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Sommario. L’obiettivo di questo lavoro é quello di analizzare la potenza emes-

sa da una carica elettrica accelerata. Saranno studiati due casi speciali: ac-

celerazione lineare e accelerazione circolare. Queste sono le configurazioni piú

frequenti e semplici da realizzare. Il primo passo consiste nel trovare un’e-

spressione per il campo elettrico e il campo magnetico generati dalla carica.

Questo sará reso possibile dallo studio della distribuzione di carica di una sor-

gente puntiforme e dei potenziali che la descrivono. Nel passo successivo verrá

calcolato il vettore di Poynting per una tale carica. Useremo questo risultato

per trovare la potenza elettromagnetica irradiata totale integrando su tutte le

direzioni di emissione. Nell’ultimo capitolo, infine, faremo uso di tutto ció che é

stato precedentemente trovato per studiare la potenza emessa da cariche negli

acceleratori.



Abstract. This paper’s goal is to analyze the power emitted by an accelerated

electric charge. Two special cases will be scrutinized: the linear acceleration

and the circular acceleration. These are the most frequent and easy to realize

configurations. The first step consists of finding an expression for electric and

magnetic field generated by our charge. This will be achieved by studying the

charge distribution of a point-like source and the potentials that arise from it.

The following step involves the computation of the Poynting vector. This will

be used to calculate the total radiated electromagnetic power by integrating

on all possible orientations. In the last chapter, we will combine the knowledge

gathered thus far to study power emission in accelerators.
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CHAPTER 1

Introduction

Electromagnetism is the study of electricity and magnetism. These two are

profoundly related to one another, so much so that they are considered two aspects

of the same phenomenon. It was not until the XIX century that they were treated

as such. The first one who proposed this was J. C. Maxwell (1831 - 1879), whose

revolutionary point of view still to this day proves very powerful and effective in

describing of every classical electromagnetic phenomenon known to man. In 1905

A. Einstein (1879 - 1955) established the interconnection between electricity and

magnetism even strongly with special relativity.

Classical electrodynamics studies the phenomena associated with moving elec-

tric charges and their interaction with electric and magnetic fields. The speeds

involved are allowed to get arbitrarily close to the speed of light, as the theory

ties in perfectly with special relativity.

Electrodynamics is formulated through fields, which permeate the entire uni-

verse. Electric charges couple to the field and respond to it with an interaction

that forces the field itself to change. The fundamental problem is to study the

interaction that arises between an electric charge moving in an electromagnetic

field.

The concepts that will be discussed in this paper are standard, and can be

found in any modern and classic book of electrodynamics.
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CHAPTER 2

Electric and magnetic fields

2.1. Point-like charge approximation

In order to find an expression for the electric and magnetic fields E(x, t),

B(x, t) generated by a moving charge, we first have to consider the electric charge

density ρ(x, t) and current density j(x, t) of such a charge q, which are known

from classical electromagnetism to have the form

ρ(x, t) =
q

4πr03
f

( |x− x(t)|
r0

)
, (2.1.1a)

j(x, t) =
q

4πr03
f

( |x− x(t)|
r0

)
ẋ(t), (2.1.1b)

where r0 is a constant with the dimensions of length, x(t) is the trajectory in

three dimensional space evaluated at time t, f(ξ) with ξ ≥ 0 is a regular real

valued function such that ∫ ∞
0

dξ ξ2f(ξ) = 1, (2.1.2a)

f(ξ)→ 0 for ξ � 1. (2.1.2b)

The function f(ξ) bares information about the spacial distribution of the

charge. Equation (2.1.2a) makes sure that the integral of the electric density

ρ(x, t) throughout space yields the total charge q, while (2.1.2b) specifies that

the charge is mostly concentrated around a ball of radius r0. This means that

(2.1.1) describe a charged ball of radius r0 rigidly moving through space on an

arbitrary trajectory x(t).

The definitions (2.1.1) are consistent with the charge conservation equation

∂ρ(x, t)

∂t
+∇·j(x, t) = 0. (2.1.3)
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Figure 2.1.1. A moving charge.

Proof. The computation of the left hand side of (2.1.3) gives

∂ρ(x, t)

∂t
=

∂

∂t

q

4πr03
f

( |x− x(t)|
r0

)
(2.1.4)

=
q

4πr03
f ′
( |x− x(t)|

r0

)
∂

∂t

|x− x(t)|
r0

= − q

4πr04
f ′
( |x− x(t)|

r0

)
x− x(t)

|x− x(t)| ·ẋ(t),

where the notation f ′(ξ) stands for the derivative of the function f(ξ) with respect to

its argument ξ. The right hand side is

∇·j(x, t) =∇· q

4πr03
f

( |x− x(t)|
r0

)
ẋ(t) (2.1.5)

=
q

4πr03
f ′
( |x− x(t)|

r0

)
∇·
( |x− x(t)|

r0
ẋ(t)

)
=

q

4πr04
f ′
( |x− x(t)|

r0

)
x− x(t)

|x− x(t)| ·ẋ(t).

This proves (2.1.3).
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In most applications, the size r0 of the charged particle is negligible compared

to the distance x at which the effects of the particle are measured. We shall

assume that the object generating the field is small enough that it can be treated

as point-like. This approximation is satisfied more often than not, since the field

source can be thought of an electron, whose radius is very small (its upper limit

is around 10−22 m). This approximation is expressed through the condition

r0 � |x− x(t)|, (2.1.6a)

or, in other words,

r0 → 0. (2.1.6b)

When condition (2.1.6a) is satisfied, the particle is geometrically point-like, mean-

ing that the entire charge q is located at x(t) at all times t. From now on, we

shall only consider such particles, which is to say we shall always assume condition

(2.1.6a) satisfied. It can be shown that

lim
r0→0

q

4πr03
f

( |x− x(t)|
r0

)
= qδ(x− x(t)), (2.1.7)

where δ(ξ) is the three dimensional Dirac delta function. This is intuitively

proved by noting that, if we allow the spacial distribution of the charge q to be

a Gaussian-like function, condition (2.1.6a) makes this function more and more

peaked around x(t) and, in the limit where r0 → 0, it becomes a delta-shaped

function. Applying (2.1.7) to the equations for the density and current density

(2.1.1) yields

ρ(x, t) = qδ(x− x(t)), (2.1.8a)

j(x, t) = qδ(x− x(t))ẋ(t). (2.1.8b)

Equations (2.1.8) represent the density and current density of a point-like charged

particle. Indeed, if we think of the delta function as an infinitely peaked Gaussian
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function, we can easily understand how the charge q is exactly located at x(t),

following exactly the trajectory of the particle.
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2.2. Computation of electric and magnetic fields

In order to be able to compute the electric field E(x, t) and magnetic field

B(x, t) we need an expression for the electric potential Φ(x, t) and vector poten-

tial A(x, t). Once these potentials are known, the fields we are after are easily

found through classical electromagnetism to be

E(x, t) = −∇Φ(x, t)− 1

c

∂A(x, t)

∂t
, (2.2.1a)

B(x, t) =∇×A(x, t). (2.2.1b)

So we must find the electric potential Φ(x, t) and vector potential A(x, t) first.

These can be computed through

Φ(x, t) =

∫
d3x′

1

|x− x′|ρ
(
x′, t− |x− x

′|
c

)
, (2.2.2a)

A(x, t) =

∫
d3x′

1

c|x− x′|j
(
x′, t− |x− x

′|
c

)
. (2.2.2b)

These relations can be obtained once again through considerations of electromag-

netic theory, but won’t be proven here.

For the sake of compactness, it is useful to introduce two pieces of notation,

namely

n(x, t) =
x− x(t)

|x− x(t)| , (2.2.3a)

β(t) =
ẋ(t)

c
. (2.2.3b)

With these definitions, n(x, t) is a unit vector (whose length is thus |n(x, t)| = 1)

in the direction that connects the trajectory x(t) to the observation point x and

β(t) is the velocity of the particle in units equal to c, whose length is strictly less

than 1 (|β(t)| < 1).

