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E cominciò: «Le cose tutte quante
hanno ordine tra loro»

Pd., I, 103–104

He had been gifted, too, with sterner powers.
Even while a child he laid his daring hand
On Science’ golden key; and ere the tastes
Or sports of boyhood yet had passed away
Oft would he hold communion with the mind
Of Newton, and with awed enthusiasm learn
The eternal Laws which bind the Universe
And which the Stars obey.

William Rowan Hamilton
The Enthusiast, 1826
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Abstract

Il presente lavoro prende le mosse da un problema di dinamica
dei fasci relativo a un metodo di separazione di un fascio di particel-
le recentemente messo in funzione nell’sincrotrone PS al CERN. In
questo sistema, variando adiabaticamente i parametri di un campo
magnetico, nello spazio delle fasi si creano diverse isole di stabilità
(risonanze) in cui le particelle vengono catturate.

Dopo una parte introduttiva in cui si ricava, a partire dalle equa-
zioni di Maxwell, l’hamiltoniana di una particella sottoposta ai cam-
pi magnetici che si usano negli acceleratori, e una presentazione ge-
nerale della teoria dell’invarianza adiabatica, si procede analizzando
la dinamica di tali sistemi.

Inizialmente si prende in considerazione l’hamiltoniana mediata
sulle variabili veloci, considerando perturbazioni (kick) dei termini
dipolare e quadrupolare. In ognuno dei due casi, si arriva a determi-
nare la probabilità che una particella sia catturata nella risonanza.

Successivamente, attraverso un approccio perturbativo, utiliz-
zando le variabili di azione ed angolo, si calcola la forza della riso-
nanza 4:1 per un kick quadrupolare.
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Introduction

Particle accelerators are the main research tool in high energy
physics. Great discoveries at CERN have been often awarded with
Nobel prizes, and giant-size experiments at LHC are widely recog-
nized as the farthest frontiers of science.

While many are fascinated by mysteries of elusive particles such
as Higgs boson, most people ignore that there exist a specific branch
of applied physics which focuses on the study of the dynamics of
particle beams inside accelerators. Knowledge of beam dynamics is
fundamental in order to design systems of magnets useful to guide
particles in synchrotrons. Different types of magnets have different
effects on the particle beam, as their can be used to focus or to bend
charged particles.

Beams are often modeled as classical dynamic systems, and the
main theoretical background of their study is hamiltonian mechan-
ics. Versatility of hamiltonian approach to such problems is well
shown by the fact that in our work we will apply to accelerator
physics some result obtained for celestial mechanics, as the same
equations appear in such different fields.

PS and Multi-turn extraction
In this work, we focus our study on the problem to optimize the

injection between the PS and the SPS synchrotrons at CERN. PS
(Proton Synchrotron) is the oldest major ring accelerator at CERN,
which in 1959, when it was put into service, was the highest energy
accelerator in the world, with its 28 GeV. Fifty years later it has
of course been outgunned by newer machines, but it still fulfill im-
portant tasks in CERN accelerators chain architecture (see fig. 1).
Indeed, PS is now used to preaccelerate beams and to feed them
into other accelerators, such as SPS (Super Proton Synchrotron).

PS has a lenght of 628 m, while SPS is 11 times longer. Since
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Figure 1 – Scheme of the accelerators chain at CERN. (Wikimedia Com-
mons)

the 1970s in order to fill in the fastest way the larger accelerator,
PS beams were split in five beamlets which were later put into SPS,
thus filling 10/11 of SPS using two PS laps.

The method historically used to split beams, which we will call
Continous Tranfer (CT), is very simple: an electrostatic kicker split
a fraction of particles from the beam, that was separated by means
of a septum. Then, the beam underwent a π/2 rotation and the pro-
ceeding were iterated four times, in order to produce five beamlets
as requested.

Unfortunately, this system has its own flaws. First of all, it has
a limited efficiency since part of the beam is lost at the septum.
Furthermore, the beamlets injected in SPS have different optical
parameters and do not optimally match, and, worse, the high radi-
ation levels on the electrostatic foil made maintenance difficult to
perform.

In 2002, Cappi and Giovannozzi [6] proposed a new method for
splitting: Multiturn Extraction (MTE), which does not rely on any
mechanical action. Their idea is the following: non-linear magnets
(sextupole and octupole elements) generate a stable nonlinear reso-
nance in the transverse phase space. Adiabatically varying the tune
of the machine will cause some fractions of the beam to cross sep-
aratrices and to be trapped into different stable islands, thus being
captured into resonance and be driven towards their final destina-
tion.

A computer simulation [6] of the beam evolution in MTE is shown
in fig. (2), and in [5] preliminary results of the application of this
system are also shown.

MTE method has been implemented at PS since September 2015,
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Figure 2 – Computer simulation of the phase space evolution of a gaus-
sian particle distribution during MTE. The separation process is clearly
visible: while the magnetic field tune is adiabatically varied, five different
stability islands appear. [6].
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however some theoretical problems are still open for the application
of the neoadiabatic theory to particle accelerators [11]. A wide study
of dynamical properties is needed to determine how the magnetic
field parameters have to be tuned in order to optimize the prob-
ability of capture into resonance. Now, a full dissertation on this
subject would involve 4D KAM theory and the neoadiabatic theory
for Hamiltonian systems, whose geometrical tools are too advanced
for a bachelor thesis. We will focus on a simplified, 2D version of
the problem which is accessible at our level of knowledge.

Therefore, the main topic of our work is to show the possibility
of adiabatic extraction of the beam using a quadrupolar kick.

Structure of the work
The work is divided into four chapters:
In the first chapter, it is given an overview on hamiltonian dy-

namics tractation of magnetic fields. Magnetic field hamiltonian is
deduced, and it is presented multipole expansion of magnetic fields,
explaining the roles of different terms in accelerator physics.

In the second chapter, we focus on adiabatic invariance theory,
proving the adiabatic invariance of action-angle variables. Some
examples are also shown.

In the third chapter, we follow Nejštadt’s approach [10, 11] to
derive an averaged hamiltonian for magnetic fields in presence of
dipolar and quadrupolar kick and to compute capture probabilities.

In the fourth chapter, we finally apply action-angle variables to a
adiabatically forced non-linear hamiltonian to compute the strenght
of 4−order resonance using Fourier expansion.



Chapter 1

Magnetic field

Particle accelerators work using magnetic fields lattice (i.e. ad
ordered structures of dipole, quadrupole and multipole magnets)
in order to properly confine charged particles into the beam pipe.
In our work, we will need some introductory notions from classical
electromagnetism in order to explain how hamiltonians which we
will investigate in Chapter 3 arise.

1.1 Hamiltonian of electromagnetic field

From classical electrodynamics (Maxwell equations) it is possible
to write the hamiltonian of a particle subject to a magnetic field B
and an electric one E. [8]

Now, the kinetic energy of a relativistic free particle of mass m
reads

T = −mc2

√
1− v2

c2

where v is the particle velocity.
Electric field contributes to the potential energy of the system

with a term eΦ, being e the electric charge and Φ the scalar potential
(E = −∇Φ)

Magnetic field potential energy is

VB = −e
c
v ·A

where A is vector potential (B =∇×A)
Now we can write the lagrangian L = T − V
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L = −mc2

√
1− v2

c2
+
e

c
v ·A− eΦ

We have a generalized potential which depends on velocity v.
Thus, in order to write our hamiltonian we have to use the general
formula H = p · v − L

where p is the generalized momentum

p =
∂L
∂v

=
mv√
1− v2

c2

+
e

c
A

and we finally obtain

H =

√(
p− e

c
A
)2

+m2c4 + eΦ

We will thereafter neglect electric field potential Φ because we
study the transverse dynamics (called betatronic motion) of the
beam whereas the accelerating system (based on RF cavities) de-
fines the longitudinal ones.

