
Alma Mater Studiorum · Università di Bologna

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI
Corso di Laurea Magistrale in Informatica

Importing Ownership Types
into the Join Calculus

Tesi di Laurea in
Sistemi Operativi

Relatore:
Chiar.mo Prof.
Sangiorgi Davide

Co-Relatore:
Chiar.mo Prof.
Clarke Dave

Presentata da:
Patrignani Marco

Sessione I
Anno Accademico 2009-2010

2

Contents

1 Introduction 7

2 Ownership types 9
2.1 State of the art . 10
2.2 Ownership types . 11

2.2.1 The owners as dominators model 11
2.2.2 A diagrammatic notation . 12

2.3 Benefits of ownership typing . 13
2.4 Examples . 14

3 The join calculus 17
3.1 Join calculus . 19

3.1.1 Syntax . 19
3.1.2 Structural equivalence . 20
3.1.3 Semantics . 21
3.1.4 Examples . 24
3.1.5 Related Work . 27

4 The channels-as-owners model (ChaO) 29
4.1 Syntax . 30

4.1.1 Structural equivalence . 31
4.2 Typing judgments . 32
4.3 Typing rules . 32
4.4 Semantics . 34
4.5 Additional typing judgments and rules 35
4.6 Properties . 36
4.7 Examples . 47

4.7.1 Diagrammatic notation . 47

5 The contexts-as-owners model (CtxO) 53
5.1 Syntax . 54

3

4 CONTENTS

5.1.1 Structural Equivalence . 54
5.2 Typing judgments . 55
5.3 Typing rules . 55
5.4 Semantics . 56
5.5 Additional typing judgments and rules 56
5.6 Properties . 57
5.7 Examples . 60

5.7.1 Diagrammatic notation . 60

6 Groups for the join calculus 63
6.1 Syntax . 63

6.1.1 Structural equivalence . 64
6.2 Typing judgments . 65
6.3 Typing rules . 65
6.4 Semantics . 66
6.5 Additional typing judgments and rules 67
6.6 Properties . 68

7 Comparison of the type systems 71
7.1 Comparison overview . 71

7.1.1 Syntax recap . 73
7.2 Bisimilarity equivalence . 73
7.3 The erasure function . 74
7.4 The mapping function . 75
7.5 Theorems . 77

7.5.1 Typing rule changes . 83

8 Future work and conclusion 91
8.1 Future work . 91
8.2 Conclusion . 92

Bibliography 96

List of Figures

2.1 An example of aliasing in a Java program. 10
2.2 Example of the notation we will use for ownership. 11
2.3 A nest of objects and contexts. 12
2.4 Contexts associated to the objects of Figure 2.3 and Figure 2.5 13
2.5 Valid and invalid references in a nest of objects and contexts. 13
2.6 Rectangle class using ownership types. 15

3.1 Definition of received, defined and free variables in the join calculus. . . . 20
3.2 Structural congruence for the join calculus. 21
3.3 Definition of the substitution function P [z/x]. 22
3.4 Chemical rules for the reflexive CHAM. 23

4.1 Definition of free and defined owners for ChaO. 31
4.2 Structural congruence for the ChaO system. 32
4.3 Typing rules for ChaO system (part 1). 33
4.4 Typing rules for ChaO system (part 2). 34
4.5 Chemical rules for the RCHAM of ChaO. 35
4.6 Additional typing rules for ChaO. 36
4.7 Generic context rule as reported from Figure 3.4 in Section 3.1.3. 44
4.8 Visual example of the diagrammatic notation used to represent the chan-

nels graph. 48
4.9 Channels graph for the processes of Example 4 48
4.10 Graphical example representing accessibility in a channels graph. 49
4.11 Channels graph of Example 7 . 52

5.1 Definition of free context and defined context variables. 55
5.2 Structural equivalence for CtxO. 55
5.3 Typing rules for CtxO system. 56
5.4 Chemical rules for the RCHAM of CtxO. 57
5.5 Additional typing rule for CtxO. 57
5.6 Example of the diagrammatic notation for CtxO. 60

5

6 LIST OF FIGURES

5.7 Channels graph for Example 8 . 61
5.8 Channels graph for Example 9 . 61
5.9 Channels graph for Example 10. 62

6.1 Definition of free and defined groups. 65
6.2 Structural equivalence for groups. 65
6.3 Typing rules for the groups system. 66
6.4 Chemical rules for the RCHAM with groups. 67
6.5 Additional typing rules for join calculus with groups. 68

7.1 Syntax definition of ChaO, CtxO and Groups. 73
7.2 The erasure function. 74
7.3 The mapping function from system JCT to JGR. 75
7.4 The mapping function from system JGR to JCH 76
7.5 The mapping function from system JCH to JCT 77

Chapter 1

Introduction

Abstract
Gli ownership types sono un sistema di tipo [Pie02, Kob02, Car96] sviluppato

nel mondo object-oriented per risolvere problemi come aliasing e object encapsu-
lation.

Il join calculus è un modello formale per il calcolo di processi basato sulla
nozione di mobilità.

Questa tesi presenta lo sviluppo di tre type systems per il join calculus. I primi
due formalizzano l’idea di ownership types importata dal mondo object-oriented. Il
terzo type system formalizza l’idea dei gruppi, un costrutto ideato per il π-calculus
che trasportiamo nel join calculus. Per ogni type system vengono fornite regole di
tipaggio e dimostrazione di subject reduction e no runtime errors.

Viene infine presentato un confronto tra i tre sistemi che ne dimostra l’equivalenza:
i gruppi forniscono le stesse proprietà degli ownership types.

On one hand we have object-oriented programming, on the other we have process
algebra . Despite first impressions, the two areas have a lot in common and they are
semantically closer than one would expect.

Works in object-oriented programming led to the development of a particular type
system called ownership types [CPN98, Cla01, CD02]. Such type systems have been used
to manage aliasing, enforce object encapsulation and provide other useful properties to
programs.

Work on distributed formal systems gave birth to the join calculus, an ML-flavoured
calculus for mobile processes [FG96, FG00]. The join calculus has the same expressive
power of the well known π-calculus but it also has an interesting and very powerful
notion of locality. This notion made possible the creation of a concurrent programming
language whose formal foundations rely on the join calculus: JOCaml [FFMS02].

In this thesis we import the notion of ownership types into the join calculus. We
develop two approaches for this fusion, a channel-driven and a context-driven approach.
We define typing rules for both systems and prove subject reduction and no runtime

7

8 CHAPTER 1. INTRODUCTION

errors theorems. Then we import the notion of groups [CGG05] from the π-calculus to
the join calculus developing a sound type system with strong security properties. This
is the first attempt of such a translation and it provides a system to compare the other
ones we created with.

Finally we show that the three systems are equivalent, groups provide the same
benefits of ownership types.

Chapter 2

Ownership types

Abstract
In questo capitolo vengono presentati gli ownership types come modello per

il mondo della programmazione orientata agli oggetti. Tale modello fornisce il
linguaggio di una nozione esplicita di incapsulamento permettendo quindi una
migliore gestione dell’aliasing e diversi altri benefici che spaziano dai settori dell’
ottimizzazione del codice, alla garbage collection, all’interpretazione astratta. Dopo
una panoramica sulle proprietà del sistema, si forniscono esempi che esplicano i
benefici apportati dagli ownership types.

Ownership types are a type system developed for object-oriented programming lan-
guages. They provide a statically enforceable notion of object-level encapsulation. Own-
ership types have been developed as an alias protection mechanism in first place, but the
further benefits they give have made them an interesting type system.

In object-oriented programming the main evaluation strategy is call-by-reference: a
function receives a reference to its arguments, rather than a copy of its value. The benefits
are multiple, we have greater time- and space-efficiency since arguments do not need to
be copied, as well as the potential for greater communication between a function and its
caller since the function can return information using its reference arguments. Of course
not all that glitters is gold, as a matter of fact in addition to these gains some problems
arise such as aliasing.

When two objects refer to another we have aliasing. An example can be seen in
the code in Figure 2.1 Aliasing can be a serious threat for some aspects of system de-
velopment, implementation and optimization. Both debugging and maintaining a piece
of software require knowledge of which parts of the object graph are aliased and then
accessed by the code we are observing. When optimizing code, compilers must check
possible aliasing in the analyzed fragment in order to optimize without changing the
program’s semantics, and this can take a long time to be determined. Garbage collection
can be improved when we know there is no alias in a certain block of code. Also modular
reasoning [CD02] is possible when we have control of aliasing.

9

10 CHAPTER 2. OWNERSHIP TYPES

1 Student std = new Student ();
2 Student alias = new Student ();
3 alias. setName ("Wedge");
4 alias = std;
5 std. setName ("Biggs");
6 System .out. println (alias. getName ());
7 // will display Biggs instead of Wedge.

Figure 2.1: An example of aliasing in a Java program.

Different techniques have been formulated through the years to solve the problem of
aliasing, giving birth to ownership types as a stand-alone theory for alias management.1

2.1 State of the art
Ownership types were first presented in [CPN98] as enforcing the owners as domi-

nators property over the program’s object graph. This means that if an object l owns
another object l′, then any path from the root of the object graph to l′ has to go through
l, thus l dominates l′. This model was refined in [Cla01] and was used also in [Boy04].

Among the drawbacks of the ownership types system there is the inability to create
iterators. Such a lack does not allow iterators for collections to access the internal repre-
sentation of the collection object. To solve this problem different approaches have been
taken. Another notion of ownership has been provided: shallow ownership, that loosens
the constraints imposed by deep ownership. Nonetheless the lead authors preferred to
address this problem by allowing local variables [CD02] or inner classes [BLS03] in order
to have a less restrictive access while maintaining strong invariants on the system.

In [Wri06] ownership types were extended with owner-polymorphism and external
uniqueness [CW03]. Finally in [Pot07] ownership types were combined with generics to
achieve a more powerful type system.

A language called Safe Java [Boy04] makes use of ownership types to detect data
races and deadlocks in object-oriented programming and allows safe persistent storage of
objects [BLR02]. It also allows safe region-based memory management in real time com-
putation [BSBR03], thanks to the ownership types system. These works benefit from the
assumptions one can make both on the structure imposed by the owners as dominators
property on the objects graph and on the references between objects. When locking an
object l in a concurrent setting, with ownership one can be sure that the objects owned
by l will not have any additional reference other than l’s one.

Ownership types provide benefits that match perfectly with the requirements of ef-
1A somewhat dated list of such techniques can be found in [Cla01].

2.2. OWNERSHIP TYPES 11

fects. Effects are annotation that make explicit the behavior of a certain piece of code
thus allowing reasoning about what that code does. Both [CD02, Boy04] use the en-
forcements of ownership constraints to improve reasoning about programs and provide
a language with both ownership and effects annotations.

2.2 Ownership types
We shall now present some more detailed insights of the ownership types system.

The syntactical annotation of owners have varied through the papers. The notation
used here comes from [Pot07, Boy04]. Owners are annotated as parameters between
angle brackets ”<,>”, the first parameter is the object’s owner while the others are used
to carry ownership information. There we have keywords such as world and This to
denote the owner being the root object and the owner being the current active object
respectively. An example of such notation can be found in Figure 2.2.

1 class ANewClass <classOwner , paramOwner >{
2 public Object <This > field;
3 //an enclosed object.
4 // The owner is the current active object
5 public Object <world > shared; //a shared object
6 public Object <classOwner > sibling ;
7 //an object whose owner is the same of
8 // the current object ’s
9 }

Figure 2.2: Example of the notation we will use for ownership.

2.2.1 The owners as dominators model
To model the notion of ownership in a type system the following assumptions are

always made: an object’s owner is fixed for its lifetime, and every object has a single
owner that is another object or the root of the system.

To generalize the model, the coupling between objects and owners is broken. Contexts
represent the unit of ownership, they have been introduced to separate such ownership
from objects. Each object has an owner context which abstractly represents its owner.
Objects with the same context as owner are considered to have the same owner. Each
object also has a representation context which is considered to be the owner of its repre-
sentation.

12 CHAPTER 2. OWNERSHIP TYPES

Contexts form a partial order (C,≺:) that may be derived from a tree, a forest or a
dag and it is created as follows. C0 = (world,world ≺: world) identifies the presence of
a root element called world. To define the introduction of a context c owned by another
context o in the partial order (Ci,≺:i) we write Ci+1 = (Ci ∪ {c},≺:i ∪ c ≺: o).

The relation ≺: is called inside. The aforementioned contexts associated to an ob-
ject (owner and representation) are indicated with two functions: owner and rep. The
containment invariant determines when an object can refer to another. It states:

ι→ ι′ ⇒ rep(ι) ≺: owner(ι′)

where ι → ι′ means that ι refers to ι′. Another requirement is that rep(ι) ≺: owner(ι)
so that an object can access itself.

2.2.2 A diagrammatic notation
For a better understanding of the properties enforced by the ownership types system

we now present a diagrammatic example that shows which references are allowed and
which are not in a deep ownership setting. First of all we introduce a nest of objects. A
square represents an object identity, it has a name on the inside. A rounded rectangle
represents a context. An object’s context rep is the one the objects stands on top of,
while owner is the context immediately enclosing the object.

A

B C

D E

Figure 2.3: A nest of objects and contexts.

Figure 2.3 shows the system associated to the contexts set C = {world, A,B,C,D,E}
and the inside relation given by B,C ≺: A ≺: world and D,E ≺: C. The owner and
representation contexts for each object are shown in Figure 2.4. Figure 2.5 points out
which references are possible and which are not. A dashed line represents an invalid
reference, a full line is a valid one. We do not show all the possible references but
generally whether a reference is allowed to an object, it is also to a sibling of such object,
unless it breaks the invariant.

2.3. BENEFITS OF OWNERSHIP TYPING 13

Object owner rep
A world A
B A B
C A C
D C D
E C E

Figure 2.4: Contexts associated to the objects of Figure 2.3 and Figure 2.5

A

B C

D E

Figure 2.5: Valid and invalid references in a nest of objects and contexts.

2.3 Benefits of ownership typing
Having a clearer vision of the concepts of the ownership typing disciple, it should be

easier to understand the benefits of such type system.
Among the benefits given by ownership types we reported the ability to reason about

programs. Such reasoning in object-oriented programs involves reasoning about objects
belonging to a class. This is possible with ownership types since this type system enforces
full object encapsulation. An object o should own all the subobjects it depends on, that
is all the objects o calls methods of that affect the invariant of o. Full encapsulation
guarantees that outer objects must access o in order to interact with the subobjects o
depends on. This prevents outer objects from violating the class’ invariant, which is in
fact handled within the class only.

Nevertheless when reasoning about a program, aliasing is a big threat. References to
an object can be made in every part of the program, a statical analyzer must work hard
to understand which references are aliased and which are not in large programs. Since a
reference to an object can come only through its parent or from its descendant, aliasing
checking requires much less effort with ownership types.

In addition to that, memory management can be improved by using ownership types.

14 CHAPTER 2. OWNERSHIP TYPES

Garbage collection can be sped up by the partitioning of the objects graph. Such a graph
being a tree allows deallocating a whole subtree as soon as its root becomes unavailable.
Since all references to an object pass through its owner, once the owner can be collected,
so all of its owned objects can as well.

2.4 Examples
Let us now present an example of the type system at work. Next comes a code example

that benefits from the use of ownership types. The gains are extremely high considering
the very low syntactic overhead compared to an ownership-free system.

In this example [Pot07] we use ownership types to prevent representation exposure.
The programmer defines the class invariant and then he (or his colleagues) will not be
able to break it, either on purpose and accidentally.

Example 1 (No representation exposure). The code in Figure 2.6 shows two classes:
a Point and a Rectangle. A Point consists of two integers representing the point’s
coordinates. A Rectangle consists of two private points representing the two extremes:
the top left and bottom right points. The two extremes represent the class invariant, we
want them to be protected from the outside, thus these two points declare This as owner.
This means that a rectangle instantiation has its own private points, no outer reference
to these objects are allowed. The method doIt() inside the rectangle class tries to expose
the private fields via the exposeUpperLeft() method and fails when the receiver of the
call is not explicitly this. We can see that an outer class willing to get the upperLeft
point must call the getUpperLeft() method and it will receive a copy of the point. This
gives the outer class the knowledge about such a point but does not allow any modification
to the outer class’ point to be reflected on the rectangle class invariant.

2.4. EXAMPLES 15

1 class Point <owner >{
2 Integer x; Integer y;
3 Point(Integer x, Integer y){
4 this.x=x; this.y=y;
5 }
6 }
7

8 class Rectangle <Owner >{
9 private Point <This > upperLeft ;

10 private Point <This > lowerRight ;
11

12 public Rectangle (Point <Owner > ul , Point <owner > lr){
13 upperLeft = new Point <This >(ul.x, ul.y);
14 lowerRight = new Point <This >(lr.x, lr.y);
15 // assignment upperLeft =ul is illegal even in Java
16 // due to incompatible type parameters This and owner
17 }
18

19 public void doIt (){
20 Point <This > p;
21 p=this. upperLeft ;
22 p=this. exposeUpperLeft ();
23 Rectangle <Owner > ro = this;
24 p= ro. upperLeft ;
25 // wrong with ownership types (not in Java)
26 p = ro. exposeUpperLeft ();
27 // wrong with ownership types (not in Java)
28 }
29

30 // the following method can be called only from the
31 // inside of the istance itself : this. exposeUpperLeft ()
32 public Point <This > esposeUpperLeft (){
33 return upperLeft ;
34 }
35

36 public Point <Owner > getUpperLeft (){
37 return upperLeft ;
38 // wrong both in Java and ownership types
39 return new Point <Owner > (upperLeft .x, upperLeft ,y)
40 }
41 }

Figure 2.6: Rectangle class using ownership types.

16 CHAPTER 2. OWNERSHIP TYPES

Chapter 3

The join calculus

Abstract
In questo capitolo viene fatta una breve panoramica sull’algebra dei processi

per poi andare a trattare un calcolo specifico: il join calculus. Si forniscono quindi
la sintassi e la semantica classica per tale linguaggio. Successivamente si presentano
alcuni esempi che mostrano la potenza espressiva del join calculus ed i risultati più
significativi per il calcolo in questione.

Process algebra (or process calculus) indicates a family of different approaches to
formally modelling concurrent systems [Bae05].

Before going any further we ought to answer the question: what is a concurrent
system?

Concurrent systems (or reactive systems) are systems whose parts:

• can accomplish their work in parallel; and

• can communicate with each other.

We are not necessarily talking about computer systems here, any model constituted of
distinguished parts that work separately from each one other represent a concurrent
system. But there is also another key aspect other than parallelism: communication. A
part of the system may have the need to share its results to another one, thus creating
a communication channel where information flows from a side to another.

An example of concurrent system is the human body, both in its macro and micro
characterizations. A brain and a heart are two well distinguished organs whose works run
in parallel. Blood exchange can be seen as a communication happening between the two
ends, blood is pumped from the heart via the veins in order to keep the brain sprinkled.

A micro characterization of concurrent systems is a cell group. A single cell is a
stand alone entity whose life is independent from the lives of its neighbors, and cells
can communicate. Molecules can be passed via the membranes to activate the receiver’s
receptors and start the communication.

17

18 CHAPTER 3. THE JOIN CALCULUS

As we can see the whole world built around us is a reactive system made of smaller
systems, the need for a better understanding of the world itself gave birth to the very
subject.

The aim of process algebra is to provide high level descriptions of how different
systems and their subparts interact and evolve. Generally the word process is used to
define a component of a designed system.

The calculus provides tools for process definition and manipulation as well as instru-
ments for process analysis and formal reasoning. As we already pointed out, the calculus
has an explicit notion of communication since it is a key idea of the subject.

Process definition and manipulation are tools that allow us to point out what the
real clue is: modelling behaviors. We describe certain aspects of a process’ behavior,
disregarding other aspects, so we are considering an abstraction or idealization of the
‘real’ behavior.

The word algebra denotes that we take an algebraic/axiomatic approach to talking
about behavior. That is, the discipline uses the methods and techniques of universal
algebra. This allows the calculus to have analysis and formal reasoning tools to fulfill its
usefulness.

A process example could be a brain definition. We can define a brain as a process
and model its behavior as: wait for blood, produce thoughts. We can then create a heart
process that produces blood continuously. A combination of both heart and brain would
result in a system whose two processes can communicate. This communication would
transfer blood from the heart to the brain thus generating thoughts.

