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Sommario 

 

I social network sono comunemente visti come una tendenza globale, che consente 

agli utenti di trovare altri con interessi simili, scrivere commenti, rispondere, esprimere 

apprezzamenti verso o condividere un contenuto, creare gruppi e organizzare eventi. 

Detto questo, c’è molto altro che può essere fatto per esprimere il vero potenziale dei 

social media. Al fine di migliorare il business, provvedendo a dare al personale, ai 

clienti e ai partner i migliori strumenti per cooperare e trarre valore da tutta la comunità, 

molte organizzazioni stanno prendendo l’iniziativa, creando gli Enterprise Social 

Networks. Un’attenta analisi dei casi di studio e delle statistiche mostra perché è 

importante perseguire questa strada. Al CERN, l’Organizzazione Europea per la 

Ricerca Nucleare, dove il numero di impiegati, studenti e volontari che ogni giorno 

cooperano sia in loco che attraverso la rete raggiunge le migliaia, è stato sviluppato 

un nuovo tipo di piattaforma, in grado di sfruttare la conoscenza collettiva del 

personale. La tesi descriverà il caso di studio del CERN per capire non solo perché è 

essenziale diventare un’organizzazione di tipo “social” ma anche come un ambiente 

simile può essere sviluppato. Negli ultimi capitoli verrà esaminato il mio contributo alla 

piattaforma, considerando il design per i dispositivi mobile, realizzato per far sì che 

l’ambiente si adatti a qualunque dimensione di schermo, uno strumento di gestione 

delle risorse integrato, che fornisce agli scienziati un mezzo per gestire facilmente il 

lavoro di tutti i giorni sugli acceleratori di particelle, e l’Application Programming 

Interface della piattaforma, che consente a chiunque abbia le credenziali di includere 

il contenuto dell’Enterprise Social Network all’interno di un sito web personale o di 

dipartimento, dando a tutti un modo ancora più semplice per partecipare. 
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Abstract 

 

Social networks are commonly seen as a global trend that allows users to search and 

contact others with similar interests, write a post, reply, like or share content, create 

groups and organize events. This said, there is much more that can be done to exploit 

the full potential of social media. In order to improve the business, providing 

employees, customers and partners the best tools to cooperate and gain value from 

the whole community, many organizations are taking the matter in their own hands, 

using Enterprise Social Networks. Close analysis of case studies and comprehensive 

statistics shows why it is important to pursue this path. At CERN, the European 

Organization for Nuclear Research, where the number of employees, students and 

volunteers that everyday work in partnership both on site and through the network 

reaches the thousands, a new kind of platform has been deployed, able to exploit the 

social knowledge of the personnel. The thesis will describe the case study of CERN 

to understand not only why it is essential to become a social organization but also how 

a social environment can be developed. The last chapters will focus on examining my 

work on the platform, considering a mobile responsive design, realized to make the 

environment adapt to any screen size, an integrated resource planning tool, which 

gives the scientists the mean to easily manage the everyday work on the particle 

accelerators, and the platform’s Application Programming Interface, which allows 

anyone with the right credentials to include content from the enterprise social network 

into a personal or departmental webpage, giving everyone an even easier way to 

participate. 
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Introduction 

 

At CERN, the European Organization for Nuclear Research, the number of 

employees, students and volunteers that everyday work in partnership both on site 

and through the network reaches the thousands. In order to guarantee an efficient and 

effective communication between employees, companies and partners a variety of 

tools has been developed able to offer all the needed functionalities for the exchange 

of messages, documents and to have real-time conversations. 

Despite these technologies very well do their jobs their number has become excessive 

and their functionalities, often similar, have led to an excessive amount of unnecessary 

communication in the workplace. We refer, as an example, to the increase of 

redundant messages not originally meant for a specific recipient but sent to groups of 

possibly interested people. In this case, the message might be useful to a colleague, 

but not necessarily to the whole team. In addition, we have to consider situations like 

the ones caused by the “reply all syndrome”, which happens when a number of people 

start a conversation over emails using the reply all broadcasting option, thus sending 

all the replies to everyone in the email distribution list. In this case, the number of 

messages increases exponentially. To address these and other problems a new kind 

of communication platform has to be deployed. The technology required has to make 

the users able to choose the communication channel to listen to and, at the same time, 

preserve and exploit the social knowledge of the team, making it easy to share the 

know-how, ask questions and reply to anyone in the network. 

 

The goal of the thesis is to prove that a more suitable and effective approach is indeed 

possible, which can make an organization achieve better results in less time. 

Enterprise Social Networks (ESNs) provide the infrastructure needed to support the 

exchange of knowledge between employees, customers and partners to cooperate 

and gain value from the whole community. They give users a proper environment to 

cooperate and face every challenge together.  

The 2015 McKinsey Global Survey on ESNs states: 

“Where social tools are used, respondents say processes have changed notably as a 

result — particularly for developing customer insights and competitive intelligence, 

where 62 percent of respondents say the use of social technologies has significantly 
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changed the work flow. Executives also report that in the processes where social tools 

are used most often, tools tend to be integrated more deeply into day-to-day tasks — 

suggesting that companies must adjust the way they work to get the full value from 

these technologies. […] At fully networked organizations — the companies seeing the 

greatest benefits from internal and external use of social technologies — executives 

report greater-than-average use of these tools in each process.” When asked about 

the future of social media, they state, “In the coming years, nearly all executives 

believe that social technologies could affect some key changes in structural and 

management processes. Their visions of social’s potential diverge, though, depending 

on the benefits their companies currently see. At internally networked organizations, 

executives believe the use of social could democratize decision-making. Fifty-one 

percent cite data-driven decisions as a likely change at organizations without 

constraints (compared with 33 percent of the total average), and 24 percent cite the 

use of internal markets and voting mechanisms to allocate resources (compared with 

16 percent). At fully networked organizations, executives most often predict the 

organization’s formal hierarchy would become flatter or disappear altogether.” 

(McKinsey, 2015) 

 

In order to properly understand and explore the topic, the thesis is organized as 

follows: 

 The first chapter introduces the technology in all its many facets. It talks about 

the origins of social networks and their peculiarities, providing an explanation 

on what made them become a reality and how they work. It continues speaking 

about the differences between classic and enterprise social networks, giving an 

overview on their most important characteristics; 

 The second chapter talks about the concepts of knowledge, how it can be 

managed and shared, explaining the barriers to knowledge sharing and what 

can be done to prevent those complications; 

 Chapter 3 introduces the concept of social business. It discusses about the 

benefits of Knowledge Management Systems (KMSs) and ESNs, providing 

statistics and real-life examples to support the theory; 

 The fourth chapter presents the CERN organization. It talks about its 

Communications Strategy and the reasons that brought to the creation of its 
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ESN, Social. It explains the system architecture and the planned improvements 

for the near future; 

 Chapter 5 provides a detailed description of the work I have done on Social 

while taking part on its creation, with a thorough explanation of the code. It 

includes the development of its mobile design, an integrated Resource Planning 

Tool (RPT) and its Application Programming Interface (API), together with a 

clear description of its limitations in order to provide an objective view on the 

possibilities of the platform. 
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1. Web 2.0 

 
Originally, the Web has been conceived as a way to visualize static documents linked 

through hypertext links built with the HTML programming language. It has been 

defined as a way of accessing information over the medium of the Internet. It is an 

information-sharing model that is built on top of the Internet. This approach is the so-

called Web 1.0, pertaining the static web paradigm. From the data exchange point of 

view, it is a unilateral communication. The client requests a webpage and the server 

sends it back to the user, which will be able to read all its content and ask for another 

webpage through a hypertext link or using a different URL, but nothing more. With the 

advent of the Web 2.0 this has changed. The possibilities for the client are plenty now. 

The term "Web 2.0” usually refers to an evolutionary phase of the Internet and, in 

particular, of the World Wide Web. O'Reilly defines the Web 2.0 as "the commercial 

revolution in the IT (Information Technologies) sector due to the use of the Internet as 

a platform and the attempt to understand the rules of success on this new platform. 

The main principle consists in building networking applications that improve while 

operating. The more they are used the more they improve” (O’Reilly & Battelle, 2009).  

This phase has brought to the appearance of all those online applications that allow a 

strong website-user interaction (like Wikipedia, Facebook or YouTube). 

 

The term makes its first appearance at the end of 2001, following the dot-com bubble 

burst. The term “dot-com bubble” identifies a phenomenon of the new economy, 

which in turn is the result of the transition from a manufacturing-based economy to a 

service-based one. The dot-com bubble, developed in the late twentieth century, 

comprehends many companies developed exploiting the surplus of funds generated 

from the venture capitals bound to the optimism that ruled the stock market in that 

period. The companies that managed to survive the end of the dot-com era are today’s 

leading actors of the Web 2.0. Companies like Skype and YouTube. 

 

The factors that facilitated the advent of the Web 2.0 phenomenon are many. We can 

say that the most important ones are the maturity and the level of development of the 

Internet and the realization that billions of people have now access to mobile devices 
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and technologies like Wi-Fi networks that make it as easy as possible for everyone to 

surf the web and participate.  

A great example is Google Search, one of the most famous search engines that ranks 

all the data on the Internet. This service is strongly influenced by the number of 

accesses from the clients and increases its effectiveness and the quality of its results 

with its use. In fact, the more statistics are collected the higher will be the reliability of 

the data provided. The Web 2.0, in fact, is not a specific application or a particular 

brand, but it has to be considered as a group of approaches used to exploit the network 

in a new and innovative way. With the 2.0 version, the web becomes a development 

platform. For the companies the web is a business platform. For the marketers it is a 

communication platform. For the journalists it is a new media platform. For the 

technicians it is a new development platform and so on (McManus, 2005). 

An important characteristic that defines the concept of Web 2.0 is represented by the 

active participation of the clients. Before its advent, in both the web and the real world 

the assets management was most of the times controlled by sector experts that 

collected and organized the data. Now the user can participate and become an active 

part that gives added value to the content. Another difference between the Web 1.0 

and the 2.0 is the shift from the personal websites to blogs. A change that has 

simplified a lot the web for its users. If before it was necessary to understand and know 

how to write the Hypertext Markup Language (HTML) code for the pages, now 

anybody can publish his/her own material and give it a pretty design nonetheless. All 

of that without ever possessing any technical skill. 

These new technologies allow the information to become independent from the person 

or the site that created them. It becomes possible for the user to mix and update the 

data collected for a particular purpose, contributing to the enrichment of those data. 

The Web 2.0 is open source, meaning that it is a free source of information that allows 

to easily share knowledge and spread it, creating, at the same time, new job 

opportunities. 

 

An important example of user participation is Wikipedia, a free encyclopaedia built 

collaboratively, where every user can update the information stored at any given time. 

It can be defined as “an open-architecture institute possible thanks to the lowering of 

the barriers for the publication of new content, the way in which the clients can connect 
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their ideas and the bandwidth available with the upgrading of the computers and the 

network” (Weinberger, 2007). 

In an environment like this, we see people on the network become not just passive 

users but active and responsive elements of the web. This brings us knowing that the 

active participation of the users is a great example of democracy. Web services 

are services offered by an electronic device to another electronic device, 

communicating with each other via the World Wide Web for the purpose of exchanging 

data. They are a central node of the Web 2.0 that leaves out the concept of specific 

application. One must not consider the Web 2.0 as a well-defined application nor as a 

specific service. It can be though as a group of websites, applications and resources 

that work together and are easily accessible for the client. 

The transition from the software as a product to the software as a service implies an 

ongoing daily management, which, if omitted, can cause the termination of the 

software. 

 

The most known applications in the Web 2.0 can be classified as follows: 

 
 

Level 3 

It is the highest application level, which 

only exists while connected to the 

Internet and improves exploiting human 

connections. The more it is used the 

better it works.  

Some examples are eBay, Skype and 

AdSense. 

 
 

Level 2 

At this level we have applications that 

can work off-line but gain many 

advantages when on-line.  

We can think of examples like Flickr, 

which benefits from the sharing of photos 

and videos and from the tags used to 

identify the content. 
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Level 1 

Level 1 applications can work off-line, but 

have technical characteristics that only 

work while connected. 

Examples comprehend Google Docs, 

which can synchronize the files modified 

while off-line only when connected, or 

iTunes with its music store. 

 
 

 
Level 0 

This level’s applications can work without 

a live connection. 

Examples include Google Maps and 

Yahoo! Local, mapping applications that 

gain value with the contributions of the 

users. 

 
 

As stated before, up until the Web 2.0 the duty to collect and organize the content, 

both in the web and in the Knowledge Management (KM) environments was 

considered a job for the experts, while the final user could only read it while playing a 

passive role. The great news introduced with the Web 2.0 is the possibility given to the 

user to actively participate in the management and sharing of knowledge. This active 

involvement creates an added value to the information on the web, thanks to the 

provision of new ideas and new experiences. 

Now that the users are able and willing to create value, both actively and passively, 

the enterprises create new systems to aggregate users’ data that will later be used to 

build value as a collateral effect of the normal usage of the application. 

With the advent of the Web 2.0 we witness a radical change in the classification 

systems. From the classic taxonomy (or science of classification), enforced from web 

programmers through the use of directories, to the new concept of folksonomy, a 

classification made from the users via keywords called “tag”. These tags are chosen 

not from a list but created as needed. The tags are then associated to the information 

shared. They make the classification and the research of content possible and they 

are usually chosen according to personal criteria. 

This application is particularly developed in the “social bookmarking”, virtual 

bookmarks freely available and shared with the other members of the web community. 
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“Tagging”, the act of linking a tag to some piece of information, allows everyone to 

look for information through tags and obtain the lists of related topics that have been 

labelled with the same tag. 

 

The web has now an architecture that allows everyone to gain from it. The users exploit 

the network for their own personal gain but, at the same time, contribute to the whole 

community adding value to the contents. When a user adds new material or new web 

pages, these are integrated in the web structure so that the other users will 

immediately be able to discover it and contribute to its development. 

Again, Wikipedia is a great example of the Web 2.0 new features. A free encyclopaedia 

where each element can be written from a user and modified from another one at any 

given time, built in the hope that every user would contribute with reliable information. 

This “experiment” of trust in the final user allowed Wikipedia to enter in the top 10 of 

the most popular websites, representing a profound change in the way content is 

created.  

 

The key to succeed in the Web 2.0 market is, thus, to master its collective intelligence 

using the contributions of the users ad their interactions. Many companies already do 

this and this way they also manage to save on advertisements, using viral marketing, 

that is the word of mouth of the digital era, shared online for everyone to hear. 

Summing up, the principles of the Web 2.0 are: 

 The Web as a platform 

 Services development 

 Active participation of the users 

 Improvement of the service with its use 

 Collective intelligence 

 

 

1.1. Social Networks 

 

In this section, we are going to introduce the concept of Social Networks. Before trying 

to give a definition, let us walk through the various stages that brought to their creation. 
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1.1.1. Origins of Social Networks 

 

Social media has become a ubiquitous part of the daily life, but its growth and evolution 

has been in the works since the late 80s. From primitive days of newsgroups, listservs 

and the introduction of early chat rooms, social media has changed the way we 

communicate, gather and share information, and have given rise to a connected global 

society. 

 

Let us have a brief look into the history of social networks, starting from the various 

applications and services that came before them. 

 

1978 
 

The first service related with Social Networks appeared on the scene in 

the 70s. 

“The Bulletin Board System (BBS) was the first collaborative tool 

available for the personal computer platform. The first BBS went up on 

Feb. 16, 1978 in the suburban Chicago home of Walt Christensen. 

(Carlson, s.d.). Once logged in, the user could perform functions such as 

uploading and downloading software and data, reading news and 

bulletins, and exchange messages with other users. 

1980 Usenet is an internet service consisting of thousands of newsgroups. 

Established in 1980, it is one of the oldest forms of computer network 

communications still actively used today. Users can post to newsgroups 

and access articles from years ago. 

1980 CompuServe broke new ground in 1980 as the first online service to offer 

real-time chat online with its CB Simulator, where CB stands for “citizens 

band radio”, often abbreviated as CB radio. By 1982, the company had 

formed its Network Services Division to provide wide-area networking 

capabilities to corporate clients. (CompuServe, 2016) 

1984 Prodigy Communications Corporation (Prodigy Services Corp., Prodigy 

Services Co., Trintex) was an online service that offered its subscribers 

access to a broad range of networked services, including news, weather, 

shopping, bulletin boards, games, polls, expert columns, banking, stocks, 

travel, and a variety of other features. 

https://en.wikipedia.org/wiki/Download
https://en.wikipedia.org/wiki/Online_service
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1988 Internet Relay Chat Protocol (IRCP) is an application layer protocol that 

facilitates communication in the form of text.  

The chat process works on a client/server networking model. IRC clients 

are computer programs that users can install on their system. These 

clients communicate with chat servers to transfer messages to other 

clients (Oikarinen & Reed, 1993). IRC is mainly designed for group 

communication in discussion forums but also allows one-on-one 

communication via private messages  (Kalt, 2000) as well as chat and 

data transfer, including file sharing (Wallace, 2004) . 

1996 ICQ is an open source instant messaging computer program that was first 

developed and popularized by the Israeli company Mirabilis in 1996. The 

name ICQ stands for "I Seek You". The ICQ client application and service 

were initially released in November 1996 and the client was freely 

available to download. Users could register an account and would be 

assigned a number, like a phone number, for others to be able to contact 

them (DeCoursy, 2001). 

1997 In 1997 Andrew Weinreich created SixDegrees. With SixDegrees we 

approach the first example of a real social network service website. 

Named after the six degrees of separation concept it allowed users to 

create an account and compile lists of "friends" or family members and 

search for other users with similar interests. 

1999 In one of the first attempts at social networking we also have LiveJournal. 

LiveJournal is a community publishing platform, wilfully blurring the lines 

between blogging and social networking. Since 1999 LiveJournal has 

been home to a wide array of creative individuals looking to share 

common interests, meet new friends, and express themselves. 

LiveJournal encourages communal interaction and personal expression 

by offering a user-friendly interface and a deeply customizable journal. 

The service's individuality stems from the way highly dedicated users 

utilize the tools, along with the instinct for individual expression, to create 

new venues for online socializing (LiveJournal, 2016). 

2001 Wikipedia is the first example of a successful social media that enabled 

the users to actively collaborate toward a common goal.  

https://en.wikipedia.org/wiki/Application_layer
https://en.wikipedia.org/wiki/Many-to-many
https://en.wikipedia.org/wiki/Many-to-many
https://en.wikipedia.org/wiki/Instant_messaging
https://en.wikipedia.org/wiki/Direct_Client-to-Client
https://en.wikipedia.org/wiki/Direct_Client-to-Client
https://en.wikipedia.org/wiki/File_sharing
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Instant_messaging
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Israel
https://en.wikipedia.org/wiki/Mirabilis_(company)
https://en.wikipedia.org/wiki/Social_network_service
https://en.wikipedia.org/wiki/Friending
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“Wikipedia is a multilingual, web-based, free-

content encyclopaedia project supported by the Wikimedia 

Foundation and based on a model of openly editable content.” 

(Wikipedia, s.d.) 

2003 MySpace is a social networking website offering an interactive, user-

submitted network of friends, personal profiles, blogs, groups, photos, 

music, and videos.  

The novelty here is the inclusion of music and videos in the network. 

Artists can upload their songs onto Myspace and have access to millions 

of people on a daily basis. Many artists became famous thanks to this. 

As a result, MySpace had a significant influence on pop culture and 

music. 

2004 Facebook is the most known social network today. It is a for-

profit corporation and online social networking service based in Menlo 

Park, California, United States. 

After registering on the site, users can create a user profile, add other 

users as "friends", exchange messages, post status updates and photos, 

share videos, use various applications (apps), and receive notifications 

when others update their profiles. Additionally, users may join common-

interest user groups organized by workplace, school, or other topics, and 

categorize their friends into lists such as "People From Work" or "Close 

Friends". In groups, editors can pin posts to top. Additionally, users can 

complain about or block unpleasant people.  

 
Since 2004, many more have spawn to populate the web, so we can see that the 

efforts toward the creation of the perfect platform are not over yet. 

 

 

  

https://en.wikipedia.org/wiki/Multilingualism
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Free_content
https://en.wikipedia.org/wiki/Free_content
https://en.wikipedia.org/wiki/Encyclopedia
https://en.wikipedia.org/wiki/Wikipedia:Wikimedia_Foundation
https://en.wikipedia.org/wiki/Wikipedia:Wikimedia_Foundation
https://en.wikipedia.org/wiki/Wikipedia:How_to_edit_a_page
https://en.wikipedia.org/wiki/Social_networking_website
https://en.wikipedia.org/wiki/Corporation
https://en.wikipedia.org/wiki/Social_networking_service
https://en.wikipedia.org/wiki/Menlo_Park,_California
https://en.wikipedia.org/wiki/Menlo_Park,_California
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/User_profile
https://en.wikipedia.org/wiki/Friending
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Here we show the world map with the most popular networking sites by country: 

 
        Facebook 

        Twitter 

        VKontakte 

        QZone 

        Odnoklassniki 

        Facenama 

        no data 

(Alexa, 2016) 

 

Attesting to the rapid increase in social networking sites' popularity, by 2005 it was 

reported that Myspace was getting more page views than Google.  

 

We can see from the timeline that the advent of social networks was neither a 

coincidence nor a single brilliant idea. Instead, we read that over the years many teams 

contributed incrementally to the development of what could have been the best way 

to make people connect and share information over the Internet. 

Adapting to the new technologies and the new trends, companies from all over the 

world try to create innovative platforms able to reach out to customers willing to expand 

their horizons and discover new ways to express themselves. 

 

 

 

https://en.wikipedia.org/wiki/Myspace
https://en.wikipedia.org/wiki/Google
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1.1.2. What is a Social Network 

 

In the previous paragraph, we have cited many social media trying to explain what 

kind of service each of them provides or provided to its users. In order to best express 

ourselves, be objective and ultimately give the most comprehensible idea of what 

exactly is a social network we will propose now some definitions given on this 

phenomenon in recent years. 

 

“A social networking service (also social networking site, SNS or social media) is a 

platform to build social networks or social relations among people who share similar 

personal and career interests, activities, backgrounds or real-life connections.” 

(Buettner, 2016) 

 

Social media is “a group of internet-based applications that build on the ideological 

and technological foundations of Web 2.0, and that allow the creation and exchange 

of UGC (User-Generated Content)”. (Kaplan & Haenlein, 2010) 

 

“Internet-based software and interfaces that allow individuals to interact with one 

another, exchanging details about their lives such as biographical data, professional 

information, personal photos and up-to-the-minute thoughts.” (Investopedia, n.d.) 

 

“Social Media is a new set of tools, new technology that allows us to more efficiently 

connect and build relationships with our customers and prospects. It is doing what the 

telephone, direct mail, print advertising, radio, television and billboards did for us up 

until now. But social media is exponentially more effective.” (Safko, 2012) 

 

“A Social Network is a dedicated website or other application which enables users 

to communicate with each other by posting information, comments, messages, 

images, etc.” (Oxford Dictionaries, n.d.) 

 

As we can see from the few definitions given up until now there are many opinions on 

what features a social media should or should not have. A review of the literature on 

https://en.wikipedia.org/wiki/Social_media
https://en.wikipedia.org/wiki/Social_network
https://en.wikipedia.org/wiki/Social_relation
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the topic can give us a more comprehensive view on the matter and sum up the main 

characteristics that define a social media as such: 

Social media are computer-mediated tools that allow people, companies and other 

organizations to create, share, or exchange information, career interests, ideas, and 

pictures/videos in virtual communities and networks. The variety of stand-alone and 

built-in social media services currently available introduces challenges of definition; 

however, there are some common features:  

1. social media are Web 2.0 Internet-based applications, 

2. UGC (User-Generated Content) such as text, digital photo or digital video posts 

are the lifeblood of the social media organism,  

3. users create their own profiles for the website or app, which is designed and 

maintained by the social media organization, and  

4. social media facilitate the development of online social networks by connecting a 

user's profile with those of other individuals and/or groups.  

5. Social media depend on mobile and web-based technologies to create highly 

interactive platforms through which individuals and communities share, co-create, 

discuss, and modify user-generated content.  

6. They introduce substantial and pervasive changes to communication between 

businesses, organizations, communities, and individuals. 

(Buettner, 2016) (Obar & Wildman, 2015) (Kaplan & Haenlein, 2010) (Ellison, 2007) 

(Kietzmann & Hermkens, 2011) 

 

As explained, there are many social networks available on the web. Between them, 

there are some of everyone’s knowledge by now, like Facebook, YouTube and Twitter, 

quoted as the most popular social networking sites of 2016 (eBizMBA Inc., 2016). 

 

https://en.wikipedia.org/wiki/Computer-mediated_communication
https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Virtual_community
https://en.wikipedia.org/wiki/Virtual_network
https://en.wikipedia.org/wiki/Web_2.0
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Mobile_app
https://en.wikipedia.org/wiki/Organization
https://en.wikipedia.org/wiki/Social_network
https://en.wikipedia.org/wiki/World_Wide_Web
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Facebook’s page example (taken on July 15, 2016) 
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YouTube’s page example (taken on July 15, 2016) 

 

 

 

 

Twitter’s page example (taken on July 15, 2016) 
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What is surprising about these platforms is that they are not only well known among 

teenagers but among every age range; even people of 70 years of age know and use 

them! This level of reach in the population makes them have an enormous amount of 

users on the network. Consider that Facebook claims to have 1.13 billion daily active 

users on average (stated on March 2016) (Facebook, 2016). 

 

1.1.3. How does it work? 

 

Social networks are based on the users’ ability to create personal profiles. It is than 

possible for the users to provide some personal information regarding one’s tastes 

and interests. Professional information is also useful in social network profiles; 

descriptions of specialties, areas of expertise and professional interests give 

opportunities to find colleagues with similar interests, experts in a particular area, etc... 

(Angehrn, et al., 2008). 

Social presence is created not only by static information in profiles, but also by 

facilitating awareness about other people and their work. Awareness means an 

“understanding of the activities of others, which provides a context for your own 

activity” (Böhringer & Richter, 2009). 

Once created the social profile, users are able to share text, images, sounds and 

videos regarding any argument they want. This is because user-generated content is 

the lifeblood of social media. It is through content that a user can discover other people 

with the same interests and create connections. These connections enable then the 

user to know more and more people, to the point that anyone is easy to reach. In this 

case, it is easy to think about the six degrees of separation concept, which says that 

everyone and everything is six or fewer steps away, by way of introduction, from any 

other person in the world. Concerning the social media, we know that the number of 

steps needed to reach someone can be reduced to one when the user is made able 

to search for a specific profile. In this kind of environment, it is also possible to create 

“groups” where a limited amount of users can talk about a specific subject and share 

knowledge with a selected set of people. Another service offered to the users, between 

the many, is the chance to create “events”, where friends can be invited to join and 

participate in the discussions online before, during and after the occasion.  
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As we can see, there is no limit in the amount of services that can be offered to the 

users from a social media. Every time a new need is identified, a new tool can be 

developed in order to adjust the network to the users’ needs. 

 

Regarding the low-level implementation of a social network there is very little 

documentation on how exactly a social media works. What we know for sure is that 

many programming languages and platforms can be used to create a social network. 

Moreover, the differences between them are little when put in a condition to have to 

satisfy millions of users around the world. At that level of complexity it does not matter 

anymore if the language chosen is LAMP (Linux, Apache, MySQL, PHP/Python/Perl) 

or Ruby on Rails with Jabber/XMPP (Extensible Messaging and Presence Protocol), 

because as Blaine Cook, former Twitter architect, said “languages don't scale, 

architectures do.” and at that level it is the architecture of the system that matters, with 

its scalability and its ability to perform well under stressful situations. 

 

 

1.2. Enterprise Social Networks (ESNs) 

 

“Ask just about anyone today about social media, and they will probably acknowledge 

using Facebook, knowing something about Twitter, and admit that social media are a 

widespread, perhaps even global, trend. Push them a bit further, and they will affirm 

that social media are genuinely significant somehow, but they might have a hard time 

pinning down exactly how or why. If you probe deeper yet and ask them if or how 

social media will transform the way businesses work, most people won’t have a clear 

answer at all” (Hinchcliffe & Kim, 2012). 

These doubts are entirely understandable, given how the digital world has virtually 

remade the means and tools of digital communication in just a few years. As the 

worldwide interactive marketing group-director of Coca-Cola, Michael Donnelly, said: 

“Business is changing right before our very eyes. We are in a world of empowered 

individuals with reliable, always-on, cross-media connectivity with a vivacious appetite 

for continuous improvement to win amongst global competition.” 

Operating a business through the social lens presents a profound new way of thinking. 

Social media can benefit an enterprise in many ways. When talking about ESNs, social 
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media have to be seen as a means to an end, not the end itself. Enterprise Social 

Networks enable “mass collaboration, in which a large and diverse group of people 

who may have no pre-existing connections pursues a mutual purpose that creates 

value” (Bradley & McDonald, 2011). 

 

In the endless search for the customer needs and tastes, more and more companies 

are shifting to social networks to get the answers they need in order to be able to 

develop products that better reflect the preferences of their potential clients. Using 

analytics and business intelligence, companies can give sense to the big amount of 

data from the network, derive useful insight and glean value from the social media 

relevant to the business. Instead of thinking on passively looking at the habits and 

tastes of the customers, some companies bring them straight to the boardroom and 

let them have a voice on the details of the final product or service.  

In addition, businesses now can “pick and choose new partners in an open 

marketplace, where business reputation and prior performance are shared and visible 

for all to see” (Hinchcliffe & Kim, 2012). Every time there are teams, the social 

approach can help. “What we are observing now is that social media have moved far 

beyond a means to stay in touch with old friends and colleagues. They have become 

how business gets done” (Hinchcliffe & Kim, 2012). 

 

Operating a business through the social lens presents a profound new way of thinking. 

In the attempt to provide employees, customers and partners the best tools to 

cooperate and gain value from the whole community many companies are exploiting 

the power of social media taking the matter in their own hands. In order to keep the 

information shared safe and to personalize the experience given to the users the ESN 

came to life. A private social network built specifically with the purpose to serve the 

company, its employees, its partners and its clients. It is easy to imagine how the 

purpose in this kind of networks is not the sharing of one’s personal thoughts (like on 

Twitter) but to be available for everyone else involved, in case somebody would need 

a particular skill or piece of knowledge. 

The goal of the companies here is not only to give customers a loud voice, to flatten 

the hierarchies making managers more approachable and to let the right person be 

easily reachable but to embed mass collaboration in “who” they are and “how” they 

work. They need to develop the right corporate skills to use this level of collaboration 
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again and again to deliver real business value, both inside and outside the enterprise, 

all along the value chain. 

The main tenets of this new philosophy are: 

 Anyone can participate 

Nearly all aspects of business, regarding employees, partners, customers and 

everyone that can bring value to the community, will ultimately be open, social and 

participative. “In general, the more open the participation, the more superior the 

result.” (Hinchcliffe & Kim, 2012) 

 Create shared value by default 

Building value requires that, whenever possible, contributors automatically share 

content with the entire community in as close to real-time as possible. The 

reputation gained in the community by the author matters, as well as the resonance 

of his/her contribution with others. Individual additions of shared value may seem 

tiny at the moment, but when aggregated they build value exponentially. 

 While participation is self-organizing, the focus is on business outcomes 

Control in social businesses is ultimately embodied in those willing to participate 

and contribute. Instead of having a well-defined chain of command, a classic 

organizational hierarchy, the control processes of social businesses change 

dynamically according to its community. 

 

Even if social networks and ESN use the same processes and similar tools, the goals 

are completely different. While classic social media goals are solely those of the 

individuals, in social business the purpose is specifically about productive outcomes 

shared from everyone involved. 

 

We identified here few of the benefits of using a social approach. In the next chapters, 

we will give a broader view of the subject and we will answer some of the questions 

that might already arise like: 

 With such seemingly uncontrolled processes how can work be done?  

 How does a business maintain direction, focus, control and ownership of the 

results? 

 How does a business define and solve problems while deriving business value 

from the community as a whole? 
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 Is it enough to provide the people with the necessary tools? 

 Who is winning in social business and why? 
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2. Knowledge Management 

 

“Social enterprising is based on effective knowledge management” (Keyes, 2013). It 

is, thus, important to spend some time explaining what can be considered as 

knowledge, what it means to manage knowledge and why it is so important.  

 

 

2.1. What is “Knowledge”? 

 

Every new piece of knowledge or theory is built on the background of previous 

knowledge. 

Over half of the work in developed countries is knowledge work. In some industries, 

like in the finance field, more than three quarters of its workforce is dedicated to 

creating and managing high value information. Information that is now the heart of the 

world economy. As previously stated, from information comes knowledge, but what 

exactly can be defined as knowledge? 

A number of meanings of the term knowledge were proposed from the ancient to the 

modern times. From the point of view of philosophy, knowledge can be considered as 

“justified true belief” (Plato), though this definition is now agreed by most analytic 

philosophers to be problematic because of the Gettier problems (Gettier, 1963), so a 

better definition is “well-justified true belief”. Another definition could be “certain 

understanding, as opposed to opinion” (Oxford Dictionaries, 2016). From the point of 

view of economic theory, knowledge is a “critical organizational resource that provides 

a sustainable and competitive advantage in a competitive and dynamic economy” 

(Davenport & Prusak, 1998). For an enterprise, “knowledge is a key strategic asset for 

organizations of all sizes” (Keyes, 2013). 

Knowledge is defined in different ways depending on the context and purpose of the 

definition. Often, it is defined by distinguishing among knowledge, information and data 

(Alavi & Leidner, 2001). 
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As commonly accepted, data is referred to as raw numbers and facts, information as 

processed data, and knowledge as authenticated information. However, it is not 

obvious to know how to discern between information and knowledge. 

The main aspects that help us distinguish between knowledge and information are the 

following:  

1. Knowledge is dynamic, it is created in the social interaction between individuals 

and organizations and  

2. Knowledge is context specific.  

Without the social aspect and context, knowledge becomes close to just information 

(Nonaka, et al., 2000). 

 

Knowledge can also be understood as personalized information (which may or may 

not be new, unique, useful, or accurate) related to facts, procedures, concepts, 

interpretations, ideas, observations, and judgments (Alavi & Leidner, 2001) (Nonaka, 

et al., 2000). 

There are two kinds of knowledge when talking about social business: explicit and 

tacit. Explicit knowledge can be expressed in a formal language and can be shared in 

the form of data, scientific formulae, specifications, manuals and the like. It can be 

processed, transmitted and stored relatively easily. In contrast, tacit knowledge is 

highly personal and hard to formalize. It represents know-how and intuitive knowledge 

which is rooted to context, experience, practice and values. Subjective insights, 

intuitions and hunches fall into this category of knowledge. This is the kind of 

knowledge that can lead innovation and breakthroughs (Frost, 2013) (Nonaka, et al., 

2000). 

 

 

2.2. The Knowledge Worker 

 

Knowledge workers are employees whose job is to “think for a living”, to use 

knowledge in order to solve a problem through creative thinking. Knowledge workers 

are considered to be the intellectual capital of a company and a key factor in its 

sustainable development. Managers must value the knowledge obtained by the 

employees and do all that is necessary to exploit it as much as possible. 
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For a knowledge worker working in a team, one of the problems that could slow down 

and mine the efficacy and the efficiency of the team is having different team members 

at different times during the development of the solution for a client. When this 

happens, there are three different kind of problems to consider: 

1. Loss of knowledge. The longer someone stays on a team, the more knowledge he 

or she acquires about the project, the problem domain and the stakeholders. 

Losing a team member means losing all of his or her experience and knowledge. 

When dealing with this kind of problem the most common approach is to make sure 

that the team has at least some stable team members. 

2. Thinking differently. When a group of people work for a long time together, they get 

to know each other and start to develop work patterns that make the team efficient. 

When a new team member arrives, the team might need some time to adapt. It is 

clear now that the commonly used solution to deal with the “loss of knowledge” 

problem is not enough. Using a knowledge management system and social 

networking technologies (e.g. knowledge bases, wikis, blogs, social networking 

groups etc.) would greatly accelerate a new team member’s trip along the learning 

curve. 

3. Low commitment. When a worker knows that you are going to work for a short 

amount of time on a team, it might be difficult for him or her to share the enthusiasm 

and be totally committed to the team. Motivation is the key to solve this problem. 

Reward systems are an effective method to overcome low commitment. Both 

positive and negative rewards can be considered. While positive reward systems 

(e.g. public validations, days off, bonus pay etc.) are the most commonly used, 

negative reinforcement approaches should be considered as well, since they are 

the best way for an employee to understand in little time where he or she is doing 

something wrong and why. 

 

Researchers see a strong, on-going linkage between knowledge workers and 

innovation, but the pace and manner of interaction have become more advanced 

(Tapscott & Williams, 2006). The many social media tools can drive more powerful 

forms of collaboration. Knowledge workers now engage in ‘’peer-to-peer’’ knowledge 

sharing across company boundaries, forming networks of expertise. Some of these 

networks are even open to the public. While they share their concerns 

over copyright and intellectual property law being challenged in the marketplace, they 
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feel strongly that businesses must engage in collaboration to survive. They highlight 

the on-going alliance of public (government) and private (commercial) teams to solve 

problems, referencing the open source Linux operating system along with the Human 

Genome Project as examples where knowledge is being freely exchanged, with 

commercial value being realized. 

 

Many researched knowledge workers’ productivity and work patterns. Part of the 

research has involved the analysis of how, on average, knowledge workers spend 

their day. It has been noted that effective and efficient knowledge work relies on the 

smooth navigation of unstructured processes and the elaboration of custom and one-

off procedures. "As we move to the 21st century business model, the focus must be 

on equipping knowledge workers with tools and infrastructure that enable 

communication and information sharing, such as networking, email, content 

management and increasingly, social media." (Palmer, et al., 2014). 

 

In the next section we will talk more about knowledge sharing (or information sharing), 

analysing what exactly means “sharing” in this case and what kind of problems could 

arise in the process. 

 

 

2.3. Knowledge Management and Knowledge Sharing 

 

“Knowledge management can be defined as the processes which support knowledge 

collection, sharing, and dissemination. The expectations for knowledge management 

are that it should be able to improve growth and innovation, productivity and efficiency 

reflected in cost savings, customer relationships, decision making, innovation, 

corporate agility, rapid development of new product lines, employee learning, 

satisfaction and retention, and management decision. Interestingly, these are the 

same expectations for social enterprising.” (Keyes, 2013) 

 

It has been stated that the importance of Knowledge Management (KM) is no longer 

restricted to knowledge intensive firms in the high-tech industries but to all sectors of 

the economy (Teng & Song, 2011). Even companies in the traditional industries, such 
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as cement, can benefit greatly from KM (Zack, 2003). In essence KM is beneficial to 

all sectors, be it educational, banking, telecommunications, manufacturing or even the 

public sectors. 

The management of knowledge has generated considerable interest in business and 

management circles due to its ability to deliver to organisations strategic results 

relating to profitability, competitiveness and capabilities enhancement. To state it more 

clearly “Organisations that effectively manage and transfer their knowledge are more 

innovative and perform better” (Riege, 2007). Successful organisations now 

understand why they must manage knowledge, develop plans to accomplish this 

objective and devote time and energies to these efforts. 

 

Once understood the importance of having an effective knowledge flow between 

employees, teams and departments in the company, it is central to start talking in more 

detail about sharing the new knowledge produced during the everyday working hours.  

Limiting the efforts or not giving the proper consideration to knowledge sharing can 

have substantial effects on the organization. “It is estimated that an organization with 

1,000 workers might easily incur a cost of more than $6 million per year in lost 

productivity when employees fail to find existing knowledge and recreate knowledge 

that was available but could not be located. On average, 6% of revenue, as a 

percentage of budget, is lost from failure to exploit available knowledge.” (Keyes, 

2013) 

Even if it could seem useless at the moment of its definition, sharing and collecting 

knowledge are the activities that best carry out the interests of the company, its 

employees, its customers and its partners. 

 

Looking at the definition of knowledge given by Davenport & Prusak as a critical 

organizational resource one easily realizes that this resource, as any other, has to be 

managed in the most optimal way to gain advantage of it. So what is the best way to 

create, retain and exploit knowledge in a company? Simply put, sharing it. 

 

“Knowledge sharing is the means through which employees can contribute to 

knowledge creation, use and innovation to the competitive advantage of the 

organization. Knowledge sharing refers to the provision of information and know-how 



32 
 

to help others and to collaborate with others to solve problems, develop new ideas, or 

implement policies or procedures.” (Wang & Noe, 2009). 

It has to be considered not only as the sharing of knowledge between individuals but 

also between teams, organizational units and organizations. In general, knowledge 

management is aimed at identifying and leveraging the collective and personal 

knowledge, know-how, experiences and judgments inside and outside organizations 

to bring additional value to organizations and help them compete. (Quaddus & Xu, 

2012). In this definition, we can read the focus of knowledge sharing on both tacit and 

explicit knowledge. This is why most managerial practices and efforts are devoted to 

facilitating sharing of both types of knowledge. 

 

The goal of knowledge sharing is to share the existing knowledge not just for future 

uses but also to create new knowledge more quickly. It regards a profound new way 

of thinking that requires openness and trust at first and that will lead to fast and 

effective improvements in the everyday work. 

 

 

2.4. Barriers to Knowledge Sharing 

 

Technology itself does not make organisations share knowledge but, if people are 

willing to share it, technology can increase the reach and scope of such exchanges. 

Developing a KM system in place is not going to make people utilise it, but the success 

of KM initiatives involves taking into account the socio-cultural factors that may inhibit 

people to willingly share their knowledge, such as: 

 lack of trust,  

 lack of time or  

 fear of being judged 

 concerns about loss of power/status. 

 

Lack of trust between employees is a well-known issue that endangers relations and 

thus the efficiency of the whole company. In the case of knowledge sharing it makes 

the member of the team avoid sharing his or her knowledge because there is no trust 

in how that knowledge will be used or by who. To increase the level of trust between 
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workers it is useful to first have more information available about colleagues (Dignum 

& Eijk, 2005) and then have closer and more frequent communications (Cheng, et al., 

2008). In this matter social networking tools help, providing more information about 

members of the company and facilities for communication between co-workers 

(Boeije, et al., 2009). 

 

Lack of time is a common problem between workers that already spend a lot of time 

on the projects they are working on and feel sharing knowledge not wrong but simply 

as a waste of time, as if he or she is not paid to do so. In this case, it is necessary to 

make it clear to everyone, even writing it on the contracts if necessary, that part of the 

job is to define the notions learned and make them available for everyone to see. This 

way everyone will take some time at the end of a project and complete the task feeling 

rewarded from it. 

 

The fear of being judged is usually felt by newcomers and, more in general, people 

that are not very familiar with the subject they are going to talk about while sharing 

their knowledge. It is completely normal to feel the pressure of the opinions of the co-

workers, to consider the possibility to be mocked or ridiculed. Everyone can make 

mistakes. What is important is to learn from them. It is the company’s duty to clarify 

that a behaviour that tries to diminish a colleague’s image will not be tolerated. 

 

Loss of power or status are the concerns of the senior members of an enterprise. The 

most experienced and knowledgeable elements of the company. This kind of 

employees are the ones that should best embrace the sharing attitude, since their 

contribution would greatly benefit the new members of the organization, making it 

easier for them to catch up and be ready to help when needed. This said, it is not easy 

for a person in a position of power to decide to share what made them reach that 

specific position. They may fear that sharing their knowledge would make them lose 

their job easily and the younger members of the company overtake them. In such a 

case, it is advisable to create an environment where it is clear that such an outcome 

is improbable and that the organization values very much the employee and its 

contribution to the global knowledge of the company. More specifically, such an 

outcome is possible only when the perceived benefits (some extrinsic motivation 

solutions, such as bonuses, presents, etc) are higher than the perceived costs of 
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sharing (e.g. time and efforts for contributing knowledge). One of the immediate ways 

to reduce perceived costs is to make it easier for people who share their knowledge 

to do this, also with the help of IT, as well as make knowledge sharing secure from the 

point of view of the loss of jobs or advantages (Cabrera & Cabrera, 2003). 

 

To sum up, in order to deal with the issues stated above the main directions of efforts 

are the following:  

a) making knowledge visible and showing the role of knowledge in organizations, 

b) building a knowledge infrastructure, not only technical system, but also 

connections among people given space, time, tools and encouragement to interact 

and collaborate,  

c) developing knowledge-intensive and knowledge sharing culture in order to free 

employees from fear of losing their advantages when sharing their unique 

knowledge, 

d) be liberated from the fear of losing important intellectual assets, if valued 

colleagues leave the firm. (Yang & Chen, 2007) 

 

The last point of the list explains in short one the most important features of knowledge 

sharing: the possibility for a work team to preserve the knowledge of one of its 

members if he or she leaves the team or the company. This way it is easier for the 

team to recover from the loss and learn what they should in order to undertake the 

work of the colleague. 

In order to reach the goals set for knowledge management and realize an effective 

knowledge sharing culture the company has to provide its employees the right tools, 

education on how to use them and motivation to make it happen. Realizing the right 

tools requires the chiefs of the departments involved to meet and make a list of all the 

features that a proper tool must have in order to be both useful and easy to learn. The 

IT department will be of help in this matter, yet the real problem is not the realization 

of the tools, but giving the employees the motivation they need to use them. As we 

read in (Argote, et al., 2003): “Organizational settings in the field of knowledge 

management can impact an individual‘s ability to create, retain and share knowledge, 

as well as provide motives and opportunities or tools to do this”. 
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It is clear by now that knowledge sharing is not necessarily synonymous with pro-

social behaviour. Indeed, knowledge sharing may involve significant effort or sacrifice. 

For the most part knowledge-sharing barriers can be categorized into three 

dimensions:  

a. individual,  

b. organizational and  

c. technological.  

 

A study of 1,180 staff members in the regional transport union of Palm Beach (Florida) 

determined that its culture was not conducive to knowledge sharing for a variety of 

reasons, including: 

 absence of support systems,  

 lack of training,  

 lack of job security,  

 lack of organizational culture,  

 employee competition, and 

 lack of recognition. 

 

At the first element of the list, we find a huge technological problem. Having a good 

technical support is key to make it easier for everyone to share one’s expertise and 

later create new knowledge starting from the one collected so far. 

The second issue in the list could be resolved exploiting technological tools, yet the 

decision to make this kind of effort has to come from the organization itself. The 

management have to evaluate the need for a proper introduction to the sharing 

mechanisms for the employees. The third and fourth elements still are a responsibility 

of the company, that must focus on creating a culture that considers the needs of the 

employees while clarifying how useful for everyone is to work not as individuals or 

small teams but as a community that involves all of the people at the company, the 

customers and the enterprise’s partners. 

Competition is usually good for business. It pushes everyone to “go the extra mile” to 

become the best in what they do and be seen as such. As explained before, however, 

this kind of behaviour can lead to difficulties in sharing one’s hardly achieved expertise. 

It is necessary to do what it takes to make the employees certain that they will not lose 

their advantage when sharing their unique knowledge. 
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The last point is an organizational problem as it is the company that has to recognize 

the efforts of its workers. The solution for this problem can be found in a technical 

approach that exploits social media tools to make it easy for both the worker and the 

management to recognize when someone is making a significant effort in following the 

sharing culture. This is possible through instruments that make it clear to everyone 

who is the author of the shared piece of knowledge and who are the people that liked 

or shared it. When number of “likes” or “share” is reached the software given the 

employee a virtual medal, visible on his or her profile, which symbolizes the 

achievement. In has been studied that this kind of tools greatly increases the 

willingness of the stakeholders to participate in the community. 

 

Beyond the effects of the introduction of technological tools, it has been proven that 

there is also a relationship between group compatibility and knowledge sharing. The 

more compatible a person is with the group in terms of age, gender, and other factors, 

the more likely he or she is to practice knowledge sharing. Conversely, individuals who 

perceive themselves in a minority (e.g. gender, marital status, education, etc...) are 

less likely to participate in knowledge sharing. Of particular note is the finding that 

women participants require a more positive social interaction culture before they 

perceive a knowledge-sharing culture as positive. The list of compatibility variables 

includes more than just the obvious traits of age, gender, ethnicity, and educational 

level. Personality differences, communication skills, and individual values also 

factored into the equation. (Keyes, 2013) 

Another study, from (Wang & Noe, 2009), has shown instead that socially isolated 

members or sub-groups are more likely to disagree with others and so contribute their 

unique knowledge within a heterogeneous team. 

 

We now know that people that perceive themselves as a minority in the team are less 

likely to share their knowledge, but when everyone is a minority and the group is truly 

heterogeneous then competition arises and knowledge sharing happens. In this case, 

within a functionally diversified team, the acknowledgement of team members' 

expertise also helps increase participation in knowledge sharing (Thomas-Hunt, et al., 

2003). This leads us to the understanding that, in order to obtain the knowledge 

sharing pattern required to help group decision-making processes in the organization, 
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work teams should either be formed of people with similar status, education, gender, 

age, skills and values or formed of a very heterogeneous set of team members. 

In order to minimize the risks and increase the chances of success there are other 

steps that can be followed. The research has proven that a less centralized 

organizational structure can help facilitate the knowledge flow, as well as the open-

space working environment (Yang & Chen, 2007). Another research suggests that the 

organizations should actively create opportunities for employee interactions to occur 

and employees’ rank, position in the organizational hierarchy and seniority should be 

deemphasized to facilitate knowledge sharing (Argote, et al., 2003).  

 

We will later talk about the fact that many, if not all, of the guidelines collected can be 

followed and made a reality in the organization using an ESN. 
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3. Transition to the Social Organization 

 

The term Enterprise 2.0, as Social Organization, Social Business or Conversation 

Company, means introduction of the Web 2.0 infrastructure and relative tools by 

organizations (Levy, 2009). To explain the topic we start from the paper by A. P. 

McAfee (McAfee, 2006) in which he claims that the conventional systems for 

knowledge management are not enough or not suitable enough for successful 

knowledge sharing and knowledge creation process. He states that the “newly 

emerged technologies, such as blogs, wikis, instant messengers, social network tools, 

and folksonomies may be more effective for knowledge management tasks”, and calls 

a set of these technologies Enterprise 2.0. 

 

 

3.1. Introducing the Social Business 

 

Collaboration is the strategic factor required to compete in the global market. 

Knowledge sharing allows the stakeholders to exchange ideas and, by working 

together, obtain results that could not be achieved by working autonomously. The 

Internet has become a fundamental platform to connect people and organizations. 

Through the company’s work teams, it is possible to lower the costs and time to market 

(TTM) of a product or service thanks to the new vision of the world: a wider and 

connected environment, where personnel from multiple sectors can work on the same 

subject together. This approach allows the parts to develop ideas and projects quickly, 

managing to tap into the knowledge of a vast amount of people. 

 

The challenge for the enterprises now is to get to the market quickly, having products 

and services that well respond to the needs of the customers. It is important to 

remember here that consumers nowadays are evermore informed, thanks to the web, 

and demanding. The network offers the companies the chance to renew their business 

models, not to modify what is done but how it is done. The Web 2.0 offers 

decentralized offices the chance to collaborate through the network, creating virtual 

work teams. The collaboration concept is shaping the way companies get the work 
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done, coming from a vertical integration system and a hierarchical company model to 

a system that focuses on coordination and cooperation. All of this is possible thanks 

to the Web 2.0 technologies, which allowed a significant reduction of the costs of 

coordination between enterprises. This new organizational concept brings many 

companies to collaborate and form a corporation able to better exploit the economies 

of scale and quickly answer to the demands of the market. Through cooperation, the 

corporation can reduce costs and increase its ability to innovate, making each of the 

companies more competitive on the market and able to follow its trends even when 

the skills of a single company would not be enough. 

The Internet evolution allows not only the employees to better collaborate with the 

management and the company’s partners but also with the stakeholders outside of the 

company, like customers and shareholders. The network gathers billions of people 

and potential customers that use blogs, chats and websites to interact, acquire 

information, buy online and cooperate with organizations (e.g. evaluating their 

products and advertisement campaigns) in a very easy, fast and inexpensive way. 

This opportunity of interaction can be welcomed and seen as a fortuitous new way to 

create value by the enterprises or it can be seen as a threat. It is up to the organizations 

to decide whether there is a way to exploit the potential of the web in their line of 

business or not. 

 

The concept considered is self-organization, which is the idea that independent users 

can work together, willingly or not, and generate something valuable and original. This 

emergent phenomenon very often reveal itself as successful, yet difficult to control 

because of its inherent self-regulation and their lack of a hierarchical structure. The 

determination of the company’s boundaries is an important step for an enterprise, 

which can obtain a significant advantage if it can identify the right mix between the 

skills that have to remain in the company and those that can be found outside its 

borders. Sometimes companies keep expertise that could be found outside. While 

years ago the enterprises focused on the development of products or services using 

only the company’s resources, nowadays a growing number of enterprises work 

together to achieve those services. The competitive advantage will not concern a 

single activity but a set of activities run by various firms that, put together, are hard to 

imitate. While a single one can easily be reproduced, the competitors will have a hard 
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time obtaining the same benefits from this activity as those that it gives when placed 

in a system.  

 

In this context, new figures are emerging, like agents and intermediaries that do 

nothing but drive other companies to the creation of the added value that can be found 

exploiting the web and the global market. These societies are usually small in the 

number of employees but handle large business volumes in every field.  

Herbalife, a company that works in the health sector producing dietary supplements is 

an example. Herbalife is a multinational corporation distributed in more than 90 

different countries has its shares traded on the New York Stock Exchange (NYSE: 

HLF) with net sales of $4.5 billion in 2015 (Herbalife, 2016). The strength of this 

business is given by its ability to manage its resources, bringing their drugs 

development teams, composed of doctors and scientists, in laboratories in China and 

India while supervising their work from the corporation’s headquarters. The production 

part is delegated to various satellite agencies located mostly in Asia and Europe while 

the retail sales are assigned to thousands of independent distributors. The crucial part 

handled by Herbalife is logistic, considered key from the management to ensure 

availability of the products at all times. This focus on the supply-chain and the deals 

with its partners grants Herbalife a net gain in respect to the centralized approach to 

the business. 

 

Wishing to expand their market share and their profits many companies find 

themselves having to adapt their organization’s architecture and their business model 

in order to achieve those results. The society will have to decide if to carry out 

improvements following a traditional approach focusing in growing its personnel and 

infrastructures and see its fixed costs or choose to merge with or acquire another 

company. The merge and acquisition of another company allows to scale the business 

rapidly. It lets two middle-level companies to share their knowledge in a single 

development platform and become leader in the market. This way they can avoid new 

fixed costs. Another alternative to the traditional growing approach is called “fast track 

business model”. Many businesses, instead of following a more organic approach, 

choose to establish contacts that let them create new value and grow their market 

share. These enterprises usually acquire low-cost row materials and outsource the 

production to some other company. They then exploit designers that offer their 
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services through the web and provide the company new ideas and new concepts for 

the future. Ultimately, another partner handles the logistics. In the end, this kind of 

corporations just need to manage the life cycle of a product employing a small number 

of qualified staff. Taking advantage of the web it is possible to handle the whole supply-

chain in real-time reducing both development and production costs. Marketing and 

advertisements are usually very expensive when considering the traditional approach, 

especially when there is a product to sell but they require a limited budget when the 

potential of the network is exploited. Targeted advertising and the online reviews of 

the users create a powerful advertising campaign that counts on the word-of-mouth 

and keep the budget low. Small companies are so free from many fixed costs that 

burden the more traditional enterprises. 

 

 

3.2. Key Enterprise 2.0 tools 

 

The advantage of using the Web 2.0 is the possibility to exploit social networks to 

create a “lever” effect for problem-solving and information management. To be able to 

achieve this goal tools such as wikis, weblogs and microblogs, social tagging, RSS 

and social networks are introduced to the enterprise context. Here we give a more 

detailed overview on each of these concepts. 

 

Wikis are sets of user-editable web pages that offer anyone the ability to easily create 

and edit pieces of content built collaboratively (Lazar, 2007). This tool came to wide 

popularity through sites such as Wikipedia. 

As Andrew McAfee points out while talking about the benefits of wikis for the 

enterprises: “The main one they get out of it so far has been the ability to find not so 

much other pieces of information but other brains all the way across the community.” 

Beyond the written articles that one can find, “because everyone’s contributions […] 

are attributed rather than anonymous, if you’ve done something smart, I can find not 

only what you’ve done, but I can find you. The point is, I would never have found you 

within the intelligence community without the new tools.” (McAfee, 2010) 
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Plus, the ability to easily create links between wiki pages enhances the knowledge 

sharing dimensions (Levy, 2009). Wikis are designed according to the eleven 

principles, summarized by (Wagner, 2004). 

 

Principle Explanation 

Open If a page is found to be incomplete or poorly organized, any reader 

can edit it as he/she sees fit. Wiki is based on open-source technology.  

Incremental Pages can cite other pages, including pages that have not been 

written yet.  

Organic The structure and text content of the site is open to editing and 

evolution.  

Mundane A small number of (irregular) text conventions will provide access to 

the most useful (but limited) page mark-up.  

Universal The mechanisms of editing and organizing are the same as those of 

writing, so that any writer is automatically an editor and organizer.  

Overt The formatted (and printed) output will suggest the input required to 

reproduce it. (For example, location of the page.)  

Unified Page names will be drawn from a flat space so that no additional 

context is required to interpret them.  

Precise Pages will be titled with sufficient precision to avoid most name 

clashes, typically by forming noun phrases.  

Tolerant Interpretable (even if undesirable) behaviour is preferred to error 

messages.  

Observable Activity within the site can be watched and reviewed by any other 

visitor to the site. Wiki pages are developed based on trust.  

Convergent Duplication can be discouraged or removed by finding and citing 

similar or related content.  

(Wagner, 2004) 

 

Weblogs (or blogs) are web pages for personal use written in the form of a diary. What 

distinguishes them from a personal website is that blogs are written continually in one 

page with different posts in chronological order. Blog entries can be commented by 

other authors and readers, and can be followed with the use of alerts like RSS 
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technologies. When weblogs and their authors are united in communities, they form 

social networks. (Levy, 2009).  

Recently microblogs became widely popular primarily through the success of Twitter. 

A microblog is a smaller version of a blog, where authors have limited logs (for 

example, in Twitter each entry is limited to 140 symbols). Microblogs, like blogs, can 

bring to features like social networking activities but with a strong focus on mobility 

(Böhringer & Richter, 2009). Microblogging has also found its place in the enterprise 

environment. The most popular enterprise microblogging tool is Yammer 

(www.yammer.com). Its main focus is on inspiring people to share information on 

“What are you working on”, compared to the focus of Twitter on “What are you doing?”. 

As the Yammer webpage says: <Just by logging in and sharing “what are you working 

on” you’re growing your company’s Yammer network and building a knowledge base 

of information that will benefit your coworkers.>. (Böhringer & Richter, 2009), on the 

basis of a case study, concluded that microblogging helps creating awareness in a 

company to support collaboration, communication and coordination.  

 

Tagging can be explained as a practice of attaching keywords to the content (text, 

media or documents) shared on content management websites. Those keywords are 

called tags and provide semantics to the content (Levy, 2009). Tagging is widely used 

in bookmarking to let users quickly mark and find later items of interest based on 

personal and others‘ categorization of the content. Tags build personal user 

categorization systems called folksonomies, opposite to well-known taxonomies 

defined by organizations (Levy, 2009). Tagging has become a standard element of 

many blogs, wikis, websites and social networks. 

 

Social Networking is the sum of every tool described above. It is based on the ability 

of users to create a personal profile on the web unique for a particular website or 

common (exploiting techniques such as OpenID, which allows the user to log in on a 

website using the profile set on a different one). Profiles are created so that 

interactions like contributing to wikis, social tagging and commenting on the 

blogosphere create relationships between people (Tapiador, et al., 2006). 

Barnes (1954) defined social network as a social structure comprised of nodes 

(individuals or organizations) that are connected by one or more specific types of 

relations and this definition is still valid today. In general, social networks and their 
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analysis are important for determining the ways groups operate, how problems are 

solved and the extent to which people success in attaining goals (Lai & Turban, 2008). 

Being already very popular on the Internet, social networking tools are introduced in 

organizations. Profiling systems for employees, we see that the ability to author and 

comment documents and pieces of knowledge in knowledge management systems 

automatically creates relationships between people (Boeije, et al., 2009). During the 

years, a wide variety of tools has been developed to increase the usefulness of social 

networks. In the next paragraph we are going to analyse in more detail the kind of 

social networks actually in use. 

 

 

3.3. ESNs Examples 

 

At this point, we are going to introduce some examples of enterprise social networks 

in order to give a closer look on how an ESN can look like. 

We will start talking about Salesforce. Salesforce is an enterprise customer 

relationship management (CRM) giant, which has improved its CRM services 

providing social networking capabilities. Its new Chatter service is available on 

Salesforce’s real-time collaboration cloud. Users can use it to set up profiles and 

generate status updates, which might be questions, bits of information and/or 

knowledge or relevant hyperlinks. All of this is then aggregated and broadcasted to 

co-workers on their personal page. Essentially, an employee’s personal page contains 

a flow of comments and updates regarding those in that particular network. Employees 

can also follow the rest of their colleagues from around the company, not just those in 

their own personal network, enabling cross-organizational knowledge sharing. 

Towards that end, Chatter also provides a profile database that users can tap into to 

find someone with the needed skills for a particular project. All of this is accessible via 

both desktop and mobile. Like Salesforce.com, many of well-known software 

companies have developed collaboration tools with similar features.  
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Chatter page example 

 

Oracle’s Beehive collaboration platform provides a suite of tools such as email, 

calendar, voicemail, instant messaging, group chat, Presence, web conferencing, 

audio conferencing, team workspaces, document sharing, and employee directory. It 

has support for mobile devices and can be integrated with Cisco, Avaya and Nortel 

infrastructures to deliver, as an example, voicemails and faxes to an email’s inbox. 

Outlook can also be integrated in their software, providing access in particular to 

personal email, address book and calendar in order, as an example, to schedule 

appointments and deadlines. It also allows users to schedule conferences via 

Microsoft Outlook, Beehive Webmail or any standards-based CalDAV client. 

Calendaring Extensions to WebDAV, or CalDAV, is an Internet standard allowing a 

client to access scheduling information on a remote server. It extends WebDAV 

(HTTP-based protocol for data manipulation) specification and uses iCalendar format 

for the data. 
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On Beehive, the work team can create its own workspace starting form given 

templates and rely on various features like team wiki, calendar, team task 

management, discussion forums, contextual search and team announcements 

through an ad-hoc microblog and its RSS feeds. The most interesting feature for a 

team is the document library, which allows users to: 

 lock a file, to stop other to modify it 

 use check in and check out operations, that let a user download a copy of a file 

and later upload the new version in the library and merge it with its online 

counterpart 

 set up specific privileges for each user 

 have control over the workflow of the project and 

 remote content sharing with Oracle UCM (Universal Content Management) 

Beehive is then extendible with the use of scalable Oracle technology like, but not 

limited to, “Oracle Information Rights Management” (IRM) or “Oracle Secure 

Enterprise Search” (SES). Beyond Oracle’s extensions, the system that can also be 

personalized with its given RESTful (that follows the REpresentational State Transfer 

principle) APIs that exploit BPEL (Business Process Execution Language) and other 

common specifications like the with all the standard communication protocols (like 

IMAP, SMTP, CalDAV, iSchedule, WebDAV, XMPP, FTP, OMA Data 

Synchronization, PushIMAP, SIP, and VoiceXML). All of these compatibilities make 

the developers’ life easy when building an addition for the platform. “Oracle Beehive 

Mobile Communicator” is the name of the app for smartphones that help workers stay 

connected using IM (Instant Messages) while away from the computer. (Oracle, 2016) 
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Beehive page example 

 

Microsoft’s SharePoint is heavily used within many enterprises. It includes many 

features like the creation of personal websites, personal tasks, blogs and microblogs, 

team sites and community sites, which make it easy for users to find and connect with 

the people and content that matter to them and to share information and ideas. 

The developers can add new social features or extend the features that are already 

available in SharePoint 2013. For example, you can create an app that lets you find 

and follow people who have a common interest, create a custom visualization of feed 

data, or publish custom activities to the feed. 

SharePoint Server 2013 provides the following APIs that one can use to 

programmatically work with social feeds: 

 Client object models for managed code 

o .NET client object model 

o Silverlight client object model 

o Mobile client object model 

 JavaScript object model 

 Representational State Transfer (REST) service 
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 Server object model 

 

 

Newsfeed page example 

 

While Oracle’s Beehive tries very hard to make it easy for developers to personalize 

the environment and shows a platform similar to SharePoint, a significant difference 

in the latter is the presence of the “feeds”. Regarding the handling of the feeds from 

all the profiles in the network, SharePoint gives the users the ability to choose between 

Yammer and Newsfeed. 

SharePoint Newsfeed used to be the default option for social experiences in 

Microsoft’s Office 365. It offers all the standard features such as the possibility to like, 

comment, share the published content and follow others in order to have their feeds 

straight in the homepage. It allows tagging and lets users cite each other in the feeds. 

Newsfeed includes also an app for Windows Phone and iPhone smartphones that lets 

employees to stay connected to your organization’s social pulse while on the go.  
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Yammer, instead, is a private, secure social network for an organization that will allow 

people to collaborate securely across departments and geographies. It is designed to 

inspire company-wide knowledge exchange and to increase team efficiency. Only 

people with a verified company email address can join the company’s network. 

 

To talk about Yammer we have to do a little digression talking about Twitter, a social 

networking app made famous by celebrities who tweet hourly updates on what they 

are doing (e.g., eating lunch, shopping, etc.). Twitter itself is not useful in a company’s 

environment. It lacks to all the tools that an organization requires to control work teams 

or share knowledge. This said, to bridge the gap Twitter developed an enterprise social 

networking application called Yammer, bought in 2012 by Microsoft. With the ability to 

integrate with tools such as SharePoint, Yammer provides a suite of tools including 

enterprise microblogging, communities, company directory, direct messaging, groups, 

and knowledge base. Much of what Yammer offers is free with the basic service. With 

a fee, however, it provides niceties as security controls, admin controls, broadcast 

messages, enhanced support, SharePoint integration, keyword monitoring, and virtual 

firewall solution. Yammer can be used by the software development team to 

interactively discuss any aspect of a project.  

Project groups can use SharePoint in many ways:  

 to write up personal research and make comments on others’ research;  

 to ask questions;  

 to post links to resources that might be of interest to others in the group;  

 to add details for upcoming events and meetings;  

 to let each other know what they’re up to; 

 to add comments to other team members’ information and pages and  

 to record minutes of meetings in real time. 

(Microsoft, 2016) 
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Yammer page example 

 

 

Yammer document sharing page example 
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Microsoft’s Skype for Business, formerly Lync, is another tool that Microsoft acquired 

and integrated in its SharePoint platform. Skype for Business not only works on 

desktops and mobiles but, most importantly, gives the users a way to communicate 

not only through messages and images, but via voice, video, or document share from 

anywhere with many people at a time, increasing even more the flexibility of the 

system. 

(Microsoft, 2016) 

 

One of the first companies to work in the collaborative market was Lotus, with its 

platform: Lotus Notes. Now owned by IBM, IBM Notes (formerly IBM Lotus Notes) 

brings together a wide array of tools: instant messaging, team rooms, discussion 

forums, and even application widgets. There is also a wide variety of free tools 

available, which can be adapted for one’s purposes. IBM Notes does not use feeds 

like SharePoint but exploits emails to handle communication and focuses on improving 

what emails bring, together with plain text. In one email we can find: 

 all the information on the contact that sent it  

 the text of the email where parts of it can be made as “live text”, which enables the 

recipient to, for example, call phone numbers or open Google Maps to see the 

location cited in the email through a single click 

 options to “like”, “follow” or “share” a document received or that is on the network, 

in order to show appreciation, be notified when changes are made to the document 

or simply share the file. It is also possible to write a personal comment that will later 

be visible for all the community. 

 

The email platform offers the user many features like drag-and-drop, which makes it 

easier to select the recipients and the files to attach. Plus, there is a comprehensive 

search option that allows the user to filter emails by the people involved as senders or 

recipients, subject of the email, date in which it has been sent or simply “any column”, 

which covers everything else. 
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IBM Notes page example 

 

Another great example of a social environment is LinkedIn, which has been widely 

used to provide networking capabilities for business people. A relevant feature is 

LinkedIn groups. A group can be created for any purpose. In order to join a group a 

user can either click on “Ask to join” on the group page or respond to an invitation from 

a group member or manager. Thus, project teams can make use of the already-

developed facilities LinkedIn provides. Using this platform the employees can share 

knowledge and handle team work. This said, there is one big issue regarding LinkedIn: 

lack of confidentiality. Since it cannot be stored on the servers of the company, all the 

information shared online from every member of the enterprise can be seen (at least) 

from the LinkedIn system administrators, which may not be entrusted by the company 

to look at their classified data. While usually this may not pose a threat, often the 

information exchanged regards projects or initiatives that should remain visible only to 

the employees of the company, which sign confidentiality agreements before 

beginning their jobs. While for some organizations it could be just fine to make their 

efforts visible, others like pharmaceutical companies would not agree in sharing details 

on their researches. 
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LinkedIn groups example – Horizon 2020’s LinkedIn group 

 

One might think that the use of these sorts of ad-hoc discussion tools would 

degenerate into chaos. In truth, this rarely happens, even in a social network of 

anonymous users. The largest wiki of all, Wikipedia, is fairly resistant to vandalism and 

ideological battles. The reason for this is “the emergent behaviour of a Pro-Am 

(meaning professional and amateur) swarm of self-appointed curators.” This group of 

curators has self-organized what Anderson terms the most comprehensive 

encyclopaedia in history—creating order from chaos. This is what is called “peer 

production.” (Anderson, 2006) 

 

These are only few of the many ESNs that are out there, trying to give the best platform 

possible to employees of any company. We have covered here only the main features 

of the ESNs considered, but it already shows the potential of social technologies. 
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3.4. Real-Life Stories 

 
The first story we are going to investigate regards a German multinational software 

giant that makes enterprise software to manage business operations and customer 

relations: SAP SE (System analyses and Programme networking; Systems, 

Applications & Products in Data Processing). 

In the early 2000s, SAP encountered increasing challenges in the ways it provided its 

network with information and its customers with support services. At the time, SAP 

used common support channels like email and phone but it did not satisfy the clients. 

Another issue was that potential customers were having trouble determining if SAP’s 

complex software solutions would meet their needs.  

In order to address the communication issues between SAP and its 170,000 clients a 

proper solution had to be found. Experts determined that improving the old channels, 

like adding more staff to existing support channels, would have had minimal impact. 

At the time, online communities were new to the market, used to connect with people 

with similar interests. Nevertheless, SAP had both the resources and the motivation 

to test these new concepts for its service issues. The goal was to enlist clients and 

other stakeholders to join the community to share ideas and solve problems. This way, 

not only SAP could have had a new platform to communicate with the clients in a more 

efficient way, but also customers could work together directly and exchange valuable 

knowledge. Mark Finnern, who went on to become an SAP community evangelist (a 

formally recognized champion of the service), said: “To make it work, we knew we 

would have to put the people in our company on the front line before customers would 

engage. It would be 90% of us and 10% of them at first. But we knew if we did that it 

would eventually be 10% of us and 90% of them.” (Happe, 2010) It is essential for the 

social organizations to commit seriously in order to kick-start participation by 

customers and partners. Using this approach in just two years 100,000 customers 

joined. “By plugging customers into the process of creating reusable knowledge, every 

contribution made both SAP and the community much richer and more useful. What’s 

more, the process was repeatable, scalable and relatively inexpensive compared to 

traditional customer support methods.” (Hinchcliffe & Kim, 2012) The social network 

works every day, 24 hours a day, and delivers high-quality information to stakeholders 
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making the company save on support costs. Moreover, it improves customer retention, 

which is a crucial aspect for a company like SAP.  

 

The second story regards another software giant that develops, manufactures, 

licenses, supports and sells computer software, consumer electronics and personal 

computers and services: Microsoft.  

In 2009, a survey revealed that Microsoft’s partners were less than satisfied with the 

company. Precisely, 62% of them expressed desire for a stronger support that would 

not include just periodical formal email announcements and occasional updates. 

Microsoft executives decided to take action and use the same social media used by 

others to organize quickly and effectively: Twitter and blogs. For each country, a new 

Twitter account was set up to best address the partners while speaking in their own 

language (e.g. https://twitter.com/microsoftfrance or https://twitter.com/microsoftde), 

fostering participation. Microsoft applied a fast read-and-respond strategy that aimed 

at answering as fast as possible to every question/problem. Satisfaction levels 

increased by 15% the first year and 17% in the second while phone calls for assistance 

dropped, substantiating the fact that the program was working. (Klier, 2011) 

 

Many social business transformation stories exist outside the technology industry. Let 

us look at how rethinking existing business processes can affect one of the biggest 

consumer products multinational companies: Procter and Gamble Co. (P&G). 

One of its best-known products, Old Spice, once a customer favourite, was losing 

market share, especially among young consumers. In response, Old Spice used 

advertising slogans like “If your grandfather hadn’t worn it, you wouldn’t exist”, but it 

did little to increase sales. Since the traditional approach did not work, they had to 

figure out a new way to communicate with the customers. The idea they came up with 

required the use of both traditional methods and social media. Following this then-

revolutionary concept, the brand launched a new campaign during the Super Bowl and 

on television, starring actor Isaiah Mustafa. The social media came into play when all 

the television commercials were posted on YouTube, with the @OldSpice Twitter 

account engaging with consumers in real-time. When somebody wrote to @OldSpice, 

Mustafa answered to those messages with new spots posted on YouTube and then 

referenced on Twitter. Advertisements that typically take weeks were produced in a 

https://twitter.com/microsoftfrance
https://twitter.com/microsoftde
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matter of hours, with a copywriter standing by, an actor and a warehouse full of 

costumes where one could shoot the ad. 

 

 
One of the many cited tweets (starring Isaiah Mustafa) 

 

“The wide reach across traditional media kick-started social media participation, which 

then led to compelling two-way conversations in social media between Old Spice and 

consumers.” (Hinchcliffe & Kim, 2012) On the very first day, it received 6 million views 

and in just six months achieved 1.4 billion views. The combined campaign reached 

half of the Internet over its lifetime (Schroeder, 2010). After years of declining sales, 

the new campaign helped increase the sales for Old Spice up by 107% (Griner, 2010). 

At the same time, Old Spice has become the #1 Most Viewed Sponsored YouTube 

Channel (P&G, s.d.). 

 

A good example of crowdsourcing, which is the process of obtaining needed services, 

ideas, or content by soliciting contributions from a large group of people (Merriam-
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Webster, 2016), is the “Goldcorp Challenge”. Goldcorp, a Canadian mining firm, was 

having difficulties finding more gold to prospect on its 55,000 acres in Ontario. In literal 

desperation, it opened up all its 400 megabytes of its valuable prospecting data to the 

geological community for help. Despite worries about loss of secrecy and looking 

foolish for not finding it themselves, they offered a $575,000 in prize for successful 

recommendations. More than one thousand entities from over 50 countries applied 

unique and highly disparate methods to crunch the data, including applied 

mathematics, advanced physics, computer visualization and many other creative 

methods. The success rate was impressive. Over 80% of new targets provided form 

the community yielded useful finds. Ultimately, the challenge unearthed 8 million 

ounces of gold and catapulted the organization form a poorly performing company 

worth a mere $100 million into a $9 billion mining giant in a few years. (Tapscott & 

Williams, 2006) (Hinchcliffe & Kim, 2012) 

 

In 2010, the leaders of NASA’s Marshall Space Flight Centre (MSFC) found 

themselves having to deal with some serious problems. The space shuttle was 

reaching its end of life and the plans for its replacement were not going anywhere 

while the Constellation program and the Ares rockets were being criticized from 

outside scientists and engineers. The Constellation program main goals were the 

"completion of the International Space Station (ISS)" and the "return to the Moon no 

later than 2020" with a crewed flight to the planet Mars as the ultimate goal. The Ares 

rockets, instead, were the program's booster rockets. The ones that had to be used to 

take the shuttle to its destination. (Connolly, 2006). So the shuttle and NASA’s 

programs for the future of space exploration were at risk when President Barack 

Obama announced a proposal to cancel NASA’s program in favour of privatization. As 

MSFC leaders began rethinking the nature and value of the space mission, recognized 

the importance of involving more people in the process of dealing with these 

fundamental questions. They began envisioning how community collaboration could 

help the mission and increase awareness of the value NASA and MSFC provide to the 

world. (Pettus & Bradley, 2009)  

Jonathan Pettus, Chief Information Officer at MSFC, said:  

“We believed that social media could have a significant impact on how 

we pursue our mission. That using it could help us collaborate in new 

ways to build rockets better, but you cannot just put the technology out 
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there and expect big results. It is not that easy. We are not all the way 

there yet, but we are moving forward towards out goals and our focus on 

vision and purpose has provided a foundation for continued progress.” 