Furthermore, we take into account only transverse magnetic field
so that Ax = Az = 0.

In a circular accelerator, the best reference system for our parti-
cle is not the cartesian one: we use the transverse displacements x
and y and the coordinate s which is the arc length of the reference
trajectory, whose curvature we call r (fig. 1.1)

In this system, the hamiltonian reads

H = c

√
m2c2 +

(
ps −

e

c
As

)2(
1− x

r

)−2

+ p2
x + p2

y (1.1)

This hamiltonian has time t as indipendent coordinate. It would
be better to use the spacial coordinate s as the indipendent one.
Now, being −H conjugate with t, s is conjugate to ps, so we can use
as new hamiltonian

K = −psc

Solving (1.1) for ps we have

K = −e
c
As − c

(
1 +

x

r

)√
H2 −m2c2 − p2

x − p2
y
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Figure 1.1 – Picture of the reference system (x, y, s) we use. The dotted
line is the particle trajectory, whose curvature radius is r. The s coor-
dinate is measured along the trajectory while x and y are orthogonal to
it.

and, defining pc =
√
H2/c2 −m2c2 we obtain

K = −e
c
As − c

(
1 +

x

r

)√
p2
c − p2

x − p2
y

It is possible to introduce a scaling in the hamiltonian.
We impose p′x = px/pc, p′z = pz/pc, K′ = K/pc obtaining

K′ = − e

cpc
As −

(
1 +

x

r

)√
1− p′ 2x − p′ 2y

We now neglect the curvature effects, assuming r → ∞. This
assumption is not irrealistic if we consider long accelerators.

Therefore we have, renaming K′ as H:

H = − e

cpc
As −

√
1− p′ 2x − p′ 2y

which, for small values of p′x and p′y reduces to

H =
p′2x
2

+
p′2y
2
− e

cpc
As (1.2)

Therefore, we have a hamiltonian composed by a kinetic term
p2/2 and a potential one dependent on As. [12] We will now inves-
tigate how it is possible to write As for magnetic fields we consider
in accelerator physics.
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1.2 Multipole expansion of magnetic field

A magnetostatic field B in absence of currents obeys the equa-
tions: {

∇ ·B = 0

∇×B = 0
(1.3)

the first equation being Gauß law for magnetostatics, and the second
one being Ampère’s law when J = 0

Now, we immediately notice that these equations for B are ex-
actly the same for electrostatic field in absence of charges, so the
same methods can be exploited. Moreover, B is irrotational, so we
can define a magnetostatic potential As such as

B = −∇As (1.4)

and, combining (1.4) and the first of (1.3), we obtain Laplace
equation

∇2As = 0 (1.5)

As a consequence As(x, y) is a so-called harmonic function (i.e.
a real or imaginary part of a analytic function in the complex plane)

We now consider Lorentz force

F =
e

c
v ×B (1.6)

where e is the charge and v the particle velocity.
On a circular trajectory, considering only transversal fields, we

must take into account also centrifugal force, and, at equilibrium
conditions, we obtain

mv2

r
=
e

c
vB (1.7)

where m is particle mass and r the trajectory radius. In the
transversal field case, the vector product v×B reduces to the usual
product vB.

It is straightforward to solve equation (1.7) for the radius r,
obtaining

r =
mvB

ce
=

pc

eB
(1.8)
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being p = mv the particle momentum.
We now define ρ = Br = pc/e as beam rigidity, which is useful

to normalize magnetic multipole terms.
Our Laplace equation can be solved making the following ansatz

(multipole expansion):

As(x, y) = −ρ
∑
n

1

n!
An(x+ iy)n (1.9)

It is straightforward to proof that this ansatz really solves Laplace
equation (1.5). We have:

∇2As(x, y) =
∂2An
∂x2

+
∂2As
∂y2

= −ρ
∑
n

1

n!
As
[
n(n− 1)(x+ iy)n−2 − n(n− 1)(x+ iy)n−2

]
= 0

Now, the ansatz has a real (normal) and an imaginary (skew)
part which are two independent solutions of the Laplace equation.

From Newton’s binomial theorem,

(x+ iy)n =
∑
k

(
n

k

)
in−kxn−kyk (1.10)

When n−k is even, the k-th term of this expansion is real, while
when it is odd we have a imaginary part term.

Taking the real part of (1.10) we obtain

Re{(x+ iy)n} =

n/2∑
m=0

(−1)m
(
n

2m

)
xn−2my2m

while for the imaginary one

Im{(x+ iy)n} =

(n+1)/2∑
m=0

(−1)m
(

n

2m+ 1

)
xn−2m−1y2m+1

Thus, recalling the expression of As (1.9), we can write (remem-
bering the definition of binomial coefficient)
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ReAs = −ρ
n/2∑
m=0

An
(−1)m

(2m)!(n− 2m)!
xn−2my2m

ImAs = −ρ
(n+1)/2∑
m=0

An
(−1)m

(2m+ 1)!(n− 2m− 1)!
xn−2m−1y2m+1

In order to retrieve the expression of magnetic fieldB = (Bx, By, 0)
we have to derive As, being

B =

(
∂As
∂y

,−∂As
∂x

, 0

)
We will have two different fields if we use the real or the imagi-

nary part. We will define BN for the real (normal) part and BS for
the imaginary (skew) one.

Now,

∂ ReAs
∂x

= −ρ
n/2∑
m=0

An
(−1)m

(2m)!(n− 2m− 1)!
xn−2m−1y2m =

∂ ImAs
∂y

and

∂ ReAs
∂y

= −ρ
n/2∑
m=0

An
(−1)m

(2m− 1)!(n− 2m)!
xn−2my2m−1 =

∂ ImAs
∂x

so BS is obtained rotating BN of π/2.
We now analyze the first terms of the expansion. Specific mag-

nets that generate a magnetic field with only one multipole expan-
sion term are very useful for beam control in particle accelerators,
because the magnitude of any term in the expansion can be set
independently, such obtaining every desired magnetic field.

Dipolar field. For n = 1, we have

A(1)
s = A1(x+ iy)

so, giving different names to real and imaginary part coefficients,

ReA(1)
s = −ρA10x ImA(1)

s = −ρA01y
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and the total B field reads

B1 = ρ

A10

A01

0


Thus, we have a uniform magnetic field, called dipole field, which

is the one generated by a single bar magnet. Moreover, A10 and A01

represent the horizontal and vertical deflection curvature. Thus, the
effect of dipolar field is beam deflection.

Quadrupolar field. The n = 2 term of the expansion (1.9) reads

A(2)
s = −ρA2

2
(x+ iy)2

so

ReA(2)
s = −ρA2

2
(x2 − y2) ImA(2)

s = −ρA2xy

We rewrite the potential in the form

A(2)
s = −ρA20

1

2
(x2 − y2)− ρA11xy

and we see that equipotential lines are equilateral hyperbola, and
the imaginary part is rotated by π/2 respect to the real one.

The magnetic field is obtained performing the derivatives. We
have:

BS
2 = ρ

1

2
A20

xy
0

 BN
2 = ρA11

yx
0


This field is called quadrupole. A quadrupolar field is the one gen-

erated by four bar magnets orthogonally arranged, with two north
poles and two south poles facing each other, and it is useful to focus
beams.