The first examples of such calculi are CCS (Calculus of Communicating Systems)[AILS07],
CSP (Communicating Sequential Processes)[Hoa78] and ACP (Algebra of Communicat-
ing Processes)[BK89]. These languages have pioneered the area giving great results but
also showing limitations in the expressiveness of the processes they could model.

Research on networks of processes whose processes are mobile and the configuration
of communication links is dynamic gave birth to a language that is widely considered
the heir and evolution of CCS: the π-calculus [Mil99, Mil92].

Many variants of π-calculus have been invented through the years, thus testifying
the great versatility of the calculus. Amidst its most famous creations we see: the spi-
calculus, a calculus for cryptographic protocols [AG99]; π-calculus for biomolecular sys-
tems [RPS+04]; and so forth. Each variation is a simple extension of the strong core of
the π-calculus aimed to solve a difficulty in defining concurrent systems [PS96].

From a whole different family, yet retaining several common points with the π-
calculus, comes the join calculus, an ML-flavoured language for modelling and analyzing
reactive systems. The following section presents its formal semantics.

3.1. JOIN CALCULUS 19

3.1 Join calculus
Join calculus [FG96, FG00] was developed to bridge the gap between calculi for

concurrent processes and languages for programming distributed and mobile systems. A
new model of concurrency was singled out in the chemical abstract machine (CHAM)
firstly presented in [BB92]. A CHAM is a solution comprising a multiset of reaction
patterns R and a multiset of moleculesM. Molecules are sorted, matched to a particular
reaction pattern in order to trigger reactions and make the solution evolve. This is how
computation happens in a CHAM.

Most process calculi rely on channels as an abstraction to the communication media
for the exchange of data. Implementing such channels in both synchronous and asyn-
chronous settings can be very difficult. The reflexive CHAM provides a model where we
have a large number of sites where simple reactions can be triggered. As we can see this is
an implementable distributed system with a language to model processes for it: the join
calculus. We can therefore say that the join calculus is simply the syntactic description
of such reflexive CHAM.

This language takes ideas from the π-calculus except that it combines several oper-
ators from π-calculus into a single receptor. This gives the language a locality property
that will be discussed later on. The main theorem in [FG96] states that both join calculus
and π-calculus have the same expressive power up to weak barbed congruence, this is
achieved by exhibiting fully abstract encodings in each direction.

Next comes the syntax definition, then the semantics specified as a reflexive CHAM.
We then introduce some examples for a better understanding of the calculus and conclude
by discussing the most notable related work for the join calculus.

3.1.1 Syntax
Values in a CHAM are only names, as this is the case in the π-calculus. Let N be

an infinite set of names. We use name variables in lowercase letters x ∈ N to denote its
elements. The notation −→y indicates a tuple of name variables y1, y2, . . . , yn.

The following grammar defines processes, definitions and join patterns.
A process P is defined as follows:

P = ∅ null process;
| P | P parallel composition;
| x〈−→y 〉 emission of an asynchronous polyadic message.

Channels y1, . . . , yn are sent on channel x;
| def D in P process definition.

A definition D is defined as follows:

20 CHAPTER 3. THE JOIN CALCULUS

D = D ∧D definitions conjunction;
| J � P reaction pattern, if J is matched, start P .

A join pattern J is defined as follows:

J = J | J synchronization pattern;
| x〈−→y 〉 message definition.

A process definition def D in P binds names of D in P . This reflects the locality
principle mentioned before. A channel defined in D can be named only within the scope
of D and P . A definition D, even when it consists of a conjunction of definitions D1∧D2,
is to be treated like an atomic place for name definitions. This means that names defined
in D2 are not free in D1 and vice versa. The only binding construct is the join pattern. A
process P started by a reaction pattern J , such as in J �P , is generally called a guarded
process. The formal parameters received in a join pattern are bound in the corresponding
guarded process.

In the following sections there will be references to different kind of variables: received
(rv), defined (dv), free (fv), their definitions derive from the existing literature on the
join calculus. They are all defined by structural induction in Figure 3.1. We define a fresh
name with regards to a process or a solution to be a name that is not free in them.

rv(x〈−→y 〉) = {y1} ∪ . . . ∪ {yn} rv(J | J ′) = rv(J) ∪ rv(J ′)

dv(x〈−→y 〉) = {x} dv(J | J ′) = dv(J) ∪ dv(J ′)
dv(J � P) = dv(J) dv(D ∧ D′) = dv(D) ∪ dv(D′)

fv(J � P) = dv(J) ∪ (fv(P) \ rv(J)) fv(D ∧ D′) = fv(D) ∪ fv(D′)
fv(x〈−→y 〉) = {x} ∪ {y1} ∪ . . . ∪ {yn}
fv(P | P ′) = fv(P) ∪ fv(P ′) fv(def D in P) = (fv(P) ∪ fv(D)) \ dv(D)

Figure 3.1: Definition of received, defined and free variables in the join calculus.

3.1.2 Structural equivalence
The structural equivalence relation is axiomatized as the least equivalence relation

satisfying the conditions defined in Figure 3.2.

3.1. JOIN CALCULUS 21

P ≡ P ′ if P, P ′are α-equivalent
D ≡ D′ if D,D′are α-equivalent

P |∅ ≡ P

P |Q ≡ P ′|Q′ if P ≡ P ′and Q ≡ Q′

D1 ∧D2 ≡ D′1 ∧D′2 if D1 ≡ D′1and D2 ≡ D′2
P |P ′ ≡ P ′|P

D ∧D′ ≡ D′ ∧D
J |J ′ ≡ J ′|J

(P |Q)|R ≡ P |(Q|R)
(D1 ∧D2) ∧D3 ≡ D1 ∧ (D2 ∧D3)

def D in def D′ in P ≡ def D′ in def D in P if fv(D′) ∩ dv(D) = ∅
∧ fv(D) ∩ dv(D′) = ∅

def D ∧D′ in P ≡ def D in def D′ in P if fv(D) ∩ dv(D′) = ∅

Figure 3.2: Structural congruence for the join calculus.

3.1.3 Semantics
The semantics is specified as a reflexive chemical abstract machine CHAM. The state

of the computation is a chemical soup E M that consists of two sets: active definitions
E and running processes M.

There are two kind of rules for the soup to evolve:

structural rules (expressed by
) These rules are reversible and are used to rearrange
terms. There are two kinds of structural rules: heating ⇀ and cooling: ↽.

reduction rules (expressed by−→) These rules represent the basic computational step.
Each reduction rule consumes a process and replaces it with another.

The initial state of the computation will generally be ∅ def D in P . The machine
will start from this point and then unravel all the processes and definition until they
are all separated in the soup. They will be recombined afterwards to trigger reaction
patterns and then make the soup evolve.

Before explaining the ϕ function that performs the substitution, we need to introduce
some additional notation.

With the notation yxj we represent a variable y that is the j-th parameter of another
variable x.

22 CHAPTER 3. THE JOIN CALCULUS

The notation |x| indicates the number of arguments one expects to be sent over a
given channel x.

The substitution function P [z/x]

We now define the substitution function P [z/x] which is analogous to the classical
capture avoiding substitution function used in λ-calculus.

The expression P [z/x] is read “P where all occurrences of x are substituted with z”.
The function is defined in Figure 3.3 by structural induction on the term P . Note

that the substituting variable z does not capture any name defined in a definition D. We
also assume possibly implicit α-renaming for non free variables to avoid name clashes.

def D in P [z/x] ≡ def D[z/x] in P [z/x] (P | P ′)[z/x] ≡ P [z/x] | P ′[z/x]
x〈−→y 〉[z/x] ≡ z〈−→y 〉 u〈−→y 〉[z/x] ≡ u〈−→y 〉

u〈y1 , . . . , x , . . . , yn〉[z/x] ≡ u〈y1 , . . . , z , . . . , yn〉 ∅[z/x] ≡ ∅
(D ∧D′)[z/x] ≡ D[z/x] ∧D′[z/x] (J � P)[z/x] ≡ J � P [z/x]

Figure 3.3: Definition of the substitution function P [z/x].

The function ϕ

ϕ is a function that substitutes the transmitted names for the distinct received vari-
ables. Such function takes three arguments:

• a process P ;

• a parallel composition of messages J ′ ≡ x1 〈−→z1〉| . . . |xn〈−→zn〉;

• a join pattern J ≡ x1 〈−→y1〉| . . . |xn〈−→yn〉;

such that dv(J)=dv(J ′) and returns a process P ′.
P ′ is actually P where, for all x ∈ dv(J), the j-th formal parameter of x has been

substituted with the j-th actual parameter. All the formal parameters are found in rv(J)
while all the actual ones are taken from rv(J ′).

Formally, since J ≡ x1 〈−→y1〉| . . . |xn〈−→yn〉 and J ′ ≡ x1 〈−→z1〉| . . . |xn〈−→zn〉, we can define:

P ′ = P [−→z1/
−→y1 , . . . ,

−→zn/−→yn]

The substitution [−→z /−→y] represents the ordered substitution [z1/y1, . . . , zm/ym] given
−→z = z1, . . . , zm and −→y = y1, . . . , ym.

3.1. JOIN CALCULUS 23

The substitution function ϕ can be stated in an extended form as follows:

P ′ = P [zx1
1 /y

x1
1 , . . . , z

x1
m1/y

x1
m1 , . . . , z

xn
1 /yxn1 , . . . , zxnmn/y

xn
mn]

The rules for the CHAM are described in Figure 3.4. Here we mention only the
elements of both multisets that participate in the rule. Such rules in fact apply to any
matching subpart of the soup.

 P1|P2
 P1, P2 S-PAR
D ∧D′
 D,D′ S-AND

 def D in P
 D P S-DEF
dv(D) are fresh.

J � P J ′ −→ J � P ϕ(P, J ′, J) R-BETA
dv(J) = dv(J ′)

D1 P1 ⇀↽−→ D2 P2

(fv(D) ∪ fv(P)) ∩ (dv(D1) \ dv(D2) ∪ dv(D2) \ dv(D1)) = ∅
CTXD,D1 P1,P ⇀↽−→ D,D2 P2,P

⇀↽−→ represents any computational step.

Figure 3.4: Chemical rules for the reflexive CHAM.

Rule S-AND and S-PAR from Figure 3.4 express that “|” and “∧” are commutative
and associative. Rule S-DEF describes the heating of a molecule that defines new names.
The side condition of such rule mimics the scope extrusion of the ν operator in π-calculus,
and at the same time enforces a strict static scope for the definitions. Given a process
def D in P , rule S-DEF enforces names defined in D to be unique for the soup and limits
the binding of such names to the process P . Formally, by heating the defD in P molecule
in a general soup as E def D in P,M the following holds: dv(D) ∩ fv(E ,M) = ∅.

The basic computational step is provided with rule R-BETA. Such reduction con-
sumes any molecule that matches a given pattern J , makes a fresh copy of the guarded
process P , substitutes the received parameters in P with the actual sent names and
releases such process (obtained via the ϕ function) in the solution as a new floating
molecule.

The symbol ⇀↽−→ is an abstraction for any of the above reduction steps. Rule CTX
states a general evolution rule for soups. Consider a chemical solution D1 P1 that

24 CHAPTER 3. THE JOIN CALCULUS

evolves in D2 P2. We can add a set of definitions D and a set of processes P to the
first soup if their names do not clash with those of the soup. Such addition does not
affect the behavior of the solution.

Labeled semantics

In the following we will attach labels to the arrows representing computational steps
in order to clarify what is happening in the soup.

Rule R-BETA will have a label pointing out the parallel composition of messages
that triggers a specific rule. For example

x〈y〉|a〈〉−−−−→

means that messages x〈y〉 and a〈〉 are being sent.
General heating and cooling arrows will be labeled with the name of the rule that is

being used. For example, a heating via S-DEF rule will be denoted by:

S−DEF−−−−−⇀

For a better understanding of the calculus we introduce now some examples.

3.1.4 Examples
After the brief tour of the asynchronous core of the join calculus, it is time to see it

at work. This section is aimed at showing the benefits of the calculus by presenting two
examples, each one pointing out a particular gain. In the first example we formalize a
secrecy example from [AG99].

Example 2 (Process communication example). Let us consider a system where a Sender
wants to share a secret with a Receiver. The two can be formalized in the join calculus
as:

Sender = def secret〈〉�send〈secret〉
in secret〈〉

Receiver = def show〈ch〉�recv〈ch〉
∧ chan〈sec〉� i have the secret
in show〈chan〉

3.1. JOIN CALCULUS 25

The Sender is a process that knows a secret and communicates it by exporting it
on the channel send. The Receiver is a process that wants to receive some input on
channel chan, so he sends such channel on recv. Once something is transmitted on chan
the process has the input in the local variable s. These two processes must be combined
with an environment for them to communicate. There are two free variables in the above
defined processes: send and recv. The environment in which Sender and Receiver will be
placed in is meant to define them to bind such free occurrences.

Environment = def send〈s〉 | recv〈ch〉�ch〈s〉
in Sender | Receiver

This environment defines a communication rule. It waits for a channel to be sent
over the send channel and forwards it on the channel sent over the recv channel. The
term Environment is a closed term, it has neither free variables nor holes where to place
other processes. The only way to combine it with other processes is to place it in a
parallel composition or after a definition D in the term def D in P . Whatever process
we combine Environment with, it will not be able to steal the secret channel secret. This
is the greatest benefit that derives from the locality principle which is typical join calculus.

Let’s place the three processes in a CHAM and analyze its evolution. Due to α-
conversion in rule S-DEF, the channel names defined in the three processes are unique
for these processes only. No outer channel with the same name as one in the process
Environment may synchronize with that channel, thus enforcing that channel names are
local to their defining process.

Unfortunately someone may add some malicious code in order to export these channels
outside the created environment allowing a leakage of secrets. There is no control over
such actions.

The second example shows how the computation happens in a CHAM.

Example 3 (Computation example). Let us now consider a one place buffer. Its imple-
mentation in our calculus is:

Onebuffer = def put〈x〉 | empty〈〉�full〈x〉
∧ get〈ch〉 | full〈a〉� ch〈a〉 | empty〈〉
in empty〈〉 | publ〈put, get〉

There are four defined channels: full, empty, get, put. The usage is simple; when
the state is empty, someone can put a channel in the buffer by sending it on the put
channel. When something is stored in the buffer, it can be retrieved via the get channel.
By sending a channel ch over get, a process will receive the contents of the buffer on ch.
Channel publ is used to export both put and get outside the definition of OneBuffer so
that external processes may use it.

26 CHAPTER 3. THE JOIN CALCULUS

The following is a general environment where the buffer can be placed so that processes
P1, . . . , Pn can use it by sending a message on mb containing the channel where they want
to receive put and get.

Activator = def mb〈publ〉�def put〈x〉 | empty〈〉�full〈x〉
∧ get〈ch〉 | full〈a〉� ch〈a〉 | empty〈〉
in empty〈〉 | publ〈put, get〉

in P1 | . . . | Pn

Note an interesting point. When a process Pi activates the buffer, it is added to the
processes set. Let’s assume Pi activates the buffer by sending a channel channelPi over
mb. Then:

Activator P1, . . . ,mb〈channelPi〉, . . . , Pn
mb〈channelPi〉−−−−−−−−→ Activator

∣∣∣∣∣P1, . . . , Pn,
OneBuffer i

∣∣∣∣∣
Now let’s suppose another process Pj activates the buffer. Then:

Activator

∣∣∣∣∣P1, . . . ,mb〈channelPj〉, . . . , Pn,
OneBuffer i

∣∣∣∣∣ mb〈channelPj〉−−−−−−−−→ Activator

∣∣∣∣∣ P1, . . . , Pn,
OneBuffer i,OneBuffer j

∣∣∣∣∣
The newly created process Onebufferj spawned by Pj has variables which are distinct

from Pi’s buffer’s due to α-conversion in rule S-DEF.
Let’s apply rule S-DEF to unravel the process definition OneBufferi. The side condi-

tion of this rule will map all elements of dv(Onebuffer i) to fresh names, so there will be
no conflict with dv(OneBuffer j).

Activator

∣∣∣∣∣ P1, . . . , Pn,
OneBuffer i,OneBuffer j

∣∣∣∣∣ S−DEF−−−−−⇀∣∣∣∣∣∣∣
Activator,

puti〈xi〉 | emptyi〈〉� fulli〈xi〉
∧ geti〈chi〉 | fulli〈ai〉� chi〈ai〉 | emptyi〈〉

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

P1, . . . , Pn
emptyi〈〉 | publi〈puti , geti〉

Onebuffer j

∣∣∣∣∣∣∣
If we apply rule S-DEF to unfold Onebufferj we obtain a whole new set of variables

that do not conflict with the already existing ones:∣∣∣∣∣∣∣
Activator,

puti〈xi〉 | emptyi〈〉� fulli〈xi〉
∧ geti〈chi〉 | fulli〈ai〉� chi〈ai〉 | emptyi〈〉

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

P1, . . . , Pn,
emptyi〈〉 | publi〈puti , geti〉

Onebuffer j

∣∣∣∣∣∣∣ S−DEF−−−−−⇀
∣∣∣∣∣∣∣∣∣∣∣∣

Activator,
puti〈xi〉 | emptyi〈〉� fulli〈xi〉

∧ geti〈chi〉 | fulli〈ai〉� chi〈ai〉 | emptyi〈〉,
putj〈xj〉 | emptyj〈〉� fullj〈xj〉

∧ getj〈chj〉 | fullj〈aj〉� chj〈aj〉 | emptyj〈〉

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
P1, . . . , Pn,

emptyi〈〉 | publi〈puti , geti〉,
emptyj〈〉 | publj〈putj , getj〉

∣∣∣∣∣∣∣

3.1. JOIN CALCULUS 27

Now processes from Pj will use the buffer variables labeled with a “j” and processes
from Pi will use the ones labeled with an “ i” and thus they will not interfere.

3.1.5 Related Work
We have shown the join calculus and its asynchronous core and we have given a

couple of examples that should help the reader to understand how the calculus works
and what its power is. We shall now present some of the most remarkable achievements
related to the join calculus.

Surely one of the greatest achievements of the join calculus is the equivalence with
π-calculus. As already stated, this equivalence is stated and proved in [FG96].

The join calculus was invented to provide a useful programming language for concur-
rent systems, this language is presented in [FFMS02]. The starting point was Objective
Caml (OCaml), which is a compiled, general purpose, high level programming language
that combines functional, imperative and object-oriented programming styles. By adding
concurrency, distribution and mobility to such language we obtain JOCaml. A key con-
cept in this language is the one of location, which is the basic unit of locality where
processes are run. This model is adequate to represent a hierarchic network architecture:
a distributed system. Processes can be defined in a syntax that stems out of the core
join calculus. Obviously there will be all the needed additions, like primitives for printing
and so on, which are required for a language to be useful. Additional information on the
JOCaml language can be found in [FM98].

The asynchronous core of the join calculus has also been augmented with primitives
for object handling in [FLMR00] following the objects-as-record paradigm. The result was
a simple language of objects with asynchronous message passing. The addition of classes
to join calculus enables the modular definition of synchronization. From a programming
language point of view this strikes a good balance between flexibility and simplicity while
not precluding type inference or efficient compilation of synchronization.

A programming language receives several benefits from static analyses of programs.
Such concepts rely on type systems. By adapting the typing discipline developed for ML,
a type system for the join calculus was published in [FLMR97]. This type system pro-
vides traditional parametric polymorphism strengthening the confidence in join calculus
programs. The type systems developed in the next sections owe much to this work (and
to [Sim10] as well), both in the definition of the typing rules and in the subject reduction
proof.

28 CHAPTER 3. THE JOIN CALCULUS

Chapter 4

The channels-as-owners model
(ChaO)

Abstract

In questo capitolo viene presentato un primo type system che importa l’idea
di ownership types nel join calculus. Si forniscono le regole di sintassi, tipaggio
e semantica di tale modello per poi attestarne la correttezza formale tramite le
dimostrazioni di subject reduction e no runtime errors. Vengono poi presentati
alcuni esempi di codice che evidenziano le proprietà del type system in questione.

This chapter outlines a type system for the join calculus. Here we want to import the
idea of ownership types and their benefits into that particular model for concurrency.
The join calculus already has a notion of locality, but this can be broken by exporting a
channel out of the environment it was created in. Of course this behavior allows processes
to communicate, so exporting should not be eliminated, it has to be controlled.

As we have seen in Chapter 2, ownership types provide a strong notion of encapsula-
tion. We can import them into the join calculus to enforce such concept. Of course all the
other properties enforced by ownership types hold. This system has a no representation
exposure property, it allows a better memory management through improved garbage
collection and it is better suitable for reasoning.

