 Nominal yes
primary-tumor 17 330 15 Nominal yes

ringnorm 20 7400 2 Numeric no
seeds 7 210 3 Numeric no

spambase 57 4601 2 Numeric no
spect 22 80 2 Nominal no
spectf 44 80 2 Numeric no

st-aust-cred 14 690 2 Both no
st-germ-cred 20 1000 2 Both no

st-heart 13 270 2 Numeric no
st-landsat 36 4435 6 Numeric no
st-shuttle 9 43500 7 Numeric no
st-vehicle 18 846 4 Numeric no

steel-plates 27 1941 7 Numeric no
synth-ctrl 60 600 6 Numeric no
teaching 5 151 3 Both no
thyroid 21 3772 3 Both no

tic-tac-toe 9 958 2 Nominal no
titanic 3 2201 2 Nominal no
trains 32 10 2 Nominal yes

twonorm 20 7400 2 Numeric no
vc-2classes 6 310 2 Numeric no
vc-3classes 6 310 3 Numeric no

wall-following 24 5456 4 Numeric no
waveform 21 5000 3 Numeric no

waveform-noise 40 5000 3 Numeric no
wine 13 179 3 Numeric no

wine-qual-red 11 1599 11 Numeric no
wine-qual-white 11 4898 11 Numeric no

yeast 8 1484 10 Numeric no
zoo 16 101 7 Nominal no

Continuation of Table 3.1

p10 {Replace Missing Values, Nominal To Binary, Attribute Selection}
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p11 The same pre-processing described in Section 2 (we have taken directly the dataset
released by the authors)

p12 We apply pre-processing p6 to the pre-processed dataset p11

In the rest of this report, each pre-processed dataset is identified with the same iden-
tifier of the above pre-processing techniques. For example, we can refer to ”the pre-
processed dataset p4” in order to specify the pre-processed dataset obtained after applying
the pre-processing technique p4 to the original dataset.

Pre-processing {pi ∈ P : 1 ≤ i ≤ 10} are based on four Weka filters:

• weka.filters.unsupervised.attribute.ReplaceMissingValues: replaces
missing values with the mean (if the attribute is numeric) or the mode (if the at-
tribute is nominal)

• weka.filters.unsupervised.attribute.Discretize: discretizes, by simple
binning, a numeric attribute into a nominal attribute. The maximum number of bins
is 10.

• weka.filters.unsupervised.attribute.NominalToBinary: converts a nom-
inal attribute into a set of binary numeric attributes. A nominal attribute with k dis-
tinct values is transformed into k binary attributes 0-1, by using the one-attribute-
per-value approach.

• Attribute Selection: we have created a custom Weka filter that selects a subset
of attributes that are highly correlated with the class and have in the same time
a low intercorrelation among them. The selection is done by the class weka.

attributeSelection.CfsSubsetEval

Domain of Applicability

We apply pre-processing {pi ∈ P : 1 ≤ i ≤ 10} to the original dataset (p0) if and
only if the application of pi to p0 creates a pre-processed dataset with different dataset
properties with respect to p0. For example, if p0 does not contain any missing value, we
do not apply to it the pre-processing p2. The same holds for the attribute types of the
original dataset. For example, if p0 contains only nominal attributes, we cannot apply
to it the pre-processing techniques {p1, p3, p7, p8}, because the Weka filter ”Discretize”
can be applied only on numeric attributes. To this purpose, in order to know which pre-
processing is applicable to p0, we need to check whether it contains or not any missing
value and what attribute types it has. Table 3.2 reports the set of applicable pre-processing
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with respect to these to properties. Regarding pre-processing p12, it can be always applied
to the pre-processed dataset p11, because it is simply a selection of its attributes.

Type of Attributes Missing Values
Applicable

pre-processing
Nominal and Numeric Yes {∀pi ∈ P | 1 ≤ i ≤ 10}
Nominal and Numeric No {p1, p4, p6, p7, p9}

Numeric Yes {p1, p2, p3, p6, p7, p8}
Numeric No {p1, p6, p7}
Nominal Yes {p2, p4, p5, p6, p9, p10}
Nominal No {p4, p6, p9}

Table 3.2: Domain of applicability of pre-processing {pi ∈ P : 1 ≤ i ≤ 10} with respect
to the dataset properties

3.1.3 Classifiers (C)

In our experiments we have tested 65/179 classifiers of the ones tested by Delgado
et al. in their paper [1]. In the rest of this report, the set of 65 classifiers is referred as
C. As we already said in Critic #3 of Section 2.1, if a classifier cannot work directly
on the dataset, Weka applies a hidden pre-processing on it in order to make the dataset
compatible for the classifier. Since the experiments done for this project take into account
the pre-processing phase as part of the workflow, this behavior should be avoided because
it changes the workflow that we want to test. In such a case, we simply say that the
classifier is not compatible with the dataset, so we cannot test the workflow. For example,
we cannot apply the Svm classifier on a dataset dk ∈ D that has both numeric and nominal
attributes, because it can work only on numeric attributes. That is, we cannot test the
workflow (p0, Svm) on dk. However, if we apply pre-processing p4 to dk, Svm becomes
compatible with the pre-processed dataset, because it contains only numeric attributes,
but this is a different workflow (p4, Svm). Since the Weka documentation does not say
anything about the hidden pre-processing that it applies on the datasets, in order to know
the kind of datasets that a classifier can work on, we had to look directly its java source
code implementation. Then, we have defined three boolean properties that specify the
kind of datasets on which a classifier can work on:

• Require Numeric Attributes: true if the classifier can work only on numeric at-
tributes. False if it can work on nominal attributes, too.
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• Require Nominal Attributes: true if the classifier can work only on nominal at-
tributes. False if it can work on numeric attributes, too.

• Manage Missing Values: true if the classifier can manage missing values. False
otherwise.

If a classifier cannot work on multi class problems, we have used the strategy 1-vs-1,
which trains K·(K−1)

2 binary classifiers for a K-class problem. Each binary classifier learns
to distinguish two class labels, then, at prediction time, a voting scheme is applied. All
the K·(K−1)

2 classifiers predict the class label of an unknown instance, and the class that
receives more votes is selected as class label for the instance.

3.1.4 Classifier List

This section reports the set of classifiers C used in our experiments, organized accord-
ing to the java Weka’s packages. For each classifier c j ∈ C, we report only the values
of the parameters that are different from the default values assigned by Weka (version
3.6.14). The same parameters have been used by Delgado et al. in their experiments [1].

weka.classifiers.functions:

1. Logistic

2. LibSVM : Svm with gaussian kernel. It requires the tuning of the parameters C
and γ before being applied on datasets. For this reason, for each dataset dk ∈ D, we
have used the validation dataset defined into the file conxuntos.dat. That is, for
each dataset we have created a distinct validation dataset, on which the parameters
of Svm have been tuned with the following values:

• Parameter C: [0.1, 1, 10, 100, 1000]

• Parameter γ: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1]

3. MultilayerPerceptron

4. SimpleLogistic

5. SMO

6. RBFNetwork. Number of clusters = half of training instances, ridge = 10−8 for the
linear regression. This classifier can be applied only on datasets with standardized
numeric attributes (pre-processing p11 and p12).
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weka.classifiers.trees:

1. J48

2. NBTree

3. RandomForest. The number of trees is set to 500.

4. LMT

5. ADTree

6. RandomTree. At least 2 instances per leaf, unclassified patterns are allowed.

7. REPTree

8. DecisionStump

weka.classifiers.bayes:

1. NaiveBayes

2. BayesNet

weka.classifiers.lazy:

1. IBk

2. IB1

3. LWL

weka.classifiers.rules:

1. JRip

2. PART. Confidence threshold for pruning = 0.5.

3. DTNB

4. Ridor

5. DecisionTable

6. ConjunctiveRule
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7. OneR

8. NNge. Number of folder for computing the mutual information = 1, Number of
attempts of generalisation = 5.

weka.classifiers.misc:

1. HyperPipes

2. VFI

weka.classifiers.meta:

In this section we report the list of meta classifiers that we have tested. Each of the
java classes representing them accepts only one base classifier as input. So, if we want to
test two different base classifiers, we need to test two different meta classifiers.