Sextupolar field. For n = 3 we have the so-called sextupole mag-
nets whose effect in particle accelerators is remove cromaticity, i.e.
to prevent particles with different energy from acquiring different
linear dynamics.
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We have:

A(3)
s = −ρA30

1

6
(x3 − 3xy2)− ρ1

6
A21(3x2y − y2)

and

BS
3 = ρA21

 xy
x2 − y2

0

 BN
3 = −ρA30

x2 − y2

xy
0


Octupolar field. Finally, for n = 4 we have

A(4)
s = −ρA40

1

24
(x4 − 6x2y2 + y4)− ρ 1

24
A31(x3y − xy3)

and

BS
4 = ρA31

3x2y − y3

x3 − 3xy2

0

 BN
4 = ρA40

x3 − 3xy2

3x2y − y3

0


Now, if we take into account only the unidimensional case, we

use only the real or the imaginary part of As. Let us restrict to real
values, including only horizontal effects.

Equation (1.9) now reads:

As(x) = −ρ
∑
n

1

n!
Anx

n

and actually reduces to a Taylor expansion, whose coefficients
An are

An =
1

ρ

dn

dxn
As(x)

∣∣∣∣
x=0

=
1

ρ

dn−1

dxn−1
B(x)

∣∣∣∣
x=0

because As is a primitive of B.
If we use potentials up to the octupole term we have

As = −ρk1x+ k2x
2 + k3x

3 + k4x
4

and, substituting this expression in (1.2) we obtain

H =
p2

2
+ k1x+ k2x

2 + k3x
3 + k4x

4

which is the hamiltonian we are going to study in the next chap-
ters. [12]



Chapter 2

Adiabatic invariants

At 1911 Solvay Conference in Brussels, Albert Einstein replied
to Hendrick Lorentz stating that, for a pendulum whose lenght was
periodically changed, after a period

«If the length of a pendulum is changed infinitely
slowly, its energy remains equal to hν if it was originally
hν.»1

This is the first appearance of adiabatic invariance, a concept
arising when studying dynamical systems which depends upon pa-
rameters whose change in time is much slowlier than system motion.
A classic example is a pendulum whose lenght is slowly changed:
it is possible to show that the oscillation amplitude is function
only of lenght, and that the quotient between energy and frequency
is almost conserved, while energy and frequency can substantially
change. This quotient is said to be an adiabatic invariant of the
system.

1 «M. Lorentz se rappelle une conversation qu il eut avec M. Einstein il
y a déjà quelque temps, et dans laquelle il fut question d’un pendule simple
qu’on raccourcirait en tenant le fil entre deux doigts, qu’on glisse vers le bas.
Supposons qu’au commencement le pendule ait exactement un élément d’énergie
tel qu’il correspond à la fréquence de ses oscillations, il semble alors qu’à la fin de
l’expérience son énergie sera moindre que l’élément qui correspond à la nouvelle
fréquence.

M. Einstein. — Si l’on modifie la longueur du pendule de manière infiniment
lente, l’énergie de l’oscillation reste égale à hν, si elle était primitivement égale
à hν : elle varie proportionnellement à la fréquence.»
(La Théorie du Rayonnement et les Quanta, report of the 1911 Solvay Con-

ference, Gauthier-Villars, 1912, p. 450.)
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The word adiabatic, whose introduction is due to Paul Ehren-
fest2, directly comes from thermodynamics. In that theory, adia-
batic transformations do not dissipate heat. In this case, if, e.g., we
slowly double the lenght of the pendulum and then we shorten it
towards the original value, the initial and final energy are the same,
and no energy is dissipated as heat, because the action (energy over
frequency) remains almost unchanged during the whole process.

2.1 Definitions

Let H(p, q, λ) be a single-degree of freedom hamiltonian. For
technical reason, connected with the fact that parameter variations
should be made unaware of the system status, we suppose H is C2

with respect to λ. [1]
We request λ(t) to be a parameter slowly dependent upon time,

where slowness property is mathematically stated as follows: there
exist ε such as

1

n!

∣∣∣∣dnλdtn

∣∣∣∣ ≤ εn

However, we will define λ = εt. This assumption trivially satis-
fies the slowness condition.

We have

Definition 1. A function I(p, q, λ) is called adiabatic invariant of
the system H if, for any ε > 0 there exist an ε0 > 0, so that, if
ε < ε0, 0 < t < 1/ε

|I(p(t), q(t), εt)− I(p(0), q(0), 0)| < cεα (α > 0)

This definition means that, for an adiabatic invariant I, we have,
for a time t < 1/ε, α = 1 that I(t)− I(0) = O(ε)..

Trivially, integrals of motion are adiabatic invariants, but we are
interested in non-trivial examples. We will show that every unidi-
mensional system admits an adiabatic invariant. The proof is rather
constructive: we actually show that action variable is adiabatically
invariant.

We define
2Ehrenfest P., Over adiabatische veranderingen van een stelsel in verband

met e theorie de quanta, Verslagen Kon. Akad. Amsterdam 25 (1916) pp.
412—433
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Definition 2 (Action-angle variables). In a unidimensional system
with hamiltonian H(p, q), being γ(E) a closed level curve of energy
E in the phase space, in each region delimitated by separatrices, we
define as action variable J(E) the integral

J =
1

2π

∮
H=E

pdq

and angle coordinate the expression

θ =
∂

∂J

∫
H=E

pdq

The change of coordinates (p, q)→ (J, θ) is canonical.
We also define the frequency ω as

ω =
∂H
∂J

2.2 An example: the harmonic oscillator
Let we consider a unitary mass pendulum whose frequency ω is

slowly variated according to the expression ω = ω0(1 + λ), where
λ = εt.

Before taking into account the perturbation, we know that the
hamiltonian reads

H =
p2

2
+ ω2 q

2

2
(2.1)

and, fixed the energy E, the motion lies on an ellipse whose
semiaxes a and b are

a =
√

2E

b =
√

2E/ω

Thus, the action variable J = (2π)−1
∫

dq p is obtained dividing
for 2π the area of this ellipse which is πab. We have

J =
ab

2
=
E

ω
=

1

2ω

(
p2 + ω2q2

)
Introducing now our perturbation (we choose ω0 = 1), we have

J =
q2(1 + εt)

2
+

p2

2(1 + εt)
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Now, we use Taylor expansion to rewrite

1

1 + εt
= 1− εt+O(ε)

and we have

J =
q2

2
+
p2

2
+ ε

(
q2t

2
− p2t

2

)
+O(ε2)

In order to prove that J is adiabatically invariant, we have to
show that, over a period,

∆J = O(ε2)

We need the ε2 order because, if ∆J were only O(ε), for a time
1/ε we would have ∆J = O(1).

Now, if T is the period of oscillation,

∆J = J(T )− J(0) = ε

(
q2

2
− p2

2

)
T +O(ε2)

Rearranging eq. 2.1 we obtain

p2

2
= H(t)− q2

2
− εtq

2

2

and, substituting,

∆J = ε(H(T )−H(0))− ε2T 2 q
2

2
+O(ε2)

On a period,

H(T )−H(0) = εT
q2

2

Therefore

∆J = O(ε2)

so J is adiabatically invariant.
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2.3 The adiabatic theorem

We are now ready to state the main theorem of this chapter.

Theorem 1. In a unidimensional system with hamiltonianH(p, q, λ),
if ω(J, λ) 6= 0, the action variable J(E, λ) is adiabatically invariant.

Proof. Time-dependent canonical changes of variables cause the hamil-
tonian to mutate according to the law

H̃ = H +
∂F

∂t
(2.2)

where F is the transforamation generatrix

F (q, E, λ) =

∫
H=E

dq p

Now, applying chain rule, λ = εt, so

H̃ = H + ε
∂F

∂λ

We procede evaluating the term ∂F
∂λ

.