Inserting the expression for ρ(x, t) and j(x, t) (2.1.8) into (2.2.2) and solving

the integrals yields

Φ(x, t) =
q

1− β(t∗)·n(x, t∗)

1

|x− x(t∗)|

∣∣∣∣
t∗=t∗(x,t)

, (2.2.4a)
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A(x, t) =
q

1− β(t∗)·n(x, t∗)

β(t∗)

|x− x(t∗)|

∣∣∣∣
t∗=t∗(x,t)

, (2.2.4b)

where t∗ = t∗(x, t) is called the retarded time and is the unique solution of

t∗ − t+
|x− x(t∗)|

c
= 0. (2.2.5)

It is also evident from (2.2.4) that

A(x, t) = Φ(x, t)β(t∗)|t∗=t∗(x,t) . (2.2.6)

Proof. In order to prove expressions (2.2.4), we shall first utilize a standard delta

function trick,

ρ(x, t) =

∫
dt′ρ(x, t′)δ(t′ − t), (2.2.7)

where δ(ξ) is the one dimensional Dirac delta function. Using the trick above and

substituting (2.1.8) into (2.2.2) yields

Φ(x, t) =

∫
d3x′

1

|x− x′|ρ
(
x′, t− |x− x

′|
c

)
(2.2.8a)

=

∫
d3x′

1

|x− x′|

∫
dt′ρ(x′, t′)δ

(
t′ − t+

|x− x′|
c

)
=

∫
d3x′

1

|x− x′|

∫
dt′qδ(x′ − x(t′))δ

(
t′ − t+

|x− x′|
c

)
= q

∫
dt′
∫

d3x′
1

|x− x′|δ(x
′ − x(t′))δ

(
t′ − t+

|x− x′|
c

)
= q

∫
dt′

1

|x− x(t′)|δ
(
t′ − t+

|x− x(t′)|
c

)
,

A(x, t) =

∫
d3x′

1

c|x− x′|j
(
x′, t− |x− x

′|
c

)
(2.2.8b)

=

∫
d3x′

1

c|x− x′|

∫
dt′j(x′, t′)δ

(
t′ − t+

|x− x′|
c

)
=

∫
d3x′

1

c|x− x′|

∫
dt′qδ(x′ − x(t′))ẋ(t′)δ

(
t′ − t+

|x− x′|
c

)
=
q

c

∫
dt′
∫

d3x′
ẋ(t′)

|x− x′|δ(x
′ − x(t′))δ

(
t′ − t+

|x− x′|
c

)
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=
q

c

∫
dt′

ẋ(t′)

|x− x(t′)|δ
(
t′ − t+

|x− x(t′)|
c

)
.

We shall now compute the integrals in t′. To do that, it is necessary to find the value

of t′ for which the argument of the delta function inside the integral vanishes. This is

equivalent to finding the solutions t∗ to equation (2.2.5). The quantity |x − x(t∗)|/c
is the time required for a light signal to travel from x(t∗) to x. Since |ẋ(t′)| < c and

t∗ ≤ t, equation (2.2.5) has one and only one solution t∗ = t∗(x, t). Indeed, a spherical

front moving from infinity at time −∞ converging to x at time t sweeps the whole

space at speed c, therefore it will eventually meet the point-like charge at least once.

Since |ẋ(t′)| < c, the front intersects the trajectory of the point charge only once. The

front and the charge meet at time t∗, which satisfies precisely (2.2.5).

Now that we have established the uniqueness of t∗, we can solve the integrals.

Although it won’t be proven here, it can be shown that

δ(f(t)) =
δ(t− t0)
|f ′(t0)|

, (2.2.9)

if f(t0) = 0, f ′(t0) 6= 0 and t0 is the only value of t with such property. Therefore

δ

(
t′ − t+

|x− x(t′)|
c

)
=

∣∣∣∣ d

dt′

(
t′ − t+

|x− x(t′)|
c

)∣∣∣∣−1 δ(t′ − t∗(x, t)) (2.2.10)

=

∣∣∣∣1− ẋ(t′)

c
· x− x(t′)

|x− x(t′)|

∣∣∣∣−1 δ(t′ − t∗(x, t))
=

1

1− β(t′)·n(x, t′)
δ(t′ − t∗(x, t)),

where the absolute value has been dropped in the last step because both β(t′) and

n(x, t′) both have lengths not exceeding 1. It is now straightforward to prove (2.2.4)

by substituting (2.2.10) into (2.2.8).

Having an expression for the potentials allows us to calculate the electric field

E(x, t) and magnetic field B(x, t) starting from (2.2.1), obtaining

E(x, t) =
q

(1− β(t∗)·n(x, t∗))3
1

|x− x(t∗)|2
(2.2.11a)
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{(
1− |β(t∗)2|

)
(n(x, t∗)− β(t∗))

+
|x− x(t∗)|

c
n(x, t∗)×

[
(n(x, t∗)− β(t∗))×β̇(t∗)

]}∣∣∣∣
t∗=t∗(x,t)

,

B(x, t) =
q

(1− β(t∗)·n(x, t∗))3
1

|x− x(t∗)|2
(2.2.11b)

n(x, t∗)×
{(

1− |β(t∗)2|
)

(n(x, t∗)− β(t∗))

+
|x− x(t∗)|

c
n(x, t∗)×

[
(n(x, t∗)− β(t∗))×β̇(t∗)

]}∣∣∣∣
t∗=t∗(x,t)

.

Proof. There is more than one way of proving expressions (2.2.11). Here, we will prove

it through variational calculus. Since this proof is rather complicated, we shall divide

it in steps for the sake of clarity.

Step 1. First of all, we need to compute the electric potential’s variation under

infinitesimal variations of x and t. Therefore, we have to apply the variational operator

δ (beware not to confuse it with the delta function) to the electric potential (2.2.4a).

In order to keep the notation slightly more compact, we shall avoid repeating that

t∗ = t∗(x, t) at the end of every expression if there is no ambiguity in the meaning of

t∗.

δΦ(x, t) = δ

[
q

1− β(t∗)·n(x, t∗)

1

|x− x(t∗)|

]
(2.2.12)

= q

{
− 1

1− β(t∗)·n(x, t∗)

1

|x− x(t∗)|2
x− x(t∗)

|x− x(t∗)| ·δ(x− x(t∗))

+
1

|x− x(t∗)|
1

(1− β(t∗)·n(x, t∗))2
δ(β(t∗)·n(x, t∗))

}
.

Step 2. Now, we need to compute the two variations in (2.2.12). The first one is

easily carried out, since we can evaluate the variation of the sum as a sum of variations;

then, keeping in mind that δξ(t) = (∂ξ(t)/∂t) δt, we find

δ(x− x(t∗)) = δx− ẋ(t∗)δt∗ (2.2.13)

= δx− cβ(t∗)δt∗.
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The second one is slightly more complicated. For this step it is necessary to know how

to deal with the variation of a unit vector. Given n = r/r any vector of length 1, where

r = |r| it can be shown that

δn =
1− nn

r
·δr, (2.2.14)

where the product nn represents the dyadic product of two vectors, which is known to

yield a matrix. In fact,

δn = δ
(r
r

)
=
δr

r
+ rδ

(
1

r

)
(2.2.15)

=
δr

r
− r 1

r2
δ|r|

=
δr

r
− r

r2

(r
r
·δr
)

=
δr

r
−
(rr
r2

)
·δr
r

= 1·δr
r
− (nn) ·δr

r

= (1− nn) ·δr
r
,

which proves (2.2.14). Therefore, using a Leibniz-like rule and result (2.2.14), it is easy

to see that

δ(β(t∗)·n(x, t∗)) = β(t∗)·δn(x, t∗) + n(x, t∗)·δβ(t∗) (2.2.16)

= β(t∗)·1− n(x, t∗)n(x, t∗)

|x− x(t∗)| ·δ(x− x(t∗))

+ n(x, t∗)·β̇(t∗)δt∗

= β(t∗)·1− n(x, t∗)n(x, t∗)

|x− x(t∗)| · (δx− cβ(t∗)δt∗)

+ n(x, t∗)·β̇(t∗)δt∗,

where in the last step we have made use of (2.2.13) once again. Now we have an

expression for δΦ(x, t) in terms of the variation of its arguments δx and δt∗,

δΦ(x, t) = q

{
− 1

1− β(t∗)·n(x, t∗)

1

|x− x(t∗)|2
x− x(t∗)

|x− x(t∗)| ·δ(x− x(t∗)) (2.2.17)

+
1

|x− x(t∗)|
1

(1− β(t∗)·n(x, t∗))2
δ(β(t∗)·n(x, t∗))

}
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=
q

1− β(t∗)·n(x, t∗)

1

|x− x(t∗)|

{
− n(x, t∗)

|x− x(t∗)| · (δx− cβ(t∗)δt∗)

+
1

1− β(t∗)·n(x, t∗)

[
β(t∗)·1− n(x, t∗)n(x, t∗)

|x− x(t∗)| · (δx− cβ(t∗)δt∗)

+ n(x, t∗)·β̇(t∗)δt∗
]}
,

obtained by substituting (2.2.13) and (2.2.16) into (2.2.12). In order to make this long

expression easier to manipulate, we shall define

α = 1− β(t∗)·n(x, t∗), (2.2.18a)

r = |x− x(t∗)|. (2.2.18b)

With these pieces of notation, (2.2.4a) becomes

Φ(x, t) =
q

αr
, (2.2.19)

and (2.2.17) becomes

δΦ(x, t) =
q

αr

{
− n(x, t∗)

r
· (δx− cβ(t∗)δt∗) (2.2.20)

+
1

α

[
β(t∗)·1− n(x, t∗)n(x, t∗)

r
· (δx− cβ(t∗)δt∗)

+ n(x, t∗)·β̇(t∗)δt∗
]}
.