The analogy we follow here is the one that exists between a channel and an object.
In classic ownership types systems there are objects which own other objects, so the idea
is to let a channel own other channels.

Next comes the syntax definition, typing rules, semantics and theorems. Finally we
show some examples of the type system at work.

29

30 CHAPTER 4. THE CHANNELS-AS-OWNERS MODEL (CHAO)

4.1 Syntax
Before giving the syntax we establish a number of conventions.
Processes and definitions are defined modulo renaming of bound variables, substi-

tution performs α-conversion to avoid captures. Furthermore, due to α-equivalence, we
suppose all the name variables to be distinct. This lightens the rules of a heavy formal
burden.

Let Σ denote a denumerable set of variables ranged over by: x, y, v, z, o. The name
world is a system keyword, so it is not in Σ and channels are not allowed to have such
name.

We define an ownership scheme l as a list of pairs 〈y, l〉, where y is a channel and l is
another ownership scheme. An ownership scheme tracks a channel’s parameters’ owners
and their ownership schemes.

l = ∅ | l, 〈y, l〉
When accessing the i-th element of an ownership scheme, we will use the notation l[i].
To access the owner element of a pair we will use the function own, to access the scheme
element of a pair we will use the function sch. For example, given an ownership scheme
l = 〈y, 〈k, 〈∅〉〉〉, 〈j, 〈t, 〈∅〉〉〉, own(l[1]) = y, while sch(l[2]) = 〈t, 〈∅〉〉. We assume that
own(〈∅〉) = world.

We define the environment Γ as a list of triples (x, y, l), where x is a channel name, y
is an already defined channel name that is the owner of x, and l is an ownership scheme.
Γ contains at least the triple (world,world, ∅).

Γ = (world,world, ∅) | Γ, (x, y, l)

A process P is defined as follows:

P = ∅ null process
| P | P parallel composition
| x〈−→y 〉 send channels y1...n on channel x
| def D in P process definition

A definition D is defined as follows:

D = D ∧D definition conjunction
| J � P reaction pattern, if J is matched, start P

A join pattern J is defined as follows:

J = J | J synchronization pattern
| xo〈−→y 〉 message definition.

4.1. SYNTAX 31

The difference from the standard join calculus syntax is that the message definition
syntax xo〈−→y 〉 has an owner parameter o. The syntax of such parameters is:
o = rep syntactic sugar for the defining channel itself (e.g. xrep〈〉 ≡ xx〈〉)
| world a keyword that specifies the root of the channels tree
| x a channel name

In addition to variables of Figure 3.1, we have two new types of variable: defined
owner (do) and free owner (fo). Such variables are defined by structural induction in
Figure 4.1. We report only the most interesting cases, the other ones can be obtained by
classical structural induction.

do(xo〈−→y 〉) = {o} do(J | J ′) = do(J) ∪ do(J ′)

fo(def D in P) = (dv(D) \ do(D)) ∪ (dv(P) \ do(P))

Figure 4.1: Definition of free and defined owners for ChaO.

The assumptions made for ownership types in Chapter refcapOT hold here as well. A
channel must have an owner which is fixed throughout the object’s lifetime. Every channel
defines two contexts: owner which is the context it is defined in, and representation which
is the context it defines. Given a channel x, the first context has the name of the channel
that owns x, while the latter has name x. We will refer to these contexts with the following
functions: owner and rep.

Contexts form a partial order (C,≺:) that is forest shaped. The relation ≺: is called
inside.

The following is the containment invariant enforced by the type system:
x〈y〉 ⇒ rep(x) ≺: owner(y)

A channel x may use another channel y, namely, y can be sent on x, if x is inside y’s
owner. This means that there is a path descending the channels tree leading from y’s
owner to x.

Of course rep(x) ≺:owner(x).

4.1.1 Structural equivalence
Most of the rules for structural congruence mentioned in Figure 3.2 in Chapter 3 hold

here as well, the only differences are shown in Figure 4.2. When swapping two definitions
we must consider owners too and avoid clashes.

32 CHAPTER 4. THE CHANNELS-AS-OWNERS MODEL (CHAO)

def D ∧D′ in P ≡ def D in def D′ in P if fv(D) ∩ dv(D′) = ∅
∧do(D) ∩ dv(D) = ∅

Figure 4.2: Structural congruence for the ChaO system.

4.2 Typing judgments
Now we present the typing judgments.

Γ ` � Γ is a well-typed environment.
Γ ` P P is a well-typed process in Γ.
Γ ` D :: Γ′ D is a well-typed definition in Γ and Γ′ contains the bindings for dv(D).
Γ ` J :: Γ′ J is a well-typed join pattern in Γ and Γ′ contains the bindings for dv(J).
Γ ` x : o : l x has owner o in Γ and l is its ownership scheme.
Γ ` o : l owner o and ownership scheme l are well-typed in Γ.
Γ ` l l is a well formed ownership scheme in Γ.
Γ ` x ≺: y x is inside y in Γ.

4.3 Typing rules
Figure 4.3, 4.4 points out the typing rules for the ChaO system.
Rule Env-null states that the environment consisting of the only triple (world,world, ∅)

is well formed. Rule Env-build states that we can add a triple (x, o, l) to a well formed
environment Γ if x has not been already defined and if o : l is a well formed type an-
notation. Rules for well-typed ownership schemes are two. The first one: Scheme states
that an ownership scheme is well formed if it is composed of pairs of well constructed
types. The second rule, Scheme-null, states that an empty scheme is well-typed as long
as the type checking environment is well-typed. Rule Type states the correctness of type
annotations. A type is well formed if the owner o is in the type checking environment and
if the ownership scheme is well typed. Additionally we require the owner o to be inside
all of the ownership scheme’s owners. For a channel x to be well-typed with type o : l,
rule Chan requires the environment to be well typed. In addition to that x must have
not been introduced in the environment after the triple (x, o, l) that links the variable
with the type annotation o : l. The axiom of the inside relation is reported in rule Inside.
It states that an object is inside its owner. The relation inside is closed for transitivity
as rule Inside-trans points out. The relation inside is closed for reflexivity also as we see
in rule Inside-relf.

4.3. TYPING RULES 33

Good environments

Env-null
(world,world, ∅) ` �

Γ ` � x /∈ dom(Γ) Γ ` o : l
Env-buildΓ, (x, o, l) ` �

Good ownership schemes

∀i(Γ ` oi : li)
Scheme

Γ ` 〈o1, l1〉, . . . , 〈on, ln〉
Γ ` � Scheme-null

Γ ` 〈∅〉

Good types

o ∈ dom(Γ) Γ ` l ∀i(Γ ` o ≺: own(l[i]))
Type

Γ ` o : l

Well-typed channels

Γ, (x, o, l),Γ′ ` � x /∈ dom(Γ′)
ChanΓ, (x, o, l),Γ′ ` x : o : l

Well-typed inside relation

Γ ` x : y : l
InsideΓ ` x ≺: y

Γ ` x ≺: y Γ ` y ≺: z
Inside-transΓ ` x ≺: z

Γ ` � x ∈ dom(Γ)
Inside-refl

Γ ` x ≺: x

Figure 4.3: Typing rules for ChaO system (part 1).

Rule Null states that an empty process is well-typed only if the environment is. In rule
Par we find that for a parallel composition to be well-typed, both the involved processes
are required to be well-typed. Rule Pdef states that for a def D in P to be well-typed
we check the definition D in an environment augmented with the variables D defines and
then we check the process P in the same environment. When sending a message rule Msg
checks that all the involved variables have already been defined, and that all the owners
and the schemes of the actual parameters coincide with the ones declared in l. Rule
And points out that conjunction of definitions require both definitions to be well-typed.
Also no variable may be defined twice. Rule Run describes the reaction rule. If a join
pattern is well-typed as well as the process it starts, then we have a well-typed definition.
Parallel composition of join patterns require both patterns to be checked, as rule Join
states. We also impose no variable may be defined or received twice . Finally, rule Cdef
explains channel definition. When defining a channel we require all the involved variables
to be defined. The scheme of the defined channel is a composition of the owners and the

34 CHAPTER 4. THE CHANNELS-AS-OWNERS MODEL (CHAO)

Well-typed processes rules

Γ ` � Null
Γ ` ∅

Γ ` P Γ ` P ′ Par
Γ ` P | P ′

Γ,Γ′ ` D :: Γ′ Γ,Γ′ ` P dom(Γ′) = dv(D)
Pdef

Γ ` def D in P

Γ ` x : z : l ∀i(Γ ` yi : zi : li) l = 〈z1, l1〉, . . . , 〈zn, ln〉 Msg
Γ ` x〈−→y 〉

Well-typed definitions rules

Γ ` D :: Γ′ Γ ` D′ :: Γ′′ dv(D) ∩ dv(D′) = ∅
AndΓ ` D ∧D′ :: Γ′,Γ′′

Γ ` J :: Γ′ Γ ` P RunΓ ` J � P :: Γ′

Well-typed join patterns rules

Γ ` J :: Γ′ Γ ` J ′ :: Γ′′ rv(J) ∩ rv(J ′) = ∅ dv(J) ∩ dv(J ′) = ∅
Join

Γ ` J | J ′ :: Γ′,Γ′′

Γ ` x : o : l ∀i(Γ ` yi : zi : li) l = 〈z1, l1〉, . . . , 〈zn, ln〉 Cdef
Γ ` xo〈−→y 〉 :: (x, o, l), (y1, z1, l1), . . . , (yn, zn, ln)

Figure 4.4: Typing rules for ChaO system (part 2).

schemes of its formal parameters.

4.4 Semantics
The semantics we show here is slightly different from the one presented in Chapter

3. This machine is called reduced chemical abstract machine (RCHAM) due to the loss
of rule S-AND. RCHAM was presented in [FLMR97].

There is some notation we need to explain before introducing the semantics rules.
J is a parallel composition of messages. Its syntax is: x〈−→y 〉 | J |J .
From now on we use the notation D and P to denote sets of definitions and processes

respectively.
For every chemical soup D P we require every name to be defined in exactly one

definition of D:
∀D,D′ ∈ D, dv(D) ∩ dv(D′) = ∅

4.5. ADDITIONAL TYPING JUDGMENTS AND RULES 35

The rules for the RCHAM are described in Figure 4.5.

 P1|P2
 P1, P2 S-PAR
 def D in P
 D P S-DEF

dv(D) are fresh.
D ∧ J � P ∧D′ J −→ D ∧ J � P ∧D′ ϕ(P,J , J) R-BETA

dv(J)=dv(J).

Figure 4.5: Chemical rules for the RCHAM of ChaO.

The side condition dv(J)=dv(J) on rule R-BETA implies that the channel is well
used, and with the correct number of parameters.

Every rule has to be interpreted as in Section 3.1.3. The modifications made to rule
R-BETA express the associativity and commutativity of ∧ previously pointed out by
rule S-AND. The generic application of a rule as in Figure 3.4 in Chapter 3 holds here
as well without variations. Recall such figure for any need.

The need of a restricted machine may not be clear now, we shall quote from [FLMR97]
why we cannot use a standard CHAM.

Consider two definitions D1, D2 such that some names defined in D1 occur free in D2
but not the converse, we have that:

def D1 in def D2 in P ≡ def D1 ∧D2 in P

We would expect every typing property to be preserved but this is not the case here.
The valid typing judgments for the names defined in D1 and used in D2 are not the
same for both sides of the equivalence. This is why we eliminate rule S-AND and rewrite
rule R-BETA in a generalized version that expresses anyway the commutativity and
associativity of ∧.

4.5 Additional typing judgments and rules
Typing of programs is extended to chemical solutions. To do so, we have an additional

typing judgment:

Γ ` D P The chemical solution D P is well-typed in Γ.

These are the additional typing rules for chemical solutions.
For a set of processes to be well-typed rule P-elim requires every single one to be.

36 CHAPTER 4. THE CHANNELS-AS-OWNERS MODEL (CHAO)

Well-typed sets rules

∀i(Γ ` Pi) P = P1, . . . Pn
P-elimΓ ` P

∀i(Γ,Γ′ ` Di :: Γ′i) D = D1, . . . , Dn Γ′ = Γ′1, . . .Γ′n dv(D1) ∩ . . . ∩ dv(Dn) = ∅
D-elimΓ ` D :: Γ′

Well-typed soup rule

Γ,Γ′ ` D :: Γ′ Γ,Γ′ ` P dom(Γ′) = dv(D)
Soup

Γ ` D P

Figure 4.6: Additional typing rules for ChaO.

Rule D-elim states that, for a set of definitions to be well-typed, every single definition
has to be so in an environment augmented with the variables defined by all the definitions.
We also require no variable to be defined twice.

The last rule, Soup, concerns well-typed chemical solutions. For a soup to be well-
typed we require all its definitions to be so in an environment augmented by all the
defined variables of such definitions. We also require all the processes to be well-typed
in the same augmented environment.

4.6 Properties
Before stating and proving theorems and lemmas, there is some notation to point out

since proofs will use it.

• An ownership scheme l associated to a channel x can be referred to with the
notation lx.

• The length of an ownership scheme l is expressed with the notation |l|.

• The token T represent any of the following elements one can find in the right side
of a typing judgment. T = � | x : o : l | o : l | l | x ≺: y | P | D | J | D P .
We use T as an abstraction over those terms to be able to state properties about
them. Note that some of the terms are just syntactic tokens referring to multiple
instantiations of such token, for example D ≡ D ∧D′ | J � P .

• The j-th parameter y of a channel x will be indicated by yxj

4.6. PROPERTIES 37

Lemma 1 (Single variable substitution lemma). If Γ ` P and Γ ` x : o : l and
Γ ` z : o : l then Γ ` P [z/x].

Proof. The proof goes by structural induction on P . In this proof we use the definition
of the substitution function in Figure 3.3 in Chapter 3.

Base case. There are two base cases: P ≡ ∅ and P ≡ u〈−→y 〉.

P ≡ ∅: The only matching rule here is Null.

Γ ` � Null
Γ ` ∅

Since the substitution [z/x] leaves ∅ unchanged, the proof holds.

P ≡ u〈−→y 〉: Here we have two cases, in fact x can be u or it can be an argument of u i.e.
x = yi. For the sake of simplicity we will show a case where −→y consists of an element
only and that element is x. The generalized case i.e. −→y = y1, . . . yi−1, x, yi+1, . . . , yn
is as easy and straightforward but has some syntactical burden we avoid.
In both cases the only rule one can apply is Msg but it generates different hypothe-
ses.

x = u: The application of rule Msg is:

Γ ` x : o : l ∀i(Γ ` yi : zi : li) l = 〈z1, l1〉, . . . , 〈zn, ln〉 Msg
Γ ` x〈−→y 〉

We can substitute the hypothesis Γ ` x : o : l with Γ ` z : o : l, which is in
the Lemma statement, to apply rule Msg again and prove that P [z/x] holds.
In this case P [z/x] ≡ x〈−→y 〉[z/x] ≡ z〈−→y 〉.

Γ ` z : o : l ∀i(Γ ` yi : zi : li) l = 〈z1, l1〉, . . . , 〈zn, ln〉 Msg
Γ ` z〈−→y 〉

x = y: The application of rule Msg is:

Γ ` u : y : l Γ ` x : o : l l = 〈o, l〉
Msg

Γ ` u〈−→x 〉

We substitute the hypothesis Γ ` x : o : l with the one in the Lemma state-
ment: Γ ` z : o : l since the owners and the ownership schemes of both x and
z coincide. We can then apply rule Msg to prove that P [z/x] holds. In this
case P [z/x] ≡ u〈x〉[z/x] ≡ u〈z〉.

38 CHAPTER 4. THE CHANNELS-AS-OWNERS MODEL (CHAO)

Γ ` u : y : l Γ ` z : o : l l = 〈o, l〉
Msg

Γ ` u〈−→z 〉

Inductive case. There are two inductive cases: P ≡ def D in P and P ≡ P | P ′.

P ≡ def D in P ′: The only rule that matches here is Pdef.

Γ,Γ′ ` D :: Γ′ Γ,Γ′ ` P ′
Pdef

Γ ` def D in P ′

The inductive hypothesis gives:

• Γ,Γ′ ` D[z/x] :: Γ′

• Γ,Γ′ ` P ′[z/x]

to which we can apply rule Pdef and prove that P [z/x] holds.

Γ,Γ′ ` D[z/x] :: Γ′ Γ,Γ′ ` P ′[z/x]
Pdef

Γ ` (def D in P ′)[z/x]

P ≡ P ′ | P ′′: The only rule that matches here is Par.

Γ ` P ′ Γ ` P ′′ Par
Γ ` P | P ′

From the inductive hypotheses:

• Γ ` P ′[z/x]
• Γ ` P ′′[z/x]

we can apply rule Par and prove that P [z/x] holds.

Γ ` P ′[z/x] Γ ` P ′′[z/x]
Par

Γ ` (P | P ′)[z/x]

Lemma 2 (Substitution lemma). Consider a process P , a join pattern J ≡ x1 〈−→y1〉| . . . |xn〈−→yn〉
and a sequence of messages J ≡ x1 〈−→z1〉| . . . |xn〈−→zn〉 such that dv(J) = dv(J).

If for all x ∈ dv(J), for all j ranging from 1 to n we have:

Γ ` yxj : oj : lj and Γ ` zxj : oj : lj and Γ ` P

then:
Γ ` ϕ(P,J , J)

4.6. PROPERTIES 39

Proof. The definition of function ϕ can be found in Section 3.1.3.
The hypotheses tell us that, for all x and for all j, we have:

• Γ ` yxj : oj : lj;

• Γ ` zxj : oj : lj

• Γ ` P

which is all we need to apply Lemma 1 to substitute every formal parameter yxj with the
actual parameter zxj in P .

What we obtain after every application of Lemma 1 is:

P [zx1
1 /y

x1
1], . . . , P [zx1

m1/y
x1
m1], . . . , P [zxn1 /yxn1], . . . , P [zxnmn/y

xn
mn]

which is equivalent to:

P [zx1
1 /y

x1
1], . . . , [zx1

m1/y
x1
m1], . . . , [zxn1 /yxn1], . . . , [zxnmn/y

xn
mn]

due to the associativity of the substitution function presented in Figure 3.3.
Since ϕ(P,J , J) ≡ P [zx1

1 /y
x1
1], . . . , [zx1

m1/y
x1
m1], . . . , [zxn1 /yxn1], . . . , [zxnmn/yxnmn] the theo-

rem holds.

Lemma 3 (Useless variables). Let v be a name that is not free nor defined in T or Γ,
let o : l be a valid typing annotation in Γ.

Γ ` T ⇔ Γ, (v, o, l) ` T

Proof. The proof is split in two sub cases : ⇒ and ⇐ both of which are demonstrated
by induction on the typing proof associated to T for all the possible instantiations of T .

⇒ In this case we have the hypothesis Γ ` T .
Base case. There is only one token we can assign to T which has a derivation tree
of height one. Here we consider T ≡ � in the case of Γ ≡ (world,world, ∅). The
hypothesis states:

Env-null
(world,world, ∅) ` �

Due to the hypotheses given in the lemma statement we can immediately apply
rule Env-build and prove the thesis.

(world,world, ∅) ` � v /∈ dom((world,world, ∅)) (world,world, ∅) ` o : l
Env-build

(world,world, ∅), (x, o, l) ` �

40 CHAPTER 4. THE CHANNELS-AS-OWNERS MODEL (CHAO)

Inductive case. The inductive cases cover all the remaining instantiation of T .
We avoid presenting all the cases since most of the proofs are the same except for
the tokens involved. We provide the most useful cases, convinced that it is easy to
see the correctness of the remaining ones from the stated proofs.

T ≡ � and Γ ≡/ (world,world, ∅) We can apply rule Env-build and prove the the-
sis.

Γ ` � v /∈ dom(Γ) Γ ` o : l
Env-buildΓ, (v, o, l) ` �

T ≡ x : z : l This case is analogous to both o : l and l, the proof strategy is exactly
the same, except of course the typing rule involved.
The hypothesis is Γ ` x : z : l. The only matching rule is Chan, its application
gives us the following hypotheses.

Γ, (x, z, l),Γ′ ` � x /∈ dom(Γ′)
ChanΓ, (x, z, l),Γ′ ` x : z : l

The inductive hypothesis tells us that Γ, (x, z, l),Γ′, (v, o, l) ` �. We can ap-
ply rule Chan to conclude the thesis since we have all the required hypotheses.

