

ALMA MATER STUDIORUM – UNIVERSITY OF BOLOGNA

CESENA’S CAMPUS

SCHOOL OF ENGINEERING AND ARCHITECTURE

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

Enterprise Social Networks:

The Case of CERN

Thesis in

Distributed Systems

 Supervisor Presented by

Prof. Andrea Omicini Marco Carlo Cavalazzi

 Co-supervisor

Dr. Stefano Mariani

 Advisor

Prof. Mario Bravetti

Session II
Academic Year 2015/2016

To my family, all over the world, and to meine schöne und clever Freundin, Beatrice.

To Elena Vogliolo and Guido Langé, always there for me. To my Italian friends, that

push me to become a better man without asking me to change who I am. To my

professors, Marco Boschetti, Andrea Omicini, Mario Bravetti and Antonella Carbonaro,

without whom all this would not have happened. To my great supervisor at CERN,

Bruno Silva De Sousa, who inspires me to do more. A Jean-Alain Brulhart, qui m’a fait

vivre Genève, and to all my “crazy” friends in Saint-Genis-Pouilly and Geneva, they

made the experience even more worth it.

Table of Contents

Sommario ... 1

Abstract .. 3

Introduction .. 5

1. Web 2.0 ... 9

1.1. Social Networks .. 13

1.1.1. Origins of Social Networks .. 14

1.1.2. What is a Social Network .. 18

1.1.3. How does it work? .. 22

1.2. Enterprise Social Networks (ESNs) ... 23

2. Knowledge Management .. 27

2.1. What is “Knowledge”? ... 27

2.2. The Knowledge Worker ... 28

2.3. Knowledge Management and Knowledge Sharing 30

2.4. Barriers to Knowledge Sharing.. 32

3. Transition to the Social Organization .. 39

3.1. Introducing the Social Business .. 39

3.2. Key Enterprise 2.0 tools .. 42

3.3. ESNs Examples .. 45

3.4. Real-Life Stories .. 55

3.5. Benefits of Knowledge Management Systems (KMSs) and Enterprise Social

Networks (ESNs) .. 60

3.6. The Right ESN .. 64

4. CERN as a Social Organization .. 69

4.1. CERN .. 69

4.2. CERN Communications Strategy .. 71

4.3. Social at CERN ... 76

4.3.1. System Architecture ... 87

4.3.2. Deployment and Future Plans .. 89

5. Hands-on Social Development .. 91

5.1. Technical Student Programme .. 91

5.2. Social Mobile ... 91

5.2.1. Development .. 92

5.2.2. Testing .. 96

5.2.3. Problems Encountered and Limitations .. 97

5.3. Resource Planning Tool (RPT) ... 98

5.3.1. Development .. 99

5.3.2. Testing .. 108

5.3.3. Problems Encountered and Limitations .. 108

5.4. Social API.. 108

5.4.1. Development .. 111

5.4.2. Testing .. 156

5.4.3. Problems Encountered and Limitations .. 157

6. Conclusions .. 159

Appendix A ... 163

Appendix B ... 169

Appendix C ... 199

Works Cited .. 253

1

Sommario

I social network sono comunemente visti come una tendenza globale, che consente

agli utenti di trovare altri con interessi simili, scrivere commenti, rispondere, esprimere

apprezzamenti verso o condividere un contenuto, creare gruppi e organizzare eventi.

Detto questo, c’è molto altro che può essere fatto per esprimere il vero potenziale dei

social media. Al fine di migliorare il business, provvedendo a dare al personale, ai

clienti e ai partner i migliori strumenti per cooperare e trarre valore da tutta la comunità,

molte organizzazioni stanno prendendo l’iniziativa, creando gli Enterprise Social