Step 3. Then, it is possible to evaluate the gradient ∇Φ(x, t) by setting δt = 0

and formally ”dividing” (2.2.20) by δx. Indeed, one should recall that ∇Φ(x, t)·δx =

δΦ(x, t)|t=const. However, (2.2.20) is expressed in terms of δt∗, not δt. It is necessary

to find the relation between these two differentials. In order to achieve this, we can

note that the retarded time is implicitly defined by (2.2.5). Therefore, applying the

operator δ to differentiate expression (2.2.5) yields

0 = δ

(
t∗ − t+

|x− x(t∗)|
c

)
(2.2.21)

= δt∗
[
1− ẋ(t∗)

c
· x− x(t∗)

|x− x(t∗)|

]
− δt+ δx· x− x(t∗)

c|x− x(t∗)|

= αδt∗ − δt+
1

c
δx·n(x, t∗).
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Expression (2.2.21) tells us that when δt vanishes, δt∗ does not. More precisely, setting

δt = 0 into (2.2.21) yields

δt∗ = −δx·n(x, t∗)

αc
. (2.2.22)

This is exactly the relation between the differentials we were looking for. So, setting

δt∗ = − (δx·n(x, t∗)) / (αc) is equivalent to setting δt = 0. Keeping this in mind,

(2.2.20) becomes

∇Φ(x, t)·δx =
q

αr

{
− n(x, t∗)

r
·
(
δx+ cβ(t∗)

δx·n(x, t∗)

αc

)
(2.2.23)

+
1

α

[
β(t∗)·1− n(x, t∗)n(x, t∗)

r
·
(
δx+ cβ(t∗)

δx·n(x, t∗)

αc

)
− n(x, t∗)·β̇(t∗)

δx·n(x, t∗)

αc

]}
=

q

αr

{
− n(x, t∗)

r
− 1

r
β(t∗)·n(x, t∗)

n(x, t∗)

α

+ β(t∗)·1− n(x, t∗)n(x, t∗)

αr

+ β(t∗)·1− n(x, t∗)n(x, t∗)

αr
·β(t∗)

n(x, t∗)

α

− n(x, t∗)·β̇(t∗)

α

n(x, t∗)

αc

}
·δx.

Step 3. It is now possible to evaluate the gradient ∇Φ(x, t). Since both sides of

(2.2.23) show the term δx, is is clear that

∇Φ(x, t) =
q

αr

{
− n(x, t∗)

r
− 1

r
β(t∗)·n(x, t∗)

n(x, t∗)

α
(2.2.24)

+ β(t∗)·1− n(x, t∗)n(x, t∗)

αr

+ β(t∗)·1− n(x, t∗)n(x, t∗)

αr
·β(t∗)

n(x, t∗)

α

− n(x, t∗)·β̇(t∗)

α

n(x, t∗)

αc

}
.

In this step, we will algebraically manipulate (2.2.24) in order to simplify its expression

a little bit. Firstly, we need to deal with the dyadic products. So

β(t∗)· (1− n(x, t∗)n(x, t∗)) = β(t∗)·1− β(t∗)· (n(x, t∗)n(x, t∗)) (2.2.25a)

= β(t∗)− (β(t∗)·n(x, t∗))n(x, t∗)
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= β(t∗)− (1− α)n(x, t∗),

and, therefore,

β(t∗)· (1− n(x, t∗)n(x, t∗)) ·β(t∗) = β(t∗)· [β(t∗)− (1− α)n(x, t∗)] (2.2.25b)

= β(t∗)·β(t∗)− (1− α) (n(x, t∗)·β(t∗))

= |β(t∗)|2 − (1− α)2 .

Inserting (2.2.25) into (2.2.24) yields

∇Φ(x, t) =
q

αr

{
− n(x, t∗)

r
− 1

r
β(t∗)·n(x, t∗)

n(x, t∗)

α
(2.2.26)

+
β(t∗)− (1− α)n(x, t∗)

αr

+
|β(t∗)|2 − (1− α)2

αr

n(x, t∗)

α

− n(x, t∗)·β̇(t∗)

α

n(x, t∗)

αc

}
= − q

α3r2

{
α2n(x, t∗) + α (1− α)n(x, t∗)

− αβ(t∗) + α (1− α)n(x, t∗)

− |β(t∗)|2n(x, t∗) + (1− α)2n(x, t∗)

+
r

c

(
n(x, t∗)·β̇(t∗)

)
n(x, t∗)

}
= − q

α3r2

{
α2n(x, t∗)

− αβ(t∗) + 2α (1− α)n(x, t∗)

− |β(t∗)|2n(x, t∗) + (1− α)2n(x, t∗)

+
r

c

(
n(x, t∗)·β̇(t∗)

)
n(x, t∗)

}
.

We finally found the expression for the gradient.

Step 4. The purpose of this step is to calculate the partial derivative of the vector

potential A(x, t) with respect to time. We shall approach this problem by first evalu-

ating the differential of A(x, t). If one recalls (2.2.6), then it is clear that applying the
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differential operator δ yields

δA(x, t) = δ (Φ(x, t)β(t∗)) (2.2.27)

= Φ(x, t)δβ(t∗) + β(t∗)δΦ(x, t)

= Φ(x, t)β̇(t∗)δt∗ + β(t∗)δΦ(x, t).

Now, we have already carried out the calculation for the quantity δΦ(x, t), which is

given by (2.2.20). Expression (2.2.27) can be used to compute ∂A(x, t)/∂t∗. However,

∂A(x, t)/∂t is the quantity that we are after. Therefore, we need to find a relation

between the two. This relation can be derived once we know the relationship between

the differentials of time t and the retarded time t∗. From relation (2.2.21), setting

consecutively δx = 0 and δt∗ = 0, one finds that

∂t∗

∂t
=

1

α
, (2.2.28a)

∇t∗ = −n(x, t∗)

αc
. (2.2.28b)

The second one (2.2.28b) will be used later, while the first one (2.2.28a) is the relation-

ship between the differentials of time t and the retarded time t∗ we were looking for.

Using this it is easy to see that

∂A(x, t)

∂t
=
∂A(x, t)

∂t∗
∂t∗

∂t
(2.2.29)

=
∂A(x, t)

∂t∗
1

α
.

Next, we have to compute the variation of Φ(x, t) when δx = 0. Recalling that

(∂Φ(x, t)/∂t)δt = δΦ(x, t)|x=const, we can set δx = 0 in (2.2.20). This results into

δΦ(x, t) =
q

αr

{
− n(x, t∗)

r
· (−cβ(t∗)δt∗) (2.2.30)

+
1

α

[
β(t∗)·1− n(x, t∗)n(x, t∗)

r
· (−cβ(t∗)δt∗)

+ n(x, t∗)·β̇(t∗)δt∗
]}

=
q

αr

{
c

r
n(x, t∗)·β(t∗)

− c

αr
β(t∗)· (1− n(x, t∗)n(x, t∗)) ·β(t∗)
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+
1

α
n(x, t∗)·β̇(t∗)

}
δt∗.

We now have all the ingredients needed to compute ∂A(x, t)/∂t. Indeed, we sub-

stitute into (2.2.27) the expression for the potential Φ(x, t) from (2.2.19) and for its

differential δΦ(x, t) from (2.2.30), then we divide by δt∗ and keep in mind the functional

relationship between the differentials (2.2.29), obtaining

∂A(x, t)

∂t
=

1

α

{
q

αr
β̇(t∗) + β(t∗)

q

αr

[
c

r
n(x, t∗)·β(t∗) (2.2.31)

− c

αr
β(t∗)· (1− n(x, t∗)n(x, t∗)) ·β(t∗) +

1

α
n(x, t∗)·β̇(t∗)

]}
= − qc

α3r2

{
− αr

c
β̇(t∗)− αr

c
β

[
c

r
n(x, t∗)·β(t∗)

− c

αr
β(t∗)· (1− n(x, t∗)n(x, t∗)) ·β(t∗) +

1

α
n(x, t∗)·β̇(t∗)

]}
,

where in the last step, we have multiplied and divided by −c/(αr) for reasons that will

become clear later. (2.2.31) can be simplified even further by computing the dyadic

product, which we have already done through (2.2.25b). Substituting this in, (2.2.31)

becomes

∂A(x, t)

∂t
= − qc

α3r2

{
− αr

c
β̇(t∗)− αr

c
β(t∗)

[
c

r
n(x, t∗)·β(t∗) (2.2.32)

− c

αr

(
|β(t∗)|2 − (1− α)2

)
+

1

α
n(x, t∗)·β̇(t∗)

]}
= − qc

α3r2

{
− αr

c
β̇(t∗)− α (n(x, t∗)·β(t∗))β(t∗)

+ |β(t∗)|2β(t∗)− (1− α)2 β(t∗)− r

c

(
n(x, t∗)·β̇(t∗)

)
β(t∗)

}
.