1. Bagging. The base classifiers that we have tested with Bagging are:

• RepTree

• J48

• NBTree

• DecisionStump

• RandomTree

• OneR

• JRip

• DecisionTable

• PART

• NaiveBayes

• HyperPipes

• LWL

2. MultiBoostAB. The base classifiers that we have tested with MultiBoostAB are the
same reported for Bagging, except HyperPipes and LWL.

3. RandomCommittee. The base classifier that we have tested is RandomTree.
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4. LogitBoost. Threshold on likelihood improvement = 1.79. The base classifier that
we have tested is LogitBoost DecisionStump.

5. RacedIncrementalLogitBoost. The base classifiers that we have tested is RacedIn-
crementalLogitBoost DecisionStump.

6. AdaBoostM1. The base classifiers that we have tested are:

• DecisionStump

• J48

7. RandomSubSpace. The base classifier that we have tested is RepTree.

8. OrdinalClassClassifier. The base classifier that we have tested is J48.

9. Dagging. Number of folds = 4. The base classifier that we have tested is SMO.

10. Decorate. 15 J48 (Section 3.1.4 #1) are used as base classifiers. Weka generates an
exception if the dataset contains a nominal attribute with only one distinct category.

11. ClassificationViaRegression. The base classifier that we have tested is weka.classifiers.
trees.M5P.

12. ClassificationViaClustering. The base classifiers that we have tested are:

• weka.clusterers.SimpleKMeans

• weka.clusterers.FarthestFirst

3.1.5 Evaluation

When we want to test the workflow (pi, c j) on a dataset dk ∈ D, we need to use an
evaluation method in order to compute its average accuracy. As we wondered in critic 1 of
Section 2.1, we have decided to test if two different evaluation methods leads to a signif-
icant difference of the average accuracy obtained by the workflows. In our experiments,
we have used:

• 4-fold cross validation: we have built the exact 4-folds defined into the file conxuntos_
kfold.dat released by M.F.Delgado et al.

• 10-fold cross validation: we have used the Weka’s APIs Instances.trainCV and
Instances.testCV, which build the folds deterministically. In this way, the 10
folds can be reproduced by other researchers who want to replicate our experiments.
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pre-proc. time = 0 s

Algorithm Comp.
Accuracy

(%)
Training
Time (s)

Test Time
(s)

Memory
(Mb)

Logistic Regression no - - - -
Svm no - - - -
J48 yes 86,23 20 0,05 0,2

NBTree yes 86,06 201 0,78 7
Random Forest yes 84,91 975,6 87 900

Table 3.3: Example of results collected for 5 classifiers on the original dataset (p0)
Adult, in case of 4-Fold cross validation. Comp. = Compatible.

This way of building the folds guarantees that they are built equally for each workflow,
so the way on which data is folded does not bias the results obtained among different
workflows.

For a tested dataset (the original one or a pre-processed one), the the performances
obtained by each tested workflow are stored into Excel files, along with the pre-processing
time required by the pre-processing phase. As example, Table 3.3 reports the results
obtained for five classifiers on the original dataset Adult (p0), in case of 4-Fold cross
validation. Logistic Regression and Svm are not compatible with the dataset p0 Adult,
because these two classifiers can work only on numeric attributes and they do not manage
missing values, while the dataset p0 Adult has both numeric and nominal attributes and
missing values. In this example, the pre-processing time is 0 because we do not apply to
any pre-processing to the original dataset.

For each workflow, we calculate the following average values, obtained either on the
4-Folds cross-validation or on the 10-Fold cross-validation.

• average accuracy

• pre-processing time

• training time

• test time

• amount of memory occupied by the trained classifier, that is, the amount of memory
occupied by the java object representing the Weka implementation of the classifier.
The memory is computed by the java library Classmexer (ref.), which is an external
agent that can read the memory used by any Java object.
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Regarding the memory required by the execution of workflows, we have not been able
to detect dynamically the RAM occupied by the java process that executes the workflow,
so we have limited this study on the amount of memory occupied by the trained classifier
(java object).

3.2 Analysis

Once all the results from the experiments have been gathered, for each dataset dk ∈ D
we need to define a strategy that tells us how much the workflow (pi, c j) is good with
respect to the accuracy, without taking into account only the average accuracy value.
We want to distinguish whether there are significant differences between two average
accuracies or not, because the average accuracy is related only to the evaluation phase,
where the class labels of each instance are known. That is, we may obtain different
accuracies when we use the same workflow on other unknown instances, which have not
been used during the evaluation phase.

Hence, we have assigned to the results obtained by each workflow during the evalu-
ation phase a rank value, which groups together the workflows who are not significantly
different among each other. If there is a significant difference between two workflows,
they will have a different rank, otherwise they will have the same rank. For example,
Table 3.4 reports the top 5 ranking of the workflows obtained on the dataset Adult, in
case of 4-Fold cross-validation. From the ranking, we can see that there is not a signifi-
cant difference between the average accuracies of the workflows (p0, Decorate) and (p4,
RotationForest J48), because both of them have rank=1. On the other hand, there is a
significant different between the average accuracies of the workflows (p5, RotationForest
J48) and (p2, Decorate), because the former has rank=1 and the latter has rank=2.

The lower the rank, the better is the workflow. All the workflows that have rank=1 are
considered as best workflows for the dataset. In the Adult dataset example (Table 3.4),
the workflows (p0, Decorate), (p4, RotationForest J48), (p11,Bagging PART) and (p5,
RotationForest J48) are the best workflows in terms of accuracy, since they have rank=1.
For each workflow, the total time of execution is calculated by adding the pre-processing
time, training time and test time stored into the Excel file of the related pre-processed
dataset. For example, in Table 3.4 the total time of execution of the workflow (p0, J48)
is calculated by summing the pre-processing time, training time and test time found on
Table 3.3.

The algorithm that calculates the rank is reported in Algorithm 1. It needs to know, for
each workflow, both the average accuracy value and the array of accuracies that led to that
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pi Algorithm Rank
Accuracy

(%)
Total Time (s)

Memory
(Mb)

0 Decorate 1 86,83 1569 17
4 RotationForest J48 1 86,71 1173 11
11 Bagging PART 1 86,70 979,2 17
5 RotationForest J48 1 86,65 644,1 10
2 Decorate 2 86,64 1797 7
... ... ... ... ... ...
0 J48 6 86,23 20,5 0,2
... ... ... ... ... ...

Table 3.4: Example of ranking of workflows for the dataset Adult, in case of 4-Fold cross
validation.

specific average. In the pseudo code, a workflow is identified as an object Workflow, in
which the average value is stored in the field Workflow.avg, the array of values in the field
Workflow.array, and the output rank in the field Workflow.rank. The significant difference
among the average accuracies is checked with the statistical hypothesis tests, as explained
in Section 3.2.1.