(Pettus, 2011) 

 

Organizations like NASA begun to use social media to exploit the advantages of 

community collaboration. Some pursue it sporadically, but some are considering 

involving the “social” part in their day-to-day operations. To give an example on how 

things improved during the years for NASA we can look at the New Horizons space 

probe that, on July 14, 2015, turned all its sensors to Pluto for a 20-hour long flyby. 

Before it went dark – no contact with Earth – New Horizons sent one last chunk of data 

home. Contained therein was the best picture of Pluto in history. When it received that 

image, the agency did something unique: NASA posted the image on Instagram. 

Doing so, NASA allowed people to share and comment not only on Instagram, but 

also on many other social networks all over the world, receiving hundreds of thousands 

of “likes” and comments. From putting the science team on Reddit for an AMA (Ask 

Me Anything) (NASA, 2015) to pulling questions from Twitter during live press 

briefings, the New Horizons mission reached out to millions of fans. Moreover, it is not 

just New Horizons, NASA’s social media strategy is ambitious and, most importantly, 

carefully planned. 

Concerning the need to help its mission, NASA organized a series of call of proposals 

with the aim to complement its research and speed up the development of new 

technologies. They launched competitions for each piece of technology or theory 

needed to move forward in the reach for Mars, coordinating with internal and external 

stakeholders, including academia, industry and other government agencies. As an 

example, the “Sample Return Robot Competition” is going to grant a $1.5 Million 

reward to whoever manages to build a robot that can locate, collect and return geologic 

samples on natural terrain without human control and within a specified time (NASA, 

2016).  

These innovations may enhance NASA's space exploration capabilities and could 

have applications on Earth. All these projects, built outside the agency, are going to 

save it both time and money. As stated by the presidential panel appointed for this 

purpose on 2009, “allowing companies to build and launch their own rockets and 

spacecraft to carry American astronauts into orbit would save money and also free up 
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NASA to focus on more ambitious, longer-term goals.” (Pasztor, 2010) This kind of 

initiatives surely encourages innovation and allows NASA’s employees to go forward 

and tackle the rest of the challenges that need to be addressed before launching the 

next mission. 

 

It is paramount to have a clear vision regarding social media and community 

engagement that states the potential benefits for the organization. A vision statement, 

similar to the Pettus declaration, which expresses these concepts serves two main 

purposes. First, it articulates the belief of leadership in the importance and value of 

community based collaboration. Second, it concretely identifies significant 

opportunities for the firm where such collaboration can add value by helping the 

organization move closer to its goals (Bradley & McDonald, 2011). 

In general, the vision on ESNs is that everybody inside and outside of an organization, 

from the CEO (Chief Executive Officer) to the newcomers, from the partners to the 

customers and the fans, can provide a solution to a company’s problem or have 

anyway a meaningful impact in a project’s development. The Internet has enabled 

everyone to learn everything. Hence, a 12-years-old boy or girl can now be more 

knowledgeable on a subject than a 30-years-old can just because the latter lacked the 

passion needed to study the subject in detail. Considering this, it becomes easy to 

understand the truth is this vision. 

 

 

3.5. Benefits of Knowledge Management Systems (KMSs) and 

Enterprise Social Networks (ESNs) 

 

The main principles when talking about social businesses, KMSs and ESNs are the 

following:  

I. Harnessing collective intelligence implies benefiting from the cumulative 

expertise of a group, rather than an individual, to make decisions 

(Lykourentzou, et al., 2010).  
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II. Authoring is important to elicit the contribution of every person to collaborative 

efforts or products and the contribution of any kind, whether it is knowledge, 

insight, experience, a comment, a fact, an edit, a link and so on (McAfee, 2006).  

III. Folksonomies are user-generated classifications enabled by tagging. They 

reflect the information structures and relationships that people actually use, not 

a classification planned before. Besides, user tags reflect the popularity of 

subjects and identify knowledge pieces most used by employees. Since they 

are generated without control, they can be redundant. In any case, they create 

a one-level classification (McAfee, 2006). 

IV. Reputation of an author or an object (a wiki article, blog, etc…) is defined not 

by some set of characteristics but by the number of links directing to the object; 

number of followers, “likes” etc... In order to make this principle work many 

people must have the ability to build and share links, in general to express one’s 

appreciation. This principle is highly dependent on the number of participants 

in a network.  

V. Recommendations are used to propose to users the items most relevant to their 

interests based on their previous behaviour (McAfee, 2006).  

VI. Signals (RSS, notifications) are useful to notify users when new content of 

interest, comment, new post or reply appears. 

VII. “Wisdom of crowds” effect implies that a large number of people making small 

contributions can create a quality product (Kittur & Kraut, 2008).  

VIII. Network Externalities or “network effect” means that the more users a system 

has the more valuable it becomes for every single user (Kim, et al., 2009). 

 

If the principles stated above are respected, using KMSs together with ESNs creates 

many benefits for an organization. Hereunder are explained the most important ones. 

 

1. Enabling better and faster decision making 

When faced with the need to respond to a customer, solve a problem, analyse trends, 

assess markets, benchmark against peers, understand competition, create new 

offerings, to plan strategy and think critically one typically looks for the information and 

the resources needed to support these activities. By delivering relevant information at 
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the right time through structure, search, subscription, syndication and support, a 

knowledge management environment like the ESNs can provide the knowledge 

necessary to take well-thought decisions. The power of collaboration remains in 

bringing together a large number of people with diverse opinions and experiences that 

will allow the discovery of the best-fitting solutions.  

 

2. Reusing ideas, documents, and expertise 

Once the company develops an effective process, it will be desirable to share that 

knowledge and let others use the same process each time a similar problem arises, 

avoiding redundant efforts. “No one likes to spend time doing something over again” 

(Garfield, 2014). Just as the recycling of materials is good for the environment, reuse 

is good for organizations because it minimizes rework, prevents risks, saves time and 

money, keeps employees morale up and accelerates progress. This approach allows 

employees to learn how things are done, leads to predictable and high-quality results 

and enables large organizations to be consistent in how work is performed. Moreover, 

the reuse of knowledge allows the outcomes to be based on actual experiences, 

making the task easier for everyone involved. 

 

3. Accelerating delivery to customers 

Speed of execution is another important differentiator among competitors. All other 

things being equal, the company that can deliver sooner wins. Knowledge sharing, 

reuse and innovation can significantly reduce the time needed to deliver a proposal, 

product or service to a customer. 

 

4. Avoiding making the same mistakes twice 

George Santayana said, "Those who ignore history are doomed to repeat it." 

Knowledge management allows the sharing of the lessons learned not only about 

successes but also about failures. In order to do so the organization must have a 

culture of trust, openness, and reward for willingness to talk about what someone did 

wrong. The potential benefits are enormous. We can give many examples. Think of 

NASA, if it learns why a space shuttle exploded, it can prevent it to happen again and 

save lives. If FEMA (Federal Emergency Management Agency) learns what went 

wrong in responding to Hurricane Katrina, it can reduce the losses caused by future 

disasters. If engineers learn why highways and buildings collapsed during a previous 

http://www.fema.gov/
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earthquake, they can design new ones to better withstand future earthquakes. 

(Garfield, 2014) 

 

5. Communicating important information widely and quickly 

There are two arguments that should be considered in this matter. First, when working 

in a team of 10 people it is easy to talk and share information with every other member. 

As the number of people increases, though, communication becomes increasingly 

difficult. It is fundamental to actively enable the organization to leverage its size. 

Second, since almost everyone today is an information worker either completely or 

partially, we all need information to do our jobs effectively. A problem that can arise 

today when reaching for information is called “information overload”: it refers to the 

difficulty a person can have understanding an issue and making decisions caused by 

the presence of too much information.  

How can we get to everyone in the company information that is targeted, useful, and 

timely without drowning in a sea of email, having to visit hundreds of web sites, or 

reading through tons of printed material? Knowledge management helps address this 

problem through personalized portals, targeted subscriptions, RSS feeds, tagging, 

and specialized search engines. To best share the knowledge with the rest of the 

organization we can make use of tools like community discussion forums, training 

events, ask the expert systems, recorded presentations, podcasts and blogs. 

 

6. Showing customers how knowledge is used for their benefit 

In competitive situations, it is important to be able to differentiate yourself from other 

firms. Demonstrating to potential and current customers that the enterprise has 

widespread expertise and has ways of bringing it to bear for their benefit can help 

convince them to start or continue doing business with the company. Conversely, 

failure to do so could leave the company vulnerable to competitors who can 

demonstrate their knowledge management capabilities and benefits. (Garfield, 2014) 

 

Between the researches on the subject, an interesting interview nicely explains some 

of the benefits of using an ESN: 

“We made knowledge maps – knowledge areas and persons and put this in the 

system. I like it and I know that younger generation loves it, too. The older 

generation says they know everybody. But it is interesting to have this 
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discussion between the older and the younger people, saying “You know 

everybody, but I can’t get into your network” – “Then just call me”. But then he 

(an expert in some field) starts complaining that he is constantly being 

questioned about trivial things. Then he realizes that it is interesting to write it 

down. Besides, I can always say that if you have a question about 

manufacturing engineering ask “Jan”, because he knows everybody, who 

knows something about the question. But then Jan will start to complain for 

constantly being bothered by people with some questions. And then they agree 

on writing down who knows what.” (Gordeyeva, 2010) 

 

 

3.6. The Right ESN 

 

In the previous sections and chapters, we have talked about a wide variety of social 

networks and tools. The reason why we did so is to introduce the concept of Enterprise 

Social Networks and give a more comprehensive view on the subject. It is necessary 

now to state that even if we introduced many examples and considered many 

technologies, when talking about social media the focus should never be on 

technology but on conversations between people, since it is the conversations that 

have the power to influence opinions. Billions of conversations take place every day 

about new products, new promotions, the prices of the goods and services and the 

opinions (both good and bad) of the customers on a brand (Keller, 2007). These types 

of conversations strongly affect the opinions and the purchasing behaviour of the 

consumers. (InSites Consulting, 2012) Even if the majority of conversations of this kind 

takes place offline (InSites Consulting, 2009), online conversations have the 

advantages to be able to reach large audiences quickly, easily and cheaply. Numerous 

studies have underlined the relationship between positive conversations and good 

sales figures (Herr, et al., 1991). Being able to exploit this potential can increase 

people’s perception of the company and this will not only increase the sales, but also 

make it easier to recruit new talented staff. 

The highest proportion of unused conversation potential can be found among 

customers and staff. Everyone will agree that satisfied customers are important. 

Satisfied customers who talk about the company are even more important. A 
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European survey of various sectors showed that 28 percent of customers were very 

satisfied with particular products or services they received, but did not talk with anyone 

about them (Bellenghem, 2012). In other words, almost a third of the consumers had 

a good experience of a product or service but said nothing about it to anyone. It is 

clear that the amount of unused conversation potential cited before can be quite 

alarming. Reducing the level of unused conversation potential makes a company have 

a wider reach and greater impact in everything it does, from the development stage to 

the customer relationship management. 

 

In order to choose the ESN that best fits an organization, and that will likely increase 

conversations on their products and services, there are many factors to take into 

consideration.  

First, does the company need its products and services to be developed and improved 

within a community of people or is it fine to use the traditional approach that limits a 

specific team of employees to work on them? 

To limit the number of employees working on a project makes it easy to the 

team to work as a unit and have good communication. This said, it also limits 

the amount of innovation put in the development phase and it does not 

guarantee that all the knowledge needed to build a product or service is already 

in the team. New requirements may come up and new technologies be 

considered while brainstorming the new service or product and it would be 

useful to be able to easily spot who can help or manage to read a report on a 

previous project developed with that technology. 

Second, does the company need a way to build knowledge retention and knowledge 

search or does it just want to improve the way it communicates the news to the 

consumers? 

A simple Facebook page or Twitter account, possibly supported by an 

Instagram or YouTube channel, could be enough to engage the customers and 

raise the awareness on the brand. Yet Twitter’s 140 characters cannot really 

be knowledge. There is not much that can be written there. One can put a 

question or an answer. Still, it facilitates conversation since writing a short 

message does not require major efforts. On the other hand, if the goal is to 

collect knowledge to be used in the future by any of the stakeholders, than a 

Twitter account will not be enough. In this case, a dedicated ESN can be the 
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right solution, since it helps making personal and corporate knowledge more 

visible and accessible for everybody. 

Third, does the company need its partners to be able to contact any of the employees 

in order to get the best answers to their questions or is it preferable to have a single 

element in the organization to take care of this kind of public relations? 

Without social tools, there would probably be a single person responsible for 

the client. If that person is an expert on the field it could already be enough. 

This said, the enterprise might want to speed up the learning curve of its 

employees and be sure that its workers can always find the answers they need 

for their client in little time. Social networking tools create social presence 

(which means having some information about each person on the network) and 

context for communication, so that a person’s job, title and responsibilities are 

visible to everyone else. Thanks to this, both partners and colleagues are able 

to recognise when somebody is the right person to contact or not. 

Fourth, is it important to the managers to talk with any other employee easily or do 

they prefer a more hierarchical arrangement, where a worker can speak only to his 

peers and its direct supervisor? 

With a hierarchical approach, the work environment is a more predictable and 

manageable place where everyone just follows what the management says. In 

this kind of circumstances, only few people can take initiatives. Using dedicated 

Enterprise Social Networks flattens the traditional chain of command making 

any member of the company, including the managers and chiefs, more 

approachable. This allows everyone to obtain knowledge and get a feedback 

from any employee while highlighting the most useful interventions, which will 

receive more “likes” or similar tokens of appreciation. This way it is harder for 

the management to play their role, but it uses this wider reach to get better 

ideas from many more sources. 

Fifth, how confidential is the information that is going to be exchanged on the network? 

The traditional approach keeps using closed systems, like emails, that shield 

the company from involuntarily leaking data outside the intranet. Having a more 

open approach, on the other hand, gives the company all the benefits that we 

discussed earlier. 
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Questions like these help narrowing down the characteristics that an enterprise is 

looking for. Once those are known, a proper ESN can be chosen or even developed 

from scratches. It cannot be emphasized enough, though, that having a tool as an 

ESN does not mean that it is going to be used as much as expected. It is crucial when 

becoming a social organization to have a Vision and a Culture that supports it. Without 

these two elements, the best ESN is useless. Moreover, using a social approach does 

not simply mean that the enterprise gets another tool. It is necessary to rethink the 

way the company does business, because it is going to alter all the processes used to 

build the final products and services. “Social business amplifies partner activities by 

driving network effects and other ecosystem benefits, such as having the organization 

come together with all of its partner companies to market, sell, innovate, support or 

otherwise accomplish business objectives” (Hinchcliffe & Kim, 2012). This means that 

the company will have to take into account all the entities involved instead of deciding 

by itself. 
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4. CERN as a Social Organization 

 

This chapter will introduce CERN and present Social, its enterprise social network. 

 

 

4.1. CERN 

 

At the end of the Second World War, European science was no longer world-class. 

Following the example of international organizations, a handful of visionary scientists 

imagined creating a European atomic physics laboratory. Raoul Dautry, Pierre Auger 

and Lew Kowarski in France, Edoardo Amaldi in Italy and Niels Bohr in Denmark were 

among these pioneers. Such a laboratory would not only unite European scientists but 

also allow them to share the increasing costs of nuclear physics facilities. 

French physicist Louis de Broglie put forward the first official proposal for the creation 

of a European laboratory at the European Cultural Conference, which opened in 

Lausanne on 9 December 1949. A further push came at the fifth UNESCO General 

Conference, held in Florence in June 1950, where American physicist and Nobel 

laureate Isidor Rabi tabled a resolution authorizing UNESCO to "assist and encourage 

the formation of regional research laboratories in order to increase international 

scientific collaboration…" 

At an intergovernmental meeting of UNESCO in Paris in December 1951, the first 

resolution concerning the establishment of a European Council for Nuclear Research 

(Conseil Européen pour la Recherche Nucléaire) was adopted. Two months later, 11 

countries signed an agreement establishing the provisional council – the acronym 

CERN was born (CERN, 2016). 
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On 17 May, 1954, the first shovel of earth was dug on the Meyrin site in Switzerland under 

the eyes of Geneva officials and members of CERN staff. 

 

At CERN, many experiments are carried out at the same time with one main goal, to 

understand the fundamental structure of the universe and push the boundaries of the 

human knowledge a little further. Physicists and engineers use state-of-the-art 

technology and most complex scientific instruments to study the basic constituents of 

matter – the fundamental particles. The particles are accelerated close to the speed 

of light and made to collide together in order to split and reveal the sub-particles they 

are made of. The process gives clues about how the particles interact and provides 

insights into the fundamental laws of nature. 

The instruments used at CERN are purpose-built particle accelerators, like the Large 

Hadron Collider (LHC), and detectors. Accelerators boost beams of particles to high 

energies before the beams are made to collide with each other or with stationary 

targets. Detectors observe and record the results of these collisions. Approximately 

600 million times per second, particles collide within the Large Hadron Collider (LHC). 

Each collision generates particles that often decay in complex ways into even more 

particles. Electronic circuits record the passage of each particle through a detector as 
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a series of electronic signals, and send the data to the CERN Data Centre (DC) for 

digital reconstruction. The digitized summary is recorded as a "collision event". 

Physicists must then sift through the 30 petabytes or so of data produced annually to 

determine if the collisions have thrown up any interesting physics (CERN, 2016). 

 

Founded in 1954, the CERN laboratory sits astride the Franco-Swiss border near 

Geneva. It was one of Europe's first joint ventures and now has 22 member states. 

 

 

CERN’s member states 

 

 

4.2. CERN Communications Strategy 

 

On June 28 2010, Rolf Heuer, the Ex Director General (DG) of CERN, decided to invite 

the InterAction Collaboration to conduct a peer review of the communication, outreach 

and education activities at the CERN Laboratory. The purpose was “to develop internal 

communication, local communication and communication at the political level”. 

On November of the same year, after extensive presentations and discussion with 

CERN management and staff, the review committee delivered its final report at a 
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closeout that included the Director General and multiple members of the senior 

management. In the report, between the many, there is a specific section regarding 

“Publications, Web and Social Media” where the findings, comments and 

recommendations of the review on the subject are summarized. It is important to 

consider all these parts in order to fully understand the situation in 2010 and the 

recommendations given. 

Findings: 

 CERN publishes a very wide range of printed materials:  

 The CERN Courier is a much-respected traditional publication and 

targeted for the scientific community.  

 The Bulletin is very heavy to produce:  

o It is a hybrid publication: half of the contents are printed, and 

everything is posted on the Web.  

o The Bulletin does produce high-quality contents that are 

suitable for internal and external readers.  

 CERN prepares brochures in many languages. These brochures 

contain appropriate contents for first time visitors.  

 The Communication Group publishes the CERN Annual Report each 

year, which is a significant time commitment for the communication 

staff.  

 The Web specialists in the CERN Communication Group are introducing a new 

content management system with the help of appropriate expertise from the IT 

division.  

 A new domain name to represent CERN’s global status is being discussed: 

cern.org.  

 CERN does have a very visible presence on Twitter: approximately 208,000 

followers, “No. 1 in the scientific category”  

 CERN provides timely updates of developing events. For example, CERN used 

the Web and Twitter to post regular updates from the First Physics event.  

 The CERN Courier has a different domain name: cerncourier.com, operated by 

the Institute of Physics. 
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Comments: 

 The staff is highly motivated to produce high quality articles:  

 Translating the articles into multiple languages takes a large amount of 

human resources and tends to slow down the process.  

 The contents and exact wording require delicate proof readings, given 

the diplomatic and scientific situation of CERN.  

 An effort to make Web content more easily manageable is commendable.  

 The target audiences for each medium are mixed:  

 No regular publications for non-technical audiences or for the general 

public exist. 

 Brochure content could be more coherent with the Web. 

 The CERN Courier is not visible on the CERN website.  

 Many articles in the Bulletin are good and interesting to internal and 

external readers, including journalists. 

 The Bulletin might be much more effective if articles are posted and updated 

daily. 

 Website coherency is an issue  

 No one is in charge of editorial management of the Web, which leads to 

the lack of long term and daily decision-making. 

 

Recommendations: 

 Push ahead with the reorganisation of the CERN website. 

 Consider adding contract support to the CERN team to support this goal. 

 Use the reorganisation of the website to strengthen the brand image of CERN 

and to restructure how target audiences reach news, bulletins and the CERN 

Courier.  

 Synchronise the printing process with Web publishing.  

 Establish a coherent mechanism to share information among staff writers and 

editors.  

 Better utilise the power of the Web to reach the general public:  

 Daily CERN news, scientific news  

 Implement a process to evaluate the real time impact of publications, Web and 

social media.  
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 Develop a social media policy and plan. 

(InterAction Collaboration, 2010) 
 

As we can see, the focus is on creating a plan to handle the news and delivering the 

information to the right audiences at the right time exploiting the Web. In fact, “the role 

of communications is to plan strategically, manage and sustain an organization’s 

relationship with key audiences, taking responsibility for the organization’s reputation 

and thereby helping the leadership to achieve its strategic and operational goals” 

(CERN IR-ECO group, 2016). As such, communications is an integral part of 

management responsibility. Mainly, people with management-level accountabilities at 

CERN are the Director General and the Directorate, which assists the DG and runs 

the laboratory through a structure of departments. The Directorate is formed by the 

chiefs of the following areas: 

 Accelerators and Technology,  currently Frédérick Bordry 

 Research and Computing,   currently Eckhard Elsen 

 Finance and Human Resources, currently Martin Steinacher 

 International Relations,  currently Charlotte Warakaulle 

 

Between the many groups forming the International Relations sector, the 

Communications group (DG-CO) is the most interesting for the purpose of the thesis. 

Its mandate is to generate public engagement in science, to produce and distribute 

information, to foster community building and to build support for CERN and its 

missions. The key audiences are: 

 The general public – to foster engagement with scientific issues 

 The scientific community – to provide information about CERN's activities 

 Science and technology decision makers – to promote CERN's activities 

 The CERN community – to provide information and build motivation 

 Local communities – to provide information and promote events, including 

activities for local schools 

(CERN IR-ECO group, 2016) 

 

The recommendations from the Interactive Collaboration have been of great help 

devising where to focus resources and time. In support to the review from the 

http://press.web.cern.ch/biographies/frederick-bordry-born-1954-french
http://press.web.cern.ch/biographies/eckhard-elsen-born-1955-german
http://press.web.cern.ch/biographies/martin-steinacher-born-1958-swiss
http://press.web.cern.ch/biographies/charlotte-lindberg-warakaulle-born-1970-danish
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Interactive Collaboration, the CERN communications group (IR-ECO) worked on 

redacting a more exhaustive document that could provide valuable knowledge to the 

directorate in order to take the necessary steps to further improve communications at 

CERN.  

Presented in October 2011, the “CERN communications strategy 2012-2016” was a 

draft document that outlined the strategic vision for official communications at CERN 

and was the product of many months of consultation with key stakeholders by the 

communications group. It had been informed by independent research conducted by 

external partners, as well as the peer review process led by the InterAction 

Collaboration. Its purpose was to generate and secure sustained political, financial 

and popular support for CERN’s scientific and societal missions from all its stakeholder 

groups. One of the tools used to achieve that goal is Social media. They are a 

component of the CERN communication strategy and are used in order to disseminate 

information.  

By 2014, the CERN Computer Security Team wrote the guidelines (CERN Computer 

Security team, 2014) regarding the use of Social Media from its contributors (i.e. staff 

members, fellows, apprentices, associates, users or students), who comment 

professionally or privately about their activities at CERN using Social Media. They refer 

to the CERN Code of Conduct (CERN, 2015) and explain what is considered a proper 

behaviour on the network. Its talks about all the aspects that can interest a user when 

going online, like the use of the CERN’s logo, confidential information, intellectual 

property, how to handle differences in opinion and gives contacts for everyone who 

needs to ask a question or need an advice about the Social Media policy. This way 

everyone can have a reference on how to use the Media. 

“Through the DG-CO group CERN devotes about 0.25% of its resources to the 

organization communications function with further resources being deployed in other 

Departments and Groups. At a time of unprecedented, global reputational potential for 

CERN, the current resource levels and structures entail reputational risks for the 

Organisation. These risks can also have a direct influence on the Organization’s 

budget and ability to operate. The communications strategy defines the messaging 

architecture, maps out target audiences, and formulates key messages and proof 

points. It also proposes a structural alignment of CERN’s communications functions in 

order to mitigate the risks and, just as importantly, to ensure that CERN is fit to meet 
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the communications requirements of its stakeholders in the second decade of the 

21st century”. (CERN IR-ECO group, 2016) 

 

 

4.3. Social at CERN 

 

There are three main strands to the social media strategy: 

1. Begin a journey 

Key messages are disseminated by repackaging CERN’s online content for the 

different social media channels. Most social media content contains links 

forwarding back to the CERN website, starting a journey for the user to find out 

more. 

2. Foster engagement 

CERN’s presence on social media channels fosters engagement in the public 

and helps to form an online community of stakeholders interested in the 

laboratory and its work. The level of engagement, through the shares, likes and 

comments, on CERN information is regularly monitored. 

3. Retain positive sentiment 

Social media is a way to reach the public and to monitor sentiment towards the 

organization. By keeping the sentiment positive and handling the negative 

sentiment constructively, by responding as appropriate to questions or 

concerns, CERN’s strong brand identity is retained. 

(CERN, 2016) 

 

CERN began using the social media channels in 2008. By August 2014, its Twitter 

account had more than a million followers keen to find out news about the organization. 

“During the 4 July 2012 Higgs announcement CERN’s live tweets reached journalists 

faster than the press release and helped contribute to worldwide coverage of the 

particle discovery and an October 2013 study (Lüfkens, 2013) cited CERN as the most 

effective international organization on Twitter” (CERN, 2016). 

Currently active on Twitter, Facebook, YouTube, Google+, Instagram and LinkedIn, 

CERN is actively working on engaging its fans and followers, providing insights in the 

everyday work of thousands of scientists and answering to every question on their 
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work. The most important questions and answers are collected and displayed on the 

CERN Media and Press Relations webpage, like: 

 Is the Large Hadron Collider dangerous? 

No. Although powerful for an accelerator, the energy reached in the Large 

Hadron Collider (LHC) is modest by nature’s standards.  Cosmic 

rays – particles produced by events in outer space – collide with particles in the 

Earth’s atmosphere at much greater energies than those of the LHC. These 

cosmic rays have been bombarding the Earth’s atmosphere as well as other 

astronomical bodies since these bodies were formed, with no harmful 

consequences. These planets and stars have stayed intact despite these higher 

energy collisions over billions of years. 

 What happened with the LHC in 2015 and what does CERN plan to do in 2016? 

The Large Hadron Collider (LHC) restarted at a collision energy of 13 

teraelectronvolts (TeV) in June 2015. Throughout September and October 

2015, CERN gradually increased the number of collisions, while remaining at 

the same energy. In November, as with previous LHC runs, the machine run 

with lead ions instead of protons until mid-December when it had its winter 

technical stop. The most powerful collider in the world was switched back on in 

March 2016, followed by a period of tests. After a period of commissioning, the 

LHC experiments began taking physics data for 2016. Over the coming months, 

the LHC operators plan to increase the intensity of the beams so that the 

machine produces a larger number of collisions. This will enable physicists to 

have a better understanding of fundamental physics. Towards the end of year 

the machine will be set up for a four-week run colliding protons with lead ions. 

 Why is the Higgs boson referred to as the God particle? 

The Higgs boson is the linchpin of the Standard Model of particle physics but 

experimental physicists were not able to observe it until the arrival of the LHC, 

nearly 50 years after the particle was first postulated. Leon Lederman coined 

the term ‘the God particle’ in his popular 1993 book ‘The God Particle: If the 

Universe Is the Answer, What is the Question?’ written with Dick Teresi. In their 

book, Lederman and Teresi claim the nickname originated because the 

publisher would not allow them to call it ‘the Goddamn Particle’ – a name that 

reflected the difficulty in observing the elusive boson. The name caught on 
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through the media attention it attracted but is disliked by both clerics and 

scientists. 

(CERN Media and Press Relations, 2016) 

 

Usually every answer carries one or more hyperlinks to direct the users to other web 

pages on the CERN site that can better explain the subject. 

 

 
CERN’s Twitter page 

 

Since CERN is a public non-profit organization and does not produce any product or 

service to sell, its objective is not to make advertising campaigns like Old Spice nor to 

ask for suggestions from the public on how to build particle accelerators. The goal is 



79 
 

the sharing of knowledge on new discoveries and increase awareness on what kind 

of experiments are being carried on and why.  

 

Being on many public social networks lets CERN take care of its fans and followers, 

but does not help its employees. In order to give the proper support to its personnel, it 

has to adopt a different system.  

One approach uses emails to exchange knowledge. Primarily used for communication, 

thanks to its flexibility it now also serves as to-do list, personal information 

management tool, archive, mechanism to foster coordination and collaboration among 

colleagues and source for assigning and delegating tasks (Mark & Voida, 2012). In 

summary, its usage goes well beyond what it was originally built for, making us 

checking email about 36 times an hour (Renaud, et al., 2006).  

Looking at the research about social media, we find that another possible approach 

considers ESNs. They started taking an important role inside organizations, with 

Gartner stating that, by 2016 50% of large organizations will have ESN and 30% of 

these will be considered as essential as email is today (Gartner, 2013). This clearly 

indicates that the private sector realized the potential benefits and, at the same time, 

the current workforce is getting more and more adapted to ESN, setting them as a 

natural and essential tool at the workplace. We also know that ESNs allow solving 

problems faster and better as knowledge becomes available and searchable. Instead 

of seeking colleagues, one can go directly to the ESN and search for an answer. If no 

results are found, questions can be posted very quickly on a lightweight and informal 

way without causing interruptions. In a sense, ESNs can become an “internal Google” 

to find relevant answers. ESNs empower people, everyone has an equal voice, it 

encourages people to speak up giving them an opportunity to make meaningful 

contributions with their skills and ideas, and again leveraging innovation. It increases 

engagement by humanizing the way in which people work (Li, 2012), opposing to the 

classic and formal way to communicate provided by email.  

 

We can say that an experimental study has shown that people deprived of email 

multitasked less had longer focus and even lower levels of stress (Mark & Voida, 

2012). Using an ESN would allow us to keep the email channel for formal 

communication while deferring informational emails to pull-oriented channels like the 

ESN or RSS feeds. Email is also not adapted for all kind of communications. For 
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example, the case of the “reply-all syndrome”, when every employee willing to answer 

an email replies to everyone and causes everyone to receive a huge number of emails 

to read. It can cause all kind of reactions on members of a distribution list. At the same 

time, how many times opportunities for a constructive dialog or opinion were missed 

just because email is not suited? Knowledge residing inside mailboxes is locked. The 

amount of knowledge that is inaccessible to others and eventually deleted (when the 

mailbox owner leaves the organization) is unmeasurable. ESN’s by their nature, as 

open communication platforms where everyone has an equal voice, can clearly unlock 

opportunities for collaboration and capture existing knowledge for everyone. 

Choosing between ESN and RSS technologies, we notice that RSS feed is a pull 

communication channel, thus the information is published and then gathered by the 

consumers, but it does not offer social interaction features – e.g. comments, sharing 

or networking. (De Sousa, et al., 2015) These reasons brought to the adoption of an 

ESN. 

Another aspect to consider when approaching social media is how to build the 

network. Many questions arise, like: Do we want to build the enterprise social network 

from scratches or do we want to use one that is already online, like Trello? Do we need 

a specific one? In case we want to have a private ESN, do we have to build it or not? 

Do we have any reason to distrust the ones available on the market? In case we want 

to use a software like Oracle’s Beehive to set up our private social network, what 

software should we use between the many? 

Like many agencies, CERN considers much of the information exchanged between 

employees as classified, so in this case it is not possible to choose an existing social 

network as platform for the CERN social network. This is because all the information 

exchanged on social networks like Trello has to be stored on their servers, thus 

violating confidentiality. In particular, sharing specifics about the developed projects 

could give the hackers and crackers, individuals with extensive computer knowledge 

whose purpose is to breach or bypass internet security or gain access to software 

without paying royalties, which daily try to violate the CERN network useful material to 

exploit the hypothetical vulnerabilities of the system. The best solution is to maintain 

the data inside CERN at all times using a private ESN. At this point, the choice is 

between building the ESN from zero or adopt one of the many management platforms 

available on the market. The management at CERN decided that the best choice 

would be to follow the latter option and selected SharePoint to be the best platform. 
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On March 2014, the pilot service bringing social networking capabilities for CERN 

people started (De Sousa, 2014). Available at the address https://social.cern.ch, 

Social introduces a lightweight communication channel, which aims to become a 

central tool for people to follow and interact with information and at the same time 

enrich existing communication channels with social features. The goal is to achieve 

the potential benefits of an ESN by proposing rich profiles along with microblogging 

features to communicate and share with CERN people.  

Social main components are: 

 Blogs and Wikis 

 Personal homepages 

 Calendaring and Task Managing features 

 Communities and Workgroups 

 Microblogs and Instant Messaging 

 Social Network 

 Suggestion System and Social Voting 

 OneDrive for Business 

 

Blogs and Wikis are available for anyone who wants to share knowledge, create a 

personal website or start a wiki on a particular topic. Each of them can be accessed 

from Social and users are able to comment and share the content. 

Profiles are pre-filled with basic contact information like phone number, email address 

and office location. Moreover, users can add their photo and information about 

themselves, like areas of knowledge, past projects, relevant experiences or interests 

that will help on the discovery of expertise on the network. This is extremely useful in 

this kind of environment because of the broad range of skills of the employees and it 

can help creating opportunities for new projects and collaborations. Social profiles also 

include the activities made on the platform (as messages shared with everyone), 

followed people, participation on communities or liked content. This makes profiles 

rich and constantly updated with the latest information depending on the person’s 

activity. At the same time, activities automatically shared can be configured on the 

profile’s settings in order to adapt to the preferences of the user. As a platform open 

to everyone at CERN, the variety of the content can be broad and thus not relevant to 

https://social.cern.ch/
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all. The solution adopted makes it possible to follow content either by person or by 

hashtag, making the consumption easy and customizable. This allows the users to 

decide what content will be shown on their personal homepages after login. 

Workgroups let team members express themselves on the work in progress, discuss 

about it and ask for suggestions from the colleagues while been sure that only the 

members will be able to see them and participate. This is useful in order to have a 

private section where only the messages regarding one project are posted and, at the 

same time, keep the information classified. Specific tools have been implemented for 

workgroups, like a calendar where the members can add their tasks and their 

deadlines, so that the rest of the team can program in advance the next steps. 

Microblogging is at the hearth of Social – known as the Newsfeed. Using the textbox 

available on the top of the homepage, one can very easily broadcast a message to 

everyone or a limited group of people. Hashtags can be used to add context and 

meaning to a post e.g. #chep2015, making it easier to find content or even get insights 

of current trends on what people is talking about. To catch the attention from someone 

the character @ appended by the person’s name, can be used for mentions. Social 

interaction happens by adding comments to posts for conversation or giving “likes” for 

public validation and relevance.  
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Social Newsfeed example 

 

SharePoint query suggestions are phrases that we want the search system to suggest 

to users as they start typing a query. They help make any research in the system 

quicker and help filling the blanks when one cannot remember the full name or there 

are more people with similar credentials. Social voting is another way to collect 

feedback from the network, where an opinion can be expressed using one of many 

options like the thumb up/thumb down system or the star system, where a user 

express their vote on a scale from one to five stars. 

OneDrive for Business is the default document library in a user's “My Sites” section in 

SharePoint Server 2013 or SharePoint Online. The contents of the library can 

optionally be synchronized with one or more of the user's computers or devices. 

OneDrive for Business ensures that users’ business files are stored in a central 

location. Storing business files in one location makes it easy for users to share and 

collaborate on documents. Using Office 365 for enterprises, one can also reduce the 

on-premises storage costs by moving the users' files to the cloud. 
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SharePoint OneDrive for Business page example 

 

The features described above can also be used by CERN Service Accounts (CERN, 

2015) making it possible for CERN services or events to be organized on Social to 

communicate with everyone. An example are the IT Lightning Talks (ITLT), which “are 

regular sessions of 5-10 short presentations (maximum 5 minutes long) on any topic 

related to computing technology or to the IT department with the goal to have a 

lightweight, informal and open communication channel, where everyone can share 

experience, seek advice, propose ideas, find others interested, brainstorm, team-up... 

and maybe create the next IT revolution!” (CERN, s.d.). ITLT use Social to publicize 

presentations and, at the same time, promote discussion on the presented topics.  

Social also provides the grounds to build communities where people sharing similar 

interests can discuss about a topic, on a “questions and answers” oriented format, 

similar to discussion forums. A Social Community takes form on a dedicated website 

that can be created by CERN people using WebServices (CERN, s.d.). Those are 

easily customizable in terms of look and feel. Permissions access is very flexible, 

communities can be restricted to determined individuals, groups like CERN e-groups 

(CERN, s.d.) or even people outside CERN whom can sign-in with public service 

accounts like Facebook, Google or Microsoft account. There is a large set of features 

to make the administration of the communities effortless and adapted to the needs, 

like categories to organize discussions, badges, reputation settings for participants 

and options for moderation. (De Sousa, et al., 2015) A very popular example of a 

Social Community is the CERN Market (CERN, s.d.). 
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CERN Market’s Social Community page 
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Social Community Reputation and Badges settings page 

 

Social Communities are directly connected with Social Newsfeed. Hashtags and 

mentions can also be used on community posts, thus if a followed hashtag is used it 

will be visible in the Newsfeed (or Yammer) page, even if the user is not aware that 

the community exists. This makes the Social Newsfeed (or Yammer) the single place 

where all the relevant content will be presented. At the same time, email based alerts 

are available on communities, as it can be useful for the owners or most active 

members. Email alerts can be triggered every time an activity occurs or be a summary 

scheduled either daily or weekly at specific times. Social Communities can be explored 

from a dedicated site exposing them by popularity. 

 

The integration of Social with the existing Web environment is very important in order 

to extend its usage to other contexts. Social is tightly integrated with the Collaboration 

Workspaces through the implementation of microblogging in the context of team 

collaborations for specific projects or services. This approach has shown very good 
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results in the context of the CERN WebServices team by increasing the 

communication flow between team members that are responsible for different 

platforms based on different technologies. This allowed to build better team spirit and 

create synergies between the functional elements of the service.  

By means of a REST API (CERN, 2014) a set of Drupal modules (CERN, 2014) is 

available to introduce social features and content to existing CERN websites. It is 

possible to embed information about a specific profile, show all conversations with a 

known hashtag or list the picture and contact details of all members of a known 

department or group at CERN (De Sousa, et al., 2015). 

 

 
Posts from a 

  specific profile 

Posts with a specific hashtag 

(#drupal) 

All members of a 

specific group (IT/OIS) 

 

 

4.3.1. System Architecture 

 

An application’s design is the set of activities aimed at identifying the best solution in 

order to meet the functional (and non-functional) objectives expected by the customer 

and the end user. These activities can be of various kinds, be carried out at different 

times and different ways depending on the approach used. In general, they help the 

architect and the development team to take important decisions, often of a structural 

nature. Design shares with programming the tendency to use an abstract 
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representation of the information and the logical sequence of development steps, but 

the level of detail in the two cases is different. The design builds a representation of 

the software that considers many aspects. It focuses on the structure of the system 

and the existing relations between the constituent parts, identifies the logical 

operations that must be carried out and identifies the way in which the system can 

interact with the outside world. 

The result of the design is the definition of the system architecture, meaning the 

structural organization of the system itself, which includes its software components, 

the externally visible properties of each of them (the interfaces) and the relationships 

between the parties. In this case, "software component" means any entity forming part 

of a system, at different levels of detail and granularity, from the simple application 

module (for example, a class in an application based on the object-oriented paradigm) 

to the complex subsystem (for example, a DBMS or an LDAP server) (Bass, et al., 

2003). In line with the definitions given, we can say that every software system has its 

own architecture since each system can be viewed as an aggregate of its constituent 

parts and the relationships between them. In the simplest and trivial cases a system 

is composed of a single constituent element. In these situations, the architecture is not 

complex and is probably uninteresting. In more complex cases the software system is 

formed by a series of heterogeneous subsystems that interoperate with each other 

using more or less complicated mechanisms for communication, working with huge 

amounts of data and users. In these cases, steps need to be taken in order to 

guarantee the security and reliability of the system. 

 

Developed using SharePoint 2013, the architecture of Social consists on a highly 

available set up with mirrored database servers (MS SQL Always On technology), with 

one Application Server running SharePoint specific services and three web front-end 

servers. The main reason that brings to this choice is related with high-availability. 

Downtime can happen because of hardware/software failure or during maintenance 

operations, which can require services/servers restarts. Therefore, it is crucial to have 

roles redundancy at both logical and physical level.  

The SharePoint service at CERN is considered as critical not because of Social Web 

App but because of the Collaboration Workspaces (https://espace.cern.ch). People at 

CERN can store procedures and documentation in those workspaces (e.g. LHC 

operations, schedules, Fire Brigade operations, IT services procedures, Pension Fund 

https://espace.cern.ch/
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management, etc.), thus downtime must be avoided. On the other hand, SharePoint 

specific services are for example the Search Service or the User Profiles Application. 

Those are services that do not need to run on the web front-ends. For those services 

we do not have redundancy because in case of downtime those do not prevent the 

web applications to work. 

In addition, in order to be able to develop new tools and improve Social’s 

functionalities, a development environment has been created. Identical to the 

production environment, this setting allows the developers to test out thoroughly the 

new modifications before the final release. 

 

4.3.2. Deployment and Future Plans  

 

Opposed to classic deployment where the technology is made available, training is 

provided and then people are expected to use it, the deployment of ESN is 80% 

cultural change and 20% about technology. It should not be seen as a one-department 

initiative, but as part of a broader change at the organization level. Many obstacles 

can be expected during the roll out of ESN. It is predictable to see adoption drop-off 

from users after a grace period of time. This is why it is important to keep users 

engaged and, in order to do that, take one step at the time and carefully follow a plan.  

Part of the plans for the future of Social involve feeding the Newsfeed with content by 

adding more sources with relevant information. Simple examples like posting daily 

CERN restaurant’s menu or migrating existing classifieds site CERN Market to Social 

Community had very positive effects and added new features to existing services. 

Bidirectional integration is available for other CERN Web platforms to allow users to 

share context-based information directly to Social. It is important to highlight that 

programmatic interfaces are easy to use and allow both consuming and feeding new 

data.  

New features are also under development like the Social Feed that consists on a topic-

based microblog feed. This will allow, for example, lightweight departmental and 

private discussions and will make the conversation open to external people. One 

example is available at https://cern.ch/chep2015. We also expect that, in part, Social 

Feeds will replace the heavy usage of mailing lists when the purpose is mostly non-

critical information exchange. Finally yet importantly, the development of 

https://cern.ch/chep2015
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comprehensive usage analytics to measure the engagement of CERN people or 

success of communication campaigns is also part of the plans (De Sousa, et al., 2015). 
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5. Hands-on Social Development 

 

In this chapter, we are going to introduce the Technical Student Programme and the 

work I have done on Social while attending it. 

 

 

5.1. Technical Student Programme 

 

CERN gives every student the possibility to participate in one of projects at the 

laboratory. It is the case of the Technical Student Programme. Aimed for 

undergraduate in Applied Physics, Engineering or Computing looking for a practical 

training period or a place to complete their final project, the programme allows a 

student to spend 4 to 12 months at CERN during the course of the studies (Bachelor 

or Master). An extension of up to a maximum of 14 months may be given.  

The technical student programme gives the students a broader view of the world, 

thanks to the mix of people with their own customs and traditions xcoming from all 

around the world. It allows the students to take part in the research field and work on 

a specific project. Most importantly, it is possible express an opinion on the project 

and its development while being taken in serious consideration. Furthermore, one can 

attend several seminars on a large number of subjects, expanding one’s knowledge 

of the field of study. 

 

The main jobs I completed for this thesis have been: 

 The implementation of the design for Social Mobile 

 The creation of a Resource Planning Tool (RPT) 

 The creation of the Social API 

 

 

5.2. Social Mobile 

 

SharePoint 2013 offered the possibility to set up the Social environment while 

providing many integrated features to support it. In addition, “for smartphone mobile 
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devices SharePoint Server 2013 provides a lightweight, contemporary view browsing 

experience for users to navigate and access document libraries, lists, wikis, and Web 

Parts” (Microsoft, 2013). In fact, SharePoint 2013 offers the “SharePoint Newsfeed” 

app to work with Social using Windows phones, iPhones and iPads. Unfortunately, it 

does not cover other environments, like Android. In this kind of OSs, without proper 

management, the website is always shown to the users in the same manner, meaning 

that a smartphone would receive a web page content thought for a wide screen. 

Shrinked to fit the screen of a smartphone, a page like that becomes very small, 

showing small fonts, links and images. Since Android has a market share much larger 

than all the other smartphone operating systems (OS) combined, it has been 

necessary to develop a solution to this problem.  

 

5.2.1. Development 

 

In order to have a mobile-optimised implementation of Social for those environments, 

SharePoint gives two main options: Responsive Web Design (RWD) and Device 

Channels. Before describing the chosen approach, we will briefly explore what the 

options have to offer and run through some of their benefits and limitations. 

RWD relies on grid layouts, media queries and CSS to alter the display of a web site 

based on the width of the browser accessing that site. The main benefit of RWD is that 

no matter what the device width is, the site will display in its optimal (or nearest-to-

optimal) form. The method is also search engine friendly. Search engines prefer a URL 

to always render the same HTML and utilising RWD achieves this. RWD, however, 

does not come without its faults. Its biggest drawback is what enables that SEO-

friendly approach – the fact that the HTML served is the same. This means that while 

images or sections may be hidden in the CSS, the resources will still be served to the 

device which is not an optimal approach when targeting low-bandwidth mobile devices 

(Menezes, 2014). It also provides a less flexible approach to targeting a given device 

allowing less options for modifying the display. On top of this, RWD can often be costly 

to implement in terms of the number of tweaks and regressions required when 

targeting different browser widths. Todd Baginski and Michael Sherman, in their 

SharePoint Conference session SPC390, stated that they anecdotally noted that 25% 
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of developer time was spent dealing with such requirements (Baginski & Sherman, 

2014). 

SharePoint 2013’s Device Channels rely instead on targeting the device accessing the 

page and serving up customised HTML based on the device which will be rendering 

the content. This ensures that one can provide a completely customised user 

experience depending on whether the user is on a desktop, tablet or phone. One could 

even go as far as serving up different content depending on the type of device (iPad, 

Surface, Android for instance). This option comes, therefore, with many advantages. 

It negates the main drawback of the responsive designs – HTML can be served in a 

manner that completely optimises the page load for the device being targeted. A 

desktop version could be highly interactive and visual, serving large images where the 

mobile experience could be lightweight for improved performance. The disadvantages 

of this approach mirror the advantages of the responsive approach. As has been 

previously stated, search engines prefer the HTML being rendered at a given URL to 

be identical. However, device channels serve up different content at the same URL for 

different devices (Menezes, 2014). 

 

In the end, it has been decided to create a mobile version of the website using the 

Responsive Web Design, using CSS to get the responsiveness needed for the mobile 

environment. This way the webpage can be personalized for both tablets and 

smartphones and we are able to configure the outcome as needed. To work with the 

RWD it is essential to activate or deactivate the following site features as specified:  

o Mobile View    – Deactivate 

o Wiki Page Home Page  – Deactivate 

o Publishing    – Activate 

It is important to know that the “mobile view” did not help Social to be available on 

mobiles and that it is necessary to deactivate that feature as a prerequisite for using 

the RWD approach. After this, in order to have the “Master page” feature under 

“Settings  Look and Feel” on SharePoint 2013 it is indispensable to first activate the 

“SharePoint Server Publishing Infrastructure”, and then the “SharePoint Server 

Publishing”, which can be found at: 

Settings  Site Collection Features  SharePoint Server Publishing Infrastructure; 

Settings  Site features  SharePoint Server Publishing. 
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It is now possible to work with the “Master page” feature and we can assign 

personalized CSS files to it. The use of a customized CSS (appendix A) added the 

responsiveness needed for Social. Many parts of the page can be hidden and others 

moved and enlarged in order for the users to have the core functionalities of Social 

well visible and usable. 

To have a responsive design, the most important rule used in the custom CSS file is 

“@media”. Using a rule like the following it is possible to define the rules that have to 

be used when the screen of the device has a maximum width of 750px: 

@media only screen and (max-device-width:750px), media only 

screen and (max-width:750px) {…} 

In order to have a responsive design that can adapt to smaller devices other 

arrangements have been done. The viewport is the user's visible area of a web page. 

In this case, the viewport has been manually set, from the Master page, to: 

<meta name="viewport" content="width=device-width, initial-

scale=1.0"> 

This helps fixing the scale of the page and allowing it to have a consistent behaviour 

between devices while using the custom CSS file. 

Special units have been used, like vw and vh instead of pt or px, to define for example 

the font-size, the width of the HTML divisions and the margins. Responsive units like 

vw allow us to have an element that adapts to the width of the device, while units like 

vh allow the element to adapt to its height. Exploiting this kind of CSS rules and 

measures it has been possible to adapt the normal view of the Social into a more 

mobile friendly one. After the development of the new website appearance, a 

documentation has been written for the users in order to explain how to have the best 

experience possible from any device. 
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On the left, mobile Social design displaying Tim Bell’s page; on the right, the feeds coming 

from the people and groups followed by the user 
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Mobile Social design displaying all the feeds having the #Social tag 

 

5.2.2. Testing 

 

The tests have first been carried out on an Android smartphone, but the resulting 

responsive design has been realized to work on any mobile device. The modifications 

have first taken place in the development environment, where it has been possible to 

test the behaviour of the page without bothering the production environment used by 

the people at CERN. Once satisfied with the adjustments, a number of colleagues 

helped to test the result in any sort of device, from Windows phones to Blackberries 

and iPads. 
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5.2.3. Problems Encountered and Limitations 

 

During the development of the mobile version of Social many design problems arose, 

particularly when passing from testing the site on small devices like smartphones to 

testing it on tablets, which are bigger and demanded a revision of the design in order 

to adjust the given measures. Most of them regarded the outcome design, but some 

were more difficult to handle and demanded some study of SharePoint. An example 

regards the possibility for a user to click on a hashtag in a message in order to see 

visualized all the feeds containing the same tag. This became a problem because, 

even if they seem identical, the master page used when displaying the feeds 

containing the same hashtag is different from the main one used to display the feeds 

from followed people or groups, so the custom CSS file is applied only in the main 

one. This was the problematic piece of code used in the main master page to include 

the custom CSS file: 

<SharePoint:AjaxDelta id="DeltaPlaceHolderAdditionalPageHead" 

Container="false" runat="server"> 

<asp:ContentPlaceHolder 

id="PlaceHolderAdditionalPageHead" runat="server" /> 

<link href="SiteAssets/CustomResponsive.css" 

rel="stylesheet" type="text/css" ms-design-css-

conversion="no" /> 

         

<SharePoint:DelegateControl runat="server" 

ControlId="AdditionalPageHead" 

AllowMultipleControls="true" /> 

<asp:ContentPlaceHolder id="PlaceHolderBodyAreaClass" 

runat="server" /> 

</SharePoint:AjaxDelta> 

 

A very small correction in this case meant everything for SharePoint. Just adding a “/” 

at the beginning of the URL of the CSS file solved the issue, explaining to the 

environment that the CSS code had to be applied on every master page. This is the 

final code: 
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<SharePoint:AjaxDelta id="DeltaPlaceHolderAdditionalPageHead" 

Container="false" runat="server"> 

<asp:ContentPlaceHolder 

id="PlaceHolderAdditionalPageHead" runat="server" /> 

<link href="/SiteAssets/CustomResponsive.css" 

rel="stylesheet" type="text/css" ms-design-css-

conversion="no" /> 

         

<SharePoint:DelegateControl runat="server" 

ControlId="AdditionalPageHead" 

AllowMultipleControls="true" /> 

<asp:ContentPlaceHolder id="PlaceHolderBodyAreaClass" 

runat="server" /> 

</SharePoint:AjaxDelta> 

 

The only limitation there is in this case is the absence of a link to the documents stored 

on SharePoint, so the user cannot access to the online files. It would be a useful 

improvement for the future. 

 

 

5.3. Resource Planning Tool (RPT) 

 

The engineers and physicists at CERN work every day to build, check and upkeep the 

high-end instruments used for the research in particle physics. To achieve that, they 

use a multitude of sophisticated pieces of equipment. For organizational purposes, the 

IT department has been asked to develop an online service that could allow the 

personnel to plan the use of the equipment. In particular, the requirements include: 

 The possibility to book one or more instruments and define a task for a set time 

period; 

 The possibility to associate an activity with the tool needed for it, the project to 

which the activity is associated with and the employee that is going to carry out 

the task using the booked equipment; 

 The possibility to group some instruments in the same category; 
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 The possibility, for the project managers, to assign a person to a certain activity 

and some equipment; 

 The possibility to specify the amount of magnets to control; 

 Having a visual representation of the schedule for each activity and each tool. 

 

5.3.1. Development 

 

To develop the service it has been decided to integrate the new service in the social 

media at CERN. This way the social environment would expand becoming even more 

useful and anyone willing to add an entry to the Resource Planning Tool (RPT) would 

be able to do so without having to access to a secondary system.  

Between the many features offered by SharePoint 2013 there is the possibility to 

create a scheduled list of tasks through the “Tasks” feature. The tasks and subtasks 

are then represented with start and end dates in a graphical timeline. The purpose of 

such a tool is to allow all the members of a workgroup to know their respective jobs 

and deadlines, in order to increase coordination and efficiency. Users have the ability 

to add or remove tasks or subtasks from the timeline and display them with various 

colours. The timeline allows the users to be easily be aware of the time period in which 

the tasks have to be executed. Each Task can be moved upside or downside and re-

organized with a simple Drag&Drop action. Unfortunately, it is not possible to move 

the tasks laterally in order to adjust the task’s time frame. To do so, a user has to 

access the task’s “edit date range” page. 
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Standard SharePoint 2013 timeline example 

 

When a task is selected, a “Timeline” tab appears in the ribbon at the top of the page. 

This tab lets a user configure the look and feel of each individual task and, as an 

example, make it be represented as a coloured bar or as a callout outside the timeline. 

 

 

Standard SharePoint 2013 timeline example 
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Apparently, SharePoint does not offer a utility that can satisfy all of the requirements. 

Nevertheless, the Tasks list feature could be used as a starting point to develop all the 

functionalities asked. Two webpages will need to be modified. The first is the one 

provided to create a new task (creating a new task in the Tasks list on SharePoint) or 

modify one. Beyond the standard entries, this page will need to ask to the user extra 

information, including:  

1. The name of the project 

2. The name of the instrument 

3. The available tools’ categories, because a tool can be part of a group and the 

group name has to be visible 

4. The activity of the project for which the equipment is needed 

5. The amount of magnets to check (used in the particle accelerators). 

 

Since it is important to insert the correct names for the project, the equipment category 

and the equipment booked, it has been decided to use drop-down menus to make it 

easier for the users to insert the right name choosing between all the possibilities 

already listed.  

 

 

The list of data asked when creating a new task 

 

Moreover, the scientists required to be able to see the timeline while creating a new 

task. Since this is not possible when using the standard SharePoint interface, we need 
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to introduce a custom modification in order to retrieve the data from SharePoint and 

display a custom timeline above the “New Task” form. This way, a user can easily 

check when some equipment is available while defining the details of his or her task. 

 

Talking about SharePoint 2013, we note that it implements Client Site Rendering 

(CSR), which is a term used to express a technology that allows the data to be 

transformed on the client side, rather than on the server. This means that it uses client-

side technologies, such as HTML and JavaScript. This allows developers to style 

SharePoint elements using JavaScript, rather than having to write XSLT. In particular, 

the “clienttemplate.js” file is the SharePoint 2013 CSR framework core file intended to 

implement all JavaScript logic of CSR (Quinto, 2016). This means that in order to be 

able to communicate with SharePoint we need to wait until the core file is loaded in 

the page. To apply any modification to the webpage, the first function to call is 

“ExecuteOrDelayUntilScriptLoaded”, which is defined in SharePoint Foundation and 

executes the specified function if the specified file is loaded; otherwise, waits until the 

file is loaded before executing the function. Therefore, we need to call the function: 

ExecuteOrDelayUntilScriptLoaded(registerRenderer, 

'clienttemplates.js'); 

Through this function, the webpage waits until the “clienttemplate.js” file is available 

and then uses the “registerRenderer” function to override the registered templates in 

the SPClientTemplates object and set our custom function to handle the visualization 

of the information on the page. The function is the following: 

function registerRenderer() 

{ 

 var ctxForm = {}; 

 ctxForm.Templates = {}; 

 ctxForm.OnPreRender = OnPreRenderDocItemTemplate; 

 ctxForm.OnPostRender = {}; 

  

SPClientTemplates.TemplateManager.RegisterTemplateOverrid

es(ctxForm); 

} 
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We can then retrieve the information regarding the Task lists creating a new instance 

of the SP.ClientContext object for our SharePoint site. To do this, we need to wait for 

another file to be loaded in the webpage: “sp.js”, which “provides a subset of types 

and members in the Microsoft.SharePoint namespace for working with a top-level site 

and its lists or child Web sites” (Microsoft, n.d.). To be sure of that we can use the 

same function as before. Once the SP namespace is loaded, we can navigate the data 

and read any list we need, like “Equipment”. We can continue to use this operation for 

each list and use the items retrieved to display a custom timeline with the equipment 

on the side, the dates horizontally and the activities, together with the amount of 

magnets used and the user to whom the task is assigned to, in coloured boxes inside 

the timeline. In this case, the Drag&Drop function has to be removed to prevent one 

activity to end up in the wrong row. We must avoid it, since it would mean that the user 

would need a different instrument to carry out that task. 

At this point, we can personalize the timeline even more, displaying for example the 

tasks of one colour for each project or one colour for each user, so that a user could 

easily find his or her own activities. In addition, the time span of the timetable can be 

set as adjustable, spanning for example from few days to a year. Many details of the 

page have been handled this way, like the automatic refresh of the equipment‘s drop-

down menu, where every time someone selects a category of tools only the 

instruments belonging to the chosen category become available in the equipment’s 

drop-down menu. 

 

To use the custom JS file (appendix B) we need to deactivate the "Minimal Download 

Strategy" feature for the site (from Settings  Manage site features). Then the file has 

to be added to the site using the “Miscellaneous” options of the existing SharePoint 

Web Part. The first thing to do is to load it on SharePoint, in a folder like “SiteAssets”. 

Then, it has to be linked to the site using a URL like the following: 

~sitecollection/SiteAssets/CustomTimeline_newTaskForm.js 
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Example of the new custom timeline 
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Since we now have two dimensions in the timeline, dates and equipment, and 

SharePoint does not consider the possibility to have more than one dimension (the 

dates), we need to create a new control for the New Task page in order to properly 

check the availability of the chosen tool for the given dates before allowing the user to 

save the task. The function used to achieve this goal is: 

function updateSaveButtonOnClickEvent(){ 

var oldOnClickString =  

$("input[value='Save']").attr('onclick');  

var newOnClickString = 'if(consistencyCheckOnDates()){' + 

oldOnClickString +';}else{alert("The selected equipment is 

not available in the chosen period. Please enter different 

dates.");}'; 

  

 // Updating the onclick event 

$("input[value='Save']").attr('onclick', 

newOnClickString); 

} 

 

Using this code, the “onclick” function of the “Save” button in the New Task form is 

modified to first, include a check on the chosen dates, and second, launch the old 

code to normally check the content of every input element compiled from the user. A 

new JS file can be created to separate the operations regarding the timeline from the 

ones regarding the New Task form. In this case, to include the JS file 

“newTaskForm.js” (appendix B) in the page we can create a new empty “Content 

Editor” Web Part and link the file as Content Link. The URL used will be like the 

following:  

/timelineWebsite/SiteAssets/newTaskForm.js 

This way all the requirements for this page are met. 

 

We have discussed about adding the timeline to the “New Task” page. The second 

page that requires to be modified is the one containing the timeline and the list of tasks 

that have been uploaded. In order to show it in the main webpage as well we need to 

first hide the regular timeline unchecking the option in Web Part properties  Show 
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timeline. Then, we need to repeat the previous operation and add the JS file 

“customTimeline.js” (appendix B) to the Web Part through the JSLink in the Web Part 

properties  Miscellaneous with the link:  

~sitecollection/SiteAssets/CustomTimeline.js 

 

In the main webpage, beyond the timeline, there is shown a list of the saved tasks. 

The basic list view in SharePoint offers few elements and no classification. During the 

development of the RPT, the scientists asked to create a custom view for that list. 

Using a Custom List View, we can show the tasks in the main page differently. This 

way one can decide which property has to be displayed and where. In our case, it has 

been possible to create groups of tasks according to the project to which they belong. 

The new Custom List View is displayed in the next page. 

As we can see, the tasks are grouped by project and the most important information 

is on the left while the less important one is shown on the right. 
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Example of a Custom List View 
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5.3.2. Testing 

 

The development of the Resource Planning Tool required many tests on different 

machines and browsers to be sure that the final outcome would be seen the same 

from every employee and every platform. The JS code has been tested thoroughly 

using several SharePoint accounts in order to check its behaviour in different 

conditions. Smoke tests have been carried out in order to seek for possible bugs while 

using inconsistent values, like using letters to tell the number of magnets required for 

an activity or requiring to use an equipment already booked for the selected dates. 

 

5.3.3. Problems Encountered and Limitations 

 

Few small problems were encountered while approaching the world of SharePoint’s 

customization and have been the portability of the code for the many platforms used 

at CERN and browsers and finding the right information between the SharePoint’s 

data structures, which did not present intuitive names. 

 

 

5.4. Social API 

 

In computer programming, an Application Programming Interface (API) is a set 

of subroutine definitions, protocols, and tools for building software and applications. An 

API specification can take many forms, but often include specifications 

for routines, data structures, object classes, variables, or remote calls.  

Just as a graphical user interface (GUI) makes it easier for people to use programs, 

application programming interfaces make it easier for developers to use certain 

technologies in building applications. By abstracting the underlying implementation 

and only exposing objects or actions the developer needs, an API reduces the 

cognitive load on a programmer. While a graphical interface for an email client might 

provide a user with a button that performs all the steps for fetching and highlighting 

new emails, an API for file input/output might give the developer a function that copies 

a file from one location to another without requiring the developer to understand the file 

system operations occurring behind the scenes (Clarke, 2004). 
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APIs have many uses, depending on the context: 

 Libraries and frameworks 

In the first case, an API use can vary depending on the type of programming 

language involved. An API for a procedural language, such as Lua, could 

primarily consist of basic routines to execute code, manipulate data, or handle 

errors, while an API for an object-oriented language such as Java would provide 

a specification of classes and their class methods (de Figueiredo, et al., 1994) 

(Sintes, 2001). An API can also be related to a software framework. A 

framework can be based on several libraries implementing several APIs, but 

unlike the normal use of an API, the access to the behaviour built into the 

framework is mediated by extending its content with new classes plugged into 

the framework itself. 

 

 Operating Systems 

APIs that can specify the interface between an application and the operating 

system (Lewine, 1994). POSIX, for example, specifies a set of common APIs 

that aims to enable an application written for a POSIX conformant operating 

system to be compiled for another POSIX conformant operating 

system. Linux and Berkeley Software Distribution are examples of operating 

systems that implement the POSIX APIs (West & Dedrick, 2001). 

 

 Remote APIs 

Remote APIs allow developers to manipulate remote resources 

through protocols, specific standards for communication that allow different 

technologies to work together, regardless of language or platform. For example, 

the Java Database Connectivity API allows developers to query many different 

types of databases with the same set of functions, while the Java remote 

method invocation API uses the Java Remote Method Protocol to 

allow invocation of functions that operate remotely, but appear local to the 

developer (Bierhoff, 2009) (Wilson, 2001). Therefore, remote APIs are useful in 

maintaining the object abstraction in object-oriented programming; a method 

call, executed locally on a proxy object, invokes the corresponding method on 
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the remote object, using the remoting protocol, and acquires the result to be 

used locally as return value. A modification on the proxy object will also result 

in a corresponding modification on the remote object (Henning & Vinoski, 

1999). 

 

 Web APIs 

Web APIs are the defined interfaces through which interactions happen 

between an enterprise and applications that use its assets. An API approach is 

an architectural approach that revolves around providing programmable 

interfaces to a set of services to different applications serving different types of 

consumers. (Rudrakshi, et al., 2014) When used in the context of web 

development, an API is typically defined as a set of Hypertext Transfer 

Protocol (HTTP) request messages, along with a definition of the structure of 

response messages, which is usually in an Extensible Markup Language (XML) 

or JavaScript Object Notation (JSON) format.  

 

In the case of the Social API, it can be seen as a Web API that handles HTTP request 

messages and uses the JSON format in order to deliver information, but it can also be 

seen as a remote API, since it allows the user to read and manipulate remote 

resources. It does not only give an interface to interact with the resources, but 

implements all the functions needed to achieve that purpose. 

The following list contains several examples of popular APIs: 

1. Google Maps API 

Google Maps API lets developers embed Google Maps on any webpage using 

a JavaScript interface. It is designed to work on both mobile and desktop 

devices. 

2. Google YouTube APIs 

These APIs let developers integrate YouTube videos and functionality into 

websites or applications. YouTube APIs include the YouTube Analytics API, 

YouTube Data API, YouTube Live Streaming API, YouTube Player APIs and 

others. 

3. Flickr API 

The Flickr API is used by developers to access the Flickr photo sharing 

community data. 
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4. Twitter APIs 

Twitter offers two APIs. The REST API allows developers to access core Twitter 

data and the Search API provides methods for developers to interact with 

Twitter Search and trends data. 

5. Amazon’s Product Advertising API 

Amazon's Product Advertising API gives developers access to Amazon's 

product selection and discovery functionality. It is commonly used to advertise 

Amazon products and monetize a website. 

 

5.4.1. Development 

 

The Social API (appendix C) is meant to be used from any of the CERN's employees 

to retrieve the feeds from the Social Network and add them to a webpage, which can 

be, for example, the experiment’s webpage, like the one for ATLAS, the departmental 

webpage, like the one for Theoretical Physics, or even the CERN's homepage. It 

allows users to talk with the SharePoint server and show the data retrieved on any 

kind of webpage, taking also care of the design given to the information displayed. The 

Social API implements not only a superficial interface for the developers, but also the 

data structures and the functions needed to carry out the operations provided. The 

API has been developed using the agile approach. It has been built incrementally from 

the start, with each iteration producing a new functionality, instead of trying to deliver 

it all at once near the end. The functions implemented have been the sum of the efforts 

made to satisfy both the needs of the departments and the additional requests made 

from the employees, which added value to the final outcome.  

 

The development of the Social API required the use of many technologies: 

 JavaScript 

 jQuery 

 SharePoint 2013 REpresentational State Transfer (REST) interface 

 HTML 

 CSS 
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JavaScript is a high-level, dynamic, untyped, and interpreted programming language, 

standardized in the ECMAScript language specification (Flanagan, 2011). 

Alongside HTML and CSS, it is one of the three core technologies of World Wide 

Web content production; the majority of websites employ it and it is supported by all 

modern Web browsers without plug-ins. JavaScript is prototype-based with first-class 

functions, making it a multi-paradigm language, supporting object-oriented, imperative 

and functional programming styles (Ecma International, 2016). JavaScript is also used 

in environments that are not Web-based, such as PDF documents, site-specific 

browsers, and desktop widgets. Newer and faster JavaScript virtual machines (VMs) 

and platforms built upon them have also increased the popularity of JavaScript for 

server-side Web applications. On the client side, JavaScript has been traditionally 

implemented as an interpreted language, but more recent browsers perform just-in-

time compilation. It is also used in game development, the creation of desktop and 

mobile applications, and server-side network programming with run-time 

environments such as Node.js. 

 

jQuery is a fast, small, and feature-rich JavaScript library. It makes things like HTML 

document traversal and manipulation, event handling, animation, and Ajax much 

simpler with an easy-to-use API that works across a multitude of browsers. With a 

combination of versatility and extensibility, jQuery makes easier to both read and write 

JavaScript (jQuery Foundation, 2016). The reasons why we use jQuery over plain 

JavaScript can be explained with an example on how the two handle one simple 

operation. The purpose of the code in both cases will be to make a line of text in the 

HTML page change colour using its class name. 

The JavaScript version: 

var d = document.getElementsByClassName("goodbye"); 

var i;  

for (i = 0; i < d.length; i++) {  

  d[i].className = d[i].className + " selected"; 

} 

 

The jQuery version of the code obtaining the same result: 

$(".goodbye").addClass( "selected" ); 

 

While JavaScript makes the code difficult to read even for a simple action like the one 

described, jQuery shortens the code while making it more readable. This, when writing 
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a high number of lines of code, allows us, and whoever will ever work on the API, to 

effortlessly understand how it works. 

 

The SharePoint 2013 REpresentational State Transfer (REST) interface permits 

developers to interact remotely with SharePoint data by using any technology that 

supports REST web requests, like JavaScript. This means that developers can 

perform Create, Read, Update, and Delete (CRUD) operations from their SharePoint 

Add-ins, solutions, and client applications, using REST web technologies and standard 

Open Data Protocol (OData) syntax.  

 

 

SharePoint REST service architecture 

 

CRUD operations can be summarized in the following table: 

Operation 
Relative 

HTTP 
request 

Keep in mind 

Read a 
resource 

GET  

Create or 
update a 
resource 

POST Use POST to create entities such as lists and sites. The 
SharePoint 2013 REST service supports sending 
POST commands that include object definitions to 
endpoints that represent collections. 
For POST operations, any properties that are not 
required are set to their default values. If you attempt to 
set a read-only property as part of a POST operation, the 
service returns an exception. 

Update or 
insert a 
resource 

PUT Use PUT and MERGE operations to update existing 
SharePoint objects. 
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Any service endpoint that represents an object 
property set operation supports both PUT requests and 
MERGE requests. 

 For MERGE requests, setting properties is 
optional; any properties that you do not explicitly 
set retain their current property. 

 For PUT requests, if you do not specify all 
required properties in object updates, the REST 
service returns an exception. In addition, any 
optional properties you do not explicitly set are set 
to their default properties. 

Delete a 
resource 

DELETE Use the HTTP DELETE command against the specific 
endpoint URL (Uniform Resource Locator) to delete the 
SharePoint object represented by that endpoint. 
In the case of recyclable objects, such as lists, files, and 
list items, this results in a Recycle operation. 

(Microsoft, 2015) 

 

In order to be able to perform any CRUD operation we need to construct a fully 

qualified REST URL for the JavaScript calls to the SharePoint Server. To achieve that 

it is necessary to prepend http://server/site/_api/ followed by the right URL 

fragment. In the table hereunder are few examples for URL endpoint fragments: 

Description URL endpoint 
HTTP 

method 
Body content 

Retrieves 
the title of 
a list 

web/title GET Not applicable 

Retrieves 
all lists on 
a site 

lists GET Not applicable 

Retrieves 
a single 
'list's 
metadata 

lists/getbytitle('listname') GET Not applicable 

Retrieves 
items 
within a 
list 

lists/getbytitle('listname')/item
s 

GET Not applicable 
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Retrieves 
a specific 
property of 
a 
document. 
(In this 
case, the 
document 
title.) 

lists/getbytitle('listname')?sele
ct=Title 

GET Not applicable 

Creates a 
list 

lists POST { 

'_metadata':{'type'

:SP.List}, 

  

'AllowContentTypes'

: true, 

  'BaseTemplate': 

104, 

  

'ContentTypesEnable

d': true, 

  'Description': 

'My list 

description', 

  'Title': 

'RestTest' 

} 

Adds an 
item to a 
list 

lists/getbytitle('listname')/item
s 

POST { 

'_metadata':{'type'

:SP.listnameListIte

m}, 

  'Title': 'MyItem' 

} 

(Microsoft, 2015) 

 

In the Social API, the URL to prepend is https://social.cern.ch/_api/, 

followed by a specific URL fragment according to our needs that will specify the service 

we need and all the variables we need to pass to SharePoint and conditions we want 

to be applied on the results. An example is: 

https://social.cern.ch/_api/search/query?querytext='tags:"+tag

Text+"'&sourceid='459dd1b7-216f-4386-9709-

287d5d22f568'&sortlist='created:1' 

https://social.cern.ch/_api/
https://social.cern.ch/_api/search/query?querytext='tags:%22+tagText+%22'&sourceid='459dd1b7-216f-4386-9709-287d5d22f568'&sortlist='created:1
https://social.cern.ch/_api/search/query?querytext='tags:%22+tagText+%22'&sourceid='459dd1b7-216f-4386-9709-287d5d22f568'&sortlist='created:1
https://social.cern.ch/_api/search/query?querytext='tags:%22+tagText+%22'&sourceid='459dd1b7-216f-4386-9709-287d5d22f568'&sortlist='created:1
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We will explain the content of those URLs later on in this chapter. 

 

HyperText Markup Language (HTML) is the standard markup language for 

creating web pages and web applications. With Cascading Style Sheets (CSS), 

and JavaScript, it forms a triad of cornerstone technologies for the World Wide Web 

(Flanagan, 2011). Web browsers receive HTML documents, where it is described the 

structure of the web page, from a server or from local storage and render them into 

multimedia web pages. HTML5 is the fifth major revision of the core language of the 

World Wide Web: the HTML. “In this version, new features are introduced to help Web 

application authors, new elements are introduced based on research into prevailing 

authoring practices, and special attention has been given to defining clear 

conformance criteria for user agents in an effort to improve interoperability." (W3C, 

2014) 

In the Social API many HTML5 features have been exploited, like the <canvas> 

element, to draw 2D and 3D tag clouds in the webpage, and the XMLHttpRequest API, 

which allows fetching synchronously or asynchronously parts of the page, allowing it 

to display dynamic content, varying according to the time, the situation on the ESN 

and user actions (Mozilla Developer Network, 2016). 

  

Cascading Style Sheets (CSS) is a style sheet language used for describing 

the presentation of a document written in a markup language. The latter can be any 

kind of markup language. It can be HTML, but also XML(Extensible Markup Language) 

or XUL(XML User Interface Language) for example (Mozilla Developer Network, 

2015). 

CSS is designed primarily to enable the separation of document content from 

document presentation, including aspects such as the layout, colours, and fonts (W3C, 

2010). This separation improves content accessibility, provides more flexibility and 

control in the specification of presentation characteristics, enables multiple HTML 

pages to share formatting by specifying the relevant CSS in a separate .css file and 

reduces complexity and repetition in the structural content. This separation of 

formatting and content makes it possible to present the same markup page in different 

styles for different rendering methods, such as on-screen or in print.  It can also be 

used to display the web page differently depending on the screen size or device on 
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which it is being viewed. To display the information coming from Social correctly, a 

dedicated CSS file has been created to handle the design of the feeds displayed using 

the API. The Social API’s CSS is included in the HTML page from the developers. 

Then, the API adds new elements to the webpage using specific attributes to let the 

CSS distinguish the feeds displayed using the API from the rest of the webpage. 

 

The API has been implemented following the jQuery example. In order to use a 

function defined in the jQuery library a developer needs to write a prefix like “jQuery.” 

or “$.” before calling the function. In the Social API, any function can be called using 

the prefix “socialAPI().”, followed by the name of the function and its parameters. No 

data structure or function of the API is available outside it without the use of its prefix. 