∂F

∂λ

∣∣∣∣
q,J

=

∫
dq

(
∂p

∂λ

∣∣∣∣
q,E

+
∂p

∂λ

∣∣∣∣
q,λ

∂H
∂λ

∣∣∣∣
J

)
(2.3)

Now, differentiating the equation H(q, p(q, E, λ), λ) = E we obtain,
remembering that q does not depend upon λ,

∂H
∂p

∣∣∣∣
q,λ

∂p

∂λ

∣∣∣∣
q,E

+
∂H
∂λ

= 0

and, solving the equation for ∂p
∂λ
,

∂p

∂λ

∣∣∣∣
q,E

= −∂H
∂λ

∣∣∣∣
p,q

(
∂H
∂p

∣∣∣∣
q,λ

)−1

From the definition of angle variable, it is straightforward to get

∂θ

∂q
=
∂p

∂J
=

∂p

∂H
∂H
∂J

=

(
∂H
∂p

)−1

ω

thus, integrating ∂p
∂λ

we obtain
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∫
dq

∂p

∂λ

∣∣∣∣
q,E

= − 1

ω

∫
dθ

∂H
∂λ

In order to evaluate the second term of the integral (2.3). We
procede in the same way. This time the equation to differentiate
will be

H(J, λ) = E

from which we get

∂H
∂J

∣∣∣∣
λ

∂J

∂λ

∣∣∣∣
E

+
∂H
∂λ J

= 0

We integrate and obtain∫
dθ

∂J

∂λ

∣∣∣∣
E

= −
∫

dq
∂p

∂E

∣∣∣∣
q,λ

∂H

∂λ

∣∣∣∣
J

Now we compare this expressione of ∂J
∂λ

with the one obtained
differentiating the definition of J

∂J

∂λ

∣∣∣∣
E

=
1

2π

∮
H=E

dq
∂p

∂λ

∣∣∣∣
q,E

The expression of ∂F
∂λ

now reads

∂F

∂λ
= − 1

ω(E, λ)

∫
dθ
∂H
∂λ

∣∣∣∣
p,q

−
∫

dθ
∂J

∂λ

∣∣∣∣
E

Rewriting ∂J
∂λ

as follows:

∂J

∂λ
=
∂J

∂H
∂H
∂λ

integrating and remembering the definition of ω we finally obtain

∂J

∂λ
= − 1

2πω

∫ 2π

0

dθ
∂H
∂λ

= − 1

ω

〈
∂H
∂λ

〉
Thus, we have

∂F

∂λ
= − 1

ω

∫
dθ

(
∂H
∂λ
−
〈
∂H
∂λ

〉)
(2.4)
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This integral, extended to a period, gives result zero, proving
that it is possible to choose a generatrix F such as ∂F

∂λ
has zero

average over a period.
Being

〈
∂F
∂λ

〉
= 0, we have

〈
H̃
〉

= 〈H〉.
Now, in order to prove the adiabatic invariance of J we can

consider its time derivative J̇ .
We have

J̇ = ε
∂F

∂λ
so

J̇ =
ε

ω

(
∂H
∂λ
−
〈
∂H
∂λ

〉)
Now, we write ∆J for a period T :

∆J = J(T )− J(0) =

∫ T

0

dt J̇

and we integrate over θ, performing the substitution

dt =
dθ

ω
+O(ε)

which comes from the equation of motion for θ:

θ̇ = ω +O(ε)

obtaining

∆J = ε

∫ 2π

0

1

ω2

(
∂H
∂λ
−
〈
∂H
∂λ

〉)
+O(ε2)

Now, ω depends on the energy E and on the paramater λ. On a
period, the variation of these quantities is by definition O(ε), so we
can extract ω2 from the integral.

Having shown that eq. 2.4 is zero, ∆J is therefore O(ε2), this
proving our initial statement. [1–4]

It should be pointed out that this proof is valid only in the
unidimensional case. If we study adiabatic invariants in higher di-
mensions, we will stumble upon the fact that, unless frequencies are
commensurable, trajectories are not closed, but they densely enve-
lope invariant tori. Thus, we are not able to compute averages and
we cannot build an adiabatic invariant for every system. [9, p. 234]
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Chapter 3

Averaged hamiltonian

We consider a simplied model for the betatronic dynamics in a
particle accelerator using a one dimensional hamiltonian (flat beam)
with average non linear effects (sextupole and octupole terms).

Let we start from a magnetic field hamiltonian in multipole ex-
pansion as derived in Chapter 1, including terms up to the octupole
(Q4) one. We will analyze two different ways of slowly varying pa-
rameters of the magnetic field: in the first section we will use a
dipolar kick, i.e. the dipole term will be perturbated, while in the
second one we will use a quadrupolar kick, varying the Q2 term.

3.1 Dipolar kick
For a dipolar kick, our hamiltonian reads

H =
P 2

2
+ ω0

Q2

2
− k3

Q3

3
+ k4

Q4

4
+Qε cos(ωt)

where the term ε cos(ωt) is a perturbation of the dipolar term.
We will now proceed imposing a canonical change of variables{

Q =
√

2ρ/ω0 sinφ

P =
√

2ρω0 cosφ
(3.1)

which causes H to become

H = ω0ρ−
k3

3ω
3/2
0

(2ρ)3/2 sin3 φ+
k4

ω2
0

ρ2 sin4 φ+ ε

√
2ρ

ω0

sinφ cos(ωt)

(3.2)
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3.1.1 Average dynamics

We want to average the system near the 1 : 1 resonance γ, so we
apply another canonical transformation (ρ, φ)→ (ρ̃, γ)

γ = φ− ωt ⇒ φ = γ + ωt

while the radius rho remains unvaried ρ̃ = ρ.
Now, this transformation is time-dependent, so the new hamil-

tonian cannot be rewritten trivially substituting the expression of
φ. We need a generatrix function

F (ρ̃, φ) = ρ̃γ = ρ̃(φ− ωt) = ρ(φ− ωt)

and the new hamiltonian H′ becomes

H′ = H +
∂F

∂t
= H− ρω

i.e.

H′ = ρ(ω0 − ω)− k3

3ω
3/2
0

(2ρ)3/2 sin3(γ + ωt)

+
k4

ω2
0

ρ2 sin4(γ + ωt) + ε

√
2ρ

ω0

sin(γ + ωt) cos(ωt)

We are now ready to average the hamiltonian near γ over the
fast dynamics given by ωt.