Γ, (x, z, l),Γ′, (v, o, l) ` � x /∈ dom(Γ′)
ChanΓ, (x, z, l),Γ′, (v, o, l) ` x : z : l

T ≡ x ≺: y This case is analogous to both x ≺: x and x ≺: z.
The hypothesis states that Γ ` x ≺: y. The only matching rule is Inside.

Γ ` x : y : l
InsideΓ ` x ≺: y

We can apply rule Inside to the inductive hypothesis to prove the thesis as
follows.

Γ, (v, o, l) ` x : y : l
InsideΓ ` x ≺: y

T ≡ P |P This case shows a methodology that holds for the following cases of T as
well: ∅, P |P , def D in P , D∧D′, J �P , J |J . The only modifications needed
involve the token used and the rule which can be applied to such token.
The hypothesis states that Γ ` P |P . The only matching rule is Par.

Γ ` P Γ ` P ′ Par
Γ ` P | P ′

The inductive hypothesis gives us both Γ, (v, o, l) ` P and Γ, (v, o, l) ` P ′.
Now we prove the thesis by applying rule Par to such inductive hypotheses.

4.6. PROPERTIES 41

Γ, (v, o, l) ` P Γ, (v, o, l) ` P ′
Par

Γ, (v, o, l) ` P | P ′

T ≡ xz〈−→y 〉 This case is analogous to x〈−→y 〉, the proof strategy is exactly the same
except of course for the typing rule involved.
The hypothesis states that Γ ` xo〈−→y 〉. The only matching typing rule is C-def.

Γ ` x : z : l ∀i(Γ ` yi : zi : li) l = 〈z1, l1〉, . . . , 〈zn, ln〉 Cdef
Γ ` xz〈−→y 〉 :: (x, z, l), (y1, z1, l1), . . . , (yn, zn, ln)

The inductive hypothesis provide us Γ, (v, o, l) ` x : z : l and ∀i(Γ, (v, o, l) `
yi : zi : li). We have all the needed hypotheses to apply rule Cdef and conclude
the thesis.

Γ, (v, o, l) ` x : z : l ∀i(Γ, (v, o, l) ` yi : zi : li) l = 〈z1, l1〉, . . . , 〈zn, ln〉 Cdef
Γ, (v, o, l) ` xz〈−→y 〉 :: (x, z, l), (y1, z1, l1), . . . , (yn, zn, ln)

⇐ The hypothesis here is Γ, (v, o, l) ` T .
Base case. Here we have T ≡ � and Γ ≡ (world,world, ∅). The only matching
rule is Env-build.

(world,world, ∅) ` � v /∈ dom((world,world, ∅)) (world,world, ∅) ` o : l
Env-build

(world,world, ∅), (v, o, l) ` �

As we can see the thesis is provided among the hypotheses of the rule. Since
(world,world, ∅) ` � holds, the case is proven.
Inductive case. The inductive cases proofs follow the same pattern of the induc-
tive cases of ⇒, therefore we report only one sample of such proofs.

T ≡ P |P The hypothesis states that Γ, (v, o, l) ` P |P . We can only apply rule Par
developing the following proof tree.

Γ, (v, o, l) ` P Γ, (v, o, l) ` P ′
Par

Γ, (v, o, l) ` P | P ′
The inductive hypothesis tells us that Γ ` P and Γ ` P ′. We can apply rule
Par to such hypotheses and prove the thesis.

Γ ` P Γ ` P ′ Par
Γ ` P | P ′

42 CHAPTER 4. THE CHANNELS-AS-OWNERS MODEL (CHAO)

Theorem 1 (Subject reduction). One step chemical reductions preserve typings. If Γ `
D P and D P ⇀↽−→ D′ P ′, then there exists Γ′ such that Γ′ ` D′ P ′ and Γ and
Γ′ are the same except for the names defined in D but not in D′ and vice versa.

Proof. The proof goes by induction on the number of applications of rule CTX in the
derivation of the reduction. Note that in this proof we refer to subtrees with the notation
Π. Sometimes a single derivation has been split in subproofs for the whole derivation tree
would exceed the page.

Base case: Here we consider each reaction rule:

S-PAR: The reduction is: P1 | P2
 P1, P2.

Heating ⇀: In this case the hypothesis is Γ ` P1 | P2.
The derivation tree is the following. First we can only apply Soup and then
the only matching rule is Par :

Γ ` P1 Γ ` P2 Par
Γ ` P1 | P2 Soup

Γ ` P1 | P2

With the assumptions made in this derivation we can apply rule P-elim and
then Soup to prove the thesis Γ ` P1, P2.

Γ ` P1 Γ ` P2 P-elimΓ ` P1, P2 Soup
Γ ` P1, P2

Cooling ↽: The other way round: first apply Soup and P-elim. Now, with those hypothe-
ses, apply Par and Soup to prove the thesis.

S-DEF: The reduction is: def D in P
 D P .

Heating ⇀: In this case our hypothesis is Γ ` def D in P with side condition that
dv(D) are mapped to fresh names so that dv(D) ∩ fv(E ,M) = ∅.
The derivation tree is the following. First we can only apply Soup, then the
only matching rule is Pdef.

Γ,Γ′ ` D :: Γ′ Γ,Γ′ ` P
PdefΓ ` def D in P Soup

Γ ` def D in P

Now we have all the premises to apply rule Soup and prove the thesis Γ `
D P .

4.6. PROPERTIES 43

Γ,Γ′ ` D :: Γ′ Γ,Γ′ ` P
Soup

Γ ` D P

The side condition holds since we have that Γ,Γ′ ` D :: Γ′. This means there is
no other variable whose name matches any channel name defined in D except
dv(D) themselves.

Cooling ↽: The other way round: first apply Soup, then use the hypotheses to apply Pdef
and Soup.

R-BETA: The reduction is: D ∧ J � P ∧ D′ J −→ D ∧ J � P ∧ D′ ϕ(P,J , J) with
the following side conditions: J is a parallel composition of messages. Its syntax
is: x〈−→y 〉 | J |J . dv(J)=dv(J).
We rewrite the left side of the soup as J � P ∧D for the sake of simplicity.
The hypothesis in this case is J �P ∧D J . Π2 is the derivation tree that states
such hypothesis is well-typed.

Π1=

Γ,Γ′,ΓD ` x : o : l
∀j(Γ,Γ′,ΓD ` yj : oj : lj) l = 〈o1, l1〉, . . . , 〈on, ln〉

Msgi... Par
Γ,Γ′,ΓD ` x1 〈−→y1〉| . . . |xn〈−→yn〉

J ≡ x1 〈−→y1〉| . . . |xn〈−→yn〉Γ,Γ′,ΓD ` J

Π2=

Γ,Γ′,ΓD ` J :: Γ′ Γ,Γ′,ΓD ` P RunΓ,Γ′,ΓD ` J � P :: Γ′ Γ,Γ′,ΓD ` D :: ΓD AndΓ,Γ′,ΓD ` J � P ∧D :: Γ′,ΓD Π1
Soup

Γ ` J � P ∧D J
Thanks to the side condition that says dv(J)=dv(J), and thanks to α-conversion
when applying rule S-DEF, we can say that all the names in dv(J) are not aliased
in the soup.
Consider the top of Π2.
Since the join pattern J is well-typed, we know that, all of its defined variables are.
For all x ∈ dv(J), x is well-typed and also its ownership scheme l is. Here we know
that l = 〈o1, l1〉, . . . , 〈on, ln〉. This means that for all j ranging over x’s parameters
list the following holds:

– Γ,Γ′,ΓD ` wxj : oj : lj

Where the notation wxj represents the j-th formal parameter w of x.
Now consider the top of the tree Π1.
As we can see, the application of rule Msgi gives us an important assumption. For
all x ∈ dv(J), and for all j ranging over x’s parameters’ list, we have that:

44 CHAPTER 4. THE CHANNELS-AS-OWNERS MODEL (CHAO)

– Γ,Γ′,ΓD ` yxj : oj : lj

This means that all the formal parameters of every channel x ∈ dv(J) have the same
owners and the same ownership scheme of the corresponding actual parameter.
By combining those two assumptions with this one from Π2:

– Γ,Γ′,ΓD ` P .

We can apply Lemma 2 and obtain the following proposition:

– Γ,Γ′,ΓD ` ϕ(P,J , J).

Now we have all the hypotheses to apply Soup to prove the thesis.

Γ,Γ′,ΓD ` J � P :: Γ′ Γ,Γ′,ΓD ` D :: ΓD AndΓ,Γ′,ΓD ` J � P ∧D :: Γ′,ΓD
· · ·

Γ,Γ′,ΓD ` ϕ(P,J , J)
Soup

Γ ` J � P ∧D ϕ(P,J , J)

Inductive case: The inductive case is proven uniformly for the context rule ⇀↽−→:

D1 P1 ⇀↽−→ D2 P2

(fv(D) ∪ fv(P)) ∩ (dv(D1) \ dv(D2) ∪ dv(D2) \ dv(D1)) = ∅
CTXD,D1 P1,P ⇀↽−→ D,D2 P2,P

Figure 4.7: Generic context rule as reported from Figure 3.4 in Section 3.1.3.

The first hypothesis we have here is D,D1 P1,P . By applying rule Soup and then
rules D-elim and P-elim to the subtrees we have:

Γ,Γ′ ` D :: ΓD Γ,Γ′ ` D1 :: Γ1 Γ′ = Γ1,ΓD D-elimΓ,Γ′ ` D,D1 :: Γ′
Γ,Γ′ ` P Γ,Γ′ ` P1 P-elimΓ,Γ′ ` P ,P1 Soup

Γ ` D,D1 P1,P
The inductive hypothesis tells us that D1 P1 ⇀↽−→ D2 P2. This means Γ ` D P

and there exists Γ′′ such that Γ′′ ` D2 P2. These are the derivation trees for both sides
of the IH.

Π1= Γ,Γ1 ` D1 :: Γ1 Γ,Γ1 ` P1 Soup
Γ ` D1 P1

Π2= Γ′′,Γ2 ` D2 :: Γ2 Γ′′,Γ2 ` P2 Soup
Γ′′ ` D2 P2

4.6. PROPERTIES 45

We also know that Γ and Γ′′ are the same except for the variables defined in D1 only
and those defined in D2 only but not those defined in both.

Let this set of variables be denoted with X.
The second hypothesis from rule CTX: (fv(D)∪ fv(P))∩ (dv(D1)\dv(D2)∪dv(D2)\

dv(D1)) = ∅ tells us dv(D) are disjoint from X, i.e. dv(D) ∩X = ∅.
The variables that appear in D1 only and those that appear in D2 only are not used

in D or P . We can then apply Lemma 3 to remove all the variables of D1 only from
D P and add all the ones from D2 and the following holds:

Γ′′,ΓD,Γ2 ` D :: ΓD Γ′′,ΓD,Γ2 ` P Soup
Γ′′,Γ2 ` D P

Thanks to Lemma 3 again, we are allowed to add ΓD to the environment that type-
checks D2 P2 since the variables defined in ΓD do not interfere with the ones defined
in Γ2. Thus the following holds:

Γ′′,ΓD,Γ2 ` D2 :: Γ2 Γ′′,ΓD,Γ2 ` P2 Soup
Γ′′,ΓD ` D2 P2

Now we have all the assumptions to apply D-elim and P-elim and conclude the thesis
by applying Soup.

Γ′′,Γ∗ ` D :: ΓD Γ′′,Γ∗ ` D2 :: Γ2 Γ∗ = ΓD,Γ2 D-elimΓ′′,Γ∗ ` D,D2 :: Γ∗
Γ′′,Γ∗ ` P Γ′′,Γ∗ ` P2 D-elimΓ′′,Γ∗ ` P ,P2 Soup

Γ′′ ` D,D2 P2,P
And, as stated before, Γ and Γ′′ are the same except for the variables defined in D1

only and those defined in D2 only but not those defined in both.
Having covered all the cases, the theorem holds.

The following is the translation of the owners as dominators property for object-
oriented programming to this system.

Property 1 (Owners as dominators). A channel y may be sent over a channel x only
if x is inside y’s owner.

x〈y〉 ⇒ x ≺: owner(y)

Proof. The well-typedness of the expression x〈y〉 allows us to develop the following tree.

46 CHAPTER 4. THE CHANNELS-AS-OWNERS MODEL (CHAO)

· · ·
· · · Γ ` o ≺: own(〈i, h〉)

Type
Γ ` o : l Env-buildΓ, (x, o, l) ` �

...
Γ′ ` � x ∈ dom(Γ′)

ChanΓ′ ` x : o : l Γ′ ` y : i : h l = 〈i, h〉
Msg

Γ′ ` x〈y〉
The hypothesis Γ ` o ≺: own(〈i, h〉) tells us that o ≺: i which is y’s owner, thus proving
the thesis.
Definition 1 (Runtime errors). Consider a soup D P. We say that a runtime error
occurs if we find either these kind of messages in the processes set P:
• a message x〈−→y 〉 that is not defined in D, i.e. no join pattern J in D has x in its

defined variables;

• a message x〈−→y 〉 that is defined in D but with different arity (i.e. the defined channel
x wants four parameters while we call it with three);

• a message x〈−→y 〉 where x is not inside some of its arguments’ owner i.e. there exists
yi such that x ≺:/ yi

Theorem 2 (No runtime errors). In any way a well-typed soup can evolve, it’s never
going to generate a runtime error.

If Γ ` D P and D P ⇀↽−→∗ D′ P ′ then P does not contain runtime errors.
Proof. From Theorem 1 we know that typing is preserved by chemical rewriting. Thus,
since Γ ` D P , there exists Γ′ such that Γ′ ` D′ P ′.

Since D′ P ′ is well-typed, we know that rule Msg applies to any message sent in
P .

Let us recall how such rule looks:

Γ ` x : z : l ∀i(Γ ` yi : zi : li) l = 〈z1, l1〉, . . . , 〈zn, ln〉 Msg
Γ ` x〈−→y 〉

The first two definitions of runtime error are ruled out by two hypothesis of the above
shown rule.
• “A message x〈−→y 〉 that is not defined in D, i.e. no join pattern J in D has x in its

defined variables” is matched by hypothesis Γ ` x : z : l, so no errors of this type
may occur.

• “A message x〈−→y 〉 that is defined in D but with different arity” is matched by the
definition of the ownership scheme l. In Γ, l has an arity which is confirmed to be
that of x’s parameters list due to hypothesis l = 〈z1, l1〉, . . . , 〈zn, ln〉 in rule Msg.

4.7. EXAMPLES 47

We now have only a definition of runtime error which is ruled out thanks to Property 1.
Having covered all the cases the theorem holds.

The following are two different characterizations of a secrecy property expressed by
M. Abadi in [Aba99].

Definition 2 (Secrecy 1). Suppose the process P (x) has at most x as free variable. Then
p preserves the secrecy of x if P (M) and P (N) are equivalent for all terms M and N
without free variables.

Definition 3 (Secrecy 2). Suppose that S is a set of terms with no free variables, and
P a process with no free variables. Suppose the free names of M are not bound in P or
any process into which P evolves. Let R be the relation associated with P and S. Then
P may reveal M from S if there exists P ′ and S ′ such that R(P ′, S ′) and M belongs to
the set of terms computable by S ′. Otherwise P preserves the secrecy of M from S.

We can reformulate Property 1 as a secrecy property. We can think at a secret as
a representation of a channel. By having a no representation exposure property such as
Property 1 we guarantee no channel can access the secret unless it is inside the secret’s
owner.

Property 2 (Secrecy). By declaring a channel x as owned by a channel z, for all chan-
nels y such that y ≺:/ z, x is kept secret.

4.7 Examples

4.7.1 Diagrammatic notation
In the following examples we will use a graphical notation to outline the shape of a

channels graph. This helps understanding the system and how the processes behave and
interact. Figure 4.8 is an example of a channel graph.

Consider channel x. Its owner context is o while its rep context is x itself. We can say
that x can use every channel in the tree while z and o can use z and o only. No channel
can use the world channel since it is a special keyword that is only used to represent the
root of the channels tree.

This example we show is a porting of Example 2 from Chapter 3 into join calculus
with ownership types.

Example 4 (Example of secrecy). The processes defined in Example 2 are rewritten with
contexts annotations. Figure 4.9 points out the channels graph related to this example.

Sender = def secretsend〈〉�send〈secret〉
in secret〈〉

48 CHAPTER 4. THE CHANNELS-AS-OWNERS MODEL (CHAO)

world

o

x

z

Figure 4.8: Visual example of the diagrammatic notation used to represent the channels
graph.

Receiver = def showsend〈ch〉�recv〈ch〉
∧ chansend〈sec〉� i have the secret
in show〈chan〉

Environment = def sendrep〈s〉 | recvsend〈ch〉�ch〈s〉
in Sender | Receiver

world
send

secret show chan recv

Figure 4.9: Channels graph for the processes of Example 4

Note that all the channels involved are defined as having send as owner. This means
that all the channels in the example cannot be exported outside send. A channel z, which
is not in the tree rooted in send, sending one of the above mentioned variables among its
parameters will constitute a bad typed expression.

As we can see, the channels graph is a tree of depth one. In more complex programs
the tree will grow deeper so it will define the system and its behavior in a more precise
way.

The next example we show is a visual one that allows to see what a channel can refer
to.

4.7. EXAMPLES 49

Example 5 (Visual example). Let us consider the following process.

P = def xctx〈〉 | yctx〈〉 | ox〈〉�R
in Q

Its channels graph is in Figure 4.10. Here we will highlight, for each channel, which
channels it is allowed to access. A dashed line from y to o means that y cannot name o
among its parameters. A straight line is a valid reference.

ctx

x

o

y

Figure 4.10: Graphical example representing accessibility in a channels graph.

Here we present another example that shows the benefits of the type system developed
so far.

Example 6 (Example of no representation exposure). Let us now consider a one place
buffer similar to Example 3 presented in Chapter 3. We now give a bad typed implemen-
tation in our calculus:

Activator = def mbworld〈publ〉 | ctxmb〈〉�def putmb〈x〉 | emptyctx〈〉�full〈x〉
∧ getmb〈ch〉 | fullctx〈a〉� ch〈a〉 | empty〈〉
in empty〈〉 | publ〈put, full〉

in def pubmb〈p, g〉�P
in mb〈pub〉 | ctx〈〉

The one place buffer is the process started by the only join pattern in Activator. The
channels empty and full individualize the buffer’s representation. To make this concept

50 CHAPTER 4. THE CHANNELS-AS-OWNERS MODEL (CHAO)

explicit they are declared as owned by channel ctx. Since put and get are used to access
the buffer, they are made public by declaring mb as owner. As we can see, mb owns
both ctx and pub. This makes ctx and pub siblings. The last thing to note is where bad
typedness lies: the expression publ〈put, full〉 .

We can see that Property 1 does not hold here since full’s owner cannot access publ’s
one which is mb. We don’t want other channels except those inside ctx to access full and
empty since they represent the buffer’s state.

Let’s now show an example reduction that the type system rules out. For the sake of
simplicity we will refer to the buffer with the process name OneBuffer.

The starting point is: ∅ Activator. By applying twice the heating transformation of
rule S-DEF we obtain.

∅ Activator S−DEF−−−−−⇀ S−DEF−−−−−⇀
[
mbworld〈publ〉 | ctxmb〈〉� OneBuffer

pubmb〈p, g〉� P

]
 mb〈put〉 | ctx〈〉

Now we apply rule R-BETA, consume mb〈put〉 |ctx〈〉 and trigger OneBuffer.[
mbworld〈publ〉 | ctxmb〈〉� OneBuffer

pubmb〈p, g〉� P

]
 mb〈put〉 | ctx〈〉 mb〈put〉 | ctx〈〉−−−−−−−−−→[

mbworld〈publ〉 | ctxmb〈〉� OneBuffer
pubmb〈p, g〉� P

]
 OneBuffer

We proceed by applying rule S-DEF to unravel the definition of OneBuffer.[
mbworld〈publ〉 | ctxmb〈〉� OneBuffer

pubmb〈p, g〉� P

]
 OneBuffer S−DEF−−−−−⇀

mbworld〈publ〉 | ctxmb〈〉� OneBuffer
pubmb〈p, g〉� P

putmb〈x〉 | emptyctx〈〉� full〈x〉
∧ getmb〈ch〉 | fullctx〈a〉� ch〈a〉 | empty〈〉

 empty〈〉 | pub〈put, full〉

Application of heating of rule S-PAR will divide the processes empty〈〉 |pub〈put, full〉
bound in a parallel composition leading to the following soup:

mbworld〈publ〉 | ctxmb〈〉� OneBuffer

pubmb〈p, g〉� P
putmb〈x〉 | emptyctx〈〉� full〈x〉

∧ getmb〈ch〉 | fullctx〈a〉� ch〈a〉 | empty〈〉

 empty〈〉 | pub〈put, full〉 S−PAR−−−−⇀

mbworld〈publ〉 | ctxmb〈〉� OneBuffer

pubmb〈p, g〉� P
putmb〈x〉 | emptyctx〈〉� full〈x〉

∧ getmb〈ch〉 | fullctx〈a〉� ch〈a〉 | empty〈〉

 empty〈〉, pub〈put, full〉

4.7. EXAMPLES 51

Now we would expect to be able to apply rule R-BETA and synchronize the join pattern
pubmb〈p, g〉�P with the process pub〈put, full〉 . Fortunately this is where the property of
the type system come in help and forbids such reduction.