This is an important feature for the API, since it will have to work in any kind of website, 

where probably many other CSS and JS files will be used. This way we manage to 

avoid conflicts with other resources, like having more than one JavaScript function 

with a particular name. 

When using the Social API, we find ourselves having to incorporate data from various 

sources. We have to access data from the website domain and the SharePoint 

domain. For security reasons though, there are blocking mechanisms that prevent 

communication with more than one domain at a time. These security mechanisms are 

implemented in most browsers, making difficult or impossible to accomplish client-side 

calls across domains. In order to be able to work this way we need to exploit the 

SharePoint cross-domain library, which is a client-side library in the form of a 

JavaScript file (SP.RequestExecutor.js) that makes it possible to use Cross-Origin 

Resource Sharing (CORS) requests. 

 

The most important functionalities provided from the API are: 

Operation Corresponding Social API function 

Retrieve the feeds regarding only the 
people or groups followed by the user. If 
already displayed, refresh the content. 

updateFollowedFeeds 

Retrieve the feeds from Social coming 
from a specific profile. If already 
displayed, refresh the content. 

updateFeedsFromProfile 
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Retrieve the feeds from Social regarding 
a specific hashtag, like “#HiggsBoson”. If 
already displayed, refresh the content. 

updateFeedsWithSameHashtag 

Retrieve the tags from Social and display 
them in a Tag Cloud. 

loadTagCloud 

Retrieve information about the people 
working in a specific department, group 
and section. 

updateGroupInfo 

Post a message on Social through the 
Social API. 

postToMyFeeds 

 

In order for the Social API to work properly, it is necessary to include few other files, 

together with the API, in the HTML webpage: 

socialAPI.js The Social API itself. 

socialAPI.css The CSS file that takes care of the design given to the 
information displayed using the Social API. 

jquery.js  The jQuery library, needed from the API to work with 
jQuery. 

SP.RequestExecutor.js  Needed to access SharePoint 2013 data using CORS 
requests. 

tagcanvas.min.js Used to display the 2D or 3D tag cloud in every browser 
except Internet Explorer. 

excanvas.js Necessary to display the 2D or 3D tag cloud when using 
Internet Explorer. 

 

We will now present each function described above explaining the operations required 

for them to work. We will start from the “updateFollowedFeeds” function. Its input 

parameters are explained in the following table. 

Name of the parameter Description 

whereToWrite The name of the HTML section where the feeds will have 
to be written. 

updateInterval The update interval, in case we want the function to 
automatically refresh the feeds every tot seconds. In this 
case, the values as negative numbers, 0, “null” or 
“undefined” are used to express the will to avoid the auto-
refresh behaviour. 
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numFeeds The number of feeds to display in the page with this 
function. 

flagDisplayReplies This flag tells the function if the replies to the feeds have 
to be displayed or not. 

 

In the function, some comments can be found to allow the reader to better understand 

the code. Each comment line starts with the double slash punctuation (// comment). A 

more throughout description of the code is given after the function. The function is the 

following: 

function updateFollowedFeeds(whereToWrite, updateInterval, 

numFeeds, flagDisplayReplies){ 

// Sanitizing the input. encodeURI() is used instead of 

encodeURIComponent() when there has to be allowed the 

possibility to have hashtags. 

 whereToWrite = encodeURI(whereToWrite); 

 updateInterval = encodeURIComponent(updateInterval); 

 if(numFeeds == null || numFeeds == undefined){ numFeeds = 

0; } 

if(flagDisplayReplies == null ||  

   flagDisplayReplies == undefined){ flagDisplayReplies = 

true; } 

  

 // Consistency checks.  

if( updateInterval===null ||  

    updateInterval===undefined ||  

    updateInterval<0){ updateInterval = 0; } 

  

 if(whereToWrite[0] !== '#'){ 

  whereToWrite = '#' + whereToWrite; 

 } 

  

// Saving the name of the parent HTML section of the feeds. 

var parentWhereToWrite = whereToWrite; 
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// Updating the global variables. These variables will be 

necessary when the User needs to post a new message on 

Social 

 followedFeedsWhereToWrite = whereToWrite;   

 followedFeedsUpdateInterval = updateInterval; 

 followedFeedsNumFeeds = numFeeds; 

 followedFeedsFlagDisplayReplies = flagDisplayReplies; 

  

// Converting the time from seconds to milliseconds 

if(updateInterval < 1000) 

{ updateInterval = updateInterval*1000; }  

   

 var tempSectionID = whereToWrite.substring(1); 

// Section check. If the HTML section is present in the 

webpage we can move on, otherwise the function has to stop. 

 if( document.getElementById(tempSectionID) === null ){ 

// Error. No HTML section found to display the feeds 

from Social. 

$(whereToWrite).html('<div class="feedsItem"> <p 

id="text"> There has been a problem while 

communicating with the server. <br/>Please try again 

later refreshing the page. </p> </div>'); 

console.log('Error while trying to write the followed 

feeds. The section ID passed in input seems not to be 

present in the webpage.'); 

  return; 

 } 

   

// If there are no feeds (there can be error message), so 

we clean the section 

 if( $(whereToWrite +" .feedsItem").length == ''  ||   

    $(whereToWrite +" .feedsItem").length == null  ||   

    $(whereToWrite +" .feedsItem").length == undefined ){ 

$(whereToWrite).html(''); 
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// Clearing the section of the feeds that the user is 

following. 

 } 

   

// Adding a new wrapping section in the HMTL page to make 

the SocialAPI's CSS file point only at this part of the 

webpage, in case many CSS files are used. 

if($(whereToWrite).html() == ''){  

// If there are no feeds in the section yet... 

  var wrapSection = '<div class="socialAPIWrapClass">'+ 

        '<div 

id="socialAPIFollowedFeeds">'+ 

        '</div>'+ 

     '</div>'; 

  $(whereToWrite).html(wrapSection); 

 } 

   

// We need to re-authenticate on Social every time 

authenticateOnSocial(); 

   

 if(updateInterval > 0){ 

clearInterval(followedFeedsUpdatesHandler); 

// Deleting the old automatic refresh of the feeds 

     

// Creating the new automatic refresh of the feeds. 

The followed feeds will be updated every 

"updateInterval" seconds. This variable will be 

necessary when the User needs to post a new message 

on Social. 

followedFeedsUpdatesHandler = setInterval(function(){ 

updateFollowedFeeds(whereToWrite, updateInterval, 

numFeeds, flagDisplayReplies); }, updateInterval); 
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// Updating the focused section that we will pass to 

the following function the new ID, which is inside the 

new wrapper div. 

whereToWrite = '#socialAPIFollowedFeeds'; 

executeRestCallExtendedSix(myFeedManagerEndpoint + 

"my/news", 'GET', null, 

checkDataReceivedAndDisplayTheFeeds, onError, 

whereToWrite, parentWhereToWrite, numFeeds, numFeeds, 

flagDisplayReplies); 

// Searches the feeds and passes them to the function 

"checkDataReceivedAndDisplayTheFeeds()" 

 }else{ 

// If we reach this part of the code it means that the 

function has to retrieve the feeds without the 

automatic refresh. 

    

  if(followedFeedsUpdatesHandler != 'a'){ 

// If there is an active automatic update of the 

feeds 

   clearInterval(followedFeedsUpdatesHandler); 

// Deleting the old automatic refresh of the 

feeds 

   followedFeedsUpdatesHandler = 'a'; 

  } 

    

whereToWrite = '#socialAPIFollowedFeeds'; // 

Updating the focused section that we will pass to the 

following function the new ID, which is inside the new 

wrapper div. 

executeRestCallExtendedSix(myFeedManagerEndpoint + 

"my/news", 'GET', null, 

checkDataReceivedAndDisplayTheFeeds, onError, 

whereToWrite, parentWhereToWrite, numFeeds, numFeeds, 

flagDisplayReplies); 
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// searches the feeds and passes them to the function 

"checkDataReceivedAndDisplayTheFeeds()" 

 } 

} 

 

As we can see, the function begins sanitizing the input and checking if some of the 

variables are in the right range of admissible values. Then, it checks if the HTML 

section passed in input actually exists in the page. This is important, since the function 

cannot put the feeds wherever it likes. There has to be a wrapper HTLM section – like 

<div id=”feeds”> – that suggests the function where it is safe to display the feeds. If 

the HTML division is available, then a new <div> section is created inside with 

"socialAPIWrapClass" as its class. This way we know we are printing the feeds in the 

right spot and, at the same time, we make the CSS file included in the page, called 

“socialAPI.css” (appendix C), work only on the elements inside the new HTML section. 

After that, the user is authenticated on Social and the API executes a REST call to the 

SharePoint interface to ask for the feeds. The function 

“checkDataReceivedAndDisplayTheFeeds” is set to be executed in case of success, 

so it will be the one taking the data coming from SharePoint. The URL used for the 

request is formed by the variable “myFeedManagerEndpoint”, which contains the 

address https://social.cern.ch/_api/social.feed/, and the string “my/news”, so we are 

using the SharePoint interface to the social feeds looking for the “news” of the user, 

which correspond to the most recent feeds regarding all the actors he or she follows 

on the network. If needed, we can use the “setInterval” function to set up the automatic 

refresh of the feeds. Otherwise, a button can be created to call the same function and 

have a manual update of the feeds. 

Once the data reach the “checkDataReceivedAndDisplayTheFeeds” function, the 

received JSON file is parsed and analysed, in order to understand if there has been 

any problem while communicating with the server, any internal error, if the request 

was not well formed, if there is a problem in the data received, or if the ESN service is 

down. If everything went well the feeds are passed to the “appendFeeds” function that 

will take care of adding them to the webpage. 

The function described can be called using the following code: 

socialAPI().updateFollowedFeeds("#feedsFollowed", 60); 

https://social.cern.ch/_api/social.feed/
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The function displays the feeds followed from the current user and takes in input the 

number of seconds of interval after which these feeds will be automatically refreshed, 

if the number of seconds is 0 (zero) the feeds will not be automatically updated. With 

this approach, the logical level of the API can remain separated from its 

implementation. 

 

Every CORS request made with JavaScript follows the same pattern, explained by the 

following diagram. 

 

CORS flow of information (Hossain, 2013) 

 

In the Social API, the CORS requests are handled by functions like 

“executeRestCallExtendedSix”, used in “updateFollowedFeeds”. The 

XMLHttpRequest element in it, necessary to proceed with the CORS request, is 

created in the function “createCORSRequest”. Both those functions can be found 

hereunder. 

function executeRestCallExtendedSix(url, method, data, onSucc, 

onError, whereToWrite, id, numFeeds, numFeedsStillToGet, flag) 

{ 
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 var xhr = createCORSRequest(method, url); 

  

// Is the CORS request supported? 

 if (!xhr) { 

  // If it is not supported we have to stop… 

  throw new Error('CORS not supported'); 

 }else{ 

// …otherwise we can continue. 

// Setting the function to be called in case of 

success. 

xhr.onload = function () { 

// passing the parameters and the results of the 

RESTcall to the function pointed by 'onSucc'. 

onSucc(xhr.responseText, whereToWrite, id, 

numFeeds, numFeedsStillToGet, flag); 

  }; 

   

// Setting the function to be called in case of error. 

  xhr.onerror = onError; 

   

// Sending the CORS request, with or without a body. 

if (data !== null && data !== undefined && data !== 

''){ 

   xhr.send(data); 

  }else{ 

   xhr.send(); 

  } 

 } 

} 

 

function createCORSRequest(method, url) { 

 var xhr = new XMLHttpRequest(); 

if ("withCredentials" in xhr) { 
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// In case the XMLHttpRequest object has a 

"withCredentials" property, which only exists on 

XMLHTTPRequest2 objects, we use this version of the 

“open” function. 

  xhr.open(method, url, true); 

 } else if (typeof XDomainRequest != "undefined") { 

  // Otherwise, check if XDomainRequest is defined. 

// XDomainRequest only exists in Internet Explorer 

(IE).  

// It is IE's way of making CORS requests. In this 

case we need to use this other version of the “open” 

function. 

  xhr = new XDomainRequest(); 

  xhr.open(method, url); 

 } else { 

// Otherwise, CORS is not supported by the browser. 

  xhr = null; 

 } 

  

 if(xhr !== null){ // if the CORS is supported… 

// We prepare now the xhr element for the request, 

setting “withCredentials” to “true” and asking 

SharePoint for a JSON formatted file, with the 

“verbose” version of the reply, containing all the 

information we need. 

  xhr.withCredentials = true; 

xhr.setRequestHeader("accept", "application/json; 

odata=verbose"); 

 } 

  

 return xhr; 

} 

 



127 
 

In particular, about the .withCredentials we know that standard CORS requests 

do not send or set any cookies by default. In order to include cookies as part of the 

request, the XMLHttpRequest’s .withCredentials property has to be set to true. 

In order for this to work, the server must also enable credentials by setting the Access-

Control-Allow-Credentials response header to “true”. The .withCredentials 

property will include any cookies from the remote domain in the request, and it will 

also set any cookies from the remote domain. Note that these cookies still honour 

same-origin policies, so the JavaScript code cannot access the cookies from 

document.cookie or the response headers. They can only be controlled by the 

remote domain. 

Before displaying any feed on the webpage, the message is checked to prevent any 

problem in the HTML page. This is because if some code is injected into a Social entry, 

it has to be properly sanitized when displayed in the webpage. The function written for 

this purpose exploits a regular expression to replace the following characters and thus 

sanitize a string from containing executable code: <, >, ", ', `, !, @, $, {, |, }, [, ], \, ^. 

In order to do this, the characters are mapped with their correspondences and passed 

to the “replace” function. So, the input message is encoded to be correctly represented 

in an HTML webpage. To do this, we need the following function. 

function myEscapeHTML(text){ 

 var MAP = { 

'<': '&lt;', '>': '&gt;', '"': '&#34;', "'": 

'&#39;', '`': '&#96;', '!': '&#33;', '@': '&#64;', 

'$': '&#36;', '{': '&#123;', '|': '&#124;', '}': 

'&#125;', '[': '&#91;', ']': '&#93;', '\\': '&#92;', 

'^': '&#94;' 

}; 

// Note that the single quote (') cannot be replaced with 

'&apos;', because it is not valid HTML 4. We have to use 

'&#39;'. 

 

// The message is returned to the calling function with 

the characters replaced by the strings defined in MAP. 
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return text.replace(/[\<\>\"\'\`\!\@\$\{\|\}\[\]\\\^]/g, 

function (a) { return MAP[a]; }); 

} 

 

After this, we introduce the second function: “updateFeedsFromProfile”. The input 

parameters are explained in the following table. 

Name of the parameter Description 

accountName The name of the actor on Social (e.g. “Marco Carlo 
Cavalazzi” or “CERN Bulletin”) 

whereToWrite The name of the HTML section where the feeds will have 
to be written. 

updateInterval The update interval, in case we want the function to 
automatically refresh the feeds every tot seconds. In this 
case, the values as negative numbers, 0, “null” or 
“undefined” are used to express the will to avoid the auto-
refresh behaviour. 

numOfFeeds The maximum number of feeds to display in the page 
with this function. 

flagDisplayReplies This flag tells the function whether we want the replies to 
the feeds to be shown or not. 

 

In the function, some comments can be found to allow the reader to better understand 

the code. A more throughout description of the code is given after the function. The 

function is the following: 

function updateFeedsFromProfile(accountName, whereToWrite, 

updateInterval, numOfFeeds, flagDisplayReplies){ 

 // Consistency checks 

if( updateInterval===null || updateInterval===undefined || 

updateInterval<0) 

{ updateInterval = 0; } 

if( numOfFeeds===null || numOfFeeds===undefined || 

numOfFeeds<0 || numOfFeeds>20){ numOfFeeds = 0; } 

if( flagDisplayReplies===null || 

flagDisplayReplies===undefined ) 

{ flagDisplayReplies = true; } 
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// Sanitizing the input (encodeURI() is used instead of 

encodeURIComponent() when there has to be allowed the 

possibility to have hashtags.): 

 accountName = encodeURIComponent(accountName); 

 whereToWrite = encodeURI(whereToWrite); 

 updateInterval = encodeURIComponent(updateInterval); 

 numOfFeeds = encodeURIComponent(numOfFeeds); 

   

 if(whereToWrite[0] !== '#'){ 

  whereToWrite = '#' + whereToWrite; 

 } 

   

var tempSection = whereToWrite.substring(1); // It will be 

the ID of the HTML section in which we want to write the 

information without the hashtag as first character. 

// Temporary variable used to store new elements inside 

globalArrayOfProfiles. 

var tempElement; 

// Memorizing the main section 

var parentWhereToWrite = whereToWrite; 

   

// Converting the time from seconds to milliseconds 

if(updateInterval < 1000){  

updateInterval = updateInterval*1000; 

} 

  

// Section check. If the HTML section is present in the 

webpage we can move on, otherwise the function has to stop. 

 if( document.getElementById(tempSection) === null ){ 

// Error. No HTML section found to display the 

followed feeds on Social. Please add a <div 

id="feedsFromProfile"> section. 
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console.log('Error while trying to write the feeds 

from the specific profile. See function 

updateFeedsFromProfile().'); 

$(whereToWrite).append('<div class="feedsItem"> <p 

id="text"> There has been a problem while 

communicating with the server. <br/>Please try again 

later refreshing the page. </p> </div>'); 

  return; 

 } 

  

var innerWrap = "socialAPIFeedsFromProfile"+ 

whereToWrite.substring(1) + accountName; 

var wrapSection = '<div class="socialAPIWrapClass">'+ 

     '<div id="'+ innerWrap +'">'+ 

     '</div>'+ 

      '</div>'; 

// Adding a new wrapping section in the HMTL page to make 

the SocialAPI's CSS file point only at this part of the 

webpage, in case many CSS files are used. 

if( $(whereToWrite +" .feedsItem").length == 0  &&  

$(whereToWrite +" .socialAPIWrapClass").length == 0 ){  

// If there is the HTML section and it is still empty... 

  $(whereToWrite).html(wrapSection); 

 } 

  

// We need to re-authenticate on Social every time 

authenticateOnSocial(); 

  

 try{ 

  if(updateInterval > 0){ 

// The function “checkPresenceOfElement“ returns 

-1 if the element is not in the array. 
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var indexOfElement = 

checkPresenceOfElement(parentWhereToWrite, 

globalArrayOfProfiles); 

// If the element is inside the array, than we 

have to clear the interval and pop the element 

from the array before creating a new automatic 

update interval. 

if( indexOfElement > -1  &&  indexOfElement < 

globalArrayOfProfiles.length ){ 

// Stopping the old automatic refresh of the 

feeds 

clearInterval(globalArrayOfProfiles[indexO

fElement].automaticUpdatesHandlersCode); 

      

// Creating the new automatic refresh of the 

feeds 

globalArrayOfProfiles[indexOfElement].auto

maticUpdatesHandlersCode = 

setInterval(function(){ 

updateFeedsFromProfile(accountName, 

parentWhereToWrite, updateInterval, 

numOfFeeds, flagDisplayReplies); }, 

updateInterval); 

// The feeds will be updated every 

"updateInterval" seconds 

     

    whereToWrite = '#' + innerWrap; 

     

    // Retrieving the feeds 

executeRestCallExtendedSix(myFeedManagerEn

dpoint + 

"actor(item='cern\\"+accountName+"')/Feed"

, 'GET', null, 

checkDataReceivedAndDisplayTheFeeds, 
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onError, whereToWrite, parentWhereToWrite, 

numOfFeeds, numOfFeeds, 

flagDisplayReplies); // getting the 

feeds and passing them to the function 

checkDataReceivedAndDisplayTheFeeds() 

   } 

   else{ 

    // Creating the automatic refresh of the 

feeds. 

var tempHandler = setInterval(function(){ 

updateFeedsFromProfile(accountName, 

parentWhereToWrite, updateInterval, 

numOfFeeds, flagDisplayReplies); }, 

updateInterval); 

// The followed feeds will be updated every 

"updateInterval" seconds. 

tempElement = new updateObj(accountName, 

whereToWrite, tempHandler, updateInterval, 

numOfFeeds, flagDisplayReplies); 

globalArrayOfProfiles.push(tempElement); 

// Inserting the new element in the 

'globalArrayOfProfiles'. 

      

    whereToWrite = '#' + innerWrap; 

      

    // Retrieving the feeds. 

executeRestCallExtendedSix(myFeedManagerEn

dpoint + 

"actor(item='cern\\"+accountName+"')/Feed"

, 'GET', null, 

checkDataReceivedAndDisplayTheFeeds, 

onError, whereToWrite, parentWhereToWrite, 

numOfFeeds, numOfFeeds, 

flagDisplayReplies);  
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// getting the feeds and passing them to the 

function 

checkDataReceivedAndDisplayTheFeeds() 

   } 

  } 

  else{ 

// If we are here it means that the function has 

to retrieve the feeds without automatically 

update them. 

    

var indexOfElement = 

checkPresenceOfElement(parentWhereToWrite, 

globalArrayOfProfiles); 

// The function “checkPresenceOfElement” returns 

-1 if the element is not in the array. 

 

// If the element is not inside the array, than 

we have to add it. 

   if( indexOfElement === -1 ){ 

tempElement = new updateObj(accountName, 

whereToWrite, null, 0, numOfFeeds, 

flagDisplayReplies); 

// Pushing the new element in the 

'globalArrayOfProfiles'. 

globalArrayOfProfiles.push(tempElement); 

   } 

    

   whereToWrite = '#' + innerWrap; 

    

// getting the feeds and passing them to the 

function. checkDataReceivedAndDisplayTheFeeds() 

executeRestCallExtendedSix(myFeedManagerEndpoin

t + "actor(item='cern\\"+accountName+"')/Feed", 

'GET', null, 



134 
 

checkDataReceivedAndDisplayTheFeeds, onError, 

whereToWrite, parentWhereToWrite, numOfFeeds, 

numOfFeeds, flagDisplayReplies); 

  } 

 }catch(e){ 

$(whereToWrite).html('<div>There has been a problem 

while retrieving the feeds. <br/>Please try again 

later. </div>'); 

 } 

} 

 

As we can see from the code, the function also begins sanitizing and controlling the 

input for possible problems. It checks the presence of the dedicated HTML section in 

the page, creates the new division (with class “socialAPIWrapClass”) for the feeds and 

authenticates on Social. At this point its behaviour becomes different from the previous 

function, because in this case we have to take into consideration the fact that more 

sections of the page can have this kind of feeds, each linked to a different profile on 

Social. In order to take care of every profile considered we need to store them in a 

global variable: “globalArrayOfProfiles”. This way we are able to take care of the 

automatic refresh of each section separately, launch or stop a single timer or all at 

once. After this, the CORS request is executed to get the feeds, using the URL 

https://social.cern.ch/_api/social.feed/actor(item='cern\\"+accountName+"')/Feed. As 

we can see, the SharePoint interface used in this case requires a specific actor’s name 

to get his or her feeds and uses the variable “accountName” from the input parameters 

to take care of the issue. As in the previously examined function, in case of success 

the function “checkDataReceivedAndDisplayTheFeeds” takes the data in input and 

checks for exceptions, after which the “appendFeeds” function takes care of the 

displaying of the feeds. Even in this case we can set an automatic or manual update 

of the feeds. 

 

The third function is “updateFeedsWithSameHashtag”. Its input parameters are 

explained in the following table. 

 

 

https://social.cern.ch/_api/social.feed/actor(item='cern/%22+accountName+%22')/Feed
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Name of the parameter Description 

tag The hashtag in which we are interested in (e.g. “#CERN”, 
“#Drupal” or “#LHC”) 

whereToWrite The name of the HTML section where the feeds will have 
to be displayed. 

updateInterval The update interval, in case we want the function to 
automatically refresh the feeds every tot seconds. In this 
case, the values as negative numbers, 0, “null” or 
“undefined” are used to express the will to avoid the auto-
refresh behaviour. 

numOfFeeds The maximum number of feeds to display in the page 
with this function. 

flagDisplayReplies This flag tells the function whether we want the replies to 
the feeds to be shown or not. 

 

In the function, some comments can be found to allow the reader to better understand 

the code. A more throughout description of the code is given after the function. The 

code is the following: 

function updateFeedsWithSameHashtag(tag, whereToWrite, 

updateInterval, numOfFeeds, flagDisplayReplies){ 

 // Consistency checks 

if( updateInterval===null || updateInterval===undefined || 

updateInterval<0){ updateInterval = 0; } 

if( numOfFeeds===null || numOfFeeds===undefined || 

numOfFeeds<0 || numOfFeeds>20){ numOfFeeds = 0; } 

if( flagDisplayReplies===null || 

flagDisplayReplies===undefined){ flagDisplayReplies = 

true; } 

  

// Sanitizing the input (encodeURI() is used instead of 

encodeURIComponent() when there has to be allowed the 

possibility to have hashtags.). 

// Splitting the input tags from one string to an array of 

strings. 

 var noSharpTagArray = tag.split(' ');  
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 var noSharpTagString = ''; 

 // This variable will be used for the innerWrap variable 

only. 

var noSpaceNoSharpTagString = ''; 

for(var i=0; i<noSharpTagArray.length; i++){ 

  if(noSharpTagArray[i][0] === '#'){ 

noSharpTagArray[i] = 

noSharpTagArray[i].substring(1, 

noSharpTagArray[i].length); 

  } 

  noSpaceNoSharpTagString += 

encodeURI(noSharpTagArray[i]);  // Adding the tag only 

  if( i < noSharpTagArray.length-1 ){ 

// Adding the tag plus an empty space  

noSharpTagString += 

encodeURI(noSharpTagArray[i]) + ' '; 

  }else{ 

// Adding the last tag 

   noSharpTagString += 

encodeURI(noSharpTagArray[i]); 

  } 

 } 

 whereToWrite = encodeURI(whereToWrite); 

 updateInterval = encodeURIComponent(updateInterval); 

 numOfFeeds = encodeURIComponent(numOfFeeds); 

  

 if(whereToWrite[0] !== '#'){ 

  whereToWrite = '#' + whereToWrite; 

 } 

if(document.getElementById(whereToWrite.substring(1))===n

ull){ 

console.log("The HTML section appears not to exist. 

See updateFeedsWithSameHashtag() function."); 

  return; 
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 } 

  

var tempSection = whereToWrite.substring(1, 

whereToWrite.length); 

  

if(updateInterval < 1000) 

{ 

// Converting the time from seconds to milliseconds 

updateInterval = updateInterval*1000; 

}  

  

 var parentWhereToWrite = whereToWrite; 

  

// Section's check. If the HTML section is present in the 

webpage we can move on, otherwise the function has to stop. 

 if( document.getElementById(tempSection) === null ){ 

// Error. No HTML section found to display the 

followed feeds on Social. Please add a <div 

id="feedsWithSameHashtag"> section. 

console.log('Error while trying to write the feeds 

with the same hashtag. The section ID passed in input 

is not present in the web page.'); 

  return; 

 } 

  

 $(whereToWrite).html(''); // Clearing the feeds 

displayed. 

  

// We need to re-authenticate on Social every time 

 authenticateOnSocial(); 

  

// Adding a new wrapping section in the HMTL page to make 

the SocialAPI's CSS file point only at this part of the 

webpage, in case many CSS files are used. 
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var innerWrap = "socialAPIFeedsWithSameHashtag"+ 

whereToWrite.substring(1, whereToWrite.length) + 

noSpaceNoSharpTagString; 

var wrapSection =  '<div class="socialAPIWrapClass">'+ 

      '<div id="' +  innerWrap + '">'+ 

      '</div>'+ 

     '</div>'; 

 $(whereToWrite).html(wrapSection); 

  

 try{ 

  // Activating the automatic refresh of the feeds 

  if(updateInterval > 0){ 

var index = checkPresenceOfElement(whereToWrite, 

globalArrayOfHashtags); // Checking the 

presence of the element inside the array. 

// If the element is already present we can 

simply modify the information about it. 

if(index >= 0 && index < 

globalArrayOfHashtags.length){ 

clearInterval(globalArrayOfHashtags[index]

.automaticUpdatesHandlersCode); // 

stopping the previously set automatic 

updater 

var handlerCode = setInterval( function() { 

updateFeedsWithSameHashtag(noSharpTagStrin

g, whereToWrite, updateInterval, 

numOfFeeds, flagDisplayReplies); }, 

updateInterval); 

// The feeds will be updated every 

"updateInterval" seconds 

     

globalArrayOfHashtags[index].automaticUpda

tesHandlersCode = handlerCode; 
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globalArrayOfHashtags[index].timeInterval 

= updateInterval; 

   }else{ 

// else: we have to add a new element to the 

array. 

var handlerCode = setInterval( function() { 

updateFeedsWithSameHashtag(noSharpTagStrin

g, whereToWrite, updateInterval, 

numOfFeeds, flagDisplayReplies); }, 

updateInterval);  

// The feeds will be updated every 

"updateInterval" seconds. 

// Updating the global array for the timed 

updates. 

globalArrayOfHashtags.push(new 

updateObj(noSharpTagString, whereToWrite, 

handlerCode, updateInterval, numOfFeeds, 

flagDisplayReplies)); 

   } 

  }else{ 

var index = checkPresenceOfElement(whereToWrite, 

globalArrayOfHashtags); // Checking the 

presence of the element inside the array 

// If the element is already present we can 

simply modify the information about it 

if(index === -1){ 

// If the element is not yet in the array… 

globalArrayOfHashtags.push(new 

updateObj(noSharpTagString, whereToWrite, 

null, 0, numOfFeeds, flagDisplayReplies));

 // Adding the element to the array 

   } 

  } 

   



140 
 

// We want to write in the inner section. 

whereToWrite = "#" + innerWrap; 

// Retrieving the feeds with the same tag(s) and 

writing them in the section of the HTML page with 

ID='feedsWithSameHashtag'. 

retrieveFeedsWithSameTag(noSharpTagString, 

whereToWrite, parentWhereToWrite, numOfFeeds, 

flagDisplayReplies); 

 }catch(e){ 

$(whereToWrite).html('There has been an error while 

trying to write the feeds with the same hashtag. 

Please try again later.'); 

 } 

} 

 

As in the other functions, here the code begins sanitizing and checking the input for 

possible consistency issues. It checks the presence of the dedicated HTML section in 

the webpage, authenticates on Social and creates the new division (with class 

“socialAPIWrapClass”) for the feeds. After this, the function is similar to the previous 

one, since we are facing the same possible issue: there can be more than one section 

with feeds with the same hashtag in the page and each can have feeds containing a 

different hashtag. As we can see from the code, the global variable 

“globalArrayOfHashtags” is used to solve the issue. It is important to notice that we 

can look for feeds with a variable number of hashtags in them. We can look for all the 

feeds with a single hashtag, like #IT, or multiple ones, like #SharePoint and #API. In 

the case with multiple hashtags, the API will retrieve all the feeds containing all of the 

specified hashtags in their text. Next, through the function 

“retrieveFeedsWithSameTag” it creates the CORS request for the SharePoint 

interface using the URL:  

“https://social.cern.ch/_api/search/” + "query?querytext='tags:"+ tagText 

+"'&sourceid='459dd1b7-216f-4386-9709-287d5d22f568'”. 

We can see that here is used the Search REST service. The tags, placed after the 

keyword “tags:”, will be a series of strings without any “#”, separated by a space. The 

“sourceid” used is a special string that lets SharePoint know that we are looking for 
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the tags from the Conversations on Social and that it should not look for tags in other 

areas like Collaboration Workspaces. The feeds are then passed to the 

“retrieveFeedsWithSameTagBodyFunction” function, which will take care of displaying 

the feeds on the page. 
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Examples of sidebars created on Drupal using the Social API. 

On the left, it shows the feeds from the followed actors on Social; on the right, it shows the 

most recent feeds with both #Social and #Drupal hashtags (CERN, 2015) 
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The fourth function considered is “loadTagCloud”. Its input parameters are explained 

in the following table. 

Name of the parameter Description 

whereToWrite The ID of the HTML section where the feeds will have to 
be placed. 

maxNumTags The maximum number of tags to retrieve. Used to limit 
the tags displayed in the cloud canvas. 

textColor The colour of the text. 

textBorderColor In the 3D Tag Cloud it is possible to set the colour of the 
border of the text, which appears when the mouse is over 
the tag. 

numDimensions The number of dimensions to take into account (2= 2D 
Tag Canvas, 3=3D Tag Cloud). 

weightFlag It is possible to set this flag as “true” if we need the size 
of the text for each tag to be related to the frequency in 
which they are present on Social. This means that the 
more frequent a tag is used on the network the bigger will 
be displayed in the canvas (up to a maximum). 

periodOfTime The period of the time we are looking for ('lastDay', 
'lastWeek', 'lastMonth', 'lastYear', 'allTime'). 

 

In the function, some comment lines can be found to allow the reader to better 

understand the code. A more throughout description of the code is given after the 

function: 

function loadTagCloud(whereToWrite, maxNumTags, textColor, 

textBorderColor, numDimensions, weightFlag, periodOfTime){ 

// Section checks. If the HTML sections are presents in the 

webpage we can move on, otherwise the function has to stop. 

 while(whereToWrite[0] === '#' && whereToWrite.length > 0){ 

  whereToWrite = whereToWrite.substring(1); 

 } 

 if( document.getElementById(whereToWrite) === null ){ 

// Error. No HTML section found to display the 

followed feeds on Social. Please add a <div id="+ 

whereToWrite +"> section. 
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console.log('Error while trying to write the tags for 

the Tag Cloud. The HTML section appears not to exist. 

See the function loadTagCloud().'); 

  return; 

 } 

  

 var date = new Date(); // Reading today's date 

  

 switch(periodOfTime){ 

  case 'lastDay': 

   date.setDate(date.getDate()-1); 

// Going back one day. 

   break; 

  case 'lastWeek': 

   date.setDate(date.getDate()-7); 

// Going back one week. 

   break; 

  case 'lastMonth': 

   date.setDate(date.getDate()-30); 

// Going back one month. 

   break; 

  case 'lastYear': 

   date.setDate(date.getDate()-365); 

// Going back one year. 

   break; 

  case 'allTime': 

   date = null; 

// We will retrieve all the tags ever used (with 

their number of occurrences). 

   break; 

  default: 

   date = null; 

// We will retrieve all the tags ever used (with 

their number of occurrences). 
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 } 

 

 // This will be the URL used to retrieve the tags from 

Social. 

var querySiteToGetTheTags; 

 if(date === null){ 

  querySiteToGetTheTags = querySiteToGetAllTheTags; 

 }else{ 

  var day, month; 

   

  month = date.getMonth() + 1; 

if(month < 10){ month = '0' + month; } 

// We want the 'month' string to have always two chars. 

   

  day = date.getDate(); 

if(day < 10){ day = '0' + day; } 

// We want the 'day' string to have always two chars. 

   

querySiteToGetTheTags = searchRestService + 

"query?querytext='ContentTypeId:0x01FD* write>=\""+ 

date.getFullYear() +"-"+ month +"-"+ day +" 

00:00:01Z\" -ContentClass=urn:content-

class:SPSPeople'&refiners='Tags'"; 

 } 

  

executeRestCallExtendedSeven(querySiteToGetTheTags, 

'GET', null, drawUserTagsInCanvas, onError, whereToWrite, 

maxNumTags, textColor, textBorderColor, numDimensions, 

weightFlag); 

// Getting all the tags from Social and passing them to the 

function drawUserTagsInCanvas(). 

} 
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A the beginning of the function we can find the controls on the input, in particular on 

the HTML section. We then create the “date” variable, which will tell SharePoint from 

what point in time we need to examine the Social tags. The CORS request is then 

launched using the URL: 

“https://social.cern.ch/_api/search/” + "query?querytext='ContentTypeId:0x01FD* 

write>=\""+ date.getFullYear() +"-"+ month +"-"+ day +" 00:00:01Z\" -

ContentClass=urn:content-class:SPSPeople'&refiners='Tags'" 

Even in this case the Search REST service is exploited. In the URL, the string 

“ContentTypeId:0x01FD*” specifically calls for trending tags, while the “write” keyword 

is used to get everything written from the date given in input to the present. Then the 

time string “00:00:01Z\" is passed, stating that we need the feeds written from the first 

second of the given day. “ContentClass” is a mandatory property for SharePoint 2013 

for this kind of requests and states that the content we are looking for does not regard 

the People on Social (Microsoft, 2015). Instead, we can read from the last part, 

“refiners='Tags'”, that our interest is for hashtags only. The feeds are then passed to 

the “drawUserTagsInCanvas” function, which will take the data from the server and 

take care of displaying the feeds on the canvas element in the HTML page. 
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Social API use example (CERN, 2015) 

 

We will now present each function described above explaining the operations required 

for them to work. We will start from the “updateGroupInfo” function. Its input 

parameters are explained in the following table. 

Name of the parameter Description 

whereToWrite The name of the HTML section where the feeds will have 
to be written. 

updateInterval The update interval, in case we want the function to 
automatically refresh the feeds every tot seconds. In this 
case, the values as negative numbers, 0, “null” or 
“undefined” are used to express the will to avoid the auto-
refresh behaviour. 

numFeeds The number of feeds to display in the page with this 
function. 
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flagDisplayReplies This flag tells the function if the replies to the feeds have 
to be displayed or not. 

 

In the function, some comments can be found to allow the reader to better understand 

the code. A more throughout description of the code is given after the function. The 

function is the following: 

function updateGroupInfo(whereToWrite, department, group, 

section, imageFlag, departmentFlag, numFeeds){ 

// Sanitizing the input (encodeURI() is used instead of 

encodeURIComponent() when there has to be allowed the 

possibility to have hashtags.): 

 whereToWrite = encodeURI(whereToWrite); 

 department = encodeURI(department); 

 group = encodeURI(group); 

 section = encodeURI(section); 

  

// Resetting the global variable 

numOfElementsAlreadyDisplayed = 0; 

  

if(department === null || department === 'null' || 

department === undefined || department === '' || 

department.length < 1){ 

$('#content').html('<div class="feedsItem"> <p 

id="text"> There has been a problem while retrieving 

the feeds. Please try again later. </p> </div>'); 

  return; 

 } 

 var groupString; 

if(group == null  ||  group == 'null' ||  group == undefined  

||  group == ''){ 

  groupString = ''; 

 }else{ 

if(typeof(group) === 'string'  &&  group.length > 1  

&&  group.length < 20){ 
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   groupString = '/' + group; 

  }else{ 

   groupString = ''; 

  } 

 } 

 var sectionString; 

if(section == null  ||  section == 'null' ||  section == 

undefined  ||  section == ''){ 

  sectionString = ''; 

 }else{ 

if(typeof(section) === 'string'  &&  section.length > 

1  &&  section.length < 20){ 

   sectionString = ' Section:' + section; 

  }else{ 

   sectionString = ''; 

  } 

 } 

  

 if(whereToWrite[0] !== '#'){ 

  whereToWrite = '#' + whereToWrite; 

 } 

  

 var tempElement; 

 var parentWhereToWrite = whereToWrite; 

  

 // Clearing the section of the feeds I am following 

 $(whereToWrite).html(''); 

  

var tempSectionID = whereToWrite.substring(1, 

whereToWrite.length); 

// Section check. If the HTML section is present in the 

webpage we can move on, otherwise the function has to stop. 

 if( document.getElementById(tempSectionID) === null ){ 
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// Error. No HTML section found to display the 

followed feeds on Social. Please add a <div 

id="feedsFollowed"> section. 

$(whereToWrite).append('<div class="feedsItem"> <p 

id="text"> There has been a problem while 

communicating with the server. <br/>Please try again 

later. </p> </div>'); 

console.log('Error while trying to write the followed 

feeds. The section ID passed in input seems not to be 

present in the webpage.'); 

  return; 

 } 

  

// Adding a new wrapping section in the HMTL page to make 

the SocialAPI's CSS file point only at this part of the 

webpage, in case many CSS files are used. 

var wrapSection = '<div class="socialAPIWrapClass">'+ 

'<div id="socialAPIDepartment' + 

tempSectionID  +'">'+ 

     '</div>'+ 

      '</div>'; 

 $(whereToWrite).append(wrapSection); 

  

 whereToWrite = '#socialAPIDepartment' + tempSectionID; 

  

  

var searchForGroupInfoSite = searchRestService + 

"query?querytext='department:" +department + groupString + 

sectionString+"'&sourceid='B09A7990-05EA-4AF9-81EF-

EDFAB16C4E31'"; 

 // In the variable 'searchForGroupInfoSite', the code: 

 //    sourceid='B09A7990-05EA-4AF9-81EF-EDFAB16C4E31' 
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// tells the Server that we are looking for People (possible 

search options: Everything, People, Conversations, 

Videos). 

  

try{ 

// Launching the function that executes the CORS 

request. 

executeRestCallExtendedSeven(searchForGroupInfoSite, 

'GET', null, updateGroupInfoBodyFunction, onError, 

whereToWrite, department, group, section, imageFlag, 

departmentFlag, numFeeds); 

 } 

catch(err){ 

errorHandlerFunction(11, "There was a problem while 

communicating with the Server.\nPlease try again 

later.");  

} 

} 
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Example of the Social API retrieving information on the People working in the IT/CDA/FW 

section (written as department/group/section) (CERN, 2015) 

 

At this point, we will look at the “postToMyFeeds” function. This function has the 

purpose to post a new feed on Social using the user’s credentials. Its input parameters 

are explained hereunder. 

Name of the parameter Description 

message The message to post to Social. 

inputFunction The function that we need to launch as soon as the 
message is posted successfully. 
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A more throughout description of the code is given after the function presented here: 

function postToMyFeeds(message, inputFunction) { 

  

// If no message is given in input... [ the function is 

called as "postToMyFeeds();" ] 

if( typeof(message) !== "string" || message === null || 

message === "" || message === undefined ){ 

// Reading the message from the page. 

message = 

document.getElementById("textareaPostNewFeed").value

; 

  // If the message is still null 

if(message === null || message === "" || message === 

undefined){ 

console.log("Error: No message passed in input. 

The new feed can not be created."); 

$('#nextToPostButton').html("<i> &nbsp; Please 

write some text first.</i>"); 

// The “setTimeout” function will hide the 

message after 3 seconds. 

setTimeout("socialAPI().clearMessageToTheUser('

nextToPostButton');", 3000); 

   return; 

  } 

  else{ 

// Removing any text eventually present in this 

section of the HTML file. 

$('#nextToPostButton').html(""); 

  } 

 } 

  

 if( inputFunction == null  ||  inputFunction == undefined 

){ 

  inputFunction = function(flag){ 
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   if(flag){ alert("Message posted."); } 

else{ alert("There has been a problem while 

posting the message. Please try again later."); 

} 

  } 

} 

  

// Calling the function that will read the text from the 

<p> HTML section and post it online. 

executeRestCallExtended(formDigestUrl, "POST", null, 

postMessage, onError, message, inputFunction); 

} 

 

This is only the first of the two CORS requests needed to upload the post online. It is 

necessary in order to get the “formDigest” value and be able to set the "X-

RequestDigest" property in the RequestHeader of the second XMLHttpRequest to the 

formDigest value, like this:  

xhr.setRequestHeader("X-RequestDigest", formDigest); 

 

So, if the CORS request is successful, the “postMessage” function is called. It first 

reads the message written in the page. Checks if there actually is any message and 

reads the data from SharePoint to obtain the formDigest. Next, we need to consider 

that if there is any hashtag or web link in the message and we want them to be 

recognised as such, instead of simple text, then we need to substitute them with 

tokens, like {0} or {1}, and store their real values in a different location. Later, we will 

add their real values in the JSON file for the SharePoint service.  

If there are already some parts of the text that could be exchanged from SharePoint 

as tokens, we need to modify those parts in order to avoid problems like unintended 

repetitions of tags in the post. Using the regular expression (RE) /\{[0-9]+\}/ we 

can identify the presence of any token-like string in the message. Those “fake tokens” 

are modified simply adding a blank space between the parentheses and the content, 

so that SharePoint will not see those as tokens and, at the same time, the message 

will still be clear.  
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At the same time, using JSON as the format to exchange data, it is important to avoid 

having more than one open or closed curly bracket at a time, like “{{“, because it would 

cause problems while formatting the message for SharePoint. Even this issue can be 

solved adding a simple space between the parentheses. 

At this point the function looks for any hashtag or link in the page, so that they can be 

correctly reported to SharePoint and be represented as such on Social. The words in 

the text are split into an array using the space are key character and examined one by 

one. Looking for hashtags, we just need to look for the “#” symbol, followed by a series 

of simple numbers or letters. If found, the hashtag is saved in a list and replaced by a 

token. In order to acknowledge the presence of web links we can use a regular 

expression that checks for every possible combination of letters, symbols and 

numbers that could represent a web link. The RE used is: 

/^((ftp|https?):\/\/)?(www\.)?([\w\-]{2,})([\.][\w\-

]{2,})*([\.][a-z]{2,})+([\/][\w\+\-

\?\.\&\%\=\#\:\;\(\)\~]{2,})*[\/]?/i 

 

Next, the JSON file is formed respecting the following structure (expressed in 

JavaScript), which includes the metadata needed form SharePoint to recognize its 

content: 

" { 'restCreationData':{ " + 

" '__metadata':{ 

'type':'SP.Social.SocialRestPostCreationData'}, " + 

" 'ID': null, " + 

"  'creationData':{ " + 

" 

 '__metadata':{'type':'SP.Social.SocialPostCreationData'}, 

" + 

"  'Attachment': null," + 

"  'ContentItems': " + contentItemsString + 

"  'ContentText':'" +message+ 

"','UpdateStatusText':false "+ 

"  } " + 

" }}"; 
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Now, the JSON file format varies slightly according to the presence/absence of 

hashtags and links or the presence/absence of an attachment, but it always follows 

the same design. In particular, we can see that, in this case, there is no attachment 

and the text of the message will go in the “ContentText” section, while the real values 

of the tokens will be written in the “ContentItems” division. 

 

5.4.2. Testing 

 

Software testing is an investigation conducted to provide stakeholders with information 

about the quality of the product or service under test (Kaner, 2006). Test techniques 

include the process of executing a program or application with the intent of 

finding software bugs (errors or other defects). Software testing involves the execution 

of a software component or system component to evaluate one or more properties of 

interest. In general, these properties indicate the extent to which the component or 

system under test: 

 meets the requirements that guided its design and development, 

 responds correctly to all kinds of inputs, 

 performs its functions within an acceptable time, 

 is sufficiently usable, 

 can be installed and run in its intended environments, and 

 achieves the general result its stakeholders desire. 

 

The testing phase followed the agile approach used for the development of the API. 

Therefore, it took place iteratively for each of the functions implemented. In order to 

check the behaviour of the API and its CSS, the tests have first been carried out on a 

Windows machine using all of the most used browsers, like Mozilla Firefox, Google 

Chrome, Internet Explorer, Opera and Safari. Then, for compatibility purposes, older 

versions of the same environments have been tested out. Almost every environment 

required adjustments and it was often necessary to adopt ad hoc solutions. 

After these tests, similar ones have been executed on Linux and Apple machines. This 

has been crucial because all these three systems are used in the everyday work at 

CERN. 

 

https://en.wikipedia.org/wiki/Software_bug
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5.4.3. Problems Encountered and Limitations 

 

During the development of the API, a number of problems arose and many requests 

were presented during its development. It has been difficult to sort out the vast amount 

of information returned from SharePoint in JSON format in order to find information 

like the name of the author of a feed or the ID of the feed itself. As an example, to 

capture the array of tags retrieved using the Search REST service for the tag cloud 

we need to look deep in the JSON structure for the results. The resulting line of code 

is: 

tags = 

result.d.query.PrimaryQueryResult.RefinementResults.Refiners.r

esults[0].Entries.results; 

In the code presented, the first “result” corresponds to the main section of the JSON 

file while every dot corresponds to opening a subsection in order to go deeper in the 

file structure and find what we are looking for. As we can see, there are many levels 

of information and it has been necessary to analyse them all. In a complex situation 

like this one, where no detailed documentation from Microsoft can be found, it has not 

been easy to find every piece of information required for the API functions to work. 

In order to satisfy the requirements it has been essential to update the functions 

developed many times in order to make them adaptable to any kind of preference, 

from the section in which the feeds have to be displayed and the amount of seconds 

to wait before a refresh of the feeds to the colour of the text. In addition, the design is 

made responsive, so that it can adapt to the size of the HTML section in the webpage. 

If the feeds are displayed in a sidebar the text shrinks, while if the feeds are displayed 

in the centre of the page the text can have a larger font size and both the profile and 

attached pictures can take more room. 
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Problem example: the post is repeated between its replies 

 

As stated before, on Social it is possible to cite other authors in the feeds. The 

limitations of the API include the impossibility to cite other authors in the feeds posted 

through the API, writing for example “@Marco Carlo Cavalazzi” in order to notify the 

user to look at that particular feed. This has been a conscious choice made during the 

development process. The reason is that in order to get that kind of feature a user 

should cite the person with their correct name on Social and it is unmanageable to 

remember the name of all the people working at CERN. Now, this problem could be 

solved using the SharePoint suggestion system, which suggests possible names while 

typing them into the feed, but it would have introduced a high number of calls to the 

SharePoint service and it has been decided that since it is not a crucial feature it was 

not worth the risk of overloading the CERN’s network. It is possible to write that kind 

of text in a post, but it will not trigger a notification. 

In addition, the API will not be able to work on old browsers, like Internet Explorer 7, 

especially because of the lack of support for CORS requests. A documentation has 

been redacted for the users and developers who need the Social API, which clarifies 

the problem and how to solve it. 
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6. Conclusions 

 
The benefits of ESNs are undeniable. The extensive research on the subject proves 

that the possibilities of an ESN can provide a useful platform on which everyone can 

express opinions, ask questions and join discussions contributing to the process of 

knowledge sharing, which creates a self-reinforcing flow of information that contributes 

in making the organization ever more ready for future’s challenges. 

We have seen how the IT department can develop tools and improvements for the 

organization’s ESN. More importantly, we know that when a new collaboration tool is 

necessary it can be integrated in the existing environment, making it a well-worth long-

term investment. 

Clearly, the biggest challenge for most knowledge management initiatives is the 

willingness of people to share knowledge with others both in their work groups and 

across groups, as the cultural shift is significant. Social business requires a minor 

revolution in thought and a steady evolution in cooperative action. In order for the 

social approach to succeed there should be an organizational need, a problem in daily 

processes or communications that can be solved by the introduction of new 

communication media. In addition, new technologies should be easy enough to use. 

Simplicity of social tools in both usage and installation facilitates the bottom-up 

initiatives of adoption. Furthermore, certain organizational settings, such as open 

enough culture, encouragement of innovation, clear intentions, policies and guidelines 

towards the social organization should be in place. It may seem difficult. However, as 

we have seen in many examples, there is no doubt that the potential benefits are worth 

the efforts. “Social business successes of well-known, market-leading organizations 

offer compelling evidence of the returns on this evolution of business” (Hinchcliffe & 

Kim, 2012).  

 

In order to work as a social organization, the enterprise has also to make use of new 

success indicators, like: 

 Financial returns, no more based on sole profit, but identified following the 

evolution during and after the change towards the conversation company; 

 Savings, that become evident when the number of conversations increases and 

becomes less necessary to pay for expensive advertising; 
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 The number of extremely satisfied customers and employees, since it is by 

looking at those elements that the highest standards can be met; 

 Conversations, making sure that the conversation potential is fully exploited; 

 Knowledge integration, paying attention so that business is done in a way that 

follows the new philosophy. 

 

At CERN, the goal is to provide a stimulating environment where people and 

newcomers can learn from each other. To provide a mean of communication and way 

to access to knowledge adapted this new era, in order to attract, engage and finally 

keep talents. This will help to foster innovation, which is, naturally, part of CERN’s 

essence. ESNs empower people, everyone has an equal voice, it encourages people 

to speak up giving them an opportunity to make meaningful contributions with their 

skills and ideas, and again leveraging innovation. It increases engagement by 

humanizing the way in which people work (Li, 2012), opposing to the classic and formal 

way to communicate provided by email.  

Social at CERN is being progressively promoted and it is expected an increase in its 

usage while existing communication channels are being moved to Social. The tools 

and improvements discussed in the last chapter are now used for the everyday 

operations. In particular, the Social API is now used in some Drupal modules. Those 

are important for the integration aspects of existing public facing websites (running on 

Drupal) with Social. Part of the plans and future of Social at CERN involve feeding the 

Newsfeed with content by adding more sources with relevant information. Simple 

examples like posting daily CERN restaurant’s menu or migrating existing classifieds 

site CERN Market to the Social community had very positive effects and added new 

features to existing services. Bi-directional integration is available for other CERN Web 

platforms to allow users to share context-based information directly on Social. It is 

important to maintain programmatic interfaces easy to use to allow both consumption 

and feeding of data. New features are also under development like the Social Feed 

that consists on a topic-based microblog feed. This will allow, for example, lightweight 

departmental and private discussions, which can be opened to external people. It is 

also expected for the heavy usage of mailing lists to be replaced by Social Feeds when 

the purpose is mostly non-critical information exchange. Finally yet importantly, the 

development of comprehensive usage analytics to measure the engagement of CERN 
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people or success of communication campaigns is also part of the plans (De Sousa, 

et al., 2015). 

The effective management of knowledge has been described as a critical ingredient 

for organisations seeking to ensure a sustainable and strategic competitive advantage. 

It has been brought out that processes and technology alone are not enough to drive 

an organisation, but its people and the knowledge that resides in them are an integral 

pivot in organisation’s success. It is therefore essential for management in 

organisations to look for means to gain, maintain and leverage knowledge not for a 

brief period but on a regular basis.  

The ESN empowers people, giving them the tools to share knowledge and, at same 

time, have available, at any time, all the knowledge present in the KMS of the 

company. This way the company can react faster to new problems and be ready to 

spot new business opportunities. 
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Appendix A 

 

Here is displayed the code regarding the custom responsive design for Social Mobile. 

File “CustomResponsiveness.css”: 
/********** Custom SharePoint 2013 Responsive **********/ 

/*  @media only screen and (max-device-width:750px), media only screen and (max-width:750px) {  */ 

@media only screen and (max-device-width:750px), media only screen and (max-width:750px) { /* The order in which the conditions are written is IMPORTANT! */ 

 div.toolbar-wrapper{width:100.1% !important;} 

 #cern-toolbar{height:110px !important;} 

  

 #cern-toolbar h1{ 

  margin-top: 1em !important; 

 } 

 #cern-toolbar h1 a{ 

  font-size:3em; 

  margin-top: 12%; 

 } 

 #cern-toolbar h1 span { 

        display: none; 

    } 

 

    #cern-toolbar ul { 

        border-right: 1px solid #000; 

        -moz-box-shadow: 1px 0 0 #444; 

        -webkit-box-shadow: 1px 0 0 #444; 

        box-shadow: 1px 0 0 #444; 

    } 

     

    #cern-toolbar ul li{ 

     height:9em; 

     padding:0 !important; 

 } 

 

    #cern-toolbar li { 

        padding: 0; 

        margin: 0 1em 0 1em !important; 

        border-left: 2px solid #000; 

    } 

 

        #cern-toolbar li a { 

            background-image: url("/_layouts/15/images/cern/toolbar/toolbarsprite.png"); 

            background-repeat: no-repeat; 

            height: 67px; 

            width: 90px; 

            -moz-border-radius: 0; 

            -webkit-border-radius: 0; 

            border-radius: 0; 

            text-indent: -5000px; 

            overflow: hidden; 

            border-left: 2px solid #444; 

        } 

         

    #cern-toolbar .cern-account { 

        background-position: 9px 0; 

    } 

 

    #cern-toolbar .cern-directory { 

        background-position: 16px -107px; 

        background-size: 175%; 

        height: 120px; 

        padding-left: 2em; 

    } 

 

    #cern-toolbar .cern-signout { 

        background-position: 21px -221px; 

        background-size: 175%; 

        height: 120px; 

        padding-left: 2em; 

        margin-left: 0 !important; 

    } 

 

    #cern-toolbar .active .cern-account { 

        background-position: -31px 0; 

    } 

 

    #cern-toolbar .active .cern-directory { 

        background-position: -31px -40px; 

    } 

 

    #cern-toolbar .cern-accountlinks span { 

        display: none; 

    } 

 

    #cern-toolbar .cern-multifactor { 

        background-image: none; 

        padding: 0; 

    } 

} 

 

 

 

/********** Mobile (All Screens Up to 750px) **********/ 
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/* 

@media only screen and (max-device-width:480px), media only screen and (max-width:480px){ 

@media only screen and (max-device-width:750px), media only screen and (max-width:750px){ 

For the Master page use: <SharePoint:ScriptLink language="javascript" name="cssToggle.js" OnDemand="true" runat="server" Localizable="false" /> 

*/ 

 

@media only screen and (max-device-width:750px), media only screen and (max-width:750px) { /* this condition is just for debugging, use the ones before this. */ 

 /* General CSS. */ 

 .ms-dialog body{background-image: none !important;} 

 .ms-dialog #s4-titlerow{display: none !important;} 

 .ms-dialog #contentBox{background-image: none !important;} 

  

/* Global Body */ 

 body{ 

  overflow: auto;  

  background-image: none !important;  

  background-color: rgba(255, 255, 255, 0.95); 

  font-size: 4.5vw; 

  margin-top:2.5em; /* Used to place the content below the CERN Toolbar. */ 

  height:110%; 

 } 

  

 #contentBox{ 

  margin-left:auto;margin-right:auto; 

  width:90% !important; 

 } 

 div.desktopOrMobileVersion{ /* This is the parent section of the link to go to the Desktop version. It will appear at the bottom of the page. */ 

  float:left; 

  width:100%; 

  margin-left:-10px; 

  padding:26px 11.2% 26px 0; 

  text-align:center; 

  background-color:#D8D8D8; 

 } 

 div.desktopOrMobileVersion a{ /* This is the link to go to the Desktop version.*/ 

  margin-left:9.5%; 

  text-decoration:none; 

 } 

   

/* Hiding the extra information on the TITLES of the web pages. */ 

 #mysite-titlerow{ /* Modifying the title row of the webpage. E.g.: "About Marco Xyyyy". */ 

  font-size:0.7em !important; 

  position: absolute; 

  top: 0px; 

  left: 0; 

  width:31em; 

  height:110px; 

  overflow:hidden; 

  word-wrap:break-word; 

 } 

  

 .ams-profile-editAndFollowLinks span.ms-textXLarge{display:none;} 

 .ms-profile-editAndFollowLinks{display:none;} 

/* Correcting the displaying of the textarea used to write a new post on Social. */ 

 div.ms-microfeed-focusBox.ms-microfeed-focusBoxNoFocus{outline: 1px solid #ababab} 

 div.ms-microfeed-focusBox.ms-microfeed-focusBoxInFocus{outline: 1px solid #ababab} 

/* Resizing the "Following  Everyone  Mentions" string's area and font-size. */ 

 span#ms-microfeed-titleViewSelectorPivotContainer{width:92vw !important;} 

 div.ms-microfeed-titlePivotControl span{font-size:6.5vw !important;} 

/* Resizing the spaces between the strings "Following", "Everyone" and "Mentions". */ 

 div.ms-microfeed-titlePivotControl span a{margin-right:4vw;}   /* Following and Everyone */ 

 div.ms-microfeed-titlePivotControl span a.ms-pivotControl-surfacedOpt[alt="Mentions"]{margin-right:0 !important;}  /* Mentions */ 

 div.ms-microfeed-titlePivotControl span a.ms-pivotControl-surfacedOpt-selected[alt="Mentions"]{margin-right:0 !important;}  /* Mentions selected */ 

/* Changing the font-size of the options from the "everyone" drop down menu near "Share with". */ 

 .ms-core-menu-list{font-size: 3em; max-height: 14em;} 

 /* Changin the size of the arrow on the right of "everyone".  */ 

 span.s4-clust.ms-viewselector-arrow.ms-menu-stdarw{height: 8px !important; width: 17px !important;} /* The parent section. */ 

 span.s4-clust.ms-viewselector-arrow.ms-menu-stdarw img{ /* The image itself. */ 

  height: 1580px !important; 

  width: 400px !important; 

  margin-top: -345px !important; 

 } 

  

/* Hiding the dots after the "Following  Everyone  Mentions" titles. */ 

 .ms-pivotControl-overflowDot{display:none;} 

 

/* Expanding width of the parent section of the feeds. */ 

 #ms-feeddiv{width:22em;} 

  

/* Extending the width of the feed. */ 

 .ms-microfeed-text{max-width:90%;} 

 .ms-microfeed-likeImageParent{width:40px;height:40px; margin-bottom:-5px;} /* Enlarging the container. */ 

 .ms-microfeed-likeImageParent img{ /* Enlarging the image. */ 

  width:400px !important; 

  height:400px !important; 

  top: 0px !important; 

  left:-900% !important;/*left:-360px;*/ 

 } 

 .ms-microfeed-attachmentImage{ /* Expanding the size of the attachment images published with the feeds (and the replies). */ 

  width:500px; 

  max-width: 500px; 

  max-height:500px; 

 } 

  

  

  

/* Adjusting the size of the profile pictures. */ 

 .ms-peopleux-userImgWrapper{width:3em !important; height:3em !important;} 

 .ms-peopleux-userImg{width:3em !important; height:3em !important; max-width:3em !important; clip:rect(0px, 3em, 3em, 0px) !important;} 

/* Adjusting the position of the profile pictures to make it align with the feed's author's name. */ 

 div.ms-microfeed-userThumbnailAreaRootPadding, .ms-microfeed-userThumbnailAreaReplyPadding{padding-top: 0.1em;} 

 div.ms-microfeed-replyBody{margin-left:21%;} 
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/* Hiding the white stripe on the left of the profile picture, because it comes from a sprite image and it is thus not expandable. */ 

 .ms-imnlink{display:none;} 

  

/* Adapting the right side of the feeds (with author and text) to consider the bigger user profile pictures. */ 

 .ms-microfeed-rootBody{margin-left: 16%;} 

  

/* Enlargin the images near the system informations like "Bruno is now following Marco." */ 

 .ms-microfeed-iconImage{width:0.7em; height:0.7em;} 

/* Mention feeds: we are expanding the size of the image displaying an "@" to the left at "@Mentioned by..." string. */ 

 .ms-microfeed-activityImage{width:0.7em; height:0.7em;} 

 /* We also have to add some space below the string "Posts that mention you in this view." */ 

 .ms-microfeed-viewDescription{margin-top: -20px; padding-bottom: 40px;} 

 

/* Hiding the RIGHT SIDEBAR area on the right which contains the search area and shows below the number of people followed, the number of documents, sites and tags. */ 

 /* In a user's page we want to show the details of the user, which are in the "#MiddleLRightCell" section. */ 

 #followedPeopleContainer{display:none;} 

 #searchInputBox{display:none;} 

 #WebPartWPQ6{display:none;} /* Section with the information about the number of followed people etc... */ 

 #MiddleLRightCell #WebPartWPQ7{display:none;} /* Hiding the trending tags */ 

  

/* Resizing the textarea to POST A NEW FEED and refine the settings for the links below the textarea, like "Following", "People" and "Mentions". */ 

 .ms-microfeed-microblogpart#ms-microblogdiv{color:black; margin-bottom:1em; max-width:none; min-width:0; width:90vw;} 

 #DeltaPlaceHolderMain #MiddleLeftCell{width:100%;} 

 #ms-microfeed-titleViewSelectorPivotContainer{margin-right:0;} 

 .ms-microfeed-postBox{width: 98.5%; color: black;} /* This line makes the textarea and its container have the same dimensions. */ 

 div.ms-microfeed-postBox.ms-textSmall.ms-microfeed-replyMentionHighlightDiv{height:93% !important;} 

  

/* Enlarging the camera icon below it that is used to upload a picture with the feed. */ 

 #ms-addImageButton_Span{width:50px;height:45px;} /* Enlarging the container. */ 

 #ms-addImageButton_Span img{ /* Enlarging the image. */ 

  width:800px; 

  height:800px; 

  position:relative;  

  top:-640px; 

  left:-320px; 

 } 

 

/* Enlarging the "X" button at the top right corner of every feed usable to delete them. It is visible when the user clicks (touches) the feed's area. */ 

 button.ms-microfeed-button.ms-microfeed-deleteButton{margin-left:-30px;} 

 button.ms-microfeed-button.ms-microfeed-deleteButton span.ms-microfeed-deleteButtonImageParent{width:40px;height:40px; margin-bottom:-5px;} /* Enlarging the 

container. */ 

 button.ms-microfeed-button.ms-microfeed-deleteButton span.ms-microfeed-deleteButtonImageParent img{ /* Enlarging the image. */ 

  width: 900px !important; 

  height:900px !important; 

  top: -1030% !important; 

  left:-1660% !important; 

 } 

 

  

 .ms-core-menu-root{display:none;} /* Hiding the dots at the right of the "Like" and "Reply" links below the feeds. */ 

 

/* Adapting the font of the "Post" button. */ 

 #ms-postbutton{font-size:0.7em;} 

 

/* Modifying how the links for "Following", "People" and "Mentions" are displayed. */ 

 #ms-microfeed-titleViewSelectorPivotContainer{padding:0;} 

 #ms-titlebararea{margin-bottom:0 !important; padding-bottom:1.5em !important;} 

 #ms-titlebardiv{margin-bottom:0;padding:0; width:94%;} 

 #ms-feedthreadsdiv{margin-top:-20px; padding-top:20px;} 

  

@media only screen and (max-device-width: 319px), media only screen and (max-width: 319px){ 

 #ms-microfeed-titleViewSelectorPivotContainer{font-size: 1.27em; } 

} 

  

/* Top Links */ 

 #suiteBar{display:none;} 

 .ms-core-suiteLinkList{} 

 #welcomeMenuBox, .ms-cui-TabRowRight{} 

 #suiteBarLeft, 

 #suiteBarRight{} 

  

/* Top Links */ 

 #ms-titlebararea{width:22em; padding-bottom:1.5em;} 

  

/* Remove SharePoint Logo */ 

 .ms-tableRow .ms-core-brandingBox{display: none;} 

 

/* Bottom Section Container */ 

 .ms-core-overlay{background-image: none; background-color: transparent !important;} 

 #s4-workspace{overflow: visible; height: 100% !important; width: 100% !important;} 

 

/* Header Section */ 

 #s4-titlerow{border-bottom: 0px #FFF solid !important; padding-top: 11px !important; background-color: transparent !important;} 

  

/* Search */ 

 .ms-mpSearchBox{} 

 .ms-mpSearchBox, #searchInputBox{background-color: transparent;} 

 .ms-srch-sb{background-color:#FFF; border: none !important; border-radius:6px; padding: 5px;} 

 .ms-srch-sb>input{font-size: 1.2em !important;} 

 

/* Logo */ 

 #siteIcon{ 

  float: none;  

  padding-left: 0px; 

  margin-top: 50px !important; 

  margin-bottom: 0px !important; 

  line-height:normal !important;  

  text-align: center;  

  height: 100%;  

  margin-right: 0px; 

  margin-left: 0px; 

  width: auto; 

  display: block; 
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 } 

   

/* Navigation and Page Title */ 

 .ms-breadcrumb-box{padding-top: 0px; margin: 10px 20px -35px 20px !important; width: auto; height: 100%;} 

 

/* Main Navigation */ 

 .ms-core-navigation{} 

 .ms-core-listMenu-horizontalBox, 

 .ms-core-listMenu-horizontalBox ul, 

 .ms-core-listMenu-horizontalBox li, 

 .ms-core-listMenu-horizontalBox .ms-core-listMenu-item, 

 .ms-core-listMenu-horizontalBox > ul > li > table{display: block;} 

 .ms-core-listMenu-horizontalBox > .ms-core-listMenu-root > .ms-listMenu-editLink{ 

  margin-left:0px; 

 } 

 .ms-core-listMenu-horizontalBox .ms-core-listMenu-selected, 

 .ms-core-listMenu-horizontalBox > ul > li > ul > li{ 

  border: 1px #FFF solid !important;  

  margin: 15px 0px !important;  

  background-color: #FFF !important; 

  border-radius:6px; 

  font-size: 1em !important; 

  padding: 5px 5px 5px 5px !important; 

 } 

 .ms-core-listMenu-horizontalBox > ul > li > ul > li a{ 

  padding: 0px !important; 

 } 

 .ms-core-listMenu-horizontalBox > ul > li > ul > li > ul .dynamic{ 

  display: none; 

 } 

 .ms-core-listMenu-horizontalBox > ul > li > ul > li:hover{ 

  background-color: #CCC; 

 } 

 .ms-core-listMenu-horizontalBox .ms-core-listMenu-selected{ 

  background-color: transparent !important; 

  color: #FFF !important; 

 } 

 .ms-core-listMenu-horizontalBox .ms-core-listMenu-selected:hover{ 

  background-color: #000 !important; 

 } 

 .ms-core-listMenu-horizontalBox a.ms-core-listMenu-item, 

 .ms-core-listMenu-horizontalBox a.ms-core-listMenu-item.ms-core-listMenu-selected, 

 .ms-core-listMenu-horizontalBox .ms-listMenu-editLink{ 

  padding: 10px;  

  color: #000 !important; 

 } 

 .ms-core-listMenu-horizontalBox .ms-listMenu-editLink{ 

  padding: 10px; 

  font-size: 2.0em !important; 

  display: none; 

 } 

 .ms-navedit-flyoutArrow{background-image: none !important;} 

 .ms-core-listMenu-horizontalBox a.ms-core-listMenu-item:hover, 

 .ms-core-listMenu-horizontalBox a.ms-core-listMenu-item.ms-core-listMenu-selected:hover, 

 .ms-core-listMenu-horizontalBox a.ms-core-listMenu-item.ms-listMenu-editLink:hover{ 

  color: #000 !important; 

 } 

 .ms-core-listMenu-horizontalBox a.ms-core-listMenu-item.ms-core-listMenu-selected, 

 .ms-core-listMenu-horizontalBox a.ms-core-listMenu-item.ms-core-listMenu-selected:hover{ 

  color: #FFF !important; 

  font-weight: bold; 

 } 

 

/* Content Section Container */ 

 #contentRow{} 

/* Left Navigation */ 

 #sideNavBox{display: none;} 

/* If we want only the profile picture visible, but everything else in the #sideNavBox hidden... */ 

 /*#sideNavBox ms-profile-image{margin-bottom: -20px;} 

 #sideNavBox a.ms-uppercase{display:none;} 

 #sideNavBox a.ms-textLarge{display:none;} 

 #sideNavBox div#DeltaPlaceHolderLeftNavBar{display:none;}*/ 

  

/* Content Area */ 

 #contentBox{ 

 min-width: 0px;  

 margin: 0px;  

 padding: 0px 10px;  

 border: 1px #FFF solid;  

 background-color: transparent; 

 border: none !important; 

 } 

  

 #layoutsTable td{display: inline-block !important; float: left !important; width: 100% !important;} 

 #layoutsTable .ms-wiki-columnSpacing{padding: 0px;} 

 #layoutsTable td td{display: table-cell !important; float: none !important; width: auto !important;} 

 .ms-rte-layoutszone-outer{display: block;} 

  

 .ms-promlink-root{display: none;} 

 .ms-microfeed-fullMicrofeedDiv{min-height:72vh;} /* The height of this section has to be minimum of this size, to let the "Desktop version" link be at the bottom 

even if there are no feeds listed. */ 

 .ms-hashTagProfile-mainColumn{min-height:73.3vh;} /* Feeds with same hashtag: the height of this section has to be minimum of this size, to let the "Desktop version" 

link be at the bottom even if there are no feeds listed. */ 

 .ms-microfeed-fullMicrofeedDiv, .ms-microfeed-siteFeedMicroBlogPart, .ms-microfeed-feedPart, .ms-microfeed-rootText, .ms-microfeed-replyArea, .ms-microfeed-newReplyDiv{min-

width: 0px !important;} 

 .ms-microfeed-message{padding-right: 0px;} 

 .ms-viewlsts{ 

  border: 0px #FFF solid; 

  background-color: transparent; 

  margin: 0px; 

 } 

 .lm_wb_webzone-title{ 

  font-size: 1.5em !important;  
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  border-bottom: 1px #FFF solid;  

  padding: 0px 0px 5px 0px; 

 } 

 .ms-webpart-titleText.ms-webpart-titleText, 

 .ms-webpart-titleText > a{ 

  font-size: 1.3em !important;  

  font-weight: normal; 

 } 

 .ms-webpart-titleText.ms-webpart-titleText{ 

  border-bottom: 1px #FFF solid; 

  padding: 0px 0px 5px 0px; 

 } 

 .lm_wb_webzone-content{padding: 5px 0px 0px 0px;} 

 .ms-headerCellStyleIcon, .ms-vb-imgFirstCell{display: none;} 

  

 /* Resizing the little icon image on the left of "Show all x replies" when a conversation has more than 2 replies. */ 

 span.ms-microfeed-moreRepliesImageParent{width:28px;height:28px; margin-bottom:2px; margin-right:10px;} 

 span.ms-microfeed-moreRepliesImageParent img.ms-microfeed-moreRepliesImageDown{ 

  width: 900px !important; 

  height:900px !important; 

  top: -2896% !important; 

  left:-904% !important; 

 } 

 span.ms-microfeed-moreRepliesImageParent img.ms-microfeed-moreRepliesImageUp{ 

  width: 900px !important; 

  height:900px !important; 

  top: -1680% !important; 

  left:-2376% !important; 

 } 

 

/*************** CSS of the REPLY area ****************/ 

 .ms-microfeed-replyArea{padding-left:16.3%; max-width:16em;} /* Moving the whole reply area. */ 

 .ms-microfeed-replyArea .ms-microfeed-userThumbnailAreaRootPadding, .ms-microfeed-replyArea .ms-microfeed-userThumbnailAreaReplyPadding{padding-top: 0px;} 

  

 .ms-microfeed-replyArea .ms-microfeedReplyContent{margin-left:3.5em;} /* Moving the textarea with post buttons. */ 

 .ms-microfeed-replyArea .ms-microfeed-postButton{font-size:0.6em;} /* Changin the font size in the post button. */ 

  

 .ms-microfeed-replyArea .ms-microfeed-focusBox{width:99.5%; margin-top:2px;}  /* Enlarging the textarea. */ 

 .ms-microfeed-replyArea .ms-microfeed-postBox{width: 98% !important; color: black;} /* Changing the reply's textarea. */ 

 .ms-microfeed-replyArea .ms-microfeed-postBox.ms-textSmall.ms-helperText.ms-microfeed-rootOrReplyPostBox{height:64px;} 

  

 /* Enlarging the camera icon below it that is used to upload a picture with the feed. */ 

 .ms-microfeed-replyArea span.ms-microfeed-addImageButtonImageParent{width:50px;height:45px;} /* Enlarging the container. */ 

 .ms-microfeed-replyArea span.ms-microfeed-addImageButtonImageParent img{ /* Enlarging the image. */ 

  width:800px; 

  height:800px; 

  position:relative;  

  top:-640px; 

  left:-320px; 

 } 

  

  

/*************** CSS for the "About" webpage of a User on Social ****************/ 

 /* Modifying the CSS of the title when the User looks at somebody else's page. */ 

 #mysite-titlerow{margin-bottom:6em; margin-left:-5px;} 

 div.ms-profile-aboutMe div.ms-askMeAbout-aboutMe{text-indent:-9999px;  margin-bottom:4em;} /* Hiding the text but not the whole section saying: "Tell others 

about yourself and share your areas of expertise by editing your profile.". It is used in this case to add empty space between the title ("About Marco...") and the feeds. This section is 

present only in the user's About webpage. */ 

 div.ms-askMeAbout-valuesFiveOrLess{text-indent:-9999px; margin-bottom:4em;}     /* Hiding the text but 

not the whole section saying: "Tell others about yourself and share your areas of expertise by editing your profile.". It is used in this case to add empty space between the title ("About 

Bruno...") and the feeds. This section is present only in the others About webpages. */ 

 div.ms-profile-image{background-color:white;} /* div containing the image. */ 

 img.ms-profile-image{height:190px; margin-left:5%;} /* the profile picture. */ 

 h2#ms-currentFeedLabel{display:none;} /* Hiding the string that says like "Marco Xyyy activities...". */ 

  

 .ms-profile-profileInfo{position:absolute; left:0.3em; top:1.9em; word-wrap:break-word; -ms-word-break: break-all;} 

 div#WebPartWPQ6_ChromeTitle{display:none !important;} /* Hiding the "In common" string next to the "About Marco ..." one. 