3.2.1 Statistical Hypothesis Tests

The significant difference between the average accuracies of two workflows is checked
with statistical hypothesis tests, which compare two arrays of values. This is the reason
why in Algorithm 1 we need the array of values that form the average accuracy. In case of
4-Fold cross validation, the array contains the four accuracies found on each fold, while
in case of 10-Fold cross validation the array contains ten accuracies. As null hypothesis,
we set that the difference of the means of the arrays is zero. If we can reject with a degree
of confidence of 95% the null hypothesis, we can say that the difference of the means of
the two arrays is not zero, so the average accuracies of the two workflows are significantly
different. Otherwise, we accept the null hypothesis because we do not have enough con-
fidence to reject it, that is, we say that the two workflows are not significantly different.
The methodology used to do the tests is the following: first of all, the two arrays are sorted
from the lowest value to the highest one. Then, we check with the Shapiro-Wilk method
if each of the two arrays follows a normal distribution. If this is the case, we perform
the statistical tests with the Student’s paired TTest, which assumes that data is normally
distributed. Otherwise, we use the Wilcoxon Signed Rank test, which does not require
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Algorithm 1 Rank Calculation Algorithm
procedure SETRANK(List<Workflow> W)

sort W from the best avg to the worst one

for each w ∈ W

w.rank← 1

maxRank← 1
top:
for i = 1 to maxRank

toAnalyze← W.getWorkflowsByRank(i)

size← toAnalyze.getSize()

first← toAnalyze.getWorkflow(0)

for k = 2 to size

current← toAnalyze.getWorkflow(k)

if first.avg �= current.avg

if significantDifference(first.array, current.array)

for each w ∈ W | w.avg≤ current.avg

w.rank← w.rank + 1

maxRank← maxRank + 1

goto top.

the normal distribution of the data.
The Shapiro-Wilk method is implemented into the java library jdistlib.disttest.

NormalityTest, while the Student’s paired TTest and the Wilcoxon Signed Rank test
are implemented into the java classes org.apache.commons.math3.stat.inference.
TTest and org.apache.commons.math3.stat.inference.WilcoxonSignedRankTest
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Chapter 4: Significant Impacts on
Rankings of Classifiers

In this chapter, we study which factors have a significant impact when we want to
compare the performances among different classifiers. By replicating partially the exper-
iments done by Delgado et al. (Section 2), we want to find an answer to the questions
presented in critics #1, #2 and #4 of Section 2.1. If the choice of one evaluation method,
the choice of a pre-processing technique and the management of missing values have a
significant impact on the accuracies obtained by classifiers, we have to take into account
also these factors before saying that a classifier ca is better than a classifier cb. Depend-
ing on the question to answer, we calculate two rankings of classifiers based on the rank
value, as explained in Section 3.2. Depending on the factor studied, if for the same clas-
sifier c j we find that it has two different rank values between the two rankings, we can
conclude that the factor has a significant impact on the accuracies obtained by classifiers.
Since the rankings presented in this chapter are based on classifiers, the average accuracy
is calculated among the datasets dk ∈ D, and one rank value is assigned to each classifier.

4.1 Evaluation Impact

In order to check if the choice of the evaluation method has a significant impact on
the accuracies of classifiers (critic #1, Section 2.1), we check if there are significant dif-
ferences between the ranks obtained with the two evaluation methods used in our exper-
iments: the 4-Fold cross validation and the 10-Fold cross validation. For each dataset
dk ∈ D, the results come from its pre-processed dataset p11. The left ranking of Table 4.1
reports the top 10 classifiers in case of the 4-Fold cross validation, while the right ranking
reports the top 10 classifiers in case of the 10-Fold cross validation. The full comparison
is not reported in this report because it would be too much large, anyway, it is anyway
available for public download 1. As Table 4.1 shows, the two rankings are significantly
different. For example, in case of 4-Fold cross validation Logistic Model Tree has rank=3
and RotationForest RandomTree rank=2, while in case of 10-Fold cross validation Lo-
gistic Model Tree has rank=2 and RotationForest RandomTree rank=3. In this example,
RotationForest RandomTree is better than Logistic Model Tree with the 4-Fold cross-
validation, while Logistic Model Tree is better than RotationForest RandomTree with the
10-Fold cross-validation.

1https://github.com/ROCKFlows/experiments-public/tree/master/Resources/

comparisons/crossValidationImpact/Cross-Validation-Comparison.xlsx
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4. Significant Impacts on Rankings of Classifiers

Pre-Processing p11

4-Fold Cross Validation 10-Fold Cross Validation

Algorithm Rank
% Avg.

Accuracy
Algorithm Rank

% Avg.
Accuracy

Rot.For. J48 1 82,72 Svm 1 76,48
Svm 1 82,68 Rot.For. J48 1 76,45

Random Forest 1 82,47 Random Forest 2 75,99
Bagging PART 2 81,60 L.M.T 2 75,92
MAB, PART 2 81,58 Rot.For. R.Tree 3 75,77

Rot.For. R.Tree 2 81,50 Bagging PART 4 75,40
Bag. NBTree 3 81,43 Bagging J48 5 75,09
Bagging J48 3 81,32 MAB J48 5 75,07

L.M.T. 3 81,28 MAB NBTree 5 75,07
MAB J48 3 81,22 MAB, PART 6 74,97

Table 4.1: Top 8 of classifier rankings among the pre-processed datasets p11.
Left Ranking: 4-Fold cross validation.

Right Ranking: 10-Fold cross validation.
Rot.For.=RotationForest, MAB=MultiBoostAB, Bag.=Bagging, L.M.T.=Logistic Model Tree,

R.Tree=RandomTree

So we can conclude that the choice of the evaluation method has a significant impact
on the ranking of classifiers, and this factor has to be taken into account when comparing
the performances among classifiers or workflows.

4.2 Pre-Processing Impact

In order to check if the choice of a pre-processing technique has a significant impact
on the accuracies of classifiers (critic #2, Section 2.1), we check if there are significant dif-
ferences between the ranks obtained from the pre-processed datasets p11 and from the best
pre-processed datasets. That is, the first ranking is calculated with the accuracies from
the pre-processed datasets p11, while the second ranking of classifiers is calculated with
the best accuracies coming from one of the pre-processed datasets pi ∈ P. Since we have
proved in Section 4.1 that the choice of the evaluation method has a significant impact on
the rankings, we have analysed the pre-processing impact both with the 4-Fold cross val-
idation and with the 10-Fold cross validation. Table 4.2 reports the analysis based on the
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4. Significant Impacts on Rankings of Classifiers

4-Fold Cross Validation
Pre-Processing p11 Best Pre-Processing pi ∈ P

Algorithm Rank
%Avg.

Accuracy
Algorithm Rank

%Avg.
Accuracy

Rot.For. J48 1 82,72 Rot.For. J48 1 85,99
Svm 1 82,68 Random Forest 1 85,91

Random Forest 1 82,47 Rot.For R.Tree 1 85,83
Bagging PART 2 81,60 Bag. NBTree 2 85,32
MAB, PART 2 81,58 Svm 2 84,96

Rot.For. R.Tree 2 81,50 MAB NBTree 3 84,83
Bag. NBTree 3 81,43 R.C. R.Tree 3 84,75
Bagging J48 3 81,32 L.M.T. 3 84,75

Table 4.2: Top 10 of classifier rankings in case of 4-Fold cross validation.
Left Ranking: accuracies come from p11 datasets.

Right Ranking: accuracies come from the best pi ∈ P datasets.

10-Fold Cross Validation
Pre-Processing p11 Best Pre-Processing pi ∈ P

Algorithm Rank
%Avg.

Accuracy
Algorithm Rank

%Avg.
Accuracy

Svm 1 76,48 Svm 1 80,39
Rot.For. J48 1 76,45 Rot.For. J48 2 80,11

Random Forest 2 75,99 Rot.For. R.Tree 3 79,89
L.M.T. 2 75,92 L.M.T. 4 79,80

Rot.For. R.Tree 3 75,77 Random Forest 5 79,57
Bagging PART 4 75,40 MAB NBTree 6 79,19

Bagging J48 5 75,09 MLP 6 79,17
MAB J48 5 75,07 Bag. NBTree 6 79,06

Table 4.3: Top 8 of classifier rankings in case of 10-Fold cross validation.
Left Ranking: accuracies come from p11 datasets.