Let’s assume we could apply rule R-BETA to the soup. we would have the following
reaction:

mbworld〈publ〉 | ctxmb〈〉� OneBuffer
pubmb〈p, g〉� P

putmb〈x〉 | emptyctx〈〉� full〈x〉
∧ getmb〈ch〉 | fullctx〈a〉� ch〈a〉 | empty〈〉

 empty〈〉, pub〈put, full〉 pub〈put,full〉−−−−−−−→

mbworld〈publ〉 | ctxmb〈〉� OneBuffer

pubmb〈p, g〉� P
putmb〈x〉 | emptyctx〈〉� full〈x〉

∧ getmb〈ch〉 | fullctx〈a〉� ch〈a〉 | empty〈〉

[

empty〈〉,
ϕ(P, pub〈put, full〉, pubmb〈p, g〉� P)

]

By the definition of ϕ, ϕ(P, pub〈put, full〉, pubmb〈p, g〉� P) ≡ P [put/p][full/g].
Here we know that, since pub’s owner is mb, all the formal parameters of pub must

have an owner o such that mb≺:o. In addition to that we know that the formal parameters
and the actual ones have the same owners and ownership schemes. This would imply that
mb≺:ctx, since ctx is full’s owner.

Of course this is not true since ctx is owned my mb itself so the reduction cannot be
consumed.

We have proven that the following soup is bad typed and the unwanted behavior of
representation exposure is eliminated.

mbworld〈publ〉 | ctxmb〈〉� OneBuffer
pubmb〈p, g〉� P

putmb〈x〉 | emptyctx〈〉� full〈x〉
∧ getmb〈ch〉 | fullctx〈a〉� ch〈a〉 | empty〈〉

 empty〈〉, pub〈put, full〉 pub〈put,full〉−−−−−−−→/

The following example shows the tree shape a channels graph has when the size of
the process augments.

Example 7 (Example of channels graph growth). We shall consider a well typed imple-
mentation of the one place buffer in Example 3 from Chapter 3.

Activator = def mbworld〈publ〉 | ctxmb〈〉�def putmb〈x〉 | emptyctx〈〉�full〈x〉
∧ getmb〈ch〉 | fullctx〈a〉� ch〈a〉 | empty〈〉
in empty〈〉 | publ〈put, get〉

in P1 | . . . | Pn

Let’s now define P1 as an environment that allows two processes to communicate as in
Example 4. Of course there are some modifications to be made, here we show the Sender,
the Receiver and the Environment we add instead of P1 in the definition of Activator.
P1 ≡ Environment.

52 CHAPTER 4. THE CHANNELS-AS-OWNERS MODEL (CHAO)

Environment = def pubmb〈p, g〉 | senderpub〈sec〉 | receiverpub〈rec〉�sec〈p〉 | rec〈g〉
in mb〈pub〉 | ctx〈〉 | Sender | Receiver

Sender = def sndpub〈pt〉 | secretmb〈〉�pt〈secret〉
in sender〈snd〉 | secret〈〉

Receiver = def rcvpub〈gt〉 | chpub〈c〉�gt〈c〉
∧ chanmb〈s〉� i have the secret
in receiver〈rcv〉 | ch〈chan〉

The channels graph of this example is in Figure 4.11. We can see that not all channels
are children of the first context, they are distributed along the tree.

world

mb

pub

sender rcv snd receiver ch

put get secret chan
ctx

empty full

Figure 4.11: Channels graph of Example 7

The highest gain here is the structure imposed on the defined channels. The channels
graph is not a simple tree of depth one but its height grows when we add more channels.

Chapter 5

The contexts-as-owners model
(CtxO)

Abstract

In questo capitolo viene presentato un secondo type system che importa l’idea
di ownership types nel join calculus. Si forniscono le regole di sintassi, tipaggio
e semantica di tale modello per poi attestarne la correttezza formale tramite le
dimostrazioni di subject reduction e no runtime errors. Vengono poi presentati
alcuni esempi di codice che evidenziano le proprietà del type system in questione.

This chapter presents the second type system importing ownership types to the join
calculus. The standard join calculus has not got the notion of context. Here we introduce
this idea by adding a new context to each definition associated with the keyword def.
The analogy we follow here is the one between classes and definitions. As classes are
places where we define multiple objects, so are definitions. As classes own other classes
and thus object at runtime, so definitions own other definitions. In order keep track of a
definition we give it a name, called a context.

Every channel will be bound to a certain context and we won’t let it escape such
bounds, while it will be free to wander inside the area it has been defined in. The type
system enforces this by forbidding that a channel defined in a context α be exported
on a channel defined in context β if β is an ancestor of α. The gains are the same as
provided by ownership types seen in Chapter 2. Such benefits do not differ from the ones
provided by the type system introduced in Chapter 4.

Next comes the syntax definition, typing rules, semantics and theorems. Finally we
show some examples of the type system at work.

53

54 CHAPTER 5. THE CONTEXTS-AS-OWNERS MODEL (CTXO)

5.1 Syntax
The conventions introduced in Section 4.1 hold here as well but we have a few more

to introduce to deal with contexts.
Let Ω denote a denumerable set of contexts names ranged over by c, o, α, β. Ω and

Σ are disjoint, no variable may have the same name as a context and vice versa. The
environment Γ now handles both triples and contexts. The context ω is always present in
Γ, it defines the root of the system as world does in the ownership types system. Context
variables are not allowed to be named ω. More formally: ω /∈ Ω ∪ Σ.

Γ = Γ, (x, α, l) | Γ, α | ω

A triple (x, α, l) binds a variable x to a context α to an ownership scheme l. Ownership
schemes are the same as in Chapter 4, the only difference being they handle contexts
here instead of channels.

A process P is defined as follows:

P = ∅ null process
| P | P parallel composition
| x〈−→y 〉 send channels y1...n on channel x
| defα D in P process definition

The syntax of definitions D and join patterns J is the same as the one presented
in Section 4.1 The difference from the standard join calculus syntax lies in two points.
First, the process definition rule has an added context parameter α, which is used to
denote a new context for the newborn definition D. Second, the message definition rule
has an owner parameter as in Section 4.1. The syntax of such parameters are:

o = rep syntactic sugar for the latest introduced context;
| world syntactic sugar for ω;
| α a context name.

In the following there may be reference to the variables of Figure 4.1. In addition
to those we define two additional type of variables: defined context (dc) and free context
(fc). They are defined by structural induction based on the clauses defined in Figure 5.1.

5.1.1 Structural Equivalence
Most of the rules for structural congruence mentioned in Figure 3.2 in Chapter 3 hold

here as well. The only different rule is presented in Figure 5.2.

5.2. TYPING JUDGMENTS 55

dc(xα〈−→y 〉) = {α}

fc(defα D in P) = (dc(D) ∪ dc(P)) \ {α}

Figure 5.1: Definition of free context and defined context variables.

defα D in defβ D′ in P ≡ defβ D ∧D′ in P ifα /∈ fc(D,defβ D′ in P)

Figure 5.2: Structural equivalence for CtxO.

5.2 Typing judgments
We have three typing judgments:

Γ ` � well formed environment Γ.
Γ ` P the process P is well typed in Γ
Γ ` D :: Γ′ the definition D is well typed in Γ, with Γ′ containing the bindings

for its defined channels (both dvs and rvs)
Γ ` J :: Γ′ the join pattern J is well typed in Γ, with Γ′ containing the bindings

for its defined channels (both dvs and rvs)
Γ ` x : α : l channel x’s first scope in Γ is α and l is its ownership scheme.
Γ ` α : l good context α and ownership scheme l in Γ.
Γ ` l good ownership scheme l in Γ.

5.3 Typing rules
Here we present the typing rules for CtxO. Many rules do not differ from those

presented in Chapter 4 so we avoid reporting them here too. Rule Env-ctx describes how
to insert contexts into the environment. The only requirement is for the name context to
be fresh. The typing rule Type mimics the behavior of rule Type in ChaO. For a pair α : l
to be considered a well formed type we require α to be a valid context name and l to be a
valid ownership scheme. The validation of l is done in the environment up to α, without
considering the contexts that have been defined after α. This is made to enforce the
contexts-as-dominators invariant. Rule Pdef is similar to ChaO’s one. The only addition
is that the rule enforces that the context α we introduce in a process definition is fresh.

56 CHAPTER 5. THE CONTEXTS-AS-OWNERS MODEL (CTXO)

Good Environments

Env-null
ω ` �

Γ ` � α /∈ Γ Env-ctxΓ, α ` �
Γ ` � x /∈ dom(Γ) Γ ` o : l

Env-buildΓ, (x, o, l) ` �

Good types, ownership schemes and channels.

Γ, α,Γ′ ` � α /∈ dom(Γ′) Γ, α ` l
Type

Γ, α,Γ′ ` α : l
∀i(Γ ` αi : ll)

Scheme
Γ ` 〈α1, l1〉, . . . , 〈αn, ln〉

Γ ` � Scheme-null
Γ ` 〈∅〉

Γ, (x, α, l),Γ′ ` � x /∈ dom(Γ′)
ChanΓ, (x, α, l),Γ′ ` x : α : l

Well-typed processes.

Γ, α,Γ′ ` � Γ, α,Γ′ ` D :: Γ′ Γ, α,Γ′ ` P
Pdef

Γ ` defα D in P

Figure 5.3: Typing rules for CtxO system.

5.4 Semantics
The RCHAM for this system differs slightly from the one presented in Section 4.4.

Since we have to keep track of contexts, we expand the left side of the soup to contain
such contexts in addition to definitions. The soup D P becomes D,∆ P , where ∆
is a set of contexts. The general rule ⇀↽−→ has been modified to consider contexts. We
can add a set of contexts to an existing soup only if there is no clash with the already
defined ones. Figure 5.4 gives the rules of the CtxO system.

Rule S-DEF mimics the scope extrusion principle inherited from π-calculus. We apply
this notion not only to the variables in the definition D but also to the context α defined
in defα D in P . This ensures no name conflict with both variables and contexts names.

5.5 Additional typing judgments and rules
Typing of programs is extended to chemical solutions. To do so, we have an additional

typing judgment: Γ ` D,∆ P .

Γ ` D,∆ P the chemical solution D,∆ P is well typed in Γ.

We present the only different typing rule for CtxO in Figure 5.5.
For a soup to be well-typed, rule Soup checks all the definitions and all the processes

in an environment augmented with the groups in the soup.

5.6. PROPERTIES 57

 P1|P2
 P1, P2 S-PAR
 defα D in P
 D,α P S-DEF

dv(D) and α are fresh
D ∧ J � P ∧D′ J −→ D ∧ J � P ∧D′ ϕ(P,J , J) R-BETA

dv(J)=dv(J).

D1,∆1 P1 ⇀↽−→ D2,∆2 P2

(fv(D) ∪ fv(P)) ∩ (dv(D1) \ dv(D2) ∪ dv(D2) \ dv(D1)) = ∅
∆ ∩ (∆1 ∪∆2) = ∅

CTXD,∆,D1,∆1 P1,P ⇀↽−→ D,∆,D2,∆2 P2,P

Figure 5.4: Chemical rules for the RCHAM of CtxO.

Γ,∆ ` � Γ,∆,Γ′ ` D :: Γ′ Γ,∆,Γ′ ` P
Soup

Γ ` D,∆ P

Figure 5.5: Additional typing rule for CtxO.

5.6 Properties
For the proofs of this section we will mention some lemmas from Section 4.6. We

avoid reporting them here and proving them again in the contexts-as-owners setting
since the proofs would be the same. Also most of the theorems’ proofs will look like
those of Section 4.6, so we will write down only the most useful and different cases.

Lemma 4 (Useless contexts). Let β be a context name that is not free nor defined in T
or Γ.

Γ ` T ⇔ Γ, β ` T

Proof. The proof of this lemma is analogous to that of Lemma 3. We provide only the
extra case that deals with contexts since the other ones are the same.

T ≡ α : l The only matching rule is Type, its application gives us the following hypothe-
ses.

Γ, α,Γ′ ` � α /∈ dom(Γ′) Γ, α ` l
Type

Γ, α,Γ′ ` α : l
The inductive hypotheses we obtain are: Γ, α,Γ′, β ` � and α /∈ dom(Γ′, β). We
can apply rule Type to these hypotheses and prove the thesis as follows.

58 CHAPTER 5. THE CONTEXTS-AS-OWNERS MODEL (CTXO)

Γ, α,Γ′, β ` � α /∈ dom(Γ′, β) Γ, α ` l
Type

Γ, α,Γ′, β ` α : l

Theorem 3 (Subject reduction). One step chemical reductions preserve typings. If Γ `
D,∆ P and D,∆ P ⇀↽−→ D′,∆′ P ′, then there exists Γ′ such that Γ′ ` D′,∆′ P ′
and Γ and Γ′ are the same except for the names defined in D,∆ but not in D′,∆′ and
vice versa.

Proof. The proof goes by induction on the number of applications of rule CTX in the
derivation of the reduction. Note that in this proof we refer to subtrees with the notation
Π. Sometimes a single derivation has been split in subproofs where the whole derivation
tree would exceed the page.

Base case: Here we consider each reaction rule:

S-PAR: This case is analogous to S-PAR case in the proof of Theorem 1.

S-DEF: The reduction is: defα D in P
 D,α P .

Heating ⇀: In this case our hypothesis is Γ ` defα D in P with side condition that
dv(D) and α are mapped to fresh names. The derivation tree is the following.
First we can only apply Soup, then the only matching rule is Pdef.

Γ, α ` � Γ, α,Γ′ ` D :: Γ′ Γ, α,Γ′ ` P
PdefΓ ` defα D in P

Soup
Γ ` defα D in P

Now we have all the premises to apply rule Soup and prove the thesis Γ `
D,α P .

Γ, α ` � Γ, α,Γ′ ` D :: Γ′ Γ, α,Γ′ ` P
Soup

Γ ` D,α P

The side condition holds since we have that Γ, α,Γ′ ` D :: Γ′. This means
there is no other variable whose name matches some channel name defined in
D except dv(D) themselves and no other context whose name clashes with α.

Cooling ↽: The other way round: first apply Soup, then use the hypotheses to apply Pdef
and Soup.

R-BETA This case is analogous to R-BETA case in the proof of Theorem 1.

Inductive case. The inductive case is proven uniformly for the context rule ⇀↽−→.
The proof follows the pattern of the inductive case of Theorem 1. The only difference

5.6. PROPERTIES 59

is that we need to augment the environment not only by useless variables but also by
useless contexts. The useless variables addition is allowed by Lemma 3 while adding
useless contexts is permitted by Lemma 4. We omit the proof since it provides no new
concepts.

Property 3 (Owners as dominators revisited). A channel y may be sent over a channel x
only if y’s context α has not been declared after x’s context β. This means that α precedes
β in the environment Γ. More formally Γ = Γ′, α,Γ′′, β,Γ′′′. If (x, β, l), (y, α, l′) ∈ Γ, then:

Γ ` x〈y〉 ⇒ Γ = Γ′, α,Γ′′, β,Γ′′′

Proof. The proof is analogous to that of Property 1. For x〈y〉 to be well typed we develop
the following tree:

· · ·
· · ·

Γ′′, β ` α : h · · ·
Scheme

Γ′′, β ` 〈α, h〉
Type

Γ′ ` β : l
Env-buildΓ′, (x, β, l) ` �

...
Γ ` � x ∈ dom(Γ)

ChanΓ ` x : β : l Γ ` y : α : h l = 〈α, h〉
Msg

Γ ` x〈y〉
As we can see the context α is not declared after β since we have Γ′′, β ` α : h.

Definition 4 (Runtime errors). Consider a soup D,∆ P. We say that a runtime error
occurs if we find either these kind of messages in the processes set P:

• a message x〈−→y 〉 that is not defined in D, i.e. no join pattern J in D has x in its
defined variables;

• a message x〈−→y 〉 that is defined in D but with different arity (i.e. the defined channel
x wants four parameters while we call it with three);

• a message x〈−→y 〉 where one of the arguments’ context β has been declared after x’s
context α.

Property 4 (No runtime errors). However a well-typed soup evolves, it will never gen-
erate a runtime error.

If Γ ` D,∆ P and D,∆ P ⇀↽−→∗ D′,∆′ P ′ then P does not contain runtime
errors.

Proof. The proof is analogous to that of Theorem 2, the only difference being we use
Property 3 to prove that no runtime errors appear.

60 CHAPTER 5. THE CONTEXTS-AS-OWNERS MODEL (CTXO)

Property 5 (Secrecy). By declaring a channel x as owned by a context α, x is kept
secret from all channels y whose context β has been declared after α.

5.7 Examples
In the following we translate the examples from Section 4.7 to the CtxO notation.

5.7.1 Diagrammatic notation
Before showing the examples we present the notation used to show contexts and

channels graphs. We represent a channel x that belongs to a context A with the form
shown in Figure 5.6:

A

x

Figure 5.6: Example of the diagrammatic notation for CtxO.

By adopting this notation it is easier to relate a channel to the context it is defined
in. These graphs will generally have a tree shape, showing the scope of all the channels
involved in a process definition.

In the untyped join calculus we are not able to point out a channel’s scope. A channel
can be passed out of the definition it has been defined in turning the original channels
graph into a list.

Example 8 (Example of secrecy). The processes defined in Example 4 are rewritten with
contexts annotations as follows:

Sender = defS secretE〈〉�send〈secret〉
in secret〈〉

Receiver = defR showE〈ch〉�recv〈ch〉
∧ chanE〈sec〉� i have the secret
in show〈chan〉

Environment = defE sendE〈s〉 | recvE〈ch〉�ch〈s〉
in Sender | Receiver

5.7. EXAMPLES 61

Note that all the channels involved have context E as owner. Here no channel can be
exported outside E. This is the main property enforced by this type system.

The following is the channels graph related to this example.

E

S R
secret send recv show chan

Figure 5.7: Channels graph for Example 8

As we can see, the channels graph is a tree of depth one. In more complex programs
the tree will grow deeper so it will define the system and its behavior in a more precise
way.

Example 9 (Visual example). Let us consider the following process.

P = defA xA〈〉|yA〈〉�R
in defB wB〈〉�Q

in T

Its channel graph is depicted in Figure 5.8. Here we will highlight, for each channel,
which channels it is allowed to access. A straight line is a valid reference, a dashed line
from y to w means that y cannot name w among its parameters.

A

B

w

x
y

Figure 5.8: Channels graph for Example 9

62 CHAPTER 5. THE CONTEXTS-AS-OWNERS MODEL (CTXO)

Example 10 (Example of channels graph growth). The processes in this example are
the translation of those from Example 7. First of all we present a one-place buffer and
its activation environment.

Activator = defA makebufferA〈pub〉�defB putworld〈x〉 | emptyB〈〉�full〈x〉
∧ getworld〈ch〉 | fullB〈a〉� ch〈a〉 | empty〈〉
in empty〈〉 | pub〈put, full〉

in P1 | . . . | Pn

We then present a Sender and a Receiver, linked via an Environment process, that
can communicate by using the one-place buffer.

Sender = defS sndE〈pt〉 | secretA〈〉�pt〈secret〉
in sender〈snd〉 | secret〈〉

Receiver = defR rcvE〈gt〉 | chE〈c〉�gt〈c〉
∧ chanE〈s〉� i have the secret
in receiver〈rcv〉 | ch〈chan〉

Environment = defE pubA〈p, g〉 | senderE〈sec〉 | receiverE〈rec〉�sec〈p〉 | rec〈g〉
in makebuffer〈pub〉 | Sender | Receiver

The channel graph of this example is shown in figure 5.9. We can see that not all
channels are a child of the first context, they are distributed along the contexts tree.