Step 5. It is now the appropriate time to substitute back in α = 1−β(t∗)·n(x, t∗).

However, we shall only do that for the instances of α appearing in the curly brackets.

First, let us commence with the gradient from (2.2.26):

∇Φ(x, t) = − q

α3r2

{
α2n(x, t∗)− αβ(t∗) (2.2.33)

+ 2αn(x, t∗)− 2α2n(x, t∗)− |β(t∗)|2n(x, t∗)

+ n(x, t∗)− 2αn(x, t∗) + α2n(x, t∗) +
r

c

(
n(x, t∗)·β̇(t∗)

)
n(x, t∗)

}
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= − q

α3r2

{
− αβ(t∗)− |β(t∗)|2n(x, t∗)

+ n(x, t∗) +
r

c

(
n(x, t∗)·β̇(t∗)

)
n(x, t∗)

}
= − q

α3r2

{
− β(t∗) + (β(t∗)·n(x, t∗))β(t∗)

− |β(t∗)|2n(x, t∗)

+ n(x, t∗) +
r

c

(
n(x, t∗)·β̇(t∗)

)
n(x, t∗)

}
.

Now, let us do the same thing with the derivative of the vector potential with respect

to time from (2.2.32):

∂A(x, t)

∂t
= − qc

α3r2

{
− αr

c
β̇(t∗)− α (1− α)β(t∗)

+ |β(t∗)|2β(t∗)− (1− α)2 β(t∗)− r

c

(
n(x, t∗)·β̇(t∗)

)
β(t∗)

}
(2.2.34)

= − qc

α3r2

{
− αr

c
β̇(t∗)− (1− α)β(t∗)

+ |β(t∗)|2β(t∗)− r

c

(
n(x, t∗)·β̇(t∗)

)
β(t∗)

}
= − qc

α3r2

{
|β(t∗)|2β(t∗)− (β(t∗)·n(x, t∗))β(t∗)

+
r

c

[
(β(t∗)·n(x, t∗)) β̇(t∗)− β̇(t∗)−

(
n(x, t∗)·β̇(t∗)

)
β(t∗)

]}
.

We finally found an expression for the derivative of the vector potential with respect

to time ∂A(x, t)/∂t.

Step 6. Now we can clearly see the reason why we decided to keep that strange mul-

tiplying factor: by (2.2.1a) we have the final expression for the electric field, and both

the quantities being summed have the same multiplying factor, making the summation

much more straightforward. Indeed, inserting (2.2.33) and (2.2.34) into (2.2.1a) shows

that

E(x, t) =
q

α3r2

{(
1− |β(t∗)|2

)
n(x, t∗)−

(
1− |β(t∗)|2

)
β(t∗) (2.2.35)

+
r

c

[(
n(x, t∗)·β̇(t∗)

)
n(x, t∗)− β̇(t∗)
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+ (β(t∗)·n(x, t∗)) β̇(t∗)−
(
n(x, t∗)·β̇(t∗)

)
β(t∗)

]}
=

q

α3r2

{(
1− |β(t∗)|2

)
(n(x, t∗)− β(t∗)) (2.2.36)

+
r

c

[(
n(x, t∗)·β̇(t∗)

)
n(x, t∗)− β̇(t∗)

+ (β(t∗)·n(x, t∗)) β̇(t∗)−
(
n(x, t∗)·β̇(t∗)

)
β(t∗)

]}
.

This expression seems very complicated since it shows a lot of terms. However, the

term in square brackets being multiplied by r/c can be simplified into a much more

recognizable form: a triple cross product. We can make use of a very well known

property for which

a× (b×c) = b (a·c)− c (a·b) . (2.2.37)

In our particular case, b actually is a− b. Therefore, making use of (2.2.37), one has

a× [(a− b)×c] = (a− b) (a·c)− c [a· (a− b)] (2.2.38)

= (a·c)a− (a·c) b− |a|2c+ (a·b) c.

In our case, a = n(x, t∗), b = β(t∗) and c = β̇(t∗). Note that |a|2 = 1, since

|n(x, t∗)|2 = 1. Keeping this in mind, (2.2.35) becomes

E(x, t) =
q

α3r2

{(
1− |β(t∗)|2

)
(n(x, t∗)− β(t∗)) (2.2.39)

+
r

c
n(x, t∗)×

[
(n(x, t∗)− β(t∗))×β̇(t∗)

]
.

Equation (2.2.11a) is proved once we recall the definitions (2.2.18) of α and r.

Step 6. The last part of this proof is the computation of the magnetic field B(x, t).

We don’t need to do much work, because relations (2.2.1) show that there’s a connection

between the electric field E(x, t) which we have just calculated and the magnetic field

B(x, t). In fact,

B(x, t) =∇×A(x, t) (2.2.40)

=∇× (Φ(x, t)β(t∗))

= Φ(x, t)∇×β(t∗)− β(t∗)×∇Φ(x, t),
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where we used (2.2.6) in the second to last step and, in the last one, a well know

calculus relation which allowed us to compute the curl of a vector factorized in a scalar

function multiplied by a vectorial function.

In (2.2.40), the only factor we still need to calculate is ∇×β(t∗). We can tackle

this by first considering the mixed product

u·∇×β(t∗), (2.2.41)

where u is a constant vector. By a well know triple product property, one has

u·∇×β(t∗) = u×∇·β(t∗) (2.2.42)

= u×∇t∗·β̇(t∗)

= u·∇t∗×β̇(t∗).

Therefore, since u is arbitrary,

∇×β(t∗) = −β̇(t∗)×∇t∗. (2.2.43)

The expression for the gradient ∇t∗ has the form (2.2.28b).

Now we can finally insert everything we know into (2.2.40) and find the answer we

were looking for: the electric potential Φ(x, t) is given by (2.2.19), the curl ∇×β(t∗)

is given by (2.2.43), the gradient ∇Φ(x, t) is given by (2.2.33). Substituting it all into

(2.2.40) yields

B(x, t) = Φ(x, t)∇×β(t∗)− β(t∗)×∇Φ(x, t) (2.2.44)

=
q

αr
β̇(t∗)×n(x, t∗)

αc
+ β(t∗)× q

α3r2

{
− β(t∗) + (β(t∗)·n(x, t∗))β(t∗)

− |β(t∗)|2n(x, t∗) + n(x, t∗) +
r

c

(
n(x, t∗)·β̇(t∗)

)
n(x, t∗)

}
=

q

α3r2

{
αr

c
β̇(t∗)×n(x, t∗)− |β(t∗)|2β(t∗)×n(x, t∗)

+ β(t∗)×n(x, t∗) +
r

c

(
n(x, t∗)·β̇(t∗)

)
β(t∗)×n(x, t∗)

}
=

q

α3r2
n(x, t∗)×

{
− αr

c
β̇(t∗) + |β(t∗)|2β(t∗)

− β(t∗)− r

c

(
n(x, t∗)·β̇(t∗)

)
β(t∗)

}



2.2. COMPUTATION OF ELECTRIC AND MAGNETIC FIELDS 24

=
q

α3r2
n(x, t∗)×

{
|β(t∗)|2β(t∗)− β(t∗)

+
r

c

[
−β̇(t∗) + (β(t∗)·n(x, t∗)) β̇(t∗)−

(
n(x, t∗)·β̇(t∗)

)
β(t∗)

]}
,

where in the last step we have made use of the fact that α = 1− β(t∗)·n(x, t∗). If one

compares this result with what we found for the electric field E(x, t) in (2.2.35), one

cannot fail to notice that the two expressions are strikingly similar. Inside the curly

bracket in (2.2.44) every single term appears to be present in (2.2.35) too except the ones

which are proportional to n(x, t∗). Furthermore, the factors inside the curly brackets in

(2.2.44) are all multiplied by n(x, t∗) through a cross product. Since the cross product

of a vector with itself vanishes identically (a×a ≡ 0), we can add whatever quantity

we want inside the curly bracket in (2.2.44) without changing the result as long as that

quantity is proportional to n(x, t∗). As a consequence, we can say that

B(x, t) =
q

α3r2
n(x, t∗)×

{(
1− |β(t∗)|2

)
n(x, t∗)−

(
1− |β(t∗)|2

)
β(t∗) (2.2.45)

+
r

c

[(
n(x, t∗)·β̇(t∗)

)
n(x, t∗)− β̇(t∗)

+ (β(t∗)·n(x, t∗)) β̇(t∗)−
(
n(x, t∗)·β̇(t∗)

)
β(t∗)

]}
,

since all the factors that have been added are proportional to n(x, t∗). This proves

(2.2.11b) and concludes the proof.