Right Ranking: accuracies come from the best pi ∈ P datasets.
Rot.For.=RotationForest, MAB=MultiBoostAB, Bag.=Bagging, L.M.T.=Logistic Model Tree,

R.Tree=RandomTree, R.C.=RandomCommittee
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4. Significant Impacts on Rankings of Classifiers

4-Fold cross validation: the left ranking reports the top 8 classifiers by considering only
pre-processing p11, while the right ranking reports the top 8 classifiers by considering the
best pre-processing technique where a classifier gets its highest accuracy. Similarly, Table
4.3 reports the analysis based on the 10-Fold cross validation. The full comparisons are
not reported in this report because they are too much large, anyway, they are available for
public download 2. As both Table 4.2 and Table 4.3 show, the two rankings are signifi-
cantly different. For example, Table 4.2 shows that with the p11 datasets, RotationForest
RandomTree has rank=2 and Svm rank=1, while with the best pi ∈ P datasets, Rotation-
Forest RandomTree has rank=1 and Svm rank=2. In this example, Svm is better than
RotationForest RandomTree if we consider only pre-processing p11, but RotationForest
RandomTree is better than Svm if we consider the best pre-processing pi ∈ P. Similarly,
Table 4.3 shows that with the p11 datasets, Random Forest has rank=2 and RotationFor-
est RandomTree rank=3, while with the best pi ∈ P datasets, Random Forest has rank=5
and RotationForest RandomTree rank=3. In this example, Random Forest is better than
RotationForest RandomTree if we consider only pre-processing p11, but RotationForest
RandomTree is better than Random Forest if we consider the best pre-processing pi ∈ P.

So we can conclude that the choice of the pre-processing has a significant impact
on the final ranking of classifiers, both in case of 4-Fold cross validation and in case
of 10-Fold cross-validation. Hence, pre-processing has to be taken into account when
comparing the performances among classifiers or workflows.

4.3 Missing Values Impact

In order to check if the treatment of missing values has a significant impact on the
accuracies of classifiers (critic #4, Section 2.1), we check if there are significant differ-
ences between the ranks obtained from the datasets that contain missing values and the
pre-processed datasets without missing values. For this analysis, only the 30/101 datasets
that contain missing values and only the classifiers c j ∈C that can work on missing values
are considered for building the two rankings of classifiers. The first ranking is calculated
with the accuracies of the original datasets (p0), while the second ranking is calculated
with the accuracies of the pre-processed datasets p2, where the missing values are re-
placed with the mean/mode of the attributes. Since we have proved in Section 4.1 that

24-Fold cross validation https://github.com/ROCKFlows/experiments-public/tree/

master/Resources/comparisons/preProcessingImpact/p11-vs-bestPi-4Fold-Comparison.

xlsx

10-Fold cross validation: https://github.com/ROCKFlows/experiments-public/tree/master/

Resources/comparisons/preProcessingImpact/p11-vs-bestPi-10Fold-Comparison.xlsx
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4. Significant Impacts on Rankings of Classifiers

the choice of the evaluation method has a significant impact on the rankings, we have
analysed the impact of missing values both with the 4-Fold cross validation and with
the 10-Fold cross validation. Table 4.4 reports the analysis based on the 4-Fold cross
validation: the left ranking reports the top 6 classifiers on the datasets with missing val-
ues, while the right ranking reports the top 6 classifiers on the pre-processed datasets p2.
Similarly, Table 4.5 reports the analysis based on the 10-Fold cross validation: the left
ranking reports the top 9 classifiers on the datasets with missing values, while the right
ranking reports the top 9 classifiers on the pre-processed datasets p2. The full compar-
isons are not reported in this report because they are too much large, anyway, they are
available for public download 3. As both Table 4.4 and Table 4.5 show, the two rankings
are significantly different. For example, Table 4.4 shows that, in case of missing values,
Logistic Model Tree has rank=1 and Bagging J48 rank=2, while when the missing values
are replaced, both Logistic Model Tree and Bagging J48 have rank=2. In this example,
Logistic Model Tree is better than Bagging J48 only on datasets with missing values,
while on datasets without missing values they can be considered equal because they have
the same rank. Similarly, Table 4.5 shows that, in case of missing values, Logistic Model
Tree has rank=3 and Bagging PART rank=1, while when the missing values are replaced,
Logistic Model Tree has rank=2 and Bagging PART rank=3. In this example, Bagging
PART is better than Logistic Model Tree only on datasets with missing values, while on
datasets without missing values Logistic Model Tree is better than Bagging PART.

So we can conclude that the treatment of missing values has a significant impact on
the ranking of classifiers, and this is another factor to take into account when comparing
the performances among the classifiers.

34-Fold cross-validation: https://github.com/ROCKFlows/experiments-public/tree/

master/Resources/comparisons/missingValuesImpact/mv-4Folds.xlsx

10-Fold cross-validation: https://github.com/ROCKFlows/experiments-public/tree/master/

Resources/comparisons/missingValuesImpact/mv-10Folds.xlsx
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4. Significant Impacts on Rankings of Classifiers

4-Fold Cross Validation
Pre-Processing p0 Pre-Processing p2

Algorithm Rank
% Avg.

Accuracy
Algorithm Rank

% Avg.
Accuracy

Bag. NBTree 1 79,64 Rot.For. J48 1 78,89
Rot.For. J48 1 79,28 Bag. NBTree 1 78,72

L.M.T. 1 79,08 Rot.For. R.Tree 2 78,42
Bagging JRip 2 78,77 L.M.T. 2 78,26
MAB NBTree 2 78,76 Bagging J48 2 78,13
Bagging J48 2 78,63 Bagging JRip 3 78,08

Table 4.4: Top 6 of classifier rankings in case of 4-Fold cross-validation.
Left Ranking: accuracies come from the original datasets with missing values.

Right Ranking: accuracies come from the pre-processed datasets p2 without missing
values.

10-Fold Cross Validation
Pre-Processing p0 Pre-Processing p2

Algorithm Rank
% Avg.

Accuracy
Algorithm Rank

% Avg.
Accuracy

Rot.For. J48 1 73,88 Rot.For. J48 1 74,14
MAB, PART 1 73,83 Bag. NBTree 1 74,12
Bag. NBTree 1 73,76 Bagging J48 1 73,80

Bagging PART 1 73,69 MAB, PART 2 73,59
Bagging J48 1 73,50 L.M.T. 2 73,32

MAB NBTree 2 73,22 Bagging PART 3 73,17
A.D.T. 2 73,09 MAB J48 4 73,04

Rot.For. R.Tree 3 73,08 A.D.T. 4 73,03
L.M.T. 3 72,93 Rot.For. R.Tree 4 72,85

Table 4.5: Top 9 of classifier rankings in case of 10-Fold cross-validation.
Left Ranking: accuracies come from the original datasets with missing values.

Right Ranking: accuracies come from the pre-processed datasets p2 without missing
values.

Rot.For.=RotationForest, MAB=MultiBoostAB, Bag.=Bagging, L.M.T.=Logistic Model Tree,
R.Tree=RandomTree, A.D.T=Alternating Decision Tree
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Chapter 5: Predictions of Workflows

The last step of this research is to predict the performances that a workflow (pi, c j)
will have on untested datasets (the user’s datasets), without doing the evaluation phase and
without comparing all the possible workflows among them. Regarding the accuracy, we
want to predict the workflows that will reach the highest accuracies on untested datasets.
Similarly, we want to predict approximate values both for the total time of execution of the
workflow and the amount of RAM used during its execution. As we explained in Section
3.1.5, we have not been able to detect dynamically the amount of RAM occupied by the
java process that executes the workflow, so we have limited this study on the memory
occupied by the trained classifier, which in our experiments is a java object. The total
time of execution of the workflow is the sum of the pre-processing time, training time and
test time.