We remember that, over a period,
〈
sin3 x

〉
= 0

In fact,

〈
sin3 x

〉
=

1

2π

∫ 2π

0

dx sin3 x =
1

2π

∫ 2π

0

dt

(
eit − e−it

2i

)3

=

= − 1

16iπ

∫ 2π

0

dt
(
e3it − 3eit + 3e−it − e−3it

)
= 0

and the third-order term cancel.
We will now calculate

〈
sin4 x

〉
.〈

sin4 x
〉

=
1

2π

∫ 2π

0

dx sin4 x =
1

2π

∫ 2π

0

dt

(
eit − e−it

2i

)4

=

=
1

32π

∫ 2π

0

dt
(
e4it − 4e2it + 6− 4e−2it − e−4it

)
=

=
1

32π
· 6 · 2π =

3

8
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Finally, we have to compute 〈sin(γ + ωt) cos(ωt)〉:

〈sin(γ + ωt) cos(ωt)〉 = 〈[sin γ cos(ωt) + cos γ sin(ωt)] cos(ωt)〉
= sin γ

〈
cos2(ωt)

〉
+ cos γ 〈sin(ωt)〉 〈cos(ωt)〉

The second term is trivially zero, being 〈sin(ωt)〉 = 0, while for
the first we need 〈cos2 x〉

〈
cos2 x

〉
=

1

2π

∫ 2π

0

dx cos2 x =
1

2π

∫ 2π

0

dt

(
eit + e−it

2

)2

=

=
1

8π

∫ 2π

0

dt
(
e2it + 2 + e2it

)
=

=
1

8π
· 2 · 2π =

1

2

Substituting all these results, the averaged hamiltonian H reads

H = ρ(ω0 − ω) +
3k4

8ω2
0

ρ2 +
ε

2

√
2ρ

ω0

sin γ

We are now ready for another coordinate change. We set{
x =

√
2ρ sin γ

y =
√

2ρ cos γ
(3.3)

resulting in the hamiltonian

H = (ω0 − ω)

(
x2 + y2

2

)
+

3k4

8ω2
0

(
x2 + y2

2

)2

+
ε

2
√
ω0

x

Finally, rescaling and letting
λ = −16

3

ω2
0

k4

(ω0 − ω)

µ =
16

3

ω
3/2
0

k4

ε

our hamiltonian reads

H = (x2 + y2)2 − λ(x2 + y2) + µx (3.4)
This specific hamiltonian has been widely studied, and has ap-

pearead in many different fields, including celestial mechanics. [10,
11]
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Figure 3.1 – Separatrices in phase space (x, y) for hamiltonian (3.4)
with λ = 2, µ = 1. The topology of the phase space here portraited, with
the two separatrices l1 and l2 dividing the space into regions G1, G2 and
G12 is obtained when λ > 3

2µ
2/3. The saddle point C is also shown.

3.1.2 Study of phase space topology

For λ larger or equal than a critical value λ∗, the phase space
topology is the one in fig. 3.1. There are two equilibrium points
and a saddle point C, whose coordinate are (xC , 0), where xC is the
largest root of the equilibrium equation

∂H
∂x

= 4x3 − 2λx+ µ = 0

This equation has three real solutions if

λ >
3

2
µ2/3

thus obtaining an expression for critical value λ∗.
An expression of xC is retrievable using the formulae for third

grade equations. It reads

xC =

√
6λ

3
cos

(
π

6
+

1

3
arcsin

(
3
√

6

4

µ

λ3/2

))
We show in figures (3.2 — 3.3) the geometry of separatrices in

the phase spaces for different values of λ and µ. We call G2 the
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(a) λ = 2, µ = 1

(b) λ = 3, µ = 1

(c) λ = 4, µ = 1

(d) λ = 8, µ = 1

Figure 3.2 – Portraits of the separatrices in the phase space (x, y) of
hamiltonian (1.1) for different values of λ, having fixed µ = 1. As λ
increases, both the inner (G2) and the outer (G12) regions of the phase
space inflates, but G2 gets bigger faster, eventually covering G12 for λ�
µ.
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(a) λ = 4, µ = 0.5 (b) λ = 4, µ = 1

(c) λ = 4, µ = 2 (d) λ = 4, µ = 3.25

Figure 3.3 – Portraits of the separatrices in the phase space (x, y) of
hamiltonian (3.4) for different values of µ, having fixed λ = 4. As µ
increases, the outer separatrix slowly inflates, while the inner one gets
much smaller, eventually (fig. 3.3d) excluding the origin (0, 0) from the
inner region.
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region delimitated by the smaller closed curve, G1 the region outside
separatrices and G12 the remaining inner part of the phase space. A
point in G2 will orbit not far from the origin, while a point in G12

will be transported away. Going back to our initial idea, a particle
which happens to be in G12 will form one of the beamlet to be bent,
while particles in G1 will stay in the main beam.

We also call l1 the outer, bigger separatrix curve and l2 the inner,
smaller one.

Fixed λ, if a point is initially in G1, as the separatrix inflates
when λ increases, the point will, at a certain λ̃, be trapped into
G12, and be captured into resonance, or eventually cross the smaller
separatrix, passing into resonance without being captured.

In an averaged approach, where the phase space we study, re-
sulting from a deformation of the original hamiltonian phase space,
is omeomorphic to the original one, we cannot exactly know which
one of the two scenarios will happen. Although, we can consider
the capture into resonance as a random event, depending on initial
conditions. Therefore, it is possible to compute the probability of
capture into G12.

We now define HC to be the hamiltonian at point C

HC = H(xC , 0, λ)

and we introduce a new hamiltonian K as

K = H−HC

This way, in the regions of the phase space (see fig. 3.1) G1 and
G2 we have K > 0; in G12 K < 0 and on the separatrices K = 0.

3.1.3 Capture probability

In [11], Nejštadt proves why capture probability P can be com-
puted using the formula

P =
I1 − I2

I1

(3.5)

where

I1 = −
∮
l1

dt
∂H
∂λ

I2 = −
∮
l2

dt
∂H
∂λ
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The integrals have to be computed at λ = λ̃ where the point
crosses the separatrix.

Without giving a formal proof of this statement, we should note
that, according to Liouville’s theorem, phase space volume is con-
served. Now, on a variation of λ, a phase volume V1 will enter G12

from G1, and a phase volume V2 will leave G12 entering G2. So,
the total G12 volume gain is (V1 − V2)/V2, and the two integrals I1

and I2 are the flow of phase volume across l1 and l2. This justifies
Nejštadt’s formula.

Now, I1 and I2 are quite hard to compute, but an exact method
is possible to perform. First of all, we need to move the origin on
the saddle point (xC , 0) performing the transformation x→ x+xC ,
obtaining the hamiltonian

K = H−HC = (x2+y2)2+4xCx(x2+y2)−(λ̃−2x2
C)(x2+y2)+4x2

Cx
2

We go back to (ρ, γ) coordinates and we get

K = 4ρ2 + 8xC
√

2ρρ sin γ − 2(λ̃− 2x2
C)ρ+ 8x2

Cρ sin2 γ

On the separatrices K = 0, so we have the equation (dividing for
ρ and factorizing)

2
(√

ρ+
√

2xC sin γ
)2

=
(
λ̃− 2x2

C

)
which solved gives

ρ(γ) =
1

2

(√
λ̃− 2x2

C

)
± 2xC sin γ)2 (3.6)

We rewrite the differential dt using

dt =
dγ

γ̇
=

dγ

∂K/∂ρ
=

√
2dγ

2
√
ρ
√
λ̃− 2x2

C

Now,

∂H
∂λ

= −ρ

so, performing the substitutions, our integral reads
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∮
li

dγ

√
2ρ

2
√
λ̃− 2x2

C

=

∮
li

dγ

√
2ρ

2
√
λ̃− 2x2

C

From (3.6) we get the expression of √ρ and the integral finally
becomes

∮
li

dγ

√
λ̃− 2x2

C ± 2xc sin γ

2
√
λ̃− 2x2

C

=
1

2

∮
li

dγ ± xC√
λ− 2x2

C

∮
li

dγ sin γ

(3.7)
We observe that the integrand function only depends on the

angle γ, so in order to get the exact result we have to determine the
dominion of γ spanning the separatrix curves. Having translated
the origin in the hyperbolic point C, we obtain (see fig. 3.1) that
for l1 γ must extend from the angle +Θ/2 to 2π−Θ/2, while for l2
we will have γ ∈ [π −Θ/2, π + Θ/2], where Θ is the angle between
the tangent lines to the sepatrices in C, which can be computed by
Morse lemma.