The expressions (2.2.11) for the electric field E(x, t) and the magnetic field

B(x, t) are rather long and complicated, and so is the proof leading up to those

results. However, the physical implications of such relations are outstanding and

teach us a lot about how nature behaves. First of all, we note that

B(x, t) = n(x, t∗)|t∗=t∗(x,t)×E(x, t), (2.2.46)

and, therefore,

B(x, t)·E(x, t) = 0, (2.2.47)
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showing that the electric and magnetic field emitted by a moving point-like charge

are always perpendicular to each other. Then, the electromagnetic wave associ-

ated to these fields moves in the direction identified by n(x, t∗) (which is in

general different from n(x, t)), while the fields E(x, t) and B(x, t) rotate in a

very complicated way, while always maintaining themselves perpendicular to each

other.

The fact that both the fields depend on the retarded time t∗ tells us that

the potentials in a point of space x calculated at time t does not depend on the

position x(t) of the source at time t, but on the position that the source was

in when the electromagnetic field was emitted. This position is exactly x(t∗).

Therefore, the existence of a retarded time tells us that the velocity at which the

electromagnetic wave travels is finite because, if it was infinite, any change in the

source would instantaneously affect all points throughout space.
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2.3. Approximations and regimes

In many physical situations, the velocity of the source is small compared to

the rapidity of updating of the generated electromagnetic field. The latter is

precisely the speed of light in vacuum c = 299 792 458 m/s, while the former is

|ẋ(t∗)|. In such a condition, every relativistic effect is completely negligible.

It is convenient to define the non relativistic regime when the condition

1� |ẋ(t∗)|
c

(2.3.1)

is satisfied. If one recalls definition (2.2.3b), one can understand that condition

(2.3.1) translates to

1� |β(t∗)|. (2.3.2)

The electric field E(x, t) and magnetic field B(x, t) generated in the non

relativistic regime are given by

E(x, t) =
q

|x− x(t∗)|2
{
n(x, t∗) (2.3.3a)

+
|x− x(t∗)|

c
n(x, t∗)×

(
n(x, t∗)×β̇(t∗)

)}∣∣∣∣
t∗=t∗(x,t)

,

B(x, t) =
q

|x− x(t∗)|2
{
β(t∗) +

|x− x(t∗)|
c

β̇(t∗)

}
×n(x, t∗)

∣∣∣∣
t∗=t∗(x,t)

. (2.3.3b)

Proof. For sake of compactness, we shall treat β, β̇, n and t∗ as independent variables.

In order to prove (2.3.3), we need to evaluate expressions (2.2.11) as |β| → 0. First of

all, it is clear that

1− β·n ≈ 1, |β| → 0, (2.3.4a)(
1− |β|2

)
(n− β) ≈ (n− β) ≈ n, |β| → 0. (2.3.4b)

These approximations are enough to prove (2.3.3a). Secondly, using (2.2.37), one has

n×
{
n×

[
(n− β)×β̇

]}
=
{[

(n− β)×β̇
]
×n

}
×n (2.3.5)
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=
{
n×

(
β̇×n

)
− β×

(
β̇×n

)}
×n

=
{
β̇ −

(
n·β̇

)
n− (β·n) β̇ +

(
β·β̇

)
n
}
×n

= (1− β·n) β̇×n,

where in the last step we have eliminated every term proportional to n since they

vanish once the cross product is computed. Thus,

n×
{
n×

[
(n− β)×β̇

]}
≈ β̇×n, |β| → 0. (2.3.6)

Lastly, one has

n×
{(

1− |β|2
)

(n− β)
}

=
(
1− |β|2

)
β×n, (2.3.7)

thus obtaining

n×
{(

1− |β|2
)

(n− β)
}
≈ β×n, |β| → 0. (2.3.8)

Using (2.3.4a), (2.3.6) and (2.3.8) to evaluate expression (2.2.11b) as |β| → 0 leads

readily to (2.3.3b).

Another common situation is represented by the quasistatic regime. In this

approximation, one assumes that, during the time necessary for a light signal to

travel from x(t) (the trajectory of the particle, indicating the point the source is

in at time t) to x (the point the fields are measured at), the point charge moves

very little compared to the distance |x − x(t)| traveled by the light signal, so

much so that the variation in each derivative of x(t) is smaller and smaller. This

can be expressed more rigorously by saying that the quasistatic regime is satisfied

when the condition

|x− x(t)| � |x− x(t)|
c

|ẋ(t)| �
[ |x− x(t)|

c

]2
|ẍ(t)| � . . . (2.3.9)

is satisfied. The quasistatic regime implies the non relativistic regime (2.3.1).

One can understand the physical interpretation given above by noting that, when

(2.3.9) holds, one has

x

(
t+
|x− x(t)|

c

)
− x(t) ≈ |x− x(t)|

c
ẋ(t), (2.3.10a)
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ẋ

(
t+
|x− x(t)|

c

)
− ẋ(t) ≈ |x− x(t)|

c
ẍ(t), (2.3.10b)

ẍ

(
t+
|x− x(t)|

c

)
− ẍ(t) ≈ |x− x(t)|

c

...
x(t), . . . , (2.3.10c)

obtained by truncating the Taylor expansions at the first order. Since the source is

slow moving, the effect of the retardation is negligible. By (2.3.9), x(t), ẋ(t), . . .

vary little in a time equal to the difference of t and t∗ as the Taylor series of

x(t∗)−x(t) is rapidly convergent. Hence, the following equations (2.3.11) hold.

β(t∗) ≈ β(t), (2.3.11a)

β̇(t∗) ≈ β̇(t). (2.3.11b)

Approximations (2.3.11) can be used to compute the electric field E(x, t) and

magnetic field B(x, t) generated in the quasistatic regime, which have a very

simple expression and are given by

E(x, t) =
q

|x− x(t)|2
n(x, t), (2.3.12a)

B(x, t) =
q

|x− x(t)|2
β(t)×n(x, t). (2.3.12b)

Proof. Since the quasistatic regime implies the non relativistic regime, we can assume

expressions (2.3.3) to be a valid approximation for the electric and the magnetic fields.

Equations (2.3.12) are easily derived once the limit |x − x(t)|/c → 0 is carried out in

(2.3.3).

Lastly, there is another regime worth considering: the radiation regime. This

is defined by

|ẋ(t)| � |x− x(t)|
c

|ẍ(t)|. (2.3.13)
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Upon inspecting the right hand side of condition (2.3.13), one can see that con-

dition (2.3.13) is satisfied either when the motion of the source is strongly accel-

erated or when there is a sufficiently large distance between the trajectory of the

particle and the observation point.

In the radiation regime, the electric fieldE(x, t) and the magnetic fieldB(x, t)

are given by

E(x, t) =
q

(1− β(t∗)·n(x, t∗))3
1

c |x− x(t∗)| (2.3.14a)

n(x, t∗)×
[
(n(x, t∗)− β(t∗))×β̇(t∗)

]∣∣∣
t∗=t∗(x,t)

,

B(x, t) =
q

(1− β(t∗)·n(x, t∗))3
1

c |x− x(t∗)| (2.3.14b)

n(x, t∗)×
{
n(x, t∗)×

[
(n(x, t∗)− β(t∗))×β̇(t∗)

]}∣∣∣∣
t∗=t∗(x,t)

.

In this regime, E(x, t) and B(x, t) satisfy

n(x, t∗)|t∗=t∗(x,t) ·E(x, t) = 0, (2.3.15a)

n(x, t∗)|t∗=t∗(x,t) ·B(x, t) = 0, (2.3.15b)

while still being perpendicular to one another by (2.2.47).

In the following sections, we shall always assume the radiation regime, there-

fore condition (2.3.13) is assumed to be satisfied throughout.



CHAPTER 3

Poynting vector and power emission

3.1. Poynting vector

The Poynting vector field S(x, t) of a moving charge in the radiation regime

is given by

S(x, t) =
c

4π
|E(x, t)|2 n(x, t∗)|t∗=t∗(x,t) . (3.1.1)

Proof. Keeping in mind the definition of the Poynting vector

S(x, t) =
c

4π
E(x, t)×B(x, t), (3.1.2)

and equations (2.2.46), (2.2.37), (2.2.47), one has

S(x, t) =
c

4π
E(x, t)×B(x, t) (3.1.3)

=
c

4π
E(x, t)× [n(x, t∗)×E(x, t)]t∗=t∗(x,t)

=
c

4π

[
|E(x, t)|2n(x, t∗)− n(x, t∗)·E(x, t)E(x, t)

]
t∗=t∗(x,t)

=
c

4π
|E(x, t)|2n(x, t∗)

∣∣
t∗=t∗(x,t)

.