  

 .ms-askMeAbout-aboutMe{width:20em;}  /* Enlargin the section with the "Tell others about yourself and..." text on top of the page, right below the 

title. */ 

 #ms-titlebararea{margin-bottom:1em;} /* Adding some space below the string "[User name]'s Activities". */ 

 #WebPartWPQ5 #ProfileViewer_ValueProperties{display:none;} /* Hiding the "SHOW MORE" option below the information fields below the title. */ 

  

 .ms-microfeed-seeMoreThreadsDiv{left:-52%;} 

  

/*************** Modifying the appearance of the pop-up window used to UPLOAD A PICTURE with the feed ****************/ 

 div.ms-dlgContent{width: 80% !important; height:11em !important; top: 20% !important; left: 10% !important;} /* Expanding the whole area. This section has the outer 

white background. */ 

 div.ms-dlgContent div.ms-dlgBorder{width:100% !important; height: 100% !important; margin-left:35px;} /* Expanding the sub-parent section. */ 

 div.ms-srch-hover-postPersona{padding-right:20px;} /* Increasing the distance between profile image and feed text. */ 

 div.ms-dlgContent iframe{min-width:95%; width:95% !important; height:390px !important; margin-top: -1em;} /* Expanding the parent section that contains the 

"Browse", the "Upload" and the "Cancel" buttons. This section has the inner white background (try to increase the 'height' to see it). */ 

 /* Resizing the "X" at the top-right corner of the pop-up window. */ 

 div.ms-dlgContent div.ms-dlgTitle span#dlgTitleBtns{display:none;} /* Hiding hte "X" button on the top-right corner of the pop-up window. The User can use the "Cancel" 

button to go back to the main page. */ 

  

 html.ms-dialog body div#mysite-titlerow{display:none} /* If this section is shown it is placed from the browser on top of the button "Browse..." and it will make it 

unclickable. */ 

 div.ms-dlgContent table.ms-main input#profileimagepickerinput{height:2em;} /* Increasing the height of the "Browse" button used to select the picture to upload on Social. */ 

  

 html.ms-dialog body{font-size: 2em !important;} 

 html.ms-dialog #pageStatusBar{font-size: 1em !important;} /* Resizing the font in the status bar that can appear if the User clicks ont he "Upload" button before having 

chose an image. */ 

  

 div.ms-dlgOverlay{width:100% !important;} /* Modifying the width of the overlay section that makes the background darker while the user chooses the image to upload. */ 

 html.ms-dialog body input[type="file"]{font-size: 1em; width:98%;} /* Resizing the "browse" element. */ 

 html.ms-dialog div.ms-core-form-bottomUploadButtonBox{margin-top: 50px} 

 html.ms-dialog body input[type="button"].ms-ButtonHeightWidth{ /* Resizing the "Upload" and "Cancel" buttons. */ 

  font-size: 1em !important; 

  padding-top:0.5em; 

  padding-bottom:0.6em; 

  margin-left:50px; 

 } 
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 html.ms-dialog div.desktopOrMobileVersion{display:none;} /* Hiding the "Desktop version" link at the bottom. */ 

 

 

/*************** Modifying the appearance of the pop-up window used to UPLOAD A PICTURE with the feed ****************/ 

 div.ms-microfeed-confirmationDiv{max-width:80% !important; font-size:1.5em;} 

 div.ms-microfeed-confirmationDiv button{font-size:0.5em;} 

 div.ms-microfeed-confirmationDiv button.ms-microfeed-confirmationDivButton.ms-microfeed-cancelButton{margin-left:30px !important;} 

  

 

/*************** SPECIFIC HASHTAG: Modifying the appearance of the window used to show the feeds containing a specific hashtag (es. #social). ****************/ 

 body div.ms-hashTagProfile-mainColumn{width:100%; margin-top:3em; word-wrap:break-word; -ms-word-break: break-all;} /* Defining new rules for the main section (with the 

feeds). */ 

 div.ms-hashTagProfile-rightColumn{display:none;}  /* Hiding the right column with "Add a related tag" and "SEE ALL". */ 

 div.ms-hashTagProfile-mainColumn div.ms-srch-item{width:95vw !important;} /* Adjusting the width of the feeds. */ 

 div.ms-hashTagProfile-mainColumn div.ms-srch-item-body{width:80%;}  /* Adjusting the width of the main part of the feeds (the part  without the profile 

picture). */ 

 div.ms-hashTagProfile-mainColumn div.ms-srch-item-metadataContainer{width:24%;} /* Adjusting the width of the info on each feed which are displayed at the bottom-

right corner of the feed's space. */ 

 div.ms-hashTagProfile-mainColumn ul.cbs-List{width:3em !important;}   /* This section expands its width when the user goes in all paging 

pages except the first one. */ 

 div.ms-srch-hover-outerContainer{display:none !important;} /* This section of the page would show more details on the feed when the user goes hover it with the mouse. In the 

Mobile version this area is hidden. */ 

  

 /* Enlarging the star icon at the left of the first string "(star)follow this #tag". */ 

 div.ms-hashTagProfile-mainColumn a#HashTagProfile_FollowTagLinkOption1 span{height:40px !important; width:40px !important; margin-bottom:11px;} /* Enlarging the parent 

span. */ 

 div.ms-hashTagProfile-mainColumn a#HashTagProfile_FollowTagLinkOption1 span img.ms-hashTagProfile-followTag-img{height:240px !important; width:240px !important; margin-left:-

64px !important} /* Enlarging the image itself. */ 

  

 div.ms-hashTagProfile-mainColumn li#PagingImageLink{display:none;} /* Hding the small icons on the top-left of the page that are meant to allow the User to move 

forward and back through the paging of the feeds. The User can anyway use a better designed link at the bottom centre of the page. */ 

 div.ms-hashTagProfile-mainColumn span.ms-srchnav-quotationopenglyph-span{width:22px; height:22px; margin-bottom: 7px;} 

 div.ms-hashTagProfile-mainColumn span.ms-srchnav-quotationcloseglyph-span{width:22px; height:22px; margin-bottom: 7px;} 

 div.ms-hashTagProfile-mainColumn span.ms-srchnav-quotationopenglyph-span img{width:200px; height:200px; left:-170px !important; top: -33px;} 

 div.ms-hashTagProfile-mainColumn span.ms-srchnav-quotationcloseglyph-span img{width:200px; height:200px; left:-156px !important; top: -65px;} 

  

 div.ms-hashTagProfile-mainColumn .ms-srch-result #Paging{margin: 45px 0 30px 7%;} /* Centering the paging numbered links (1 2 3). */ 

  

  

/* end of mobile CSS */ 

} 
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Appendix B 

 

The code below regards the custom Resource Planning Tool integrated into 

SharePoint. 

File “customTimeline_newTaskForm.js”: 

 
// Adding jQuery to the webpage 

document.write('<script type="text/javascript" src="//code.jquery.com/jquery-1.11.0.min.js"></script>'); 

 

// Global variables that hold the names of the lists on SharePoint 

var globalUsersListName = 'Users'; // The list containing the name of the User and the color to assign to it. 

var globalEquipmentListName = 'Equipment'; 

var globalProjectsListName = 'Projects'; 

var globalTasksListName = 'Tasks'; 

 

// Calling the first function 

ExecuteOrDelayUntilScriptLoaded(registerRenderer, 'clienttemplates.js'); // The first function launched 

 

// The second function launched, after loading the file 'clienttemplates.js'. 

function registerRenderer() 

{ 

 var ctxForm = {}; 

 ctxForm.Templates = {}; 

 ctxForm.OnPreRender = OnPreRenderDocItemTemplate; 

 ctxForm.OnPostRender = {}; 

  

 SPClientTemplates.TemplateManager.RegisterTemplateOverrides(ctxForm); 

} 

 

 

/******* Code regarding specifically the "New Task" form for a new task. ********/ 

 

// Function that will be called only once, when the page is loaded. It shrinks the Equipment list to consider only the elements related to the selected category. 

function editNewTaskFormEquipment() { 

 var listItemEnumerator = equipmentListItems.getEnumerator(); 

  

 var categories = document.querySelectorAll('[title="Equipment Category"]')[0]; 

 var categoriesIndex = categories.selectedIndex;  // Chaching the HTML section with the categories' drop-down list 

 var selectedCategory = categories[categoriesIndex].innerHTML; // Catching the selected element in the list 

 categories.setAttribute("onchange", "onCategoryChange()"); // Setting an 'onchange' event that will ebtriggered everytime the chosen category changes. 

  

 try{ 

  var removeButton = document.querySelectorAll('input[value="< Remove"]')[0]; 

  removeButton.setAttribute("onclick", "onCategoryChange()");  // Setting an 'onclick' event that will ebtriggered everytime some equipment is 

removed from the list. 

 }catch(e){} 

  

 var equipmentDisplayedList = document.querySelectorAll('[title="Equipment Name"]')[0]; // Chaching the HTML section with the equipment' drop-down list 

 if(equipmentDisplayedList == undefined || equipmentDisplayedList == null){ 

  equipmentDisplayedList = document.querySelectorAll('[title="Equipment Name possible values"]')[0]; 

 } 

 equipmentDisplayedList.innerHTML = ''; // Clearing the equipment' list 

  

 var item, equipmentName, category; 

 var dropDownElement = ''; // The HTMl string that will be put in the equipment' drop-down list 

 while ( listItemEnumerator.moveNext() ) { 

     item = listItemEnumerator.get_current().$5_0.$1h_0.$m_dict;  // The current examined item 

      

     equipmentName = item.Title;     // The Equipment name. E.g.: "AC mole #6" 

     equipmentCategory = item.Parent_x0020_Category.$2e_1; // The Category in which the equipment is included. E.g.: "3-D Mapper Bench" 

    equipmentID = item.ID; // The value associated with the task name. E.g.: 62 

      

     if( equipmentCategory == selectedCategory ){ 

      dropDownElement = '<option value="'+ equipmentID +'">'+ equipmentName +'</option>'; 

      equipmentDisplayedList.innerHTML += dropDownElement; 

     } 

 } 

} 

 

 

function onCategoryChange(){ 

 var listItemEnumerator = equipmentListItems.getEnumerator(); 

  

 var categories = document.querySelectorAll('[title="Equipment Category"]')[0]; 

 var categoriesIndex = categories.selectedIndex;  // Chaching the HTML section with the categories' drop-down list 

 var selectedCategory = categories[categoriesIndex].innerHTML; // Catching the selected element in the list 

  

 var equipmentDisplayedList = equipmentDisplayedList = document.querySelectorAll('[title="Equipment Name possible values"]')[0]; // Chaching the HTML section with the 

equipment' list 

 equipmentDisplayedList.innerHTML = '';  // Clearing the equipment' list 

  

 var chosenEquipmentArray = new Array(); // This array will contain the name of the equipment chosen from the User (so equipment put in the area ont he right). 

 var chosenEquipmentList = document.querySelectorAll('[title="Equipment Name selected values"]')[0]; // Chaching the HTML section with the equipment' drop-down list 

 for(var i=0; i<chosenEquipmentList.length; i++){ 

  chosenEquipmentArray.push( chosenEquipmentList[i].text ); 

 } 

  

 var item, equipmentName, category; 
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 var dropDownElement = ''; // The HTMl string that will be put in the equipment' drop-down list 

 while ( listItemEnumerator.moveNext() ) { 

     item = listItemEnumerator.get_current().$5_0.$1h_0.$m_dict;  // The current examined item 

      

     equipmentName = item.Title;     // The Equipment name. E.g.: "AC mole #6" 

     equipmentCategory = item.Parent_x0020_Category.$2e_1; // The Category in which the equipment is included. E.g.: "3-D Mapper Bench" 

    equipmentID = item.ID; // The value associated with the task name. E.g.: 62 

      

     if( equipmentCategory == selectedCategory  &&  chosenEquipmentArray.indexOf(equipmentName) == -1 ){ 

      dropDownElement = '<option value="'+ equipmentID +'" title="'+ equipmentName +'">'+ equipmentName +'</option>'; 

      equipmentDisplayedList.innerHTML += dropDownElement; 

     } 

 } 

  

 var equipmentArea = document.querySelectorAll('[title="Equipment Name selected values"]')[0]; 

 for(var i=0; i<equipmentArea.length; i++){ 

  $(equipmentArea[i]).unbind(); 

  $(equipmentArea[i]).off(); 

  equipmentArea[i].ondblclick = onCategoryChange ; 

 } 

  

 /***** Modifying the category shown in the timeline. *****/ 

  

 updateCategoryInTimeline(); 

} 

 

// This function is very wimilar to "onQuerySucceededEquipment()", but it handles the case in which every call tot he Server has already been made, so that we just have to use the global 

variables already available for us. 

function updateCategoryInTimeline(){ 

 // Resetting the global variables 

 globalEquipmentArray = new Array(); 

 globalCategoriesArray = new Array(); 

 globalCustomTimelineEquipmentHTMLstring = ''; 

  

 var equipmentList = '<div style="float:left; margin-top: 42px;">'; 

 var numRows = 0;  // Variable used to know the amount of rows to display. 

 var firstItem = true; // Boolean to treat differently the first item of the array. It needs a greater padding-top. 

 var listItemEnumerator = equipmentListItems.getEnumerator(); 

 var innerListItemEnumerator = equipmentListItems.getEnumerator(); 

 var category = ''; 

 var firstOfEquipment = true; 

  

 var ua = window.navigator.userAgent; 

    var msie = ua.indexOf("MSIE ") > -1  ||  !!navigator.userAgent.match(/Trident.*rv\:11\./);  // "True" if the Browser is IE (with support for IE 11). 

 var firefox = ua.toLowerCase().indexOf('firefox') > -1;  // Detects any version of Firefox. "True" if we are using Firefox; 

  

 while (listItemEnumerator.moveNext()) { 

        var oListItem = listItemEnumerator.get_current(); 

        try{ 

         category = oListItem.get_item('Parent_x0020_Category').$2e_1; 

         if(category != null  &&  globalCategoriesArray.indexOf( category ) == -1 ){ // If we have not met this category before... 

          globalCategoriesArray.push(category);  // We add it to the 'globalCategoriesArray' 

           

          // setting local variables 

          var equipmentName, innerListItem; 

          var tempEquipmentString = ''; 

          var firstOfCategory = true; 

          innerListItemEnumerator = equipmentListItems.getEnumerator(); // Resetting the 'innerListEnumerator' 

           

          // Reading the selected category from the drop-down list in the webpage 

    var categories = document.querySelectorAll('[title="Equipment Category"]')[0]; 

    var categoriesIndex = categories.selectedIndex;  // Chaching the HTML section with the categories' drop-

down list 

    var selectedCategory = categories[categoriesIndex].innerHTML; // Catching the selected element in the list 

     

          // Seek for every equipment belonging to that category and add it to the HTML string. 

          while(innerListItemEnumerator.moveNext() ){ 

           var innerListItem = innerListItemEnumerator.get_current(); 

           if(category !== selectedCategory){ continue; } 

           if( category == innerListItem.get_item('Parent_x0020_Category').$2e_1 ){ // If the currently considered category 

            equipmentName = innerListItem.get_item('Title'); 

            globalEquipmentArray.push(equipmentName);  // Memorizing the name of the Equipment. We will need it later while 

displaying the Tasks in the timeline 

             

            var stringHeight; 

            if(msie || firefox){ // If IE or Firefox... 

             stringHeight = 9; 

            }else{ 

             stringHeight = 22; 

            } 

             

            if(firstOfCategory){ // If it is the first element of a category... 

             if(firstOfEquipment){ // If it is the first line of equipment to be written (in absolute)... 

              tempEquipmentString += '<p id="categoriesList" style="padding:0; margin-top:3px; margin-left:-

110px; height:'+ stringHeight +'px; -webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;"><span style="display:inline-block; margin-top:11px; width:120px;" title="'+ 

category +'">' +category + '</span> <span style="display:inline-block; margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden; margin-bottom: -3px;" 

title="'+ equipmentName +'">' + equipmentName +'</span></p>'; 

              firstOfEquipment = false; 

             }else{ 

              tempEquipmentString += '<p id="categoriesList" style="padding:0; margin-left:-110px; height:'+ 

stringHeight +'px; -webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;"><span style="display:inline-block; margin-top:11px; width:120px;" title="'+ category +'">' 

+category + '</span> <span style="display:inline-block; margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden; margin-bottom: -3px;" title="'+ 

equipmentName +'">' + equipmentName +'</span></p>'; 

             } 

             firstOfCategory = false; // This has to be done in any case 

            }else{ 

             tempEquipmentString += '<p id="categoriesList" style="padding:0; margin-left:-110px; height:'+ stringHeight +'px; 

-webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;"><span style="display:inline-block; margin-top:11px; width:120px;"> </span> <span style="display:inline-block; 

margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden;" title="'+ equipmentName +'">' + equipmentName +'</span></p>'; 

            } 

             

            numRows++; // Increasing the rows' counter (Used to set the height of the Timeline with the Tasks) 

           } 
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          } 

    equipmentList += tempEquipmentString; 

         } 

        }catch(e){} 

         

 } 

 equipmentList += '</div>'; 

  

 // Passing the local variables' values to the global ones. 

 globalCustomTimelineEquipmentHTMLstring = equipmentList; 

  

 // Re-populating the timeline 

 onQuerySucceededTasks(); 

} 

 

 

 

/********* Timeline customization code: through this code we can display the timeline above the "New Task" form and then launch the code above. *********/ 

 

 

 

// The system tries to prerender 3 times. 

// The first one is useless in Chrome and Firefox (it is useful in IE), it gives us no data from the Server, so we can avoid it. After that call on Firefox it works fine, while on Chrome 

the system gives us the error: 

//   Uncaught Error: The collection has not been initialized. It has not been requested or the request has not been executed. It may need to be explicitly requested. 

// but it does not matter. The code makes the third call that solves the problem even on Chrome. 

var firstCallAlreadyMade = false; 

function OnPreRenderDocItemTemplate(renderCtx) { 

    SP.SOD.executeOrDelayUntilScriptLoaded(loadContext, 'sp.js'); 

    function loadContext() { 

     var ua = window.navigator.userAgent; 

     var msie = ua.indexOf("MSIE ") > -1  ||  !!navigator.userAgent.match(/Trident.*rv\:11\./);  // "True" if the Browser is IE (with support for IE 

11). 

  

     if(msie){ 

      checkSituationAndLunch(); 

     }else{ 

      if(firstCallAlreadyMade == false){ 

       checkSituationAndLunch(); 

       firstCallAlreadyMade = true; 

      } 

     } 

    } 

} 

 

function checkSituationAndLunch(){ 

 try{ 

  // This control has been implemented since for some actions SharePoint refreshes the webparts without refreshing the whole webpage. 

  // We are talking about operations like expanding or collapsing a Group of Tasks. 

  if( document.getElementById("innerTimeline") ){ // If the timeline is already in the webpage... 

   return;  // Do not add code to the timeline. 

  } 

  // Reading the Equipment and the Categories from SharePoint 

  retrieveEquipmentAndCategories(); 

 

 }catch(e){ return; } 

} 

 

 

 

// Retrieving information on every equipment and every category from SharePoint. 

function retrieveEquipmentAndCategories() { 

 /* In the "New Task" form this function is called many times and the variable "equipmentListItems" is re-written for many times. 

  * This leads to a race condition when the first sequence of function tries in the code to read some data from it in order to display the "Equipment" and their "Categories", 

  * thus causing, some times, to find the resource locked and so having as output the HTML section thought for the equipment empty. */ 

 if (this.equipmentListItems != null && this.equipmentListItems != undefined){ 

  return; 

 } 

  

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx 

        // We want something like "https://espace2013.cern.ch/test-Timeline" 

  

 // Correcting the URL (if necessary) 

 if( siteUrl == null  ||  siteUrl == undefined ){ siteUrl = window.location.href; } 

 var numSlashes = 0; 

 for( var i=0; i<siteUrl.length; i++){ 

  if(siteUrl[i] == '/'){ 

   numSlashes++; 

   if(numSlashes == 4){ 

    siteUrl = siteUrl.substring(0, i); 

    break; 

   } 

  } 

 } 

 

 var clientContext = new SP.ClientContext(siteUrl); 

    var oList = clientContext.get_web().get_lists().getByTitle( globalEquipmentListName ); 

  

    var camlQuery = new SP.CamlQuery(); 

    camlQuery.set_viewXml('<View><Query><Where>' +  

              '</Where></Query></View>'); 

    this.equipmentListItems = oList.getItems(camlQuery); 

    clientContext.load(equipmentListItems); 

     

    clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededEquipment), Function.createDelegate(this, this.onQueryFailed)); 

  

} 

 

 

// Global variables for categories and equipment 

var globalEquipmentArray = new Array();  // This global variable will keep the names of the Equipment to let the User change timespan in the timeline if needed, without 

recalling the Server for this information. 

var globalCategoriesArray = new Array();  // This global variable will keep the names of the Categories. 
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var globalCustomTimelineEquipmentHTMLstring = ''; 

function onQuerySucceededEquipment(){ 

 // Resetting the global variables 

 globalEquipmentArray = new Array(); 

 globalCategoriesArray = new Array(); 

 globalCustomTimelineEquipmentHTMLstring = ''; 

  

 var equipmentList = '<div style="float:left; margin-top: 42px;">'; 

 var numRows = 0;  // Variable used to know the amount of rows to display. 

 var firstItem = true; // Boolean to treat differently the first item of the array. It needs a greater padding-top. 

 var listItemEnumerator = equipmentListItems.getEnumerator(); 

 var innerListItemEnumerator = equipmentListItems.getEnumerator(); 

 var category = ''; 

 var firstOfEquipment = true; 

  

 var ua = window.navigator.userAgent; 

    var msie = ua.indexOf("MSIE ") > -1  ||  !!navigator.userAgent.match(/Trident.*rv\:11\./);  // "True" if the Browser is IE (with support for IE 11). 

 var firefox = ua.toLowerCase().indexOf('firefox') > -1;  // Detects any version of Firefox. "True" if we are using Firefox; 

  

 while (listItemEnumerator.moveNext()) { 

        var oListItem = listItemEnumerator.get_current(); 

        try{ 

         category = oListItem.get_item('Parent_x0020_Category').$2e_1; 

         if(category != null  &&  globalCategoriesArray.indexOf( category ) == -1 ){ // If we have not met this category before... 

          globalCategoriesArray.push(category);  // We add it to the 'globalCategoriesArray' 

           

          // setting local variables 

          var equipmentName, innerListItem; 

          var tempEquipmentString = ''; 

          var firstOfCategory = true; 

          innerListItemEnumerator = equipmentListItems.getEnumerator(); // Resetting the 'innerListEnumerator' 

           

          // Reading the selected category from the drop-down list in the webpage 

    var categories = document.querySelectorAll('[title="Equipment Category"]')[0]; 

    var categoriesIndex = categories.selectedIndex;  // Chaching the HTML section with the categories' drop-

down list 

    var selectedCategory = categories[categoriesIndex].innerHTML; // Catching the selected element in the list 

     

          // Seek for every equipment belonging to that category and add it to the HTML string. 

          while(innerListItemEnumerator.moveNext() ){ 

           var innerListItem = innerListItemEnumerator.get_current(); 

           if(category !== selectedCategory){ continue; } 

           if( category == innerListItem.get_item('Parent_x0020_Category').$2e_1 ){ // If the currently considered category 

            equipmentName = innerListItem.get_item('Title'); 

            globalEquipmentArray.push(equipmentName);  // Memorizing the name of the Equipment. We will need it later while 

displaying the Tasks in the timeline 

             

            var stringHeight; 

            if(msie || firefox){ // If IE or Firefox... 

             stringHeight = 9; 

            }else{ 

             stringHeight = 22; 

            } 

             

            if(firstOfCategory){ // If it is the first element of a category... 

             if(firstOfEquipment){ // If it is the first line of equipment to be written (in absolute)... 

              tempEquipmentString += '<p id="categoriesList" style="padding:0; margin-top:3px; margin-left:-

110px; height:'+ stringHeight +'px; -webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;"><span style="display:inline-block; margin-top:11px; width:120px;" title="'+ 

category +'">' +category + '</span> <span style="display:inline-block; margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden; margin-bottom: -3px;" 

title="'+ equipmentName +'">' + equipmentName +'</span></p>'; 

              firstOfEquipment = false; 

             }else{ 

              tempEquipmentString += '<p id="categoriesList" style="padding:0; margin-left:-110px; height:'+ 

stringHeight +'px; -webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;"><span style="display:inline-block; margin-top:11px; width:120px;" title="'+ category +'">' 

+category + '</span> <span style="display:inline-block; margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden; margin-bottom: -3px;" title="'+ 

equipmentName +'">' + equipmentName +'</span></p>'; 

             } 

             firstOfCategory = false; // This has to be done in any case 

            }else{ 

             tempEquipmentString += '<p id="categoriesList" style="padding:0; margin-left:-110px; height:'+ stringHeight +'px; 

-webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;"><span style="display:inline-block; margin-top:11px; width:120px;"> </span> <span style="display:inline-block; 

margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden;" title="'+ equipmentName +'">' + equipmentName +'</span></p>'; 

            } 

             

            numRows++; // Increasing the rows' counter (Used to set the height of the Timeline with the Tasks) 

           } 

          } 

    equipmentList += tempEquipmentString; 

         } 

        }catch(e){} 

         

 } 

 equipmentList += '</div>'; 

  

 // Passing the local variables' values to the global ones. 

 globalCustomTimelineEquipmentHTMLstring = equipmentList; 

  

  

 // Calling the next function for the retrieval of the Projects 

 retrieveProjects(); 

} 

 

 

function retrieveProjects(){ 

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx 

        // We want something like "https://espace2013.cern.ch/test-Timeline" 

 

 // Correcting the URL (if necessary) 

 if( siteUrl == null  ||  siteUrl == undefined ){ siteUrl = window.location.href; } 

 var numSlashes = 0; 

 for( var i=0; i<siteUrl.length; i++){ 

  if(siteUrl[i] == '/'){ 

   numSlashes++; 
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   if(numSlashes == 4){ 

    siteUrl = siteUrl.substring(0, i); 

    break; 

   } 

  } 

 } 

    var clientContext = new SP.ClientContext(siteUrl); 

    var oList = clientContext.get_web().get_lists().getByTitle( globalProjectsListName ); 

     

    var camlQuery = new SP.CamlQuery(); 

    camlQuery.set_viewXml('<View><Query><Where>' +  

              '</Where></Query></View>'); 

    this.projectListItems = oList.getItems(camlQuery); 

    clientContext.load(projectListItems); 

     

    clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededProjects), Function.createDelegate(this, this.onQueryFailed)); 

} 

 

var globalProjectsArray = new Array(); // This global variable will keep the names of the Projects and their associated colors. 

function onQuerySucceededProjects(){ 

 // Variables necessary to read the query results 

    var listItemEnumerator = projectListItems.getEnumerator(); 

 var innerListItemEnumerator = projectListItems.getEnumerator(); 

  

 var project, color; 

 while (listItemEnumerator.moveNext()) { 

        var oListItem = listItemEnumerator.get_current(); 

        try{ 

         project = oListItem.get_item('Title'); 

         color = oListItem.get_item('Color'); 

         globalProjectsArray.push({'projectName':project, 'projectColor':color}); 

        }catch(e){} 

    } 

     

    // Calling the next function for the retrieval of the Users 

 retrieveUsers(); 

} 

 

function retrieveUsers(){ 

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx 

        // We want something like "https://espace2013.cern.ch/test-Timeline" 

 

 // Correcting the URL (if necessary) 

 if( siteUrl == null  ||  siteUrl == undefined ){ siteUrl = window.location.href; } 

 var numSlashes = 0; 

 for( var i=0; i<siteUrl.length; i++){ 

  if(siteUrl[i] == '/'){ 

   numSlashes++; 

   if(numSlashes == 4){ 

    siteUrl = siteUrl.substring(0, i); 

    break; 

   } 

  } 

 } 

    var clientContext = new SP.ClientContext(siteUrl); 

    var oList = clientContext.get_web().get_lists().getByTitle( globalUsersListName ); 

     

    var camlQuery = new SP.CamlQuery(); 

    camlQuery.set_viewXml('<View><Query><Where>' +  

              '</Where></Query></View>'); 

    this.userListItems = oList.getItems(camlQuery); 

    clientContext.load(userListItems); 

     

    clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededUsers), Function.createDelegate(this, this.onQueryFailed)); 

} 

 

var globalUsersArray = new Array();  // This global variable will keep the names of the Users (saved in a list on SharePoint). 

function onQuerySucceededUsers(){ 

 // Variables necessary to read the query results 

    var listItemEnumerator = userListItems.getEnumerator(); 

 var innerListItemEnumerator = userListItems.getEnumerator(); 

  

 var user, color; 

 while (listItemEnumerator.moveNext()) { 

        var oListItem = listItemEnumerator.get_current(); 

        try{ 

         user = oListItem.get_item('User'); 

         color = oListItem.get_item('Color'); 

         globalUsersArray.push({'userName':user, 'userColor':color}); 

        }catch(e){} 

    } 

     

    // Calling the next function for the retrieval of the Tasks 

 retrieveTasksListItems(); 

} 

 

 

// Retrieving information about each of the Tasks and adding them to the Timeline 

function retrieveTasksListItems(){ 

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx 

        // We want something like "https://espace2013.cern.ch/test-Timeline" 

  

 // Correcting the URL (if necessary) 

 if( siteUrl == null  ||  siteUrl == undefined ){ siteUrl = window.location.href; } 

 var numSlashes = 0; 

 for( var i=0; i<siteUrl.length; i++){ 

  if(siteUrl[i] == '/'){ 

   numSlashes++; 

   if(numSlashes == 4){ 

    siteUrl = siteUrl.substring(0, i); 

    break; 

   } 

  } 



174 
 

 } 

    var clientContext = new SP.ClientContext(siteUrl); 

    var oList = clientContext.get_web().get_lists().getByTitle( globalTasksListName ); 

     

    var camlQuery = new SP.CamlQuery(); 

    camlQuery.set_viewXml('<View><Query><Where>' +  

              '</Where></Query></View>'); 

    this.tasksListItems = oList.getItems(camlQuery); 

    clientContext.load(tasksListItems); 

     

    clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededTasks), Function.createDelegate(this, this.onQueryFailed)); 

  

} 

 

function onQueryFailed(sender, args) { 

 alert("There has been a problem communicating with the Server. Please try again later."); 

    console.log('Request failed. ' + args.get_message() + '\n' + args.get_stackTrace()); 

} 

 

 

// Reading the Tasks saved in the timeline 

var addTasksToTimelineFlag = false;  // This variable will tell the system if the function "addTasksToTimeline" has already been called at least once or not. 

function onQuerySucceededTasks(){ 

 var numRows = globalEquipmentArray.length; 

 var equipmentHTMLstring = globalCustomTimelineEquipmentHTMLstring; 

  

 // Deleting the previously shown timeline (if present) 

 try{  

  var temp = document.getElementById('timelineArea'); 

  temp.parentNode.removeChild(temp); 

 }catch(e){} 

  

 // Catching the area for the timeline in the HTML code 

 var timelineArea = $('div[id^="MSOZoneCell_"]')[0]; // Chatching the HTMl section in which we want to add the customized timeline 

 // e.g.: id="MSOZoneCell_WebPart"...WPQ3" 

  

 $(timelineArea).prepend('<div id="timelineArea"></div>'); 

 timelineArea = document.getElementById("timelineArea"); 

  

 // Modifying the CSS for the section to include the Rows on the Left of the Timeline. 

 // (if dynamic width) Each character equals 0.7em, so the amount of space on the left has to be 0.7*maxNumCharacters. 

 timelineArea.style.paddingLeft = "120px"; //(0.7*maxNumCharacters) + 'em'; // Making space on the left of the Timeline for the Rows' titles. 

 timelineArea.style.height = ((22*numRows)+70) + 'px'; // Expanding the area including the timeline to push down the rest of the webpage (the list containing the Tasks). 

  

 // Creating some radio buttons to enable the User to change the timespan of the timeline 

 var radioButtons = '<span id="timelineRadioButtons" style="margin-left:7px;">Timespan <input type="radio" onclick="addTasksToTimeline(7, 1060);" name="time span" value="Week" 

checked>Week &nbsp;' + 

          '<input type="radio" onclick="addTasksToTimeline(15, 1060, null);" 

name="time span" value="2 Weeks">2 Weeks &nbsp;' + 

          '<input type="radio" onclick="addTasksToTimeline(31, 1060, null);" 

name="time span" value="Month">Month &nbsp;' + 

          '<input type="radio" onclick="addTasksToTimeline(90, 1060, null);" 

name="time span" value="3 Month">3 Months &nbsp;' + 

          '<input type="radio" onclick="addTasksToTimeline(210, 1060, null);" 

name="time span" value="7 Month">7 Months &nbsp;' + 

          '<input type="radio" onclick="addTasksToTimeline(365, 1060, null);" 

name="time span" value="Year">Year &nbsp;' + 

      '</span> 

&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;' + 

      '<span id="colorRadioButtons">Color ' + 

          '<input type="radio" 

onclick="colorTasksInTimeline(\'colorByProject\');" name="color choice" value="Color the tasks by Project" checked>by Project &nbsp;' + 

          '<input type="radio" 

onclick="colorTasksInTimeline(\'colorByUser\');" name="color choice" value="Color the tasks by User">by User &nbsp;' + 

      '</span>'; 

  

 // Adding the resources found in the list as rows in the Timeline 

 var resourcesSection = document.getElementById("timelineRadioButtons"); 

 if( resourcesSection == undefined || resourcesSection == null ){ // If there is our custom Resources list and the rows have not yet been added... 

  timelineArea.innerHTML = radioButtons + equipmentHTMLstring + '<div id="timeline"></div>' + timelineArea.innerHTML; 

   

  var timeline = document.getElementById('timeline'); 

      

     if(numRows > 1){ 

      timeline.style.height = ((22*numRows)-2) + 'px'; // Enlarging the height of the timeline in order to have one line for each Resource. 

      // The last line will not need a white space below it. That's why we take out 2px fromt he result. 

  }else{ 

   timeline.style.height = '20px'; // Enlarging the height of the timeline in order to have one line for each Resource. 

  } 

  var timelineWidth = 1060; 

  timeline.style.width = timelineWidth + 'px'; // Manually setting the width of the timeline to override the behaviour of SharePoint, which would expand the 

timeline according to the width of the page. 

  timeline.style.display = "inline"; 

 } 

  

 // Reading the selected category from the drop-down list in the webpage 

 var categories = document.querySelectorAll('[title="Equipment Category"]')[0]; 

 var categoriesIndex = categories.selectedIndex;  // Chaching the HTML section with the categories' drop-down list 

 var selectedCategory = categories[categoriesIndex].innerHTML; // Catching the selected element in the list 

  

 /******* Adding our code to the timeline. *******/ 

 var numOfDaysInTimeline=7; 

 addTasksToTimeline(numOfDaysInTimeline, timelineWidth, selectedCategory, 'colorByProject'); 

  

 /******* We are also ready to modify the equipment present in the drop-down list of the "New Task" form. *******/ 

 editNewTaskFormEquipment(); 

} 

 

 

// This function will color the tasks in the timeline according to the equipment or the personnel. 

function colorTasksInTimeline(colorRule){ 

 var timelineWidth = document.getElementById('timeline').style.width; 

 var numOfDaysInTimeline = 7; // Initializing the variable for the consistency check 
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 var radioButtons = document.getElementById('timelineRadioButtons').getElementsByTagName('input'); 

  

 var numOfDaysArray = [7, 15, 31, 90, 210, 365];  // Defining the array containing the number of days considered for each possible time span 

  

 for(var i=0; i<radioButtons.length; i++){ 

  if(radioButtons[i].checked){ 

   numOfDaysInTimeline = numOfDaysArray[i]; 

   break; 

  } 

 } 

  

 // Reading the selected category from the drop-down list in the webpage 

 var categories = document.querySelectorAll('[title="Equipment Category"]')[0]; 

 var categoriesIndex = categories.selectedIndex;  // Chaching the HTML section with the categories' drop-down list 

 var selectedCategory = categories[categoriesIndex].innerHTML; // Catching the selected element in the list 

  

 if(colorRule == 'colorByProject'){ 

  addTasksToTimeline(numOfDaysInTimeline, timelineWidth, selectedCategory, 'colorByProject'); 

 }else{ 

  addTasksToTimeline(numOfDaysInTimeline, timelineWidth, selectedCategory, 'colorByUser'); 

 } 

} 

 

 

// This function will add the tasks read from the Server to the timeline "manually" (instead of using the SharePoint's disposition. 

function addTasksToTimeline(numOfDaysInTimeline, timelineWidth, selectedCategory, colorRule){ 

 // Checking the input 

 if( typeof(numOfDaysInTimeline) == 'string' ){ numOfDaysInTimeline = parseInt(numOfDaysInTimeline); } 

 if( typeof(timelineWidth) == 'string' ){ timelineWidth = parseInt(timelineWidth); } 

 if(selectedCategory == null || selectedCategory == undefined){ 

  // Reading the selected category from the drop-down list in the webpage 

  var categories = document.querySelectorAll('[title="Equipment Category"]')[0]; 

  var categoriesIndex = categories.selectedIndex;  // Chaching the HTML section with the categories' drop-down list 

  var selectedCategory = categories[categoriesIndex].innerHTML; // Catching the selected element in the list 

 } 

  

 var siteUrl = document.URL; 

 // Correcting the URL (if necessary) 

 if( siteUrl == null  ||  siteUrl == undefined ){ siteUrl = window.location.href; } 

 var numSlashes = 0; 

 for( var i=0; i<siteUrl.length; i++){ 

  if(siteUrl[i] == '/'){ 

   numSlashes++; 

   if(numSlashes == 4){ 

    siteUrl = siteUrl.substring(0, i); 

    break; 

   } 

  } 

 } 

 

  

 var timeline = document.getElementById('timeline'); 

     

 /****** If the User clicks on the timeline radio buttons we have to read which radio button ******/ 

 if(colorRule == null){ 

  // Reading the color rule to apply to the tasks 

  var radioButtons = document.getElementById('colorRadioButtons').getElementsByTagName('input'); // The radio buttons for the color rules 

  if(radioButtons[0].checked){  // If the first radio button is checked... 

   colorRule = 'colorByProject'; 

  }else{ 

   colorRule = 'colorByUser'; 

  } 

 } 

  

 /******* This piece of code will be used to refresh the timeline when selecting different time spans (e.g.: 1 week, 2 week, 1 month etc...). *******/ 

    // only if the timeline is set as "shown" from SharePoint. If "hidden" we can work without it. 

    var indexOfTasks = timeline.innerHTML.indexOf('<div class="ms-tl-today"'); 

 if( indexOfTasks > -1){ // Using "timeline" as first variable in the next line does not work. We have to re-catch the HTML section. 

  timeline.innerHTML = timeline.innerHTML.substring( 0, indexOfTasks ); // We are deleting the tasks that were in the  

 }else{ // If the "Today"'s flag is not present... 

  indexOfTasks = timeline.innerHTML.indexOf('<div class="timeline-dates"'); 

  if(indexOfTasks > -1){ 

   timeline.innerHTML = timeline.innerHTML.substring( 0, indexOfTasks ); // We are deleting the tasks that were in the  

  } 

 } 

  

  

 // Defining the dates to write on the X axis of the timeline 

 var datesStrings = new Array(); 

 var today = new Date(); 

 var timeSpan;  // It will signal to the createDateString() function the kind of string we want in output. 

  

 if(numOfDaysInTimeline == 7){ timeSpan = 'week'; } 

 else{ 

  if(numOfDaysInTimeline == 15){ timeSpan = 'twoWeeks'; } 

  else{ 

   if(numOfDaysInTimeline == 31){ timeSpan = 'month'; } 

   else{ 

    if(numOfDaysInTimeline == 90){  

     // Re-calculating the number of days int he three months according to the months considered. 

     numOfDaysInTimeline = daysInMonth(today.getMonth(),today.getFullYear()); // Adding the days in this month 

     today.setDate(1); 

     today.setMonth( today.getMonth() -1 ); 

     numOfDaysInTimeline += daysInMonth(today.getMonth(),today.getFullYear()); // Adding the days in the previous 

month 

     today.setMonth( today.getMonth() +1); 

     today.setMonth( today.getMonth() +1); 

     numOfDaysInTimeline += daysInMonth(today.getMonth(),today.getFullYear()); // Adding the days in the following 

month 

     today = new Date(); // Resetting 'today' 

      

     timeSpan = 'threeMonths'; } 

    else{ 
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     if(numOfDaysInTimeline == 210){ timeSpan = 'sevenMonths'; } 

     else{ 

      if( numOfDaysInTimeline == 365){ timeSpan = 'year'; } 

      else{ timeSpan = 'year'; } 

     } 

    } 

   } 

  } 

 } 

  

 // Adding the flag that signals today's date on the timeline 

 /* 

 if( timeSpan == 'week'){ 

  // "Today" label's code 

  // I do not know why but SharePoint displays this label differently when adding it to the webpage the first time or some other time through Javascript and the 

radio buttons. 

  if(addTasksToTimelineFlag == false){ // If this is the first time that the function has been called... 

   var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14; border-color: 

rgb(0, 114, 198); height: 22px; top: 42px; left: -605px;"></div>' + 

        '<div class="ms-tl-todayLabel" style="position:absolute; background-color:rgb(0, 

114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: 23px; left: -628px; background-color: rgb(0, 114, 198);">Today</div>'; 

   timeline.innerHTML += todayLabel; 

  }else{ 

   var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14; border-color: 

rgb(0, 114, 198); height: 22px; top: -23px; left: 227px;"></div>' + 

        '<div class="ms-tl-todayLabel" style="position:absolute; background-color:rgb(0, 

114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: -42px; left: 204px; background-color: rgb(0, 114, 198);">Today</div>'; 

   timeline.innerHTML += todayLabel; 

  } 

 }else{ 

  if(timeSpan == 'twoWeeks'){ 

   // "Today" label's code 

   var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14; border-color: 

rgb(0, 114, 198); height: 24px; top: -24px; left: 106px;"></div>' + 

        '<div class="ms-tl-todayLabel" style="position:absolute; background-color:rgb(0, 

114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: -42px; left: 81px; background-color: rgb(0, 114, 198);">Today</div>'; 

   timeline.innerHTML += todayLabel; 

  }else{ 

   if(timeSpan == 'month'){ 

    // "Today" label's code 

    var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14; 

border-color: rgb(0, 114, 198); height: 24px; top: -24px; left: 119px;"></div>' + 

         '<div class="ms-tl-todayLabel" style="position:absolute; 

background-color:rgb(0, 114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: -42px; left: 95px; background-color: rgb(0, 114, 198);">Today</div>'; 

    timeline.innerHTML += todayLabel; 

   } 

  } 

 } 

 */ 

  

 // Creating local variables 

 var horizontalSectionWidth = timelineWidth/numOfDaysInTimeline;  // We need to keep it as float, because when it comes to the "year" time span  we 

have to keep the decimal values to keep the result for the left margin of every section correct. 

 var remainingHorizontalSpace = timelineWidth - (horizontalSectionWidth*numOfDaysInTimeline); 

 var minDate = new Date(); 

 var maxDate = new Date(); 

 if( timeSpan == 'week' ){ 

  // Saving the first date on the left and the last date ont he right of the timeline. 

   minDate.setDate( today.getDate() -1); // The 10% of the timeSpan regards the past 

   maxDate.setDate( today.getDate() + numOfDaysInTimeline-2 );  // The 90% of the timeSpan regards the future (90% less the present 

day) 

    

   today.setDate( today.getDate() - 2 ); // Bringing the today's date back to the first day of the timeline less one. 

   for(var i=0; i<numOfDaysInTimeline; i++){ 

    today.setDate( today.getDate() + 1 );  // Updating the date object that we want to pass to the function 

createDateString() 

    datesStrings.push( createDateString(today, timeSpan) );     // 

Creating the dates strings passing to the function  

   } 

 }else{ 

  if( timeSpan == 'twoWeeks'  ||  timeSpan == 'month'){ 

   // Saving the first date on the left and the last date ont he right of the timeline. 

   minDate.setDate( today.getDate() -(Math.floor(numOfDaysInTimeline/10)) ); // The 10% of the timeSpan regards the past 

   maxDate.setDate( today.getDate() + (Math.floor(numOfDaysInTimeline/10*9)) ); // The 90% of the timeSpan regards the future (90% 

less the present day) 

    

   today.setDate( today.getDate() - (Math.floor(numOfDaysInTimeline/10)+1) ); // Bringing the today's date back to the first day of the timeline 

less one. 

   for(var i=0; i<numOfDaysInTimeline; i++){ 

    today.setDate( today.getDate() + 1 );  // Updating the date object that we want to pass to the function 

createDateString() 

    datesStrings.push( createDateString(today, timeSpan) );     // 

Creating the dates strings passing to the function  

   } 

  }else{ 

   if( timeSpan == 'threeMonths' ){ 

    // Saving the first date on the left and the last date on the right of the timeline. 

    // minDate = the present month 

    minDate.setDate(1); // The first day of the present month 

    maxDate = new Date(); 

    maxDate.setMonth( maxDate.getMonth() +3 ); // To have the maxDate set on the last day of the next month we can forward by 2 

months and then move 1 day back. 

    maxDate.setDate(1);  // Setting the date on the first day of the month 

    maxDate.setDate( maxDate.getDate() -1 ); // Going to the last day of the previous month for maxDate (two months ahead for 

us). 

     

    datesStrings.push( createDateString(minDate, timeSpan) ); 

    minDate.setMonth(minDate.getMonth()+1); 

    datesStrings.push( createDateString(minDate, timeSpan) ); 

    minDate.setMonth(minDate.getMonth()-1);  // Bringing the minDate back to its original date (for the future 

operations that use this variable) 

    datesStrings.push( createDateString(maxDate, timeSpan) ); 

   }else{ 
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    if( timeSpan == 'sevenMonths' ){ 

     // Saving the first date on the left and the last date ont he right of the timeline. 

     if(minDate.getDate() == 31){ minDate.setDate(30); }  // We need this check because the next 

function rewinds at most for 30 days (Javascript bug) 

     minDate.setMonth( minDate.getMonth() -1 ); 

     minDate.setDate(1);  // The result will be the first day of the previous month. 

     maxDate = new Date(); 

     maxDate.setMonth( maxDate.getMonth() +6 ); // To have the maxDate set on the last day of the next month we can 

forward by 2 months and then move 1 day back. 

     maxDate.setDate(1);  // Setting the date on the first day of the month 

     maxDate.setDate( maxDate.getDate() -1 ); // Going to the last day of the previous month for maxDate (next month 

for us). 

     if(maxDate.getMonth() === 'January' ){ maxDate.setFullYear( minDate.getFullYear() +1) } 

      

     datesStrings.push( createDateString(minDate, timeSpan) ); 

     minDate.setMonth(minDate.getMonth()+1); 

     datesStrings.push( createDateString(minDate, timeSpan) ); 

     minDate.setMonth(minDate.getMonth()+1); 

     datesStrings.push( createDateString(minDate, timeSpan) ); 

     minDate.setMonth(minDate.getMonth()+1); 

     datesStrings.push( createDateString(minDate, timeSpan) ); // This month 

     minDate.setMonth(minDate.getMonth()+1); 

     datesStrings.push( createDateString(minDate, timeSpan) ); 

     minDate.setMonth(minDate.getMonth()+1); 

     datesStrings.push( createDateString(minDate, timeSpan) ); 

     minDate.setMonth(minDate.getMonth()-5);  // Bringing the minDate back to its original date (for 

the future operations that use this variable) 

     datesStrings.push( createDateString(maxDate, timeSpan) ); 

    }else{ 

     if( timeSpan == 'year' ){ 

      // Saving the first date on the left and the last date ont he right of the timeline. 

      minDate = new Date(new Date().getFullYear(), 0, 1);  // First of January 

      maxDate = new Date(new Date().getFullYear(), 11, 31); // End of this Year 

       

      datesStrings.push("January"); 

      datesStrings.push("February"); 

      datesStrings.push("March"); 

      datesStrings.push("April"); 

      datesStrings.push("May"); 

      datesStrings.push("June"); 

      datesStrings.push("July"); 

      datesStrings.push("August"); 

      datesStrings.push("September"); 

      datesStrings.push("October"); 

      datesStrings.push("November"); 

      datesStrings.push("December"); 

     } 

    } 

   } 

  } 

 } 

  

 minDate.setHours(0); 

 minDate.setMinutes(0); 

 minDate.setSeconds(0); 

 minDate.setMilliseconds(0); 

 maxDate.setHours(0); 

 maxDate.setMinutes(0); 

 maxDate.setSeconds(0); 

 maxDate.setMilliseconds(0); 

  

  

 // Creating the HTML code for the X axis of the timeline (the dates) 

 var datesAxisString = '';  // The dates for the X axis in the timeline 

 var separatorsString = ''; // The string with the small vertical separators between the dates on the timeline 

 var timelineNumColumns; 

 if(timeSpan == 'week'){ timelineNumColumns = 7; } 

 else{ if(timeSpan == 'twoWeeks'){ timelineNumColumns = 15; } 

  else{ if(timeSpan == 'month'){ timelineNumColumns = 31; } 

   else{ if(timeSpan == 'threeMonths'){ timelineNumColumns = 3; }   // 3 months 

    else{ if(timeSpan == 'sevenMonths'){ timelineNumColumns = 7; }  // 7 months 

     else{ if(timeSpan == 'year'){ timelineNumColumns = 12; }}}}}} // 12 months 

  

 var sectionWidthInTimeline = Math.floor(timelineWidth/timelineNumColumns)-5; // Adjusting the width counting the padding-left property in the space sections 

  

 for(var i=0; i<timelineNumColumns; i++){ 

  if(i==timelineNumColumns-1){ 

   datesAxisString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; font-family: \'Segoe UI\'; font-size: 8pt; float: left; 

text-align: left; padding-left: 5px; padding-bottom: 5px; width: '+ (sectionWidthInTimeline+remainingHorizontalSpace) +'px;">'+ datesStrings[i] +'</span>'; 

      separatorsString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; float: left; border-left-width: 1px; border-left-style: solid; 

border-color: rgb(213, 213, 213); width: '+ (sectionWidthInTimeline+remainingHorizontalSpace+4) +'px;"></span>'; 

  }else{ 

   datesAxisString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; font-family: \'Segoe UI\'; font-size: 8pt; float: left; 

text-align: left; padding-left: 5px; padding-bottom: 5px; width: '+ sectionWidthInTimeline+'px;">'+ datesStrings[i] +'</span>'; 

   separatorsString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; float: left; border-left-width: 1px; border-left-style: 

solid; border-color: rgb(213, 213, 213); width: '+ (sectionWidthInTimeline+4) +'px;"></span>'; 

  } 

 } 

  

 // The timeline is 1060px width, so we have to split this value in the number of subsections we want to create (es. number of days, hours of the day ecc...) 

 // We are adding 220px to the left margin to make space for the categories and equipment. 

 var timelineXaxis = '<div class="timeline-dates" style="width: '+ (timelineWidth+1) +'px; height:20px; margin-left:220px; left:0px; top:-20px; padding-right:28px;">' + 

          '<div style="padding: 0px; left: 0px; top: 0px; overflow: hidden; position:inherit; height: 

19px; background-repeat: repeat-x;"></div>' + 

          '<div style="white-space:nowrap; overflow:hidden; position: relative; color: rgb(119, 119, 119); 

border-bottom-width: 1px; border-bottom-style: hidden; border-bottom-color: rgb(119, 119, 119); height: 20px; top: 0px; left: 0px; margin-left: 2px;">' + 

              datesAxisString + 

          '</div>' + 

          '<div style="white-space:nowrap; overflow:hidden; position:relative; color: rgb(119, 119, 119); 

border-bottom-width: 1px; border-bottom-style: hidden; border-bottom-color: rgb(119, 119, 119); height: 10px; top: -16px; left: 0px; margin-left: 0px;">' + 

        separatorsString + 

          '</div>' + 

      '</div>' + 
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      '<div id="innerTimeline" style="margin-left:220px; border:1px solid black; margin-top:13px; 

position:relative;"></div>'; 

  

 // Adding the dates on the X axis to the timeline 

 timeline.innerHTML += timelineXaxis; 

 // Reading height and width of the timeline 

 var timelineHeight = timeline.style.height; 

 var timelineWidth = timeline.style.width; 

  

 timeline = document.getElementById("innerTimeline"); 

 // Adjusting the height of the inner timeline 

 timeline.style.height = timelineHeight; // Enlarging the height of the timeline in order to have one line for each Equipment 

 timeline.style.width = timelineWidth; 

  

 var listItemEnumerator = tasksListItems.getEnumerator(); // Resetting the enumerator 

 var authorsArray = new Array();  // The array containing the names of the creators of the tasks 

 var text = '';      // The HTML code of the task to add to the timeline 

  

    while( listItemEnumerator.moveNext() ){ 

        var oListItem = listItemEnumerator.get_current(); 

         

        var author = oListItem.get_item('Author'); 

        var project = oListItem.get_item('Project'); 

        var taskTitle = oListItem.get_item('Title'); 

        var assignedTo = oListItem.get_item('AssignedTo'); 

        var startDate = oListItem.get_item('StartDate'); 

        var dueDate = oListItem.get_item('DueDate'); 

        var equipmentCategory = oListItem.get_item('Equipment_x0020_Category'); 

        var equipmentName = oListItem.get_item('Equipment_x0020_Name'); 

     var amountOfMagnets = oListItem.get_item('Amount_x0020_of_x0020_magnets'); // The string "x0020" is a space in the SharePoint's list's property. 

     var taskID = oListItem.get_item('ID'); 

  var contentTypeId = oListItem.get_item('ContentTypeId').$c_1; 

  var listId = tasksListItems.get_path().get_$1O_0().$r_1;  // Here we get a string with a lot of information. E.g.: "740c6a0b-85e2-48a0-a494-

e0f1759d4aa7:site:5224dfee-cb44-4a8b-ada7-ed36f701eb5f:web:35c8c320-4179-49d9-9bd6-325be8036e6b:list:08e544cf-2b93-4378-b3bd-16ca91cae1e9" 

  var idIndex = listId.indexOf("list:");      // Reading where the ID of the list 

starts in the string. 

  var equipmentArray = new Array();  // This array will contain, if necessary, the array of equipment. If not used its length will be = 

0. 

   

  // Taking only the "listId" and Formatting it for the EditItem2() method that will be created later. 

  listId = listId.substring(idIndex + 5, listId.length);  // Keeping only the ID of the list. 

     listId = listId.toUpperCase().replace(/-/g, '%2D'); 

     listId = '%7B' + listId +'%7D'; 

   

   

     // Consistency checks and updates 

     if( author != null ){ author = author.$2e_1; } 

     if (project != null && project != undefined){ project = project.$2e_1; } 

        if (equipmentCategory != null && equipmentCategory != undefined){ equipmentCategory = equipmentCategory.$2e_1; } 

        if (equipmentName != null && equipmentName != undefined){  

         // We are considering both the possibilities for 'single equipment' or 'list of equipment' (when on SharePoint the element can have "multiple values"). 

         if( equipmentName.$2e_1 != null  &&  equipmentName.$2e_1 != undefined ){ 

    equipmentName = equipmentName.$2e_1; 

   }else{ 

    equipmentArray = equipmentName; // 'equipmentName' is an array of equipment 

   } 

        } 

     if( assignedTo != null  &&  assignedTo != undefined ){ 

         // We are considering both the possibilities for 'single user' or 'list of users' (when on SharePoint the element can have "multiple values"). 

         if( assignedTo.$2e_1 != null  &&  assignedTo.$2e_1 != undefined ){ 

          assignedTo = '&nbsp;&nbsp;-&nbsp;&nbsp;' + assignedTo.$2e_1; 

   }else{ 

    // It is a list of people 

    assignedTo = '&nbsp;&nbsp;-&nbsp;&nbsp;' + assignedTo[0].$2e_1; 

   } 

  } 

     if( amountOfMagnets == null || amountOfMagnets == undefined){ amountOfMagnets = 0; } 

  amountOfMagnets = '#' + amountOfMagnets; 

      

     var authorIndex = authorsArray.indexOf(author); 

     if(authorIndex == -1  ||  authorIndex == undefined  ||  authorIndex == null){ // If the author's name is not yet in the array... 

      authorsArray.push(author); // Adding the author's name 

      authorIndex = authorsArray.indexOf(author);  // Recreating the index (which will now be >-1 ) 

     } 

      

     if(equipmentArray.length > 0){ 

      for(var tempEquipmentIndex=0; tempEquipmentIndex<equipmentArray.length; tempEquipmentIndex++){ 

       equipmentName = equipmentArray[tempEquipmentIndex].$2e_1; // Reading the current equipment in the array of equipment related to 

this task. 

        

       var equipmentIndex = globalEquipmentArray.indexOf( equipmentName ); 

       // If this element have an equipment assigned to it and If the task is not set for some dates outside the timeline we can 

proceed... 

       if( equipmentIndex > -1  &&  !(dueDate<minDate)  &&  !(startDate>maxDate) ){ 

        var distanceFromTopInTheTimeline = 0;  // It is the minimum distance from the top to appear 

int he innerTimeline, since the task has 'absolute' positioning. 

        distanceFromTopInTheTimeline += 22 * equipmentIndex; // Only the integer value, the 'px' part will be 

attached in the "text" string. 

         

        // Defining the width of the task block in the timeline. 

        var taskDaysGap; 

        var taskWidth; 

        // If both the start date and the due date are outside the timeline... (the task starts before the first date in 

the timeline and finishes after the last date in the timeline) 

           if(startDate <= minDate  &&  dueDate >= maxDate){ 

         taskWidth = parseInt( timelineWidth.substring(0, timelineWidth.length-2) ); 

 // Using the whole width of the timeline. We first need to convert the string "1060px" in an integer leaving the last 2 characters. 

        }else{ 

            if(startDate >= minDate  &&  dueDate <= maxDate){ 

             taskDaysGap = dueDate.getTime() - startDate.getTime()+1; // The +1 is necessary, otherwise 

sometimes a day is lost, ending up counting e.g. 2 days gap instead of 3. 

       taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24));  // Getting the 

difference in days 
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             taskWidth = horizontalSectionWidth * taskDaysGap;  // 

+horizontalSectionWidth is necessary to add one plus section's width to make the items display correctly. 

             if(timeSpan == 'week'){ taskWidth -= 1; } 

       else{ if(timeSpan == 'twoWeeks'){ taskWidth -=3; } 

              else{ if(timeSpan == 'threeMonths'){ taskWidth -=3; } 

               else{ if(timeSpan == 'sevenMonths'){ taskWidth -= 4; } 

             } } } 

             if(dueDate.getDay() === maxDate.getDay()  &&  dueDate.getMonth() === maxDate.getMonth()  &&  

dueDate.getFullYear() === maxDate.getFullYear()){ if(timeSpan == 'week'){ taskWidth += 2; }} // If the item fits in the timeline but finishes 

            }else{ 

             // At least one of the dates is inside of the timeline. Checking which one. 

             if(startDate >= minDate){ 

              taskDaysGap = maxDate.getTime() - startDate.getTime()+1; // Using the max date 

present on the timeline as "dueDate" 

        taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24));  // 

Getting the difference in days 

              taskWidth = horizontalSectionWidth * taskDaysGap; 

              if(timeSpan == 'week'){ taskWidth += 1; } 

              else{ if(timeSpan == 'twoWeeks'){ taskWidth -=4; }} 

        //if(timeSpan == 'month' || timeSpan == 'twoWeeks') -> no need to add 

value in these cases 

             }else{ 

              if(dueDate <= maxDate){ 

               taskDaysGap = dueDate.getTime() - minDate.getTime(); // Using 

the min date present on the timeline as "startDate" 

         taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 

24));  // Getting the difference in days 

               taskWidth = (horizontalSectionWidth * taskDaysGap) + 

horizontalSectionWidth -1; // +horizontalSectionWidth is necessary to add one plus section's width to make the items display correctly. 

               if(timeSpan == 'twoWeeks'){ taskWidth -=1; } 

               else{ if(timeSpan == 'threeMonths'){ taskWidth -= 4; }} 

              } 

             } 

            } 

           } 

           // In any case we want the width to lose a pixel, because in the "New Task" form we increase by one the 'leftPadding' of each of 

them. 

           // Except when the task takes the whole timeline. 

           if( taskWidth != parseInt( timelineWidth.substring(0, timelineWidth.length-2) )){ 

            taskWidth--; 

           } 

           if(taskWidth < 2){ taskWidth = 2; }  // Setting a minimum width 

         

        // Calculating the space to be added on the left of the task in the timeline 

        var leftMargin = 0; // It is the minimum distance from the left border in order for the Task to appear 

in the innerTimeline (because it has 'absolute' positioning. 

        if( startDate > minDate ){ 

         var daysDifference = startDate.getTime() - minDate.getTime(); 

         daysDifference = Math.ceil(daysDifference / (1000 * 3600 * 24)); 

         leftMargin += Math.floor(horizontalSectionWidth * daysDifference)+1; 

         if(timeSpan == 'month'){ 

          leftMargin -= 2; 

          taskWidth += 1;  

         }else{ 

          if(timeSpan == 'twoWeeks'){ 

           leftMargin -= 2; 

          }else{ 

        if(timeSpan == 'threeMonths'){ 

                leftMargin -= 6; 

                taskWidth += 1; 

              }else{ 

               if(timeSpan == 'sevenMonths'){ 

                leftMargin -= 7; 

               } 

              } 

             } 

            } 

            if(leftMargin < 0) { leftMargin = 0; } // Bounding the value of 'leftMargin' 

        } 

         

        // We want the dates to be in the format "22/10". We convert now the Date objects in strings to display in the 

HTML element. 

           var startDateString = startDate.getDate() +'/'+ (parseInt(startDate.getMonth())+1); 

           var dueDateString = dueDate.getDate() +'/'+ (parseInt(dueDate.getMonth())+1); 

     taskWidth = Math.floor(taskWidth); // Re-adjusting the width, in case there are decimal numbers in it. 

      

     var backgroundColor = 'white';  // Setting the default background color 

        if(colorRule == 'colorByProject'){ // If we want every project to have a different background color... 

         // We have to find the related project in the 'globalProjectsArray' and use the linked color. 

         var tempLength = globalProjectsArray.length; 

         for(var x=0; x<tempLength; x++){ 

          if(globalProjectsArray[x].projectName == project){ 

           backgroundColor = globalProjectsArray[x].projectColor; 

           break; 

          } 

         } 

     }else{ // Each User will have a different color associated with it and so its Tasks. 

      // We have to find the related user in the 'globalUsersArray' and use the linked color. 

         var tempLength = globalUsersArray.length; 

         var tempAssignedTo = assignedTo.replace(/&nbsp;/g, '').substring(1); 

         for(var x=0; x<tempLength; x++){ 

          if(globalUsersArray[x].userName.$2e_1 == tempAssignedTo){ 

           backgroundColor = globalUsersArray[x].userColor; 

           break; 

          } 

         } 

        } 

         

        var equipmentHTMLString = '';  // String that will appear if the user clicks on the task in the 

timeline. 

        // We are already sure that this task has multiple equipment assigned to it. 

        for(var tempHTMLindex = 0; tempHTMLindex<equipmentArray.length; tempHTMLindex++){ 

         equipmentHTMLString += '&nbsp;&nbsp;&nbsp;&nbsp;'+ equipmentArray[tempHTMLindex].$2e_1 +'<br/>'; 
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        } 

         

        text = '<div class="ms-tl-bar" tabindex="0" style="position:absolute; cursor:pointer; margin-bottom:2px; width: '+ 

taskWidth +'px; height: 20px; top: '+ distanceFromTopInTheTimeline +'px; left: '+ leftMargin +'px; background-color:'+ backgroundColor +'; white-space:nowrap; overflow:hidden;">' + 

        '<span class="ms-tl-barTitle" unselectable="on" style="margin-left: 

5px; width: 625px; text-overflow: ellipsis; color: rgb(68, 68, 68); font-family: \'Segoe UI\'; font-size: 8pt;">'+ taskTitle + assignedTo +' :&nbsp;&nbsp;'+ equipmentName + amountOfMagnets 

+' magnets</span>' + 

        '<span class="dialogWindowString" style="display:none;">'+ project + 

         '<a href="#" 

onclick="javascript:closeDialogWindow();"><input type="button" value="&times;" class="closeButton" style="float:right; cursor:pointer; padding:1px 0 3px; min-width:2.1em;"/></a> <br/>'+ 

taskTitle + assignedTo +'<br/>'+  

         'Equipment: <br/>'+ equipmentHTMLString + 

         amountOfMagnets +' magnets<br/>Time period: &nbsp;'+ 

startDateString +' - '+ dueDateString + 

         '<input type="button" value="Edit" 

style="float:right; cursor:pointer; padding:2px 0; min-width:4em;" onclick="EditItem2(event, \''+ siteUrl +'/_layouts/15/listform.aspx?PageType=6&ListId='+ listId +'&ID='+ taskID 

+'&ContentTypeID='+ contentTypeId +'\')">' + 

        '</span>' + 

       '</div>'; 

      

        timeline.innerHTML += text; 

       } 

      } 

     }else{ 

      var equipmentIndex = globalEquipmentArray.indexOf( equipmentName ); 

      // If this element have an equipment assigned to it and If the task is not set for some dates outside the timeline we can proceed... 

      if( equipmentIndex > -1  &&  !(dueDate<minDate)  &&  !(startDate>maxDate) ){ 

       var distanceFromTopInTheTimeline = 0;  // It is the minimum distance from the top to appear int he 

innerTimeline, since the task has 'absolute' positioning. 

       distanceFromTopInTheTimeline += 22 * equipmentIndex; // Only the integer value, the 'px' part will be attached in the 

"text" string. 

        

       // Defining the width of the task block in the timeline. 

       var taskDaysGap; 

       var taskWidth; 

       // If both the start date and the due date are outside the timeline... (the task starts before the first date in the timeline and 

finishes after the last date in the timeline) 

          if(startDate <= minDate  &&  dueDate >= maxDate){ 

        taskWidth = parseInt( timelineWidth.substring(0, timelineWidth.length-2) );  // Using 

the whole width of the timeline. We first need to convert the string "1060px" in an integer leaving the last 2 characters. 

       }else{ 

           if(startDate >= minDate  &&  dueDate <= maxDate){ 

            taskDaysGap = dueDate.getTime() - startDate.getTime()+1; // The +1 is necessary, otherwise sometimes a day is 

lost, ending up counting e.g. 2 days gap instead of 3. 

      taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24));  // Getting the difference in days 

            taskWidth = horizontalSectionWidth * taskDaysGap;  // +horizontalSectionWidth is 

necessary to add one plus section's width to make the items display correctly. 

            if(timeSpan == 'week'){ taskWidth -= 1; } 

      else{ if(timeSpan == 'twoWeeks'){ taskWidth -=3; } 

             else{ if(timeSpan == 'threeMonths'){ taskWidth -=3; } 

              else{ if(timeSpan == 'sevenMonths'){ taskWidth -= 4; } 

            } } } 

            if(dueDate.getDay() === maxDate.getDay()  &&  dueDate.getMonth() === maxDate.getMonth()  &&  dueDate.getFullYear() 

=== maxDate.getFullYear()){ if(timeSpan == 'week'){ taskWidth += 2; }} // If the item fits in the timeline but finishes 

           }else{ 

            // At least one of the dates is inside of the timeline. Checking which one. 

            if(startDate >= minDate){ 

             taskDaysGap = maxDate.getTime() - startDate.getTime()+1; // Using the max date present on the 

timeline as "dueDate" 

       taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24));  // Getting the 

difference in days 

             taskWidth = horizontalSectionWidth * taskDaysGap; 

             if(timeSpan == 'week'){ taskWidth += 1; } 

             else{ if(timeSpan == 'twoWeeks'){ taskWidth -=4; }} 

       //if(timeSpan == 'month' || timeSpan == 'twoWeeks') -> no need to add value in these 

cases 

            }else{ 

             if(dueDate <= maxDate){ 

              taskDaysGap = dueDate.getTime() - minDate.getTime(); // Using the min date 

present on the timeline as "startDate" 

        taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24));  // 

Getting the difference in days 

              taskWidth = (horizontalSectionWidth * taskDaysGap) + horizontalSectionWidth -1;

 // +horizontalSectionWidth is necessary to add one plus section's width to make the items display correctly. 

              if(timeSpan == 'twoWeeks'){ taskWidth -=1; } 

              else{ if(timeSpan == 'threeMonths'){ taskWidth -= 4; }} 

             } 

            } 

           } 

          } 

          // In any case we want the width to lose a pixel, because in the "New Task" form we increase by one the 'leftPadding' of each of them. 

          // Except when the task takes the whole timeline. 

          if( taskWidth != parseInt( timelineWidth.substring(0, timelineWidth.length-2) )){ 

           taskWidth--; 

          } 

          if(taskWidth < 2){ taskWidth = 2; }  // Setting a minimum width 

        

       // Calculating the space to be added on the left of the task in the timeline 

       var leftMargin = 0; // It is the minimum distance from the left border in order for the Task to appear in the 

innerTimeline (because it has 'absolute' positioning. 

       if( startDate > minDate ){ 

        var daysDifference = startDate.getTime() - minDate.getTime(); 

        daysDifference = Math.ceil(daysDifference / (1000 * 3600 * 24)); 

        leftMargin += Math.floor(horizontalSectionWidth * daysDifference)+1; 

        if(timeSpan == 'month'){ 

         leftMargin -= 2; 

         taskWidth += 1;  

        }else{ 

         if(timeSpan == 'twoWeeks'){ 

          leftMargin -= 2; 

         }else{ 

       if(timeSpan == 'threeMonths'){ 

               leftMargin -= 6; 
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               taskWidth += 1; 

             }else{ 

              if(timeSpan == 'sevenMonths'){ 

               leftMargin -= 7; 

              } 

             } 

            } 

           } 

           if(leftMargin < 0) { leftMargin = 0; } // Bounding the value of 'leftMargin' 

       } 

        

       // We want the dates to be in the format "22/10". We convert now the Date objects in strings to display in the HTML element. 

          startDate = startDate.getDate() +'/'+ (parseInt(startDate.getMonth())+1); 

          dueDate = dueDate.getDate() +'/'+ (parseInt(dueDate.getMonth())+1); 

    taskWidth = Math.floor(taskWidth); // Re-adjusting the width, in case there are decimal numbers in it. 

     

    var backgroundColor = 'white';  // Setting the default background color 

       if(colorRule == 'colorByProject'){ // If we want every project to have a different background color... 

        // We have to find the related project in the 'globalProjectsArray' and use the linked color. 

        var tempLength = globalProjectsArray.length; 

        for(var x=0; x<tempLength; x++){ 

         if(globalProjectsArray[x].projectName == project){ 

          backgroundColor = globalProjectsArray[x].projectColor; 

          break; 

         } 

        } 

    }else{ // Each User will have a different color associated with it and so its Tasks. 

     // We have to find the related user in the 'globalUsersArray' and use the linked color. 

        var tempLength = globalUsersArray.length; 

        var tempAssignedTo = assignedTo.replace(/&nbsp;/g, '').substring(1); 

        for(var x=0; x<tempLength; x++){ 

         if(globalUsersArray[x].userName.$2e_1 == tempAssignedTo){ 

          backgroundColor = globalUsersArray[x].userColor; 

          break; 

         } 

        } 

       } 

        

       text = '<div class="ms-tl-bar" tabindex="0" style="position:absolute; cursor:pointer; margin-bottom:2px; width: '+ taskWidth +'px; 

height: 20px; top: '+ distanceFromTopInTheTimeline +'px; left: '+ leftMargin +'px; background-color:'+ backgroundColor +'; white-space:nowrap; overflow:hidden;">' + 

       '<span class="ms-tl-barTitle" unselectable="on" style="margin-left: 5px; width: 

625px; text-overflow: ellipsis; color: rgb(68, 68, 68); font-family: \'Segoe UI\'; font-size: 8pt;">'+ taskTitle + assignedTo +' :&nbsp;&nbsp;Equipment:'+ equipmentName + amountOfMagnets +' 

magnets</span>' + 

       '<span class="dialogWindowString" style="display:none;">'+ project + 

        '<a href="#" onclick="javascript:closeDialogWindow();"><input 

type="button" value="&times;" class="closeButton" style="float:right; cursor:pointer; padding:1px 0 3px; min-width:2.1em;"/></a> <br/>'+ taskTitle + assignedTo +'<br/>'+  

        equipmentName + amountOfMagnets +' magnets<br/>Time period: &nbsp;'+ 

startDate +' - '+ dueDate + 

        '<input type="button" value="Edit" style="float:right; 

cursor:pointer; padding:2px 0; min-width:4em;" onclick="EditItem2(event, \''+ siteUrl +'/_layouts/15/listform.aspx?PageType=6&ListId='+ listId +'&ID='+ taskID +'&ContentTypeID='+ 

contentTypeId +'\')">' + 

       '</span>' + 

      '</div>'; 

     

       timeline.innerHTML += text; 

      } 

     } 

      

 // End of tasks cycle. 

    } 

     

     

    // Applying the onclick behaviour to the Tasks 

    $(".ms-tl-bar").click( 

     function(e) { 

      // If the dialog window is already open we close the previously opened to then open a new one. 

   if($(".task-pop-up-window")){ 

    $(".task-pop-up-window").remove(); 

   } 

    

   // Creating a new element in the document 

   var text = $(this)[0].lastChild.innerHTML; 

   var tempElem = document.createElement('span'); 

   tempElem.innerHTML = text; 

    

   // Showing the element properly formatted 

   $(tempElem).show() 

    .attr('class', 'task-pop-up-window') 

    .css('top', e.pageY - 95) 

    .css('left', e.pageX - 305) 

    .css('position', 'absolute') 

    .css('border', '1px solid #1a1a1a') 

    .css('background', '#eeeeee') 

    .css('color', 'black') 

    .css('width', '280px') 

    .css('padding', '10px') 

    .appendTo('body'); 

  } 

    ); 

         

     

    addTasksToTimelineFlag = true;  // Updating the flag that tells the system if this function has been called. 

} 

 

// This function allows the user to close the dialog window. 

function closeDialogWindow(){ 

 // Check if the dialog window is open and if that is the case close it. 

 if($(".task-pop-up-window")){ 

  $(".task-pop-up-window").remove(); 

 } 

} 
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/* This function returns the number of days contained in the considered month (considers also the leap years). 

 * Input: 

 * - the month and the year considered. */ 

function daysInMonth(month,year) { 

 month += 1; // Month has to be 1 based -> [1,12]   instead of the Javascript usual zero-based month -> [0,11] 

    return new Date(year, month, 0).getDate(); 

} 

 

 

 

/* This function creates the string that will display the date and time of each feed and reply. 