Section 5.1 reports how to predict workflows that, allegedly, will have the best ac-
curacy on untested datasets, while Section 5.2 reports how to predict the total time of
execution and the memory usage of the trained classifier (Java object).

5.1 Accuracy Predictions

In order to predict the accuracies that workflows will have on untested datasets, we
want to find some rule among the results of our experiments (Section 3.1). Our approach
is to work on data patterns: all the datasets that match the same data pattern δ are grouped
together, then we check if a workflow (pi, c j) has rank=1 on each dataset that match δ .
If we were able to find at least one workflow for a data pattern δ that satisfies these
conditions, we may suppose that it will have the best accuracy on untested datasets that
match δ . With this method, we can predict workflows without doing the evaluation phase
and without comparing all the possible workflows each other. But now the question is:
How do we define a data pattern? We base the definition of data pattern according to
the dataset properties reported in Section 3.1.1. By setting the number of attributes, the
number of instances, the type of the attributes, etc... of the dataset, we can specify a data
pattern.

Once a data pattern δ has been defined, we need to check if there is at least one
workflow that has the best accuracies on each dataset that matches δ . As we said in
Section 3.2, on a dataset dk ∈ D we consider a workflow as best if it has rank=1. That is,
we consider a workflow as best for the data pattern δ if it has an average rank=1 among
the datasets that match δ . Since in Section 4.1 we proved that the impact of the evaluation
method is a factor that has to be taken into account when comparing the workflows, we
need to check that its average rank is 1 both on the 4-Fold and on the 10-Fold cross
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5. Predictions of Workflows

validation.
Among the results of our experiments, we have found only one data pattern δ1 in

which a workflow has an average rank=1. The data pattern is defined as:

• the number of attributes is in the range [16, 21]

• the number of instances is greater than 211

• multi-class problems

• numeric attributes

• missing values are not present

3/101 datasets match this data pattern: {pendigits, statlog-vehicle, waveform}. Table
5.1 and Table 5.2 report the top 5 workflows ordered by the average rank obtained on
each of the three datasets, in case of 4-Fold and 10-Fold, respectively. The full rankings
are not reported here because they would be too much large, anyway, they are available
for bublic download 1. On each ranking, the workflow (p11, Svm) has rank=1. Hence, we
may suppose that the workflow (p11, Svm) will have the best accuracies on the untested
datasets that match δ1. Since we have only 3 datasets that match the data pattern δ1,
we could not investigate further the performances of the workflow (p11, Svm) on other
datasets. So, this is not a strong evidence on which to state that the workflow (p11, Svm)
has always best performances on the data pattern δ1, anyway it is a good candidate to
predict. With this strategy, we can find other good candidate workflows, which do not
have necessarily the average rank=1. For example, another good candidate workflow is
(p0, Svm), which second in the ranking both in case of 4-Fold cross validation (Table 5.1)
and in case of 10-Fold cross-validation (Table 5.1).

Other Data Patterns

During this internship, we have spent a lot of time in searching also other data patterns,
but we have found only data patterns where workflows either had rank=1 in case of the
4-Fold cross-validation or in case of the 10-Fold cross-validation, not both of them. Since
we have proved in Section 4.1 that the choice of the evaluation method has a significant
impact on the results obtained, we cannot state that such workflows are good candidates
to be the best ones on untested datasets with the same data pattern.

14-Fold cross-validation: https://github.com/ROCKFlows/experiments-public/tree/

master/Resources/comparisons/dataPattern/analysis-4Folds.xlsx

10-Fold cross-validation: https://github.com/ROCKFlows/experiments-public/tree/master/

Resources/comparisons/dataPattern/analysis-10Folds.xlsx
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pi Algorithm
Avg.
Rank

%Avg.
Accuracy

# Rank=1

11 Svm 1 90,27 3/3
0 Svm 1,33 89,18 2/3
0 Logistic Model Tree 3,33 89,35 2/3

11 Logistic Model Tree 3,33 89,35 2/3
11 RotationForest J48 3,66 87,86 0/3

Table 5.1: Top 5 ranking of workflows on the data pattern δ1 in case of 4-Fold
cross-validation, ordered by the average rank.

pi Algorithm
Avg.
Rank

%Avg.
Accuracy

# Rank=1

11 Svm 1 90,72 3/3
0 Svm 2 89,32 1/3

12 Svm 4 86,79 1/3
11 Logistic Model Tree 4,67 89,65 1/3
0 Logistic Model Tree 4,67 89,65 1/3

Table 5.2: Top 5 ranking of workflows on the data pattern δ1 in case of 10-Fold
cross-validation, ordered by the average rank.

5.2 Impacts on Time and Memory

In order to predict the total time of execution of workflows and the memory usage of
the trained classifier (java object), we study how these values change with respect to the
structure of the datasets. The structure of dataset is what determine its size, for example:

• the number of instances of the dataset

• the number of attributes of the dataset

• the number of classes of the dataset

At first, we want to check if the structure of datasets affect time and memory values.
If this is the case, we want to find some dependencies from the structure of datasets and
the time and the memory requested by workflows on untested datasets. If we knew how
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mushrooms pendigits
Algorithm Time

(s)
Mem.
(Mb)

Time
(s)

Mem.
(Mb)

Random Forest 164 3 393 37
Logistic Model Tree 779 0,1 2234 0,6

Bagging NBTree 775 17 1790 97
MultiBoostAB NBTree 109 3 1646 79

Decorate 157 0,8 437 22
Logistic Regression 4 0,03 185 0,03

Svm 30 0,01 16 0,01
J48 1 0,02 3 0,1

NBTree 115 3 358 10
Multillayer Perceptron 255 0,04 310 0,06

Table 5.3: Time and memory values obtained by 10 classifiers on the mushrooms and the
pendigits datasets

these values change with respect to the structure of datasets, it would suffice only to check
the structure of the untested datasets in order to predict time and memory values.

For this study, we have considered only the results coming from the 10-Fold cross
validation and from the pre-processed dataset p11. We have decided to use only the results
of the 10-Fold cross-validation because its training sets are bigger than the training sets
of the 4-Fold cross-validation ( 9

10 > 3
4), and generally, the training phase lasts more time

than the test phase. We have decided to use only the pre-processing p11 because each
classifier c j ∈ C is compatible with it, except for BayesNet, OneR, Bagging OneR and
MultiBoostAB OneR. Anyway, during this internship we have had time to check the
impact of the structure of datasets only on 10 classifiers: Random Forest, Logistic Model
Tree, Bagging NBTree, MultiBoostAB NBTree, Decorate, Logistic Regression, Svm,
J48, NBTree and Multillayer Perceptron. We have chosen both base-classifiers and meta-
classifiers, in order to check if there are differences among their performances.