Networks. Un’attenta analisi dei casi di studio e delle statistiche mostra perché è

importante perseguire questa strada. Al CERN, l’Organizzazione Europea per la

Ricerca Nucleare, dove il numero di impiegati, studenti e volontari che ogni giorno

cooperano sia in loco che attraverso la rete raggiunge le migliaia, è stato sviluppato

un nuovo tipo di piattaforma, in grado di sfruttare la conoscenza collettiva del

personale. La tesi descriverà il caso di studio del CERN per capire non solo perché è

essenziale diventare un’organizzazione di tipo “social” ma anche come un ambiente

simile può essere sviluppato. Negli ultimi capitoli verrà esaminato il mio contributo alla

piattaforma, considerando il design per i dispositivi mobile, realizzato per far sì che

l’ambiente si adatti a qualunque dimensione di schermo, uno strumento di gestione

delle risorse integrato, che fornisce agli scienziati un mezzo per gestire facilmente il

lavoro di tutti i giorni sugli acceleratori di particelle, e l’Application Programming

Interface della piattaforma, che consente a chiunque abbia le credenziali di includere

il contenuto dell’Enterprise Social Network all’interno di un sito web personale o di

dipartimento, dando a tutti un modo ancora più semplice per partecipare.

2

3

Abstract

Social networks are commonly seen as a global trend that allows users to search and

contact others with similar interests, write a post, reply, like or share content, create

groups and organize events. This said, there is much more that can be done to exploit

the full potential of social media. In order to improve the business, providing

employees, customers and partners the best tools to cooperate and gain value from

the whole community, many organizations are taking the matter in their own hands,

using Enterprise Social Networks. Close analysis of case studies and comprehensive

statistics shows why it is important to pursue this path. At CERN, the European

Organization for Nuclear Research, where the number of employees, students and

volunteers that everyday work in partnership both on site and through the network

reaches the thousands, a new kind of platform has been deployed, able to exploit the

social knowledge of the personnel. The thesis will describe the case study of CERN

to understand not only why it is essential to become a social organization but also how

a social environment can be developed. The last chapters will focus on examining my

work on the platform, considering a mobile responsive design, realized to make the

environment adapt to any screen size, an integrated resource planning tool, which

gives the scientists the mean to easily manage the everyday work on the particle

accelerators, and the platform’s Application Programming Interface, which allows

anyone with the right credentials to include content from the enterprise social network

into a personal or departmental webpage, giving everyone an even easier way to

participate.

4

5

Introduction

At CERN, the European Organization for Nuclear Research, the number of

employees, students and volunteers that everyday work in partnership both on site

and through the network reaches the thousands. In order to guarantee an efficient and

effective communication between employees, companies and partners a variety of

tools has been developed able to offer all the needed functionalities for the exchange

of messages, documents and to have real-time conversations.

Despite these technologies very well do their jobs their number has become excessive

and their functionalities, often similar, have led to an excessive amount of unnecessary

communication in the workplace. We refer, as an example, to the increase of

redundant messages not originally meant for a specific recipient but sent to groups of

possibly interested people. In this case, the message might be useful to a colleague,

but not necessarily to the whole team. In addition, we have to consider situations like

the ones caused by the “reply all syndrome”, which happens when a number of people

start a conversation over emails using the reply all broadcasting option, thus sending

all the replies to everyone in the email distribution list. In this case, the number of

messages increases exponentially. To address these and other problems a new kind

of communication platform has to be deployed. The technology required has to make

the users able to choose the communication channel to listen to and, at the same time,

preserve and exploit the social knowledge of the team, making it easy to share the

know-how, ask questions and reply to anyone in the network.

The goal of the thesis is to prove that a more suitable and effective approach is indeed

possible, which can make an organization achieve better results in less time.

Enterprise Social Networks (ESNs) provide the infrastructure needed to support the

exchange of knowledge between employees, customers and partners to cooperate

and gain value from the whole community. They give users a proper environment to

cooperate and face every challenge together.