This proves (3.1.1)

The Poynting vector is electromagnetic energy current density; its magnitude

is the amount of energy flowing through a unit area transverse to the energy flow

in a unit time. Its direction is that of the energy flow. It cannot be interpreted

as a photon packet as E and B are not interpretable as photon wave functions.

Keeping in mind that Gaussian unit system are used throughout, dimensional

analysis shows that the Poynting vector’s units are energy per unit area per unit

time (SI: erg/ (cm2s)).
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Equation (3.1.1) shows that the energy flow in the point x at time t is not

perpendicular to n(x, t), but rather it points toward n(x, t∗). This is due to the

retardation effect. All points in space are not instantly connected, therefore the

energy acts as if it was being generated by a fictitious particle located in x(t∗) at

time t, rather than the actual physical particle, which is located at x(t). Thus,

every particle does not react to the universe around it in its current configuration

(i.e. at time t), but rather it responds to an earlier configuration of it, because

every physically meaningful quantity needs to be evaluated at time t∗ < t. As

a consequence, it seems more natural to express the Poynting vector in terms of

the retarded time t∗ instead of the time t. To this end, consider

S∗(x, t∗) = S(x, t)|t=t(x,t∗)
∂t

∂t∗
(x, t∗), (3.1.4)

where t = t(x, t∗) is the inverse function of t∗ = t∗(x, t). This way, the indepen-

dent time variable is no longer t, but t∗.



3.2. TOTAL RADIATED POWER 32

3.2. Total radiated power

In Chapter 2 we established that a moving charge generates an electromag-

netic field. Since the latter carries energy, the charge must transform part of its

kinetic energy into electromagnetic energy. At time t∗, the energy radiated in x

by a moving charge through a solid angle δo along the direction n(x, t∗) in a time

δt∗ is

δW = S∗(x, t∗)·n(x, t∗) |x− x(t∗)|2 δo δt∗. (3.2.1)

The power emitted by the moving charge per unit solid angle is

dP ∗

do
(x, t∗) = S∗(x, t∗)·n(x, t∗) |x− x(t∗)|2 . (3.2.2)

The quantity dP ∗/ do(x, t∗) in (3.2.2) is called differential radiated power. Equa-

tion (3.1.4) allows us to write the differential radiated power as

dP ∗

do
(x, t∗) =

q2

4πc

1

(1− β(t∗)·n(x, t∗))5
(3.2.3){[

(n(x, t∗)− β(t∗))×β̇(t∗)
]2
−
[
n(x, t∗)·β(t∗)×β̇(t∗)

]2}
.

Proof. From (3.2.2), (3.1.4), (3.1.1), one has

dP ∗

do
(x, t∗) = S(x, t)|t=t(x,t∗)

∂t

∂t∗
(x, t∗)·n(x, t∗) |x− x(t∗)|2 (3.2.4)

=
c

4π
|E(x, t)|2 |t∗=t∗(x,t) |x− x(t∗)|2 ∂t

∂t∗
(x, t∗).

From (2.2.28a) and (2.2.18a), it is clear that

∂t

∂t∗
(x, t∗) = 1− β(t∗)·n(x, t∗). (3.2.5)

We now have everything we need to prove (3.2.3): the expression for |E(x, t)|2 is given

by (2.3.14a), while the one for ∂t/∂t∗(x, t∗) is given by (3.2.5). Inserting it all into

(3.2.4) yields exactly (3.2.3).
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Upon inspecting equation (3.2.3), it is evident that the only way dP ∗/ do(x, t∗)

depends on x is through n(x, t∗). As a consequence

dP ∗

do
(x, t∗) =

dP ∗

do
(n(x, t∗), t∗). (3.2.6)

We can now integrate on every possible orientation of emission n and obtain the

total radiated power P ∗(t∗). Defining

P ∗(t∗) ≡
∫

d2n
dP ∗

do
(n, t∗), (3.2.7)

one has

P ∗(t∗) =
2q2

3c

1

(1− |β(t∗)|2)3
[
|β̇(t∗)|2 − |β(t∗)×β̇(t∗)|2

]
. (3.2.8)

Often times, the acceleration β̇ of the charge is broken up into its components

along the direction parallel and perpendicular to its speed β = |β|β̂. These are

identified by

β̇‖ = β̇·β̂β̂, (3.2.9a)

β̇⊥ = β̇ − β̇·β̂β̂. (3.2.9b)

Clearly, one has

β̇ = β̇‖ + β̇⊥, (3.2.10a)

β̇‖·β̇⊥ = 0. (3.2.10b)

With these definitions, it is possible to express the total radiated power in terms

of β̇‖ and β̇⊥, obtaining

P ∗(t∗) =
2q2

3c

1

(1− |β(t∗)|2)3
[
|β̇‖(t∗)|2 +

(
1− |β(t∗)|2

)
|β̇⊥(t∗)|2

]
. (3.2.11)

Proof. Here, we shall neglect the t∗ dependence. For any vectors a and b, the cross

product and the dot product are related by

|a×b|2 = |a|2|b|2 − (a·b)2 . (3.2.12)
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From (3.2.10) and (3.2.12), one has

|β̇|2 − |β×β̇|2 = |β̇‖ + β̇⊥|2 − |β×β̇⊥|2, as β×β̇‖ = 0, (3.2.13)

= |β̇‖|2 + |β̇⊥|2 − |β|2|β̇⊥|2, as β·β̇⊥ = 0,

= |β̇‖|2 +
(
1− |β|2

)
|β̇⊥|2.

Substituting (3.2.13) into (3.2.8) immediately yields (3.2.11).

It is also convenient to write the total radiated power in terms of the rela-

tivistic momentum of the charge

p(t∗) =
mcβ(t∗)

(1− |β(t∗)|2)1/2
. (3.2.14)

Similarly to the case of the acceleration β̇, we can break the quantity ṗ into its

components along the direction parallel and perpendicular to its speed β. These

are

ṗ‖ = ṗ·β̂β̂, (3.2.15a)

ṗ⊥ = ṗ− ṗ·β̂β̂. (3.2.15b)

Clearly, one has

ṗ = ṗ‖ + ṗ⊥, (3.2.16a)

ṗ‖·ṗ⊥ = 0. (3.2.16b)

One can now express the total radiated power in terms of ṗ‖ and ṗ⊥, obtaining

P ∗(t∗) =
2q2

3m2c3

[
|ṗ‖(t∗)|2 +

|ṗ⊥(t∗)|2
1− |β(t∗)|2

]
. (3.2.17)

Proof. We shall neglect the dependence on t∗. From (3.2.14), (3.2.10a), (3.2.9a), a

simple computation shows that

ṗ = mc

[
β̇

(1− |β|2)1/2
+

β̇·ββ
(1− |β|2)3/2

]
(3.2.18)
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= mc

[
β̇‖ + β̇⊥

(1− |β|2)1/2
+

|β|2β̇‖
(1− |β|2)3/2

]

= mc

[
β̇⊥

(1− |β|2)1/2
+

β̇‖

(1− |β|2)3/2

]
.

From (3.2.18), we read off the expressions of ṗ‖ and ṗ⊥ in terms of β̇‖ and β̇⊥ as

ṗ‖ =
mcβ̇‖

(1− |β|2)3/2
, (3.2.19a)

ṗ⊥ =
mcβ̇⊥

(1− |β|2)1/2
. (3.2.19b)

Inverting these yields

β̇‖ =

(
1− |β|2

)3/2
ṗ‖

mc
, (3.2.20a)

β̇⊥ =

(
1− |β|2

)1/2
ṗ⊥

mc
. (3.2.20b)

Substituting (3.2.20) into (3.2.11) immediately yields (3.2.17).

It is interesting to compare (3.2.11) and (3.2.17). According to (3.2.11), a lon-

gitudinal acceleration β̇‖ involves an energy loss by radiation (1− |β|2)−1 times

larger than a transversal acceleration β̇⊥ of the same magnitude. However, ac-

cording to (3.2.17), a longitudinal force ṗ‖ involves an energy loss by radiation

1 − |β|2 times smaller than a transversal force ṗ⊥ of the same magnitude. The

contradiction is only apparent. It is related to the fact that, relativistically, the

mass of a particle depends on its velocity according to

m(t∗) =
m0

(1− |β(t∗)|2)1/2
. (3.2.21)

In the following chapter, we shall analyze two specific cases: linear acceleration

and circular acceleration. It is clear that

linear: β̇ = β̇‖, β̇⊥ = 0, (3.2.22a)

circular: β̇ = β̇⊥, β̇‖ = 0. (3.2.22b)



CHAPTER 4

Two common cases: linear and circular accelerations

4.1. Introduction

The main experimental setups in elementary particle physics involve acceler-

ating particles, boosting their kinetic energy and having them collide to form new

particles. It is even possible to create different particles with different masses,

proving that energy and mass are two ways of calling the same thing. This

strange property of nature is described perfectly by special relativity, that pro-

vides us with the exact relation between energy, mass and momentum. If the par-

ticle being accelerated carries electric charge, it will emit electromagnetic power.