Indeed, we have

tan (Θ/2) =

√
6x2

C − λ̃
λ̃− 2x2

C

and, using a well-known trigonometric relation

cos Θ =
1− tan2 (Θ/2)

1 + tan2 (Θ/2)
=

λ̃

2x2
C

− 2

so that

Θ = arccos

(
λ̃

2x2
C

− 2

)
Coming back to the integral (3.7) we should notice that the two

dominions of integration are symmetric, and that the second term
integrand, sin γ, is an odd function. This means that that term is
zero, and we finally have

I1 =
1

2

∫ 2π−Θ/2

Θ/2

dγ = π −Θ/2
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0
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P

λ̃

Capture probability for dipolar kick

µ = 1

µ = 2

µ = 4

Figure 3.4 – Plot of capture into resonance probability P (from eq. 3.8)
for hamiltonian (3.4) as function of λ̃ for different values of µ. Probability
is asintotically 1 for λ̃→ λ̃∗ = 3

2µ
2/3 and tends to 0 as λ̃→∞. On larger

values of µ, the minimal λ̃ necessary for capture to occur increases, but
probability of capture for larger λ̃ is better.

I2 =
1

2

∫ π+Θ/2

π−Θ/2

dγ = Θ/2

We therefore have a simple formula for probability P . From (3.5)
we obtain

P(λ̃) =
π −Θ

π −Θ/2
(3.8)

We show in fig. (3.4) P plotted over λ̃ for different values of µ.

3.2 Quadrupolar kick

Introducing a quadrupolar magnetic field kick in our base hamil-
tonian, we obtain
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H =
P 2

2
+ ω0

Q2

2
− k3

Q3

3
+ k4

Q4

4
+
Q2

2
ε cos(ωt)

We proceed as we did in the precedent section, following step-
by-step Nejštadt’s approach in [10].

Applying the same canonical change of variable (P,Q)→ (ρ, φ)
we used in the first section (eq. 3.1) we obtain a new hamiltonian
which reads

H = ω0ρ−
k3

3ω
3/2
0

(2ρ)3/2 sin3 φ+
k4

ω2
0

ρ2 sin4 φ+
ερ

ω0

sin2 φ cos(ωt)

3.2.1 Average dynamics

Now we have to average our system near the resonance. It is
straightforward to show that using 1 : 1 resonance as in the dipolar
case would give a null result. Thus, the right substitution to perform
is

γ = 2φ− ωt φ =
1

2
(γ + ωt)

This is a canonical transformation (ρ, φ)→ (ρ̃, γ) whose genera-
trix function reads

F (ρ̃, φ) = ρ̃γ = ρ̃(2φ− ωt) = ρ(2φ− ωt)

and

∂F

∂t
= ρω

so the new hamiltonian H′ is

H′ = ρ(ω0 − ω)− k3

3ω
3/2
0

(2ρ)3/2 sin3

(
γ − ωt

2

)
+

+
k4

ω2
0

ρ2 sin4

(
γ − ωt

2

)
+

+
ρε

ω0

sin2

(
γ − ωt

2

)
cos (ωt)

Now, we have to average this integral over a period 4π/ω.
We have, reusing results from the precedent section
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〈
sin3

(
γ − ωt

2

)〉
= 0〈

sin4

(
γ − ωt

2

)〉
=

3

8

We have now to compute〈
sin2

(
γ − ωt

2

)
cos (ωt)

〉
.

Let ωt = θ.

〈
sin2

(
γ − θ

2

)
cos θ

〉
=

1

2π

∫ 2π

0

dθ

(
e
iθ+iγ

2 − e−iθ−iγ
2

2i

)2(
eiθ + e−iθ

2

)
= − 1

16π

∫ 2π

0

dθ
(
eiθeiγ + e−iθe−iγ − 2

)(
eiθ + e−iθ

)
= − 1

8π

eiγ + e−iγ

2

∫ 2π

0

dθ = −cos γ

4

and the averaged hamiltonian finally reads

〈H〉 = ρ(ω0 − ω) +
3k4

8ω2
0

ρ2 − ε

4ω0

ρ cos γ (3.9)

Finally, we write this hamiltonian using the (x, y) coordinates
introduced in eq. (3.3) and, after a rescaling, we have

H = (x2 + y2)2 − λ(x2 + y2)− µy
√
x2 + y2 (3.10)

where we have defined
λ = −16

3

ω2
0

k4

(ω0 − ω)

µ =
8

3
√

2

ω0

k4

ε

3.2.2 Study of phase space topology

In figures (3.5 — 3.6) we show the geometry of separatrices in
the phase spaces for different values of λ and µ.
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(a) λ = 1, µ = 1 (b) λ = 1.5, µ = 1

(c) λ = 2, µ = 1 (d) λ = 3, µ = 1

Figure 3.5 – Portraits of separatrices in the phase space (x, y) of hamil-
tonian (3.10) for different values of λ, having fixed µ = 1. In the first
picture, we have the critical case λ = λ∗. As λ increases, both the inner
and the outer separatrices inflate.
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(a) λ = 4, µ = 0.5 (b) λ = 4, µ = 1.5

(c) λ = 4, µ = 2.5 (d) λ = 4, µ = 3.5

Figure 3.6 – Portratits of separatrices in the phase space (x, y) of hamil-
tonian (3.10) for different values of µ, having fixed λ = 4. As µ increases,
the outer separatrix slowly inflates, while the inner one decreases its size
reaching eventually the critical condition for µ = λ, but always keeping
the origin (0, 0) inside.
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For λ > λ∗ = µ, we have two elliptical points and a hyperbolic
one. The saddle point C has coordinates (0, yC) where yC is the
smaller root of the equation

∂H
∂y

∣∣∣∣
x=0

= 4y3 − 2λ|y| − 2µy = 0

We search a solution on the negative semiaxis, so |y| = −y.
Thus

yC = −
√
λ− µ

2

and, in order to obtain a real value, we retrieve λ > µ.
We now want to obtain an explicit expression of the separatrices.

On that curves, the condition H = HC is satisfied.
We have

HC = y4
C − λy2

C − µyC |yC | = y4
C − λy2

C + µy2
C = −

(
λ− µ

2

)2

so, the equation H − HC = 0, reduces, going back to (ρ, γ)
coordinates:

4ρ2 − 2ρ(µ cos γ + λ) +

(
λ− µ

2

)2

and solving this second-grade equation we get

ρ(γ) =
µ cos γ + λ±

√
(µ cos γ + λ)2 − (λ− µ)2

4

3.2.3 Capture probability

The capture probability reads, being li a separatrix (see fig. 3.7),
as in (3.5)

We have

Ii =

∫
li

dt ρ

∣∣∣∣
λ=λ̃

We rewrite this integral as follows∫
li

dt ρ =

∫
dγ
ρ(γ)

γ̇
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Figure 3.7 – Separatrices in phase space (x, y) for hamiltonian (3.10)
with λ = 2, µ = 1. The topology of the phase space here portraited, with
the two separatrices l1 and l2 dividing the space into regions G1, G2 and
G12 is obtained when λ > µ. The saddle point C is also shown.

where γ̇ is obtained from Hamilton equation:

γ̇ =
∂H
∂ρ

= 8ρ− 2λ− 2µ cos γ

= 2(µ cos γ + λ)± 2
√

(µ cos γ + λ)2 − (λ− µ)2 − 2λ− 2µ cos γ

= ±2
√

(µ cos γ + λ)2 − (λ− µ)2

and we find

Ii =

∫
li

dγ
µ cos γ + λ̃±

√
(µ cos γ + λ̃)2 − (λ̃− µ)2

±8
√

(µ cos γ + λ̃)2 − (λ̃− µ)2

=

∫
dγ

1

8
± µ cos γ + λ̃

8
√

(µ cos γ + λ̃)2 − (λ̃− µ)2


As we did not perform any translation of the origin, this integrals

have to be computed for γ ∈ [0, 2π].
We define



Quadrupolar kick 37

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

P

λ̃

Capture probability for quadrupolar kick

µ = 1

µ = 2

µ = 4

Figure 3.8 – Plot of capture into resonance probability P (from eq.
3.12) for hamiltonian (3.10) as function of λ̃ for different values of µ.
Probability is asintotically 1 for λ̃→ λ̃∗ = µ and tends to 0 as λ̃→∞. For
larger values of µ, the minimal λ̃ necessary for capture to occur increases,
but probability of capture for larger λ̃ is better.