 * Input: 

 * - the date object of the feed or reply 

 * - the string defining the considered time span. */ 

function createDateString(dateObj, timeSpan){ 

  

 var day = dateObj.getDay(); 

 var month = dateObj.getMonth(); 

  

 if(timeSpan == 'week'  ||  timeSpan == 'twoWeeks'){ 

  switch(day){ 

   case 0: day="Sun"; 

     break; 

   case 1: day="Mon"; 

     break; 

   case 2: day="Tue"; 

     break; 

   case 3: day="Wed"; 

     break; 

   case 4: day="Thu"; 

     break; 

   case 5: day="Fri"; 

     break; 

   case 6: day="Sat"; 

     break; 

   default: day = "Mon"; 

     break; 

  } 

   

  if(timeSpan == 'week'){ 

   switch(month){ 

    case 0: month="January"; 

      break; 

    case 1: month="February"; 

      break; 

    case 2: month="March"; 

      break; 

    case 3: month="April"; 

      break; 

    case 4: month="May"; 

      break; 

    case 5: month="June"; 

      break; 

    case 6: month="July"; 

      break; 

    case 7: month="August"; 

      break; 

    case 8: month="September"; 

      break; 

    case 9: month="October"; 

      break; 

    case 10: month="November"; 

      break; 

    case 11: month="December"; 

      break; 

    default: month="January"; 

      break; 

   } 

  }else{ 

   switch(month){ 

   case 0: month="Jan"; 

     break; 

   case 1: month="Feb"; 

     break; 

   case 2: month="Mar"; 

     break; 

   case 3: month="Apr"; 

     break; 

   case 4: month="May"; 

     break; 

   case 5: month="Jun"; 

     break; 

   case 6: month="Jul"; 

     break; 

   case 7: month="Aug"; 

     break; 

   case 8: month="Sep"; 

     break; 

   case 9: month="Oct"; 

     break; 

   case 10: month="Nov"; 

     break; 

   case 11: month="Dec"; 

     break; 

   default: month="Jan"; 

     break; 

   } 

  } 

 }else{ 

  if(timeSpan == 'month'){ 

   switch(day){ 

    case 0: day="Sun"; 
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      break; 

    case 1: day="Mon"; 

      break; 

    case 2: day="Tue"; 

      break; 

    case 3: day="Wed"; 

      break; 

    case 4: day="Thu"; 

      break; 

    case 5: day="Fri"; 

      break; 

    case 6: day="Sat"; 

      break; 

    default: day = "Mon"; 

      break; 

   } 

    

   switch(month){ 

   case 0: month="Jan"; 

     break; 

   case 1: month="Feb"; 

     break; 

   case 2: month="Mar"; 

     break; 

   case 3: month="Apr"; 

     break; 

   case 4: month="May"; 

     break; 

   case 5: month="Jun"; 

     break; 

   case 6: month="Jul"; 

     break; 

   case 7: month="Aug"; 

     break; 

   case 8: month="Sep"; 

     break; 

   case 9: month="Oct"; 

     break; 

   case 10: month="Nov"; 

     break; 

   case 11: month="Dec"; 

     break; 

   default: month="Jan"; 

     break; 

   } 

  }else{ 

   if( timeSpan == 'threeMonths'  ||  timeSpan == 'sevenMonths'){ 

    switch(month){ 

     case 0: month="January"; 

       break; 

     case 1: month="February"; 

       break; 

     case 2: month="March"; 

       break; 

     case 3: month="April"; 

       break; 

     case 4: month="May"; 

       break; 

     case 5: month="June"; 

       break; 

     case 6: month="July"; 

       break; 

     case 7: month="August"; 

       break; 

     case 8: month="September"; 

       break; 

     case 9: month="October"; 

       break; 

     case 10: month="November"; 

       break; 

     case 11: month="December"; 

       break; 

     default: month="January"; 

       break; 

    } 

   } 

  } 

 } 

  

 var numberOfTheDay = dateObj.getDate(); // Returns the day of the month (from 1-31) 

 if(numberOfTheDay < 10){ 

  numberOfTheDay = '0' + parseInt(numberOfTheDay, 10); // This way if the month is the 5th it will be displayed as "05", instead of "5" 

 } 

  

 if(timeSpan == 'week'  ||  timeSpan == 'twoWeeks'){ 

  return day+ ' ' +numberOfTheDay+ ' ' +month; 

 }else{ 

  if(timeSpan == 'month'){ 

   return numberOfTheDay+ ' ' +month; 

  }else{ 

   return month; 

  } 

 } 

} 

 

 

File “newTaskForm.js”: 
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<script src="//code.jquery.com/jquery-1.11.0.min.js"></script> 

<script src="/_layouts/15/clientpeoplepicker.js"></script> 

<script type="text/javascript"> 

 // This jQuery configuration is MANDATORY to work with "_spPageContextInfo". 

 $(document).ready(function ()  

 { 

  // Updating the "Save" button in the "new task" form. 

  updateSaveButtonOnClickEvent(); 

   

  if(window.location.pathname.endsWith("NewForm.aspx")) 

  { 

   if (SP.ClientContext != null) { 

    SP.SOD.executeOrDelayUntilScriptLoaded(GetCurrentUser, 'SP.js'); 

   } 

   else { 

    SP.SOD.executeFunc('sp.js', null, GetCurrentUser); 

   } 

  } 

   

   

  // This code adds the Username of the current user that is creating the new task to the "Assigned To" field (as a default content). 

  function GetCurrentUser() 

  { 

   var userid = _spPageContextInfo.userId; 

   var requestUri = _spPageContextInfo.webAbsoluteUrl + "/_api/web/getuserbyid(" + userid + ")"; 

   var requestHeaders = { "accept" : "application/json;odata=verbose" }; 

   $.ajax({  url : requestUri,  contentType : "application/json;odata=verbose",  headers : requestHeaders,  success : onSuccess,  error : onError}); 

  } 

   

  function onSuccess(data, request) 

  {  

   var loginName = data.d.LoginName;  

   SetUserFieldValue("Assigned To",loginName); 

  } 

  function onError(error)  

  {   

   //alert(error); 

  } 

  function SetUserFieldValue(fieldName, userName)  

  {  

   var _PeoplePicker = $("div[title='" + fieldName + "']");  

   var _PeoplePickerTopId = _PeoplePicker.attr('id');  

   var _PeoplePickerEditer = $("input[title='" + fieldName + "']");  

   _PeoplePickerEditer.val(userName);  

   var _PeoplePickerOject = SPClientPeoplePicker.SPClientPeoplePickerDict[_PeoplePickerTopId];  

   _PeoplePickerOject.AddUnresolvedUserFromEditor(true); 

  } 

   

   

   

   

   

  // This function updates the content of the onclick string of the 'Save' button of the new task form. 

  function updateSaveButtonOnClickEvent(){ 

   var oldOnClickString = $("input[value='Save']").attr('onclick');  

   var newOnClickString = 'if(consistencyCheckOnDates()){' + oldOnClickString +';}else{alert("The selected equipment is not available in the chosen 

period. Please enter different dates.");}'; 

    

   // Updating the onclick event 

   $("input[value='Save']").attr('onclick', newOnClickString); 

  } 

   

 }); 

  

  

  

  

  

 // Global variable 

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx 

         // We want something like 

"https://espace2013.cern.ch/test-Timeline" 

  

 // Global functions (available for the code in the webpage): 

  

  

 /* INPUT VALIDATION 

  * This function is activated when pressing the "Save" button in the form. 

  * It checks if the dates entered in the form are valid (if the chosen period intersect with another task's period). 

  * We need to have any equipment booked at most for one task on a certain date. */ 

 function consistencyCheckOnDates(){ 

  // Reading the dates entered in the form 

  var formStartDate = $("input[title='Start Date'")[0].value; 

  var formDueDate = $("input[title='Due Date'")[0].value; 

  var formSelectedEquipmentName; 

  var formSelectedEquipmentArray = new Array(); 

   

  formSelectedEquipmentName = $("select[title='Equipment Name']").find('option:selected').text();  // Reading the selected equipment from 

the drop-down list. 

  if(formSelectedEquipmentName == null || formSelectedEquipmentName == undefined || formSelectedEquipmentName == ''){ 

   formSelectedEquipmentName = $("select[title='Equipment Name selected values']")[0];  // Reading the selected equipment from 

the drop-down list. 

    

   for(var i=0; i<formSelectedEquipmentName.length; i++){ 

    formSelectedEquipmentArray.push( formSelectedEquipmentName[i].innerHTML ); 

   } 

  } 

   

  // Creating the Date objects in Javascript. 
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  var year, month, day; 

  try{ 

   day = formStartDate.split('/')[0]; 

   month = formStartDate.split('/')[1]; 

   year = formStartDate.split('/')[2]; 

    

   formStartDate = new Date(year, (month-1), day, 0,0,0,0); 

    

   day = formDueDate.split('/')[0]; 

   month = formDueDate.split('/')[1]; 

   year = formDueDate.split('/')[2]; 

    

   formDueDate = new Date(year, (month-1), day, 0,0,0,0); 

  }catch(e){ return false; } 

   

  var listItemEnumerator = tasksListItems.getEnumerator(); 

  while ( listItemEnumerator.moveNext() ) { 

      var oListItem = listItemEnumerator.get_current(); 

   var equipmentName; 

   try{ 

    equipmentName = oListItem.get_item('Equipment_x0020_Name'); 

   }catch(e){ continue; } // In case of exception we allow the creation of the task. 

    

         var equipmentsArray = new Array(); 

         if(equipmentName.$2e_1 == null || equipmentName.$2e_1 == undefined){ 

          equipmentsArray = equipmentName; 

         } 

          

         // If there is more than one equipment... 

         if(equipmentsArray.length > 0){ 

          // we check the dates regarding each of the equipments 

          for(var tempIndex=0; tempIndex<equipmentsArray.length; tempIndex++){ 

           equipmentName = equipmentsArray[tempIndex].$2e_1; 

            

        if( formSelectedEquipmentArray.indexOf(equipmentName) > -1 ){  // If the task is using 

the chosen equipment... 

            var startDate = oListItem.get_item('StartDate'); 

               var dueDate = oListItem.get_item('DueDate'); 

                

               // Checking if the chosen dates fall inside the period in which another task has to be executed. 

               var startDateNotValid = formStartDate >= startDate  &&  formStartDate <= dueDate; // If the formStartDate falls in the 

period already chosen for another task -> True. 

         var dueDateNotValid = formDueDate >= startDate  &&  formDueDate <= dueDate;  

 // If the formDueDate falls in the period already chosen for another task -> True. 

         var periodNotValid = (formStartDate < startDate  &&  formDueDate >= startDate)  ||  (formDueDate > dueDate  &&  

formStartDate <= dueDate); // If the chosen period comprehends the period chosen for this task. 

         // If the start date or the due date chosen are falling inside the chosen period we have to tell the User to select 

different dates. 

         if( startDateNotValid || dueDateNotValid || periodNotValid){ 

          return false; 

         } 

        } 

       } 

         }else{ 

          if(equipmentName == formSelectedEquipmentName){  // If the task is using the  

           var startDate = oListItem.get_item('StartDate'); 

              var dueDate = oListItem.get_item('DueDate'); 

               

              // Checking if the chosen dates fall inside the period in which another task has to be executed. 

              var startDateNotValid = formStartDate >= startDate  &&  formStartDate <= dueDate; // If the formStartDate falls in the period already 

chosen for another task -> True. 

        var dueDateNotValid = formDueDate >= startDate  &&  formDueDate <= dueDate;   // If 

the formDueDate falls in the period already chosen for another task -> True. 

        var periodNotValid = (formStartDate < startDate  &&  formDueDate >= startDate)  ||  (formDueDate > dueDate  &&  formStartDate <= 

dueDate); // If the chosen period comprehends the period chosen for this task. 

        // If the start date or the due date chosen are falling inside the chosen period we have to tell the User to select different 

dates. 

        if( startDateNotValid || dueDateNotValid || periodNotValid){ 

         return false; 

        } 

       } 

      } 

          

  } 

   

   

  // If all the Tasks using the selected equipment have been examined and no one is using the equipment in the chosen period we can say that everything is ok. 

  return true; 

 } 

  

  

</script> 

 

 

 

File “customTimeline.js”: 
 

// Adding jQuery to the webpage 

document.write('<script type="text/javascript" src="//code.jquery.com/jquery-1.11.0.min.js"></script>'); 

 

// Global variables that hold the names of the lists on SharePoint 

var globalUsersListName = 'Users';    // The list containing the name of the User and the color assigned to it (the color is saved as a 

string). 

var globalEquipmentsListName = 'Equipments'; // The list containing the name of the Equipments and their relative Category (lookup field) 

var globalProjectsListName = 'Projects';  // The list containing the name of the Project and the color assigned to it (the color is saved as a string). 

var globalTasksListName = 'Tasks';    // The list containing the name of the Tasks and their relative Project (lookup field) 

 

// Calling the first function 
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ExecuteOrDelayUntilScriptLoaded(registerRenderer, 'clienttemplates.js'); // Telling to the webpage to launch our postTaskFormRenderer() function during the post rendering phase. 

 

function registerRenderer() 

{ 

 var ctxForm = {}; 

 ctxForm.Templates = {}; 

 ctxForm.OnPreRender = OnPreRenderDocItemTemplate; 

  

 SPClientTemplates.TemplateManager.RegisterTemplateOverrides(ctxForm); 

} 

 

// The system tries to prerender 3 times. 

// The first one is useless in Chrome and Firefox (it is useful in IE), it gives us no data from the Server, so we can avoid it. After that call on Firefox it works fine, while on Chrome 

the system gives us the error: 

//   Uncaught Error: The collection has not been initialized. It has not been requested or the request has not been executed. It may need to be explicitly requested. 

// but it does not matter. The code makes the third call that solves the problem even on Chrome. 

var firstCallAlreadyMade = false; 

function OnPreRenderDocItemTemplate(renderCtx) { 

    SP.SOD.executeOrDelayUntilScriptLoaded(loadContext, 'sp.js'); 

    function loadContext() { 

     var ua = window.navigator.userAgent; 

     var msie = ua.indexOf("MSIE ") > -1  ||  !!navigator.userAgent.match(/Trident.*rv\:11\./);  // "True" if the Browser is IE (with support for IE 

11). 

  

     if(msie){ 

      checkSituationAndLunch(); 

     }else{ 

      if(firstCallAlreadyMade == false){ 

       checkSituationAndLunch(); 

       firstCallAlreadyMade = true; 

      } 

     } 

    } 

} 

 

function checkSituationAndLunch(){ 

 try{ 

  // This control has been implemented since for some actions SharePoint refreshes the webparts without refreshing the whole webpage. 

  // We are talking about operations like expanding or collapsing a Group of Tasks. 

  if( document.getElementById("innerTimeline") ){ // If the timeline is already in the webpage... 

   return;  // Do not add code to the timeline. 

  } 

  // Reading the Equipments and the Categories from SharePoint 

  retrieveEquipmentsAndCategories(); 

 

 }catch(e){ return; } 

} 

 

 

 

/********* Timeline customization code: through this code we can display the timeline above the "New Task" form. *********/ 

 

 

 

// Retrieving information on every equipment and every category from SharePoint. 

function retrieveEquipmentsAndCategories() { 

 /* In the "New Task" form this function is called many times and the variable "equipmentListItems" is re-written for many times. 

  * This leads to a race condition when the first sequence of function tries in the code to read some data from it in order to display the "Equipments" and their "Categories", 

  * thus causing, some times, to find the resource locked and so having as output the HTML section thought for the equipments empty. */ 

 if (this.equipmentListItems != null && this.equipmentListItems != undefined){ 

  return; 

 }  

  

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx 

        // We want something like "https://espace2013.cern.ch/test-Timeline" 

  

 // Correcting the URL (if necessary) 

 if( siteUrl == null  ||  siteUrl == undefined ){ siteUrl = window.location.href; } 

 var numSlashes = 0; 

 for( var i=0; i<siteUrl.length; i++){ 

  if(siteUrl[i] == '/'){ 

   numSlashes++; 

   if(numSlashes == 4){ 

    siteUrl = siteUrl.substring(0, i); 

    break; 

   } 

  } 

 } 

 

 var clientContext = new SP.ClientContext(siteUrl); 

    var oList = clientContext.get_web().get_lists().getByTitle( globalEquipmentsListName ); 

  

    var camlQuery = new SP.CamlQuery(); 

    camlQuery.set_viewXml('<View><Query><Where>' +  

              '</Where></Query></View>'); 

    this.equipmentListItems = oList.getItems(camlQuery); 

    clientContext.load(equipmentListItems); 

     

    clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededEquipments), Function.createDelegate(this, this.onQueryFailed)); 

  

} 

 

 

// Reading the categories and equipments 

var globalEquipmentsArray = new Array();  // This global variable will keep the names of the Equipment to let the User change timespan in the timeline if needed, without 

recalling the Server for this information. 

var globalCategoriesArray = new Array();  // This global variable will keep the names of the Categories. 

var globalCustomTimelineEquipmentsHTMLstring = ''; 

function onQuerySucceededEquipments(){ 

 var equipmentList = '<div style="float:left; margin-top: 42px;">'; 

 var numRows = 0;  // Variable used to know the amount of rows to display. 

 var firstItem = true; // Boolean to treat differently the first item of the array. It needs a greater padding-top. 

 var listItemEnumerator = equipmentListItems.getEnumerator(); 



187 
 

 var innerListItemEnumerator = equipmentListItems.getEnumerator(); 

 var category = ''; 

 var firstOfEquipments = true; 

  

 var ua = window.navigator.userAgent; 

    var msie = ua.indexOf("MSIE ") > -1  ||  !!navigator.userAgent.match(/Trident.*rv\:11\./);  // "True" if the Browser is IE (with support for IE 11). 

 var firefox = ua.toLowerCase().indexOf('firefox') > -1;  // Detects any version of Firefox. "True" if we are using Firefox; 

  

 while (listItemEnumerator.moveNext()) { 

        var oListItem = listItemEnumerator.get_current(); 

        try{ 

         category = oListItem.get_item('Parent_x0020_Category').$2e_1; 

         if(category != null  &&  globalCategoriesArray.indexOf( category ) == -1 ){ // If we have not met this category before... 

          globalCategoriesArray.push(category);  // We add it to the 'globalCategoriesArray' 

           

          // setting local variables 

          var equipmentName, innerListItem; 

          var tempEquipmentsString = ''; 

          var firstOfCategory = true; 

          innerListItemEnumerator = equipmentListItems.getEnumerator(); // Resetting the 'innerListEnumerator' 

           

          // Seek for every equipment belonging to that category and add it to the HTML string. 

          while(innerListItemEnumerator.moveNext() ){ 

           var innerListItem = innerListItemEnumerator.get_current(); 

           if( category == innerListItem.get_item('Parent_x0020_Category').$2e_1 ){ // If the currently considered category 

            equipmentName = innerListItem.get_item('Title'); 

            globalEquipmentsArray.push(equipmentName);  // Memorizing the name of the Equipment. We will need it later while 

displaying the Tasks in the timeline 

             

            var stringHeight; 

            if(msie || firefox){ // If IE or Firefox... 

             stringHeight = 9; 

            }else{ 

             stringHeight = 22; 

            } 

             

            if(firstOfCategory){ // If it is the first element of a category... 

             if(firstOfEquipments){ // If it is the first line of equipments to be written (in absolute)... 

              tempEquipmentsString += '<p id="categoriesList" style="padding:0; margin-top:3px; margin-left:-

110px; height:'+ stringHeight +'px; -webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;"><span style="display:inline-block; margin-top:11px; width:120px;" title="'+ 

category +'">' +category + '</span> <span style="display:inline-block; margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden; margin-bottom: -3px;" 

title="'+ equipmentName +'">' + equipmentName +'</span></p>'; 

              firstOfEquipments = false; 

             }else{ 

              tempEquipmentsString += '<p id="categoriesList" style="padding:0; margin-left:-110px; height:'+ 

stringHeight +'px; -webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;"><span style="display:inline-block; margin-top:11px; width:120px;" title="'+ category +'">' 

+category + '</span> <span style="display:inline-block; margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden; margin-bottom: -3px;" title="'+ 

equipmentName +'">' + equipmentName +'</span></p>'; 

             } 

             firstOfCategory = false; // This has to be done in any case 

            }else{ 

             tempEquipmentsString += '<p id="categoriesList" style="padding:0; margin-left:-110px; height:'+ stringHeight +'px; 

-webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;"><span style="display:inline-block; margin-top:11px; width:120px;"> </span> <span style="display:inline-block; 

margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden;" title="'+ equipmentName +'">' + equipmentName +'</span></p>'; 

            } 

             

            numRows++; // Increasing the rows' counter (Used to set the height of the Timeline with the Tasks) 

           } 

          } 

    equipmentList += tempEquipmentsString; 

         } 

        }catch(e){} 

         

 } 

 equipmentList += '</div>'; 

  

 // Passing the local variables' values to the global ones. 

 globalCustomTimelineEquipmentsHTMLstring = equipmentList; 

  

  

 // Calling the next function for the retrieval of the Projects 

 retrieveProjects(); 

} 

 

 

function retrieveProjects(){ 

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx 

        // We want something like "https://espace2013.cern.ch/test-Timeline" 

 

 // Correcting the URL (if necessary) 

 if( siteUrl == null  ||  siteUrl == undefined ){ siteUrl = window.location.href; } 

 var numSlashes = 0; 

 for( var i=0; i<siteUrl.length; i++){ 

  if(siteUrl[i] == '/'){ 

   numSlashes++; 

   if(numSlashes == 4){ 

    siteUrl = siteUrl.substring(0, i); 

    break; 

   } 

  } 

 } 

    var clientContext = new SP.ClientContext(siteUrl); 

    var oList = clientContext.get_web().get_lists().getByTitle( globalProjectsListName ); 

     

    var camlQuery = new SP.CamlQuery(); 

    camlQuery.set_viewXml('<View><Query><Where>' +  

              '</Where></Query></View>'); 

    this.projectListItems = oList.getItems(camlQuery); 

    clientContext.load(projectListItems); 

     

    clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededProjects), Function.createDelegate(this, this.onQueryFailed)); 

} 
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var globalProjectsArray = new Array(); // This global variable will keep the names of the Projects and their associated colors. 

function onQuerySucceededProjects(){ 

 // Variables necessary to read the query results 

    var listItemEnumerator = projectListItems.getEnumerator(); 

 var innerListItemEnumerator = projectListItems.getEnumerator(); 

  

 var project, color; 

 while (listItemEnumerator.moveNext()) { 

        var oListItem = listItemEnumerator.get_current(); 

        try{ 

         project = oListItem.get_item('Title'); 

         color = oListItem.get_item('Color'); 

         globalProjectsArray.push({'projectName':project, 'projectColor':color}); 

        }catch(e){} 

    } 

     

    // Calling the next function for the retrieval of the Users 

 retrieveUsers(); 

} 

 

 

function retrieveUsers(){ 

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx 

        // We want something like "https://espace2013.cern.ch/test-Timeline" 

 

 // Correcting the URL (if necessary) 

 if( siteUrl == null  ||  siteUrl == undefined ){ siteUrl = window.location.href; } 

 var numSlashes = 0; 

 for( var i=0; i<siteUrl.length; i++){ 

  if(siteUrl[i] == '/'){ 

   numSlashes++; 

   if(numSlashes == 4){ 

    siteUrl = siteUrl.substring(0, i); 

    break; 

   } 

  } 

 } 

    var clientContext = new SP.ClientContext(siteUrl); 

    var oList = clientContext.get_web().get_lists().getByTitle( globalUsersListName ); 

     

    var camlQuery = new SP.CamlQuery(); 

    camlQuery.set_viewXml('<View><Query><Where>' +  

              '</Where></Query></View>'); 

    this.userListItems = oList.getItems(camlQuery); 

    clientContext.load(userListItems); 

     

    clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededUsers), Function.createDelegate(this, this.onQueryFailed)); 

} 

 

var globalUsersArray = new Array();  // This global variable will keep the names of the Users (saved in a list on SharePoint). 

function onQuerySucceededUsers(){ 

 // Variables necessary to read the query results 

    var listItemEnumerator = userListItems.getEnumerator(); 

 var innerListItemEnumerator = userListItems.getEnumerator(); 

  

 var user, color; 

 while (listItemEnumerator.moveNext()) { 

        var oListItem = listItemEnumerator.get_current(); 

        try{ 

         user = oListItem.get_item('User'); 

         color = oListItem.get_item('Color'); 

         globalUsersArray.push({'userName':user, 'userColor':color}); 

        }catch(e){} 

    } 

     

    // Calling the next function for the retrieval of the Tasks 

 retrieveTasksListItems(); 

} 

 

 

// Retrieving information about each of the Tasks and adding them to the Timeline 

function retrieveTasksListItems(){ 

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx 

        // We want something like "https://espace2013.cern.ch/test-Timeline" 

 

 // Correcting the URL (if necessary) 

 if( siteUrl == null  ||  siteUrl == undefined ){ siteUrl = window.location.href; } 

 var numSlashes = 0; 

 for( var i=0; i<siteUrl.length; i++){ 

  if(siteUrl[i] == '/'){ 

   numSlashes++; 

   if(numSlashes == 4){ 

    siteUrl = siteUrl.substring(0, i); 

    break; 

   } 

  } 

 } 

    var clientContext = new SP.ClientContext(siteUrl); 

    var oList = clientContext.get_web().get_lists().getByTitle( globalTasksListName ); 

     

    var camlQuery = new SP.CamlQuery(); 

    camlQuery.set_viewXml('<View><Query><Where>' +  

              '</Where></Query></View>'); 

    this.taskListItems = oList.getItems(camlQuery); 

    clientContext.load(taskListItems); 

     

    clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededTasks), Function.createDelegate(this, this.onQueryFailed)); 

  

} 

 

function onQueryFailed(sender, args) { 

 alert("There has been a problem communicating with the Server. Please try again later."); 

    console.log('Request failed. ' + args.get_message() + '\n' + args.get_stackTrace()); 
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} 

 

 

// Reading the Tasks saved in the timeline 

var addTasksToTimelineFlag = false;  // This variable will tell the system if the function "addTasksToTimeline" has already been called at least once or not. 

function onQuerySucceededTasks(){ 

 var numRows = globalEquipmentsArray.length; 

 var equipmentsHTMLstring = globalCustomTimelineEquipmentsHTMLstring; 

 

 // Catching the rows of the timeline in the HTML code 

 var timelineArea = $('div[id^="MSOZoneCell_"]')[0]; // Chatching the HTMl section in which we want to add the customized timeline 

 // e.g.: id="MSOZoneCell_WebPart"...WPQ3" 

  

 $(timelineArea).prepend('<div id="timelineArea"></div>'); 

 timelineArea = document.getElementById("timelineArea"); 

  

 // Modifying the CSS for the section to include the Rows on the Left of the Timeline. 

 // (if dynamic width) Each character equals 0.7em, so the amount of space on the left has to be 0.7*maxNumCharacters. 

 timelineArea.style.paddingLeft = "120px"; //(0.7*maxNumCharacters) + 'em'; // Making space on the left of the Timeline for the Rows' titles. 

 timelineArea.style.height = ((22*numRows)+70) + 'px'; // Expanding the area including the timeline to push down the rest of the webpage (the list containing the Tasks). 

  

 // Creating some radio buttons to enable the User to change the timespan of the timeline 

 var radioButtons = '<span id="timelineRadioButtons" style="margin-left:7px;">Timespan <input type="radio" onclick="addTasksToTimeline(7, 1060);" name="time span" value="Week" 

checked>Week &nbsp;' + 

          '<input type="radio" onclick="addTasksToTimeline(15, 1060, null);" 

name="time span" value="2 Weeks">2 Weeks &nbsp;' + 

          '<input type="radio" onclick="addTasksToTimeline(31, 1060, null);" 

name="time span" value="Month">Month &nbsp;' + 

          '<input type="radio" onclick="addTasksToTimeline(90, 1060, null);" 

name="time span" value="3 Month">3 Months &nbsp;' + 

          '<input type="radio" onclick="addTasksToTimeline(210, 1060, null);" 

name="time span" value="7 Month">7 Months &nbsp;' + 

          '<input type="radio" onclick="addTasksToTimeline(365, 1060, null);" 

name="time span" value="Year">Year &nbsp;' + 

      '</span> 

&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;' + 

      '<span id="colorRadioButtons">Color ' + 

          '<input type="radio" 

onclick="colorTasksInTimeline(\'colorByProject\');" name="color choice" value="Color the tasks by Project" checked>by Project &nbsp;' + 

          '<input type="radio" 

onclick="colorTasksInTimeline(\'colorByUser\');" name="color choice" value="Color the tasks by User">by User &nbsp;' + 

      '</span>'; 

  

 // Adding the resources found in the list as rows in the Timeline 

 var resourcesSection = document.getElementById("timelineRadioButtons"); 

 if( resourcesSection == undefined || resourcesSection == null ){ // If there is our custom Resources list and the rows have not yet been added... 

  timelineArea.innerHTML = radioButtons + equipmentsHTMLstring + '<div id="timeline"></div>' + timelineArea.innerHTML; 

   

  var timeline = document.getElementById('timeline'); 

      

     if(numRows > 1){ 

      timeline.style.height = ((22*numRows)-2) + 'px'; // Enlarging the height of the timeline in order to have one line for each Resource. 

      // The last line will not need a white space below it. That's why we take out 2px fromt he result. 

  }else{ 

   timeline.style.height = '20px'; // Enlarging the height of the timeline in order to have one line for each Resource. 

  } 

  var timelineWidth = 1060; 

  timeline.style.width = timelineWidth + 'px'; // Manually setting the width of the timeline to override the behaviour of SharePoint, which would expand the 

timeline according to the width of the page. 

  timeline.style.display = "inline"; 

 } 

  

 /******* Adding our code to the timeline. *******/ 

 var numOfDaysInTimeline=7; 

 addTasksToTimeline(numOfDaysInTimeline, timelineWidth); 

} 

 

 

// This function will color the tasks in the timeline according to the equipment or the personnel. 

function colorTasksInTimeline(colorRule){ 

 var timelineWidth = document.getElementById('timeline').style.width; 

 var numOfDaysInTimeline = 7; // Initializing the variable for the consistency check 

 var radioButtons = document.getElementById('timelineRadioButtons').getElementsByTagName('input'); 

  

 var numOfDaysArray = [7, 15, 31, 90, 210, 365];  // Defining the array containing the number of days considered for each possible time span 

  

 for(var i=0; i<radioButtons.length; i++){ 

  if(radioButtons[i].checked){ 

   numOfDaysInTimeline = numOfDaysArray[i]; 

   break; 

  } 

 } 

  

 if(colorRule == 'colorByProject'){ 

  addTasksToTimeline(numOfDaysInTimeline, timelineWidth, 'colorByProject'); 

 }else{ 

  addTasksToTimeline(numOfDaysInTimeline, timelineWidth, 'colorByUser'); 

 } 

} 

 

 

// This function will add the tasks read from the Server to the timeline "manually" (instead of using the SharePoint's disposition. 

function addTasksToTimeline(numOfDaysInTimeline, timelineWidth, colorRule){ 

 // Checking the input 

 if( typeof(numOfDaysInTimeline) == 'string' ){ numOfDaysInTimeline = parseInt(numOfDaysInTimeline); } 

 if( typeof(timelineWidth) == 'string' ){ timelineWidth = parseInt(timelineWidth); } 

  

 var siteUrl = document.URL; 

 // Correcting the URL (if necessary) 

 if( siteUrl == null  ||  siteUrl == undefined ){ siteUrl = window.location.href; } 

 var numSlashes = 0; 

 for( var i=0; i<siteUrl.length; i++){ 

  if(siteUrl[i] == '/'){ 



190 
 

   numSlashes++; 

   if(numSlashes == 4){ 

    siteUrl = siteUrl.substring(0, i); 

    break; 

   } 

  } 

 } 

 

  

 var timeline = document.getElementById('timeline'); 

     

 /****** If the User clicks on the timeline radio buttons we have to read which radio button ******/ 

 if(colorRule == null){ 

  // Reading the color rule to apply to the tasks 

  var radioButtons = document.getElementById('colorRadioButtons').getElementsByTagName('input'); // The radio buttons for the color rules 

  if(radioButtons[0].checked){  // If the first radio button is checked... 

   colorRule = 'colorByProject'; 

  }else{ 

   colorRule = 'colorByUser'; 

  } 

 } 

  

 /******* This piece of code will be used to refresh the timeline when selecting different time spans (e.g.: 1 week, 2 week, 1 month etc...). *******/ 

    // only if the timeline is set as "shown" from SharePoint. If "hidden" we can work without it. 

    var indexOfTasks = timeline.innerHTML.indexOf('<div class="ms-tl-today"'); 

 if( indexOfTasks > -1){ // Using "timeline" as first variable in the next line does not work. We have to re-catch the HTML section. 

  timeline.innerHTML = timeline.innerHTML.substring( 0, indexOfTasks ); // We are deleting the tasks that were in the  

 }else{ // If the "Today"'s flag is not present... 

  indexOfTasks = timeline.innerHTML.indexOf('<div class="timeline-dates"'); 

  if(indexOfTasks > -1){ 

   timeline.innerHTML = timeline.innerHTML.substring( 0, indexOfTasks ); // We are deleting the tasks that were in the  

  } 

 } 

  

  

 // Defining the dates to write on the X axis of the timeline 

 var datesStrings = new Array(); 

 var today = new Date(); 

 var timeSpan;  // It will signal to the createDateString() function the kind of string we want in output. 

  

 if(numOfDaysInTimeline == 7){ timeSpan = 'week'; } 

 else{ 

  if(numOfDaysInTimeline == 15){ timeSpan = 'twoWeeks'; } 

  else{ 

   if(numOfDaysInTimeline == 31){ timeSpan = 'month'; } 

   else{ 

    if(numOfDaysInTimeline == 90){  

     // Re-calculating the number of days int he three months according to the months considered. 

     numOfDaysInTimeline = daysInMonth(today.getMonth(),today.getFullYear()); // Adding the days in this month 

     today.setDate(1); 

     today.setMonth( today.getMonth() -1 ); 

     numOfDaysInTimeline += daysInMonth(today.getMonth(),today.getFullYear()); // Adding the days in the previous 

month 

     today.setMonth( today.getMonth() +1); 

     today.setMonth( today.getMonth() +1); 

     numOfDaysInTimeline += daysInMonth(today.getMonth(),today.getFullYear()); // Adding the days in the following 

month 

     today = new Date(); // Resetting 'today' 

      

     timeSpan = 'threeMonths'; } 

    else{ 

     if(numOfDaysInTimeline == 210){ timeSpan = 'sevenMonths'; } 

     else{ 

      if( numOfDaysInTimeline == 365){ timeSpan = 'year'; } 

      else{ timeSpan = 'year'; } 

     } 

    } 

   } 

  } 

 } 

  

 // Adding the flag that signals today's date on the timeline 

 /* 

 if( timeSpan == 'week'){ 

  // "Today" label's code 

  // I do not know why but SharePoint displays this label differently when adding it to the webpage the first time or some other time through Javascript and the 

radio buttons. 

  if(addTasksToTimelineFlag == false){ // If this is the first time that the function has been called... 

   var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14; border-color: 

rgb(0, 114, 198); height: 22px; top: 42px; left: -605px;"></div>' + 

        '<div class="ms-tl-todayLabel" style="position:absolute; background-color:rgb(0, 

114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: 23px; left: -628px; background-color: rgb(0, 114, 198);">Today</div>'; 

   timeline.innerHTML += todayLabel; 

  }else{ 

   var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14; border-color: 

rgb(0, 114, 198); height: 22px; top: -23px; left: 227px;"></div>' + 

        '<div class="ms-tl-todayLabel" style="position:absolute; background-color:rgb(0, 

114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: -42px; left: 204px; background-color: rgb(0, 114, 198);">Today</div>'; 

   timeline.innerHTML += todayLabel; 

  } 

 }else{ 

  if(timeSpan == 'twoWeeks'){ 

   // "Today" label's code 

   var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14; border-color: 

rgb(0, 114, 198); height: 24px; top: -24px; left: 106px;"></div>' + 

        '<div class="ms-tl-todayLabel" style="position:absolute; background-color:rgb(0, 

114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: -42px; left: 81px; background-color: rgb(0, 114, 198);">Today</div>'; 

   timeline.innerHTML += todayLabel; 

  }else{ 

   if(timeSpan == 'month'){ 

    // "Today" label's code 

    var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14; 

border-color: rgb(0, 114, 198); height: 24px; top: -24px; left: 119px;"></div>' + 
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         '<div class="ms-tl-todayLabel" style="position:absolute; 

background-color:rgb(0, 114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: -42px; left: 95px; background-color: rgb(0, 114, 198);">Today</div>'; 

    timeline.innerHTML += todayLabel; 

   } 

  } 

 } 

 */ 

  

 // Creating local variables 

 var horizontalSectionWidth = timelineWidth/numOfDaysInTimeline;  // We need to keep it as float, because when it comes to the "year" time span  we 

have to keep the decimal values to keep the result for the left margin of every section correct. 

 var remainingHorizontalSpace = timelineWidth - (horizontalSectionWidth*numOfDaysInTimeline); 

 var minDate = new Date(); 

 var maxDate = new Date(); 

 if( timeSpan == 'week' ){ 

  // Saving the first date on the left and the last date ont he right of the timeline. 

   minDate.setDate( today.getDate() -1); // The 10% of the timeSpan regards the past 

   maxDate.setDate( today.getDate() + numOfDaysInTimeline-2 );  // The 90% of the timeSpan regards the future (90% less the present 

day) 

    

   today.setDate( today.getDate() - 2 ); // Bringing the today's date back to the first day of the timeline less one. 

   for(var i=0; i<numOfDaysInTimeline; i++){ 

    today.setDate( today.getDate() + 1 );  // Updating the date object that we want to pass to the function 

createDateString() 

    datesStrings.push( createDateString(today, timeSpan) );     // 

Creating the dates strings passing to the function  

   } 

 }else{ 

  if( timeSpan == 'twoWeeks'  ||  timeSpan == 'month'){ 

   // Saving the first date on the left and the last date ont he right of the timeline. 

   minDate.setDate( today.getDate() -(Math.floor(numOfDaysInTimeline/10)) ); // The 10% of the timeSpan regards the past 

   maxDate.setDate( today.getDate() + (Math.floor(numOfDaysInTimeline/10*9)) ); // The 90% of the timeSpan regards the future (90% 

less the present day) 

    

   today.setDate( today.getDate() - (Math.floor(numOfDaysInTimeline/10)+1) ); // Bringing the today's date back to the first day of the timeline 

less one. 

   for(var i=0; i<numOfDaysInTimeline; i++){ 

    today.setDate( today.getDate() + 1 );  // Updating the date object that we want to pass to the function 

createDateString() 

    datesStrings.push( createDateString(today, timeSpan) );     // 

Creating the dates strings passing to the function  

   } 

  }else{ 

   if( timeSpan == 'threeMonths' ){ 

    // Saving the first date on the left and the last date on the right of the timeline. 

    // minDate = the present month 

    minDate.setDate(1); // The first day of the present month 

    maxDate = new Date(); 

    maxDate.setMonth( maxDate.getMonth() +3 ); // To have the maxDate set on the last day of the next month we can forward by 2 

months and then move 1 day back. 

    maxDate.setDate(1);  // Setting the date on the first day of the month 

    maxDate.setDate( maxDate.getDate() -1 ); // Going to the last day of the previous month for maxDate (two months ahead for 

us). 

     

    datesStrings.push( createDateString(minDate, timeSpan) ); 

    minDate.setMonth(minDate.getMonth()+1); 

    datesStrings.push( createDateString(minDate, timeSpan) ); 

    minDate.setMonth(minDate.getMonth()-1);  // Bringing the minDate back to its original date (for the future 

operations that use this variable) 

    datesStrings.push( createDateString(maxDate, timeSpan) ); 

   }else{ 

    if( timeSpan == 'sevenMonths' ){ 

     // Saving the first date on the left and the last date ont he right of the timeline. 

     if(minDate.getDate() == 31){ minDate.setDate(30); }  // We need this check because the next 

function rewinds at most for 30 days (Javascript bug) 

     minDate.setMonth( minDate.getMonth() -1 ); 

     minDate.setDate(1);  // The result will be the first day of the previous month. 

     maxDate = new Date(); 

     maxDate.setMonth( maxDate.getMonth() +6 ); // To have the maxDate set on the last day of the next month we can 

forward by 2 months and then move 1 day back. 

     maxDate.setDate(1);  // Setting the date on the first day of the month 

     maxDate.setDate( maxDate.getDate() -1 ); // Going to the last day of the previous month for maxDate (next month 

for us). 

     if(maxDate.getMonth() === 'January' ){ maxDate.setFullYear( minDate.getFullYear() +1) } 

      

     datesStrings.push( createDateString(minDate, timeSpan) ); 

     minDate.setMonth(minDate.getMonth()+1); 

     datesStrings.push( createDateString(minDate, timeSpan) ); 

     minDate.setMonth(minDate.getMonth()+1); 

     datesStrings.push( createDateString(minDate, timeSpan) ); 

     minDate.setMonth(minDate.getMonth()+1); 

     datesStrings.push( createDateString(minDate, timeSpan) ); // This month 

     minDate.setMonth(minDate.getMonth()+1); 

     datesStrings.push( createDateString(minDate, timeSpan) ); 

     minDate.setMonth(minDate.getMonth()+1); 

     datesStrings.push( createDateString(minDate, timeSpan) ); 

     minDate.setMonth(minDate.getMonth()-5);  // Bringing the minDate back to its original date (for 

the future operations that use this variable) 

     datesStrings.push( createDateString(maxDate, timeSpan) ); 

    }else{ 

     if( timeSpan == 'year' ){ 

      // Saving the first date on the left and the last date ont he right of the timeline. 

      minDate = new Date(new Date().getFullYear(), 0, 1);  // First of January 

      maxDate = new Date(new Date().getFullYear(), 11, 31); // End of this Year 

       

      datesStrings.push("January"); 

      datesStrings.push("February"); 

      datesStrings.push("March"); 

      datesStrings.push("April"); 

      datesStrings.push("May"); 

      datesStrings.push("June"); 

      datesStrings.push("July"); 

      datesStrings.push("August"); 
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      datesStrings.push("September"); 

      datesStrings.push("October"); 

      datesStrings.push("November"); 

      datesStrings.push("December"); 

     } 

    } 

   } 

  } 

 } 

  

 minDate.setHours(0); 

 minDate.setMinutes(0); 

 minDate.setSeconds(0); 

 minDate.setMilliseconds(0); 

 maxDate.setHours(0); 

 maxDate.setMinutes(0); 

 maxDate.setSeconds(0); 

 maxDate.setMilliseconds(0); 

  

  

 // Creating the HTML code for the X axis of the timeline (the dates) 

 var datesAxisString = '';  // The dates for the X axis in the timeline 

 var separatorsString = ''; // The string with the small vertical separators between the dates on the timeline 

 var timelineNumColumns; 

 if(timeSpan == 'week'){ timelineNumColumns = 7; } 

 else{ if(timeSpan == 'twoWeeks'){ timelineNumColumns = 15; } 

  else{ if(timeSpan == 'month'){ timelineNumColumns = 31; } 

   else{ if(timeSpan == 'threeMonths'){ timelineNumColumns = 3; }   // 3 months 

    else{ if(timeSpan == 'sevenMonths'){ timelineNumColumns = 7; }  // 7 months 

     else{ if(timeSpan == 'year'){ timelineNumColumns = 12; }}}}}} // 12 months 

  

 var sectionWidthInTimeline = Math.floor(timelineWidth/timelineNumColumns)-5; // Adjusting the width counting the padding-left property in the space sections 

  

 for(var i=0; i<timelineNumColumns; i++){ 

  if(i==timelineNumColumns-1){ 

   datesAxisString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; font-family: \'Segoe UI\'; font-size: 8pt; float: left; 

text-align: left; padding-left: 5px; padding-bottom: 5px; width: '+ (sectionWidthInTimeline+remainingHorizontalSpace) +'px;">'+ datesStrings[i] +'</span>'; 

      separatorsString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; float: left; border-left-width: 1px; border-left-style: solid; 

border-color: rgb(213, 213, 213); width: '+ (sectionWidthInTimeline+remainingHorizontalSpace+4) +'px;"></span>'; 

  }else{ 

   datesAxisString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; font-family: \'Segoe UI\'; font-size: 8pt; float: left; 

text-align: left; padding-left: 5px; padding-bottom: 5px; width: '+ sectionWidthInTimeline+'px;">'+ datesStrings[i] +'</span>'; 

   separatorsString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; float: left; border-left-width: 1px; border-left-style: 

solid; border-color: rgb(213, 213, 213); width: '+ (sectionWidthInTimeline+4) +'px;"></span>'; 

  } 

 } 

  

 // The timeline is 1060px width, so we have to split this value in the number of subsections we want to create (es. number of days, hours of the day ecc...) 

 // We are adding 220px to the left margin to make space for the categories and equipments. 

 var timelineXaxis = '<div class="timeline-dates" style="width: '+ (timelineWidth+1) +'px; height:20px; margin-left:220px; left:0px; top:-20px; padding-right:28px;">' + 

          '<div style="padding: 0px; left: 0px; top: 0px; overflow: hidden; position:inherit; height: 

19px; background-repeat: repeat-x;"></div>' + 

          '<div style="white-space:nowrap; overflow:hidden; position: relative; color: rgb(119, 119, 119); 

border-bottom-width: 1px; border-bottom-style: hidden; border-bottom-color: rgb(119, 119, 119); height: 20px; top: 0px; left: 0px; margin-left: 2px;">' + 

              datesAxisString + 

          '</div>' + 

          '<div style="white-space:nowrap; overflow:hidden; position:relative; color: rgb(119, 119, 119); 

border-bottom-width: 1px; border-bottom-style: hidden; border-bottom-color: rgb(119, 119, 119); height: 10px; top: -16px; left: 0px; margin-left: 0px;">' + 

        separatorsString + 

          '</div>' + 

      '</div>' + 

      '<div id="innerTimeline" style="margin-left:220px; border:1px solid black; margin-top:13px; 

position:relative;"></div>'; 

  

 // Adding the dates on the X axis to the timeline 

 timeline.innerHTML += timelineXaxis; 

 // Reading height and width of the timeline 

 var timelineHeight = timeline.style.height; 

 var timelineWidth = timeline.style.width; 

  

 timeline = document.getElementById("innerTimeline"); 

 // Adjusting the height of the inner timeline 

 timeline.style.height = timelineHeight; // Enlarging the height of the timeline in order to have one line for each Equipment 

 timeline.style.width = timelineWidth; 

  

 var listItemEnumerator = taskListItems.getEnumerator(); // Resetting the enumerator 

 var authorsArray = new Array();  // The array containing the names of the creators of the tasks 

 var text = '';      // The HTML code of the task to add to the timeline 

  

    while( listItemEnumerator.moveNext() ){ 

        var oListItem = listItemEnumerator.get_current(); 

         

        var author = oListItem.get_item('Author'); 

        var project = oListItem.get_item('Project'); 

        var taskTitle = oListItem.get_item('Title'); 

        var assignedTo = oListItem.get_item('AssignedTo'); 

        var startDate = oListItem.get_item('StartDate'); 

        var dueDate = oListItem.get_item('DueDate'); 

        var equipmentCategory = oListItem.get_item('Equipment_x0020_Category'); 

        var equipmentName = oListItem.get_item('Equipment_x0020_Name'); 

     var amountOfMagnets = oListItem.get_item('Amount_x0020_of_x0020_magnets'); // The string "x0020" is a space in the SharePoint's list's property. 

     var taskID = oListItem.get_item('ID'); 

  var contentTypeId = oListItem.get_item('ContentTypeId').$c_1; 

  var listId = taskListItems.get_path().get_$1O_0().$r_1;  // Here we get a string with a lot of information. E.g.: "740c6a0b-85e2-48a0-a494-

e0f1759d4aa7:site:5224dfee-cb44-4a8b-ada7-ed36f701eb5f:web:35c8c320-4179-49d9-9bd6-325be8036e6b:list:08e544cf-2b93-4378-b3bd-16ca91cae1e9" 

  var idIndex = listId.indexOf("list:");      // Reading where the ID of the list 

starts in the string. 

  var equipmentsArray = new Array();  // This array will contain, if necessary, the array of equipments. If not used its length will be 

= 0. 

   

  // Taking only the "listId" and Formatting it for the EditItem2() method that will be created later. 

  listId = listId.substring(idIndex + 5, listId.length);  // Keeping only the ID of the list. 

  listId = listId.toUpperCase().replace(/-/g, '%2D'); 
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     listId = '%7B' + listId +'%7D'; 

   

   

     // Consistency checks and updates 

     if( author != null ){ author = author.$2e_1; } 

     if (project != null && project != undefined){ project = project.$2e_1; } 

        if (equipmentCategory != null && equipmentCategory != undefined){ equipmentCategory = equipmentCategory.$2e_1; } 

        if (equipmentName != null && equipmentName != undefined){  

         // We are considering both the possibilities for 'single equipment' or 'list of equipments' (when on SharePoint the element can have "multiple values"). 

         if( equipmentName.$2e_1 != null  &&  equipmentName.$2e_1 != undefined ){ 

    equipmentName = equipmentName.$2e_1; 

   }else{ 

    equipmentsArray = equipmentName; // 'equipmentName' is an array of equipments 

   } 

        } 

     if( assignedTo != null  &&  assignedTo != undefined ){ 

         if( assignedTo.$2e_1 != null  &&  assignedTo.$2e_1 != undefined ){ 

          assignedTo = '&nbsp;&nbsp;-&nbsp;&nbsp;' + assignedTo.$2e_1; 

   }else{ 

    if(assignedTo[0] != null && assignedTo[0] != undefined){ 

           assignedTo = '&nbsp;&nbsp;-&nbsp;&nbsp;' + assignedTo[0].$2e_1; 

    }else{ 

     assignedTo = ''; 

    } 

   } 

  } 

     if( amountOfMagnets == null || amountOfMagnets == undefined){ amountOfMagnets = 0; } 

  amountOfMagnets = '#' + amountOfMagnets; 

      

     var authorIndex = authorsArray.indexOf(author); 

     if(authorIndex == -1  ||  authorIndex == undefined  ||  authorIndex == null){ // If the author's name is not yet in the array... 

      authorsArray.push(author); // Adding the author's name 

      authorIndex = authorsArray.indexOf(author);  // Recreating the index (which will now be >-1 ) 

     } 

      

     if(equipmentsArray.length > 0){ 

      for(var tempEquipmentIndex=0; tempEquipmentIndex<equipmentsArray.length; tempEquipmentIndex++){ 

       equipmentName = equipmentsArray[tempEquipmentIndex].$2e_1; // Reading the current equipment in the array of equipments related 

to this task. 

        

       var equipmentIndex = globalEquipmentsArray.indexOf( equipmentName ); 

       // If this element have an equipment assigned to it and If the task is not set for some dates outside the timeline we can 

proceed... 

       if( equipmentIndex > -1  &&  !(dueDate<minDate)  &&  !(startDate>maxDate) ){ 

        var distanceFromTopInTheTimeline = 0;  // It is the minimum distance from the top to appear 

int he innerTimeline, since the task has 'absolute' positioning. 

        distanceFromTopInTheTimeline += 22 * equipmentIndex; // Only the integer value, the 'px' part will be 

attached in the "text" string. 

         

        // Defining the width of the task block in the timeline. 

        var taskDaysGap; 

        var taskWidth; 

        // If both the start date and the due date are outside the timeline... (the task starts before the first date in 

the timeline and finishes after the last date in the timeline) 

           if(startDate <= minDate  &&  dueDate >= maxDate){ 

         taskWidth = parseInt( timelineWidth.substring(0, timelineWidth.length-2) ); 

 // Using the whole width of the timeline. We first need to convert the string "1060px" in an integer leaving the last 2 characters. 

        }else{ 

            if(startDate >= minDate  &&  dueDate <= maxDate){ 

             taskDaysGap = dueDate.getTime() - startDate.getTime()+1; // The +1 is necessary, otherwise 

sometimes a day is lost, ending up counting e.g. 2 days gap instead of 3. 

       taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24));  // Getting the 

difference in days 

             taskWidth = horizontalSectionWidth * taskDaysGap;  // 

+horizontalSectionWidth is necessary to add one plus section's width to make the items display correctly. 

             if(timeSpan == 'week'){ taskWidth -= 1; } 

       else{ if(timeSpan == 'twoWeeks'){ taskWidth -=3; } 

              else{ if(timeSpan == 'threeMonths'){ taskWidth -=3; } 

               else{ if(timeSpan == 'sevenMonths'){ taskWidth -= 4; } 

             } } } 

             if(dueDate.getDay() === maxDate.getDay()  &&  dueDate.getMonth() === maxDate.getMonth()  &&  

dueDate.getFullYear() === maxDate.getFullYear()){ if(timeSpan == 'week'){ taskWidth += 2; }} // If the item fits in the timeline but finishes 

            }else{ 

             // At least one of the dates is inside of the timeline. Checking which one. 

             if(startDate >= minDate){ 

              taskDaysGap = maxDate.getTime() - startDate.getTime()+1; // Using the max date 

present on the timeline as "dueDate" 

        taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24));  // 

Getting the difference in days 

              taskWidth = horizontalSectionWidth * taskDaysGap; 

              if(timeSpan == 'week'){ taskWidth += 1; } 

              else{ if(timeSpan == 'twoWeeks'){ taskWidth -=4; }} 

        //if(timeSpan == 'month' || timeSpan == 'twoWeeks') -> no need to add 

value in these cases 

             }else{ 

              if(dueDate <= maxDate){ 

               taskDaysGap = dueDate.getTime() - minDate.getTime(); // Using 

the min date present on the timeline as "startDate" 

         taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 

24));  // Getting the difference in days 

               taskWidth = (horizontalSectionWidth * taskDaysGap) + 

horizontalSectionWidth -1; // +horizontalSectionWidth is necessary to add one plus section's width to make the items display correctly. 

               if(timeSpan == 'twoWeeks'){ taskWidth -=1; } 

               else{ if(timeSpan == 'threeMonths'){ taskWidth -= 4; }} 

              } 

             } 

            } 

           } 

           // In any case we want the width to lose a pixel, because in the "New Task" form we increase by one the 'leftPadding' of each of 

them. 

           // Except when the task takes the whole timeline. 

           if( taskWidth != parseInt( timelineWidth.substring(0, timelineWidth.length-2) )){ 

            taskWidth--; 
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           } 

           if(taskWidth < 2){ taskWidth = 2; }  // Setting a minimum width 

         

        // Calculating the space to be added on the left of the task in the timeline 

        var leftMargin = 0; // It is the minimum distance from the left border in order for the Task to appear 

in the innerTimeline (because it has 'absolute' positioning. 

        if( startDate > minDate ){ 

         var daysDifference = startDate.getTime() - minDate.getTime(); 

         daysDifference = Math.ceil(daysDifference / (1000 * 3600 * 24)); 

         leftMargin += Math.floor(horizontalSectionWidth * daysDifference)+1; 

         if(timeSpan == 'month'){ 

          leftMargin -= 2; 

          taskWidth += 1;  

         }else{ 

          if(timeSpan == 'twoWeeks'){ 

           leftMargin -= 2; 

          }else{ 

        if(timeSpan == 'threeMonths'){ 

                leftMargin -= 6; 

                taskWidth += 1; 

              }else{ 

               if(timeSpan == 'sevenMonths'){ 

                leftMargin -= 7; 

               } 

              } 

             } 

            } 

            if(leftMargin < 0) { leftMargin = 0; } // Bounding the value of 'leftMargin' 

        } 

         

        // We want the dates to be in the format "22/10". We convert now the Date objects in strings to display in the 

HTML element. 

           var startDateString = startDate.getDate() +'/'+ (parseInt(startDate.getMonth())+1); 

           var dueDateString = dueDate.getDate() +'/'+ (parseInt(dueDate.getMonth())+1); 

     taskWidth = Math.floor(taskWidth); // Re-adjusting the width, in case there are decimal numbers in it. 

      

     var backgroundColor = 'white';  // Setting the default background color 

        if(colorRule == 'colorByProject'){ // If we want every project to have a different background color... 

         // We have to find the related project in the 'globalProjectsArray' and use the linked color. 

         var tempLength = globalProjectsArray.length; 

         for(var x=0; x<tempLength; x++){ 

          if(globalProjectsArray[x].projectName == project){ 

           backgroundColor = globalProjectsArray[x].projectColor; 

           break; 

          } 

         } 

     }else{ // Each User will have a different color associated with it and so its Tasks. 

      // We have to find the related user in the 'globalUsersArray' and use the linked color. 

         var tempLength = globalUsersArray.length; 

         var tempAssignedTo = assignedTo.replace(/&nbsp;/g, '').substring(1); 

         for(var x=0; x<tempLength; x++){ 

          if(globalUsersArray[x].userName.$2e_1 == tempAssignedTo){ 

           backgroundColor = globalUsersArray[x].userColor; 

           break; 

          } 

         } 

        } 

         

        var equipmentHTMLString = '';  // String that will appear if the user clicks on the task in the 

timeline. 

        // We are already sure that this task has multiple equipments assigned to it. 

        for(var tempHTMLindex = 0; tempHTMLindex<equipmentsArray.length; tempHTMLindex++){ 

         equipmentHTMLString += '&nbsp;&nbsp;&nbsp;&nbsp;'+ equipmentsArray[tempHTMLindex].$2e_1 +'<br/>'; 

        } 

         

        text = '<div class="ms-tl-bar" tabindex="0" style="position:absolute; cursor:pointer; margin-bottom:2px; width: '+ 

taskWidth +'px; height: 20px; top: '+ distanceFromTopInTheTimeline +'px; left: '+ leftMargin +'px; background-color:'+ backgroundColor +'; white-space:nowrap; overflow:hidden;">' + 

        '<span class="ms-tl-barTitle" unselectable="on" style="margin-left: 

5px; width: 625px; text-overflow: ellipsis; color: rgb(68, 68, 68); font-family: \'Segoe UI\'; font-size: 8pt;">'+ taskTitle + assignedTo +' :&nbsp;&nbsp;'+ equipmentName + amountOfMagnets 

+' magnets</span>' + 

        '<span class="dialogWindowString" style="display:none;">'+ project + 

         '<a href="#" 

onclick="javascript:closeDialogWindow();"><input type="button" value="&times;" class="closeButton" style="float:right; cursor:pointer; padding:1px 0 3px; min-width:2.1em;"/></a> <br/>'+ 

taskTitle + assignedTo +'<br/>'+  

         'Equipments: <br/>'+ equipmentHTMLString + 

         amountOfMagnets +' magnets<br/>Time period: &nbsp;'+ 

startDateString +' - '+ dueDateString + 

         '<input type="button" value="Edit" 

style="float:right; cursor:pointer; padding:2px 0; min-width:4em;" onclick="EditItem2(event, \''+ siteUrl +'/_layouts/15/listform.aspx?PageType=6&ListId='+ listId +'&ID='+ taskID 

+'&ContentTypeID='+ contentTypeId +'\')">' + 

        '</span>' + 

       '</div>'; 

      

        timeline.innerHTML += text; 

       } 

      } 

     }else{ 

      var equipmentIndex = globalEquipmentsArray.indexOf( equipmentName ); 

      // If this element have an equipment assigned to it and If the task is not set for some dates outside the timeline we can proceed... 

      if( equipmentIndex > -1  &&  !(dueDate<minDate)  &&  !(startDate>maxDate) ){ 

       var distanceFromTopInTheTimeline = 0;  // It is the minimum distance from the top to appear int he 

innerTimeline, since the task has 'absolute' positioning. 

       distanceFromTopInTheTimeline += 22 * equipmentIndex; // Only the integer value, the 'px' part will be attached in the 

"text" string. 

        

       // Defining the width of the task block in the timeline. 

       var taskDaysGap; 

       var taskWidth; 

       // If both the start date and the due date are outside the timeline... (the task starts before the first date in the timeline and 

finishes after the last date in the timeline) 

          if(startDate <= minDate  &&  dueDate >= maxDate){ 

        taskWidth = parseInt( timelineWidth.substring(0, timelineWidth.length-2) );  // Using 

the whole width of the timeline. We first need to convert the string "1060px" in an integer leaving the last 2 characters. 
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       }else{ 

           if(startDate >= minDate  &&  dueDate <= maxDate){ 

            taskDaysGap = dueDate.getTime() - startDate.getTime()+1; // The +1 is necessary, otherwise sometimes a day is 

lost, ending up counting e.g. 2 days gap instead of 3. 

      taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24));  // Getting the difference in days 

            taskWidth = horizontalSectionWidth * taskDaysGap;  // +horizontalSectionWidth is 

necessary to add one plus section's width to make the items display correctly. 

            if(timeSpan == 'week'){ taskWidth -= 1; } 

      else{ if(timeSpan == 'twoWeeks'){ taskWidth -=3; } 

             else{ if(timeSpan == 'threeMonths'){ taskWidth -=3; } 

              else{ if(timeSpan == 'sevenMonths'){ taskWidth -= 4; } 

            } } } 

            if(dueDate.getDay() === maxDate.getDay()  &&  dueDate.getMonth() === maxDate.getMonth()  &&  dueDate.getFullYear() 

=== maxDate.getFullYear()){ if(timeSpan == 'week'){ taskWidth += 2; }} // If the item fits in the timeline but finishes 

           }else{ 

            // At least one of the dates is inside of the timeline. Checking which one. 

            if(startDate >= minDate){ 

             taskDaysGap = maxDate.getTime() - startDate.getTime()+1; // Using the max date present on the 

timeline as "dueDate" 

       taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24));  // Getting the 

difference in days 

             taskWidth = horizontalSectionWidth * taskDaysGap; 

             if(timeSpan == 'week'){ taskWidth += 1; } 

             else{ if(timeSpan == 'twoWeeks'){ taskWidth -=4; }} 

       //if(timeSpan == 'month' || timeSpan == 'twoWeeks') -> no need to add value in these 

cases 

            }else{ 

             if(dueDate <= maxDate){ 

              taskDaysGap = dueDate.getTime() - minDate.getTime(); // Using the min date 

present on the timeline as "startDate" 

        taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24));  // 

Getting the difference in days 

              taskWidth = (horizontalSectionWidth * taskDaysGap) + horizontalSectionWidth -1;

 // +horizontalSectionWidth is necessary to add one plus section's width to make the items display correctly. 

              if(timeSpan == 'twoWeeks'){ taskWidth -=1; } 

              else{ if(timeSpan == 'threeMonths'){ taskWidth -= 4; }} 

             } 

            } 

           } 

          } 

          // In any case we want the width to lose a pixel, because in the "New Task" form we increase by one the 'leftPadding' of each of them. 

          // Except when the task takes the whole timeline. 

          if( taskWidth != parseInt( timelineWidth.substring(0, timelineWidth.length-2) )){ 

           taskWidth--; 

          } 

          if(taskWidth < 2){ taskWidth = 2; }  // Setting a minimum width 

        

       // Calculating the space to be added on the left of the task in the timeline 

       var leftMargin = 0; // It is the minimum distance from the left border in order for the Task to appear in the 

innerTimeline (because it has 'absolute' positioning. 

       if( startDate > minDate ){ 

        var daysDifference = startDate.getTime() - minDate.getTime(); 

        daysDifference = Math.ceil(daysDifference / (1000 * 3600 * 24)); 

        leftMargin += Math.floor(horizontalSectionWidth * daysDifference)+1; 

        if(timeSpan == 'month'){ 

         leftMargin -= 2; 

         taskWidth += 1;  

        }else{ 

         if(timeSpan == 'twoWeeks'){ 

          leftMargin -= 2; 

         }else{ 

       if(timeSpan == 'threeMonths'){ 

               leftMargin -= 6; 

               taskWidth += 1; 

             }else{ 

              if(timeSpan == 'sevenMonths'){ 

               leftMargin -= 7; 

              } 

             } 

            } 

           } 

           if(leftMargin < 0) { leftMargin = 0; } // Bounding the value of 'leftMargin' 

       } 

        

       // We want the dates to be in the format "22/10". We convert now the Date objects in strings to display in the HTML element. 

          startDate = startDate.getDate() +'/'+ (parseInt(startDate.getMonth())+1); 

          dueDate = dueDate.getDate() +'/'+ (parseInt(dueDate.getMonth())+1); 

    taskWidth = Math.floor(taskWidth); // Re-adjusting the width, in case there are decimal numbers in it. 

     

    var backgroundColor = 'white';  // Setting the default background color 

       if(colorRule == 'colorByProject'){ // If we want every project to have a different background color... 

        // We have to find the related project in the 'globalProjectsArray' and use the linked color. 

        var tempLength = globalProjectsArray.length; 

        for(var x=0; x<tempLength; x++){ 

         if(globalProjectsArray[x].projectName == project){ 

          backgroundColor = globalProjectsArray[x].projectColor; 

          break; 

         } 

        } 

    }else{ // Each User will have a different color associated with it and so its Tasks. 

     // We have to find the related user in the 'globalUsersArray' and use the linked color. 

        var tempLength = globalUsersArray.length; 

        var tempAssignedTo = assignedTo.replace(/&nbsp;/g, '').substring(1); 

        for(var x=0; x<tempLength; x++){ 

         if(globalUsersArray[x].userName.$2e_1 == tempAssignedTo){ 

          backgroundColor = globalUsersArray[x].userColor; 

          break; 

         } 

        } 

       } 

        

       text = '<div class="ms-tl-bar" tabindex="0" style="position:absolute; cursor:pointer; margin-bottom:2px; width: '+ taskWidth +'px; 

height: 20px; top: '+ distanceFromTopInTheTimeline +'px; left: '+ leftMargin +'px; background-color:'+ backgroundColor +'; white-space:nowrap; overflow:hidden;">' + 
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       '<span class="ms-tl-barTitle" unselectable="on" style="margin-left: 5px; width: 

625px; text-overflow: ellipsis; color: rgb(68, 68, 68); font-family: \'Segoe UI\'; font-size: 8pt;">'+ taskTitle + assignedTo +' :&nbsp;&nbsp;Equipments:'+ equipmentName + amountOfMagnets 

+' magnets</span>' + 

       '<span class="dialogWindowString" style="display:none;">'+ project + 

        '<a href="#" onclick="javascript:closeDialogWindow();"><input 

type="button" value="&times;" class="closeButton" style="float:right; cursor:pointer; padding:1px 0 3px; min-width:2.1em;"/></a> <br/>'+ taskTitle + assignedTo +'<br/>'+  

        equipmentName + amountOfMagnets +' magnets<br/>Time period: &nbsp;'+ 

startDate +' - '+ dueDate + 

        '<input type="button" value="Edit" style="float:right; 

cursor:pointer; padding:2px 0; min-width:4em;" onclick="EditItem2(event, \''+ siteUrl +'/_layouts/15/listform.aspx?PageType=6&ListId='+ listId +'&ID='+ taskID +'&ContentTypeID='+ 

contentTypeId +'\')">' + 

       '</span>' + 

      '</div>'; 

     

       timeline.innerHTML += text; 

      } 

     } 

      

 // End of tasks cycle. 

    } 

     

     

    // Applying the onclick behaviour to the Tasks 

    $(".ms-tl-bar").click( 

     function(e) { 

      // If the dialog window is already open we close the previously opened to then open a new one. 

   if($(".task-pop-up-window")){ 

    $(".task-pop-up-window").remove(); 

   } 

    

   // Creating a new element in the document 

   var text = $(this)[0].lastChild.innerHTML; 

   var tempElem = document.createElement('span'); 

   tempElem.innerHTML = text; 

    

   // Showing the element properly formatted 

   $(tempElem).show() 

    .attr('class', 'task-pop-up-window') 

    .css('top', e.pageY - 95) 

    .css('left', e.pageX - 305) 

    .css('position', 'absolute') 

    .css('border', '1px solid #1a1a1a') 

    .css('background', '#eeeeee') 

    .css('color', 'black') 

    .css('width', '280px') 

    .css('padding', '10px') 

    .appendTo('body'); 

  } 

    ); 

         

     

    addTasksToTimelineFlag = true;  // Updating the flag that tells the system if this function has been called. 

} 

 

// This function allows the user to close the dialog window. 

function closeDialogWindow(){ 

 // Check if the dialog window is open and if that is the case close it. 

 if($(".task-pop-up-window")){ 

  $(".task-pop-up-window").remove(); 

 } 

} 

 

 

 

/* This function returns the number of days contained in the considered month (considers also the leap years). 

 * Input: 

 * - the month and the year considered. */ 

function daysInMonth(month,year) { 

 month += 1; // Month has to be 1 based -> [1,12]   instead of the Javascript usual zero-based month -> [0,11] 

    return new Date(year, month, 0).getDate(); 

} 

 

 

 

/* This function creates the string that will display the date and time of each feed and reply. 

 * Input: 

 * - the date object of the feed or reply 

 * - the string defining the considered time span. */ 

function createDateString(dateObj, timeSpan){ 

  

 var day = dateObj.getDay(); 

 var month = dateObj.getMonth(); 

  

 if(timeSpan == 'week'  ||  timeSpan == 'twoWeeks'){ 

  switch(day){ 

   case 0: day="Sun"; 

     break; 

   case 1: day="Mon"; 

     break; 

   case 2: day="Tue"; 

     break; 

   case 3: day="Wed"; 

     break; 

   case 4: day="Thu"; 

     break; 

   case 5: day="Fri"; 

     break; 

   case 6: day="Sat"; 

     break; 

   default: day = "Mon"; 

     break; 

  } 
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  if(timeSpan == 'week'){ 

   switch(month){ 

    case 0: month="January"; 

      break; 

    case 1: month="February"; 

      break; 

    case 2: month="March"; 

      break; 

    case 3: month="April"; 

      break; 

    case 4: month="May"; 

      break; 

    case 5: month="June"; 

      break; 

    case 6: month="July"; 

      break; 

    case 7: month="August"; 

      break; 

    case 8: month="September"; 

      break; 

    case 9: month="October"; 

      break; 

    case 10: month="November"; 

      break; 

    case 11: month="December"; 

      break; 

    default: month="January"; 

      break; 

   } 

  }else{ 

   switch(month){ 

   case 0: month="Jan"; 

     break; 

   case 1: month="Feb"; 

     break; 

   case 2: month="Mar"; 

     break; 

   case 3: month="Apr"; 

     break; 

   case 4: month="May"; 

     break; 

   case 5: month="Jun"; 

     break; 

   case 6: month="Jul"; 

     break; 

   case 7: month="Aug"; 

     break; 

   case 8: month="Sep"; 

     break; 

   case 9: month="Oct"; 

     break; 

   case 10: month="Nov"; 

     break; 

   case 11: month="Dec"; 

     break; 

   default: month="Jan"; 

     break; 

   } 

  } 

 }else{ 

  if(timeSpan == 'month'){ 

   switch(day){ 

    case 0: day="Sun"; 

      break; 

    case 1: day="Mon"; 

      break; 

    case 2: day="Tue"; 

      break; 

    case 3: day="Wed"; 

      break; 

    case 4: day="Thu"; 

      break; 

    case 5: day="Fri"; 

      break; 

    case 6: day="Sat"; 

      break; 

    default: day = "Mon"; 

      break; 

   } 

    

   switch(month){ 

   case 0: month="Jan"; 

     break; 

   case 1: month="Feb"; 

     break; 

   case 2: month="Mar"; 

     break; 

   case 3: month="Apr"; 

     break; 

   case 4: month="May"; 

     break; 

   case 5: month="Jun"; 

     break; 

   case 6: month="Jul"; 

     break; 

   case 7: month="Aug"; 

     break; 

   case 8: month="Sep"; 

     break; 

   case 9: month="Oct"; 

     break; 

   case 10: month="Nov"; 

     break; 
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   case 11: month="Dec"; 

     break; 

   default: month="Jan"; 

     break; 

   } 

  }else{ 

   if( timeSpan == 'threeMonths'  ||  timeSpan == 'sevenMonths'){ 

    switch(month){ 

     case 0: month="January"; 

       break; 

     case 1: month="February"; 

       break; 

     case 2: month="March"; 

       break; 

     case 3: month="April"; 

       break; 

     case 4: month="May"; 

       break; 

     case 5: month="June"; 

       break; 

     case 6: month="July"; 

       break; 

     case 7: month="August"; 

       break; 

     case 8: month="September"; 

       break; 

     case 9: month="October"; 

       break; 

     case 10: month="November"; 

       break; 

     case 11: month="December"; 

       break; 

     default: month="January"; 

       break; 

    } 

   } 

  } 

 } 

  

 var numberOfTheDay = dateObj.getDate(); // Returns the day of the month (from 1-31) 

 if(numberOfTheDay < 10){ 

  numberOfTheDay = '0' + parseInt(numberOfTheDay, 10); // This way if the month is the 5th it will be displayed as "05", instead of "5" 

 } 

  

 if(timeSpan == 'week'  ||  timeSpan == 'twoWeeks'){ 

  return day+ ' ' +numberOfTheDay+ ' ' +month; 

 }else{ 

  if(timeSpan == 'month'){ 

   return numberOfTheDay+ ' ' +month; 

  }else{ 

   return month; 

  } 

 } 

} 
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Appendix C 

 

Hereunder is displayed the code regarding the Social API. 

File “socialAPI.js”: 
 

/* 

 * Version 5.2 

 * - Now when some feeds are already displayed and new feeds are retrieved from the Server the function only adds the new ones, without refreshing the whole HTML section. 

 * - Improved the displaying of the feeds with same hashtag. 

 */ 

 

// Creating the global variable socialAPI.  

// It is made global to let other libraries and code inside the HTML page use it. 

var socialAPI; 

 

// The API: 

(function ($) { 

 /******************************** 

  * DEFINITION OF LOCAL VARIABLES 

  ********************************/ 

 // DEVELOPMENT LINKS 

 /* 

 var socialWebsite = "https://social-dev.cern.ch/"; 

  

 var requestExecutorSite = 'https://social-dev.cern.ch/_layouts/15/AppWebProxy.aspx'; // Site used to authenticate to the social network 

 var searchRestService = "https://social-dev.cern.ch/_api/search/"; 

 var formDigestUrl = "https://social-dev.cern.ch/_api/contextinfo"; 

 var myFeedManagerEndpoint = "https://social-dev.cern.ch/_api/social.feed/";  // From this site we can derive every other for post, delete and get 

feeds 

 var apiEndpoint = "https://social-dev.cern.ch/_api/"; 

 var querySiteToGetAllTheTags = searchRestService + "query?querytext='ContentTypeId:0x01FD* -ContentClass=urn:content-class:SPSPeople'&refiners='Tags'"; 

 // This variable is used only if the Canvas with tags is displayed 

 */ 

  

 // PRODUCTION LINKS 

 var socialWebsite = "https://social.cern.ch/"; 

 

 var requestExecutorSite = 'https://social.cern.ch/_layouts/15/AppWebProxy.aspx'; // Site used to authenticate to the social network 

 var searchRestService = "https://social.cern.ch/_api/search/"; 

 var formDigestUrl = "https://social.cern.ch/_api/contextinfo"; 

 var myFeedManagerEndpoint = "https://social.cern.ch/_api/social.feed/";  // From this site we can derive every other for post, delete and get feeds 

 var apiEndpoint = "https://social.cern.ch/_api/"; 

 var querySiteToGetAllTheTags = searchRestService + "query?querytext='ContentTypeId:0x01FD* -ContentClass=urn:content-class:SPSPeople'&refiners='Tags'"; 

 // This variable is used only if the Canvas with tags is displayed 

  

  

  

 var hashtagCheckTimer;     // This timer will check if any feed with the same hashtag has been retrieved from 

the Server. If not, it will display a message to the User. 

  

 var globalArrayOfProfiles = new Array(); // Array of objects like (accountName, whereToWrite, tempHandler, updateInterval, numOfFeeds) 

 var globalArrayOfHashtags = new Array(); // Array of objects like (noSharpTagString, whereToWrite, handlerCode, updateInterval, numOfFeeds) 

 var globalArrayOfSingleConversations = new Array(); // Array of objects like (URL, whereToWrite) 

  

 var followedFeedsWhereToWrite = '';   // global variable that stores the section containing the followed feeds 

 var followedFeedsUpdateInterval;   // global variable that stores the update interval for the followed feeds 

 var followedFeedsNumFeeds = 0;    // global variable that stores the maximum number of feeds to display 

 var followedFeedsFlagDisplayReplies = false;// global variable that stores the boolean var that says if to display the replies or not. 

 var followedFeedsUpdatesHandler = 'a';  // global variable that keeps the number of the automatic feeds updates handler 

  

 var errorHandlerFunction = function(){ alert("Error while making the CORS request."); };  // This variable will have the pointer to the function that will 

eventually handle the exceptions while making the CORS requests. 

  

 jQuery.support.cors = true;  // Used for createCORSRequest() 

  

  

 /************************** 

  * DEFINITION OF FUNCTIONS 

  **************************/ 

 // This function authenticates the User on Social (transparently to the User) 

 function authenticateOnSocial(inputFunction){ 

  var executor = new SP.RequestExecutor(requestExecutorSite); 

   

  executor.executeAsync( 

   { 

    url: formDigestUrl, 

    method: "GET", 

    headers: { 

     "Accept": "application/json; odata=verbose", 

     "Access-Control-Allow-Origin": "*", 

    }, 

    dataType: "json", 

    error: function (xhr, ajaxOptions, thrownError) {  

     // This function will be executed always. It is not an actual 'error' situation. 