Therefore, the problem of studying, measuring and computing the radiation en-

ergy loss in accelerators has both a practical and a theoretical interest.

Historically, the first accelerators were linear. At the beginning of the XX

century, technology allowed physicists to accelerate electrons up to a few MeV.

Today, we can reach much higher energies with circular accelerators, up to sev-

eral TeV. In the following sections, we shall analyze these two main types of

accelerators.
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4.2. Linear acceleration

Consider a particle of charge q moving on a straight trajectory x(t). We shall

measure its motion along the frame such that the particle goes through the origin

at time t = 0. Therefore

x(t) = s(t)e, (4.2.1)

where s(t) is the linear ascissa of the particle and e is the unit vector in the

direction of motion. From (3.2.3), it follows that the differential radiated power

of the charge is given by

dP ∗

do
(x, t∗) =

q2

4πc

(n(x, t∗)×e)2 β̇(t∗)2

(1− β(t∗)n(x, t∗)·e)5
, (4.2.2)

where

β(t) =
ṡ(t)

c
. (4.2.3)

Proof. For sake of compactness, we shall treat β, β̇, n, β and β̇ as independent

variables. From (2.2.3b), (4.2.1) and (4.2.3) one has

β = βe, (4.2.4a)

β̇ = β̇e, (4.2.4b)

so that

β×β̇ = 0. (4.2.5)

Upon inspecting equation (3.2.3), we only have to compute two expressions. The first

one is

1− β·n = 1− βn·e, (4.2.6a)

while the second one is easily computed keeping (4.2.5) in mind,(
(n− β)×β̇

)2
−
(
n·β×β̇

)2
=
(
n×β̇

)2
(4.2.6b)

= β̇2 (n×e)2 .

Inserting equations (4.2.6) into (3.2.3) readily yields (4.2.2).
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Upon inspecting (4.2.2), it is evident that n(x, t∗) and e only appear in scalar

or vector products. Therefore, the physically meaningful quantity is neither

n(x, t∗) nor e, but rather the angle between them. We shall denote by θ(x, t∗)

the latter and view θ as an independent variable. Then, the differential radiated

power becomes a function of θ,

dP ∗

do
(θ, t∗) =

q2

4πc

β̇(t∗)2 sin2 θ

(1− β(t∗) cos θ)5
. (4.2.7)

The angular dependence of (4.2.7) is governed by the function

f(θ; β) =
sin2 θ

(1− β cos θ)5
, (4.2.8)

where β is treated as an independent variable such that 0 ≤ β < 1 and 0 ≤ θ < 2π.

The function f(θ; β) has two minima for θ = 0, π and a maximum for θ = θ(β),

where

θ(β) = cos−1

[
(1 + 15β2)

1/2 − 1

3β

]
. (4.2.9)

The minimum and maximum values are, respectively,

fmin(β) = f(0; β) = f(2π; β) = 0, (4.2.10a)

fmax(β) = f(θ(β); β) =
54

β2

−1− 3β2 + (1 + 15β2)
1/2(

4− (1 + 15β2)1/2
)5 . (4.2.10b)

These complicated expressions simplify in the non relativistic limit β → 0 and

in the relativistic limit β → 1,

θ(β) ≈ π

2
, β → 0, (4.2.11a)

θ(β) ≈ (1− β2)
1/2

2
, β → 1. (4.2.11b)

Furthermore,

fmax(β) ≈ 1, β → 0, (4.2.12a)
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x

y

z

O
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ẋ(t)

x(t)

x− x(t)

θ

Figure 4.2.1. A linear accelerator.

fmax(β) ≈ 1

4

(
8

5

)5
1

(1− β2)4
, β → 1. (4.2.12b)

Proof. A simple computation shows that

∂f

∂θ
(θ;β) =

3β cos2 θ + 2 cos θ − 5β

(1− β cos θ)6
sin θ. (4.2.13)

The values of θ corresponding to the extrema of f(θ;β) are those for which ∂f/∂θ(θ;β) =

0. Hence they are the solutions of either equations

sin θ = 0, (4.2.14a)

3β cos2 θ + 2 cos θ − 5β = 0, (4.2.14b)

which can be written as

sin θ = 0, (4.2.15a)

cos θ =
±(1 + 15β2)1/2 − 1

3β
. (4.2.15b)

The solution to (4.2.15b) with the − sign is not physically acceptable because it diverges

to −∞ as β → 0. This is not mathematically consistent, as |cos θ| ≤ 1 for any real θ.
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Therefore, the only extrema of f(θ;β) are

θ = 0, π, θ(β), (4.2.16)

where θ(β) is the solution to (4.2.15b) with the + sign, given by (4.2.9). Now, since

f(θ;β) ≥ 0 by definition and f(θ;β) = 0 for θ = 0, π, we can conclude that θ = 0, π must

be two minima for f(θ;β). As a consequence, since f(θ;β) is continuous, θ = θ(β) must

be a maximum. A straightforward computation shows that the value of the maximum

f(θ(β);β) is exactly given by (4.2.10b).

A simple Taylor expansion shows that(
1 + 15β2

)1/2 − 1

3β
= O(β), β → 0, (4.2.17a)(

1 + 15β2
)1/2 − 1

3β
= 1− 1− β

4
+O

(
(1− β)2

)
, (4.2.17b)

= 1− 1− β2
8

+O
(
(1− β)2

)
, β → 1,

where in the last step we used the fact that

1− β
4

+O
(
(1− β)2

)
=

1− β2
4 (1 + β)

+O
(
(1− β)2

)
(4.2.18)

=
1− β2

4

1

2− (1− β)
+O

(
(1− β)2

)
≈ 1− β2

8
+O

(
(1− β)2

)
. (4.2.19)

Using that cos−1 x ≈ π/2 as x → 0 and cos−1(1 + x) ≈ (−2x)1/2 as x → 0−, we get

(4.2.11).

By evaluating the limit of fmax(β) as β → 0 from (4.2.10b), we get (4.2.12a) after

a quite lengthy but straightforward computation.

Lastly, in order to compute (4.2.12b), we first note that by a Taylor expansion in

the variable β2 around β2 = 1, we find

4−
(
1 + 15β2

)1/2
=

15

8
(1− β2) +O

(
(1− β2)2

)
, (4.2.20a)

−1− 3β2 +
(
1 + 15β2

)1/2
=

9

8
(1− β2) +O

(
(1− β2)2

)
. (4.2.20b)

By substituting (4.2.20) into (4.2.10b), we easily get (4.2.12b).
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The total radiated power of our charge is given by

P ∗(t∗) =
2q2

3c

β̇(t∗)2

(1− β(t∗)2)3
. (4.2.21)

Proof. This result follows readily from (3.2.8) upon taking (4.2.5) into account.

Here are the angular plot of f(θ; β) for some β values.

β = 0.0

(1,0)

(0,1)

β = 0.5

(1,0)

(0,1)

Figure 4.2.2. Angular plot of f(θ; β) for β = 0.0, 0.5.
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4.3. Circular acceleration

Consider a charge q moving on a circular orbit x(t) of radius r0 with constant

angular velocity ω. The origin of the frame used to measure the particle’s motion

lies on the center of the circumference. Given the symmetry of the problem, it

is convenient to employ a cylindrical coordinate system whose axis is determined

by the versor of the angular velocity, so that

ω = ωez. (4.3.1)

The trajectory of the orbit is given by

x(t) = r0eρ(ωt). (4.3.2)

x

y

z

O

ẋ(t)

x(t)
r0

ω

ωt

Figure 4.3.1. A circular accelerator.