Ξ =

∫ 2π

0

dγ
µ cos γ + λ̃√

(µ cos γ + λ̃)2 − (λ̃− µ)2

= 4 arcsin

√
µ

λ̃
(3.11)

The computation of Ξ, which is performed reconducting the integral
to notable results tabled in [7], is shown in Appendix A.

Thus, we finally obtain

P =
I2 − I1

I1

=
2Ξ

2π + Ξ
(3.12)

Fig. (3.8) shows how the probability P changes varying λ for
different values of µ.
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Chapter 4

Perturbation approach

Let we take into account the hamiltonian we studied in the sec-
ond section of the latter chapter.

H =
P 2

2
+ ω2

0

Q2

2
+ k3

Q3

3
+ k4

Q4

4
+ ε

Q2

2
cos (ωt)

We rewrite it using (ρ, φ) coordinates as in equation (3.2), and,
for ε = 0 we obtain

H = ω0ρ+
23/2k3

3ω
3/2
0

ρ3/2 sin3 φ+
k4

ω
3/2
0

ρ2 sin4 φ

Being ε = 0, we are able to perform a canonical transforma-
tion (ρ, φ)→ (J, θ) where J and θ are action-angle variables, which
causes the new hamiltonian to read

H(J) = ω0J + ω2
J2

2

In order to find the expression of J and θ we consider the Lie
trasformation eDF (J,θ) where we define

F (J, θ) = J3/2f3(θ) + J2f4(θ)

where f3(θ) and f4(θ) have to be found from the equation

eDF (J,θ)H(ρ, φ) = H(J)

We recall that

DF = {·, F}
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so

eDFH = H + {H, F}+
1

2
{{H, F}, F}+

1

6
{{{H, F}, F}, F}+ · · ·

In order to investigate 4−order resonance, we can restrict to
terms of J up to J2, so we will need only to explicitly compute the
first two terms of the exponential series.

Thus, applying Poisson bracket definition

{H, F} =
∂H
∂ρ

∂F

∂θ
− ∂H

∂θ

∂F

∂ρ

= J3/2ω0f
′
3(θ)

+ J2

(
ω0f

′
4(θ) +

√
2k3f

′
3(θ) sin3 θ

ω
3/2
0

− 3
√

2k3f3(θ) sin2 θ cos θ

ω
3/2
0

)
+O(J2)

{{H, F}, F} = J2

(
−3ω0f3(θ)f ′′3 (θ)

2
+

3ω0f
′2
3 (θ)

2

)
+O(J2)

We have the equation

eDFH0 = H0(J) = ω0J +
ω2

2
J2

and regrouping J3/2 and J2 terms we obtain

f ′3(θ) =
23/2k3

3ω
5/2
0

sin3 θ

f ′4(θ) =
3

2

(
f3(θ)f ′′3 (θ)− f ′23 (θ)

)
+
ω2

ω0

+
k4

ω3
0

sin4 θ

Substituting and integrating, we get, for f3(θ) and f4(θ):

f3(θ) =
23/2k3

3ω
5/2
0

∫
dθ sin3 θ = −23/2k3

3ω
5/2
0

cos θ(2 + sin2 θ)
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f4(θ) = cos3 θ

(
2k2

3 sin3 θ

ω5
0

+
15k2

3 sin θ

3ω5
0

)
− cos θ

(
k4 sin3 θ

4ω3
0

−
√

2k3 sin2 θ

ω
5/2
0

)

− 30k2
3 − 3ω2

0k4 − 4ω4
0ω2

8ω5
0

θ

We are now ready to use another time Poisson bracket formalism to
get the expressions of φ and ρ in terms of θ and J , obtaining, for
terms up to J2

φ = θ +
3

2
J1/2f3(θ) + J

(
2f4(θ) +

3

2
f3(θ)f ′3(θ)

)
ρ = J − J3/2f ′3(θ)− J2

(
f4(θ)− 3

2
f3(θ)f ′′3 (θ) +

3

2
f ′23 (θ)

)
When we impone a k−order resonance, the condition reads

kω ± ωr = 0

where

ω =
∂H
∂J

is the proper frequency of the system.
This means that, when this equation is satisfied, if we rewrite

the perturbation term Q2

2
as a Fourier series, the only term which

will not cancel when averaging will be the cos(kθ) one. We can
neglect the sin(kθ) term because we chose a cosinusoidal perturba-
tion, which applied to a sinuosoidal term cancel on satisfying the
resonance condition.

Let we set k = 4. We have

Q =
√

2ρ sinφ

so

Q2

2
= ρ sin2 φ

.
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Now, up to J2 order we have, being sin2 φ ∼ φ2

Q2

2
= Jθ2 + J3/2

(
3θf3(θ)− θ2f ′3(θ)

)
+ J2

(
4θf4(θ)− θ2f ′4(θ) +

3

2
f3(θ)f ′′3 (θ)− 3

2
f ′23 (θ) +

9

4
f 2

3 (θ)

)
and we can compute the Fourier series term a4(J) using the well-

known formula

a4(J) =
1

π

∫ π

−π
dθ

Q2

2
cos(4θ)

This integral is quite laborious to perform, so we computed it
using a computer algebra system, which gave the result

a4(J) =
J

4
+ J2

(
3

8

ω2

ω0

+
475− 96π2

2304

k4

ω3
0

− 1151

160

k2
3

ω5
0

)
Now, ω2 is the coefficient of the term ρ2 in the averaged hamil-

tonian (3.9) which reads

ω2 =
3k4

8ω2
0

Performing the substitution we obtain

a4(J) =
J

4
+ J2

[(
9

64
+

475− 96π2

2304

)
k4

ω3
0

− 1151

160

k2
3

ω5
0

]
and, approximating the numerical constants,

a4(J) = 0.25J + J2

(
−0.064

k4

ω3
0

− 7.194
k2

3

ω5
0

)
(4.1)

This final result fully depends on magnetic field parameters k3

and k4, on proper frequency of the system ω0 and on action J , which,
from the point of view of beam dynamics has to be interpreted
as beam emittance, the property of the beam which measures the
average spread in the phase space of beam particles coordinates. [3]



Conclusion

We have shown that, in a simplified, unidimensional model, it is
possibile to trap particles into resonance using an adiabatically var-
ied magnetic field, performing a perturbation of the dipolar and the
quadrupole term. Moreover, in figures (3.4, 3.8) we plot the capture
probability over the averaged hamiltonian parameters. The depen-
dencies are similar, but for comparable values of the parameters, the
quadrupolar kick shows a better probability.

Finally, the strength of the 4 : 1 resonance computed in (4.1)
fixes a minimum value for the perturbation strength in order to
achieve the adiabatic trapping.