      

     try{ 

      // After the authentication completes we use the function passed in input, that will contain the 

calls for any other function on Social 

      if(inputFunction !== null && inputFunction !== undefined){ 

       inputFunction(); 

      } 

     }catch(e){ console.log("Error: input function parameter in the authentication function is not valid."); return; } 
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    } 

   } 

  ); 

 } 

  

 // This function executes a REST call and passes all the data retrieved to the 'onSucc' function specified by the calling function. 

 function executeRestCall(url, method, data, onSucc, onError) { 

  var xhr = createCORSRequest(method, url); 

   

  if (!xhr) { 

   throw new Error('CORS not supported'); 

  } 

  else{ 

   xhr.onload = function () { 

    onSucc(xhr.responseText); 

   }; 

   xhr.onerror = onError; 

   if (data !== null && data !== undefined && data !== ''){ 

    xhr.send(data); 

   }else{ 

    xhr.send(); 

   } 

  } 

 } 

  

 // This function executes a REST call and passes all the data retrieved to the 'onSucc' function specified by the calling function. 

 function executeRestCallExtended(url, method, data, onSucc, onError, whereToWrite, id) { 

  var xhr = createCORSRequest(method, url); 

   

  if (!xhr) { 

   throw new Error('CORS not supported'); 

  } 

  else{ 

   xhr.onload = function () { 

    onSucc(xhr.responseText, whereToWrite, id); // passing the parameters and the results of the RESTcall to the 'onSucc' pointed 

function 

   }; 

    

   xhr.onerror = onError; 

   if (data !== null && data !== undefined && data !== ''){ 

    xhr.send(data); 

   }else{ 

    xhr.send(); 

   } 

  } 

 } 

  

 function executeRestCallExtendedFour(url, method, data, onSucc, onError, whereToWrite, id, numFeeds) { 

  var xhr = createCORSRequest(method, url); 

   

  if (!xhr) { 

   throw new Error('CORS not supported'); 

  } 

  else{ 

   xhr.onload = function () { 

    onSucc(xhr.responseText, whereToWrite, id, numFeeds); // passing the parameters and the results of the RESTcall to the 

'onSucc' pointed function 

   }; 

    

   xhr.onerror = onError; 

   if (data !== null && data !== undefined && data !== ''){ 

    xhr.send(data); 

   }else{ 

    xhr.send(); 

   } 

  } 

 } 

  

 function executeRestCallExtendedFive(url, method, data, onSucc, onError, whereToWrite, id, numFeeds, tagText) { 

  var xhr = createCORSRequest(method, url); 

   

  if (!xhr) { 

   throw new Error('CORS not supported'); 

  } 

  else{ 

   xhr.onload = function () { 

    onSucc(xhr.responseText, whereToWrite, id, numFeeds, tagText); // passing the parameters and the results of the 

RESTcall to the 'onSucc' pointed function 

   }; 

    

   xhr.onerror = onError; 

   if (data !== null && data !== undefined && data !== ''){ 

    xhr.send(data); 

   }else{ 

    xhr.send(); 

   } 

  } 

 } 

  

 function executeRestCallExtendedSix(url, method, data, onSucc, onError, whereToWrite, id, numFeeds, numFeedsStillToGet, flag) { 

  var xhr = createCORSRequest(method, url); 

   

  if (!xhr) { 

   throw new Error('CORS not supported'); 

  } 

  else{ 

   xhr.onload = function () { 

    onSucc(xhr.responseText, whereToWrite, id, numFeeds, numFeedsStillToGet, flag); // passing the parameters and the 

results of the RESTcall to the 'onSucc' pointed function 

   }; 

    

   xhr.onerror = onError; 

   if (data !== null && data !== undefined && data !== ''){ 



201 
 

    xhr.send(data); 

   }else{ 

    xhr.send(); 

   } 

  } 

 } 

  

 function executeRestCallExtendedSeven(url, method, data, onSucc, onError, whereToWrite, id, textColor, textBorderColor, numDimensions, weightFlag) { 

  var xhr = createCORSRequest(method, url); 

   

  if (!xhr) { 

   throw new Error('CORS not supported'); 

  } 

  else{ 

   xhr.onload = function () { 

    onSucc(xhr.responseText, whereToWrite, id, textColor, textBorderColor, numDimensions, weightFlag); // passing the 

parameters and the results of the RESTcall to the function pointed by 'onSucc'. 

   }; 

    

   xhr.onerror = onError; 

   if (data !== null && data !== undefined && data !== ''){ 

    xhr.send(data); 

   }else{ 

    xhr.send(); 

   } 

  } 

 } 

  

 function createCORSRequest(method, url) { 

  var xhr = new XMLHttpRequest(); 

  if ("withCredentials" in xhr) { 

   // Check if the XMLHttpRequest object has a "withCredentials" property. 

   // "withCredentials" only exists on XMLHTTPRequest2 objects. 

   xhr.open(method, url, true); 

  } else if (typeof XDomainRequest != "undefined") { 

   // Otherwise, check if XDomainRequest. 

   // XDomainRequest only exists in IE, and is IE's way of making CORS requests. 

   xhr = new XDomainRequest(); 

   xhr.open(method, url); 

  } else { 

   // Otherwise, CORS is not supported by the browser. 

   xhr = null; 

  } 

   

  if(xhr !== null){ // if the CORS is supported... 

   xhr.withCredentials = true; 

   xhr.setRequestHeader("accept", "application/json; odata=verbose"); 

  } 

   

  return xhr; 

 } 

  

 function onError() { 

  errorHandlerFunction(); 

 } 

  

 // This function retrieves the value associated to an element inside an array with elements like (name, value), if that element is present. 

 function getValue(key, results) { 

  try { 

   var postItem = jQuery.grep(results, function (e) { 

    if (e.Key === key){ 

     return e; 

    } 

   })[0].Value; 

 

   return postItem; 

  } 

  catch (err) { 

   return null; 

  } 

 } 

  

  

 // Function that draws on the screen the news feeds. 

 function checkDataReceivedAndDisplayTheFeeds(data, whereToWrite, parentWhereToWrite, numOfFeedsTotal, numFeedsStillToGet, flagDisplayReplies) { 

   

  var tempCheck; 

  if(whereToWrite[0] === '#'){ 

   // 'whereToWrite' can be something like "#feedsFollowed". To use the function 'getElementById' we have to skip the '#'. We do that using the 

'substring' function. 

   tempCheck = document.getElementById(whereToWrite.substring(1)); // Checking the existence of the div section in the html code. If 

(tempCheck = null) then no section has been found. 

  }else{ 

   tempCheck = document.getElementById(whereToWrite); 

   whereToWrite = '#' + whereToWrite; 

  } 

   

  // If the section foreseen for the feeds (section id = whereToWrite) exists, then... 

  if(tempCheck !== null) 

  { 

   try{ 

    var result = JSON.parse(data); // parsing the data obtained from the social network 

   }catch(e){  

    $(whereToWrite).append('<div class="feedsItem"> <p id="text"> There has been a problem while communicating with the server. 

<br/>Please try again later refreshing the page. </p> </div>'); 

    console.log("There was a problem while communicating with the Server.\nSee checkDataReceivedAndDisplayTheFeeds() function.");  

    return;  

   } 

   // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer 

in the console log 

   if(result.error){ 

    try{ 

     if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exist on Social 
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      $(whereToWrite).append('<div class="feedsItem"> <p id="text"> Your account has not been found on 

Social. <br/>Please visit https://social.cern.ch and create the account first. </p> </div>'); 

     }else{  // Other error 

      $(whereToWrite).append('<div class="feedsItem"> <p id="text"> There has been a problem while 

communicating with the server. <br/>Please try again later refreshing the page. </p> </div>'); 

     } 

     console.log("Bad request.\nPlease review the checkDataReceivedAndDisplayTheFeeds() function."); 

     return; 

    }catch(e){console.log("Exception thrown in function showUserInformationInFeedsWithSameTagBodyFunction()"); return;} 

   } 

    

   // Consistency check : if no information has been retrieved... 

   if(result.d === null || result.d === undefined) 

   { 

    // Printing the "problem" message on the screen 

    $(whereToWrite).append('<div class="feedsItem"> <p id="text"> Network problem. Please try again later. </p> </div>'); 

   } 

   else 

   { 

    var feeds; 

    // Reading the feeds when there are no feeds can cause an exception, so we use a try/catch section. 

    try{ 

     feeds = result.d.SocialFeed.Threads.results; // capturing the feeds 

     feeds.sort(function(a,b){ // This function sorts the elements of the array according to the date of creation 

of the feeds. The most recent one will be the first of the array. 

      var dateA = new Date(a.RootPost.CreatedTime); 

      var dateB = new Date(b.RootPost.CreatedTime); 

       

      return dateB-dateA; 

     }); 

      

     // If no feeds are found... (it is an array, so we can check the length) 

     if(feeds.length == 0){ 

      // Printing the "no feed" message on the screen 

      var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, 

otherwise the function 'fadeOut' will work only once. 

      $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text">  No (more) feeds 

available. </p> </div>'); // Printing the "problem" message on the screen 

      $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 

      setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the 

warning from the HTML code after 7 seconds. 

     } 

     else{ //else: every feed found is printed 

      appendFeeds(feeds, whereToWrite, parentWhereToWrite, numOfFeedsTotal, numFeedsStillToGet, 

flagDisplayReplies);  // Displaying the new feeds 

     } 

    } catch(err) { $(whereToWrite).html("A problem occurred while reading the feeds. \nThe server is probably under maintenance. 

\nPlease try again later."); } 

   } 

  } 

  // else: no feeds are written now. 

   

 } 

  

  

  

 function updateGroupInfo(whereToWrite, department, group, section, imageFlag, departmentFlag, numFeeds){ 

  // Sanitizing the input (encodeURI() is used instead of encodeURIComponent() when there has to be allowed the possibility to have hashtags.): 

  whereToWrite = encodeURI(whereToWrite); 

  department = encodeURI(department); 

  group = encodeURI(group); 

  section = encodeURI(section); 

   

  numOfElementsAlreadyDisplayed = 0; // Resetting the global variable 

   

  if(department === null || department === 'null' || department === undefined || department === '' || department.length < 1){ 

   $('#content').html('<div class="feedsItem"> <p id="text"> There has been a problem while retrieving the feeds. Please try again later. </p> 

</div>'); 

   return; 

  } 

  var groupString; 

  if(group == null  ||  group == 'null' ||  group == undefined  ||  group == ''){ 

   groupString = ''; 

  }else{ 

   if(typeof(group) === 'string'  &&  group.length > 1  &&  group.length < 20){ 

    groupString = '/' + group; 

   }else{ 

    groupString = ''; 

   } 

  } 

  var sectionString; 

  if(section == null  ||  section == 'null' ||  section == undefined  ||  section == ''){ 

   sectionString = ''; 

  }else{ 

   if(typeof(section) === 'string'  &&  section.length > 1  &&  section.length < 20){ 

    sectionString = ' Section:' + section; 

   }else{ 

    sectionString = ''; 

   } 

  } 

   

  if(whereToWrite[0] !== '#'){ 

   whereToWrite = '#' + whereToWrite; 

  } 

   

  var tempElement; 

  var parentWhereToWrite = whereToWrite; 

   

   

  $(whereToWrite).html(''); // Clearing the section of the feeds I am following 

   

   

  var tempSectionID = whereToWrite.substring(1, whereToWrite.length); 
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  // Section check. If the HTML section is present in the webpage we can move on, otherwise the function has to stop. 

  if( document.getElementById(tempSectionID) === null ){ 

   // Error. No HTML section found to display the followed feeds on Social. Please add a <div id="feedsFollowed"> section. 

   $(whereToWrite).append('<div class="feedsItem"> <p id="text"> There has been a problem while communicating with the server. <br/>Please try again 

later. </p> </div>'); 

   console.log('Error while trying to write the followed feeds. The section ID passed in input seems not to be present in the webpage.'); 

   return; 

  } 

   

  // Adding a new wrapping section in the HMTL page to make the SocialAPI's CSS file point only at this part of the webpage, in case many CSS files are used. 

  var wrapSection =  '<div class="socialAPIWrapClass">'+ 

        '<div id="socialAPIDepartment' + tempSectionID  +'">'+ 

        '</div>'+ 

       '</div>'; 

  $(whereToWrite).append(wrapSection); 

   

  whereToWrite = '#socialAPIDepartment' + tempSectionID ; 

   

   

  var searchForGroupInfoSite = searchRestService + "query?querytext='department:" +department + groupString + sectionString+"'&sourceid='B09A7990-05EA-4AF9-81EF-

EDFAB16C4E31'"; 

  // In the variable 'searchForGroupInfoSite', the code: 

  //    sourceid='B09A7990-05EA-4AF9-81EF-EDFAB16C4E31' 

  // tells the Server that we are looking for People (possible search options: Everything, People, Conversations, Videos). 

   

   

  try{ 

   executeRestCallExtendedSeven(searchForGroupInfoSite, 'GET', null, updateGroupInfoBodyFunction, onError, whereToWrite, department, group, section, 

imageFlag, departmentFlag, numFeeds); 

  } 

  catch(err){ errorHandlerFunction(11, "There was a problem while communicating with the Server.\nPlease try again later."); } 

 } 

 // This function displays the elements found using "updateGroupInfo()". 

 function updateGroupInfoBodyFunction(data, whereToWrite, department, group, section, imageFlag, departmentFlag, numFeeds){ 

  var peopleArray = JSON.parse(data); 

  try{ 

   peopleArray = peopleArray.d.query.PrimaryQueryResult.RelevantResults.Table.Rows.results; // Reading people's data. 

  }catch(e){ 

   console.log("There has been a problem while communicating with the Server. Please check updateGroupFeedsBodyFunction() function."); 

   $(whereToWrite).append('<div class="feedsItem"> <p id="text"> There has been a problem while communicating with the Server. Please try again 

later. </p> </div>'); 

  } 

   

  if(peopleArray.length < 1){ 

   var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'fadeOut' will work 

only once. 

   $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> No (more) people found for the department. </p> </div>');

 // Printing the "problem" message on the screen 

   $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 

   setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds. 

    

   return; 

  } 

   

   

  var numOfFeedsToDisplay = 0; 

  if( numFeeds < peopleArray.length  &&  numFeeds > 0){ 

   numOfFeedsToDisplay = numFeeds; 

  }else{ 

   numOfFeedsToDisplay = peopleArray.length; 

  } 

   

  var pictureString = ''; 

  var profilePictureUri = ''; 

  var departmentString = ''; 

  var personalSite = ''; 

  for(var i=0; i<numOfFeedsToDisplay; i++){ 

    

   if(departmentFlag){ 

    departmentString = getValue("Department", peopleArray[i].Cells.results); // Reading the Department from the first person 

    if( departmentString.substring(0, department.length) != department ){ 

     continue; 

    } 

    departmentString = '<div> <p>Department: '+ departmentString +'</p> </div>'; 

   } 

    

   if(imageFlag){ // If we want to show the image we update the pictureString 

    personalSite = getValue("Path", peopleArray[i].Cells.results); 

    profilePictureUri = getValue("PictureURL", peopleArray[i].Cells.results); 

     

    if( profilePictureUri == null || profilePictureUri == undefined || profilePictureUri == 'null' || profilePictureUri == '' ){ 

     // If there is no URL for the profile picture we display the anonymous profile image. 

     pictureString = '<div class="picSection">' + 

          '<div id="picSection">' + 

           '<a href="'+ 

personalSite +'" target="_blank">' + 

            '<img 

src="'+ socialWebsite + '_layouts/15/images/PersonPlaceholder.42x42x32.png?rev=23" id="myPicture" />' + 

           '</a>' + 

          '</div>' + 

         '</div>'; 

    }else{ 

     pictureString = '<div class="picSection">' + 

          '<div id="picSection">' + 

           '<a href="'+ 

personalSite +'" target="_blank">' + 

            '<img 

src="'+ profilePictureUri +'" id="myPicture" />' + 

           '</a>' + 

          '</div>' + 

         '</div>'; 

    } 

   } // else: the 'pictureString' variable will be an empty string. 
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   var name = getValue("PreferredName", peopleArray[i].Cells.results); 

   var email = getValue("WorkEmail", peopleArray[i].Cells.results); 

    

   $(whereToWrite).append('<div class="feedsItem">' + 

          pictureString + 

          '<div class="notPicSection">' + 

           '<h2 id="author"> <a 

href="'+ personalSite +'" target="_blank"> '+ name + '</a> </h2>' + 

           departmentString + 

           '<p>email: <a 

href="mailto:'+ email +'"> '+ email  +'</a></p>' + 

          '</div>' + 

         '</div>'); 

    

  } 

   

  // If there are less than 10 elements displayed -> we call for more 

  if( document.getElementsByClassName("notPicSection").length < 10 ){ 

   moreGroupElements(whereToWrite, department, group, section, imageFlag, departmentFlag, numOfFeedsToDisplay); 

   return; 

  } 

   

  // Adding a button to retrieve more elements 

  $(whereToWrite).append('<a id="moreFeedsButton'+ whereToWrite.substring(1) +'" class="moreFeedsButton" href="javascript:socialAPI().moreGroupElements(&#39;'+ 

whereToWrite +'&#39;, &#39;'+ department +'&#39;, &#39;'+ group +'&#39;, &#39;'+ section +'&#39;, &#39;'+ imageFlag +'&#39;, &#39;'+ departmentFlag +'&#39;, &#39;'+ numOfFeedsToDisplay 

+'&#39;)"> Show more elements <br/> <br/> </a>'); 

   

 } 

  

 var numOfElementsAlreadyDisplayed=0; // Global variable 

 function moreGroupElements(whereToWrite, department, group, section, imageFlag, departmentFlag, numFeeds){ 

  numOfElementsAlreadyDisplayed += parseInt(numFeeds);  // Updating the global variable 

  $('#moreFeedsButton'+ whereToWrite.substring(1) ).remove(); // Removing the old "more elements" link 

   

  var groupString; 

  if(group == null  ||  group == 'null' ||  group == undefined  ||  group == ''){ 

   groupString = ''; 

  }else{ 

   if(typeof(group) === 'string'  &&  group.length > 1  &&  group.length < 20){ 

    groupString = '/' + group; 

   }else{ 

    groupString = ''; 

   } 

  } 

  var sectionString; 

  if(section == null  ||  section == 'null' ||  section == undefined  ||  section == ''){ 

   sectionString = ''; 

  }else{ 

   if(typeof(section) === 'string'  &&  section.length > 1  &&  section.length < 20){ 

    sectionString = ' Section:' + section; 

   }else{ 

    sectionString = ''; 

   } 

  } 

   

   

   

  var searchForGroupInfoSite = searchRestService + "query?querytext='department:" +department + groupString + sectionString+"'&startrow='"+ 

numOfElementsAlreadyDisplayed +"'&sourceid='B09A7990-05EA-4AF9-81EF-EDFAB16C4E31'"; 

  /* In the variable 'searchForGroupInfoSite', the code: 

   *    sourceid='B09A7990-05EA-4AF9-81EF-EDFAB16C4E31' 

   * tells the Server that we are looking for People (possible search options: Everything, People, Conversations, Videos). 

   */ 

   

   

  try{ 

   executeRestCallExtendedSeven(searchForGroupInfoSite, 'GET', null, updateGroupInfoBodyFunction, onError, whereToWrite, department, group, section, 

imageFlag, departmentFlag, numFeeds); 

  } 

  catch(err){ errorHandlerFunction(11, "There was a problem while communicating with the Server.\nPlease try again later."); } 

 } 

  

 function conversationObj(URL, sectionID){ 

  this.URL = URL; 

  this.sectionID = sectionID; 

 } 

  

 /* Ths function will retrieve the info about one particular thread. The one that can be found at the URL passed in input. 

  * Input: 

  * - whereToWrite: the id of the HTML section in which we want to display the feed. 

  * - url:      the URL at which the feed can be found (loading it in a normal browser). */ 

  function updateSingleFeed(whereToWrite, url){ 

  if(whereToWrite[0] != '#'){ 

   whereToWrite = '#' + whereToWrite; 

  } 

   

  // Updating global variables 

  globalArrayOfSingleConversations.push(new conversationObj(url, whereToWrite)); 

   

  // Checking the presence of the HTML section in the webpage: 

  if(document.getElementById(whereToWrite.substring(1)) == null){ 

   console.log("No HTML section found. Please check the ID of the HTML section passed in input to the function updateSingleFeed()."); 

   return; 

  } 

   

  var parentWhereToWrite = whereToWrite; 

   

  $(whereToWrite).html(''); // Clearing the HTML section. 

   

  // Adding a new wrapping section in the HMTL page to make the SocialAPI's CSS file point only at this part of the webpage, in case many CSS files are used. 

  var wrapSection =  '<div id="'+ parentWhereToWrite.substring(1) +'" class="'+ parentWhereToWrite.substring(1) +'">' + 

        '<div class="socialAPIWrapClass">'+ 



205 
 

         '<div class="socialAPISingleFeed" 

id="socialAPISingleFeed">'+ 

         '</div>'+ 

        '</div>'+ 

       '</div>'; 

  $(whereToWrite).append(wrapSection); 

   

  whereToWrite = '#socialAPISingleFeed'; 

   

  executeRestCallExtendedFour(formDigestUrl, 'POST', null, updateSingleFeedBodyFunction, onError, parentWhereToWrite, whereToWrite, url); // 

calling for the formDigest to make the request 

 } 

 // Function called from updateSingleFeedInfo if the CORS request succeeds. It will use the formDigest coming from the Server to call for the data about a single feed. The 

responce will be passed to the showUserInformationInFeedsWithSameTagBodyFunction() function, that will display correctly the feed in the webpage. 

 function updateSingleFeedBodyFunction(data, parentWhereToWrite, whereToWrite, url){ 

  try{ 

   var result = JSON.parse(data); // Parsing the data obtained from the social network 

   var formDigest = result.d.GetContextWebInformation.FormDigestValue; 

  }catch(e){ 

   console.log("There was a problem while communicating with the Server.\nSee updateSingleFeedInfoBodyFunction() function.");  

   $(whereToWrite).html("There was a problem while communicating with the Server. Please try again later."); 

   return;  

  } 

  // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console 

log 

  if(result.error){ 

   console.log("Error: "+ result.error.message.value +"\nPlease review the updateSingleFeedInfoBodyFunction() function."); 

   try{ 

    if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exists on Social 

     $(whereToWrite).html('<div class="feedsItem"> <p id="text"> Your account has not been found on Social. <br/>Please 

visit https://social.cern.ch and create the account first. </p> </div>'); 

    }else{  // Other error 

     $(whereToWrite).html('<div class="feedsItem"> <p id="text"> There was a problem while communicating with the 

Server. Please try again later. </p> </div>'); 

    } 

    return; 

   }catch(e){console.log("Exception thrown in function showUserInformationInFeedsWithSameTagBodyFunction()"); return;} 

  } 

   

  try{ 

   var id = url.split("ThreadID="); 

   id = id[id.length-1]; 

  }catch(e){ 

   console.log("Error: "+ result.error.message.value +"\nPlease review the updateSingleFeedInfoBodyFunction() function."); 

   $(whereToWrite).html("There was a problem while reading the ID of the feed. Please try again later."); 

   return; 

  } 

   

  var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post"); // Creating CORSRequest to Like the feed 

  xhr.onload = function(){ showUserInformationInFeedsWithSameTagBodyFunction(this.responseText, whereToWrite, parentWhereToWrite, 

parentWhereToWrite.substring(1)); 

  }; 

  xhr.onerror = console.log("CORS request encountered an error.\nSee updateSingleFeedInfoBodyFunction() function."); 

  xhr.withCredentials = true; 

   

  xhr.setRequestHeader("X-RequestDigest", formDigest); 

  xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose"); 

   

  var data = "{ 'ID':'"+id+"' }";  // Including the ID of the feed we want to analize. 

   

  xhr.send(data); // Sending the information 

 } 

  

  

  

 // Function that retrieves the feeds from the section Everyone on Social and print them in the webpage. 

 function updateFeedsFromEveryone(whereToWrite, updateInterval){ 

  //// Sanitizing the input (encodeURI() is used instead of encodeURIComponent() when there has to be allowed the possibility to have hashtags.): 

  whereToWrite = encodeURI(whereToWrite); 

  updateInterval = encodeURIComponent(updateInterval); 

   

  var tempSectionID; 

  if(whereToWrite[0] === '#'){ 

   tempSectionID = whereToWrite.substring(1, whereToWrite.length); 

  }else{ 

   tempSection = whereToWrite; 

   whereToWrite = '#' + whereToWrite; 

  } 

   

  // Section check. If the HTML section is present in the webpage we can move on, otherwise the function has to stop. 

  if( document.getElementById(tempSectionID) === null ){ 

   // Error. No HTML section found to display the followed feeds on Social. Please add a <div id="feedsFromEveryone"> section. 

   return; 

  } 

   

  moreFeedsButtonPressed = false;  // If the User has asked for a manual update then the automatic updates can be re-activated 

   

  $('#feedsSectionName').html("#feedsFromEveryone"); // Writing the name of the section. It will be read from checkDataReceivedAndDisplayTheFeeds(). 

  executeRestCall("https://social.cern.ch/_api/social.feed/actor(item=@v)/feed?@v='https://espace2013.cern.ch/it-dep-ois/newsfeed.aspx'", 'GET', null, 

checkDataReceivedAndDisplayTheFeeds, onError); // getting the feeds and passing them to the function checkDataReceivedAndDisplayTheFeeds() 

 } 

  

  

 // Function used to automatically update the feeds every tot seconds. 

 function updateFollowedFeeds(whereToWrite, updateInterval, numFeeds, flagDisplayReplies){ 

  // Sanitizing the input. encodeURI() is used instead of encodeURIComponent() when there has to be allowed the possibility to have hashtags. 

  whereToWrite = encodeURI(whereToWrite); 

  updateInterval = encodeURIComponent(updateInterval); 

  if(numFeeds == null || numFeeds == undefined){ numFeeds = 0; } 

  if(flagDisplayReplies == null || flagDisplayReplies == undefined){ flagDisplayReplies = true; } 

   

  // Consistency checks 

  if( updateInterval===null || updateInterval===undefined || updateInterval<0){ updateInterval = 0; } 
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  if(whereToWrite[0] !== '#'){ 

   whereToWrite = '#' + whereToWrite; 

  } 

   

  var tempElement; 

  var parentWhereToWrite = whereToWrite; 

   

  // Updating the global variables. These variables will be necessary when the User needs to post a new message on Social 

  followedFeedsWhereToWrite = whereToWrite;   

  followedFeedsUpdateInterval = updateInterval; 

  followedFeedsNumFeeds = numFeeds; 

  followedFeedsFlagDisplayReplies = flagDisplayReplies; 

   

   

  if(updateInterval < 1000){ updateInterval = updateInterval*1000; } // Converting the time from seconds to milliseconds 

   

  var tempSectionID = whereToWrite.substring(1); 

  // Section check. If the HTML section is present in the webpage we can move on, otherwise the function has to stop. 

  if( document.getElementById(tempSectionID) === null ){ 

   // Error. No HTML section found to display the feeds from Social. 

   $(whereToWrite).html('<div class="feedsItem"> <p id="text"> There has been a problem while communicating with the server. <br/>Please try again 

later refreshing the page. </p> </div>'); 

   console.log('Error while trying to write the followed feeds. The section ID passed in input seems not to be present in the webpage.'); 

   return; 

  } 

   

  // If there are no feeds (there can be error message), so we clean the section 

  if( $(whereToWrite +" .feedsItem").length == ''  ||  $(whereToWrite +" .feedsItem").length == null  ||  $(whereToWrite +" .feedsItem").length == undefined ){ 

   $(whereToWrite).html(''); // Clearing the section of the feeds I am following 

  } 

   

  // Adding a new wrapping section in the HMTL page to make the SocialAPI's CSS file point only at this part of the webpage, in case many CSS files are used. 

  if($(whereToWrite).html() == ''){ // If there are no feeds in the section yet... 

   var wrapSection =  '<div class="socialAPIWrapClass">'+ 

         '<div id="socialAPIFollowedFeeds">'+ 

         '</div>'+ 

        '</div>'; 

   $(whereToWrite).html(wrapSection); 

  } 

   

   

  authenticateOnSocial();  // We need to re-authenticate on Social every time 

   

   

  if(updateInterval > 0){ 

   clearInterval(followedFeedsUpdatesHandler);  // Deleting the old automatic refresh of the feeds 

    

   // Creating the new automatic refresh of the feeds. The followed feeds will be updated every "updateInterval" seconds. 

   followedFeedsUpdatesHandler = setInterval(function(){ updateFollowedFeeds(whereToWrite, updateInterval, numFeeds, flagDisplayReplies); }, 

updateInterval); // This variable will be necessary when the User needs to post a new message on Social 

    

   whereToWrite = '#socialAPIFollowedFeeds'; // Updating the focused section that we will pass to the following function the new ID, which is 

inside the new wrapper div. 

   executeRestCallExtendedSix(myFeedManagerEndpoint + "my/news", 'GET', null, checkDataReceivedAndDisplayTheFeeds, onError, whereToWrite, 

parentWhereToWrite, numFeeds, numFeeds, flagDisplayReplies); // searches the feeds and passes them to the function "checkDataReceivedAndDisplayTheFeeds()" 

  }else{ 

   // If we are here it means that the function has to retrieve the feeds without automatically update them. 

    

   if(followedFeedsUpdatesHandler != 'a'){   // If there is an active automatic update of the feeds 

    clearInterval(followedFeedsUpdatesHandler);  // Deleting the old automatic refresh of the feeds 

    followedFeedsUpdatesHandler = 'a'; 

   } 

    

   whereToWrite = '#socialAPIFollowedFeeds'; // Updating the focused section that we will pass to the following function the new ID, which is 

inside the new wrapper div. 

   executeRestCallExtendedSix(myFeedManagerEndpoint + "my/news", 'GET', null, checkDataReceivedAndDisplayTheFeeds, onError, whereToWrite, 

parentWhereToWrite, numFeeds, numFeeds, flagDisplayReplies); // searches the feeds and passes them to the function "checkDataReceivedAndDisplayTheFeeds()" 

  } 

 } 

  

 // This is an object representing a User profile on Social and the section in the webpage in which we want its feeds be displayed. 

 function updateObj(keyValue, sectionID, automaticUpdatesHandlersCode, timeInterval, numOfFeedsToRetrieve, flagDisplayReplies){ 

  this.keyValue = keyValue; 

  this.sectionID = sectionID; 

  this.automaticUpdatesHandlersCode = automaticUpdatesHandlersCode; 

  this.timeInterval = timeInterval; 

  this.numOfFeeds = numOfFeedsToRetrieve; 

  this.flagDisplayReplies = flagDisplayReplies; 

 } 

  

 /* This function check the presence of an object with one element which is equal to the sectionId in input in an array.  

  * Input: 

  * - the ID of the HTML section in which the feeds have to be displayed. It is the string that the function will try to find in the elements in the array 

  * - the array in which the function will look into. 

  * Output: 

  * - If the element has been found the function will return the index of the element in the array 

  * - else: it will return -1 

  */ 

 function checkPresenceOfElement(sectionId, array){ 

  var length = array.length; // This line of code will allow us to read to length of the array only once (and not at each cycle in the "for" statement), 

speeding up the execution of the code. 

   

  for(var i=0; i<length; i++){ 

   if( array[i].sectionID === sectionId ){ 

    return i; 

   } 

  } 

   

  return -1; 

 } 
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 function feedsToDisplayObj(sectionID, numFeedsAlreadyDisplayed){ 

  this.sectionID = sectionID; 

  this.numFeedsAlreadyDisplayed = numFeedsAlreadyDisplayed; 

 } 

  

 // Function that retrieves the feeds from the page of an Actor on Social and print them in the webpage. 

 // The name of the actor is read from the html page, from a field invisible to the User. 

 function updateFeedsFromProfile(accountName, whereToWrite, updateInterval, numOfFeeds, flagDisplayReplies){ 

  // Consistency checks 

  if( updateInterval===null || updateInterval===undefined || updateInterval<0){ updateInterval = 0; } 

  if( numOfFeeds===null || numOfFeeds===undefined || numOfFeeds<0 || numOfFeeds>20){ numOfFeeds = 0; } 

  if( flagDisplayReplies===null || flagDisplayReplies===undefined ){ flagDisplayReplies = true; } 

   

  // Sanitizing the input (encodeURI() is used instead of encodeURIComponent() when there has to be allowed the possibility to have hashtags.): 

  accountName = encodeURIComponent(accountName); 

  whereToWrite = encodeURI(whereToWrite); 

  updateInterval = encodeURIComponent(updateInterval); 

  numOfFeeds = encodeURIComponent(numOfFeeds); 

   

  if(whereToWrite[0] !== '#'){ 

   whereToWrite = '#' + whereToWrite; 

  } 

   

  var tempSection = whereToWrite.substring(1); // It will be the ID of the HTML section in which we want to write the information without the hashtag as first 

character. 

  var tempElement; // Temporary variable used to store new elements inside 'globalArrayOfProfiles'. 

  var parentWhereToWrite = whereToWrite;  // Memorizing the main section 

   

  if(updateInterval < 1000){ updateInterval = updateInterval*1000; } // Converting the time from seconds to milliseconds 

   

  // Section check. If the HTML section is present in the webpage we can move on, otherwise the function has to stop. 

  if( document.getElementById(tempSection) === null ){ 

   // Error. No HTML section found to display the followed feeds on Social. Please add a <div id="feedsFromProfile"> section. 

   console.log('Error while trying to write the feeds from the specific profile. See function updateFeedsFromProfile().'); 

   $(whereToWrite).append('<div class="feedsItem"> <p id="text"> There has been a problem while communicating with the server. <br/>Please try again 

later refreshing the page. </p> </div>'); 

   return; 

  } 

   

  var innerWrap = "socialAPIFeedsFromProfile"+ whereToWrite.substring(1) + accountName; 

  var wrapSection =  '<div class="socialAPIWrapClass">'+ 

        '<div id="'+ innerWrap +'">'+ 

        '</div>'+ 

       '</div>'; 

  // Adding a new wrapping section in the HMTL page to make the SocialAPI's CSS file point only at this part of the webpage, in case many CSS files are used. 

  if( $(whereToWrite +" .feedsItem").length == 0  &&  $(whereToWrite +" .socialAPIWrapClass").length == 0 ){ // If there is the HTML section and it 

is still empty... 

    

   $(whereToWrite).html(wrapSection); 

  } 

   

  authenticateOnSocial();  // We need to re-authenticate on Social every time 

   

   

  try{ 

   if(updateInterval > 0){ 

    var indexOfElement = checkPresenceOfElement(parentWhereToWrite, globalArrayOfProfiles);  // The function returns 

-1 if the element is not in the array. 

    // If the element is inside the array, than we have to clear the interval and pop the element from the array before creating a 

new automatic update interval. 

    if( indexOfElement > -1  &&  indexOfElement < globalArrayOfProfiles.length ){ 

     // Stopping the old automatic refresh of the feeds 

     clearInterval(globalArrayOfProfiles[indexOfElement].automaticUpdatesHandlersCode); 

      

     // Creating the new automatic refresh of the feeds 

     globalArrayOfProfiles[indexOfElement].automaticUpdatesHandlersCode = setInterval(function(){ 

updateFeedsFromProfile(accountName, parentWhereToWrite, updateInterval, numOfFeeds, flagDisplayReplies); }, updateInterval); // The followed feeds will be updated every 

"updateInterval" seconds 

      

     whereToWrite = '#' + innerWrap; 

      

     // Retrieving the feeds 

     executeRestCallExtendedSix(myFeedManagerEndpoint + "actor(item='cern\\"+accountName+"')/Feed", 'GET', null, 

checkDataReceivedAndDisplayTheFeeds, onError, whereToWrite, parentWhereToWrite, numOfFeeds, numOfFeeds, flagDisplayReplies); // getting the feeds and passing them to the function 

checkDataReceivedAndDisplayTheFeeds() 

    } 

    else{ 

     // Creating the automatic refresh of the feeds 

     var tempHandler = setInterval(function(){ updateFeedsFromProfile(accountName, parentWhereToWrite, updateInterval, 

numOfFeeds, flagDisplayReplies); }, updateInterval); // The followed feeds will be updated every "updateInterval" seconds 

     tempElement = new updateObj(accountName, whereToWrite, tempHandler, updateInterval, numOfFeeds, 

flagDisplayReplies); 

     globalArrayOfProfiles.push(tempElement); // Inserting the new element in the 'globalArrayOfProfiles' 

      

     whereToWrite = '#' + innerWrap; 

      

     // Retrieving the feeds 

     executeRestCallExtendedSix(myFeedManagerEndpoint + "actor(item='cern\\"+accountName+"')/Feed", 'GET', null, 

checkDataReceivedAndDisplayTheFeeds, onError, whereToWrite, parentWhereToWrite, numOfFeeds, numOfFeeds, flagDisplayReplies); // getting the feeds and passing them to the function 

checkDataReceivedAndDisplayTheFeeds() 

    } 

   } 

   else{ 

    // If we are here it means that the function has to retrieve the feeds without automatically update them. 

     

    var indexOfElement = checkPresenceOfElement(parentWhereToWrite, globalArrayOfProfiles);  // The function returns 

-1 if the element is not in the array. 

    // If the element is not inside the array, than we have to add it. 

    if( indexOfElement === -1 ){ 

     tempElement = new updateObj(accountName, whereToWrite, null, 0, numOfFeeds, flagDisplayReplies); 

     globalArrayOfProfiles.push(tempElement); // Inserting the new element in the 'globalArrayOfProfiles' 

    } 
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    whereToWrite = '#' + innerWrap; 

     

    executeRestCallExtendedSix(myFeedManagerEndpoint + "actor(item='cern\\"+accountName+"')/Feed", 'GET', null, 

checkDataReceivedAndDisplayTheFeeds, onError, whereToWrite, parentWhereToWrite, numOfFeeds, numOfFeeds, flagDisplayReplies); // getting the feeds and passing them to the function 

checkDataReceivedAndDisplayTheFeeds() 

   } 

  }catch(e){ 

   $(whereToWrite).html('<div>There has been a problem while retrieving the feeds. <br/>Please try again later. </div>'); 

  } 

   

 } 

  

  

 // Function that retrieves the feeds with the same hashtag on Social and print them in the webpage. 

 function updateFeedsWithSameHashtag(tag, whereToWrite, updateInterval, numOfFeeds, flagDisplayReplies){ 

  // Consistency checks 

  if( updateInterval===null || updateInterval===undefined || updateInterval<0){ updateInterval = 0; } 

  if( numOfFeeds===null || numOfFeeds===undefined || numOfFeeds<0 || numOfFeeds>20){ numOfFeeds = 0; } 

  if( flagDisplayReplies===null || flagDisplayReplies===undefined){ flagDisplayReplies = true; } 

   

  // Sanitizing the input (encodeURI() is used instead of encodeURIComponent() when there has to be allowed the possibility to have hashtags.): 

  var noSharpTagArray = tag.split(' '); // Splitting the input tags from one string to an array of strings. 

  var noSharpTagString = ''; 

  var noSpaceNoSharpTagString = ''; // This variable will be used for the innerWrap variable only. 

  for(var i=0; i<noSharpTagArray.length; i++){ 

   if(noSharpTagArray[i][0] === '#'){ 

    noSharpTagArray[i] = noSharpTagArray[i].substring(1, noSharpTagArray[i].length); 

   } 

   noSpaceNoSharpTagString += encodeURI(noSharpTagArray[i]);  // Adding the tag only 

   if( i < noSharpTagArray.length-1 ){ 

    noSharpTagString += encodeURI(noSharpTagArray[i]) + ' '; // Adding the tag plus an empty space 

   }else{ 

    noSharpTagString += encodeURI(noSharpTagArray[i]);  // Adding the last tag 

   } 

  } 

  whereToWrite = encodeURI(whereToWrite); 

  updateInterval = encodeURIComponent(updateInterval); 

  numOfFeeds = encodeURIComponent(numOfFeeds); 

   

  if(whereToWrite[0] !== '#'){ 

   whereToWrite = '#' + whereToWrite; 

  } 

  if(document.getElementById(whereToWrite.substring(1)) === null){ 

   console.log("The HTML section appears not to exist. See updateFeedsWithSameHashtag() function."); 

   return; 

  } 

   

  var tempSection = whereToWrite.substring(1, whereToWrite.length); 

   

  if(updateInterval < 1000){ updateInterval = updateInterval*1000; } // Converting the time from seconds to milliseconds 

   

  var parentWhereToWrite = whereToWrite; 

   

  // Section's check. If the HTML section is present in the webpage we can move on, otherwise the function has to stop. 

  if( document.getElementById(tempSection) === null ){ 

   // Error. No HTML section found to display the followed feeds on Social. Please add a <div id="feedsWithSameHashtag"> section. 

   console.log('Error while trying to write the feeds with the same hashtag. The section ID passed in input is not present in the web page.'); 

   return; 

  } 

   

   

  $(whereToWrite).html(''); // Clearing the feeds displayed. 

   

   

  authenticateOnSocial();  // We need to re-authenticate on Social every time 

   

   

  // Adding a new wrapping section in the HMTL page to make the SocialAPI's CSS file point only at this part of the webpage, in case many CSS files are used. 

  var innerWrap = "socialAPIFeedsWithSameHashtag"+ whereToWrite.substring(1, whereToWrite.length) + noSpaceNoSharpTagString; 

  var wrapSection =  '<div class="socialAPIWrapClass">'+ 

        '<div id="' +  innerWrap + '">'+ 

        '</div>'+ 

       '</div>'; 

  $(whereToWrite).html(wrapSection); 

   

   

  try{ 

   // Activating the automatic refresh of the feeds 

   if(updateInterval > 0){ 

    var index = checkPresenceOfElement(whereToWrite, globalArrayOfHashtags); // Checking the presence of the element inside the 

array 

    // If the element is already present we can simply modify the information about it 

    if(index >= 0 && index < globalArrayOfHashtags.length){ 

     clearInterval(globalArrayOfHashtags[index].automaticUpdatesHandlersCode); // stopping the previously set 

automatic updater 

     var handlerCode = setInterval( function() { updateFeedsWithSameHashtag(noSharpTagString, whereToWrite, 

updateInterval, numOfFeeds, flagDisplayReplies); }, updateInterval); // The feeds will be updated every "updateInterval" seconds 

      

     globalArrayOfHashtags[index].automaticUpdatesHandlersCode = handlerCode; 

     globalArrayOfHashtags[index].timeInterval = updateInterval; 

    }else{ 

     // else: we have to add a new element to the array 

     var handlerCode = setInterval( function() { updateFeedsWithSameHashtag(noSharpTagString, whereToWrite, 

updateInterval, numOfFeeds, flagDisplayReplies); }, updateInterval); // The feeds will be updated every "updateInterval" seconds 

     globalArrayOfHashtags.push(new updateObj(noSharpTagString, whereToWrite, handlerCode, updateInterval, numOfFeeds, 

flagDisplayReplies)); // Updating the global array for the timed updates 

    } 

   } 

   else{ 

    var index = checkPresenceOfElement(whereToWrite, globalArrayOfHashtags); // Checking the presence of the element inside the 

array 

    // If the element is already present we can simply modify the information about it 

    if(index === -1){ // If the element is not yet in the array: 
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     globalArrayOfHashtags.push(new updateObj(noSharpTagString, whereToWrite, null, 0, numOfFeeds, 

flagDisplayReplies)); // Adding the element to the array 

    } 

   } 

    

   whereToWrite = "#" + innerWrap; /* We want to write in the inner section. */ 

   // Retrieving the feeds with the same tag(s) and writing them in the section of the HTML page with ID='feedsWithSameHashtag'. 

   retrieveFeedsWithSameTag(noSharpTagString, whereToWrite, parentWhereToWrite, numOfFeeds, flagDisplayReplies); 

  }catch(e){ 

   $(whereToWrite).html('There has been an error while trying to write the feeds with the same hashtag. Please try again later.'); 

  } 

 } 

  

  

 // This function returns the corrispondent handler for the 'whereToWrite' section ID. 

 function findMyHandler(whereToWrite){ 

  var length; 

   

  if(whereToWrite === followedFeedsWhereToWrite){ 

   return followedFeedsUpdatesHandler; 

  }else{ 

   length = globalArrayOfProfiles.length; 

   for(var i=0; i<length; i++){ 

    if(whereToWrite === globalArrayOfProfiles[i].sectionID){ 

     return globalArrayOfProfiles[i].automaticUpdatesHandlersCode; 

    } 

   } 

    

   // If the element has not yet been found... 

   length = globalArrayOfHashtags.length; 

   for(var i=0; i<length; i++){ 

    if(whereToWrite === globalArrayOfHashtags[i].sectionID){ 

     return globalArrayOfHashtags[i].automaticUpdatesHandlersCode; 

    } 

   } 

  } 

   

  // If the handler has not been found... 

  return -1; 

 } 

  

  

 // This function returns the corrispondent handler for the 'whereToWrite' section ID. 

 function findMyUpdateInterval(whereToWrite){ 

  var length; 

   

  if(whereToWrite === followedFeedsWhereToWrite){ 

   return followedFeedsUpdateInterval; 

  }else{ 

   length = globalArrayOfProfiles.length; 

   for(var i=0; i<length; i++){ 

    if(whereToWrite === globalArrayOfProfiles[i].sectionID){ 

     return globalArrayOfProfiles[i].timeInterval; 

    } 

   } 

    

   // If the element has not yet been found... 

   length = globalArrayOfHashtags.length; 

   for(var i=0; i<length; i++){ 

    if(whereToWrite === globalArrayOfHashtags[i].sectionID){ 

     return globalArrayOfHashtags[i].timeInterval; 

    } 

   } 

  } 

   

  // If the handler has not been found... 

  return -1; 

 } 

  

  

 /*  

  * This function displays the feeds into the webpage. 

  * Input:  

  * - the feeds to display 

  * - the ID of the HTML section where to display the feeds 

  * - the ID of the parent HTML section where to display the feeds 

  * - the maximum number of feeds to display 

  */ 

 function appendFeeds(feeds, whereToWrite, parentWhereToWrite, numFeedsTotal, numFeedsStillToGet, flagDisplayReplies){ 

  var numFeedsToDisplay; 

  if( (typeof numFeedsTotal) === 'string'){ numFeedsTotal = parseInt(numFeedsTotal); } 

  if( (typeof numFeedsStillToGet) === 'string'){ numFeedsStillToGet = parseInt(numFeedsStillToGet); } 

  if( (typeof flagDisplayReplies) === 'string'){ 

   if(flagDisplayReplies == "false"){ 

    flagDisplayReplies = false; 

   }else{ 

    flagDisplayReplies = true; 

   } 

  } 

   

  if( feeds.length == 0 ){ 

   // Printing the "no feed" message on the screen 

   var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'fadeOut' will work 

only once. 

   $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> No (more) feeds available. </p> </div>'); // 

Printing the "problem" message on the screen 

   $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 

   setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds. 

   return; 

  } 

   

  if(numFeedsTotal == null || numFeedsTotal == undefined || numFeedsTotal <= 0 || numFeedsTotal > 20){ 

   numFeedsToDisplay = 100; // The highest number of feeds will be 100. 
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  } 

  else{ 

   numFeedsToDisplay = Math.min(feeds.length, numFeedsStillToGet); 

  } 

   

  var numFeedsDisplayed = 0; 

   

  var picturePresentFlag = false; 

  // Reading if there is already a "picSection" inside the "whereToWrite" section of the page. 

  if( document.getElementById(whereToWrite.substring(1)).getElementsByClassName('picSection').length > 0 ){ picturePresentFlag = true ; } 

   

  // If we don't want to display the replies we want to show the profile Picture and Name ONCE. Now: 

  if(feeds.length > 0  &&  (!flagDisplayReplies)  &&  (!picturePresentFlag)){ 

   var participants = feeds[0].Actors.results; 

   var accountName, profilePicUri; 

   if( participants[feeds[0].OwnerIndex].AccountName === null || participants[feeds[0].OwnerIndex].AccountName === undefined ){ 

    accountName = participants[feeds[0].OwnerIndex+1].AccountName.split("\\"); 

    profilePicUri = participants[feeds[0].OwnerIndex+1].ImageUri; // Reading the URI of the profile picture of the User. 

    owner = participants[feeds[0].OwnerIndex+1].Name; 

   }else{ 

    accountName = participants[feeds[0].OwnerIndex].AccountName.split("\\"); 

    profilePicUri = participants[feeds[0].OwnerIndex].ImageUri; // Reading the URI of the profile picture of the User. 

    owner = participants[feeds[0].OwnerIndex].Name; 

   } 

   accountName = accountName[accountName.length-1]; 

   var personalAboutPage = socialWebsite + "Person.aspx?accountname=CERN%5C" + accountName; 

   // Consistency check. If no picture is found -> use the anonymous profile picture. 

   if( profilePicUri === null || profilePicUri === undefined || profilePicUri ==="" ){ 

    profilePicUri = socialWebsite + "_layouts/15/images/PersonPlaceholder.42x42x32.png?rev=23"; 

   } 

    

   var group = '';  // The variable that will (if present) store the title of the group in which the User posted the 

feed. 

   if(participants[0].ActorType === 2){ 

    group = participants[0].Name; 

   } 

   var groupString = ''; // The string that will tell the group in which the User posted the feed 

   if(group !== ''){ 

    groupString = '&nbsp;<span>> '+ group +'</span>';  // output example: " > IT/OIS" 

   } 

    

   if( participants[feeds[0].OwnerIndex].IsFollowed ){ 

    var authorString = '<span id="author"> <a href="'+personalAboutPage+'" target="_blank"> '+ owner + ' </a> </span> '+ groupString; 

   }else{ 

    var authorString = '<span id="author"> <a href="'+personalAboutPage+'" target="_blank"> '+ owner + ' </a> </span> '+ groupString; 

   } 

    

   $(whereToWrite).append('<div class="feedsItem" id="beginFeedsSection"> ' + 

          '<div class="picSection">' + 

           '<a 

href="'+personalAboutPage+'" target="_blank">' + 

            '<img 

src="'+profilePicUri+'" id="profilePicture" /> ' + 

           '</a>' + 

          '</div> ' + 

          '<div class="notPicSection">' + 

           '<p>' + authorString + 

'</p>' + 

          '</div>' + 

         '</div>'); 

  }else{ 

   // We still apply our initiali div section to allow the code write the new feeds at the beginning of the section without refreshing the whole 

section. 

   if( $(whereToWrite).html() == '' ){ // If there are no feeds displayed yet... 

    $(whereToWrite).append('<div id="beginFeedsSection"> </div>'); 

   } 

  } 

   

   

  // Reading the most recent feed's ID from the ones already displayed. 

  var addingFeedsFlag = false; 

  var dateOfTheLatestFeedAlreadyDisplayed; 

  try{ 

   var mostRecentId = $(whereToWrite +" #feedId").html(); // reading the IDs of the feeds already displayed. 

   if( typeof(mostRecentId) == 'string'  &&  mostRecentId != null  &&  mostRecentId != undefined  &&  mostRecentId != '' ){ 

    addingFeedsFlag = true; // There are already feeds in the page. We are adding feeds. 

   } 

   dateOfTheLatestFeedAlreadyDisplayed = $(whereToWrite +" .feedsItem .date")[0].innerHTML; // Reading the date of the first feed in the HTML 

section which is the date of the earliest feed retrieved so far. 

   dateOfTheLatestFeedAlreadyDisplayed = new Date(dateOfTheLatestFeedAlreadyDisplayed);  // Re-creating the Date obj from the 

information found in the HTML section 

  }catch(e){} 

   

  // If there are already some feeds displayed... 

  if(addingFeedsFlag == true ){ 

   // We want to read the feeds in the array that are not yet displayed. Since the array is ordered having the most recent one at the beginning we 

will copy the feeds that are not yet displayed until we find int eh array coming from the Server the last one displayed from the last session. 

   var tempIndex = 0; 

   var length = feeds.length; 

   var tempArray = new Array(); 

   // We want to take only the feeds that are not in the webpage already. 

   while( tempIndex < length  &&  $(whereToWrite).html().indexOf(feeds[tempIndex].Id) == -1 ){ 

    tempArray.push(feeds[tempIndex]); 

    tempIndex++; 

   } 

   feeds = tempArray; 

    

   if(feeds.length == 0){ 

    var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 

'fadeOut' will work only once. 

    $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> No new feeds available. </p> </div>'); // 

Printing the "problem" message on the screen 

    $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 
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    setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 

seconds. 

    return; 

   } 

    

   try{ 

    var dateOfTheLatestFeedRetrieved = new Date(feeds[0].RootPost.CreatedTime); 

    // If we created a correct Date object and there are some more feeds coming from Social but those have been already displayed... 

    if( dateOfTheLatestFeedAlreadyDisplayed instanceof Date  &&  dateOfTheLatestFeedRetrieved >= dateOfTheLatestFeedAlreadyDisplayed 

){ 

     feeds = feeds.reverse(); // Inverting the array of feeds to let the function add the oldest one first using 

"insertAfter". 

     var howToWriteFeeds = "prepend"; 

    } 

    else{ 

     // We are dealing with older feeds, we want them to be displayed after the ones already int he webpage 

     var howToWriteFeeds = "append"; 

    } 

   }catch(e){ var howToWriteFeeds = "append"; } 

  } 

   

  // Foreach feed 

  var i = 0, thread, participants; 

  while( numFeedsDisplayed < numFeedsToDisplay  &&  i < feeds.length ){ 

    

   thread = feeds[i];  // Capturing the i-th feed 

   i++;  // Increasing the index 

    

   // If the feed has already been displayed we can analize the following one 

    

   participants = thread.Actors.results; // Reading the creators of the feed 

   var group = '';  // The variable that will (if present) store the title of the group in which the User posted the 

feed. 

   if(participants[0].ActorType === 2){ 

    group = participants[0].Name; 

   } 

    

   // If the feed is on a page like IT/OIS that the author will be the one following the Owner. 

   var owner; 

   var accountName; 

   var tempIndex; 

   var profilePicUri; 

   // Reading the name of the owner of the feed 

   if( participants[thread.OwnerIndex].AccountName === null || participants[thread.OwnerIndex].AccountName === undefined ){ 

    owner = participants[thread.OwnerIndex+1].Name; 

    accountName = participants[thread.OwnerIndex+1].AccountName.split("\\"); 

    tempIndex = thread.OwnerIndex+1; 

    profilePicUri = participants[thread.OwnerIndex+1].ImageUri; // Reading the URI of the profile picture of the User. 

   } 

   else{ 

    owner = participants[thread.OwnerIndex].Name; 

    accountName = participants[thread.OwnerIndex].AccountName.split("\\"); 

    tempIndex = thread.OwnerIndex; 

    profilePicUri = participants[thread.OwnerIndex].ImageUri; // Reading the URI of the profile picture of the User. 

   } 

    

   accountName = accountName[accountName.length-1]; // From something like "CERN/mcavalaz" we save "mcavalaz". 

   var personalAboutPage = socialWebsite + "Person.aspx?accountname=CERN%5C" + accountName; 

    

   var dateTimeFeed = new Date(thread.RootPost.CreatedTime);   // The Date construct allows the User to automatically 

see the local time on the webpage 

   var dateString = createDateString(dateTimeFeed); 

      

   var threadId = thread.Id; // This is important to memorize on the html page. It will not be shown to the User, but it will become very useful 

for the other functions (e.g.: for the Replies). 

    

   // Consistency check. If no picture is found -> use the anonymous profile picture. 

   if( profilePicUri === null || profilePicUri === undefined || profilePicUri ===""){ 

    profilePicUri = socialWebsite + "_layouts/15/images/PersonPlaceholder.42x42x32.png?rev=23"; 

   } 

    

   // Checking the presence of attachments, like image, to the feeds. 

   var att = thread.RootPost.Attachment; 

   var attachmentUri = null; 

   // If there is any attachment...  

   if( att !== null && att !== undefined ){ 

    // and it is an image (image -> AttachmentKind = 0)... 

    if( att.AttachmentKind === 0 ){ 

     attachmentUri = att.Uri; // Memorizing the URI of the image attachment 

    } 

   } 

   var attachmentString; 

   if( attachmentUri === undefined || attachmentUri === null || attachmentUri === ''){ 

    attachmentString = ''; 

   }else{ 

    attachmentString = '<p> <img id="attachmentImage" src="'+attachmentUri+'" onerror="this.parentElement.removeChild(this);" /> 

</p>'; 

   } 

    

   var actorId;     // This variable will be used for the feeds from other Users. 

   var likeCounterString;    // The string stating the number of people that likes the post 

   var text = thread.RootPost.Text; // The text of the message 

    

   // If the feed retrieved is only a message from the system like "Marco is now following Eduardo" LikerInfo will be undefined or null, therefore... 

   if(thread.RootPost.LikerInfo === undefined || thread.RootPost.LikerInfo === null) 

   { 

    continue; 

   } 

   // If we reach this line the feed will be displayed. 

   numFeedsDisplayed++; // Increasing the number of feeds displayed. 

    

    

   text = myEscapeHTML(text); // Preventing code injection! 
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   text = formatText(text, parentWhereToWrite); 

    

   /*********************************************************** 

    * Checking the existence of people that like the message. 

    ***********************************************************/ 

   // If the number of people who likes this post is 0 (no-one) 

   if(thread.RootPost.LikerInfo.TotalCount == 0 || thread.RootPost.LikerInfo.TotalCount === null || thread.RootPost.LikerInfo.TotalCount === 

undefined){ 

    likeCounterString = "";  // If nobody liked the feed nothing particular is shown 

   }else{ 

    // If someone liked the post... e.g. 23 liked the post -> (smile 23) 

    likeCounterString = "<span class=\"smile\"></span> <b>" + thread.RootPost.LikerInfo.TotalCount + "</b> &nbsp;"; 

   } 

    

     

   // If the User already likes the feed... 

   if(thread.RootPost.LikerInfo.IncludesCurrentUser){ 

    var likeString = '<a onclick="socialAPI().unlikeFeedFunction(&#39;'+threadId+' '+whereToWrite+'&#39;)" 

href="javascript:void(0);"> Unlike </a>'; 

   } 

   else{ 

    var likeString = '<a onclick="socialAPI().likeFeedFunction(&#39;'+threadId+' '+whereToWrite+'&#39;)" href="javascript:void(0);"> 

Like </a>'; 

   } 

    

    

   try{ 

    // To 'Unfollow' that person the User will need the 'actorId'. 

    actorId = participants[thread.OwnerIndex].Id; 

   }catch(e){} 

    

   var updateInterval = findMyUpdateInterval(whereToWrite); 

    

   var deleteString; 

   if( whereToWrite === "#socialAPIFollowedFeeds"){ 

    if( participants[thread.OwnerIndex].IsFollowed ){ 

     // therefore it will not be possible for the User to Delete this feed. 

     // Instead, the User will be able to 'Unfollow' that person. 

     deleteString = '<a href="javascript:void(0);" id="deleteFeed" onclick="socialAPI().unfollowPerson(&#39;'+owner+'- 

-'+actorId+'- -'+participants[tempIndex].AccountName.replace("\\","\\\\")+'- -'+whereToWrite+'- -'+updateInterval+'&#39;)"> <b> X </b> </a>'; 

    }else{ 

     deleteString = '<a href="javascript:void(0);" id="deleteFeed" 

onclick="socialAPI().deleteFeed(&#39;'+threadId+'&#39;)"> <b> X </b> </a>'; 

    } 

   } 

   else{ 

    deleteString = ''; 

   } 

    

    

   var groupString = ''; // The string that will tell the group in which the User posted the feed 

   if(group !== ''){ 

    groupString = '&nbsp;<span>> '+ group +'</span>';  // output example: " > IT/OIS" 

   } 

     

   // If the creator of the thread is followed it means that it is NOT the User 

   if( participants[thread.OwnerIndex].IsFollowed ){ 

    var authorString = '<span id="author"> <a href="'+personalAboutPage+'" target="_blank"> '+ owner + ' </a> </span> '+ groupString 

+ deleteString; 

    var actorString = '<p id="feedId" class="actorId'+threadId+'">'+actorId+'</p>'; 

   } 

   else 

   { 

    var authorString = '<span id="author"> <a href="'+personalAboutPage+'" target="_blank"> '+ owner + ' </a> </span> '+ groupString 

+ deleteString; 

    var actorString = ''; // There is no need of the actorId if the feed is from the User itself 

   } 

    

   // If the feeds are to be displayed without replies we want to show only once the profile Picture and Name 

   var profilePicString; 

   if(!flagDisplayReplies){ 

    profilePicString = '<div>'; // Hiding totally the picture and the name of the author, allowing at the same time the text section 

of the feed to be shown. 

   }else{ 

    // Standard format of the picture section 

    profilePicString = '<div class="picSection">' + 

          '<a href="'+personalAboutPage+'" 

target="_blank">' + 

           '<img 

src="'+profilePicUri+'" id="profilePicture" /> ' + 

          '</a>' + 

         '</div> ' + 

         '<div class="notPicSection">' + 

          '<p>' + authorString + '</p>'; 

   } 

    

   var conversationUri = thread.Permalink;  // This will be the link to the conversation on Social 

    

   var openConversationString = ''; 

   var replySectionString = ''; 

   if(!flagDisplayReplies){ // In case we don't want to see the replies we will not show the "Reply" button also, and we will instead show the 

link to the conversation for every feed to let the Users reply if they want to. 

    openConversationString = '<p class="openConversationLink"><a href="javascript:void(0);" 

onclick="socialAPI().moreRepliesFunction(&#39;'+ thread.Permalink +'&#39;);"> > Open conversation </a></p>'; 

   }else{ 

    replySectionString = '<a onclick="socialAPI().showReplySection(&#39;'+parentWhereToWrite+' '+whereToWrite+' '+threadId+'&#39;)" 

href="javascript:void(0);"> Reply </a> </span>'; 

    // If more than 2 replies are present for this thread only 2 will be shown now. 

    // A button is created for the User to see the other replies if needed. 

    if(thread.TotalReplyCount >= 3){ 

     // Adding an extra element to the replies section. 

     // This button will allow the User to ask for more replies. 
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     openConversationString = '<p class="openConversationLink"><a href="javascript:void(0);" 

onclick="socialAPI().moreRepliesFunction(&#39;'+ thread.Permalink +'&#39;);"> > Open entire conversation </a></p>'; 

    } 

    else{ 

     openConversationString = ''; 

    } 

   } 

    

   var strOutput = '<div class="feedsItem" id="feedsItem'+threadId+'"> ' + 

        '<div class="table">' + 

         profilePicString + 

          '<p id="feedText'+threadId+'">' + text  

+ '</p>' + 

          attachmentString + 

          '<span class="noWrapString"><span 

class="date" id="date'+threadId+'">' + dateString + '</span> &nbsp;&nbsp;</span> <span class="slideLeft">&nbsp;</span>' + 

          '<span class="noWrapString">' + 

           '<span 

id="feed'+threadId+'"><span id="likeCounter'+threadId+'">' + likeCounterString + '</span>' + likeString + '&nbsp;&nbsp;' + replySectionString + '</span>' + 

          '</span>' + 

          openConversationString + 

          '<p id="feedId" 

class="feedId'+threadId+'">'+threadId+'</p>' + 

          actorString + 

         '</div>' + 

        '</div>' + 

       '</div>'; 

    

   // If we are writing new feeds (there are already some in the HTML web section). 

   if( howToWriteFeeds == "prepend" ){ 

    var newFeedsSection = $(whereToWrite +" 

#beginFeedsSection");//document.getElementById(whereToWrite).getElementById('beginFeedsSection'); // Reading the div section at the beginning and inside of the HTML section 

"whereToWrite" 

     

    if(!flagDisplayReplies){ // Adding a separation line between the feeds only if there have to be no replies. 

     $('<hr style="border-top: dotted 1px; margin:0; padding:0 0 8px; clear:both; height:0;" 

/>').insertAfter(newFeedsSection); 

    } 

    // Displaying the feed 

    $(strOutput).hide().insertAfter(newFeedsSection).fadeIn(800 + (i*120));  // The (i*120) helps creating a cool 

effect so that the feeds are displayed fading in one after another, instead than fading in all at the same time. 

     

   }else{ 

    // We are adding the feeds in the section for the first time 

    // Displaying the feed 

    $(strOutput).hide().appendTo(whereToWrite).fadeIn(800 + (i*120)); // The (i*120) helps creating a cool effect so that 

the feeds are displayed fading in one after another, instead than fading in all at the same time. 

     

    if(!flagDisplayReplies){ // Adding a separation line between the feeds only if there have to be no replies. 

     $(whereToWrite).append('<hr style="border-top: dotted 1px; margin:0; padding:0 0 8px; clear:both; height:0;" />'); 

    } 

   } 

    

    

   // Appending first the hidden reply textarea 

   var tempParentWhereToWrite; 

   if( parentWhereToWrite[0] === '#'){ tempParentWhereToWrite = parentWhereToWrite.substring(1); } 

   else{ tempParentWhereToWrite = parentWhereToWrite; } 

   var thisFeedSection = $(whereToWrite+" #feedsItem"+threadId.replace(/(:|\.|\[|\])/g, "\\$1")); // Catching this feed's section 

   // Appending the reply section that will be shown when pressing the "reply" button of a feed. 

   $('<div class="textbox'+ tempParentWhereToWrite + threadId +'">' + 

     '<p id="textAreaReplySection"> <textarea placeholder="" wrap="hard" id="textareaReply" class="textareaReply'+ 

tempParentWhereToWrite + threadId +'"></textarea> </p>' + 

     '<p class="replyButtonsGroup"> <input type="button" value="Reply" id="replyButton" class="uploadMessage'+ 

tempParentWhereToWrite + threadId +'" onclick="socialAPI().createReply(&#39;'+tempParentWhereToWrite+' '+whereToWrite+' '+threadId+'&#39;)"> </p>' + 

    '</div>').insertAfter(thisFeedSection); 

   // To include also the "Clear text area" button, use this code: <input type="button" value="Clear text" id="replyButton" 

class="clearMessage'+threadId+'" onclick="clearReplyText(&#39;'+tempParentWhereToWrite+' '+whereToWrite+' '+threadId+'&#39;)"> 

    

   // We are now hiding the textAreaRreply section. This has to do be done here and not in the CSS because otherwise it will not work well in IE 

(even IE11), causing the whole page to crash if Enter is pressed while the cursor is inside the textbox (my personal comment: <the "good" old IE>). 

   var elem = getElementInsideContainer(whereToWrite, "textareaReply" + tempParentWhereToWrite + threadId); // Getting the element of the 

'textareaReply' just appended to the 'whereToWrite' section. 

   $(elem).hide(); 

    

    

    

   if(!flagDisplayReplies){ // If we don't want to display the replies 

    continue;  // we can stop here and go on to the next feed. 

   } 

    

    

   var replies = thread.Replies.results;  // Catching the eventually present replies of this thread 

    

   // We now look at the replies for this particular post. If any is found it is showed to the User. 

   // The User is able to delete answers written by other people. 

   if(replies.length > 0){ 

     

    var parts; 

    var prefix = "http://"; 

    var index; 

     

    for(var j=0; j < replies.length; j++) { 

      

     /* The Server gives us the replies in inverted chronological order (most recent feed first), 

      * but we want to display them like on Social, so oldest first  

      * --> then we will use [ replies.length -1 -j ] as index for the single reply to be displayed. */ 

     var reply = replies[ replies.length -1 -j ];    // Capturing a single 

reply 

     var creatorOfTheReply = thread.Actors.results[reply.AuthorIndex]; // Reading the creator of the reply 

      

     // Checking the presence of attachments, like image, to the feeds. 

     att = reply.Attachment; 
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     attachmentUri = null;  // Resetting the attachment Uri 

     // If there is any attachment...  

     if( att !== null && att !== undefined ){ 

      // and it is an image (image -> AttachmentKind = 0)... 

      if( att.AttachmentKind === 0 ){ 

       attachmentUri = att.Uri; // Memorizing the URI of the image attachment 

      } 

     } 

     var attachmentString; 

     if( attachmentUri === undefined || attachmentUri === null || attachmentUri === ''){ 

      attachmentString = ''; 

     }else{ 

      attachmentString = '<p> <img id="attachmentImage" src="'+attachmentUri+'" 

onerror="this.parentElement.removeChild(this);" /> </p>'; 

     } 

 

      

     // "accountName" and "personalAboutPage" has already been declared before, so we will not use the keyword "var". 

     accountName = creatorOfTheReply.AccountName.split("\\"); 

     accountName = accountName[accountName.length-1]; 

     personalAboutPage = socialWebsite + "Person.aspx?accountname=CERN%5C" + accountName; 

      

     dateTime = new Date(reply.CreatedTime); 

     dateString = createDateString(dateTime); 

      

     replyId = reply.Id; // This is important to memorize on the html page. It will not be shown to the User, but it 

will become very useful for the other functions (e.g.: for the Replies). 

      

     profilePicUri = creatorOfTheReply.ImageUri; // Reading the URI of the profile picture of the User. 

     // Consistency check. If no picture is found -> use the anonymous profile picture. 

     if( profilePicUri === null || profilePicUri === undefined || profilePicUri ===""){ 

      profilePicUri = socialWebsite + "_layouts/15/images/PersonPlaceholder.42x42x32.png?rev=23"; 

     } 

      

     text = reply.Text; 

     text = myEscapeHTML(text); // Preventing code injection! 

     text = text.replace(/\n/g, "</br>");  // Replacing all the new line character ('\n') with 

the equivalent in HTML. 

     text = formatText(text, whereToWrite);  // This function will adapt the text to our needs 

      

     /*********************************************************** 

      * Checking the existence of people that like the message. 

      ***********************************************************/ 

     // If the number of people who likes this reply is 0 (no-one) 

     if(reply.LikerInfo.TotalCount === 0){ 

      likeCounterString = "";  // If nobody liked the reply nothing particular is 

shown 

     }else{ 

      // If someone liked the post... e.g. 23 liked the reply -> (smile 23) 

      likeCounterString = "<span class=\"smile\"></span> <b>" + reply.LikerInfo.TotalCount + "</b>";

  

     } 

      

      

     // If the User likes the reply we will show the 'Unlike' button 

     if(reply.LikerInfo.IncludesCurrentUser){ 

      likeString = '<span> <a onclick="socialAPI().unlikeReplyFunction(&#39;'+threadId+' '+j+' 

'+whereToWrite+'&#39;)" href="javascript:void(0);"> Unlike </a> </span>'; 

     }else{ 

      // Otherwise we show the 'Like' button 

      likeString = '<span> <a onclick="socialAPI().likeReplyFunction(&#39;'+threadId+' '+j+' 

'+whereToWrite+'&#39;)" href="javascript:void(0);"> Like </a> </span>'; 

     } 

      

      

      

     if( whereToWrite === "#socialAPIFollowedFeeds"){ 

      deleteString = '<span id="deleteReply"> <a href="javascript:void(0);" id="deleteReply" 

onclick="socialAPI().deleteReply(&#39;'+replyId+'&#39;)"> <b> X </b> </a> </span>'; 

     } 

     else{ 

      deleteString = ''; 

     } 

      

     /* id = var specifying the feed. 

      * j = var specifying the reply. 

      * id j = the reply number j of the feed number id.   */ 

     var replyStr = '<div class="replyItem" id="replyItem'+threadId+' '+j+'"> ' + 

          '<div class="table">' + 

           '<div 

class="picSection">' + 

            '<a 

href="'+personalAboutPage+'" target="_blank">' + 

            

 '<img src="'+profilePicUri+'" id="profileReplyPicture" /> ' + 

            '</a>' + 

           '</div>' + 

           '<div 

class="notPicSection">' + 

            '<p> 

<span id="author"> <a href="'+personalAboutPage+'" target="_blank">'+ creatorOfTheReply.Name + '</a> </span> '+ deleteString +' </p>' + 

            '<p 

id="replyText'+threadId+' '+j+'">' + text  + '</p>' + 

           

 attachmentString + 

            '<span 

class="noWrapString"><span class="date">' + dateString + '</span> &nbsp;&nbsp;</span> <span class="slideLeft">&nbsp;</span>' +  

            '<span 

class="noWrapString">' + 

            

 '<span id="reply'+threadId+' '+j+'"><span id="likeCounter'+threadId+' '+j+'">' + likeCounterString + '</span>' + likeString + '</span>' +  

           

 '</span>' + 
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            '<p 

class="replyId" id="replyId'+threadId+' '+j+'">'+replyId+'</p>' + 

           '</div>' + 

          '</div>' + 

         '</div>'; 

     $(replyStr).hide().insertAfter(thisFeedSection).fadeIn(800 + (i*120) + (j*120)); 

      

    } 

   } 

    

    

    

   // Let's examine the next feed 

  } 

   

   

  // If we are adding new feeds at the top of the section... 

  if( howToWriteFeeds == "prepend" ){ 

   return; // ...we can end here the function, without check for more feeds. 

  } 

  

  // Reading again the name of the owner of the feed because if there is any reply it would have been replaced by now. 

  if( participants[thread.OwnerIndex].AccountName === null || participants[thread.OwnerIndex].AccountName === undefined ){ 

   accountName = participants[thread.OwnerIndex+1].AccountName.split("\\"); 

  } 

  else{ 

   accountName = participants[thread.OwnerIndex].AccountName.split("\\"); 

  } 

   

  accountName = accountName[accountName.length-1]; 

   

  // Adding an extra element to the feeds section. 

  // This button will allow the User to ask for more feeds. 

  var dateTimeString = dateTimeFeed.toJSON(); // Converting the dateTime of the last feed printed to give the function the correctly formatted string, that will 

work for the REST calls. 

   

  // numFeedsDisplayed = document.getElementById(whereToWrite.substring(1)).getElementsByClassName("feedsItem").length; // Reading the number of feeds 

displayed in the "whereToWrite" HTML section. 

  if(numFeedsTotal == 0){ // If the User wants to retrieve all the feeds 

   moreFeedsFunction(dateTimeString, whereToWrite, parentWhereToWrite, accountName, 0, numFeedsStillToGet, flagDisplayReplies); // We 

keep retrieving the feeds as long as there are some. 

  }else{ 

   if( numFeedsStillToGet - numFeedsDisplayed  >  0){ // If not even "numFeedsToDisplay" feeds have been retrieved from Social... 

    // we call for more. 

    moreFeedsFunction(dateTimeString, whereToWrite, parentWhereToWrite, accountName, numFeedsTotal, numFeedsStillToGet-

numFeedsDisplayed, flagDisplayReplies); 

   }else{ 

    

    if( (numFeedsTotal !== null && numFeedsTotal !== undefined && numFeedsTotal > 0 && numFeedsTotal <= 20)  &&  numFeedsToDisplay < 

numFeedsStillToGet){ // If we displayed every feed we could and there are no more feeds on Social: 

     var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the 

function 'fadeOut' will work only once. 

     $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> No more feeds available. </p> 

</div>'); // Printing the "problem" message on the screen 

     $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 

     setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML 

code after 7 seconds. 

      

    }else{ 

     // Enough feeds have been displayed for now. 

      

     // Stopping the retrieval of feeds and displaying the button to retrieve even more feeds. 

     $(whereToWrite).append('<a id="moreFeedsButton" class="moreFeedsButton" 

href="javascript:socialAPI().moreFeedsFunction(&#39;'+ dateTimeString +'&#39;, &#39;'+ whereToWrite +'&#39;, &#39;'+ parentWhereToWrite +'&#39;, &#39;'+ accountName +'&#39;, &#39;'+ 

numFeedsTotal +'&#39;, &#39;'+ numFeedsTotal +'&#39;,&#39;'+ flagDisplayReplies +'&#39;)"> Show more posts </a>'); 

    } 

   } 

  } 

 } 

  

  

 /* This function uses a regular expression to replace the following characters and thus sanitize a string from containing executable code: 

  * <, >, &, ", ', `, , !, @, $, %, (, ), =, +, -, {, |, }, ~, [, ], ., \, ^, :, ;, ? 