A

B

empty full

put get pub makebuffer
E

S R
sender receiver snd rcv ch

. . . Pn

Figure 5.9: Channels graph for Example 10.

Chapter 6

Groups for the join calculus

Abstract

In questo capitolo si trasporta la nozione di gruppi dal π-calculus al join calcu-
lus. Si forniscono regole di sintassi, tipaggio e semantica oltre alla dimostrazione
della correttezza del sistema in questione.

Groups for the π-calculus have been proposed by Cardelli et al in [CGG05] to enforce
security properties. They have been used in [DZG02] to encode the region calculus [TT97]
into the π-calculus. In this chapter we import such notion of Groups into the join calculus.
What we aim is to provide a type system to compare the previously introduced ones with.
Groups seem to offer a set of benefits which is quite close to the ones offered by ownership
types, a comparison between the two type systems seems logical.

The original work on groups is done for the π-calculus. Since join calculus and π-
calculus are proven to be equivalent, we expect that the notion of groups can be trans-
ferred to the join calculus as well. The two calculi may be equivalent in terms of expres-
siveness, but the core abstractions are different. Transferring the ideas did require some
work.

Next comes the syntax definition, typing rules, semantics and core theorem. We leave
the comparisons between the three systems presented so far for the next chapter.

6.1 Syntax
Before giving the syntax we establish a number of new conventions. If not specified,

the notation made for Chapters 4 and 5 holds here as well.
Let Θ be a denumerable set of group names ranged over by: G,H, F . Θ and Σ are

disjoint, no group can have the same name as a channel and vice versa. Types indicate
the group a channel belongs to and the types of the variables exchanged through that

63

64 CHAPTER 6. GROUPS FOR THE JOIN CALCULUS

channel. Types follow this syntax:

T = G[T1, . . . , Tn] | []

We define the environment Γ as a list of both groups G and pairs (x : T) where x is a
channel name and T is its type.

Γ = ∅ | Γ, (x : T) | Γ, G

When defining a channel we can specify it as belonging to a group or not. For a
channel to be bound to a group G we require G to be an already defined group. When
adding a group we require its name not to be an already defined group name.

A process P is defined as follows:
P = ∅ null process
| P | P parallel composition
| x〈−→y 〉 send channels y1...n on channel x
| def D in P process definition
| grp G for P group creation

A definition D is defined as follows:
D = D ∧D definition conjunction
| J � P reaction pattern, if J is matched, start P

A join pattern J is defined as follows:
J = J | J synchronization pattern
| xG〈−→y 〉 message definition.
| x〈−→y 〉 message definition without group.

The difference from the standard join calculus lies in two points. As for ownership
types, message definition rule has an added parameter that must be an already specified
group. Process definition has an extra rule group creation for defining new groups. This
rule creates a new group G whose scope is P .

Figure 6.1 defines two new kind of variables here: defined group(dg) and free group(fg).
Refer to Figure 3.1 for the other kind of variables.

6.1.1 Structural equivalence
By adding a new syntax rule for processes we have to add a set of equivalence rules

that deals with them. Figure 6.2 points out such rules. The equivalence for groups are
taken from the original paper [CGG05] that shows them while the other rules are just
standard join calculus and can be found in Figure 3.2.

6.2. TYPING JUDGMENTS 65

dg(xg〈−→y 〉) = {g}

fg(grp G for P) = dg(P) \ {G}

Figure 6.1: Definition of free and defined groups.

grp G for grp G′ for P ≡ grp G′ for grp G for P
def D in grp G for P ≡ grp G for def D in P if G /∈ fg(D)

grp G for (P | P ′) ≡ P | grp G for P ′ if G /∈ fg(P)
grp G for P ≡ P if G /∈ fg(P)

Figure 6.2: Structural equivalence for groups.

6.2 Typing judgments
These are the typing judgments:

Γ ` � Γ is a well typed environment.
Γ ` P P is a well typed process in Γ.
Γ ` D :: Γ′ D is a well typed definition in Γ and Γ′ contains the bindings

for dv(D).
Γ ` J :: Γ′ J is a well typed join pattern in Γ and Γ′ contains the bindings

for dv(J).
Γ ` x : T channel x has type T in Γ.
Γ ` T T is a valid type in Γ.

6.3 Typing rules
Figure 6.3 shows the typing rules for this type system. We omit rules which are the

same as those seen in the type systems in Chapter 4. There is only a new rule concerning
environments: Env-grp. It states that we can add a group to the environment only if it
is not a duplicate of an existing group. For a general type to be well formed, rule Type
controls the group name G to be in the typechecking environment. All the mentioned

66 CHAPTER 6. GROUPS FOR THE JOIN CALCULUS

Good environments

Env-null
∅ ` �

Γ ` � G /∈ dom(Γ)
Env-grp

Γ, G ` �

Γ ` � x /∈ dom(Γ) Γ ` T
Env-buildΓ, (x : T) ` �

Well-typed channels

Γ, (x,G),Γ′ ` � x /∈ dom(Γ′)
ChanΓ, (x,G),Γ′ ` x : G

Well formed types

Γ, G,Γ′ ` � G /∈ dom(Γ′) ∀i(Γ, G ` Fi) Type
Γ, G,Γ′ ` G[F1, . . . , Fn]

Γ ` � Type-null
Γ ` []

Well-typed processes

Γ, G ` � Γ, G ` P
Pgrp

grp G for P
Γ ` x : G[F1, . . . , Fn] ∀i(Γ ` yi : Fi) Msg

Γ ` x〈−→y 〉

Well-typed join patterns

Γ ` x : [F1, . . . , Fn] ∀i(Γ ` yi : Fi) Cdef
Γ ` x〈−→y 〉 :: (x,), (y1, F1), . . . , (yn, Fn)

Γ ` x : G[F1, . . . , Fn] ∀i(Γ ` yi : Fi) Cdef-grp
Γ ` xG〈−→y 〉 :: (x,G), (y1, F1), . . . , (yn, Fn)

Figure 6.3: Typing rules for the groups system.

types must be valid in the environment up to the group name G. For an empty type,
rule Type-null requires the environment to be well typed. Rule Pgrp deals with group
creation. When creating a group we ensure that the environment augmented by such
group is well formed. We then check the process in scope in the environment augmented
by the newly defined group. The message sending rule Msg as well as channel definition
rules Cdef and Cdef-grp are analogous to those presented in the previous systems.

6.4 Semantics
Here we use a RCHAM similar to the one presented in Section 5.4. The modifications

developed to handle groups are similar to those needed to handle contexts. Since we
have a term for group creation, we introduce a structural rule S-GRP to handle it. We

6.5. ADDITIONAL TYPING JUDGMENTS AND RULES 67

indicate a set of groups with the letter G. The general rule CTX has been modified to
consider groups.

The rules for the RCHAM with groups are described in Figure 6.4.

 P1|P2
 P1, P2 S-PAR
 def D in P
 D P S-DEF

dv(D) are fresh.
 grp G for P
 G P S-GRP

G is fresh.
D ∧ J � P ∧D′ J −→ D ∧ J � P ∧D′ ϕ(P,J , J) R-BETA

dv(J)=dv(J).

D1,G1 P1 ⇀↽−→ D2,G2 P2

(fv(D) ∪ fv(P)) ∩ (dv(D1) \ dv(D2) ∪ dv(D2) \ dv(D1)) = ∅
G ∩ (G1 ∪ G2) = ∅

CTXD,G,D1,G1 P1,P ⇀↽−→ D,G,D2,G2 P2,P

Figure 6.4: Chemical rules for the RCHAM with groups.

Rule S-GRP has a side condition that mimics the scope extrusion principle found in
the π-calculus. When unfolding the group creation token, we map the group name G to
a fresh name. This changes the group name only within its scope P avoiding conflicts
with outer citations.

6.5 Additional typing judgments and rules
Since typing is extended to chemical solutions we have a new typing judgment and

new typing rules. The additional typing judgment concerning well typed soups is the
following.

Γ ` D,G P The chemical solution D,G P is well typed in Γ.

We present the only typing rule that differs from those reported in Figure 4.6.
Rule Soup states that a soup is well typed if the group names it defines can be added

to the environment without compromising it. Also all the definitions and all the processes
must be well typed in an environment augmented by both the groups of the soup and
the bindings for all the defined variables in the soup’s definitions.

68 CHAPTER 6. GROUPS FOR THE JOIN CALCULUS

Γ,G ` � Γ,G,Γ′ ` D :: Γ′ Γ,G,Γ′ ` P
Soup

Γ ` D,G P

Figure 6.5: Additional typing rules for join calculus with groups.

6.6 Properties
The same comments that held for the proofs in Section 5.6 hold here as well. Most

of the proofs of the groups system are the same of the ones developed for contexts-as-
owners system, since the two are very similar. We avoid reporting such identical proofs
and provide only the most useful cases.

Lemma 5 (Useless groups). Let G be a group name that is not free nor defined in T or
Γ.

Γ ` T ⇔ Γ, G ` T

Proof. The proof is analogous to that of Lemma 4.

Theorem 4 (Subject reduction). One step chemical reductions preserve typings. If Γ `
D,G P and D,G P ⇀↽−→ D′,G ′ P ′, then there exists Γ′ such that Γ′ ` D′,G ′ P ′
and Γ and Γ′ are the same except for the names defined in D,G but not in D′,G ′ and
vice versa.

Proof. The proof goes by induction on the number of applications of rule CTX in the
derivation of the reduction. Note that in this proof we refer to subtrees with the notation
Π. Sometimes a single derivation has been split in subproofs where the whole derivation
tree would exceed the page.

Base case: Here we consider each reaction rule:

S-PAR: This case is analogous to S-PAR case in the proof of Theorem 1.

S-DEF: This case is analogous to S-DEF case in the proof of Theorem 3.

S-GRP: The reduction is: grp G for P
 G P .

Heating: The hypothesis is Γ ` grp G for P with side condition that G is mapped
to a fresh group name. Considering a general soup E M,grp G for P , the
following holds: G ∩ fg(E ,M,P) = ∅.
The derivation is the following: we first apply rule Soup and then the only
matching rule is Pgrp.

6.6. PROPERTIES 69

Γ, G ` � Γ, G ` P
Pgrp

Γ ` grp G for P
Soup

Γ ` grp G for P

We now have all the premises to apply rule Soup and prove the thesis G P .
Γ, G ` � Γ, G ` P

Soup
Γ ` G P

The side condition holds since we have Γ, G ` P . This means that there is no
other group whose name matches G except G itself.

Cooling: The other way round: first apply Soup, then use the assumptions made to
apply Pgrp and conclude with Soup.

R-BETA: This case is analogous to R-BETA case in the proof of Theorem 1.

Inductive case: This case is analogous to the inductive case in the proof of Theorem
3. Of course here instead of using Lemma 4 for useless contexts, we use Lemma 5 to deal
with useless groups.

Property 6 (Secrecy property). A channel x that belongs to a group G cannot be accessed
from outside G’s scope. This means that channels introduced before group G cannot name
x among its parameters.

Proof. The proof is analogous to the one of Property 3.

70 CHAPTER 6. GROUPS FOR THE JOIN CALCULUS

Chapter 7

Comparison of the type systems

Abstract
In questo capitolo viene fatto il paragone tra i tre sistemi di tipo presentati

nei Capitoli 4,5,6. Si fornisce una dimostrazione formale che i tre sistemi hanno lo
stesso potere espressivo: gli insiemi di termini tipabili per ogni sistema sono tra
loro equivalenti.

In this chapter we compare the three systems from Chapters 4,5,6. The idea we had
after formalizing both CtxO and ChaO was that they are very similar to Groups.

Comparing programming languages is not an easy subject, literature contains lots
of informal claims on one language being more expressive than a different one [Fel91].
Being able to prove in a formal way the relationship, in terms of expressiveness, that
exists between two languages is a tough goal. When dealing with the expressiveness of two
type systems we reason about the properties enforced on the well typed programs. If two
systems enforce the same properties on the well typed programs, then they are equivalent.
Since properties are enforced by typing, comparing systems is made by comparing the
set of typeable terms. To prove the equivalence of two different systems, the two sets of
well typed terms must be the same.

7.1 Comparison overview
We introduce now some syntactic annotation that will be used in the following.
A subscript L or K is an abstraction for any of the developed system. Thus L,K ∈

{CH ,CT ,GR}. We have developed three languages so far, we shall refer to them with
the names JCH for the channels-as-owners model, JCT for the contexts-as-owners model,
JGR for the groups model. References to well typed terms will be made by using names
such as τ, ψ. To express their belonging to a system L we will write τ ∈ JL or τL.

The notation P ≈ Q will indicate a process P having the same behavior of another
process Q. The relation ≈ is called bisimulation and is presented in Section 7.2.

71

72 CHAPTER 7. COMPARISON OF THE TYPE SYSTEMS

We also introduce the notation JK E JL to express the system JL being at least as
expressive as JK .

These are two kind of functions that will be defined later, we now give a description
of their semantics:

• []L is called an erasure function. It erases all type and type-related annotations for
L;

• J KL is called a mapping function. It maps terms, typing environments and anno-
tations from any system K 6= L into L-related ones.

Now that all the notation has been introduced, we can show Definition 5, which states
how to compare the expressiveness of two systems.

Definition 5 (System equivalence). Consider two systems JL and JK. If for all τ ∈ JL:

1. [τ]L ≈ [JτKK]K ;

2. Γ ` τ ⇒ JΓ ` τKK ,

then JK is at least as powerful as JL: JL E JK

The basic idea is explained in the following. Consider a well typed term τ of a given
system JL, the mapping of τ into another system JK produces a term ψ.

• If by erasing all type annotations in ψ and τ we obtain two bisimilar processes, we
can say that their behavior is the same, ergo the mapping function preserves the
process’ behavior.

• If τ is well typed in a certain environment Γ and ψ is well typed in the environment
we obtain by applying the mapping function to Γ, then we know that the mapping
function preserves typing.

If the two conditions above hold for all the possible well typed terms τ of JL, then we
can infer the following property: the set of well typed terms ψ of JK contains a subset
of well typed terms each of which is bisimilar to a well typed term τ of JL. This means
that in JK we can write at least the same programs of JL, expressing the same properties.

Now we recap the syntax of the three systems, we introduce the notion of bisimilarity
and we define both the erasure and the mapping functions. In the end we will prove the
three systems to have the same expressive power.

7.2. BISIMILARITY EQUIVALENCE 73

Token Syntax of ChaO JCH Syntax of CtxO JCT Syntax of Groups JGR
P ∅ ∅ ∅

P |P P |P P |P
x〈−→y 〉 x〈−→y 〉 x〈−→y 〉
def D in P def D in P

defα D in P
grp G for P

D D ∧D′ D ∧D′ D ∧D′
J � P J � P J � P
> > >

J J |J J |J J |J
xo〈−→y 〉 xo〈−→y 〉 xo〈−→y 〉

x〈−→y 〉

Figure 7.1: Syntax definition of ChaO, CtxO and Groups.

7.1.1 Syntax recap
In Chapters 4,5,6 we introduced three denumerable sets for channels, contexts and

groups: Σ, Ω, Θ. We assume the three sets to be pairwise disjoint.
Figure 7.1 recalls the syntax of each system. We now introduce a special token for

empty definition > as in the early join calculus [FG00]. We avoided dealing with it in
the previous chapters due to its uselessness but now it comes handy since we introduce
the idea of equivalence.

The typing judgment for such token is common to all three systems:
Γ ` � Top
Γ ` >

The empty definition >, like the empty process ∅, does not affect the computation of
a chemical solution.

7.2 Bisimilarity equivalence
We now introduce the notion of bisimilarity [PS00] for the standard join calculus.

We will use this equivalence to compare terms in pure join calculus. No owners, contexts
or groups annotations will be found in the syntax of this section. A whole hierarchy of
equivalences can be found in [FG00].

Definition 6 (Bisimilarity ≈). Two processes P and Q are bisimilar if, for every ac-
tion P can produce via R-BETA, Q can produce the same action via R-BETA and the
processes they turn into after the reactions are still bisimilar. And vice versa.

74 CHAPTER 7. COMPARISON OF THE TYPE SYSTEMS

More formally P ≈ Q iff:

• if P J−→ P ′ then Q
∗ J−→ Q′ and P ′ ≈ Q′;

• if Q J−→ Q′ then P
∗ J−→ P ′ and Q′ ≈ P ′

Where
∗ means any finite sequence of heating or cooling rules and J−→ represents a
reduction which is triggered by sending the parallel composition of messages J .

We point out some implications of the ≈ relationship since they will be used in the
following.

D ≈ E,P ≈ Q⇒ def D in P ≈ def E in Q P ≈ Q,P ′ ≈ Q′ ⇒ P |P ′ ≈ Q|Q′

D ≈ E,D′ ≈ E ′ ⇒ D ∧D′ ≈ E ∧ E ′ J ≈ J ′P ≈ P ′ ⇒ J � P ≈ J ′ � P ′

P |∅ ≈ P D ∧ > ≈ D

def > in P ≈ P P ≈ P

def D ∧ J � ∅ in P ≈ def D in P

if dv(J) ∩ fv(D,P) = ∅

7.3 The erasure function
The erasure function erases anything related to owners, contexts and groups, reducing

the syntax of the three systems to the one of the pure join calculus of Chapter 3. Figure
7.2 presents the function in a general flavor since most of the rules would look the same
in all three systems.

[def D in P]CH = def [D]CH in [P]CH [def D in P]GR = def [D]GR in [P]GR

[defα D in P]CT = def [D]CT in [P]CT [grp G for P]GR = [P]GR

[∅]L = ∅ [x〈−→y 〉]L = x〈−→y 〉
[P |P ′]L = [P]L|[P ′]L

[>]L = > [D ∧D′]L = [D]L ∧ [D′]L
[J � P]L = [J]L � [P]L

[J |J ′]L = [J]L|[J ′]L [xo〈−→y 〉]L = x〈−→y 〉

Figure 7.2: The erasure function.

7.4. THE MAPPING FUNCTION 75

7.4 The mapping function
In this section we provide the description of the mapping function for every system.

We present only the functions used in the proofs of Section 7.5 to avoid generating
confusion and to keep the document readable.

The first function maps elements of JCT to elements of JGR, and is stated in Figure
7.3. In the following we will use the token T to represent any right hand side of a typing
judgment.

JΓ ` T KGR = JΓKGR ` JT KGR

Mapping for environments:

JΓ, αKGR = JΓKGR, α JΓ, (x, α, l)KGR = JΓKGR, (x : Jα : lKGR)
J∅KGR = ∅

Mapping for types and channels:

Jα : lKGR = α[JlKGR] Jx : α : lKGR = x : Jα : lKGR

Mapping for ownership schemes:

J〈∅〉KGR = ∅ J〈α1, l1〉, . . . , 〈αn, ln〉KGR = Jα1 : l1KGR, . . . , Jαn : lnKGR

Mapping for syntax tokens:

J∅KGR = ∅ Jx〈−→y 〉KGR = x〈−→y 〉
JP |P ′KGR = JP KGR|JP ′KGR Jdefα D in P KGR = grp α for def JDKGR in JP KGR

JD ∧D′KGR = JDKGR ∧ JD′KGR JJ � P KGR = JJKGR � JP KGR

J>KGR = >
JJ |J ′KGR = JJKGR|JJ ′KGR Jxα〈−→y 〉KGR = xα〈−→y 〉

Figure 7.3: The mapping function from system JCT to JGR.

The second function maps elements of JGR to elements of JCH , and is stated in
Figure 7.4. Here we use the notation τ to indicate any syntax token such as P,D, J .
To preserve the ordering imposed by the scope of the groups, we annotate some cases
with a parameter at the top right corner. Whenever a parameter v appears, it represents
the rightmost group of the typechecking environment Γ, if such a group exists, or world

76 CHAPTER 7. COMPARISON OF THE TYPE SYSTEMS

otherwise.
The last mapping function maps elements of JCH to elements of JCT , and is stated

in Figure 7.5. We indicate a context name with an uppercase letter e.g. X. We suppose
such a name does not clash with other defined names, i.e is fresh.