A further study should focus on the comparation of these theo-
retical results with the real ones obtained using MTE at CERN, in
order to understand how accurate are these models.
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Appendix A

Computation of Ξ

The integral

Ξ =

∫ 2π

0

dγ
µ cos γ + λ√

(µ cos γ + λ)2 − (λ− µ)2

which appears in eq. (3.11) when computing the probability of
capture for a quadropolar kick is quite hard to solve analitically. We
have performed the integration reconducting Ξ to a sum of notable
integrals whose value has been tabled by Gradštein and Ryžik in [7].

First of all, we notice that there is no difference integrating this
function for γ ∈ [−π, π], so our integral will read∫ π

−π
dγ

µ cos γ + λ√
(µ cos γ + λ)2 − (λ− µ)2

Now, we perform the parametric substitution for goniometric
functions.

We define

t = tan
γ

2

and we have

cos γ =
1− t2

1 + t2
dγ =

2

1 + t2
dt

For γ = 0, we have, as γ → ±π, tan(±π/2)→∞, so our integral
will rewrite, after some elementary algebrical manipulations

Ξ =

∫ ∞
−∞

dt
λ(1 + t2) + µ(1− t2)

√
µ(1 + t2)

√
λ(1 + t2)− µt2
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Having defined k = µ/λ, we can split this integral in three parts:

Ξ1 =
1

k

∫
dt√

(1− k2)t2 + 1

Ξ2 = k

∫
dt

(1 + t2)
√

(1− k2)t2 + 1

Ξ3 = k

∫
dt

t2

(1 + t2)
√

(1− k2)t2 + 1

We of course have

Ξ = (Ξ1 + Ξ2 − Ξ3)

∣∣∣∣∞
−∞

Let we take into account Ξ1.
Being c = (1− k2), this integral is reconductible to the form∫

dt
1√

1 + ct2

When c > 0 (which is true, being λ > µ), this integral reads [7,
2.27, p. 99]

1√
c

ln
(√

ct2 + 1 +
√
ct
)

We notice, by the way, that this is an expression of hyperbolic
arc sine function.

Substituting c, we obtain (setting the integration constant to 0)

Ξ1 =
1

k
√

1− k2
ln
(√

(1− k2)t2 + 1 + t
√

1− k2
)

Let us now move on Ξ2.
We perform the substitution

s = 1 + t2 dt =
ds

2
√
s− 1

and we get

Ξ2 =
k

2

∫
ds

s
√
s2(1− k2) + s(2k2 − 1)− k2

In [7, 2.266, p. 94] we find the value of integrals similar to
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∫
dx

x
√
R(x)

where R(x) is a second-grade polynomial. If, as in our case,
∆ < 0, we find that our integral is expressed in terms of arc sine
function. Therefore we have, performing all the substitutions

Ξ2 = k
1

k
arcsin

(
kt√

1 + t2

)
= arcsin

(
kt√

1 + t2

)
Finally, also for Ξ3 we make the substitution

s = 1 + t2 dt =
ds

2
√
s− 1

obtaining

Ξ3 =
k

2

∫
ds

s− 1

s
√
s− 1

√
1 + (1− k2)(s− 1)

This integral can be split into the sum of two integrals

Ξ3 = Ξ3a − Ξ3b

=
k

2

∫
ds√

k2(1− s) + s
√
s− 1

+
k

2

∫
ds

s
√
s− 1

√
k2(1− s) + s

and, using the same formulae from [7], we have

Ξ3 = − arcsin

(
kt√

1 + t2

)
+

k√
1− k2

ln
(√

(1− k2)t2 + 1 + t
√

1− k2
)

so

Ξ = 2 arcsin

(
kt√

1 + t2

)∣∣∣∣∞
−∞

+

√
1− k2

k
ln
(√

(1− k2)t2 + 1 + t
√

1− k2
)∣∣∣∣∞
−∞

Now, the first term is easy to evaluate as

4 arcsin k

while, for the second one we must be careful while taking the
limits.

Let we go back to γ variable. We have
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t = tan(γ/2) =
sin(γ/2)

cos(γ/2)

obtaining

ln

(√
2 cos γ − k2 sin2 γ + 2 +

√
1− k2 sin γ

1 + cos γ

)∣∣∣∣2π
0

= 0

and we get

Ξ = 4 arcsin k = 4 arcsin

√
µ

λ



Bibliography

[1] Vladimir Igorevič Arnol’d.Metodi matematici della mec-
canica classica. Roma: Editori Riuniti, 1979, pp. 267–298. isbn:
978-88-6473-204-6.

[2] Vladimir Igorevič Arnol’d. “Small denominators and prob-
lems of stability of motion in classical and celestial mechanics”.
In: Russian Mathematical Surveys 18.6 (1963), pp. 85–191.

[3] Armando Bazzani. Notes on Adiabatic Theory. 2016.

[4] Armando Bazzani et al. “Analysis of adiabatic trapping for
quasi-integrable area-preserving maps”. In: Physical Review E
89.4 (2014), p. 042915.

[5] J. Borburgh et al. “First implementation of transversely
split proton beams in the CERN Proton Synchrotron for the
fixed-target physics programme”. In: EPL (Europhysics Let-
ters) 113.3 (2016), p. 34001.

[6] R. Cappi and M. Giovannozzi. “Novel Method for Mul-
titurn Extraction: Trapping Charged Particles in Islands of
Phase Space”. In: Phys. Rev. Lett. 88 (10 2002), p. 104801.
doi: 10.1103/PhysRevLett.88.104801.

[7] Izrail’ Solomonovič Gradštejn and Iosif Moiseevič
Ryžik. Table of Integrals, Series, and Products. 7th ed. Boston:
Academic Press, 2007. isbn: 978-0-12-384933-5.

[8] John David Jackson. Classical Electrodynamics. 3rd ed.
New York: John Wiley & Sons, 1998. Chap. 12.

[9] Lev Davidovič Landau and Evgenij Michajlovič Lifšic.
Fisica teorica 1. Meccanica. Roma: Editori Riuniti, 1976, pp. 223–
237.

http://dx.doi.org/10.1103/PhysRevLett.88.104801


50 Bibliography

[10] Anatolij I. Nejštadt, Aleksej A. Vasil’ev, and Anton
V. Artem’ev. “Capture into resonance and escape from it in
a forced nonlinear pendulum”. In: Regul. Chaotic. Dyn. 18 (6
2013), pp. 686–696. doi: 10.1134/S1560354713060087.

[11] Anatolij Iserovič Nejštadt. “Passage through a separa-
trix in a resonance problem with a slowly-varying parame-
ter”. In: Journal of Applied Mathematics and Mechanics 39 (4
1975), pp. 594–605.

[12] Helmut Wiedemann. Particle accelerator physics. 3rd ed.
Berlin-Heidelberg-New York: Springer, 2007. Chap. 3. isbn:
978-3-540-49043-2.

http://dx.doi.org/10.1134/S1560354713060087

	Introduction
	PS and Multi-turn extraction
	Structure of the work

	1 Magnetic field
	1.1 Hamiltonian of electromagnetic field
	1.2 Multipole expansion of magnetic field

	2 Adiabatic invariants
	2.1 Definitions
	2.2 An example: the harmonic oscillator
	2.3 The adiabatic theorem

	3 Averaged hamiltonian
	3.1 Dipolar kick
	3.1.1 Average dynamics
	3.1.2 Study of phase space topology
	3.1.3 Capture probability

	3.2 Quadrupolar kick
	3.2.1 Average dynamics
	3.2.2 Study of phase space topology
	3.2.3 Capture probability


	4 Perturbation approach
	Conclusion
	A Computation of 
	Bibliography