  * including the space character! 

  * In order to do this we map the correspondences and use the replace function. 

  * Input: the string 

  * Output: the message, encoded to be correctly represented in a HTML webpage. */ 

 function myEscapeHTML(text){ 

  // We don't use the complete map because it can interfere with the  

  // var completeMAP = { 

   // '<': '&lt;', '>': '&gt;', '&': '&amp;', '"': '&#34;', "'": '&#39;', '`': '&#96;', ' ': '&#32;', '!': '&#33;', '@': '&#64;', '$': '&#36;', 

'%': '&#37;', '(': '&#40;', ')': '&#41;', '=': '&#61;', '+': '&#43;', '-': '&#45;', '{': '&#123;', '|': '&#124;', '}': '&#125;', '~': '&#126;', '[': '&#91;', ']': '&#93;', '.': '&#46;', 

'\\': '&#92;', '^': '&#94;', ':': '&#58;', ';': '&#59;', '?': '&#63;' 

  // };  // note: the single quote (') cannot be replaced with '&apos;', because it is not valid HTML 4. We have to use '&#39;'. 

   

  var MAP = { 

   '<': '&lt;', '>': '&gt;', '"': '&#34;', "'": '&#39;', '`': '&#96;', '!': '&#33;', '@': '&#64;', '$': '&#36;', '{': '&#123;', '|': '&#124;', '}': 

'&#125;', '[': '&#91;', ']': '&#93;', '\\': '&#92;', '^': '&#94;' 

  };  // note: the single quote (') cannot be replaced with '&apos;', because it is not valid HTML 4. We have to use '&#39;'. 

  return text.replace(/[\<\>\"\'\`\!\@\$\{\|\}\[\]\\\^]/g, function (a) { return MAP[a]; }); 

 } 

  

 /* This function is called to substitute a tag contained in a feed with a link construct. That will let the User be able, clicking on the tag, to retrieve all the feed with 

that tag 

  * Input: 

  * - the text of the feed 

  * - the index of the tag inside the feed 

  * - the tag to substitute 

  * - the section where the tag will be written 

  * Output: 

  * - the updated text of the feed 

  */ 

 function tagReplace(text, index, tag, whereToWrite){ 
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  var gap; 

  if(socialWebsite === "https://social-dev.cern.ch/"){ 

   gap = '<a href="'+ socialWebsite +'search/Pages/conversationresults.aspx?k=%23'+ tag.substring(1, tag.length) +'" target="_blank"><strong>'+ tag 

+'</strong></a>'; 

  }else{ 

   // else: we are in the Production environment 

   gap = '<a href="'+ socialWebsite +'search/Pages/results.aspx?k=%23'+ tag.substring(1, tag.length) +'" target="_blank"><strong>'+ tag 

+'</strong></a>'; 

  } 

  // var functionInputStr = "'"+ tag +"','"+ whereToWrite +"', 0"; // we have to adopt this method to pass the two input variable to the next function. 

  // var gap = '<a onclick="socialAPI().updateFeedsWithSameHashtag('+ functionInputStr +')" href="javascript:void(0)"><strong>'+ tag +'</strong></a>'; 

   

  var textLength = text.length; 

   

  var textBeforeTheTag = text.substring(0, index); 

  var textAfterTheTag = text.substring(index+tag.length, text.length); 

  var textAndLengthOfString = new textObj(textBeforeTheTag + gap + textAfterTheTag,  gap.length - tag.length); 

   

  return textAndLengthOfString; 

 } 

  

 function textObj(text, length){ 

  this.text = text; 

  this.gap = length; 

 } 

 

 // This function checks if there is a substring inside a longer string 

 function compareSubstring(str, startIndex, numberOfCharsToCheck, strToCompare){ 

  var index = startIndex; 

  var j=0; 

   

  while( j < numberOfCharsToCheck ){ 

   if( str[index] !== strToCompare[j] ){ 

    return false; 

   } 

   // else: the character is the same 

    

   index++; 

   j++; 

  } 

  // all the characters found are equal 

   

  return true; // the strings are equal 

 } 

  

  

 /* This function creates the string that will display the date and time of each feed and reply. 

  * Input: 

  * - the date object of the feed or reply */ 

 function createDateString(dateObj){ 

  var day = dateObj.getDay(); 

   

  switch(day){ 

   case 0: day="Sun"; 

     break; 

   case 1: day="Mon"; 

     break; 

   case 2: day="Tue"; 

     break; 

   case 3: day="Wed"; 

     break; 

   case 4: day="Thu"; 

     break; 

   case 5: day="Fri"; 

     break; 

   case 6: day="Sat"; 

     break; 

   default: day = "Mon"; 

     break; 

  } 

   

  var month = dateObj.getMonth(); 

   

  switch(month){ 

   case 0: month="Jan"; 

     break; 

   case 1: month="Feb"; 

     break; 

   case 2: month="Mar"; 

     break; 

   case 3: month="Apr"; 

     break; 

   case 4: month="May"; 

     break; 

   case 5: month="Jun"; 

     break; 

   case 6: month="Jul"; 

     break; 

   case 7: month="Aug"; 

     break; 

   case 8: month="Sep"; 

     break; 

   case 9: month="Oct"; 

     break; 

   case 10: month="Nov"; 

     break; 

   case 11: month="Dec"; 

     break; 

   default: month="Jan"; 

     break; 

  } 
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  var numberOfTheDay = dateObj.getDate(); // Returns the day of the month (from 1-31) 

  if(numberOfTheDay < 10){ 

   numberOfTheDay = parseInt(0, 10).toString() + parseInt(numberOfTheDay, 10); // This way if the month is the 5th it will be displayed 

as "05", instead of "5" 

  } 

  var hours = dateObj.getHours(); 

  if(hours < 10){ 

   hours = parseInt(0, 10).toString() + parseInt(hours, 10); 

  } 

  var minutes = dateObj.getMinutes(); 

  if(minutes < 10){ 

   minutes = parseInt(0, 10).toString() + parseInt(minutes, 10); 

  } 

  var seconds = dateObj.getSeconds(); 

  if(seconds < 10){ 

   seconds = parseInt(0, 10).toString() + parseInt(seconds, 10); 

  } 

   

   

  var time = hours+ ':' +minutes+ ':' +seconds; // Creates a time string like "09:15:42" 

   

  var str = day+ ' ' +month+ ' ' +numberOfTheDay+ ' ' +dateObj.getFullYear()+ ' ' +time; // The final string that will be given as output 

 

  return str; 

 } 

  

  

 // This function retrieves an element in a container. It is used to retrieve the reply sections inside the section for the feeds coming from a specific profile. 

 // Use: var e = getElementInsideContainer("div1", "edit2"); 

 function getElementInsideContainer(containerID, childClass) { 

  if(childClass[0] === '#'){ childClass = childClass.substring(1); } 

   

  var elm = document.getElementsByClassName(childClass); 

  if(elm.length === 0 || elm === null || elm === undefined){ return null; } // Consistency check 

   

  // Checking the ID string 

  if(containerID[0] === '#'){  

   containerID = containerID.substring( 1, containerID.length);  

  } 

   

  var parent; 

  for(i=0; i<elm.length; i++){ 

   parent = elm[i] ? elm[i].parentNode : {}; 

    

   // If there is a parent node 

   if( parent ) 

   {   

    if( parent.id === containerID ){ 

     return elm[i];  // The element returned will be the one inside the section with class 'containerID' 

    } 

    else 

    { 

     parent = parent.parentNode.parentNode; 

     if( parent.id && parent.id === containerID){ 

      return elm[i];  // The element returned will be the one inside the section with class 

'containerID' 

     } 

    } 

   } 

  } 

   

  return null; // Default return value; 

 } 

  

  

 /* This function returns True if the string passed in input is a valid URL, False otherwise. 

  * Input: the string to analize 

  * Output:  

  *  - True if the string contains an URL 

  *  - False otherwise 

  */ 

 function validateURL(str) { 

  // RegEx: Development word used to find this function easily while programming. 

  // Creating a Regular Expression to recognise if the string is a website or not. 

  // string to be deleted: left for development purpose.  ^((?!href\=\").) 

  var pattern = /^((ftp|https?):\/\/)?(www\.)?([\w\-]{2,})([\.][\w\-]{2,})*([\.][a-z]{2,})+([\/][\w\+\-\?\.\&\%\=\#\:\;\(\)\~]{2,})*[\/]?/i; 

   

  // Testing the string with the regular expression 

  if(!pattern.test(str)) { 

   return false; // It has not been recognised as a URL. Display it as simple string. 

  } else { 

   return true; // Otherwise: display it as a link. 

  } 

 

 } 

  

  

 // Function called by the User while pressing the button "More feeds". 

 function moreFeedsFunction(dateTime, whereToWrite, parentWhereToWrite, accountName, numFeedsToDisplay, numFeedsStillToGet, flagDisplayReplies){ 

   

  if(whereToWrite === "#socialAPIFollowedFeeds"){ 

   // Example of website to refer to:  https://social.cern.ch/_api/social.feed/my/news(OlderThan=@v)?@v=datetime'2014-01-20T07:52:40.5567953Z' 

   executeRestCallExtendedSix(myFeedManagerEndpoint + "my/news(OlderThan=@v)?@v=datetime'"+dateTime+"'", 'GET', null, moreFeedsBodyFunction, 

onError, whereToWrite, parentWhereToWrite, numFeedsToDisplay, numFeedsStillToGet, flagDisplayReplies); // searches the feeds and passes them to the function "moreFeedsBodyFunction()" 

  } 

  else{ 

   var tagText = accountName; 

   if(tagText[0] === '#'){ tagText = tagText.substring(1); } 

   if( whereToWrite.substring(0, 30) === "#socialAPIFeedsWithSameHashtag"){ 

    executeRestCallExtendedFive(searchRestService + "query?querytext='tags:%23"+ tagText +" write<\""+ dateTime 

+"\"'&sourceid='459dd1b7-216f-4386-9709-287d5d22f568'&sortlist='created:1'", 'GET', null, retrieveFeedsWithSameTagBodyFunction, onError, whereToWrite, parentWhereToWrite, numFeedsToDisplay, 

flagDisplayReplies); // searches the tags and display the tagged feeds grouped 

   }else{ 
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    // else: The button is in a section feedsFromProfile... 

     

    // Example of website to refer to:  

https://social.cern.ch/_api/social.feed/actor(item='cern\\actorName')/feed(OlderThan=@v)?@v=datetime'2014-01-20T07:52:40.5567953Z' 

    executeRestCallExtendedSix(myFeedManagerEndpoint + 

"actor(item='cern\\"+accountName+"')/feed(OlderThan=@v)?@v=datetime'"+dateTime+"'", 'GET', null, moreFeedsBodyFunction, onError, whereToWrite, parentWhereToWrite, numFeedsToDisplay, 

numFeedsStillToGet, flagDisplayReplies); // searches the feeds and passes them to the function "moreFeedsBodyFunction()" 

   } 

  } 

   

 } 

  

 function moreFeedsBodyFunction(data, whereToWrite, parentWhereToWrite, numFeedsToDisplay, numFeedsStillToGet, flagDisplayReplies){ 

  try{ 

   var result = JSON.parse(data); // parsing the data obtained from the social network 

  }catch(e){ 

   var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'fadeOut' will work 

only once. 

   $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> Network problem. Please try to refresh the page later. </p> 

</div>'); // Printing the "problem" message on the screen 

   $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 

   setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds. 

    

   console.log("There was a problem while communicating with the Server.\nSee moreFeedsBodyFunction() function.");  

   return;  

  } 

  // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console 

log 

  if(result.error){ 

   var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'fadeOut' will work 

only once. 

   $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> Network problem. Please try to refresh the page later. </p> 

</div>'); // Printing the "problem" message on the screen 

   $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 

   setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds. 

    

   console.log("Bad request.\nPlease review the moreFeedsBodyFunction() function."); 

   return; 

  } 

   

   

   

  // Consistency check : if no information has been retrieved... 

  if(result.d === null || result.d === undefined) 

  {  

   var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'fadeOut' will work 

only once. 

   $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> Network problem. Please try to refresh the page later. </p> 

</div>'); // Printing the "problem" message on the screen 

   $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 

   setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds. 

    

   return; 

  } 

  // else... 

   

  // Stopping the automatic retrieval of new feeds that would hide the "extra" feeds that the User may be reading at the moment. 

  // To refresh the feeds and reactivate the automatic retrieval (of the feeds) the User may click on the "News" button on the right top of the page, or refresh 

the whole web-page. 

  try{ 

   var handler = findMyHandler(whereToWrite); 

   if(handler !== -1){ 

    clearInterval(handler); 

   } 

    

   var button = getElementInsideContainer(whereToWrite, "moreFeedsButton"); 

   button.parentNode.removeChild(button);  // Removing the "Show more posts" button, if there is. 

  }catch(err){} 

   

   

  var feeds = result.d.SocialFeed.Threads.results; // capturing the feeds 

   

  // If no feed is found... (it is an array, so we can check the length) 

  if(feeds.length === 0){ 

   // Printing the "no feed" message on the screen 

   var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'fadeOut' will work 

only once. 

   $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> No more feeds available. </p> </div>'); // Printing the 

"problem" message on the screen 

   $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 

   setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds. 

    

   return; 

  } 

  else{ //else: every feed found is printed 

    

    

   appendFeeds(feeds, whereToWrite, parentWhereToWrite, numFeedsToDisplay, numFeedsStillToGet, flagDisplayReplies);  // 

Appending the new feeds to the previous ones. 

    

    

  } 

 } 

  

 // This function opens the thread considered, with all of its replies, in a new tab in the browser. 

 // It opens the website memorized in the "permalink" variable into a new tab. 

 function moreRepliesFunction(permalink){ 

  window.open(permalink, '_blank'); 

 } 

  

 // This function deletes the feed considered (the i-th feed) 

 // 'id' is the unique id of the feed that has to be deleted 

 function deleteFeed(id){ 
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  var x = confirm("Are you sure you want to get rid of this conversation?"); 

  if(x === false) { return; } // If the User clicks on 'No' then -> do nothing; else: continue 

   

  $('#tempID').html(id);  // Memorizing the id into an invisible html field 

   

  executeRestCall(formDigestUrl, 'POST', null, deleteFeedFunction, onError); 

 } 

  

 // This function follows "deleteFeed(i)". 

 // If the feed has any reply the feed is deleted and the replies are deleted with it. 

 function deleteFeedFunction(data){ 

   

  try{ 

   var result = JSON.parse(data); // parsing the data obtained from the social network 

  }catch(e){  

   console.log("There was a problem while communicating with the Server.\nSee deleteFeedFunction() function.");  

   return;  

  } 

  // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console 

log 

  if(result.error){ 

   console.log("Bad request.\nPlease review the deleteFeedFunction() function."); 

   return; 

  } 

   

  var formDigest = result.d.GetContextWebInformation.FormDigestValue; 

  var threadId = $('#tempID').html();  // reading the id of the message to delete 

   

  // Starting the request for the deletion of the feed. 

  // Deleting the feed any reply is discarded with it. 

  var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Delete"); // Creating CORSRequest to Delete the message 

  xhr.onload = function () { 

   // After the operation the User has to see the feed disappear from the page 

   var el = document.getElementById('feedsItem'+threadId); 

   el.parentNode.removeChild(el); 

 

   // var firstReply = $('#replyItem'+threadId+' 0'); 

   var firstReply = document.getElementById('replyItem'+threadId+' 0'); 

    

   if( firstReply !== null){ 

    var elReply; 

     

    // If there is even only one reply to this feed we need to refresh the page to make the replies disappear 

    for(var i=0; (document.getElementById('replyItem'+threadId+' '+i)) !== null; i++){ 

     // We do not need to call the function "deleteReply()", because deleting the feed will also delete its replies. 

     // We just need to delete the replies from the html page. 

     elReply = document.getElementById('replyItem'+threadId+' '+i); 

     elReply.parentNode.removeChild(elReply); 

    } 

     

   } 

    

   // If no more feeds are displayed... (if even the first feed (feed[0]) has been deleted...) 

   if (isEmpty($("#socialAPIFollowedFeeds"))) { 

    $("#socialAPIFollowedFeeds").append('<div class="feedsItem"> <p id="text"> No feeds available </p> </div>'); 

   } 

    

  }; 

  xhr.onerror = function (e1, e2, e3) { 

   errorHandlerFunction(2, 'There has been an error while deleting the feed. Please try again later.'); 

  }; 

  xhr.withCredentials = true; 

 

  xhr.setRequestHeader("X-RequestDigest", formDigest); 

  xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose"); 

   

  var data = "{ 'ID':'"+threadId+"' }";  // Including the ID of the feed we want to 'Delete' 

 

  xhr.send(data); // Sending the 'Delete' request 

   

 } 

  

  

 /* This function returns the content of an html section avoiding to consider spaces and line breaks. 

  * Input: 

  *  the html element to control 

  * Output: 

  *  True  = the section is empty 

  *  False = the section is not empty 

  */ 

 function isEmpty( el ){ 

    return !$.trim(el.html()); 

 } 

  

  

 // This function deletes the reply message 

 function deleteReply(replyId){ 

   

  var x = confirm("Get rid of this reply?"); 

  if(x === false) { return; } // If the User clicks on 'No' then -> do nothing; else: continue 

   

  $('#tempReplyIndex').html(replyId); // Memorizing the index that the reply has on Social 

   

  executeRestCall(formDigestUrl, 'POST', null, deleteReplyFunction, onError); 

 } 

  

 function deleteReplyFunction(data){ 

  try{ 

   var result = JSON.parse(data); // parsing the data obtained from the social network 

  }catch(e){  

   console.log("There was a problem while communicating with the Server.\nSee deleteReplyFunction() function.");  

   return;  
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  } 

  // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console 

log 

  if(result.error){ 

   console.log("Bad request.\nPlease review the deleteReplyFunction() function."); 

   return; 

  } 

   

  var formDigest = result.d.GetContextWebInformation.FormDigestValue; 

  var replyId = $('#tempReplyIndex').html(); // reading the index of the reply on Social 

 

  var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Delete"); // Creating CORSRequest to Delete the message 

  xhr.onload = function () { 

   // After the operation the User has to see the feed disappear from the page 

   manuallyUpdateAllTheFeeds(); // Updating all the feeds displayed 

  }; 

  xhr.onerror = function (e1, e2, e3) { 

   errorHandlerFunction(3, "There has been an error while deleting the reply."); 

  }; 

  xhr.withCredentials = true; 

 

  xhr.setRequestHeader("X-RequestDigest", formDigest); 

  xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose"); 

   

  var data = "{ 'ID':'"+replyId+"' }";  // Including the ID of the feed we want to 'Delete' 

 

  xhr.send(data); // Sending the 'Delete' request 

 } 

  

  

 /* Function that realizes the unfollow operation. 

  * If a User wants to delete a feed posted from another User he has to "unfollow" that User. Otherwise the feed will remain as is. 

  */ 

 function unfollowPerson(temp){ 

   

  var temp2 = temp.split("- -"); 

   

  // Reading the actor name of the followed User and its nickname on Social 

  var actorName = temp2[0]; 

  var actorId = temp2[1]; 

  var whereToWrite = temp2[3]; 

  var updateInterval = temp2[4]; 

  temp = temp2[temp2.length-1].split("\\"); // 'temp' should become from "cern\\name" an array like "[cern,name]" 

  var accountName = temp[temp.length-1]; 

   

  // Is the User sure? 

  var x = confirm("Would you like to stop following " + actorName + " and no longer receive this person's updates in your feed?"); 

  if(x === false){ return; } // If the User clicks on 'No' then -> do nothing; else: continue 

   

  // Saving variables in invisible fields into the html page 

  $('#accountName').html(accountName);  // Memorizing the account's name into an invisible html field 

  $('#tempID').html(actorId);     // Memorizing the account's id into an invisible html field 

  $('#feedsSectionName').html(whereToWrite); 

  $('#messageToUpload').html(updateInterval); 

   

  // Calling the Server to get the formDigest and then calling the function 'unfollowPersonFunction()' to call the "unfollow" operation. 

  executeRestCallExtendedFour(formDigestUrl, 'POST', null, unfollowPersonFunction, onError);  

 } 

  

 function unfollowPersonFunction(data){ 

  try{ 

   var result = JSON.parse(data); // parsing the data obtained from the social network 

  }catch(e){  

   console.log("There was a problem while communicating with the Server.\nSee unfollowPersonFunction() function.");  

   return;  

  } 

  // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console 

log 

  if(result.error){ 

   console.log("Bad request.\nPlease review the unfollowPersonFunction() function."); 

   return; 

  } 

   

  var formDigest = result.d.GetContextWebInformation.FormDigestValue; 

   

  var actorId = $('#tempID').html(); 

  var accountName = $('#accountName').html(); 

  var whereToWrite = $('#feedsSectionName').html(); 

  var updateInterval = $('#messageToUpload').html(); 

   

  /* This is the main code for unfollowing a User. It tells: 

   *  - the domain\username attributes of the User to unfollow 

   *  - the id of the User to unfollow 

   */ 

  var xhr = createCORSRequest("POST", apiEndpoint + "social.following/stopfollowing(ActorType=0,AccountName='cern\\"+ accountName +"',Id='"+actorId+"')");

  // Creating CORSRequest to Stop Following the Actor 

  // ActorType 0 is for the Users, 1 is for the Documents, 2 for sites and 3 for Tags. 

   

   

  xhr.onload = function () { 

   // After the operation the User has to see the Actor's feeds disappear from the page. 

   // We refresh the feeds to hide the ones from the Actor that the User has just stopped following: 

   updateFollowedFeeds(whereToWrite, updateInterval);  // updating the followed feeds 

  }; 

  xhr.onerror = function (e1, e2, e3) { 

   errorHandlerFunction(4, "'Stop follow' operation error. Please try again later.\n\nIf the problem persists for more than 24 hours please contact 

the IT Services."); 

  }; 

  xhr.withCredentials = true; 

 

  xhr.setRequestHeader("X-RequestDigest", formDigest); 

  xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose"); 
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  var data = null; 

   

  xhr.send(data); // Sending the 'Stop Following' request 

   

 } 

  

  

 /* Function that implements the mechanism of 'Like' (about feeds) 

  * Input = one string containing: 

  * - the ID of the feed 

  * - the HTML section in which the feeds are displayed. 

  */ 

 function likeFeedFunction(idwhereToWrite) { 

  var id = idwhereToWrite.split(' ')[0]; 

  var whereToWrite = idwhereToWrite.split(' ')[1]; 

  executeRestCallExtended(formDigestUrl, 'POST', null, likeFeedBodyFunction, onError, id, whereToWrite); 

 } 

 // This function shows that the pressing of the 'Like' button has been handled successfully and changes the code to show the 'Unlike' button (with its associated onclick 

function) 

 function likeFeedBodyFunction(data, id, whereToWrite){ 

  try{ 

   var result = JSON.parse(data); // parsing the data obtained from the social network 

  }catch(e){ 

   console.log("There was a problem while communicating with the Server.\nSee likeFeedBodyFunction() function.");  

   return; 

  } 

  // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console 

log 

  if(result.error){ 

   try{ 

    if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exists on Social 

     alert("We couldn't get data from Social. Please visit https://social.cern.ch to set up your profile first."); 

    }else{  // Other error 

     console.log("Bad request.\nPlease review the likeFeedBodyFunction() function."); 

    } 

    return; 

   }catch(e){console.log("Exception thrown in function likeFeedBodyFunction()"); return;} 

  } 

   

  $(whereToWrite).html(''); // Empting the HTMl section to force the update...() function to re-display every feed (with the new . 

   

  var formDigest = result.d.GetContextWebInformation.FormDigestValue; 

   

  var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Like"); // Creating CORSRequest to Like the feed 

  xhr.onload = function () { 

   // If the code reaches this part the operation was a success... and the message has been liked. 

   manuallyUpdateAllTheFeeds(); // and we call the manual update of the feeds to let the User see the new ones. 

  }; 

  xhr.onerror = function (e1, e2, e3) { 

   errorHandlerFunction(5, 'There has been an error while trying to like the feed. \nPlease try again later.'); 

  }; 

  xhr.withCredentials = true; 

   

  xhr.setRequestHeader("X-RequestDigest", formDigest); 

  xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose"); 

   

  var data = "{ 'ID':'"+id+"' }";  // Including the ID of the feed we want to 'Like' 

 

  xhr.send(data); // Sending the 'Like' 

 } 

  

  

  

 /* Function that implements the mechanism of Unlike (about feeds) 

  * Input = one string containing: 

  * - the ID of the feed 

  * - the HTML section in which the feeds are displayed. 

  */ 

 function unlikeFeedFunction(iwhereToWrite){ 

  // i is both the unique id and the index of the feed considered 

  var i = iwhereToWrite.split(' ')[0]; 

  var whereToWrite = iwhereToWrite.split(' ')[1]; 

  executeRestCallExtended(formDigestUrl, 'POST', null, unlikeFeedBodyFunction, onError, i, whereToWrite); 

 } 

 // This function shows that the pressing of the 'Unlike' button has been handled successfully and changes the code to show the 'Like' button (with its associated onclick 

function) 

 function unlikeFeedBodyFunction(data, id, whereToWrite){ 

  try{ 

   var result = JSON.parse(data); // parsing the data obtained from the social network 

  }catch(e){  

   console.log("There was a problem while communicating with the Server.\nSee unlikeFeedBodyFunction() function.");  

   return;  

  } 

  // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console 

log 

  if(result.error){ 

   try{ 

    if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exists on Social 

     alert("We couldn't get data from Social. Please visit https://social.cern.ch to set up your profile first."); 

    }else{  // Other error 

     console.log("Bad request.\nPlease review the likeFeedBodyFunction() function."); 

    } 

    return; 

   }catch(e){console.log("Bad request.\nPlease review the unlikeFeedBodyFunction() function."); return;} 

  } 

   

  $(whereToWrite).html(''); // Empting the HTMl section to force the update...() function to re-display every feed (with the new . 

   

  var formDigest = result.d.GetContextWebInformation.FormDigestValue; 

   

  var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Unlike"); // Creating CORSRequest to Unlike the feed 

  xhr.onload = function () { 

   // If the code reaches this part the operation was a success... and the message has been uploaded. 
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   manuallyUpdateAllTheFeeds(); // and we call the manual update of the feeds to let the User see the new ones. 

  }; 

  xhr.onerror = function (e1, e2, e3) { 

   errorHandlerFunction(6, "There has been an error while trying to unlike the feed. \nPlease try again later"); 

  }; 

  xhr.withCredentials = true; 

 

  xhr.setRequestHeader("X-RequestDigest", formDigest); 

  xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose"); 

   

  var data = "{ 'ID':'"+id+"' }";  // Including the ID of the feed we want to 'Like' 

 

  xhr.send(data); // Sending the 'Like'  

 } 

  

  

  

 // This function executes a 'Like' to a reply of a post 

 function likeReplyFunction(inputString){ 

  var id = ''; 

  for(var i=0; i<inputString.split(' ').length-1; i++){ 

   id += inputString.split(' ')[i] + ' '; 

  } 

  id = id.substring(0,id.length-1); // Taking away the extra space at the end of the string 

  var whereToWrite = inputString.split(' ')[inputString.split(' ').length-1]; 

   

  try{ 

   // Let's find the ID of the reply 

   var replyId = document.getElementById("replyId"+id).innerHTML; 

  }catch(e){ replyId = id; } 

   

  executeRestCallExtended(formDigestUrl, 'POST', null, likeReplyBodyFunction, onError, replyId, whereToWrite); 

 } 

 // Function that executes after likeReplyFunction(). Launched from executeRestCall(formDigestUrl, 'POST', null, likeReplyBodyFunction, onError); if the operation is successful. 

 function likeReplyBodyFunction(data, id, whereToWrite){ 

  try{ 

   var result = JSON.parse(data); // parsing the data obtained from the social network 

  }catch(e){  

   console.log("There was a problem while communicating with the Server.\nSee likeReplyBodyFunction() function.");  

   return;  

  } 

  // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console 

log 

  if(result.error){ 

   try{ 

    if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exists on Social 

     alert("We couldn't get data from Social. Please visit https://social.cern.ch to set up your profile first."); 

    }else{  // Other error 

     console.log("Bad request.\nPlease review the likeFeedBodyFunction() function."); 

    } 

    return; 

   }catch(e){console.log("Bad request.\nPlease review the likeReplyBodyFunction() function."); return;} 

  } 

   

  $(whereToWrite).html(''); 

   

   

  var formDigest = result.d.GetContextWebInformation.FormDigestValue; 

   

  var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Like"); // Creating CORSRequest to Like the feed 

  xhr.onload = function () { 

   manuallyUpdateAllTheFeeds(); 

  }; 

  xhr.onerror = function (e1, e2, e3) { 

   errorHandlerFunction(7, 'Error while trying to like a feed.'); 

  }; 

  xhr.withCredentials = true; 

 

  xhr.setRequestHeader("X-RequestDigest", formDigest); 

  xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose"); 

   

  var data = "{ 'ID':'"+id+"' }";  // Including the ID of the feed we want to 'Like' 

 

  xhr.send(data); // Sending the 'Like' 

 } 

  

  

  

 // This function executes a 'Unlike' to a reply of a post 

 function unlikeReplyFunction(inputString){ 

  var id = ''; 

  for(var i=0; i<inputString.split(' ').length-1; i++){ 

   id += inputString.split(' ')[i] + ' '; 

  } 

  id = id.substring(0,id.length-1); // Taking away the extra space at the end of the string 

  var whereToWrite = inputString.split(' ')[inputString.split(' ').length-1]; 

   

  try{ 

   // Let's find the ID of the reply 

   var replyId = document.getElementById("replyId"+id).innerHTML; 

  }catch(e){ replyId = id; } 

   

  executeRestCallExtended(formDigestUrl, 'POST', null, unlikeReplyBodyFunction, onError, replyId, whereToWrite); 

 } 

 // Function that executes after unlikeReplyFunction(). 

 // Launched from executeRestCall(formDigestUrl, 'POST', null, unlikeReplyBodyFunction, onError); if the operation is successful 

 function unlikeReplyBodyFunction(data, id, whereToWrite){ 

  try{ 

   var result = JSON.parse(data); // parsing the data obtained from the social network 

  }catch(e){  

   console.log("There was a problem while communicating with the Server.\nSee unlikeReplyBodyFunction() function.");  

   return;  

  } 
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  // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console 

log 

  if(result.error){ 

   try{ 

    if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exists on Social 

     alert("We couldn't get data from Social. Please visit https://social.cern.ch to set up your profile first."); 

    }else{  // Other error 

     console.log("Bad request.\nPlease review the likeFeedBodyFunction() function."); 

    } 

    return; 

   }catch(e){console.log("Bad request.\nPlease review the unlikeReplyBodyFunction() function."); return;} 

  } 

   

  $(whereToWrite).html(''); 

   

   

  var formDigest = result.d.GetContextWebInformation.FormDigestValue; 

   

  var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Unlike"); // Creating CORSRequest to Unlike the feed 

  xhr.onload = function () { 

   manuallyUpdateAllTheFeeds(); 

  }; 

  xhr.onerror = function (e1, e2, e3) { 

   errorHandlerFunction(8, 'Error while trying to unlike a reply.'); 

  }; 

  xhr.withCredentials = true; 

 

  xhr.setRequestHeader("X-RequestDigest", formDigest); 

  xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose"); 

   

  var data = "{ 'ID':'"+id+"' }";  // Including the ID of the feed we want to 'Like' 

 

  xhr.send(data); // Sending the 'Like' 

 } 

 

  

 

 // This function Posts a new feed on the personal social web page. 

 function postToMyFeeds(message, inputFunction) { 

   

  // If no message is given in input... [ the function is called as "postToMyFeeds();" ] 

  if( typeof(message) !== "string" || message === null || message === "" || message === undefined ){ 

   message = document.getElementById("textareaPostNewFeed").value; // Getting the feed 

   // If the message is still null 

   if(message === null || message === "" || message === undefined){ 

    console.log("Error: No message passed in input. The new feed can not be created."); 

    $('#nextToPostButton').html("<i> &nbsp; Please write some text first.</i>"); 

    setTimeout("socialAPI().clearMessageToTheUser('nextToPostButton');", 3000);  // This function will 

hide the message after 3 seconds. 

    return; 

   } 

   else{ 

    $('#nextToPostButton').html("");  // Removing text eventually present in this section of the HTML file 

   } 

  } 

   

  if( inputFunction == null  ||  inputFunction == undefined ){ 

   // Default function to execute in case of success. 

   inputFunction = function(flag){ 

    if(flag){ alert("Message posted."); } 

    else{ alert("There has been a problem while posting the message. Please try again later."); } 

   } 

  } 

   

  executeRestCallExtended(formDigestUrl, "POST", null, postMessage, onError, message, inputFunction); // Calling the function that will read the text from 

the p section and post it online 

 } 

 

 /* Function that is demanded to post a message on the Social Network. 

  * The message is read from the <p id="messageToUpload"> section from the html file.  

  */ 

 function postMessage(data, message, inputFunction) { 

   

  // Consistency check 

  if(message === null || message === "" || message === undefined){ 

   console.log("Error: no message to upload"); 

   return; 

  } 

   

  try{ 

   var result = JSON.parse(data); // parsing the data obtained from the social network 

  }catch(e){  

   console.log("There was a problem while communicating with the Server.\nSee postMessage() function.");  

   return;  

  } 

  // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console 

log 

  if(result.error){ 

   try{ 

    if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exists on Social 

     alert("We couldn't get data from Social. Please visit https://social.cern.ch to set up your profile first."); 

    }else{  // Other error 

     console.log("Bad request.\nPlease review the postMessage() function."); 

    } 

    return; 

   }catch(e){console.log("Exception thrown in function postMessage()"); return;} 

  } 

   

  var formDigest = result.d.GetContextWebInformation.FormDigestValue; 

   

  // Since the tags are written as tokens like {0} or {1} we have to make any kind of text which has  

  // numbers (only numbers) between curly parentheses be modified in order to avoid unintended repetitions  

  // of tags in the post. 
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  var fakeTokensArePresent = message.match(/\{[0-9]+\}/); // The '+' means that we are considering only positive integers. 

  if( fakeTokensArePresent !== null ){ 

   message = message.replace(/\{/g,"{ "); 

   message = message.replace(/\}/g," }"); 

  } 

   

  // Using more than one curly bracket per time can bring problems while composing the message for Sharepoint.  

  // The simple solution uses a space between every couple of brackets. Now the brackets do not bother the tags and do not bother while composing the message. 

  if( message.match("{{") ){ 

   message = message.replace(/\{\{/g,"{ {"); 

  } 

  if( message.match("}}") ){ 

   message = message.replace(/\}\}/g,"} }"); 

  } 

   

   

  /*************************************************** 

   * Looking for websites and tags inside the message 

   ***************************************************/ 

  var sitesAndTagsArray = new Array(); 

  var tempTag = ""; 

  var dataItemNumber=0; // number of read tags used for the tokens to apply in the message 

  var tempToken; 

   

  /* Checking the existence of links to websites inside the text of the message. */ 

  // Now we try to find possible URL links inside the text. 

  var parts = message.split(" "); // Splitting the message using the spaces ( URLs don't have spaces ) 

  var i=0; 

   

  for( var x=0; x<parts.length; x++ ){ 

   var afterUrl = '', beforeUrl = ''; 

   while(parts[x][0] === '('  &&  parts[x].length > 2){ 

    beforeUrl += '('; 

    parts[x] = parts[x].substring(1); 

   } 

   while(parts[x][parts[x].length-1] === ')'  &&  parts[x].length > 2){ 

    afterUrl += ')'; 

    parts[x] = parts[x].substring(0, parts[x].length-1); 

   } 

    

   if ( validateURL(parts[x]) ){  

    sitesAndTagsArray.push(new socialDataItemObj(parts[x], 4)); 

    tempToken = "{"+dataItemNumber+"}"; 

    parts[x] = beforeUrl + tempToken + afterUrl; // Replacing the website string into the message with a token like "{0}" or "{1}" 

     

    dataItemNumber++; // increasing the number of read tags. 

    continue; 

   } 

   // else: it is not a URL, so we can check for tags 

    

   i=0; 

   while( i < parts[x].length ){ // It HAS TO recalculate the length everytime because it could happen that two or more tags are written one after 

another without spacing. 

     

    // Making sure that it is a tag (#something) and it is not the HTML code for e.g. curly brackets ("&#123;" and "&#125;") 

    if(parts[x][i] === '#' && isOnlyLetterOrNumber(parts[x][i+1]) && ( parts[x][i+1]!=='1' && parts[x][i+2]!=='2' && 

parts[x][i+3]!=='3' && parts[x][i+4]!==';') && ( parts[x][i+1]!=='1' && parts[x][i+2]!=='2' && parts[x][i+3]!=='5' && parts[x][i+4]!==';') && (i+1) < parts[x].length){ 

     // The first element is a '#' 

     tempTag += parts[x][i]; 

     i++; // moving on 

      

     // From now on only letters and number will be accepted as part of the tag 

      

     // Reading the tag 

     while( i < parts[x].length && isOnlyLetterOrNumber(parts[x][i]) ){ 

       

      tempTag += parts[x][i]; // copying the i-th character of the message into "tempTag" 

      i++; 

     } 

      

     sitesAndTagsArray.push(new socialDataItemObj(tempTag, 3)); // Copying the tag into 'sitesAndTagsArray' 

     tempToken = "{"+dataItemNumber+"}"; 

     parts[x] = parts[x].replace(tempTag, tempToken); // Replacing the tag string into the message with a 

token like "{0}" or "{1}" 

      

     if(dataItemNumber < 10){ 

      // if there are less than 10 tags... 

      i = i - tempTag.length + 2;  // Since the message has been modified we have to move 

the cursor according to the new string to continue examining the text from the right point. 

     }else{ 

      if(dataItemNumber < 100){ 

       // if there are less than 100 tags but more than 9... 

       i = i - tempTag.length + 3; 

      } 

      else{ 

       // There are more than 99 tags? Maybe there is a problem. Stopping the execution. 

       return;  

      } 

     } 

     tempTag = ""; // Resetting 'tempTag' 

     dataItemNumber++; // increasing the number of read tags. 

    } 

     

    i++; 

   } 

  } 

   

  /**************************** 

   * Re-assembling the message 

   ****************************/ 

  message = ""; 

  for( x=0; x<parts.length; x++ ){ 

   message += parts[x] + ' '; 
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  } 

   

  // Converting all the single quotes (') and backslashes (\) in the message adding and extra backslash to each char to let Javascript to read them correctly. 

  // This is done because otherwise there would be a problem during the creation of the post in the 'try' section a few rows below this line. 

  message = message.replace(/\\/g, "\\\\"); // To be able to post single backslashes we have to double each one of them 

  message = message.replace(/'/g, "\\'");     // "\\'" is the right replacement to be able to post single quotes 

   

  if( sitesAndTagsArray.length > 0 ){ 

   // We will now create the string to put inside the 'ContentItems' section of the data inside the CORSRequest 

   var contentItemsString = '{ "results": [ { "__metadata": { "type": "SP.Social.SocialDataItem" }, "Text": "'; 

   i=0; 

   while( i<sitesAndTagsArray.length ){ 

    // if we are analysing the last tag... 

    if( i === sitesAndTagsArray.length-1 ){ 

     contentItemsString += sitesAndTagsArray[i].value; 

     if(sitesAndTagsArray[i].itemType == 4){ 

      contentItemsString += '","Uri": "'+sitesAndTagsArray[i].value; 

     } 

     contentItemsString += '","ItemType": '+ sitesAndTagsArray[i].itemType +' }]},'; 

    }else{ 

     contentItemsString += sitesAndTagsArray[i].value; 

     if(sitesAndTagsArray[i].itemType == 4){ 

      contentItemsString += '","Uri": "'+sitesAndTagsArray[i].value; 

     } 

     contentItemsString += '","ItemType": '+ sitesAndTagsArray[i].itemType +' }, { "__metadata": { "type": 

"SP.Social.SocialDataItem" }, "Text": "'; 

    } 

     

    i++; 

   } 

    

    

    

   // Now the message is well-formed. 

   // We try to post it. 

   try 

   { 

    var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "my/Feed/Post"); 

    xhr.onload = function () { 

     if(this.status == 200){ // If the operation succeeds... than the feed has been uploaded. 

      if(inputFunction !== undefined && inputFunction !== null){ 

       inputFunction(true); 

      } 

       

      updateFollowedFeeds(followedFeedsWhereToWrite, followedFeedsUpdateInterval); // 

...and we call the manual update of the feeds (to show the new one in the webpage) 

     }else{ // We sent the request correctly but there has been a problem 

      var response = this.responseText; 

      if(response.indexOf("Internal error code: 83")){ // If the response from the Server says 

that the problem is that the user has not been found... 

       alert("We couldn't get data from Social. Please visit https://social.cern.ch to set 

up your profile first."); 

      }else{ // Generic error 

       if(inputFunction !== undefined && inputFunction !== null){ 

        inputFunction(false); 

       } 

      } 

     } 

    }; 

    xhr.onerror = function (e1, e2, e3) { 

     errorHandlerFunction(9, 'There has been an error while uploading the message. \nPlease try again later.'); 

     if(inputFunction !== undefined && inputFunction !== null){ 

      inputFunction(false); 

     } 

    }; 

    xhr.withCredentials = true; 

     

    xhr.setRequestHeader("X-RequestDigest", formDigest); 

    xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose"); 

    // Creating the data for the post 

    var data =  " { 'restCreationData':{ " + 

       " '__metadata':{ 'type':'SP.Social.SocialRestPostCreationData'}, " + 

       " 'ID': null, " + 

       "  'creationData':{ " + 

       " 

 '__metadata':{'type':'SP.Social.SocialPostCreationData' }, " + 

       "  'Attachment': null," + 

       "  'ContentItems': " + contentItemsString + 

       "  'ContentText':'" +message+ "', 

'UpdateStatusText':false " + 

       "  } " + 

       " }}"; 

     

    xhr.send(data);  // Uploads the message 

    

   } 

   catch(err) 

   { 

    errorHandlerFunction(9, 'There has been an error while uploading the message. \nPlease try again later.'); 

    if(inputFunction !== undefined && inputFunction !== null){ 

     inputFunction(false); 

    } 

    return; 

   } 

    

  } 

  else 

  { 

   // Now the message is well-formed. 

   // We try to post it. 

   try 

   { 

    var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "my/Feed/Post"); 
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    xhr.onload = function () { 

     if(this.status == 200){ // If the operation succeeds... than the feed has been uploaded. 

      if(inputFunction !== undefined && inputFunction !== null){ 

       inputFunction(true); 

      } 

       

      updateFollowedFeeds(followedFeedsWhereToWrite, followedFeedsUpdateInterval); // 

...and we call the manual update of the feeds (to show the new one in the webpage) 

     }else{ // We sent the request correctly but there has been a problem 

      var response = this.responseText; 

      if(response.indexOf("Internal error code: 83")){ // If the response from the Server says 

that the problem is that the user has not been found... 

       alert("We couldn't get data from Social. Please visit https://social.cern.ch to set 

up your profile first."); 

      }else{ // Generic error 

       if(inputFunction !== undefined && inputFunction !== null){ 

        inputFunction(false); 

       } 

      } 

     } 

    }; 

    xhr.onerror = function (e1, e2, e3) { 

     errorHandlerFunction(9, 'There has been an error while uploading the message. \nPlease try again later.'); 

     if(inputFunction !== undefined && inputFunction !== null){ 

      inputFunction(false); 

     } 

    }; 

    xhr.withCredentials = true; 

     

    xhr.setRequestHeader("X-RequestDigest", formDigest); 

    xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose"); 

    // Creating the data for the post 

    var data =  " { 'restCreationData':{ " + 

       " '__metadata':{ 'type':'SP.Social.SocialRestPostCreationData'}, " + 

       " 'ID': null, " + 

       "  'creationData':{ " + 

       " 

 '__metadata':{'type':'SP.Social.SocialPostCreationData' }, " + 

       "  'ContentText':'" +message+ "', 

'UpdateStatusText':false " + 

       "  } " + 

       " }}"; 

     

    xhr.send(data);  // Uploads the message 

    

   } 

   catch(err) 

   { 

    errorHandlerFunction(9, 'There has been an error while uploading the message. \nPlease try again later.'); 

    if(inputFunction !== undefined && inputFunction !== null){ 

     inputFunction(false); 

    } 

    return; 

   } 

  } 

 } 

  

  

 function socialDataItemObj(value, itemType){ 

  this.value = value; 

  this.itemType = itemType; 

 } 

  

  

 /* This function deletes the text into the inner html section 

  * Input: 

  * - id = the Id of the section (it is used to to find the text to delete) 

  */ 

 function clearMessageToTheUser(id){ 

  try{ 

   document.getElementById(id).innerHTML = ""; 

  } 

  catch(e){ } 

 } 

 

 

 /* This function checks if the passed element is a letter or a number. 

  * If so, it returns true, false otherwise. 

  * Input: 

  * - temp = a symbol 

  */ 

 function isOnlyLetterOrNumber(temp){ 

  // Checking the ASCII character using the ASCII table at http://www.asciitable.com/ 

  if( (asc(temp) >= 48 &&  asc(temp) <= 57) || (asc(temp) >= 65 && asc(temp) <= 90) || (asc(temp) >= 97 && asc(temp) <= 122) || (asc(temp) >= 128 && asc(temp) <= 

255) ){ 

   return true; 

  }else{ 

   return false; 

  } 

 } 

 

 // This function returns the corresponding number of the input symbol in the ASCII table. 

 function asc(String){ 

  return String.charCodeAt(0); 

 } 

 

 

 

 

 /* This function shows the Reply textbox that will be used to send a reply to a feed. 

  * Input: 

  * - inputString: one string containing two sub-strings separated using a space character.  

  *      First there is the name of the section where the feed is written.  



227 
 

  *      Next the id of the feed considered. 

  */ 

 function showReplySection(inputString){ 

  // Reading the input 

  var parentSection = inputString.split(' ')[0]; // the id of the parent section where to find the threadId passed in input (see next line) 

  if(parentSection[0] === '#'){ 

   parentSection = parentSection.substring(1, parentSection.length); // Eliminating the '#' at the beginning. This is necessary for the 

'getElementInsideContainer()' function 

  } 

  var textareaSectionID = inputString.split(' ')[1]; // The ID of the section where the textarea is. 

  var id = inputString.split(' ')[2];  // The 'threadId' 

 

  // The first thing to do is to stop the automatic update of the feeds. 

  // Since the names of the sections are dynamic (decided from the developer when calling each function), we have to stop every automatic update. 

  try{ 

   // Seeking the right update handler and stopping the automatic retrieval of the feeds of that section. 

   var tempHandler = findMyHandler('#' + parentSection); // retrieves the handler starting from the 'parentSection' 

   clearInterval(tempHandler); 

  }catch(err){} 

   

  var idPar = "textbox" + parentSection + id;  // the id of the textbox to be shown 

   

  var obj = getElementInsideContainer(textareaSectionID, idPar); // the object that holds the textbox for the reply 

  var objText = getElementInsideContainer(textareaSectionID, "textareaReply" + parentSection + id);  // the textbox for the reply 

  var objButtonUploadReply = getElementInsideContainer(textareaSectionID, "uploadMessage" + parentSection + id); // the upload-the-reply button 

  // var objButtonUploadFile = getElementInsideContainer(textareaSectionID, "replyButtonUploadFile" + id); // the upload-the-reply button 

 // ToDO. Future development. 

   

  slider = obj; 

  var minHeight = 0; 

  var maxHeight = 120; 

  var time = 400;  // The time needed to show the section 

  var timer = null; 

   

  if(obj === null || obj === undefined) { return; } // Consistency check 

   

  // If the textbox for the replies is closed it slows down and shows itself to the User 

  if(obj.offsetHeight == 0) 

  { 

   $(obj).show(); 

   // Apparently jQuery goes in conflict with "tagcanvas.min.js". Therefore we have to use only Javascript to make the window slide down or up. 

   // Showing the reply section using Javascript 

 

   slider.style.height = minHeight + 'px'; 

    

   var instanceheight = parseInt(slider.style.height, 10);  // Current height 

   var init = (new Date()).getTime(); //start time 

   // var height = (toggled = !toggled) ? maxheight: minheight; //if toggled 

   var height = maxHeight; 

 

   var disp = height - parseInt(slider.style.height, 10); 

   timer = setInterval(function() { 

    var instance = (new Date()).getTime() - init; //animating time 

    if(instance <= time ) { //0 -> time seconds 

     var pos = instanceheight + Math.floor(disp * instance / time); 

     slider.style.height =  pos + 'px'; 

     var op = pos / maxHeight; // pos * 1 / maxHeight where 1 is max-opacity-value 

     slider.style.opacity = op; 

     slider.style.filter = "alpha(opacity="+ (op*100) +")"; // for IE 8 and earlier 

 

    }else { 

     slider.style.height = height + 'px'; // safety side ^^ 

     slider.style.opacity = '1'; 

     slider.style.filter = "alpha(opacity=100)"; // for IE 8 and earlier 

      

     objText.style.display = "flex";    // makes it visible 

     // objButtonUploadFile.style.display = "inline"; // makes it visible  // ToDO. Future 

development. 

     objButtonUploadReply.style.display = "inline"; // makes it visible 

     objText.focus(); // Making the cursor move into the textbox. This way the User does not have to click 

on "Reply" and in the textbox but only on "Reply". 

      

     clearInterval(timer); 

    } 

   },1); 

    

  }else{ 

   // Hide the reply section 

   var instanceheight = parseInt(slider.style.height, 10);  // Current height 

   var init = (new Date()).getTime(); //start time 

   // var height = (toggled = !toggled) ? maxheight: minheight; //if toggled 

   var height = minHeight; 

    

   var disp = height - parseInt(slider.style.height, 10); 

   timer = setInterval(function() { 

    var instance = (new Date()).getTime() - init; //animating time 

    if(instance <= time ) { //0 -> time seconds 

     var pos = instanceheight + Math.floor(disp * instance / time); 

     slider.style.height =  pos + 'px'; 

     var op = pos / maxHeight; // pos * 1 / maxHeight where 1 is max-opacity-value 

     slider.style.opacity = op; 

     slider.style.filter = "alpha(opacity="+ (op*100) +")"; // for IE 8 and earlier 

    }else { 

     slider.style.height = height + 'px'; //safety side ^^ 

     slider.style.opacity = '0'; 

     slider.style.filter = "alpha(opacity=0)"; // for IE 8 and earlier 

      

     // Now that the section is hidden we can make it invisible again. 

     objText.style.display = "none";     // makes 

it invisible 

     // objButtonUploadFile.style.display = "none"; // makes it invisible // ToDO. Future 

development. 

     objButtonUploadReply.style.display = "none"; // makes it invisible 
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     clearInterval(timer); // Terminates itself 

    } 

   },1); 

    

  } 

   

 } 

 

 /* Function that clears the text of the reply that the User is writing (in case the User would like to empty the textbox and re-write the reply) 

  * Input: 

  * - inputString: one string containing two sub-strings separated using a space character.  

  *      First there is the name of the section where the feed is written.  

  *      Next the id of the feed considered. 

  */ 

 function clearReplyText(inputString){ 

  // Reading the input 

  var parentSection = inputString.split(' ')[0]; // the id of the section in which the feeds are displayed. 

  if(parentSection[0] === '#'){ 

   parentSection = parentSection.substring(1, parentSection.length); // Eliminating the '#' at the beginning. This is necessary for the 

'getElementInsideContainer()' function 

  } 

  var whereToWrite = inputString.split(' ')[1]; // the id of the parent section where to find the threadId passed in input (see next line); 

  if(whereToWrite[0] === '#'){ 

   whereToWrite = whereToWrite.substring(1, whereToWrite.length); // Eliminating the '#' at the beginning. This is necessary for the 

'getElementInsideContainer()' function 

  } 

  var id = inputString.split(' ')[2];  // The 'threadId' 

   

  var objText = getElementInsideContainer(parentSection, "textareaReply" + parentSection + id);  // the textbox for the reply 

  objText.value = ""; 

 } 

 

 

 // This function creates a Reply 

 function createReply(inputString) { 

  // Reading the input 

  var parentSection = inputString.split(' ')[0]; // the id of the section in which the feeds are displayed. 

  if(parentSection[0] === '#'){ 

   parentSection = parentSection.substring( 1 ); // Eliminating the '#' at the beginning. This is necessary for the 

'getElementInsideContainer()' function 

  } 

  var whereToWrite = inputString.split(' ')[1]; // the id of the parent section where to find the threadId passed in input (see next line); 

  if(whereToWrite[0] === '#'){ 

   whereToWrite = whereToWrite.substring( 1 ); // Eliminating the '#' at the beginning. This is necessary for the 'getElementInsideContainer()' 

function 

  } 

  var threadId = inputString.split(' ')[2]; 

   

  // Reading the text of the Reply 

  var text = getElementInsideContainer(whereToWrite, "textareaReply"+ parentSection + threadId).value; // Getting the text 

  if(text === null || text === "" || text === undefined){ // consistency check 

   errorHandlerFunction(1, "No text present. Please write some text first."); 

   return; 

  } 

   

  $("#"+whereToWrite).html(''); // Clearing the HTML section to force the update...() function to re-display every feed and its replies. 

   

  /* TO BE IMPLEMENTED: (sending an image with the message) 

  var attachmentUri = getElementInsideContainer(parentSection, "replyButtonUploadFile"+threadId).value; // Getting the URI of the attachment 

  if(attachmentUri !== null || attachmentUri !== undefined){ 

   $('#tempTagText').html(attachmentUri);  // Copying the URI of the attachment into the invisible p section with 

"id=messageToUpload" in the HTML file 

  } 

  else 

  { 

   $('#tempTagText').html(""); // Setting the attachment to empty string 

  } */ 

   

  // We are now ready to post the reply... calling the executeRestCall() function. 

  executeRestCallExtendedFive(formDigestUrl, "POST", null, postReply, onError, text, threadId, parentSection, whereToWrite); 

   

  // The algorithm continues in the postReply() function 

 } 

  

 /* Function that is demanded to post a Reply message on the Social Network. 

  * The message is read from the <p id="messageToUpload"> section from the html file.  

  */ 

 function postReply(data, message, postId, parentSection, whereToWrite) { 

  try{ 

   var result = JSON.parse(data); // parsing the data obtained from the social network 

  }catch(e){  

   console.log("There was a problem while communicating with the Server.\nSee postReply() function.");  

   return; 

  } 

  // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console 

log 

  if(result.error){ 

   try{ 

    if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exists on Social 

     alert("We couldn't get data from Social. Please visit https://social.cern.ch to set up your profile first."); 

    }else{  // Other error 

     console.log("Bad request.\nPlease review the postReply() function."); 

    } 

    return; 

   }catch(e){console.log("Exception thrown in function postMessage()"); return;} 

    

  } 

  var formDigest = result.d.GetContextWebInformation.FormDigestValue; 

   

  // TO BE IMPLEMENTED: var attachmentUri = $('#tempTagText').html();   // and the URI of the attachment 

  var attachmentUri = ''; 
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  // Since the tags are written as tokens like {0} or {1} we have to make any kind of text which has  

  // numbers (only numbers) between curly parentheses be coded in html to avoid unintended repetitions  

  // of tags in the post. 

  var fakeTokensArePresent = message.match(/\{[0-9]+\}/); // The '+' means that we are considering only positive integers. 

  if( fakeTokensArePresent !== null ){ 

   message = message.replace(/\{/g,"{ "); 

   message = message.replace(/\}/g," }"); 

  } 

   

  // Using more than one curly bracket per time can bring problems while composing the message for Sharepoint.  

  // The simple solution uses a space between every couple of brackets. Now the brackets do not bother the tags and do not bother while composing the message. 

  if( message.match("{{") ){ 

   message = message.replace(/\{\{/g,"{ {"); 

  } 

  if( message.match("}}") ){ 

   message = message.replace(/\}\}/g,"} }"); 

  } 

   

   

  /*************************************************** 

   * Looking for tags and websites inside the message 

   ***************************************************/ 

  var sitesAndTagsArray = new Array(); 

  var tempTag = ""; 

  var dataItemNumber=0; // number of read tags used for the tokens to apply in the message 

  var tempToken; 

  /* Checking the existence of links to websites inside the text of the message. */ 

  // Now we try to find possible URL links inside the text. 

  var parts = message.split(" "); // Splitting the message using the spaces ( URLs don't have spaces ) 

  var i=0; 

   

  for( var x=0; x<parts.length; x++ ){ 

   var afterUrl = '', beforeUrl = ''; 

   while(parts[x][0] === '('  &&  parts[x].length > 2){ 

    beforeUrl += '('; 

    parts[x] = parts[x].substring(1); 

   } 

   while(parts[x][parts[x].length-1] === ')'  &&  parts[x].length > 2){ 

    afterUrl += ')'; 

    parts[x] = parts[x].substring(0, parts[x].length-1); 

   } 

    

   if ( validateURL(parts[x]) ){  

    sitesAndTagsArray.push(new socialDataItemObj(parts[x], 4)); 

    tempToken = "{"+dataItemNumber+"}"; 

    parts[x] = beforeUrl + tempToken + afterUrl; // Replacing the website string into the message with a token like "{0}" or "{1}" 

     

    dataItemNumber++; // increasing the number of read tags. 

    continue; 

   } 

   // else: it is not a URL, so we can check for tags 

    

   i=0; 

   while( i < parts[x].length ){ // It HAS TO recalculate the length everytime because it could happen that two or more tags are written one after 

another without spacing. 

     

    // Making sure that it is a tag (#something) and it is not the HTML code for e.g. curly brackets ("&#123;" and "&#125;") 

    if(parts[x][i] === '#' && isOnlyLetterOrNumber(parts[x][i+1]) && ( parts[x][i+1]!=='1' && parts[x][i+2]!=='2' && 

parts[x][i+3]!=='3' && parts[x][i+4]!==';') && ( parts[x][i+1]!=='1' && parts[x][i+2]!=='2' && parts[x][i+3]!=='5' && parts[x][i+4]!==';') && (i+1) < parts[x].length){ 

     // The first element is a '#' 

     tempTag += parts[x][i]; 

     i++; // moving on 

      

     // From now on only letters and number will be accepted as part of the tag 

      

     // Reading the tag 

     while( i < parts[x].length && isOnlyLetterOrNumber(parts[x][i]) ){ 

       

      tempTag += parts[x][i]; // copying the i-th character of the message into "tempTag" 

      i++; 

     } 

      

     sitesAndTagsArray.push(new socialDataItemObj(tempTag, 3)); // Copying the tag into 'sitesAndTagsArray' 

     tempToken = "{"+dataItemNumber+"}"; 

     parts[x] = parts[x].replace(tempTag, tempToken); // Replacing the tag string into the message with a 

token like "{0}" or "{1}" 

      

     if(dataItemNumber < 10){ 

      // if there are less than 10 tags... 

      i = i - tempTag.length + 2;  // Since the message has been modified we have to move 

the cursor according to the new string to continue examining the text from the right point. 

     }else{ 

      if(dataItemNumber < 100){ 

       // if there are less than 100 tags but more than 9... 

       i = i - tempTag.length + 3; 

      } 

      else{ 

       // There are more than 99 tags? Maybe there is a problem. Stopping the execution. 

       return;  

      } 

     } 

     tempTag = ""; // Resetting 'tempTag' 

     dataItemNumber++; // increasing the number of read tags. 

    } 

     

    i++; 

   } 

  } 

   

  /**************************** 

   * Re-assembling the message 

   ****************************/ 
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  message = ""; 

  for( x=0; x<parts.length; x++ ){ 

   message += parts[x] + ' '; 

  } 

   

   

  // Converting all the single quotes (') and backslashes (\) in the message to the respective HTML encoded symbols.  

  // This is done because otherwise there would be a problem during the creation of the post in the 'try' section a few rows below this line. 

  message = message.replace(/\\/g, "\\\\"); 

  message = message.replace(/'/g, "\\'"); 

   

  /************************************** 

   *  If there are some TAGS or WEBSITES 

   **************************************/ 

  if( sitesAndTagsArray.length > 0 ){ 

    

   // We will now create the string to put inside the 'ContentItems' section of the data inside the CORSRequest 

   var contentItemsString = '{ "results": [ { "__metadata": { "type": "SP.Social.SocialDataItem" }, "Text": "'; 

   i=0; 

   while( i<sitesAndTagsArray.length ){ 

    // if we are analysing the last tag... 

    if( i === sitesAndTagsArray.length-1 ){ 

     contentItemsString += sitesAndTagsArray[i].value; 

     if(sitesAndTagsArray[i].itemType == 4){ 

      contentItemsString += '","Uri": "'+sitesAndTagsArray[i].value; 

     } 

     contentItemsString += '","ItemType": '+ sitesAndTagsArray[i].itemType +' }]},'; 

    }else{ 

     contentItemsString += sitesAndTagsArray[i].value; 

     if(sitesAndTagsArray[i].itemType == 4){ 

      contentItemsString += '","Uri": "'+sitesAndTagsArray[i].value; 

     } 

     contentItemsString += '","ItemType": '+ sitesAndTagsArray[i].itemType +' }, { "__metadata": { "type": 

"SP.Social.SocialDataItem" }, "Text": "'; 

    } 

     

    i++; 

   } 

    

    

   /************************************************************ 

    * If there are some TAGS and/or WEBSITES & an ATTACHMENT... 

    ************************************************************/ 

   if(attachmentUri !== "" && attachmentUri !== null && attachmentUri !== undefined){ 

     

    // Trying to post the message 

    try 

    { 

     var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Reply"); 

     xhr.onload = function () { 

      // If the code reaches this part the operation was a success... and the message has been sent. 

      if(this.status == 200){ // If the operation succeeds... than the feed has been uploaded. 

       if(whereToWrite == "socialAPISingleFeed"){ // If it is a conversation we update 

only that HTML section 

        // Looking for the section in the global array to retrieve the URL to 

pass to the updateSingleFeed() function. 

        var length = globalArrayOfSingleConversations.length; 

        var tempElement; 

        for(var i=0; i<length; i++){ 

         if(globalArrayOfSingleConversations[i].sectionID == 

'#'+parentSection){ 

          tempElement = 

globalArrayOfSingleConversations.splice(i, 1); // Removing that element from the global array (because it will be re-inserted in the updateSingleFeed() function) 

         

 updateSingleFeed(tempElement[0].sectionID, tempElement[0].URL); 

         } 

        } 

       }else{ 

        manuallyUpdateAllTheFeeds(); // and we call the manual update of the 

feeds to let the User see the new ones. 

       } 

      }else{ // We sent the request correctly but there has been a problem 

       var response = this.responseText; 

       if(response.indexOf("Internal error code: 83")){ // If the response from 

the Server says that the problem is that the user has not been found... 

        alert("We couldn't get data from Social. Please visit 

https://social.cern.ch to set up your profile first."); 

       }else{ // Generic error 

        alert('There has been a problem while posting the reply. Please try 

again later.'); 

       } 

      } 

     }; 

     xhr.onerror = function (e1, e2, e3) { 

      errorHandlerFunction(10, 'There has been an error while uploading the reply. \nPlease try again 

later.'); 

     }; 

     xhr.withCredentials = true; 

      

     xhr.setRequestHeader("X-RequestDigest", formDigest); 

     xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose"); 

     // Creating the data for the post 

     var data =  " { 'restCreationData':{ " + 

        " '__metadata':{ 

'type':'SP.Social.SocialRestPostCreationData'}, " + 

        " 'ID':'" + postId + "'," + 

        "  'creationData':{ " + 

        " 

 '__metadata':{'type':'SP.Social.SocialPostCreationData' }, " + 

        "  'Attachment': '"+attachmentUri+"'," + 

        "  'ContentItems': " + contentItemsString 

+ 
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        "  'ContentText':'" + message + "', 

'UpdateStatusText':false " + 

        "  } " + 

        " }}"; 

      

     xhr.send(data);  // Uploads the message 

     

    } 

    catch(err) 

    { 

     errorHandlerFunction(10, "There has been an error while uploading the reply. \nPlease try again later."); 

     return; 

    } 

   } 

   else 

   { 

    /************************************************************** 

     * else: there are some TAGS and/or WEBSITES but no ATTACHMENT 

     **************************************************************/ 

     

    // Trying to post the message 

    try 

    { 

     var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Reply"); 

     xhr.onload = function(){ 

      // If the code reaches this part the operation was a success... and the message has been sent. 

      if(this.status == 200){ // If the operation succeeds... than the feed has been uploaded. 

       if(whereToWrite == "socialAPISingleFeed"){ // If it is a conversation we update 

only that HTML section 

        // Looking for the section in the global array to retrieve the URL to 

pass to the updateSingleFeed() function. 

        var length = globalArrayOfSingleConversations.length; 

        var tempElement; 

        for(var i=0; i<length; i++){ 

         if(globalArrayOfSingleConversations[i].sectionID == 

'#'+parentSection){ 

          tempElement = 

globalArrayOfSingleConversations.splice(i, 1); // Removing that element from the global array (because it will be re-inserted in the updateSingleFeed() function) 

         

 updateSingleFeed(tempElement[0].sectionID, tempElement[0].URL); 

         } 

        } 

       }else{ 

        manuallyUpdateAllTheFeeds(); // and we call the manual update of the 

feeds to let the User see the new ones. 

       } 

      }else{ // We sent the request correctly but there has been a problem 

       var response = this.responseText; 

       if(response.indexOf("Internal error code: 83")){ // If the response from 

the Server says that the problem is that the user has not been found... 

        alert("We couldn't get data from Social. Please visit 

https://social.cern.ch to set up your profile first."); 

       }else{ // Generic error 

        alert('There has been a problem while posting the reply. Please try 

again later.'); 

       } 

      } 

     }; 

     xhr.onerror = function (e1, e2, e3) { 

      errorHandlerFunction(10, 'There has been an error while uploading the reply. \nPlease try again 

later.'); 

     }; 

     xhr.withCredentials = true; 

      

     xhr.setRequestHeader("X-RequestDigest", formDigest); 

     xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose"); 

     // Creating the data for the post 

     var data =  " { 'restCreationData':{ " + 

        " '__metadata':{ 

'type':'SP.Social.SocialRestPostCreationData'}, " + 

        " 'ID':'" + postId + "'," + 

        "  'creationData':{ " + 

        " 

 '__metadata':{'type':'SP.Social.SocialPostCreationData' }, " + 

        "  'Attachment': null," + 

        "  'ContentItems': " + contentItemsString 

+ 

        "  'ContentText':'" + message + "', 

'UpdateStatusText':false " + 

        "  } " + 

        " }}"; 

      

     xhr.send(data);  // Uploads the message 

     

    } 

    catch(err) 

    { 

     errorHandlerFunction(10, "There has been an error while uploading the reply. \nPlease try again later."); 

     return; 

    } 

   } 

  } 

  else 

  { 

   /********************************************************************* 

    * If there are no TAGS and/or WEBSITES but there is an ATTACHMENT... 

    *********************************************************************/ 

   if(attachmentUri !== "" && attachmentUri !== null && attachmentUri !== undefined){ 

     

    // Trying to post the message. 

    try 

    { 

     var xhr = createCORSRequest("POST", myFeedManagerEndpoint + 'post/Reply'); 
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     xhr.onload = function () { 

      // If the code reaches this part the operation was a success... and the message has been sent. 

      if(this.status == 200){ // If the operation succeeds... than the feed has been uploaded. 

       if(whereToWrite == "socialAPISingleFeed"){ // If it is a conversation we update 

only that HTML section 

        // Looking for the section in the global array to retrieve the URL to 

pass to the updateSingleFeed() function. 

        var length = globalArrayOfSingleConversations.length; 

        var tempElement; 

        for(var i=0; i<length; i++){ 

         if(globalArrayOfSingleConversations[i].sectionID == 

'#'+parentSection){ 

          tempElement = 

globalArrayOfSingleConversations.splice(i, 1); // Removing that element from the global array (because it will be re-inserted in the updateSingleFeed() function) 

         

 updateSingleFeed(tempElement[0].sectionID, tempElement[0].URL); 

         } 

        } 

       }else{ 

        manuallyUpdateAllTheFeeds(); // and we call the manual update of the 

feeds to let the User see the new ones. 

       } 

      }else{ // We sent the request correctly but there has been a problem 

       var response = this.responseText; 

       if(response.indexOf("Internal error code: 83")){ // If the response from 

the Server says that the problem is that the user has not been found... 

        alert("We couldn't get data from Social. Please visit 

https://social.cern.ch to set up your profile first."); 

       }else{ // Generic error 

        alert('There has been a problem while posting the reply. Please try 

again later.'); 

       } 

      } 

     }; 

     xhr.onerror = function (e1, e2, e3) { 

      errorHandlerFunction(10, 'There has been an error while uploading the reply. \nPlease try again 

later.'); 

     }; 

     xhr.withCredentials = true; 

 

     xhr.setRequestHeader("X-RequestDigest", formDigest); 

     xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose"); 

     // execute post 

     var data = " { 'restCreationData':{ '__metadata':{ 'type':'SP.Social.SocialRestPostCreationData'}, " +  

         "'ID':'" + postId + "',"+ 

         " 'creationData':{ 

'__metadata':{'type':'SP.Social.SocialPostCreationData' }," + 

         "  'Attachment': 

'"+attachmentUri+"'," + 

         "  'ContentText':'" + 

message + "','UpdateStatusText':false " + 

         " } " + 

         "} }"; 

 

     xhr.send(data); // Sending the Reply 

     

    }catch(err) 

    { 

     errorHandlerFunction(10, "There has been an error while uploading the reply. \nPlease try again later."); 

     return; 

    } 

   } 

   else 

   { 

    /******************************************** 

     * else: there are no TAGS & no ATTACHMENT 

     ********************************************/ 

    // Trying to post the message. 

    try 

    { 

     var xhr = createCORSRequest("POST", myFeedManagerEndpoint + 'post/Reply'); 

     xhr.onload = function () { 

      // If the code reaches this part the operation was a success... and the message has been sent. 

      if(this.status == 200){ // If the operation succeeds... than the feed has been uploaded. 

       if(whereToWrite == "socialAPISingleFeed"){ // If it is a conversation we update 

only that HTML section 

        // Looking for the section in the global array to retrieve the URL to 

pass to the updateSingleFeed() function. 

        var length = globalArrayOfSingleConversations.length; 

        var tempElement; 

        for(var i=0; i<length; i++){ 

         if(globalArrayOfSingleConversations[i].sectionID == 

'#'+parentSection){ 

          tempElement = 

globalArrayOfSingleConversations.splice(i, 1); // Removing that element from the global array (because it will be re-inserted in the updateSingleFeed() function) 

         

 updateSingleFeed(tempElement[0].sectionID, tempElement[0].URL); 

         } 

        } 

       }else{ 

        manuallyUpdateAllTheFeeds(); // and we call the manual update of the 

feeds to let the User see the new ones. 

       } 

      }else{ // We sent the request correctly but there has been a problem 

       var response = this.responseText; 

       if(response.indexOf("Internal error code: 83")){ // If the response from 

the Server says that the problem is that the user has not been found... 

        alert("We couldn't get data from Social. Please visit 

https://social.cern.ch to set up your profile first."); 

       }else{ // Generic error 

        alert('There has been a problem while posting the reply. Please try 

again later.'); 

       } 
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      } 

     }; 

     xhr.onerror = function (e1, e2, e3) { 

      errorHandlerFunction(10, 'There has been an error while uploading the reply. \nPlease try again 

later.'); 

     }; 

     xhr.withCredentials = true; 

 

     xhr.setRequestHeader("X-RequestDigest", formDigest); 

     xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose"); 

     // execute post 

     var data = " { 'restCreationData':{ '__metadata':{ 'type':'SP.Social.SocialRestPostCreationData'}, " +  

         "'ID':'" + postId + "',"+ 

         "'creationData':{ 

'__metadata':{'type':'SP.Social.SocialPostCreationData' }," + 

         " 'ContentText':'" + message + 

"','UpdateStatusText':false " + 

         "} " + 

         "} }"; 

 

     xhr.send(data); // Sending the Reply 

     

    }catch(err) 

    { 

     errorHandlerFunction(10, "There has been an error while uploading the reply. \nPlease try again later."); 

     return; 

    } 

   } 

  } 

 } 

  

  

 // This function allows both the API and the User to manually update the feeds in the web page. 

 function manuallyUpdateAllTheFeeds(){ 

  var tempElement; 

  var i=0; 

   

  // Every REST call is made only if the corrispondent section exists in the HTML code. 

  if( document.getElementById(followedFeedsWhereToWrite.substring(1, followedFeedsWhereToWrite.length)) !== null ){ 

   clearInterval(followedFeedsUpdatesHandler); 

   updateFollowedFeeds(followedFeedsWhereToWrite, followedFeedsUpdateInterval, followedFeedsNumFeeds, followedFeedsFlagDisplayReplies); 

  } 

   

  // For each profile that has to be read we retrieve the data from the globalArrayOfProfiles... 

  var tempGlobalArray = new Array(); 

  var length = globalArrayOfProfiles.length; 

  for(i=0; i<length; i++){ 

   tempElement = globalArrayOfProfiles.pop(); 

   if(tempElement.sectionID[0] === '#'){ tempElement.sectionID = tempElement.sectionID.substring( 1 ); } 

   tempGlobalArray.push(tempElement); // Saving the globalArrayOfProfiles in a temporary array to prevent 'race conditions' that could 

happen while updating one feed and trying to read the next one. 

  } 

  // ...and we use those data to call for an update. 

  for(i=0; i<length; i++){ 

   tempElement = tempGlobalArray.pop(); 

   if( document.getElementById(tempElement.sectionID) !== null ){ 

    try{ 

     if(tempElement.automaticUpdatesHandlersCode !== null){ 

      clearInterval(tempElement.automaticUpdatesHandlersCode); 

     } 

     updateFeedsFromProfile(tempElement.keyValue, tempElement.sectionID, tempElement.timeInterval, 

tempElement.numOfFeeds, tempElement.flagDisplayReplies); 

    }catch(e){ console.log('There has been a problem updating the feeds of the account: ' + tempElement.keyValue); } 

   } 

  } 

   

  // For each hashtag that has to be used to retrieve feeds with the same hashtag we retrieve the data from the globalArrayOfHashtags. 

  tempGlobalArray = new Array(); 

  length = globalArrayOfHashtags.length; 

  for(i=0; i<length; i++){ 

   tempElement = globalArrayOfHashtags.pop(); 

   if(tempElement.sectionID[0] === '#'){ tempElement.sectionID = tempElement.sectionID.substring( 1 ); } 

   tempGlobalArray.push(tempElement); // Saving the globalArrayOfHashtags in a temporary array to prevent 'race conditions' that could 

happen while updating one feed and trying to read the next one. 

  } 

  // ...and we use those data to call for an update. 

  for(i=0; i<length; i++){ 

   tempElement = tempGlobalArray.pop(); 

   if( document.getElementById(tempElement.sectionID) !== null ){ 

    try{ 

     if(tempElement.automaticUpdatesHandlersCode !== null){ 

      clearInterval(tempElement.automaticUpdatesHandlersCode); 

     } 

     updateFeedsWithSameHashtag(tempElement.keyValue, tempElement.sectionID, tempElement.timeInterval, 

tempElement.numOfFeeds, tempElement.flagDisplayReplies); 

    }catch(e){ console.log('There has been a problem updating the feeds containing the tag: ' + tempElement.keyValue); } 

   } 

  } 

   

  // Updating every section with a Single Conversation 

  tempGlobalArray = new Array(); 

  length = globalArrayOfSingleConversations.length; 

  for(i=0; i<length; i++){ 

   tempElement = globalArrayOfSingleConversations.pop(); 

   if(tempElement.sectionID[0] === '#'){ tempElement.sectionID = tempElement.sectionID.substring( 1 ); } 

   tempGlobalArray.push(tempElement); // Saving the globalArrayOfSingleConversations in a temporary array to prevent 'race conditions' 

that could happen while updating one feed and trying to read the next one. 