5.2.1 Number of classes Impact

In order to check if the number of classes impacts the time of execution of a workflow
and the memory requested by the trained classifier, we fix the number of attributes and the
number of instances of the datasets, then we check how these values vary with respect to
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2362 instances 3956 instances 6598 instances
Algorithm Time

(s)
Mem.
(Mb)

Time
(s)

Mem.
(Mb)

Time
(s)

Mem.
(Mb)

Random Forest 9 9 18 18 410 22
Logistic Model Tree 154 1 311 2 3074 2

Bagging NBTree 2993 156 5659 262 8419 284
MultiBoostAB NBTree 1799 95 4882 238 5876 249

Decorate 64 2 145 4 550 3
Logistic Regression 1 0,2 2 0,2 38 0,2

Svm 3 0,08 7 0,08 70 0,08
J48 1 0,1 1 0,1 24 0,1

NBTree 255 19 396 28 3134 29
Multillayer Perceptron 291 0,9 476 0,9 3392 0,9

Table 5.4: Time and memory values obtained by 10 classifiers on three musk-2 datasets,
with different number of instances: 2362, 3956 and 6598

the number of classes. From the tested datasets D, we have compared the performances
between the mushrooms and the pendigits dataset. These datasets have almost the same
number of attributes (22 and 16, respectively) and almost the same number of instances
(8124 and 7494, respectively), the substantial difference is the number of classes (2 and
10, respectively). Table 5.3 reports the different time and memory results obtained by
the 10 classifiers on the mushrooms and pendigits datasets. From Table 5.3 we can see
that, on the pendigits dataset, both time and memory values increase when the number of
classes increases. The only exception is the time of execution of SVM, which goes from
30 seconds to 16 seconds. The only responsible for these increments is the higher number
of classes of the pendigits dataset, because it has less instances and less attributes than
the mushrooms dataset. From these results, we can conclude that the number of classes of
datasets affects both the time of execution of the workflow and the memory occupied by
the trained classifer. Why is the time of execution of Svm lower on the pendigits dataset?
Maybe it is because it is more sensible to the number of attributes or to the number of
instances, which are higher on the mushrooms dataset.
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5.2.2 Number of instances Impact

In order to check if the number of instances impacts the time of execution of a work-
flow and the memory requested by the trained classifier, we fix the number of attributes
and the number of classes of the datasets, then we check how these values vary with
respect to the number of instances. To this purpose, we have taken the musk-2 dataset,
which contains 6598 instances, and we have divided it into two other datasets: the first
one contains 2362 instances and the second one contains 3956 instances. Table 5.4 re-
ports the different time and memory results obtained by the 10 classifiers on the three
datasets. For each classifier, we can see that both time and memory values increase when
the number of instances inreases. So we can conclude that the number of instances of the
dataset affects both the time of execution of workflows and the memory occupied by the
trained classifer.

5.2.3 Number of attributes Impact

In order to check if the number of attributes impacts the time of execution of a work-
flow and the memory requested by the trained classifier, we fix the number of instances
and the number of classes of the datasets, then we check how these values vary with re-
spect to the number of attributes. To this purpose, we have compared these values between
two pair of datasets:

• waveform and waveform-noise: the unique difference between these dataset is the
number of attributes: 21 the former and 40 the latter

• adult p10 and adult p5: the pre-processing technique p5 leads to a higher number
of attributes than the original adult dataset because it transforms each nominal at-
tributes into two or more binary numeric attributes. Contrarily, the pre-processing
technique p10 leads to a lower number of attributes because it performs an at-
tribute selection on the original dataset. The unique difference between the two
pre-processed datasets is the number of attributes: 12 (p5) and 106 (p10).

Table 5.5 reports the different time and memory results obtained by the 10 classifiers
between the waveform and waveform-noise datasets, while Table 5.6 reports the differ-
ences between the adult dataset p10 and p5. From these results, we can see that when
the number of attributes increases, time and memory values increase as well. There are
only two exception, that we can find in Table 5.5: the time of execution of the classifier
Decorate decreases when the number of attributes increases, and similarly, the memory
required by the trained Random Forest decreases. So, we can conclude that the number
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waveform waveform-noise
Algorithm Time

(s)
Mem.
(Mb)

Time
(s)

Mem.
(Mb)

Random Forest 640 48 748 50
Logistic Model Tree 425 0,02 716 0,04

Bagging NBTree 2265 51 3356 98
MultiBoostAB NBTree 2317 49 3467 98

Decorate 444 11 312 11
Logistic Regression 26 0,03 55 0,05

Svm 30 0,01 85 0,02
J48 22 0,2 24 0,2

NBTree 376 3 526 5
Multillayer Perceptron 237 0,05 593 0,1

Table 5.5: Time and memory values obtained by 10 classifiers on the waveform and the
waveform-noise datasets

p10 Adult p5 Adult
Algorithm Time

(s)
Mem.
(Mb)

Time
(s)

Mem.
(Mb)

Random Forest 960 53 1675 520
Logistic Model Tree 842 0,7 1403 4

Bagging NBTree 1111 23 12308 198
MultiBoostAB NBTree 908 20 7951 127

Decorate 514 2 3022 21
Logistic Regression 14 0,03 156 0,2

Svm 191 0,02 836 0,1
J48 13 0,04 175 0,4

NBTree 185 5 3338 27
Multillayer Perceptron 365 0,03 5543 0,4

Table 5.6: Time and memory values obtained by 10 classifiers on the pre-processed
Adult p10 and Adult p5 datasets.

of attributes of the dataset affects both the time of execution of workflows and the mem-
ory occupied by the trained classifer. Why are the time of execution of Decorate and the
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memory usage of Random Forest lower when the number of attributes increase? Maybe
because they are more sensible to the number of instances or to other factors.

5.3 Time and Memory Predictions

After having showed that at least the number of classes, the number of instances and
the number of classes have an impact on the time of execution of workflows and on the
memory required by the trained classifier (java object), from the results of our experi-
ments we want to find some dependencies among these factors and time and memory
values. So, on untested datasets, we will be able to predict time and memory values only
by checking the structure of the dataset. We have found four mathematical functions
that approximate these values with respect to the number of instances of 10 datasets:
D̂ = {acute-inflammation, blood, statlog-german-credit, titanic, thyroid, bank, twonorm,
mushrooms, magic, adult}. These datasets are all binary-class problems and their number
of attributes is in the range [3, 21]. We could not fix the number of attributes because oth-
erwise we do not have enough datasets with a different number of instances. The number
of instances change among these values: {120, 748, 1000, 2201, 3772, 4521, 7400, 8124,
19020, 32561}. The mathematical functions are shown in the following figures:

• Figure 5.1: the time of execution of the workflow (11, Svm) can be approximated
with the function: y = 1

130 · x, where x is the number of instances of datasets and
y is the time expressed in seconds. Its time of execution depends at most on the
training time of the Svm classifier.

• Figure 5.2: the time of execution of the workflow (11, Bagging LWL) can be ap-
proximated with the function: y = 1

2 · x, where x is the number of instances of
datasets and y is the time expressed in seconds. Its time of execution depends at
most on the test time of the Bagging LWL classifier.

• Figure 5.3: the memory usage of the workflow (11, NBTree) can be approximated
with the function: y = log x

250, where x is the number of instances of datasets and
y is the memory expressed in Mb.

• Figure 5.4: the memory usage of the workflow (11, Bagging LWL) can be approx-
imated with the function: y = 1

2000 · x , where x is the number of instances of
datasets and y is the memory expressed in Mb.
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So, we can use these mathematical functions in order to predict time and memory
performances with respect to the number of instances of each untested dataset that is a
binary-class problem and that has a number of attributes contained in the range [3, 21].