JΓ ` T KCH = (world,world, ∅), JΓKCH ` JT KCH

JΓ ` τKCH = (world,world, ∅), JΓKCH ` JτKv
CH

Mapping for environments:

JΓ, GKCH = JΓKCH , (G, v, ∅) JΓ, (x : T)KCH = JΓKCH , (x, JT KCH)
J∅KCH = ∅

Mapping for types and channels:

JG[T1, . . . , TN]KCH = G : 〈JT1KCH 〉, . . . , 〈JTnKCH 〉 JG[]KCH = G : 〈∅〉
J [T1, . . . , Tn]KCH = world : 〈JT1KCH 〉, . . . , 〈JTnKCH 〉 J []KCH = world : 〈∅〉

Jx : T KCH = x : JT KCH

Mapping for syntax tokens:

J∅Kv
CH = ∅ Jx〈−→y 〉Kv

CH = x〈−→y 〉
JP |P ′Kv

CH = JP Kv
CH |JP ′Kv

CH Jdef D in P Kv
CH = def JDKv

CH in JP Kv
CH

JD ∧D′Kv
CH = JDKv

CH ∧ JD′Kv
CH JJ � P Kv

CH = JJKv
CH � JP Kv

CH

J>Kv
CH = >

JJ |J ′Kv
CH = JJKv

CH |JJ ′Kv
CH JxG〈−→y 〉Kv

CH = xG〈−→y 〉
Jx〈−→y 〉Kv

CH = xworld〈−→y 〉
Jgrp G for P Kv

CH = def Gv〈〉� ∅ in JP KG
CH

Figure 7.4: The mapping function from system JGR to JCH .

7.5. THEOREMS 77

JΓ ` T KCT = JΓKCT ` JT KCT

Mapping for environments:

J(world,world, ∅)KCT = ω JΓ, (x, o, l)KCT = JΓKCT , X, (x, o, l)

Mapping for types and channels:

Jo : lKCT = O : JlKCT

Jx : o : lKCT = x : Jo : lKCT

Mapping for ownership schemes:

J〈∅〉KCT = 〈∅〉 J〈o1, l1〉, . . . , 〈on, ln〉KCT = 〈Jo1 : l1KCT〉, . . . , 〈Jon : lnKCT〉

Mapping for syntax tokens:

J∅KCT = ∅ Jx〈−→y 〉KCT = x〈−→y 〉
JP |P ′KCT = JP KCT |JP ′KCT

JD ∧D′KCT = JDKCT ∧ JD′KCT JJ � P KCT = JJKCT � JP KCT

J>KCT = >
JJ |J ′KCT = JJKCT |JJ ′KCT Jxo〈−→y 〉KCT = xo〈−→y 〉

JdefD in P KCT = defX1 > in . . . in defXn JDKCT in JP KCT where dv(D) = {X1, . . . , Xn}

Figure 7.5: The mapping function from system JCH to JCT .

7.5 Theorems
We now state the three properties whose proof confirms the three systems having the

same expressive power. Each single property is an instantiation of Definition 5 with two
systems. The combination of all three properties confirms

JCH

JCT JGR

D
E

D

78 CHAPTER 7. COMPARISON OF THE TYPE SYSTEMS

which can be stated in a more linear way as: JCT E JGR E JCH E JCT .

Property 7 (JCT E JGR). For all τ ∈ JCT :

1. [τ]CT ≈ [JτKGR]GR;

2. Γ ` τ : T ⇒ JΓ ` τ : T KGR.

Property 8 (JGR E JCH). For all τ ∈ JGR:

1. [τ]GR ≈ [JτKCH]CH ;

2. Γ ` τ : T ⇒ JΓ ` τ : T KCH .

Property 9 (JCH E JCT). For all τ ∈ JCH :

1. [τ]CH ≈ [JτKCT]CT ;

2. Γ ` τ : T ⇒ JΓ ` τ : T KCT .

To keep the demonstration readable we provide six theorems, each for one point of
every property. For all demonstrations of point (2) we will indicate the application of the
mapping function for a system L as follows.

JX, Y KL J KLJXKL, JY KL

Where X, Y are generic expression of a given system. With this notation we are able to
develop proof trees mixing both typing rules and mapping functions evaluation.

Theorem 5 (Point (1) for JCT E JGR). For all τ ∈ JCT [τ]CT ≈ [JτKGR]GR.

Proof. The proof is by structural induction on τ .
Base case.

τ ≡ ∅ We have to prove [∅]CT ≈ [J∅KGR]GR.
Now: [∅]CT = ∅, and [J∅KGR]GR = [∅]GR = ∅. The thesis is immediate: ∅ ≈ ∅ holds
by definition of ≈.

τ ≡ > This case follows the same pattern of the one above.

τ ≡ x〈−→y 〉 We have to prove [x〈−→y 〉]CT ≈ [Jx〈−→y 〉KGR]GR.
Now [x〈−→y 〉]CT = x〈−→y 〉, and [Jx〈−→y 〉KGR]GR = [x〈−→y 〉]GR = x〈−→y 〉. The thesis is
immediate: x〈−→y 〉 ≈ x〈−→y 〉 holds by definition of ≈.

τ ≡ xα〈−→y 〉 This case follows the same pattern of the one above.

7.5. THEOREMS 79

Inductive case.

τ ≡ P |P ′ We have to prove [P |P ′]CT ≈ [JP |P ′KGR]GR.
For the left side of the equation the following holds: [P |P ′]CT = [P]CT |[P ′]CT .

By application of the inductive hypothesis we have: [P]CT
IH≈ [JP KGR]GR, and

[P ′]CT
IH≈ [JP ′KGR]GR.

Due to the IH we recall the definition of ≈ and we can say [P]CT |[P ′]CT ≈
[JP KGR]GR|[JP ′KGR]GR.
At this point the thesis follows by definition of the erasure function.

τ ≡ defα D in P We have to prove [defα D in P]CT ≈ [Jdefα D in P KGR]GR.
For the left side of the equation we have: [defα D in P]CT = def [D]CT in [P]CT .

This gives us the inductive hypotheses [D]CT
IH≈ [JDKGR]GR and [P]CT

IH≈ [JP KGR]GR.
On the right side we have: [Jdefα D in P KGR]GR = [grp α for def JDKGR in JP KGR]GR.
By application of the erasure function we obtain def [JDKGR]GR in [JP KGR]GR.
The thesis becomes def [D]CT in [P]CT ≈ def [JDKGR]GR in [JP KGR]GR, which is
true due to the inductive hypotheses by definition of ≈.

Other cases The remaining cases: D ∧ D′, J |J ′, J � P follow the same pattern of the
first inductive case.

Theorem 6 (Point (2) for JCT E JGR). For all τ ∈ JCT Γ ` τ ⇒ JΓ ` τKGR.

Proof. The proof goes on induction of the typing tree of τ .
Base case. The hypothesis for the base case is ω ` �. We have to prove Jω ` �KGR. By

evaluating the mapping function in the thesis we obtain Jω ` �KGR = JωKGR ` � = ω ` �.
We can prove the thesis by applying rule Env-grp and Env-null both of system JGR.

Env-null
∅ ` � ω /∈ {∅}

Env-grp
ω ` �

Inductive case. The inductive cases are shown in the list below. Every item in the
list will have a label that has the following shape: hypothesis⇒thesis. When we use the
word hypothesis we will refer to the left side of the implication, which will be a judgment
in the JCT system. The word thesis will refer to the right side of the implication, which
will be a judgment in the JGR system.

Γ, α ` � ⇒ JΓ, α ` �KGR By applying rule Env-ctx to the hypothesis we develop the fol-
lowing tree:

80 CHAPTER 7. COMPARISON OF THE TYPE SYSTEMS

Γ ` � α /∈ dom(Γ)
Env-ctxΓ, α ` �

That gives us these inductive hypotheses: JΓ ` �KGR and α /∈ dom(JΓKGR). For the
definition of J KGR, the first inductive hypothesis becomes JΓKGR ` �, we can use
such hypotheses to apply rule Env-grp as follows.

JΓKGR ` � α /∈ dom(JΓKGR)
Env-grp

JΓKGR, α ` �
J KGR

JΓ, αKGR ` �
J KGR

JΓ, α ` �KGR

Γ, (x, α, l) ` � ⇒ JΓ, (x, α, l) ` �KGR By applying rule Env-build to the hypothesis we
develop the following tree:

Γ ` � x /∈ dom(Γ) Γ ` α : l
Env-buildΓ, (x, α, l) ` �

That gives us the following inductive hypotheses: JΓ ` �KGR, x /∈ dom(JΓKGR) and
JΓ ` α : lKGR. We can use them to apply rule Env-build and develop the following
tree:

JΓ ` �KGR
J KGR

JΓKGR ` � x /∈ dom(JΓKGR)
JΓ ` α : lKGR

J KGR
JΓKGR ` Jα : lKGR

Env-build
JΓKGR, (x : Jα, lKGR) ` �

J KGR
JΓ, (x, α, l)KGR ` �

J KGR
JΓ, (x, α, l) ` �KGR

Γ, α,Γ′ ` α : l⇒ JΓ, α,Γ′ ` α : lKGR We can apply rule Type to the hypothesis and de-
velop the following tree:

Γ, α,Γ′ ` � α /∈ dom(Γ′) Γ, α ` l
Type

Γ, α,Γ′ ` α : l

That gives us the inductive hypotheses we use to apply rule Type as follows:

JΓ, α,Γ′ ` �KGR
J KGR

JΓ, α,Γ′KGR ` �
J KGR

JΓKGR, α, JΓ′KGR ` � α /∈ dom(JΓ′KGR)

JΓ, α ` lKGR
J KGR

JΓ, αKGR ` JlKGR
J KGR

JΓKGR, α ` JlKGR Type
JΓKGR, α, JΓ′KGR ` α[JlKGR]

J KGR
JΓ, α,Γ′KGR ` α[JlKGR]

J KGR
JΓ, α,Γ′KGR ` Jα : lKGR

J KGR
JΓ, α,Γ′ ` α : lKGR

7.5. THEOREMS 81

Γ ` 〈∅〉 ⇒ JΓ ` 〈∅〉KGR We can apply rule Scheme-null to the hypothesis and develop
the following tree:

Γ ` � Scheme-null
Γ ` 〈∅〉

That gives us the inductive hypothesis to apply rule Scheme-null as follows:

JΓ ` �KGR
J KGR

JΓKGR ` �
Scheme-null

JΓKGR ` 〈∅〉
J KGR

JΓKGR ` J〈∅〉KGR
J KGR

JΓ ` 〈∅〉KGR

Γ ` 〈α1, l1〉, . . . , 〈αn, ln〉 ⇒ JΓ ` 〈α1, l1〉, . . . , 〈αn, ln〉KGR We can apply rule Scheme to
the hypothesis and develop the following tree:

∀i(Γ ` αi : li)
Scheme

Γ ` 〈α1, li〉, . . . , 〈αn, ln〉

That gives us the following inductive hypothesis: ∀i(JΓ ` αi : liKGR).
By definition of J KGR we obtain ∀i(JΓKGR ` Jαi : liKGR).
We can eliminate the universal quantifier and write the hypothesis in a more linear
way as: JΓKGR ` Jα1 : l1KGR, . . . , Jαn : lnKGR.
The thesis follows for definition of J KGR: JΓKGR ` Jα1 : l1KGR, . . . , Jαn : lnKGR =
JΓKGR ` J〈α1, l1〉, . . . , 〈αn, ln〉KGR = JΓ,` 〈α1, l1〉, . . . , 〈αn, ln〉KGR.

Γ, (x, α, l),Γ′ ` x : α : l⇒ JΓ, (x, α, l),Γ′ ` x : α : lKGR We can apply rule Chan and ob-
tain the tree:

Γ, (x, α, l),Γ′ ` � x /∈ dom(Γ′)
ChanΓ, (x, α, l),Γ′ ` �

We now have the inductive hypotheses to apply rule Chan as it follows:

JΓ, (x, α, l),Γ′ ` �KGR
J KGR

JΓ, (x, α, l),Γ′KGR ` �
J KGR

JΓKGR, (x, Jα : lKGR), JΓ′KGR ` � x /∈ dom(JΓ′KGR)
Chan

JΓKGR, (x, Jα : lKGR), JΓ′KGR ` x : Jα : lKGR
J KGR

JΓ, (x, α, l),Γ′KGR ` x : Jα : lKGR
J KGR

JΓ, (x, α, l),Γ′ ` x : α : lKGR

82 CHAPTER 7. COMPARISON OF THE TYPE SYSTEMS

Γ ` defα D in P ⇒ JΓ ` defα D in P KGR We can apply rule Pdef to the hypothesis
and obtain the following tree:

Γ, α,Γ′ ` � Γ, α,Γ′ ` D :: Γ′ Γ, α,Γ′ ` P
P-def

Γ ` defα D in P

That gives us the following inductive hypotheses: JΓ, α,Γ′ ` �KGR, JΓ, α,Γ′ ` D ::
Γ′KGR and JΓ, α,Γ′ ` P KGR.
The derivation of the thesis is provided in the following tree, all the hypotheses
are given from the induction principle so the proof holds. We skip some tedious
passages that have appeared several times in the previous cases to make the proof
more readable.

JΓ, α,Γ′KGR ` �
J KGR

JΓKGR, α ` �

JΓ, α,Γ′KGR ` JDKGR :: JΓ′KGR JΓ, α,Γ′KGR ` JP KGR Pdef
JΓ, αKGR ` def JDKGR in JP KGR

J KGR
JΓKGR, α ` def JDKGR in JP KGR Pgrp

JΓKGR ` grp α for def JDKGR in JP KGR
J KGR

JΓKGR ` Jdefα D in P KGR
J KGR

JΓ ` defα D in P KGR

Γ ` P |P ′ ⇒ JΓ ` P |P ′KGR We can apply rule Par to the hypothesis and develop the
following tree:

Γ ` P Γ ` P ′ Par
Γ ` P |P ′

Such derivation gives us the inductive hypotheses to apply Par and prove the
thesis.

JΓ ` P KGR
J KGR

JΓKGR ` JP KGR

JΓ ` P ′KGR
J KGR

JΓKGR ` JP ′KGR
Par

JΓKGR ` JP KGR|JP ′KGR
J KGR

JΓKGR ` JP |P ′KGR
J KGR

JΓ ` P |P ′KGR

The cases: D ∧D′, J |J ′, J � P , xo〈−→y 〉, x〈−→y 〉 , follow the same pattern.

7.5. THEOREMS 83

7.5.1 Typing rule changes
In order to keep the following proof readable, without having to introduce too many

lemmas, we change the typing rule Type in the JCH system.

Γ, (o, w, l),Γ′ ` � o /∈ dom(Γ′) ∀i(Γ, (o, w, l) ` l[i])
Type-new

Γ, (o, w, l),Γ′ ` o : l
This eliminates the need for the relationship ≺: and all the related typing judgments

and rules as well. Such relationship had been introduced to maintain the ordering explicit
as it is in ownership types systems. It is easy to see that the two are encodings of the
same property, a channel’s scheme may not mention channels that have been introduced
after the channel’s owner.

Theorem 7 (Point (1) for JGR E JCH). For all τ ∈ JGR [τ]GR ≈ [JτKCH]CH .

Proof. The proof goes on structural induction on τ .
Base case. The base case follows the same structure of the one in Theorem 5.
Inductive case. Most of the inductive cases follow the structure in Theorem 5. Here

we present only two significant ones.

τ ≡ def D in P We have to prove [def D in P]GR ≈ [Jdef D in P Kv
CH]CH .

For the left side of the equation the following holds: [defD in P]GR = def [D]GR in [P]GR.

The inductive hypothesis tells us both: [D]GR
IH≈ [JDKv

CH]CH and [P]GR
IH≈ [JP Kv

CH]CH
for all possible values of v.
By definition of≈ we are allowed to say def [D]GR in [P]GR ≈ def [JDKv

CH]CH in [JP Kv
CH]CH .

At this point the thesis follows by definition of the erasure function.

τ ≡ grp G for P We have to prove: [grp G for P]GR ≈ [Jgrp G for P Kv
CH]CH .

For the left side of the equation we have: [grp G for P]GR = [P]GR.

This gives us the inductive hypothesis: [P]GR
IH≈ [JP Kv

CH]CH for all v.
For the right side of the equation we have: [Jgrp G for P Kv

CH]CH = [def G〈v〉 �
∅ in JP KG

CH]CH .
By definition of ≈: def G〈v〉� ∅ in P ≈ P if G is free in P .
Of course this is true since G is a group name and variables are not allowed to be
named as groups.

By transitivity of ≈ we prove the thesis: [P]GR
IH≈ [JP Kv

CH]CH ≈ def G〈v〉 �

∅ in JP KG
CH

84 CHAPTER 7. COMPARISON OF THE TYPE SYSTEMS

Theorem 8 (Point (2) for JGR E JCH). For all τ ∈ JGR Γ ` τ ⇒ JΓ ` τKCH .

Proof. The proof goes on induction of the typing tree of τ .
Base case. The hypothesis for this case is ∅ ` �. We have to prove J∅ ` �KCH .
By evaluating the mapping function in the thesis we obtain:
J∅ ` �KCH = (world,world, ∅)J∅KCH ` � = (world,world, ∅) ` �.
We can prove the thesis by applying the axiom Env-null.
Inductive case. We will use the same notation adopted in Theorem 6.

Γ, G ` � ⇒ JΓ, G ` �KCH By applying rule Env-grp to the hypothesis we obtain:

Γ ` � G /∈ dom(Γ)
Env-grp

Γ, G ` �

This gives us the following inductive hypotheses: JΓ ` �KCH and G /∈ dom(JΓKCH).
The following tree proves the thesis.

Π1 = G /∈ dom(JΓKCH) valid by IH
Π2 = v ∈ dom((world,world, ∅), JΓKCH) valid since v is the rightmost group of Γ or world .

JΓ ` �KCH
J KCH(world,world, ∅), JΓKCH ` �

JΓ ` �KCH
J KCH(world,world, ∅), JΓKCH ` �

Scheme-null
(world,world, ∅), JΓKCH ` 〈∅〉 Π1

(world,world, ∅), JΓKCH ` Jv : ∅KCH Π2
Env-build

(world,world, ∅), JΓKCH , (G, v, ∅) ` �
J KCH(world,world, ∅), JΓ, GKCH ` �

J KCH
JΓ, G ` �KCH

Γ, (x : T) ` � ⇒ JΓ, (x : T) ` �KCH By applying rule Env-build to the hypothesis we ob-
tain the following tree:

Γ ` � x /∈ dom(Γ) Γ ` T
Env-buildΓ, (x : T) ` �

That gives us the inductive hypotheses needed to prove the thesis:

JΓ ` �KCH
J KCH(world,world, ∅), JΓKCH ` � x /∈ dom(JΓKCH)

JΓ ` T KCH
J KCH(world,world, ∅), JΓKCH ` JT KCH
Env-build

(world,world, ∅), JΓKCH (x, JT KCH) ` �
J KCH(world,world, ∅), JΓ, (x : T)KCH ` �

J KCH
JΓ, (x : T) ` �KCH

7.5. THEOREMS 85

Γ, G,Γ′ ` G[T1, . . . , Tn] ⇒ JΓ, G,Γ′ ` G[T1, . . . , Tn]KCH By applying rule Type to the
hypothesis we obtain:

Γ, G,Γ′ ` � G /∈ dom(Γ′) ∀i(Γ, G ` Fi) Type
Γ, G,Γ′ ` G[F1, . . . , Fn]

That gives us the inductive hypotheses to prove the thesis. The proof has been
split in subtrees for it would exceed the page.

Π1 = JΓ, G,Γ′ ` �KCH
J KCH(world,world, ∅), JΓKCH , (G, v, ∅), JΓ′KCH ` �

Π2 = ∀i(JΓ, G ` TiKCH)
J KCH∀i(JΓKCH (G, v, ∅) ` JTiKCH)

Π1 G /∈ dom(JΓ′KCH) Π2 Type
(world,world, ∅), JΓKCH , (G, v, ∅), JΓ′KCH ` G : 〈JT1KCH 〉, . . . , 〈JTnKCH 〉

J KCH(world,world, ∅), JΓ, G,Γ′KCH ` G : 〈JT1KCH 〉, . . . , 〈JTnKCH 〉
J KCH

JΓ, G,Γ′ ` G[T1, . . . , Tn]KCH

Where v is the rightmost group of Γ or world otherwise.

Γ, (x, T),Γ′ ` x : T ⇒ JΓ, (x, T),Γ′ ` x : T KCH By applying rule Chan to the hypothesis
we obtain the following tree:

Γ, (x,G),Γ′ ` � x /∈ dom(Γ′)
ChanΓ, (x,G),Γ′ ` x : G

That gives us all the inductive hypotheses that allow us to prove the thesis as
follows.