  } 

  // ...and we use those data to call for an update. 

  for(i=0; i<length; i++){ 

   tempElement = tempGlobalArray.pop(); 

   if( document.getElementById(tempElement.sectionID) !== null ){ 

    try{ 
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     updateSingleFeed(tempElement.sectionID, tempElement.URL); 

    }catch(e){ console.log('There has been a problem updating the feeds containing the tag: ' + tempElement.keyValue); } 

   } 

  } 

   

   

  // The automatic update of the feeds is re-activated during the execution of the called functions. 

 } 

  

  

 // Function that retrieves the feeds with the tag written from the User in the textarea.  

 // (this has nothing to spare with the tags in the Canvas construct) 

 function findTaggedFeeds(tag, whereToWrite){ 

   

  // Retrieving tag's name 

  // If no tag is given in input... [ the function is called as "findTaggedFeeds();" ] 

  if( typeof(tag) !== "string" || tag === null || tag === "" || tag === undefined ){ 

   tag = document.getElementById("textareaRetrieveTags").value; 

    

   if(tag === null || tag === undefined || tag === ""){ return; }  // consistency check 

  } 

  // If no 'whereToWrite' section ID is given in input... [ the function is called as "findTaggedFeeds();" ] 

  if( typeof(whereToWrite) !== "string" || whereToWrite === null || whereToWrite === undefined || whereToWrite === "" ){ 

   whereToWrite = '#feedsWithSameTag'; 

  } 

   

  // if(tag[0] !== '#') { tag = '#' + tag; }  // We need the text with the # symbol at the beginning. 

   

  /* If necessary, to make these feeds automatically updated use this code: 

  var tempIndex = checkPresenceOfElement(whereToWrite, globalArrayOfHashtags); 

  if(tempIndex >= 0){ 

   globalArrayOfHashtags.push(new updateObj(tag, whereToWrite, null, 0, numOfFeeds, flagDisplayReplies)); // Adding a new item to the 

globalArrayOfHashtags, to let the automatic updates be know what to look for after tot seconds. 

  } */ 

   

  retrieveFeedsWithSameTag(tag, whereToWrite); 

 } 

  

  

 /* Function that makes the REST call to retrieve the tags from Social that will be displayed in the Tag Cloud. 

  * Input: 

  * - whereToWrite: the ID of the HTML section in which the tags have to be displayed; 

  * - maxNumTags: the maximum number of tags to retrieve; 

  * - textColor: in the 3D Tag Cloud it is possible to set the color of the text (e.g.: '#3861aa'); 

  * - textBorderColor: in the 3D Tag Cloud it is possible to set the color of border of the text that appears when the mouse is over the tag (e.g.: '#3861aa'); 

  * - numDimensions: the number of dimensions to take into account. (2= 2D Tag Canvas, 3=3D Tag Cloud); 

  * - weightFlag: it is possible to set the size of the text of each tag accordingly to the frequency in which they are present in Social; 

  * - periodOfTime: the period of the time we are looking for ('lastDay', 'lastWeek', 'lastMonth', 'lastYear', 'allTime'). The case does not matter. 

  */ 

 function loadTagCloud(whereToWrite, maxNumTags, textColor, textBorderColor, numDimensions, weightFlag, periodOfTime){ 

  // Section checks. If the HTML vsections are presents in the webpage we can move on, otherwise the function has to stop. 

  while(whereToWrite[0] === '#' && whereToWrite.length > 0){ 

   whereToWrite = whereToWrite.substring(1); 

  } 

  if( document.getElementById(whereToWrite) === null ){ 

   // Error. No HTML section found to display the followed feeds on Social. Please add a <div id="+ whereToWrite +"> section. 

   console.log('Error while trying to write the tags for the Tag Cloud. The HTML section appears not to exist. See the function loadTagCloud().'); 

   return; 

  } 

   

  var date = new Date(); // Reading today's date 

   

  switch(periodOfTime){ 

   case 'lastDay': 

    date.setDate(date.getDate()-1); // Going back one day 

    break; 

   case 'lastWeek': 

    date.setDate(date.getDate()-7); // Going back one week 

    break; 

   case 'lastMonth': 

    date.setDate(date.getDate()-30); // Going back one month 

    break; 

   case 'lastYear': 

    date.setDate(date.getDate()-365); // Going back one year 

    break; 

   case 'allTime': 

    date = null; // We will retrieve all the tags ever used (with their number of occurrences) 

    break; 

   default: 

    date = null; // We will retrieve all the tags ever used (with their number of occurrences) 

  } 

   

  var querySiteToGetTheTags; // This will be the URL used to retrieve the tags from Social 

  if(date === null){ 

   querySiteToGetTheTags = querySiteToGetAllTheTags; 

  } 

  else{ 

   var day, month; 

    

   month = date.getMonth() + 1; 

   if(month < 10){ month = '0' + month; } // We want the 'month' string to have always two chars. 

    

   day = date.getDate(); 

   if(day < 10){ day = '0' + day; } // We want the 'day' string to have always two chars. 

    

   querySiteToGetTheTags = searchRestService + "query?querytext='ContentTypeId:0x01FD* write>=\""+ date.getFullYear() +"-"+ month +"-"+ day +" 

00:00:01Z\" -ContentClass=urn:content-class:SPSPeople'&refiners='Tags'"; 

    

  } 

   

   

  executeRestCallExtendedSeven(querySiteToGetTheTags, 'GET', null, drawUserTagsInCanvas, onError, whereToWrite, maxNumTags, textColor, textBorderColor, 

numDimensions, weightFlag);  // getting all the tags of Social and passing them to the function drawUserTagsInCanvas() 
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 } 

  

  

 // This function reads the Social tags retrieved. It then writes them in the webpage as invisible fields. 

 function drawUserTagsInCanvas(data, whereToWrite, maxNumTags, textColor, textBorderColor, numDimensions, weightFlag){ 

  // Standardizing and sanitizing the input parameters 

  if(whereToWrite[0] === '#'){ 

   var length = whereToWrite.length; 

   var i=0; 

   while( whereToWrite[0] === '#'  &&  i < length ){ 

    whereToWrite = whereToWrite.substring(1, whereToWrite.length); 

   } 

   if( i >= (length-1) ){ 

    console.log('Error while analyzing the input parameters of the function drawUserTagsInCanvas().'); 

    return; 

   } 

  } 

  whereToWrite = encodeURI(whereToWrite);  // Sanitizing the input. 

   

   

  $('#' + whereToWrite).html(''); // Cleaning the HTML section. 

   

   

  // Reading the data 

  try{ 

   var result = JSON.parse(data); // parsing the data obtained from the social network 

  }catch(e){  

   console.log("There was a problem while communicating with the Server.\nSee drawUserTagsInCanvas() function.");  

   return;  

  } 

  // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console 

log 

  if(result.error){ 

   console.log("Bad request.\nPlease review the drawUserTagsInCanvas() function."); 

   return; 

  } 

  // Network check 

  // If the Network has problems or the Server is not reachable or the User does not have the access (or any other problem like these) we hide the Canvas section 

  if(result === null || result === undefined){ 

   // there are no tags to show, hide the canvas container 

   document.getElementById(whereToWrite).innerHTML = '<p>No tags found for this period of time.<br/>Please try again later.</p>'; 

   return; 

  } 

   

  var tagsRetrieved; 

   

  try{ 

   tagsRetrieved = result.d.query.PrimaryQueryResult.RefinementResults.Refiners.results[0].Entries.results; // capturing the array of tags 

  } 

  catch(err){ 

   // there are no tags to show, hide the canvas container 

   document.getElementById(whereToWrite).innerHTML = '<p>No hashtags found.</p>'; 

   return; 

  } 

   

  // every tag found is printed 

  var tagCount; // the number of times the tag has been written on the Social Network 

  var tagName; // the name of the tag 

   

  if( document.getElementById('#socialAPIWeightenedTags'+whereToWrite) !== null ){ 

   $("#socialAPIWeightenedTags"+whereToWrite).html(""); // Resetting the content of the section 

  } 

  else{ 

   $("body").append('<div id="socialAPIWeightenedTags'+whereToWrite+'"></div>'); 

  } 

   

  var numTagsToPrint = 0; 

  if( typeof(maxNumTags) === "number"  &&  maxNumTags > 0  &&  maxNumTags < tagsRetrieved.length){ 

   numTagsToPrint = maxNumTags; 

  }else{ 

   numTagsToPrint = tagsRetrieved.length; 

  } 

   

  // Foreach feed 

  for (var i = 0; i < numTagsToPrint; i++) { 

   tagCount = tagsRetrieved[i].RefinementCount; 

   tagCount = parseInt(tagCount,10)+10; // 10 is used to give the text a minimal useful size into the canvas. This way a tag used only once will 

have 11 (1+10), a tag used twice 12 (2+10) and so on... 

   if(tagCount <= 0) { tagCount = 1; } // Security check. Bounding 'tagCount' to avoid bad appearance in the website and eventually 

overflow. 

   if(tagCount > 1000) { tagCount = 1000; } // Security check. Bounding 'tagCount' to avoid bad appearance in the website and eventually 

overflow. 

    

   tagName = tagsRetrieved[i].RefinementName; 

   // Seen that the tag names are encoded like this (the tag is '#mud'): "L0|#006cdbd1c-84d7-42f0-af53-9d420d87deec|#mud" 

   // we have to retrieve the name of the tag splitting the string at every '|' and reading the last string. 

   tagName = tagName.split("|");   // splitting the string in many substrings 

   tagName = tagName[tagName.length-1]; // retrieving the last substring as the Name 

    

   $('#socialAPIWeightenedTags'+whereToWrite).append('<li><a href="'+ socialWebsite +'/search/Pages/conversationresults.aspx?k=%23'+ 

tagName.substring(1, tagName.length) +'" data-weight="'+ tagCount +'" target="_blank">'+ tagName +'</a> </li>'); // String used from the Canvas to display the tags into the sphere 

  } 

   

  // Now that the page has been loaded and the tags have been retrieved we can display them on canvas calling: 

  createTagsCanvas('#' + whereToWrite, textColor, textBorderColor, numDimensions, weightFlag); 

   

 } 

  

 // This function displays on the webpage the Social tags retrieved using HTML5. 

 function createTagsCanvas(whereToWrite, textColor, textBorderColor, numDimensions, weightFlag){ 

  var parentWhereToWrite = whereToWrite; 

   

  // Creating the container section for the content coming from the SocialAPI. 
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  $(whereToWrite).append('<div class="socialAPIWrapClass" id="socialAPIWrapClassTagCloud'+ whereToWrite.substring(1, whereToWrite.length) +'"></div>'); 

  whereToWrite = "#socialAPIWrapClassTagCloud" + whereToWrite.substring(1, whereToWrite.length); 

   

  // If we want a 3-dimensional canvas... 

  if(numDimensions == 3){ 

   // Creating the canvas in the HTML code 

   var canvasID = 'socialAPITagsCanvas' + whereToWrite.substring(1, whereToWrite.length); 

   $(whereToWrite).append('<canvas id="'+ canvasID +'" height="' + $(whereToWrite).width() + '" width="' + $(whereToWrite).width() + '">' + 

          '<p>' + 

           'If you are reading 

this, your browser does not support the canvas tag. ' + 

           'Please try again using 

a different browser.' + 

          '</p>' + 

         '</canvas>'); // This section is hidden if no tags 

are retrieved. 

    

   /* 

   // To use the colours in the canvas uncomment this section and set 'both' for the "weightMode" property. 

   // Create Linear Gradient to apply colors to the tags related to their weights 

   canv = document.getElementById('socialAPITagsCanvas'); 

   // To realize colored tags into the canvas we create a gradient that will be relate to the weights of each tag (the number of times the tag has 

been used on Social) 

   var gradient = { 

    0:    '#f00', // red 

    0.33: '#ff0', // yellow 

    0.66: '#0f0', // green 

    1:    '#00f'  // blue 

   }; 

    

   // use getContext to use the canvas for drawing 

   var ctx = canv.getContext('2d'); 

   var linearGrad = ctx.createLinearGradient(0,0,0,150); 

   linearGrad.addColorStop(0, '#ff0000'); 

   linearGrad.addColorStop(0.3, '#00ff00'); 

   linearGrad.addColorStop(0.6, '#0000ff'); 

   linearGrad.addColorStop(1, '#00f'); */ 

    

   try { 

    TagCanvas.interval = 20; 

    TagCanvas.textFont = 'Impact,Arial Black,sans-serif'; 

    TagCanvas.textHeight = 25; // Height in pixels 

    TagCanvas.outlineThickness = 2; 

    if(textColor === null || textColor === undefined || textColor === ''){ 

     TagCanvas.textColour = '#3861aa'; 

    }else{ 

     TagCanvas.textColour = textColor; 

    } 

     

    if(textBorderColor === null || textBorderColor === undefined || textBorderColor === ''){ 

     TagCanvas.outlineColour = '#3861aa'; 

    }else{ 

     TagCanvas.outlineColour = textBorderColor; 

    } 

     

    TagCanvas.maxSpeed = 0.07; 

    TagCanvas.minBrightness = 0.25; 

    TagCanvas.depth = 0.8; 

    TagCanvas.pulsateTo = 0.2; 

    TagCanvas.pulsateTime = 0.75; 

    TagCanvas.initial = [0.03,-0.03]; // Initial spin of the sphere 

    TagCanvas.decel = 0.98;    // Controls the deceleration when the mouse leaves the 

canvas area 

    TagCanvas.reverse = true;   // Sets the way the mouse moves the sphere 

     

    if(weightFlag){ 

     TagCanvas.weight = true; 

     TagCanvas.weightFrom = 'data-weight'; 

     TagCanvas.weightMode = 'size';  // The weights are emphasized with the size of the 

text (the greater the weight the bigger the size) 

     // ! The options for 'SizeMin' and 'SizeMax' have to be both set to work. 

     TagCanvas.weightSizeMin = 11; 

     TagCanvas.weightSizeMax = 46; 

    } 

    TagCanvas.fadeIn = 800;    // Let the canvas fade in when loaded 

     

    TagCanvas.hideTags = true; // This function hides the tag elements from the webpage (same effect as display:none;) 

     

     

    TagCanvas.Start(canvasID,'socialAPIWeightenedTags'+parentWhereToWrite.substring(1, parentWhereToWrite.length)); 

   } catch(e) { 

    // Something went wrong, showing the User an error message: 

    document.getElementById(whereToWrite.substring(1, whereToWrite.length)).innerHTML = '<p>' + 

            

            

  'If you are reading this, your browser does not support the canvas tag. ' + 

            

            

  'Please try again using a different browser.' + 

            

            

 '</p>'; 

    console.log('Error while setting the Tag Cloud 3D. Please debug function createTagsCanvas().'); 

   } 

  }else{ 

   // In this case, it will be a 2-dimensional graphic (list-like). 

    

   // Hiding the tags 

   $('#socialAPIWeightenedTags'+parentWhereToWrite.substring(1, parentWhereToWrite.length)).hide(); 

    

   // Reading the tags 

   var tagsForTagCloud2D = $('#socialAPIWeightenedTags'+parentWhereToWrite.substring(1, parentWhereToWrite.length)); 
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   try{ 

    tagsForTagCloud2D = tagsForTagCloud2D[0].childNodes; 

   }catch(e){ 

    $(whereToWrite).append('<p>There is a problem communicating with the Server. <br/>Please try again later. </p>'); 

    console.log('No readable tags found for Tag Cloud 2D. Please debug function createTagsCanvas().'); 

   } 

    

   var weight = 1; // Variable containing the number of occourrences of the tag (the max number will be 10000, see function 

drawUserTagsInCanvas(). Minimum font-size = 0.8em. 

    

   try{ 

    var length = tagsForTagCloud2D.length; 

    if(weightFlag){ 

     var minWeight=1000, maxWeight=0; 

     // Reading the min and max weight present 

     for(var i=0; i<length; i++){ 

      weight = $(tagsForTagCloud2D[i].childNodes[0]).data('weight'); 

      if( weight<minWeight ){ minWeight = weight; } 

      if( weight>maxWeight ){ maxWeight = weight; } 

     } 

     var weightGap = maxWeight - minWeight; 

     if( weightGap < 1 ){ 

      $(whereToWrite).append('<p>There is a problem displaying the tags. <br/>Please try again later. 

</p>'); 

      return; 

     } 

    } 

     

    // Displaying the tags 

    for(var i=0; i<length; i++){ 

     tagName = tagsForTagCloud2D[i].textContent; 

     link = tagsForTagCloud2D[i].childNodes[0].href; 

     if(weightFlag){ 

      // weight = tagsForTagCloud2D[i].childNodes[0].dataset.weight; 

      weight = $(tagsForTagCloud2D[i].childNodes[0]).data('weight'); 

      weight = (parseFloat(weight) - minWeight) / weightGap; // This way we have the percentage in 

which this value is in proportion to the weightGap [range: from 0 to 1] 

      // Then we want the 0% to be 0.8em font-size and the 100% to be 1.8em font-size 

      weight = weight + 0.8; // The font in em will be 0.8 (the minimum size) + [a value from 0 to 

3] 

     } 

      

     // Building the tag string to print on the web page 

     var tagString = '<a href="'+ link +'" target="_blank"> <span style="font-size:'+weight+'em;">'+ tagName 

+'</span></a>'; 

     // We increase the font-size accordingly to the data-weight of the tag. 

      

     // Displaying the tag 

     $(whereToWrite).append(tagString); 

    } 

     

   }catch(e){ 

    $(whereToWrite).append('<p>There is a problem displaying the tags. <br/>Please try again later. </p>'); 

    console.log('There is a problem displaying the tags. Please debug function createTagsCanvas().'); 

   } 

    

  } 

 } 

  

  

 /* Function that calls the server to retrieve the feeds with the same tag. 

  * Input: the text of the tag to search. 

  */ 

 function retrieveFeedsWithSameTag(tagText, whereToWrite, parentWhereToWrite, numOfFeeds, flagDisplayReplies){ 

  if(parentWhereToWrite === '' || parentWhereToWrite === null || parentWhereToWrite === undefined){ parentWhereToWrite = whereToWrite; } 

  if(numOfFeeds <0 || numOfFeeds > 19 || numOfFeeds === null || numOfFeeds === undefined){ numOfFeeds = 0; } 

   

  // To retrieve the posts with this tag we use the "id" inside the following REST call: 

  // var filter = 'path:' + socialWebsite.substring(0, socialWebsite.length-1);  // The 'filter' is used to filter the results and 

receive only the ones coming from Social 

  var searchForTagPostsSite = searchRestService + "query?querytext='tags:"+ tagText +"'&sourceid='459dd1b7-216f-4386-9709-287d5d22f568'&sortlist='created:1'"; 

  // The code '459dd1b7-216f-4386-9709-287d5d22f568' means 'Retrieve only Conversations' 

   

   

  try{ 

   executeRestCallExtendedSeven(searchForTagPostsSite, 'GET', null, retrieveFeedsWithSameTagBodyFunction, onError, whereToWrite, 

parentWhereToWrite, numOfFeeds, tagText, flagDisplayReplies, null); // searches the tags and display the tagged feeds grouped 

  } 

  catch(err){ errorHandlerFunction(11, "There was a problem while communicating with the Server.\nPlease try again later."); } 

 } 

  

 function retrieveFeedsWithSameTagBodyFunction(data, whereToWrite, parentWhereToWrite, numOfFeeds, tagText, flagDisplayReplies, variableNotUsed){ 

  if(whereToWrite === null){ return; } // consistency check 

  if(whereToWrite[0] !== '#'){ 

   whereToWrite = '#' + whereToWrite.toString(); 

  } 

   

  try{ 

   var result = JSON.parse(data); // parsing the data obtained from the social network 

  }catch(e){ 

   var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'hide' will work only 

once. 

   $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> Network problem. Please try to refresh the page later. </p> 

</div>'); // Printing the "problem" message on the screen 

   $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 

   setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds. 

    

   console.log("There was a problem while communicating with the Server.\nSee retrieveFeedsWithSameTagBodyFunction() function."); 

   return;  

  } 

  // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console 

log 

  if(result.error){ 
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   var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'hide' will work only 

once. 

   $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> Network problem. Please try to refresh the page later. </p> 

</div>'); // Printing the "problem" message on the screen 

   $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 

   setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds. 

    

   console.log("Bad request.\nPlease review the retrieveFeedsWithSameTagBodyFunction() function."); 

   return; 

  } 

   

  // Consistency check : if no information has been retrieved... 

  if(result.d === null || result.d === undefined) 

  {  

   var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'hide' will work only 

once. 

   $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> Network problem. Please try to refresh the page later. </p> 

</div>'); // Printing the "problem" message on the screen 

   $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 

   setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds. 

    

   return; 

  } 

  // else... 

   

  // Stopping the automatic retrieval of new feeds that would hide the "extra" feeds that the User may be reading at the moment. 

  // To refresh the feeds and reactivate the automatic retrieval (of the feeds) the User may refresh the web-page. 

  try{ 

   var handler = findMyHandler(whereToWrite); 

   if(handler !== -1){ 

    clearInterval(handler); 

   } 

   // If it is the first step in displaying the feeds there will not be any button yet. It will be added in the printArrayOfFeedsWithSameTag() 

function 

    

   var button = getElementInsideContainer(whereToWrite, "moreFeedsButton"); 

   button.parentNode.removeChild(button);  // Removing the "moreFeeds" button 

  }catch(err){} 

   

   

   

  var primaryQueryResultsFound = false; 

  var secondaryQueryResultsFound = false; 

  var primaryArray; 

  var secondaryArray; 

   

  try{ 

   // Trying to read the results from the PrimaryQueryResult 

   primaryArray = result.d.query.PrimaryQueryResult.RelevantResults.Table.Rows.results; 

    

   if( primaryArray.length > 0 && primaryArray !== "" && primaryArray !== undefined && primaryArray !== null){ 

    primaryQueryResultsFound = true; 

   }else{ 

    primaryQueryResultsFound = false; 

   } 

  }catch(err){ } 

   

  try{ 

   // If the PrimaryQueryResult does not contain the results then the SecondaryQueryResults will 

   secondaryArray = result.d.query.SecondaryQueryResults.results[0].RelevantResults.Table.Rows.results; 

    

   if( secondaryArray.length > 0 && secondaryArray !== "" && secondaryArray !== undefined && secondaryArray !== null){ 

    secondaryQueryResultsFound = true; 

   }else{ 

    secondaryQueryResultsFound = false; 

   } 

  } 

  catch(err){ } 

   

   

   

  // If no results have been found then we can stop the function 

  if(!primaryQueryResultsFound && !secondaryQueryResultsFound){ 

   // Telling the User that no feed has been found 

   var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'hide' will work only 

once. 

   $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> No more feeds found with this tag. You may try again later. </p> 

</div>'); // Printing the "problem" message on the screen 

   $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 

   setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds. 

    

   return; // Terminating the function 

  } 

  // else: some results have been found -> continue 

   

   

  // If there is nothing in the primary array... 

  if(!primaryQueryResultsFound) 

  { 

   // We print the secondary array of feeds found 

   try{ 

    printArrayOfFeedsWithSameTag(secondaryArray, whereToWrite, parentWhereToWrite, numOfFeeds, tagText, flagDisplayReplies); 

   }catch(e){ 

    // Telling the User that no feed has been found 

    var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'hide' 

will work only once. 

    $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> There has been a problem while reading the feeds. 

Please try again later. </p> </div>'); // Printing the "problem" message on the screen 

    $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 

    setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 

seconds. 

     

    return; 
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   } 

  } 

  else 

  { 

   // If the primaryArray is not null... 

   // We check the secondary array. If it is empty... 

   if(!secondaryQueryResultsFound) 

   { 

    // Printing feeds from the 'primaryArray' 

    try{ 

     printArrayOfFeedsWithSameTag(primaryArray, whereToWrite, parentWhereToWrite, numOfFeeds, tagText, 

flagDisplayReplies); 

    }catch(e){ 

     // Telling the User that no feed has been found 

     var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the 

function 'hide' will work only once. 

     $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> There has been a problem while 

reading the feeds. Please try again later. </p> </div>'); // Printing the "problem" message on the screen 

     $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 

     setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML 

code after 7 seconds. 

      

     return; 

    } 

   } 

   else 

   { 

    // If both the arrays are useful we merge the two of them and call the printArrayOfFeedsWithSameTag() function passing the merged 

array. 

    primaryArray = primaryArray.concat(secondaryArray);  // Merging the two arrays into 'primaryArray' 

     

    // Printing feeds found 

    try{ 

     printArrayOfFeedsWithSameTag(primaryArray, whereToWrite, parentWhereToWrite, numOfFeeds, tagText, 

flagDisplayReplies); // Examining the two arrays at once. 

    }catch(e){ 

     // Telling the User that no feed has been found 

     var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the 

function 'hide' will work only once. 

     $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> There has been a problem while 

reading the feeds. Please try again later. </p> </div>'); // Printing the "problem" message on the screen 

     $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds. 

     setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML 

code after 7 seconds. 

      

     return; 

    } 

   } 

  } 

   

 } 

  

  

 /* This function examines the content of the array and prints it on the screen in the 'whereToWrite' section. 

  * input: 

  * - array: the array to examine 

  * - whereToWrite: section ID of the area where the feeds have to be displayed 

  * - parentWhereToWrite: section ID of the parent area where the feeds are going to be displayed 

  * - numFeeds: the maximum number of feeds to display 

  * - tagText: the name of the tag with which we are requesting the feeds 

  */ 

 function printArrayOfFeedsWithSameTag(array, whereToWrite, parentWhereToWrite, numFeeds, tagText, flagDisplayReplies){ 

  clearTimeout(hashtagCheckTimer); // This line stops the timer that is going to check the situation of the section that should contain the feeds 

with same hashtag 

   

  var arrayOfReadFeedsLinks = new Array(); // This array will contain only the 'original path' of the feeds already read and displayed. 

   

  // Ordering the feeds in chronological order, from the most to the least recent one. 

  // This operation is necessary because sometimes the results are coming from two concatenated arrays (each of them is ordered, buth concatenated they may be no 

more). 

  // array = array.sort(); 

  array = array.sort(function(a,b){ 

   var dateA = new Date(getValue("Created", a.Cells.results)); 

   var dateB = new Date(getValue("Created", b.Cells.results)); 

    

   return dateB - dateA; // Orders the feeds from the one with the most recent date to the one with the least recent date. 

  }); 

   

  var itemResults; 

  var originalPath; 

  var parentLink; 

  var numFeedsToDisplay; 

  if(numFeeds === null || numFeeds === undefined || numFeeds <= 0){ 

   numFeedsToDisplay = array.length; 

  } 

  else{ 

   numFeedsToDisplay = Math.min(array.length, numFeeds); 

  } 

   

  var i = 0; 

  while(i < numFeedsToDisplay  &&  i < array.length) { 

   itemResults = array[i].Cells.results; 

    

   parentLink = getValue("ParentLink", itemResults);  // The originalPath is not UNIQUE. In Sharepoint a single feed can 

have multiple 'OriginalPaths' between the feed and the replies. This is why we use multiple elements to determine if the feeds has already been displayed or not. 

   originalPath = getValue("OriginalPath", itemResults);  // The originalPath is not UNIQUE. In Sharepoint a single feed can 

have multiple 'OriginalPaths' between the feed and the replies. This is why we use multiple elements to determine if the feeds has already been displayed or not. 

   // originalPath = getValue("RootPostUniqueID", itemResults); // Works only in the Development environment 

    

   // Redundancy check - if this feed has already been displayed, we skip it. 

   // The path can be different within the same feed, so we have to check the text and creation date. 

   if( arrayOfReadFeedsLinks.indexOf(parentLink) == -1 ){ // If the originalPath has never been read before... 
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    document.getElementById( whereToWrite.substring(1, whereToWrite.length) ).innerHTML += '<div id="'+originalPath+'" 

class="'+originalPath+'"></div>'; 

     

    try{ 

     executeRestCallExtendedFive(formDigestUrl, 'POST', null, showUserInformationInFeedsWithSameTag, onError, 

whereToWrite, parentWhereToWrite, originalPath, flagDisplayReplies); 

     arrayOfReadFeedsLinks.push(parentLink); 

    }catch(e){} 

   } 

    

   i++; 

  } 

   

  // If there is the chance that there are more feeds to retrieve... 

  if( numFeedsToDisplay < array.length ){ 

   // Adding an extra element to the feeds section. 

   // This button will allow the User to ask for more feeds. 

    

   var latestTimeFeed = new Date(getValue("Created", array[numFeedsToDisplay-1].Cells.results)); 

   var dateTimeString = latestTimeFeed.toJSON(); // Converting the dateTime of the last feed printed to give the function the correctly 

formatted string, that will work for the REST calls. 

   $(whereToWrite).append('<a id="moreFeedsButton" class="moreFeedsButton" href="javascript:socialAPI().moreFeedsFunction(&#39;'+ dateTimeString 

+'&#39;, &#39;'+ whereToWrite +'&#39;, &#39;'+ parentWhereToWrite +'&#39;, &#39;'+ tagText +'&#39;, &#39;'+ numFeedsToDisplay +'&#39;,&#39;'+ flagDisplayReplies +'&#39;)"> Show more posts 

</a>'); 

  } 

   

   

  // Activating a function that will check the situation of the page after 6 seconds.  

  // If, after that time, the page is still empty we assume that no feeds have been retrieved. Thus, we show a message to the User explaining the situation. 

  hashtagCheckTimer = setTimeout(function(){ 

   // If every feed found has no text they are not displayed and the "whereToWrite" section will remain empty. In this case: 

   if( $(whereToWrite).html() === null || $(whereToWrite).html() === "" || $(whereToWrite).html() === undefined){ 

    $(whereToWrite).append('<div class="feedsItem"> <p id="text"> No feeds found with this tag.<br/>Please try again later.</p> 

</div>'); // We write that there are no feeds containing the tag searched 

   } 

  },12000); 

   

 } 

  

 function showUserInformationInFeedsWithSameTag(data, whereToWrite, parentWhereToWrite, originalPath, flagDisplayReplies){ 

   

  try{ 

   var result = JSON.parse(data); // Parsing the data obtained from the social network 

   var formDigest = result.d.GetContextWebInformation.FormDigestValue; 

  }catch(e){  

   console.log("There was a problem while communicating with the Server.\nSee showUserInformationInFeedsWithSameTag() function.");  

   $(whereToWrite).html("There was a problem while communicating with the Server. Please try again later."); 

   return;  

  } 

  // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console 

log 

  if(result.error){ 

   console.log("Error: "+ result.error.message.value +"\nPlease review the showUserInformationInFeedsWithSameTag() function."); 

   $(whereToWrite).html("There was a problem while communicating with the Server. Please try again later."); 

   return; 

  } 

   

   

  var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post"); // Creating CORSRequest to Like the feed 

  xhr.onload = function(){ showUserInformationInFeedsWithSameTagBodyFunction(this.responseText, whereToWrite, parentWhereToWrite, originalPath, 

flagDisplayReplies); }; 

  xhr.onerror = console.log("CORS request encountered an error.\nSee showUserInformationInFeedsWithSameTag() function."); 

  xhr.withCredentials = true; 

   

  xhr.setRequestHeader("X-RequestDigest", formDigest); 

  xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose"); 

   

  var data = "{ 'ID':'"+originalPath+"' }";  // Including the ID of the feed we want to analize. We can also use the URL of the feed as ID. 

   

  xhr.send(data); // Sending the information 

 } 

  

 function showUserInformationInFeedsWithSameTagBodyFunction(result, whereToWrite, parentWhereToWrite, originalPath, flagDisplayReplies){ 

  /**************************** 

   * Reading the data received 

   ****************************/ 

  var thread; 

  try{ 

   result = JSON.parse(result); // parsing the data obtained from the social network 

   // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer 

in the console log 

   if(result.error){ 

    setTimeout(function(){ 

     var innerDivs, numDivs, contentFlag = false; 

     var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the 

function 'fadeOut' will work only once. 

     try{ 

      innerDivs = document.getElementById(whereToWrite.substring(1)).getElementsByTagName("div"); 

      numDivs = innerDivs.length; 

     }catch(e){ numDivs = 0; } // We will not go in the following 'for' cycle  

      

     for(var i=0; i<numDivs; i++){ 

      if( innerDivs[i].innerHTML !== "" ){ // if there is some content in the 'div' section 

       contentFlag = true;    

 // we put the flag to 'true' 

       break;     

   // and stop the cycle 

      } 

     } // This cycle also avoids that more than one 'error' message is shown to the User. 

      

     // If every feed found has no text they are not displayed and the "whereToWrite" section will remain empty for the 

User. In this case: 

     if( !contentFlag ){ 
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      try{ 

       if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The 

User does not exists on Social 

        $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p 

id="text"> Your account has not been found on Social. <br/>Please visit https://social.cern.ch and create the account first. </p> </div>'); 

       }else{  // Other error 

        $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p 

id="text"> No feeds found. Please try again later. </p> </div>'); // We write that there are no feeds containing the tag searched 

       } 

      }catch(e){ console.log("Exception thrown in function 

showUserInformationInFeedsWithSameTagBodyFunction()"); return; } 

     } 

     console.log("Error: "+ result.error.message.value +"\nPlease check 

showUserInformationInFeedsWithSameTagBodyFunction() function."); 

     return; 

    }, 3000); // This function will be activated after some seconds from the call, to let other functions display some feeds in 

the webpage. 

   } 

    

   thread = result.d.SocialThread; // If no errors occour we read the post in the answer coming from the Server. 

  }catch(e){ 

   console.log("There was a problem while communicating with the Server.\nPlease check showUserInformationInFeedsWithSameTagBodyFunction() 

function.");  

   return;  

  } 

   

  var threadId = thread.Id;  // The ID of the thread that we are examining. 

  var conversationUri = thread.Permalink;  // This is the link of the conversation. It will allow the User to go to the conversation on Social. 

   

  // The originalPath has been used to set up a div section where we have to write our feed. Thus, we need to change the whereToWrite variable. 

  if(whereToWrite === "#socialAPISingleFeed"  ||  whereToWrite === "socialAPISingleFeed"){ 

   newWhereToWrite = getElementInsideContainer(originalPath, whereToWrite); 

  }else{ 

   newWhereToWrite = getElementInsideContainer(whereToWrite, originalPath); 

  } 

  if(newWhereToWrite === null){ 

   var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'fadeOut' will work 

only once. 

   $(whereToWrite).html('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> There has been an error while writing the feeds. Please try again 

later. </p> </div>'); 

   setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds. 

    

   console.log("Error while writing the feeds in showUserInformationInFeedsWithSameTagBodyFunction(). No HTML section found."); 

   return; 

  } 

   

  /***************************************** 

   * Displaying the information of the FEED 

   *****************************************/ 

  // Checking the existence of people that like the message. 

  var likesCount = thread.RootPost.LikerInfo.TotalCount; 

  var likeCounterString; 

  // If the number of people who likes this post is 0 (no-one) 

  if(likesCount <= 0  ||  likesCount === ''  ||  likesCount === null  ||  likesCount === undefined){ 

   likeCounterString = "";  // If nobody liked the feed nothing particular is shown 

  }else{ 

   // If someone liked the post... e.g. 23 liked the post -> (smile 23) 

   likeCounterString = '<span id="likeCounter'+ threadId +'"> <span class="smile"></span> <b>' + likesCount + '</b> &nbsp;&nbsp; </span>'; 

  } 

   

  var dateString = createDateString( new Date(thread.RootPost.CreatedTime) );  // The Date construct allows the User to automatically 

see the local time on the webpage 

  var tempParentWhereToWrite; 

  if(parentWhereToWrite[0] === '#'){ 

   tempParentWhereToWrite = parentWhereToWrite.substring( 1 ); 

  }else{ tempParentWhereToWrite = parentWhereToWrite; } 

  var repliesSectionID = 'replyItemsSection'+ tempParentWhereToWrite + threadId; 

   

   

  if(whereToWrite !== "#socialAPISingleFeed"  &&  whereToWrite !== "socialAPISingleFeed"){ 

   var replyString = '<a onclick="socialAPI().showReplySection(&#39;'+tempParentWhereToWrite+' #'+newWhereToWrite.id+' '+threadId+'&#39;)" 

href="javascript:void(0);"> Reply </a>'; 

  }else{ 

   // We are retrieving only one feed using updateSingleFeed() and we want the "Reply" button to not be shown. 

   var replyString = ''; 

  } 

  // Displaying the 'like' piece of information 

  if(thread.RootPost.LikerInfo.IncludesCurrentUser){ 

   likeString = '<span class="noWrapString"><span class="date">' + dateString + '&nbsp;&nbsp; </span> </span> <span class="slideLeft">&nbsp;</span>' 

+ 

      '<span class="noWrapString">' + 

       likeCounterString + 

       '<span id="likeSection'+ threadId +'"><a 

onclick="socialAPI().unlikeFeedFunction(&#39;'+threadId+'&#39;,&#39;'+newWhereToWrite+'&#39;)" href="javascript:void(0);"> Unlike </a></span>' + 

       ' &nbsp;&nbsp; '+ replyString + 

      '</span>'; 

  } 

  else{ 

   likeString = '<span class="noWrapString"><span class="date">' + dateString + '&nbsp;&nbsp;</span> </span> <span class="slideLeft">&nbsp;</span>' 

+ 

      '<span class="noWrapString">' + 

       '<span id="likeCounter'+ threadId +'">'+ likeCounterString +'</span>' + 

       '<span id="likeSection'+ threadId +'"><a 

onclick="socialAPI().likeFeedFunction(&#39;'+threadId+'&#39;,&#39;'+newWhereToWrite+'&#39;)" href="javascript:void(0);"> Like </a></span>' + 

       ' &nbsp;&nbsp; ' + replyString + 

      '</span>'; 

  } 

   

  var authorIndex; 

  var groupString;  // The string that will tell the group in which the User posted the feed 

  if(thread.Actors.results[0].ActorType === 2){ 

   authorIndex = 1; 

   groupString = '&nbsp;<span>> '+ thread.Actors.results[0].Name +'</span>';  // output example: " > IT/OIS" 
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  } 

  else{ 

   authorIndex = 0; 

   groupString = ''; 

  } 

   

  var postAuthorName = thread.Actors.results[authorIndex].Name;  // The name of the User that posted the feed 

   

  var profileImageUri = thread.Actors.results[authorIndex].ImageUri; // The profile image of the Author of the feed 

  // If the User has not yet a profile image a default one is visualized 

  if( profileImageUri === null || profileImageUri === undefined || profileImageUri === '' ){ 

   profileImageUri = socialWebsite + '_layouts/15/images/PersonPlaceholder.42x42x32.png?rev=23'; 

  } 

  profileImageUri = '<img src="'+ profileImageUri +'" id="profilePicture" />'; 

   

  var personalAboutPage = thread.Actors.results[authorIndex].PersonalSiteUri; // This is the Uri of the User's homepage on Social. 

   

  var text = thread.RootPost.Text; 

  // Consistency check - if the feed has no text the function ends. 

  if( text === null || text === undefined || text === "" ) 

  { 

   return; 

  } 

  else 

  { 

   var matchString = "<c0>CERN</c0> Accelerating science <ddd/>"; 

   var tempIndex = text.indexOf(matchString); // If there is a string like 'matchString' in the text the output will be the index of that 

substring. 

   if( tempIndex !== -1){ 

    text = text.substring(0, tempIndex) + text.substring(tempIndex + matchString.length, text.length); 

   } 

    

   text = myEscapeHTML(text); // Preventing code injection! 

   text = formatText(text, parentWhereToWrite); // This function will adapt the text to our needs 

  } 

    

  var attachmentUri; 

  try{ 

   attachmentUri = thread.RootPost.Attachment.Uri; 

  }catch(e){} 

  var attachmentString; 

  if( attachmentUri === undefined || attachmentUri === null || attachmentUri === ''){ 

   attachmentString = ''; 

  }else{ 

   attachmentString = '<p> <img id="attachmentImage" src="'+attachmentUri+'" onerror="this.parentElement.removeChild(this);" /> </p>'; 

  } 

   

  // Redundancy check - if this feed has already been displayed, we skip it. 

  if( document.getElementById('profileImageSection'+ threadId) ){ 

   return; 

  } 

   

  var strOutput = '<div class="feedsItem" id="feedsItem"> ' + 

       '<div class="table">' + 

        '<div class="picSection">' + 

         '<a href="'+personalAboutPage+'" target="_blank"> ' + 

          '<span id="picSection" 

class="profileImageSection'+ threadId +'">' + 

           profileImageUri + 

          '</span>' + 

         '</a>' + 

        '</div>' + 

        '<div class="notPicSection">' + 

         '<p><span id="author"> <a 

href="'+personalAboutPage+'" target="_blank"> '+ postAuthorName + ' </a> </span>' +  groupString + '</p>' + 

         '<p>' + text  + '</p>' + 

         attachmentString + 

         '<p id="likeString'+ threadId +'"> ' + 

          likeString  + 

         '</p>' + 

        '</div>' + 

       '</div>' + 

      '</div>' + 

      '<div id="'+ repliesSectionID +'"></div>'; 

   

  $(strOutput).hide().appendTo(newWhereToWrite).fadeIn(800); 

   

  // Appending the reply section that will be shown when pressing the "reply" button of a feed. 

  $(newWhereToWrite).append('<div class="textbox'+ tempParentWhereToWrite + threadId +'">' + 

         '<p id="textAreaReplySection"> <textarea 

placeholder="" wrap="hard" id="textareaReply" class="textareaReply'+ tempParentWhereToWrite + threadId +'"></textarea> </p>' + 

         '<p class="replyButtonsGroup"> <input type="button" 

value="Reply" id="replyButton" class="uploadMessage'+ tempParentWhereToWrite + threadId +'" onclick="socialAPI().createReply(&#39;'+parentWhereToWrite+' '+newWhereToWrite.id+' 

'+threadId+'&#39;)"> </p>' + 

          '</div>'); 

   

  var containerID; // To have the container ID we have got to check if 'newWhereToWrite' is an object pointing to the HTML section or just the string 

containing the ID of the section. 

  if(whereToWrite !== "#socialAPISingleFeed"  &&  whereToWrite !== "socialAPISingleFeed"){ 

   // In this case the reply button is already hidden from the CSS and we want to also hide the textarea. 

    

   if( typeof(newWhereToWrite) !== "string" ){ 

    containerID = newWhereToWrite.id; 

   } 

   else{ 

    containerID = newWhereToWrite; 

   } 

    

   // We are now hiding the textAreaRreply section. This has to do be done here and not in the CSS because otherwise it will not work well in IE 

(even IE11), causing the whole page to crash if Enter is pressed while the cursor is inside the textbox. 

   var elem = getElementInsideContainer(containerID, "textbox" + tempParentWhereToWrite +threadId); // Getting the element of the 'textbox' 

just appended to the 'whereToWrite' section. 

   $(elem).hide(); 
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  }else{ 

   // The textarea is visible and we want to also show the 'Reply' button. 

    

   if( typeof(newWhereToWrite) !== "string" ){ 

    containerID = newWhereToWrite.id; 

   } 

   else{ 

    containerID = newWhereToWrite; 

   } 

    

   // We are now hiding the textAreaRreply section. This has to do be done here and not in the CSS because otherwise it will not work well in IE 

(even IE11), causing the whole page to crash if Enter is pressed while the cursor is inside the textbox. 

   var elem = getElementInsideContainer(containerID, "uploadMessage" + tempParentWhereToWrite +threadId); // Showing the "Reply" button that is 

normally hidden through CSS. 

   $(elem).css("display", "inline"); 

  } 

   

   

  // If we don't want to display the replies... 

  if(whereToWrite == "#socialAPISingleFeed"  ||  whereToWrite == "socialAPISingleFeed"  ||  !flagDisplayReplies){ 

   return; // Skipping the displaying of the replies. We want to see only the feeds. 

  } 

   

   

  /******************************************** 

   * Displaying the information of the REPLIES 

   ********************************************/ 

  // Displaying the replies 

  var repliesSection = document.getElementById(repliesSectionID); 

  var numberOfRepliesToShow = 0; 

  var replyPicUri; 

  var replyActorName; 

  var text; 

  var attachmentUri; 

  var numberOfReplies = 0; 

  try{ 

   numberOfReplies = thread.Replies.results.length; 

  } 

  catch(e){} 

   

  if(numberOfReplies > 0){ 

   var replies = thread.Replies.results; // Catching the replies 

    

   for(var y=numberOfReplies-1; y>=0; y--){ 

    authorIndex = replies[y].AuthorIndex; // Reading the index of the author inside the array of Actors in the thread 

    var id = replies[y].Id;  // The ID of the reply 

     

    // Reading all the information about the reply 

    replyPicUri = thread.Actors.results[authorIndex].ImageUri; 

    // If the User has no profile image... 

    if(replyPicUri === null  ||  replyPicUri === undefined  ||  replyPicUri === ''){ 

     replyPicUri = socialWebsite + "_layouts/15/images/PersonPlaceholder.42x42x32.png?rev=23"; // ...we set the default 

image. 

    } 

     

    replyActorName = thread.Actors.results[authorIndex].Name; // Reading the name of the author of the reply 

    personalAboutPage = thread.Actors.results[authorIndex].PersonalSiteUri;  // The Uri of the User's homepage on 

Social 

    text = replies[y].Text;  // Reading the content of the reply 

    text = myEscapeHTML(text); // Preventing code injection! 

    text = formatText(text, parentWhereToWrite); // This function will adapt the text to our needs 

     

    var attachmentUri; 

    try{ 

     attachmentUri = replies[y].Attachment; // Reading the attachment URI. If present it will be displayed, 

otherwise its HTML section will self-remove itself. 

    }catch(e){} 

    var attachmentString; 

    if( attachmentUri === undefined || attachmentUri === null || attachmentUri === '' ){ 

     attachmentString = ''; 

    }else{ 

     attachmentString = '<p> <img id="attachmentImage" src="'+attachmentUri+'" 

onerror="this.parentElement.removeChild(this);" /> </p>'; 

    } 

     

    dateString = createDateString(new Date(replies[y].CreatedTime)); // creating the string with the date of last 

modification of the feed 

    likeString = createLikeReplyString(replies[y].LikerInfo.TotalCount, replies[y].LikerInfo.IncludesCurrentUser, id, 

newWhereToWrite); // Creating the string about the likes of the feed 

     

    // Writing the reply on the web page 

    //repliesSection.innerHTML + 

    var strOutput = '<div class="replyItem">' + 

            '<div 

class="table">' + 

            

 '<div class="picSection">' + 

            

  '<a href="'+personalAboutPage+'" target="_blank">' + 

            

   '<div id="picSection">' + 

            

    '<img src="'+replyPicUri+'" id="profileReplyPicture" /> ' + 

            

   '</div>' + 

            

  '</a>' + 

            

 '</div>' + 

            

 '<div class="notPicSection">' + 

            

  '<p> <span id="author"> <a href="'+personalAboutPage+'" target="_blank"> '+ replyActorName + ' </a> </span> </p>' + 
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  '<p>' + text  + '</p>' + 

            

  attachmentString + 

            

  '<span>' + 

            

   '<span class="noWrapString"><span class="date">' + dateString + '&nbsp;&nbsp; </span> </span> <span class="slideLeft">&nbsp;</span>' +  

            

   '<span class="noWrapString">' + likeString + ' </span>' + 

            

  '</span>' + 

            

  '<p class="replyId" id="replyId'+id+'">'+id+'</p>' + 

            

 '</div>' + 

            '</div>' 

+ 

           '</div>'; 

    $(strOutput).hide().appendTo(repliesSection).fadeIn(800); 

     

   } 

  } 

   

 } 

  

  

 // This function creates the string to upload into the reply section. Precisely regarding the people that like of the reply. 

 function createLikeReplyString(likeCounter, userLikesTheFeedFlag, id, whereToWrite){ 

  /*********************************************************** 

   * Checking the existence of people that like the message. 

   ***********************************************************/ 

  var likeCounterString; 

  // If the number of people who likes this post is 0 (no-one) 

  if(likeCounter == 0  ||  likeCounter === ''  ||  likeCounter === null  ||  likeCounter === undefined){ 

   likeCounterString = "";  // If nobody liked the feed nothing particular is shown 

  }else{ 

   // If someone liked the post... e.g. 23 liked the post -> (smile 23) 

   likeCounterString = "<span id='likeCounter"+ id +"'> <span class=\"smile\"></span> <b>" + likeCounter + "</b> </span> ";  

  } 

   

  var likeString; 

  // If the User likes the reply we will show the 'Unlike' button 

  if(userLikesTheFeedFlag){ 

   // likeString = '<span> <a onclick="socialAPI().unlikeReplyFunction(&#39;'+threadId+' '+j+'&#39;)" href="javascript:void(0);"> Unlike </a> 

</span>'; 

   likeString = '<span> <a onclick="socialAPI().unlikeReplyFunction(&#39;'+ id +' '+ whereToWrite +'&#39;)" href="javascript:void(0);"> Unlike </a> 

</span>'; 

  }else{ 

   // Otherwise we show the 'Like' button 

   // likeString = '<span> <a onclick="socialAPI().likeReplyFunction(&#39;'+threadId+' '+j+'&#39;)" href="javascript:void(0);"> Like </a> </span>'; 

   likeString = '<span> <a onclick="socialAPI().likeReplyFunction(&#39;'+ id +' '+ whereToWrite +'&#39;)" href="javascript:void(0);"> Like </a> 

</span>'; 

  } 

   

  return likeCounterString + likeString; 

 } 

  

  

 /* This function will format the text given in input and give the formatted text in output. 

  * The aim is to format it to fit the HTML language. */ 

 function formatText(text, whereToWrite){ 

  text = text.replace(/\n/g, "</br>");  // Replacing all the new line character ('\n') with the equivalent in HTML. 

  text = checkSharpPresence(text);   // Modifying the text received from Sharepoint to be read effectively from the next 

two functions. (replacying "<c0>" with "#", but only when needed. 

  text = text.replace(/<\/c0>/g, "");  // Deleting all the end tag character from Sharepoint ('</c0>'). 

  text = text.replace(/<ddd\/>/g, "");  // Deleting all the character from Sharepoint ('<ddd/>'). 

   

  text = checkForWebpages(text);    // Modifying the text to contain links in case there are some tags in 

it. 

   

  if( typeof(whereToWrite) !== "string" ){ 

   text = checkForTags(text, '#' + whereToWrite.id); // Modifying the text in case there are some links to webpages in it. 

  } 

  else{ 

   text = checkForTags(text, whereToWrite); // Modifying the text in case there are some links to webpages in it. 

  } 

   

  return text; 

 } 

  

  

 /* This function elaborates every element like "<c0>". 

  * At the end no more elements like that will be inside the input string. 

  * - input: a string 

  * - output: the string with no more elements like "<c0>". 

  */ 

 function checkSharpPresence(content){ 

   

  // If no elements like "<c0>" are inside the string -> end of the function. 

  if( content.indexOf("<c0>") === -1 ){ return content; } 

   

  // If there is a sharp before "<c0>" than the element is deleted, otherwise it is turned into a sharp ('#'). 

  if( content[ content.indexOf("<c0>") -1 ] !== "#" && content[ content.indexOf("<c0>") -1 ] !== "@" && content[ content.indexOf("<c0>") + 4 ] !== "#") 

  { 

   content = content.replace("<c0>", "#"); // Replacing all the tag character from Sharepoint ('<c0>') with the equivalent in HTML.. 

   return checkSharpPresence(content); 

  } 

  else 

  { 

   content = content.replace("<c0>", "");  // Deleting the tag character from Sharepoint ('<c0>') with the equivalent in HTML.. 

   return checkSharpPresence(content); 

  } 
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 } 

  

  

 /* This function check the text for the presence of link to webpages. 

  * If any link is found it is substituted with an <a> HTML statement to make the User able to go on that website using a new tab. 

  */ 

 function checkForWebpages(text){ 

  // Now we try to find possible URL links inside the text. 

  var parts = text.split(" "); // separate input by spaces ( URLs don't have spaces ) 

  text = ""; // Resetting text 

  var prefix = "http://"; 

  var linkFlag = false; 

  // Attempt to validate each string as URL.  

  // If it is an URL it is converted and then appended to the "text" string. 

  // else: it is simply appended to the "text" string. 

  for (var index = 0; index < parts.length; index++) { 

   var afterUrl = '', beforeUrl = ''; 

   while(parts[index][0] === '('  &&  parts[index].length > 2){ 

    beforeUrl += '('; 

    parts[index] = parts[index].substring(1); 

   } 

   while(parts[index][parts[index].length-1] === ')'  &&  parts[index].length > 2){ 

    afterUrl += ')'; 

    parts[index] = parts[index].substring(0, parts[index].length-1); 

   } 

    

   try{  

    linkFlag = validateURL(parts[index]); 

   }catch(err){ linkFlag = false; } 

    

   if( linkFlag ){ 

    // If it is a valid URL then replace with anchor... 

    // If the URL does not have the "http://" at the beginning we have to add it on the reference, otherwise it will point to a page 

inside our website, which is not the target. 

    if( parts[index][0] !== 'h' &&  parts[index][1] !== 't' && parts[index][2] !== 't' && parts[index][3] !== 'p' ) 

    { 

     text += beforeUrl +"<a href=\"" + prefix + parts[index] + "\" target=\"_blank\">"+ parts[index] + "</a>"+ afterUrl 

+" "; 

    } 

    else 

    { 

     text += beforeUrl +"<a href=\"" + parts[index] + "\" target=\"_blank\">"+ parts[index] + "</a>"+ afterUrl +" "; 

    } 

   } 

   else 

   { 

    if( index < (parts.length-1) ) 

    { 

     // It was not a valid URL. Appending the text as it is: 

     text += parts[index] + " "; 

    } 

    else 

    { 

     // This is the last element, no space has to be added at the end. 

     text += parts[index]; 

    } 

   } 

  } 

   

  return text; 

 } 

  

  

 /* This function check the text of one feed for the presence of tags. 

  * If any tag is found it is substituted with an <a> HTML statement to make the User able to call for feeds with that tag. 

  */ 

 function checkForTags(text, whereToWrite){ 

  var tempTag = ""; 

  var tempStrToCompare = '<a '; 

  var tempStrToCompareLength = tempStrToCompare.length; 

  var tempRes = false; 

   

  var x=0; 

  // The field "text.length" has to be left as it is, because the length of the text changes everytime we find a tag, therefore it has to be retrieved dinamically. 

  while( x < text.length){ 

    

   tempRes = compareSubstring(text, x, tempStrToCompareLength, tempStrToCompare); 

   // If 'tempRes' is false the string "<a href" has not been found. Otherwise... 

   if(tempRes === true) 

   { 

    // The string "<a href" has been found. 

    // We have a link inside our message. We have to go forward in the message to the end of the link and continue our work from 

there. 

    x += 3; // We can move beyond the '<a ' string 

    while( x < text.length ){ 

      

     x++; 

     while(text[x] !== '<'  &&  x < text.length){  

      x++;  

     } 

     // Now text[x] = '<' 

      

     if( text[x+1] === '/' && text[x+2] === 'a' && text[x+3] === '>' ){ 

      x += 4; // Goes beyond the "</a>" tag 

      break; 

     } 

    } 

     

   } 

    

   // Making sure that it is a tag (#something) and it is not the HTML code for curly brackets ("&#123;" and "&#125;") 

   if(text[x] === '#' && isOnlyLetterOrNumber(text[x+1]) && ( text[x+1]!=='1' && text[x+2]!=='2' && text[x+3]!=='3' && text[x+4]!==';' ) && ( 

text[x+1]!=='1' && text[x+2]!=='2' && text[x+3]!=='5' && text[x+4]!==';' ) && ( text[x+1]!=='3' && text[x+2]!=='9' && text[x+3]!==';' ) && (x+1) < text.length){ 
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    // The first element is a '#' 

    tempTag += text[x]; 

    x++; // moving on 

     

    // From now on only letters and number will be accepted as part of the tag 

     

    // Reading the tag 

    while( x < text.length && isOnlyLetterOrNumber(text[x]) ){ 

      

     tempTag += text[x]; // copying the x-th character of the text into the j-th position in "tempTag" 

      

     x++; 

    } 

     

    var newTextObj = tagReplace(text, x-tempTag.length, tempTag, whereToWrite); 

    text = newTextObj.text; 

 

    x += newTextObj.gap-1; // The index is just beyond the tag. We have to add the string length and the length of the tag 

again. -1 because the x will be increased by one at the end of the while cycle. 

     

    tempTag = ""; // Resetting 'tempTag' 

   } 

    

   x++; 

  } 

   

   

  return text; 

 } 

  

  

  

  

 /***************************** 

  * CREATION OF EVENT LISTENERS 

  *****************************/ 

 /* No event listener is needed right now. If needed, use this function as example: 

 window.onload = function () 

 { 

  var elem; 

   

  elem = document.getElementsByClassName('likeFeed');  // Retrieves all the elements with class = 'likeFeed' 

  if(elem){ 

   var temp; 

   var threadId; 

   for(var i=0; i < elem.length; i++){ 

    temp = elem[i].parentElement.parentElement.parentElement.parentElement; 

    threadId = temp.lastChild.innerHTML; // Reading the threadId from the span invisible field in the HTML page 

     

    temp.lastChild.addEventListener('click', function(){ socialAPI().likeFeedFunction(threadId, whereToWrite) }, false); 

   } 

  } 

   

  elem = document.getElementsByClassName('unlikeFeed');  // Retrieves all the elements with class = 'unlikeFeed' 

  if(elem){ 

   var temp; 

   var threadId; 

   for(var i=0; i < elem.length; i++){ 

    temp = elem[i].parentElement.parentElement; 

    threadId = temp.lastChild.innerHTML; 

     

    // should I add the 'onclick' to the <a> section? But this would mean not having a onEvent situation... 

    temp.lastChild.addEventListener('click', socialAPI().unlikeFeedFunction(threadId, whereToWrite), false); 

   } 

  } 

   

 } 

 */ 

  

  

 /************************************** 

  * DEFINITION OF THE SOCIALAPI ELEMENT 

  **************************************/ 

 // This element retrieves the elements from the web-page to which we would like to apply the changes. 

 var SocialAPI = function(){ return; }; 

  

  

 /******************************************** 

  * DEFINITION OF THE SOCIALAPI MAIN FUNCTION 

  ********************************************/ 

 socialAPI = function() { 

  return new SocialAPI(); 

 } 

 // This line allows the Developer to call the prototyped functions (see below) from outside this environment simply writing something like: 

 // socialAPI().nameOfPrototypedFunction(inputVariable); 

  

  

 /***************************************** 

  * DEFINITION OF THE PROTOTYPED FUNCTIONS 

  *****************************************/ 

 // Exposing the prototype object via socialAPI.fn so methods can be added later 

 socialAPI.fn = SocialAPI.prototype = { 

  // API methods 

  // Main methods 

  authenticateOnSocial: function(inputFunction){ 

   authenticateOnSocial(inputFunction); 

  }, 

  updateFollowedFeeds: function(whereToWrite, updateInterval, numFeeds, flagDisplayReplies){ 

   updateFollowedFeeds(whereToWrite, updateInterval, numFeeds, flagDisplayReplies); 

  }, 

  updateFeedsFromProfile: function(accountName, whereToWrite, updateInterval, numFeeds, flagDisplayReplies){ 

   updateFeedsFromProfile(accountName, whereToWrite, updateInterval, numFeeds, flagDisplayReplies); 
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  }, 

  updateFeedsWithSameHashtag: function(tag, whereToWrite, updateInterval, numOfFeeds, flagDisplayReplies){ 

   updateFeedsWithSameHashtag(tag, whereToWrite, updateInterval, numOfFeeds, flagDisplayReplies); 

  }, 

  updateGroupInfo: function(whereToWrite, department, group, section, imageFlag, groupNameFlag, numFeeds){ 

   updateGroupInfo(whereToWrite, department, group, section, imageFlag, groupNameFlag, numFeeds); 

  }, 

  updateSingleFeed: function(whereToWrite, url){ 

   updateSingleFeed(whereToWrite, url); 

  }, 

  manuallyUpdateAllTheFeeds: function(){ 

   manuallyUpdateAllTheFeeds(); 

  }, 

  findTaggedFeeds: function(tag, whereToWrite){ 

   findTaggedFeeds(tag, whereToWrite); 

  }, 

  loadTagCloud: function(whereToWrite, maxNumTags, textColor, textBorderColor, numDimensions, weightFlag, periodOfTime){ 

   loadTagCloud(whereToWrite, maxNumTags, textColor, textBorderColor, numDimensions, weightFlag, periodOfTime); 

  }, 

  postToMyFeeds: function(inputMessage, inputFunction){ 

   postToMyFeeds(inputMessage, inputFunction); 

  }, 

   

  // Other methods 

  clearMessageToTheUser: function(id){ 

   clearMessageToTheUser(id); 

  }, 

  moreFeedsFunction: function(dateTime, whereToWrite, parentWhereToWrite, accountName, numFeedsToDisplay, numFeedsStillToGet, flagDisplayReplies){ 

   moreFeedsFunction(dateTime, whereToWrite, parentWhereToWrite, accountName, numFeedsToDisplay, numFeedsStillToGet, flagDisplayReplies); 

  }, 

  moreGroupElements: function(whereToWrite, department, group, section, imageFlag, departmentFlag, numFeeds){ 

   moreGroupElements(whereToWrite, department, group, section, imageFlag, departmentFlag, numFeeds); 

  }, 

  moreRepliesFunction: function(link){ 

   moreRepliesFunction(link); 

  }, 

  deleteFeed: function(id){ 

   deleteFeed(id); 

  }, 

  unfollowPerson: function(inputString){ 

   unfollowPerson(inputString); 

  }, 

  likeFeedFunction: function(threadId){ 

   likeFeedFunction(threadId); 

  }, 

  unlikeFeedFunction: function(threadId){ 

   unlikeFeedFunction(threadId); 

  }, 

  showReplySection: function(mixedInput){ 

   showReplySection(mixedInput); 

  }, 

  createReply: function(str){ 

   createReply(str); 

  }, 

  deleteReply: function(id){ 

   deleteReply(id); 

  }, 

  likeReplyFunction: function(id){ 

   likeReplyFunction(id); 

  }, 

  unlikeReplyFunction: function(id){ 

   unlikeReplyFunction(id); 

  }, 

  setErrorHandler: function(func){ 

   errorHandlerFunction = func; 

  } 

   

  // We can write more methods here, each using 'return this', to enable chaining. 

    }; 

  

}(jQuery)); 

  

 

 

File “socialAPI.css”: 
 

 

/* Social API's CSS. Version 1.2 

 * - Created a new rule that overrides a rule in the webpage which limits the max-width of a textarea at 50em. 

 */ 

 

/*Fix img size problem from CERN theme*/ 

.socialAPIWrapClass img{ 

    width: 100%; 

} 

 

.socialAPIWrapClass{ 

 font-size: 18px; 

} 

 

 

.socialAPIWrapClass a{ 

    color: #4d94cc; /* To avoid blue underlined links */ 

    text-decoration: none; 

} 

.socialAPIWrapClass a:hover{ 

 color: #4d94cd; 

} 
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.socialAPIWrapClass a:focus{ 

 color: #256ca4; 

} 

.socialAPIWrapClass a.link{ 

    color: blue; 

} 

 

.socialAPIWrapClass button{ 

    background-color: #297CCF; 

    border: 0px; 

    color: white; 

     

    padding-top: 4px; 

    padding-bottom: 2px; 

    padding-left: 7px; 

    padding-right: -2px; 

} 

.socialAPIWrapClass button:hover{ 

    background-color: #246fba; 

} 

 

.socialAPIWrapClass input{ 

    background-color: #297CCF; 

    border: 0px; 

    color: white; 

     

    padding-top: 4px; 

    padding-bottom: 2px; 

    padding-left: 7px; 

    padding-right: -2px; 

} 

.socialAPIWrapClass input:hover{ 

    background-color: #246fba; 

} 

 

 

 

 

/* misc */ 

.socialAPIWrapClass .left { 

    float: left; 

} 

.socialAPIWrapClass .right { 

    float: right; 

} 

 

.socialAPIWrapClass h1{ 

    color: #414141; 

    font-size: 2.8rem; 

    font-weight: bold; 

    line-height: 3rem; 

    font-family: "PT Sans",Verdana,Tahoma,"DejaVu Sans",sans-serif; 

} 

 

 

 

/* updates */ 

.socialAPIWrapClass .feedsItem .replyItem { 

    border-bottom: 6px solid #FFF; 

} 

.socialAPIWrapClass .label { 

    margin-top: 20px; 

    margin-bottom: 23px; 

    border: 3px solid #212121; 

    overflow: hidden; 

    text-align: center; 

    padding: 0px 10px 0px 10px; 

     

    -webkit-transition: color 0.2s linear, background 0.2s linear; 

    -moz-transition: color 0.2s linear, background 0.2s linear; 

    -ms-transition: color 0.2s linear, background 0.2s linear; 

    -o-transition: color 0.2s linear, background 0.2s linear; 

    transition: color 0.2s linear, background 0.2s linear; 

} 

.socialAPIWrapClass .label:hover{ 

    background: #212121; 

} 

 

.socialAPIWrapClass .label #title{ 

    font: normal 2em "Lucida Sans Unicode",sans-serif; 

    line-height: 40px; 

    padding-top: 10px; 

} 

 

.socialAPIWrapClass .label #subTitle{ 

    font: normal 1em "Lucida Sans Unicode",sans-serif; 

    line-height: 15px; 

    padding-bottom:10px;    /* This line of code is necessary to make every part of the label as a link. Without it the bottom of the label is not a link. */ 

} 

 

.socialAPIWrapClass #reply{ 

    font-size: 0.75em; 

} 

 

.socialAPIWrapClass #feed{ 

    font-size: 0.75em; 

} 

 

.socialAPIWrapClass #myCanvasContainer{ 

    vertical-align: top; 

    display: inline-block; 

    width: 45%; 

} 
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.socialAPIWrapClass #feedsWithSameTagSphere{ 

    vertical-align: top; 

    display: inline-block; 

    width: 53%; 

} 

.socialAPIWrapClass #findTaggedFeedsArea{ 

    vertical-align: top; 

    display: inline-block; 

    width: 30%; 

} 

.socialAPIWrapClass #feedsWithSameTag{ 

    vertical-align: top; 

    display: inline-block; 

    width: 68%; 

} 

 

 

.socialAPIWrapClass .feedsItem { 

    display: table; 

 table-layout: fixed; 

 word-wrap: break-word; 

    font: normal 0.73em "Trebuchet MS",sans-serif; 

    color: #565656; 

    padding-bottom: 10px; 

    overflow: hidden;   /* necessary to hide text in excess */ 

    border-bottom: 1px solid #FFF; 

     

    width: 100%; 

     

    -webkit-transition: color 0.2s linear; 

    -moz-transition: color 0.2s linear; 

    -ms-transition: color 0.2s linear; 

    -o-transition: color 0.2s linear; 

    transition: color 0.2s linear; 

} 

.socialAPIWrapClass .feedsItem:hover{ 

    color: black; 

} 

.socialAPIWrapClass .feedsItem:hover  #deleteFeed { 

    filter: alpha(opacity=100); 

    opacity: 1; 

} 

.socialAPIWrapClass .table{ 

 display: table-row; 

} 

.socialAPIWrapClass .picSection{ 

 display: table-cell; 

 width: 50px; 

} 

.socialAPIWrapClass .feedsItem #picSection{ 

    padding-top: 3px; 

    min-width: 38px; 

} 

.socialAPIWrapClass .feedsItem .notPicSection{ 

    display: table-cell; 

    width:100%; 

    padding-left: 10px; 

     

    /* Now we put the name of the Author and the text near the user's picture starting at the right height. */ 

    vertical-align: top; 

} 

.socialAPIWrapClass .notPicSection p{ 

    margin-top: 0; 

    margin-bottom: 8px; 

} 

.socialAPIWrapClass .notPicSection p a{ 

 word-break: break-all; 

 display: inline-block; 

 -ms-word-break: break-all; /* For IE */ 

 

} 

.socialAPIWrapClass .feedsItem #deleteFeed{ 

    filter: alpha(opacity=0); 

    opacity: 0; 

     

    float: right; 

    font-size: 1.3rem; 

    font-family: Arial; 

    /* The 'X' at the top right of the feed used to delete the feeds changes colour gradually. */ 

    transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear; 

    -webkit-transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear; 

    -moz-transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear; 

    -o-transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear; 

} 

.socialAPIWrapClass .feedsItem span#author{ 

    font-size: 1.2em; 

    margin: 0px; 

    padding:0px; 

} 

.socialAPIWrapClass .feedsItem #authorOfFeedsWithSameTag{ 

    font-size: 1.39em; 

} 

.socialAPIWrapClass .feedsItem .date { 

    color: #777777; 

    font-size: 0.85em 

} 

.socialAPIWrapClass #textAreaReplySection{ 

    margin-left: 60px; 

} 

.socialAPIWrapClass textarea{ 

 max-width:none!important; 

} 

.socialAPIWrapClass #textareaReply{ 
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    margin-top: 12px;  

    font-size: 0.75em; 

    width: 99.2%; 

    height: 60px; 

} 

.socialAPIWrapClass .replyButtonsGroup{ 

    width: 100%; 

    text-align: right; 

} 

.socialAPIWrapClass #replyButton{ 

    display: none; 

    margin-bottom: 10px; 

} 

.socialAPIWrapClass #replyButtonUploadFile{ 

    display: none; 

    margin-top: 0; 

    margin-bottom: 10px; 

    height: 35px; 

} 

.socialAPIWrapClass .feedsItem #feedId{ 

    display: none; 

} 

.socialAPIWrapClass .feedsItem a:hover { 

    color: #444; 

} 

.socialAPIWrapClass .slideLeft{ 

 margin-left:-0.5em; 

} 

.socialAPIWrapClass .noWrapString{ 

 /* white-space: nowrap; */ 

 white-space: nowrap; 

} 

 

.socialAPIWrapClass .replyItem{ 

    display: table; 

    font: normal 0.73em "Trebuchet MS",sans-serif; 

    color: #444444; 

    margin-left: 35px; 

    padding-bottom: 6px; 

    overflow: hidden;   /* necessary to hide text in excess */ 

    border-bottom: 1px solid #FFF; 

  

 table-layout: fixed; 

 word-wrap: break-word; 

     

    -webkit-transition: color 0.2s linear; 

    -moz-transition: color 0.2s linear; 

    -ms-transition: color 0.2s linear; 

    -o-transition: color 0.2s linear; 

    transition: color 0.2s linear; 

} 

@media screen and (-webkit-min-device-pixel-ratio:0) { 

    .socialAPIWrapClass .replyItem{ margin-left: 23px; } 

} 

.socialAPIWrapClass .replyItem:hover{ 

    color: black; 

} 

.socialAPIWrapClass .replyItem:hover  #deleteReply { 

    filter: alpha(opacity=100); 

    opacity: 1; 

} 

.socialAPIWrapClass .replyItem .replyId{ 

    display: none; 

} 

.socialAPIWrapClass .replyItem #picSection{ 

    float: left; 

    padding-top: 3px; 

    min-width: 50px; 

     

    position: relative; 

} 

.socialAPIWrapClass .replyItem .notPicSection{ 

    display: table-cell; 

     

    /* Now we put the name of the Author and the text near the user's picture starting at the right height. */ 

    vertical-align: top; 

} 

.socialAPIWrapClass .replyItem #deleteReply{ 

    filter: alpha(opacity=0); 

    opacity: 0; 

     

    float: right; 

    font-size: 1.3rem; 

    font-family: Arial; 

    /* The 'X' at the top right of the reply used to delete the replies changes colour gradually. */ 

    transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear; 

    -webkit-transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear; 

    -moz-transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear; 

    -o-transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear; 

} 

.socialAPIWrapClass .replyItem span#author{  

    font-weight: bold; 

    font-size: 1.05em; 

} 

.socialAPIWrapClass .replyItem .date{ 

    color: #777777; 

    font-size: 0.85em; 

} 

 

.socialAPIWrapClass .replyItem #replyText{ 

    font-size: 0.9em; 

    margin: 0; 

    padding: 0; 
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} 

 

 

 

/* content */  

.socialAPIWrapClass .label p { 

    margin: 4px 0 10px 0; 

} 

 

.socialAPIWrapClass input{ 

    padding:5px; 

    margin-top:5px; 

} 

 

.socialAPIWrapClass #tool{ 

    margin: 0 0 10px 0; 

    background: #F0F0F0; 

    padding: 5px; 

    border: 1px solid black; 

} 

 

.socialAPIWrapClass #moreFeedsButton{ 

    clear: right; 

    display: block; 

    text-align: center; 

     

    margin-top: 10px; 

    margin-bottom: 10px; 

     

    margin-right: auto; 

    margin-left: auto; 

} 

 

.socialAPIWrapClass #moreFeedsButton:active{ 

    padding-top: 6px; 

    padding-bottom: 4px; 

    padding-left: 7px; 

    padding-right: -2px; 

} 

 

 

.socialAPIWrapClass input#moreRepliesButton{ 

    clear: right; 

    display: block; 

    text-align: center; 

    color: #454545; 

     

    border-color: #a3a3a3; 

    border-style: solid; 

    border-width: 1px; 

     

    margin-top: 10px; 

    margin-bottom: 10px; 

     

    background-image: -webkit-gradient( 

        linear, 

        left top, 

        left bottom, 

        color-stop(0, #F5F5F5), 

        color-stop(1, #D4D4D4) 

    ); 

    background-image: -o-linear-gradient(bottom, #F5F5F5 0%, #D4D4D4 100%); 

    background-image: -moz-linear-gradient(bottom, #F5F5F5 0%, #D4D4D4 100%); 

    background-image: -webkit-linear-gradient(bottom, #F5F5F5 0%, #D4D4D4 100%); 

    background-image: -ms-linear-gradient(bottom, #F5F5F5 0%, #D4D4D4 100%); 

    background-image: linear-gradient(to bottom, #F5F5F5 0%, #D4D4D4 100%); 

     

     

    /* To have rounded edges uncomment here:*/ 

    /*-webkit-border-radius: 5px; /* For Safari, etc. */ 

    /*-moz-border-radius: 5px;  /* For Mozilla, etc.*/ 

    /*border-radius: 5px;       /* CSS3 Feature     */ 

     

    margin-right: auto; 

    margin-left: auto; 

} 

.socialAPIWrapClass input#moreRepliesButton:hover{ 

    border-color: #7eba7e; 

     

    background-image: -webkit-gradient( 

        linear, 

        left bottom, 

        left top, 

        color-stop(0, #95DE95), 

        color-stop(1, #CCFFCC) 

    ); 

 

    background-image: -o-linear-gradient(top, #95DE95 0%, #CCFFCC 100%); 

    background-image: -moz-linear-gradient(top, #95DE95 0%, #CCFFCC 100%); 

    background-image: -webkit-linear-gradient(top, #95DE95 0%, #CCFFCC 100%); 

    background-image: -ms-linear-gradient(top, #95DE95 0%, #CCFFCC 100%); 

    background-image: linear-gradient(to top, #95DE95 0%, #CCFFCC 100%); 

} 

.socialAPIWrapClass input#moreRepliesButton:active{ 

    padding-top: 6px; 

    padding-bottom: 4px; 

    padding-left: 7px; 

    padding-right: -2px; 

     

    background: #95db95; 

} 

 

.socialAPIWrapClass #genericButton{ 
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    margin: 10px 0 10px 0; 

} 

 

.socialAPIWrapClass #profilePicture{ 

    width: 50px; 

    /* While the width is fixed, the 'height' property will adjust automatically */ 

    max-height: 50px;   /* Bounding the height property. */ 

} 

.socialAPIWrapClass #profileReplyPicture{ 

    width: 38px;     

    /* While the width is fixed, the 'height' property will adjust automatically */ 

    max-height: 38px;   /* Bounding the height property. */ 

    overflow: hidden; 

} 

.socialAPIWrapClass .smile{ 

 display: inline-block; /* This line makes us able to give a width and height to the span section. */ 

 width: 11px; 

 height: 11px; 

 background: url("https://social.cern.ch/_layouts/15/images/socialcommon.png?rev=23") -119px -1px; 

} 

 

.socialAPIWrapClass #attachmentImage{ 

    /* Same limits as on Social. */ 

    max-height: 300px; 

    max-width: 300px; 

} 

 

.notPicSection #author a { 

    word-break: normal; 

    word-wrap: break-word; 

} 
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