45



5. Predictions of Workflows

0 0.7 1.4 2.1 2.8

·104

0

50

100

150

200

250

# Instances

T
im

e
(s

)

Time of Svm Classifier

y = 1
130x

Figure 5.1: Time of execution of the workflow (p11, Svm) on the datasets D̂
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Conclusions

The research done for this project is the theoretic work that there is behind ROCK-
Flows, the system that we are implementing that aims to advice non-expert users the best
workflows that can solve their machine learning problems. In order to start the project, we
focused on the supervised classification problems, by considering 12 pre-processing tech-
niques and 65 classifiers implemented on the Weka platform. At first, we have defined
a strategy based on statistical hypothesis tests that groups together workflows that are
not significantly different. Then, we have used this strategy in order to answer the three
questions we wondered in Section 2.1. We have proved that if we want to compare sev-
eral classifiers among them, we have to take into account three factors: the choice of the
evaluation method, the choice of the pre-processing and the treatment of missing values.
Each of these factors have a significant impact on the results obtained by the comparison
of the classifier. Moreover, we have proposed a strategy based on data patterns in order
to predict the workflows that, allegedly, will have the best accuracy on untested datasets,
without doing the evaluation phase and without comparing all the possible workflows.
For example, from our experiments we have found one data pattern where the workflow
(11, Svm) has an average rank=1, both in case of 4-Fold and 10-Fold cross-validation.
This result may suggest that we can expect the workflow (11, Svm) to reach the best ac-
curacy on untested datasets that match the same data pattern, or at least it would be a good
candidate workflow to predict. The future related research may concern to study more in
depth the data patterns of datasets, in order to find workflows that are supposed to get
the best results in terms of accuracy. Finally, we have studied how the time of execution
of workflows and the memory required by the trained classifier vary with respect to the
structure of datasets. We have proved that at least three factors affect time and memory
values: the number of classes, the number of attributes and the number of instances of
datasets. Then, we have searched if there exists some dependency among these factors
and time and memory performances. For example, from 10 datasets of our experiments,
we have found four mathematical functions that approximate time and memory perfor-
mances of four workflows with respect to the number of instances of datasets. So, we
can predict time and memory performances of four workflows on untested datasets only
by looking at its number of instances. The future related research may concern to study
more in depth the dependecies between the structure of datasets and time and memory
performances.

The research presented in this report is not exhaustive, it is limited by the number
of datasets, by the number of pre-processing techniques and by the number of classifiers
tested. Moreover, it is limited to the Weka platform, which can affect the implementation
of classifiers. This work may and should be extended into this direction, in order to fully
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understand the relations among the nature of datasets and accuracy, time and memory
peformances of the execution of workflows. To conclude, a similar work might and should
be done on other machine learning problems, such as clustering, regression and anomaly
detection.
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Chapter A: ROCKFlows

The purpose of the ROCKFlows project (Request your Own Convenient Knowledge
Flows) is to lay the foundations of a software platform that helps the construction of ma-
chine learning workflows. Beyond the predictions of the most suitable workflows showed
into this report, the system also let data scientists build their desired workflows. We have
based our project on the Software Product Line (SPL) engineering method, which sepa-
rates two processes: domain engineering for defining the variability of the product line
and application engineering for deriving product line applications [20]. In the case of
ROCKFlows, the products are the machine learning workflows, which can be generated
as a product line.

A.1 Software Product Line

SPL development starts with a first phase of domain engineering, where the variability
of the domain is captured into a feature model, which is a tree of features. The semantics
of a feature model is the set of feature configurations that it permits. It can be expressed
with mathematical logic, by means of propositional formulas, where each feature is repre-
sented as a boolean variable. Feature models can express relationships among parent and
child features and among cross-tree features. Table A.1 reports the basic primitives of the
parent-child relationships, while Table A.2 reports the basic primitives of the cross-tree
constraints.

A.2 Separation of Concerns

The feature model of ROCKFlows is based on the principle of the separation of con-
cerns, that is, each element responsible for the creation of workflows is defined in a sep-
arate feature. The main features of ROCKFlows are the following:

• Input Dataset: specifies the dataset properties of the input dataset

• Pre-processing: specifies the pre-processing techniques to apply to the input dataset

• Processing: specifies the machine learning algorithms usable into the system

• Functional Objectives: specifies what users want to do on their input dataset. For
example, if they have to solve a supervised classification problem or a clustering
problem.
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Parent-Child Primitive Semantic
f1 optional sub-feature of f f1 ⇒ f

f1 mandatory sub-feature of f f1 ⇔ f
f1, ..., fn alternative sub-features of f (XOR) ( f1 ∨ · · ·∨ fn ⇔ f )∧

�

i< j

¬( fi ∧ f j)

f1, ..., fn or sub-features of f (OR) f1 ∨ · · ·∨ fn ⇔ f

Table A.1: Parent-Child primitives of Feature Model

Cross-Tree Primitive Semantic
f1 excludes f2 ¬( f1 ∧ f2)

f1 requires f2 f1 ⇒ f2

Table A.2: Cross-Tree primitives of Feature Model

• Performances: specifies the expected performances by users. For example, users
may have a constraint regarding the time of execution of workflows

These features have dependencies among them, managed by cross-tree constraints.
For example, the functional objectives affect the choice of the machine learning algo-
rithm. If users have a clustering problem to solve, they can choose only a clustering
algorithm, they cannot choose an algorithm of classification.

Cross-tree constraints are foundamental to define the set of the possible workflows
that is possible to build from the feature model. Hence, we need to be careful to add only
the constraints that exclude the construction of workflows that we are sure that they are
not valid. The hard part of the formalization of features and cross-feature constraints is
to deal with the not knowledge. Table A.3 reports an example where we know the accu-
racy performances of three algorithm on a specific data pattern. If users have a dataset
that matches Pattern1 and they want only algorithms with high accuracies, we can dis-
card the algorithm B from the choice of the algorithms, because we know for sure that
it will have low accuracies on Pattern1. So the feature model will contain a constraint
like: Pattern1∧HighAccuracy ⇒ ¬(B). But what can we say about the algorithm C?
We do not have enough information about its accuracy performances on the data pattern
Pattern1, so we cannot set any constraint that removes C from the choice of the algo-
rithms.
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Data Pattern Algorithm Accuracy
Pattern 1 A High
Pattern 1 B Low
Pattern 1 C ???

Table A.3: Example of not knowledge

A.3 ROCKFlows: Simplified Overview

In its current version, ROCKFlows has roughly 300 features and more than 5000
constraints. Because of this, it is not possible to describe here all the work done. This
section shows a simplified overview on how the system ROCKFlows works.

A.3.1 Feature Model

The feature model of ROCKFlows has been defined on the online platform SPLOT
research [19], which allow to define custom feature models and to test product configura-
tions. Cross-tree constraints are defined as CNF clauses:

• f1 requires f2: ¬ f1 ∨ f2

• f1 excludes f2: ¬ f1 ∨¬ f2

Figure A.1 shows the simplified feature diagram of ROCKFlows and two cross-feature
constraints. The feature diagram is simply a visual notation of the feature model. In
the diagram, the root feature Work f low contains three features: Dataset (mandatory),
Pre−Processing (optional) and Classi f ier (mandatory). Since Pre−Processing is an
optional feature, during the construction of the workflow (product configuration) we can
decide whether to select it or not, depending on whether we want to apply some pre-
processing technique to the input dataset or not. Each of these three features is a tree
which contains more sub-features. For example, the feature Classi f ier contains an XOR
sub-feature, which in turn contains the Svm and J48 sub-features. For the XOR feature,
SPLOT will allow us to select only one of the two classifiers during the construction of
the workflow. Contrarily, the feature Attribute Type contains an OR sub-feature, which
in turn contains the Nominal and Numeric sub-features. For the OR feature, SPLOT will
allow us to select both of the featues during the construction of the workflow, for example
if the dataset contains both numeric and nominal attributes. Once the feature model has
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been formalized, SPLOT let it export into the SXFM format, which is a pseudo xml file
that defines the features and the cross-tree constraints.