JΓ, (x, T),Γ′ ` �KCH
J KCH(world,world, ∅), JΓKCH , (x, JT KCH), JΓ′Kv

CH ` � x /∈ dom(JΓ′Kv
CH)

Chan
(world,world, ∅), JΓKCH , (x, JT KCH), JΓ′Kv

CH ` x : JT KCH
J KCH

JΓ, (x, T),Γ′ ` x : T KCH

Where v is the rightmost group of Γ or world otherwise.

Γ ` P |P ′ ⇒ JΓ ` P |P ′KCH By applying rule Par to the hypothesis we develop the fol-
lowing tree:

Γ ` P Γ ` P ′ Par
Γ ` P | P ′

86 CHAPTER 7. COMPARISON OF THE TYPE SYSTEMS

That gives us the inductive hypotheses we need to prove the thesis as follows. Note
that v is the same since Γ is the same for both branches of the tree.

JΓ ` P KCH
J KCH(world,world, ∅), JΓKCH ` JP Kv

CH

JΓ ` P ′KCH
J KCH(world,world, ∅), JΓKCH ` JP ′Kv

CH Par
(world,world, ∅), JΓKCH ` JP Kv

CH |JP ′Kv
CH J KCH(world,world, ∅), JΓKCH ` JP |P ′Kv

CH J KCH
JΓ ` P |P ′KCH

The same procedure applies also for D ∧ D′, J |J ′, J � P , def D in P , xG〈−→y 〉 ,
x〈−→y 〉 .

Γ ` grp G for P ⇒ JΓ ` grp G for P KCH By applying rule Pgrp to the hypothesis we
obtain:

Γ, G ` � Γ, G ` P
Pgrp

grp G for P

That gives us the following inductive hypotheses:

• JΓ, G ` �KCH = (world,world, ∅), JΓKCH , (G, v, ∅) ` �
• JΓ, G ` P KCH = (world,world, ∅), JΓKCH , (G, v, ∅) ` JP KG

CH since the right-
most group of the environment is G.

We now have all the hypotheses to develop the proof for the thesis. Note that the
proof has been split in subtrees for it would exceed the page.

Π1 = (world,world, ∅), JΓKCH , (G, v, ∅) ` �
Null

(world,world, ∅), JΓKCH , (G, v, ∅) ` ∅

Π2 =

(world,world, ∅), JΓKCH , (G, v, ∅) ` �
Chan

(world,world, ∅), JΓKCH , (G, v, ∅) ` G : v : ∅
Cdef

(world,world, ∅), JΓKCH , (G, v, ∅) ` Gv〈〉 :: (G, v, ∅) Π1
Run

(world,world, ∅), JΓKCH , (G, v, ∅) ` Gv〈〉� ∅ :: (G, v, ∅)
G = G Π2 (world,world, ∅), JΓKCH , (G, v, ∅) ` JP KG

CH Pdef
(world,world, ∅), JΓKCH ` def Gv〈〉� ∅ in JP KG

CH J KCH(world,world, ∅), JΓKCH ` Jgrp G for P Kv
CH J KCH

JΓ ` grp G for P KCH

Theorem 9 (Point (1) for JCH E JCT). For all τ ∈ JCH [τ]CH ≈ [JτKCT]CT .

7.5. THEOREMS 87

Proof. The proof goes on structural induction on τ .
Base case. The base case follows the same structure of the one in Theorem 5.
Inductive case. We present the only inductive case that does not follow the structure

of the ones in Theorem 5 and Theorem 7.

τ ≡ def D in P We have to prove: [def D in P]CH ≈ [Jdef D in P KCT]CT .
For the left side of the equation we have: [def D in P]CH = def [D]CH in [P]CH .

This gives us the inductive hypotheses: [D]CH
IH≈ [JDKCT]CT and [P]CH

IH≈ [JP KCT]CT .
For the right side of the equation we have:
[JdefD in P KCT]CT = [defX1 > in . . . in defXn JDKCT in JP KCT]CT = def> in . . . in def [JDKCT]CT in [JP KCT]CT .
Where dv(D) = {X1, . . . , Xn}.
By definition of ≈ we have:
def > in . . . in def [JDKCT]CT in [JP KCT]CT ≈ def [JDKCT]CT in [JP KCT]CT .
Due to transitivity of≈ we restate the thesis with the form def [JDKCT]CT in [JP KCT]CT ,
which holds thanks to the inductive hypotheses stated above.

def [D]CH in [P]CH
IH≈ def [JDKCT]CT in [JP KCT]CT

Theorem 10 (Point (2) for JCH E JCT). For all τ ∈ JCH Γ ` τ ⇒ JΓ ` τKCT .

Proof. The proof goes on induction of the typing tree of τ .
Base case. The hypothesis for the base case is (world,world, ∅) ` �. We have to

prove J(world,world, ∅) ` �KCT . By evaluating the mapping function in the thesis we
obtain: J(world,world, ∅) ` �KCT = J(world,world, ∅)KCT ` � = ω ` � which is true due
to axiom Env-null of JCT .

Inductive case. We will use the same notation adopted in Theorem 6.

Γ, (x, o, l) ` � ⇒ JΓ, (x, o, l) ` �KCT By applying rule Env-build to the hypothesis we
have:

Γ ` � x /∈ dom(Γ) Γ ` o : l
Env-buildΓ, (x, o, l) ` �

By using the inductive hypotheses given by the tree above and the definition of
J KCT , we can prove the thesis via the Ctx and Env-build rules. The hypothesis
X /∈ dom(Γ) holds since we assume no contexts names are allowed as channels
name in the JCH system.

88 CHAPTER 7. COMPARISON OF THE TYPE SYSTEMS

JΓ ` �KCT
J KCT

JΓKCT ` � X /∈ dom(JΓKCT)
Ctx

JΓKCT , X ` � x /∈ dom(JΓKCT , X)
JΓ, X ` o : lKCT

J KCT
JΓKCT , X ` Jo : lKCT

Env-build
JΓKCT , X, (x, Jo : lKCT) ` �

J KCT
JΓ, (x, o, l)KCT ` �

J KCT
JΓ, (x, o, l) ` �KCT

All of the next cases except the last one follow an analogous pattern, to shorten
the derivation trees we will cut some tedious passages.

Γ, (x, o, l),Γ′ ` x : o : l⇒ JΓ, (x, o, l),Γ′ ` x : o : lKCT By applying rule Chan to the hy-
pothesis we have:

Γ, (x, o, l),Γ′ ` � x /∈ dom(Γ′)
ChanΓ, (x, o, l),Γ′ ` x : o : l

By using the inductive hypotheses given by the tree above and the definition of
J KCT , we can prove the thesis via the Chan rule.

JΓ, (x, o, l),Γ′ ` �KCT
J KCT

JΓKCT , (x, Jo : lKCT), JΓ′KCT ` � x /∈ dom(JΓ′KCT)
Chan

JΓ, (x, o, l),Γ′KCT ` x : Jo : lKCT
J KCT

JΓ, (x, o, l),Γ′ ` x : o : lKCT

Γ, (o, w, h),Γ′ ` o : l⇒ JΓ, (o, w, h),Γ′ ` o : lKCT By applying rule Type-new to the hy-
pothesis we have:

Γ, (o, w, h),Γ′ ` � o /∈ dom(Γ′) ∀i(Γ, (o, w, h) ` l[i])
Type-new

Γ, (o, w, h),Γ′ ` o : l

By using the inductive hypotheses given by the tree above and the definition of
J KCT , we can prove the thesis via the Type rule.

JΓ, (o, w, h),Γ′KCT ` � o /∈ dom(JΓ′KCT) ∀i(JΓ, (o, w, h)KCT ` Jl[i]KCT)
Type

JΓ, (o, w, h),Γ′KCT ` o : 〈Jl[1]KCT〉, . . . , 〈Jl[n]KCT〉
J KCT

JΓ, (o, w, h),Γ′ ` o : lKCT

Γ ` 〈∅〉 ⇒ JΓ ` 〈∅〉KCT By applying rule Scheme-null to the hypothesis we have:

Γ ` � Scheme-null
Γ ` 〈∅〉

7.5. THEOREMS 89

By using the inductive hypotheses given by the tree above and the definition of
J KCT , we can prove the thesis via the Scheme-null rule.

JΓKCT ` �
Scheme-null

JΓKCT ` J〈∅〉KCT
J KCT

JΓ ` 〈∅〉KCT

Γ ` 〈o1, l1〉, . . . , 〈on, ln〉 ⇒ JΓ ` 〈o1, l1〉, . . . , 〈on, ln〉KCT By applying rule Scheme to the
hypothesis we have:

∀i(Γ ` oi : li)
Scheme

Γ ` 〈o1, l1〉, . . . , 〈on, ln〉

By using the inductive hypotheses given by the tree above and the definition of
J KCT , we can prove the thesis via the Scheme rule.

∀i(JΓKCT ` Joi : liKCT)
Scheme

JΓKCT ` J〈o1, l1〉, . . . , 〈on, ln〉KCT
J KCT

JΓ ` 〈o1, l1〉, . . . , 〈on, ln〉KCT

Γ ` P |P ′ ⇒ JΓ ` P |P ′KCT By applying rule Par to the hypothesis we have:

Γ ` P Γ ` P ′ Par
Γ ` P |P ′

By using the inductive hypotheses given by the tree above and the definition of
J KCT , we can prove the thesis via the Par rule.

JΓ ` P KCT JΓ ` P ′KCT Par, J KCT
JΓ ` P |P ′KCT

The cases D∧D′, J |J ′, J �P , xo〈−→y 〉 and x〈−→y 〉 follow the same structure of this
very last point so we omit their proofs.

Γ ` def D in P ⇒ JΓ ` def D in P KCT By applying rule Pdef to the hypothesis we
have:

Γ,Γ′ ` D :: Γ′ Γ,Γ′ ` P dom(Γ′) = dv(D)
Pdef

Γ ` def D in P

90 CHAPTER 7. COMPARISON OF THE TYPE SYSTEMS

There is an implicit inductive hypothesis we receive from the above tree: JΓ,Γ′ `
�KCT .
We use this extra hypothesis to be able to apply rule Pdef from system JCT .

JΓ,Γ′KCT ` �
J KCT

JΓKCT , X1, (x1, o1, l1) ` �
JΓKCT , X1 ` � JΓ,Γ′KCT ` JDKCT :: JΓ′KCT JΓ,Γ′KCT ` JP KCT Pdef

JΓKCT ` defX1 JDKCT in JP KCT

We provided the proof for Γ′ = (x1, o1, l1) since the general case is only syntactically
more complex but requires no extra thought to be dealt. The only fact to note is
that the derivation of the empty definition > comes straightforward from the extra
inductive hypothesis JΓ,Γ′ ` �KCT via rule Top.

Chapter 8

Future work and conclusion

Abstract

In questo capitolo vi è un breve riassunto dei possibili sviluppi futuri e di ciò
che contiene questa tesi. Gli sviluppi futuri prevedono l’introduzione di concetti
avanzati sia per quanto riguarda i sistemi di tipo che per quanto riguarda gli own-
ership types. Le conclusioni riassumono il contenuto della tesi. Abbiamo inventato
due type systems che formalizzano l’idea di ownership types per il join calculus e
ne abbiamo dimostrato la correttezza. Abbiamo poi creato un terzo type system
con cui confrontare gli altri due. Infine abbiamo dimostrato che i tre sistemi hanno
lo stesso potere espressivo.

8.1 Future work
The type systems presented in this thesis show some great properties but still need to

be improved to be useful for programmers. To build a powerful type system, we should
bring it from first-order to a higher order one, thus allowing owner polymorphism. This
would increase the expressiveness of the system making it much more suitable for real
world applications. Among the type system related improvements there is of course
the introduction of a mechanism for type inference. This would allow porting classical
join calculus programs into ownership-annotated programs without a high syntactical
overhead.

Another notion that proved its usefulness in object-oriented programming is external
uniqueness [CW03, CWM99]. Importing such a concept in a type system would pro-
vide the language of a powerful tool for handling uniqueness and ownership toghether.
This idea overcomes severe threats in dealing with uniqueness and some drawbacks of
ownership types.

After laying all the theoretical foundations, it would be useful to pick one of the type
system variants and to apply it to JOCaml, the programming language whose base is

91

92 CHAPTER 8. FUTURE WORK AND CONCLUSION

the join calculus. This would provide a serious and useful programming language with
strong security properties.

8.2 Conclusion
We have devised two approaches to importing ownership types in the join calculus.

The first uses a notion of channels-as-owners while the second uses an explicit notion of
context to express a contexts-as-owners policy. We provided proofs of the soundness of
both type systems in a process calculi setting, which means proving subject reduction
and a no runtime error property. The second property replaces the standard progress
theorem since the very definition of progress does not suit process calculi.

We proved that our system enforces the owners-as-dominators property inherited
from ownership types. Such a property can be translated in a secrecy property which
allows us to bind a channel to an area being sure that such a channel will not be accessed
from outside that area.

Due to the similarity between the above mentioned properties and the ones enforced
by groups for the π-calculus, we created a third type system for the join calculus that
imports the notion of those groups.

Finally we have proven that the three systems have the same expressive power. This
has been done by showing that the sets of well typed terms for the three systems coincide.
The semantics of a program one can write in a system can be obtained in all other systems
and vice versa for all systems introduced in this thesis.

Bibliography

[Aba97] Mart́ın Abadi. Secrecy by typing in security protocols. In TACS, pages
611–638, 1997.

[Aba99] Mart́ın Abadi. Security protocols and specifications. In FoSSaCS, pages
1–13, 1999.

[AG99] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic proto-
cols: The spi calculus. Inf. Comput., 148(1):1–70, 1999.

[AILS07] Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reac-
tive Systems: Modelling, Specification and Verification. Cambridge University
Press, 2007.

[Bae05] Jos C. M. Baeten. A brief history of process algebra. Theor. Comput. Sci.,
335(2-3):131–146, 2005.

[BB92] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theor.
Comput. Sci., 96(1):217–248, 1992.

[BK89] J. A. Bergstra and J. W. Klop. Acpτ : a universal axiom system for process
specification. pages 447–463, 1989.

[BLR02] Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. Ownership
types for safe programming: preventing data races and deadlocks. In OOP-
SLA, pages 211–230, 2002.

[BLS03] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership
types for object encapsulation. In POPL, pages 213–223, 2003.

[Boy04] Chandrasekhar Boyapati. SafeJava: A Unified Type System for Safe Pro-
gramming. Ph.D., MIT, February 2004.

[BSBR03] Chandrasekhar Boyapati, Alexandru Salcianu, William S. Beebee, and Mar-
tin C. Rinard. Ownership types for safe region-based memory management
in real-time java. In PLDI, pages 324–337, 2003.

93

94 BIBLIOGRAPHY

[Car96] Luca Cardelli. Type systems. ACM Comput. Surv., 28(1):263–264, 1996.

[CD02] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the
disjointness of type and effect. In OOPSLA, pages 292–310, 2002.

[CDD+07] Dave Cunningham, Werner Dietl, Sophia Drossopoulou, Adrian Francalanza,
Peter Müller, and Alexander J. Summers. Universe types for topology and
encapsulation. In FMCO, pages 72–112, 2007.

[CDE07] David Cunningham, Sophia Drossopoulou, and Susan Eisenbach. Universe
Types for Race Safety. In VAMP 07, pages 20–51, August 2007.

[CGG05] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Secrecy and group
creation. Inf. Comput., 196(2):127–155, 2005.

[Cla01] Dave Clarke. Object Ownership and Containment. PhD thesis, University of
New South Wales, July 2001.

[CPN98] Dave Clarke, John Potter, and James Noble. Ownership types for flexible
alias protection. In OOPSLA, pages 48–64, 1998.

[CW03] Dave Clarke and Tobias Wrigstad. External uniqueness is unique enough. In
ECOOP, pages 176–200, 2003.

[CWM99] Karl Crary, David Walker, and J. Gregory Morrisett. Typed memory man-
agement in a calculus of capabilities. In POPL, pages 262–275, 1999.

[CWOJ08] Dave Clarke, Tobias Wrigstad, Johan Östlund, and Einar Broch Johnsen.
Minimal ownership for active objects. In APLAS ’08: Proceedings of the 6th
Asian Symposium on Programming Languages and Systems, pages 139–154,
Berlin, Heidelberg, 2008. Springer-Verlag.

[DZG02] Silvano Dal-Zilio and Andrew D. Gordon. Region analysis and a pi-calculus
with groups. J. Funct. Program., 12(3):229–292, 2002.

[FA99] Cormac Flanagan and Mart́ın Abadi. Types for safe locking. In ESOP, pages
91–108, 1999.

[Fel91] Matthias Felleisen. On the expressive power of programming languages. Sci.
Comput. Program., 17(1-3):35–75, 1991.

[FFMS02] Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. Jo-
caml: A language for concurrent distributed and mobile programming. In
Advanced Functional Programming, pages 129–158, 2002.

BIBLIOGRAPHY 95

[FG96] Cédric Fournet and Georges Gonthier. The reflexive cham and the join-
calculus. In POPL, pages 372–385, 1996.

[FG00] Cédric Fournet and Georges Gonthier. The join calculus: A language for
distributed mobile programming. In APPSEM, pages 268–332, 2000.

[FLMR97] Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy. Implicit
typing à la ml for the join-calculus. In CONCUR, pages 196–212, 1997.

[FLMR00] Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy. Inheritance
in the join calculus. In FSTTCS, pages 397–408, 2000.

[FM98] Fabrice Le Fessant and Luc Maranget. Compiling join-patterns. Electr. Notes
Theor. Comput. Sci., 16(3), 1998.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, 1978.

[Kob02] Naoki Kobayashi. Type systems for concurrent programs. In 10th Anniver-
sary Colloquium of UNU/IIST, pages 439–453, 2002.

[Mil92] Robin Milner. The polyadic pi-calculus (abstract). In CONCUR, page 1,
1992.

[Mil99] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cam-
bridge University Press, June 1999.

[Pie02] Benjamin Pierce. Types and Programming Languages. MIT Press, 2002.

[Pot07] Alex Potanin. Generic Ownership-A Practical Approach to Ownership and
Confinement in OO Programming Languages. PhD thesis, University of
Wellington, 2007.

[PS96] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile
processes. 6(5):409–454, 1996. An extended abstract in Proc. LICS 93, IEEE
Computer Society Press.

[PS00] Benjamin Pierce and Davide Sangiorgi. Behavioral equivalence in the poly-
morphic pi-calculus. Journal of the ACM, 47(3):531–584, 2000.

[RPS+04] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli, and
Ehud Y. Shapiro. Bioambients: an abstraction for biological compartments.
Theor. Comput. Sci., 325(1):141–167, 2004.

96 BIBLIOGRAPHY

[Sim10] Andrea Simonetto. Appunti del corso di Tipi e Linguaggi di Programmazione
del prof. Simone Martini. February 2010. Italian notes for the course hold
by professor Simone Martini : Types and programming languages.

[TJ92] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect
inference. J. Funct. Program., 2(3):245–271, 1992.

[TT97] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Inf.
Comput., 132(2):109–176, 1997.

[Wri06] Tobias Wrigstad. Ownership-Based Alias Management. PhD thesis, Royal
Institute of Technology, Kista, Stockholm, May 2006.

	Introduction
	Ownership types
	State of the art
	Ownership types
	The owners as dominators model
	A diagrammatic notation

	Benefits of ownership typing
	Examples

	The join calculus
	Join calculus
	Syntax
	Structural equivalence
	Semantics
	Examples
	Related Work

	The channels-as-owners model (ChaO)
	Syntax
	Structural equivalence

	Typing judgments
	Typing rules
	Semantics
	Additional typing judgments and rules
	Properties
	Examples
	Diagrammatic notation

	The contexts-as-owners model (CtxO)
	Syntax
	Structural Equivalence

	Typing judgments
	Typing rules
	Semantics
	Additional typing judgments and rules
	Properties
	Examples
	Diagrammatic notation

	Groups for the join calculus
	Syntax
	Structural equivalence

	Typing judgments
	Typing rules
	Semantics
	Additional typing judgments and rules
	Properties

	Comparison of the type systems
	Comparison overview
	Syntax recap

	Bisimilarity equivalence
	The erasure function
	The mapping function
	Theorems
	Typing rule changes

	Future work and conclusion
	Future work
	Conclusion

	Bibliography