From (3.2.3), it follows that the differential radiated power of the charge is

given by

dP ∗

do
(x, t∗) =

(qωβ)2

4πc

(1− βn(x, t∗)·eφ(ωt∗))2 − (1− β2)(n(x, t∗)·eρ(ωt∗))2

(1− βn(x, t∗)·eφ(ωt∗))5
,

(4.3.3)
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where

β =
ωr0
c
. (4.3.4)

Proof. For sake of compactness, we shall treat β, β̇, n, eρ, eφ and ez as independent

vector variables. From (2.2.3b), (4.3.2) one has

β =
r0ėρ
c
. (4.3.5)

Now, keeping in mind that the cylindrical versors have the following property,

deρ
dt

(ωt) = ωeφ(ωt), (4.3.6)

and the definition (4.3.4), one has

β = βeφ. (4.3.7)

Furthermore, since the analogous property to (4.3.6) for eφ is

deφ
dt

(ωt) = −ωeρ(ωt), (4.3.8)

one has

β̇ = −ωβeρ. (4.3.9)

The following properties also hold

ez×eφ = −eρ, (4.3.10a)

eφ×eρ = −ez. (4.3.10b)

Using (4.3.7), (4.3.9), (4.3.1) and (4.3.10) one verifies easily that

β̇ = ω×β, (4.3.11a)

β×β̇ = β2ω. (4.3.11b)

Upon inspecting equation (3.2.3), we only have to compute two expressions. The

first one is

1− β·n = 1− βn·eφ. (4.3.12)

The second one requires more effort. Using (4.3.11), one has

ξ =
(

(n− β)×β̇
)2
−
(
n·β×β̇

)2
=
(
n× (ω×β)− β2ω

)2 − (n· (β2ω))2 . (4.3.13)
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Now, computing the triple product with the rule (2.2.37), one has

ξ =
((
n·β − β2

)
ω − n·ωβ

)2 − β4 (n·ω)2 (4.3.14)

=
(
n·β − β2

)2
ω2 + (n·ω)2 β2 − 2

(
n·β − β2

)
(n·ω)ω·β − β4 (n·ω)2 .

From (4.3.1) and (4.3.7), one has

ω·β = ωβez·eφ = 0, (4.3.15)

since the versors are perpendicular to one another by definition. Therefore, the double

product term in (4.3.14) vanishes. Now, using (4.3.1) and (4.3.7) once again, one has

ξ = β2ω2
[
(n·eφ − β)2 +

(
1− β2

)
(n·ez)2

]
. (4.3.16)

Adding and subtracting β2ω2[(1− βn·eφ)2] in the right side of (4.3.16) and rearranging

some terms yields

ξ = β2ω2
[
(1− βn·eφ)2 −

(
1− β2

) (
1− (n·eφ)2 − (n·ez)2

)]
. (4.3.17)

Using the fact that

(n·eρ)2 + (n·eφ)2 + (n·ez)2 = |n|2 = 1, (4.3.18)

one has(
(n− β)×β̇

)2
−
(
n·β×β̇

)2
= β2ω2

[
(1− βn·eφ)2 −

(
1− β2

)
(n·eρ)2

]
. (4.3.19)

Inserting equations (4.3.19) and (4.3.12) into (3.2.3) readily yields (4.3.3).

Upon inspecting (4.3.3), it appears that the dependence of dP ∗/ do(x, t∗) on x

and t∗ is described by two angles: the angle θ(x, t∗) between n(x, t∗) and eφ(ωt∗)

and the angle ψ(x, t∗) between n(x, t∗) and ez. Viewing θ and ψ as independent

variables, the differential radiated power is given by

dP ∗

do
(θ, ψ, t∗) =

(qωβ)2

4πc

(1− β cos θ)2 − (1− β2)(sin2 ψ − cos2 θ)

(1− β cos θ)5
. (4.3.20)
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Analogously to the linear case, the angular dependence of (4.3.20) is governed by

the function

f(θ, ψ; β) =
(1− β cos θ)2 − (1− β2)(sin2 ψ − cos2 θ)

(1− β cos θ)5
, (4.3.21)

where 0 ≤ β < 1, 0 ≤ θ < π and 0 ≤ ψ < π. For any fixed ψ, the function

f(θ, ψ; β) (as a function of θ) has two maxima for θ = 0, π, and a minimum for

θ = θ(ψ; β), where

θ(ψ; β) = cos−1
{

1− β2

β

[
1

1− β2
− 4

3
+

4

3

(
1− 15

(
1− β2 sin2 ψ

)
16 (1− β2)

)1/2]}
. (4.3.22)

x

y

z

O

ẋ(t)

θ

x

x(t)

x− x(t)

ψ

Figure 4.3.2. The angles θ and ψ.

The most interesting case is represented by ψ = π/2. In this case, a simple

calculation shows that

θ(π/2; β) = cos−1 β. (4.3.23)

Furthermore, the function f(θ, ψ = π/2; β) evaluated at the stationary points

yields

f(0, π/2; β) =
1

(1− β)3
, (4.3.24a)



4.3. CIRCULAR ACCELERATION 46

f(θ(π/2; β), π/2; β) = 0, (4.3.24b)

f(π, π/2; β) =
1

(1 + β)3
. (4.3.24c)

Proof. A simple computation shows that one can write f(θ, ψ;β) in two other equivalent

forms:

f(θ, ψ;β) =
1− β2
β2

[
1

1− β2
1

(1− β cos θ)3
− 2

(1− β cos θ)4
+

1− β2 sin2 ψ

(1− β cos θ)5

]
(4.3.25a)

=
1

(1− β cos θ)5

[
(β − cos θ)2 +

(
1− β2

)
cos2 ψ

]
. (4.3.25b)

From (4.3.25b), it is clear that f(θ, ψ;β) ≥ 0. From (4.3.25a), one easily computes

∂f

∂θ
(θ, ψ;β) = −

(
1− β2

)
sin θ

β (1− β cos θ)6

[
3

1− β2 (1− β cos θ)2 (4.3.26)

− 8 (1− β cos θ) + 5
(
1− β2 sin2 ψ

) ]
.

For fixed ψ, the values of θ corresponding to the extrema of f(θ, ψ;β) are those for

which ∂f/∂θ(θ, ψ;β) = 0. Hence they are the solutions to either equations

sin θ = 0, (4.3.27a)

3

1− β2 (1− β cos θ)2 − 8 (1− β cos θ) + 5
(
1− β2 sin2 ψ

)
= 0. (4.3.27b)

Upon solving the second equation in the unknown 1 − β cos θ, equations (4.3.27) can

be written as

sin θ = 0, (4.3.28a)

1− β cos θ =
4
(
1− β2

)
3

1±
(

1− 15
(
1− β2 sin2 ψ

)
16 (1− β2)

)1/2
 . (4.3.28b)

In order to choose the correct solution in (4.3.28b), it is necessary to evaluate both

expressions when β → 0. A simple computation yields

4
(
1− β2

)
3

1 +

(
1− 15

(
1− β2 sin2 ψ

)
16 (1− β2)

)1/2
→ 5

3
, β → 0, (4.3.29a)
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4
(
1− β2

)
3

1−
(

1− 15
(
1− β2 sin2 ψ

)
16 (1− β2)

)1/2
→ 1, β → 0. (4.3.29b)

Since obviously 1− β cos θ → 1 as β → 0, the solution (4.3.29a) with the + sign must

be rejected. Thus, the values of θ corresponding to the extrema of f(θ, ψ;β) for fixed

ψ are

θ = 0, π, θ(ψ;β), (4.3.30)

where θ(ψ;β) is given by (4.3.22).

It is easy to see that

(β − cos θ)2 ≤ (1− β cos θ)2 . (4.3.31)

A quick computation shows that

f(0, ψ;β) =
1− β + (1 + β) cos2 ψ

(1− β)4
. (4.3.32)

A comparison between (4.3.21) and (4.3.32) shows that, taking (4.3.31) into account,

f(θ, ψ;β) ≤ f(0, ψ;β). (4.3.33)

Therefore, θ = 0 is a maximum value for f(θ, ψ;β). Repeating the same steps for θ = π

will show that θ = π is also a maximum value, while θ = θ(ψ;β) is a minimum value

since f(θ, ψ;β) is continuous.

The rest of the proof (equations (4.3.23) and (4.3.24)) is easily derived by consec-

utively substituting ψ = π/2 into the correct equations.

The total radiated power of our charge is given by

P ∗(t∗) =
2 (qωβ)2

3c

1

(1− β2)2
. (4.3.34)

Proof. Using (4.3.11) first, followed by (3.2.12), one has

|β̇|2 − |β×β̇|2 = |ω×β|2 − |β2ω|2 (4.3.35)

= |ω|2|β|2 − (ω·β)2 − |β2ω|2
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= ω2β2
(
1− β2

)
,

where in the last step we have made use of (4.3.15). Using this relation in (3.2.8), we

get immediately (4.3.34).

Here are the angular plot of f(θ, ψ; β) for some ψ, β values.

β = 0, ψ = 0

(1,0)

(0,1)

β = 0.2, ψ = π/2

(1,0)

(0,1)

Figure 4.3.3. Angular plot of the angular function f(θ, ψ; β) for

β = 0.0, 0.2 and ψ = 0, π/2.
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