From the feature model we can create several products, which in the case of ROCK-
Flows are machine learning workflows. The product configuration is simply a selection of
a subset of features that belongs to the feature model. By selecting one feature, automat-
ically the model may select other features or disable them, depending on the cross-tree
constraints. An example is shown in Figure A.2a. If we select the feature Nominal (that is,
the input dataset has nominal attributes), then the model automatically disable the feature
Svm, because the Svm algorithm cannot work on nominal attributes. Another example
is shown in Figure A.2b. If we select the algorithm Svm and the feature Missing Value
(that is, the input dataset has missing values), then the model automatically select the pre-
processing Replace Missing Values, because the Svm algorithm cannot work on missing
values. This example is also a product (workflow), because all the features have been
selected or disabled. The workflow can be summarized as follow:

• The input dataset contains missing values and only numeric attributes

• Apply pre-processing Replace Missing Values to the input dataset

• Apply the Svm classifier to the pre-processed dataset

The product configuration does not allow to create workflows that does not satisfy the
cross-tree constraints. For example, within the feature model showed into Figure A.1, it
is not possible to select the following workflow:

• The input dataset does not contain any missing value, it has only nominal attributes

• Do not apply any pre-processing to the input dataset

• Apply the Svm classifier to the input dataset

This workflow is not valid because of the constraint: ¬Nominal ∧¬Svm, which says:
the feature Svm excludes the feature Nominal, and viceversa.

A.3.2 Code Generation Area

Once users have defined their workflow, SPLOT generates an xml file that contains
the information about the product configuration, that is, which features have been selected
and which are not. For example, the xml configuration of the workflow shown in Figure
A.2b is reported in the following frame:

56



A. ROCKFlows

(a) (b)

Figure A.1:
(a): Simplified Feature Diagram of ROCKFlows

(b): 2 Cross-Feature Constraints
black dot = mandatory, white dot = optional, [1..*] = or, [1..1] = xor

<configuration model="Workflow">

<feature id="_r">

<name >Workflow </name >

<type >templateModel </type >

<value >1</value >

<decisionType >propagated </ decisionType >

<decisionStep >1</ decisionStep >

</feature >

<feature id="_r_1">

<name >Dataset </name >

<type >mandatory </type >

<value >1</value >

<decisionType >propagated </ decisionType >

<decisionStep >1</ decisionStep >

</feature >

<feature id="_r_1_2">

<name >Missing Value </name>
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(a) (b)

Figure A.2:
(a): The selection of Missing Values Disables Svm

(b): Missing Values and Svm require Replace Missing Values

<type >optional </type >

<value >1</value >

<decisionType >manual </ decisionType >

<decisionStep >2</ decisionStep >

</feature >

<feature id="_r_1_5">

<name >Attribute Type </name>

<type >mandatory </type >

<value >1</value >

<decisionType >propagated </ decisionType >

<decisionStep >1</ decisionStep >

</feature >

<feature id="_r_1_5_6_7">

<name >Nominal </name >

<type >grouped </type >

<value >0</value >

<decisionType >propagated </ decisionType >

<decisionStep >4</ decisionStep >

</feature >

<feature id="_r_1_5_6_8">

<name >Numeric </name >

<type >grouped </type >

58



A. ROCKFlows

<value >1</value >

<decisionType >manual </ decisionType >

<decisionStep >3</ decisionStep >

</feature >

<feature id="_r_9">

<name >Pre -Processing </name >

<type >optional </type >

<value >1</value >

<decisionType >propagated </ decisionType >

<decisionStep >5</ decisionStep >

</feature >

<feature id="_r_9_10">

<name >Replace Missing Values </name>

<type >optional </type >

<value >1</value >

<decisionType >manual </ decisionType >

<decisionStep >5</ decisionStep >

</feature >

<feature id="_r_11">

<name >Classifier </name >

<type >mandatory </type >

<value >1</value >

<decisionType >propagated </ decisionType >

<decisionStep >1</ decisionStep >

</feature >

<feature id="_r_11_12_13">

<name >Svm </name >

<type >grouped </type >

<value >1</value >

<decisionType >manual </ decisionType >

<decisionStep >4</ decisionStep >

</feature >

<feature id="_r_11_12_14">

<name >J48 </name >

<type >grouped </type >

<value >0</value >

<decisionType >propagated </ decisionType >

<decisionStep >4</ decisionStep >

</feature >

</configuration >

Each feature is identified by the < name > field. The < value > field contains two
values: 0 if the feature is selected, 1 otherwise. In order to generate automatically the java
source code, the code generator of ROCKFlows at first reads the xml file of the configura-
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tion, and each feature that has < value >=1 is retrieved. However, the xml structure used
by SPLOT does not allow to recognize easily which the important features are, because
the parent-child relationship are lost into the xml file, that is, each feature is at the same
xml node level. For example, to the purpose of building the source code of a workflow, it
is not useful to know that the feature Dataset is selected, it will be selected always in any
workflow, because it is a mandatory feature, so it will have always < value >=1. To this
purpose, the code generator contains a filter that selects only the relevant features with
< value >=1. In this example, the relevant features are: Missing Value, Numeric, Re-
place Missing Values, Svm. Then, the code generator contains a mapper, which retrieves
for each relevant feature three things:

• The dependencies to import into the main java class

• The piece of code necessary to write into the java class in order to execute the
feature

• The rank value, which is used to sort the features.

So, in the end, the java class is built by adding at first all the dependencies required
by the relevant features, then by adding the pieces of code of the sorted features. In this
workflow example, at first it is written the code necessary to load the input dataset. The
input dataset is passed as parameter to the program, along with the index of the class
attribute. The dataset is an external file in .arff or csv format. Then, the pre-processing
Replace Missing Values is applied to it. In this ROCKFlow’s overview, the input dataset
is split in one training set and in one test set. Then, the Svm classifier is trained and tested
on the respected datasets, in order to calculate its accuracy. The java main class created
from the example workflow showed above is the following frame:

package ROCKFlows.Overview;

import weka.classifiers.Classifier;

import weka.core.Instances;

import weka.core.converters.ConverterUtils;

import weka.filters.Filter;

import weka.filters.unsupervised.attribute.ReplaceMissingValues;

import weka.classifiers.functions.LibSVM;

import weka.core.Instance;

public class MainExperiment {

public static void main(String [] args) throws Exception {
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//read parameters

String path = "";

int index = -1;

int numParameters = args.length;

for (int iii = 0; iii < numParameters; iii++) {

switch (args[iii]) {

case "-path": {

path = args [++ iii];

break;

}

case "-index": {

index = Integer.parseInt(args [++iii]);

break;

}

}

}

//read input dataset

Instances dataSet = ConverterUtils.DataSource.read(path);

dataSet.setClassIndex(index);

//apply pre -processing

Filter current = new ReplaceMissingValues ();

current.setInputFormat(dataSet );

Instances preProcessed = Filter.useFilter(dataSet , current );

// create training and test set

Instances trainingSet = preProcessed.trainCV(2, 0);

Instances testSet = preProcessed.testCV(2, 0);

//Svm classifier

Classifier proc = new LibSVM ();

//build classifier

proc.buildClassifier(trainingSet );

//test classifier

int correct = 0;

for(int i = 0; i < testSet.numInstances (); i++){

Instance currentToClassify = testSet.instance(i);

double actualValue = currentToClassify.value(

currentToClassify.classAttribute ());

double predictedValue =

proc.classifyInstance(currentToClassify );

if (predictedValue == actualValue) {

correct ++;

}

}

// compute accuracy
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double accuracy = correct / testSet.numInstances ();

// output

System.out.println("Accuracy�=�" + accuracy );

}

A.3.3 Graphic User Interface

The current version of ROCKFlows is available online at the url: http://rockflows.
i3s.unice.fr/#/. It presents a user interface that asks users questions in plain english,
and users can answer by selecting the answers proposed by the system. The user inter-
face hides users the feature model on which ROCKFlows is based. The user interface is
a web-service that uses the SPLAR libraries [22], which manages the constraints of the
feature model. When users select some features, the web-service changes automatically
the available options also on the user interface, depending on the constraints of the feature
model.
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