The 2015 McKinsey Global Survey on ESNs states:

“Where social tools are used, respondents say processes have changed notably as a

result — particularly for developing customer insights and competitive intelligence,

where 62 percent of respondents say the use of social technologies has significantly

6

changed the work flow. Executives also report that in the processes where social tools

are used most often, tools tend to be integrated more deeply into day-to-day tasks —

suggesting that companies must adjust the way they work to get the full value from

these technologies. […] At fully networked organizations — the companies seeing the

greatest benefits from internal and external use of social technologies — executives

report greater-than-average use of these tools in each process.” When asked about

the future of social media, they state, “In the coming years, nearly all executives

believe that social technologies could affect some key changes in structural and

management processes. Their visions of social’s potential diverge, though, depending

on the benefits their companies currently see. At internally networked organizations,

executives believe the use of social could democratize decision-making. Fifty-one

percent cite data-driven decisions as a likely change at organizations without

constraints (compared with 33 percent of the total average), and 24 percent cite the

use of internal markets and voting mechanisms to allocate resources (compared with

16 percent). At fully networked organizations, executives most often predict the

organization’s formal hierarchy would become flatter or disappear altogether.”

(McKinsey, 2015)

In order to properly understand and explore the topic, the thesis is organized as

follows:

 The first chapter introduces the technology in all its many facets. It talks about

the origins of social networks and their peculiarities, providing an explanation

on what made them become a reality and how they work. It continues speaking

about the differences between classic and enterprise social networks, giving an

overview on their most important characteristics;

 The second chapter talks about the concepts of knowledge, how it can be

managed and shared, explaining the barriers to knowledge sharing and what

can be done to prevent those complications;

 Chapter 3 introduces the concept of social business. It discusses about the

benefits of Knowledge Management Systems (KMSs) and ESNs, providing

statistics and real-life examples to support the theory;

 The fourth chapter presents the CERN organization. It talks about its

Communications Strategy and the reasons that brought to the creation of its

7

ESN, Social. It explains the system architecture and the planned improvements

for the near future;

 Chapter 5 provides a detailed description of the work I have done on Social

while taking part on its creation, with a thorough explanation of the code. It

includes the development of its mobile design, an integrated Resource Planning

Tool (RPT) and its Application Programming Interface (API), together with a

clear description of its limitations in order to provide an objective view on the

possibilities of the platform.

8

9

1. Web 2.0

Originally, the Web has been conceived as a way to visualize static documents linked

through hypertext links built with the HTML programming language. It has been

defined as a way of accessing information over the medium of the Internet. It is an

information-sharing model that is built on top of the Internet. This approach is the so-

called Web 1.0, pertaining the static web paradigm. From the data exchange point of

view, it is a unilateral communication. The client requests a webpage and the server

sends it back to the user, which will be able to read all its content and ask for another

webpage through a hypertext link or using a different URL, but nothing more. With the

advent of the Web 2.0 this has changed. The possibilities for the client are plenty now.

The term "Web 2.0” usually refers to an evolutionary phase of the Internet and, in

particular, of the World Wide Web. O'Reilly defines the Web 2.0 as "the commercial

revolution in the IT (Information Technologies) sector due to the use of the Internet as

a platform and the attempt to understand the rules of success on this new platform.

The main principle consists in building networking applications that improve while

operating. The more they are used the more they improve” (O’Reilly & Battelle, 2009).

This phase has brought to the appearance of all those online applications that allow a

strong website-user interaction (like Wikipedia, Facebook or YouTube).

The term makes its first appearance at the end of 2001, following the dot-com bubble

burst. The term “dot-com bubble” identifies a phenomenon of the new economy,

which in turn is the result of the transition from a manufacturing-based economy to a

service-based one. The dot-com bubble, developed in the late twentieth century,

comprehends many companies developed exploiting the surplus of funds generated

from the venture capitals bound to the optimism that ruled the stock market in that

period. The companies that managed to survive the end of the dot-com era are today’s

leading actors of the Web 2.0. Companies like Skype and YouTube.

The factors that facilitated the advent of the Web 2.0 phenomenon are many. We can

say that the most important ones are the maturity and the level of development of the

Internet and the realization that billions of people have now access to mobile devices

10

and technologies like Wi-Fi networks that make it as easy as possible for everyone to

surf the web and participate.

A great example is Google Search, one of the most famous search engines that ranks

all the data on the Internet. This service is strongly influenced by the number of

accesses from the clients and increases its effectiveness and the quality of its results

with its use. In fact, the more statistics are collected the higher will be the reliability of

the data provided. The Web 2.0, in fact, is not a specific application or a particular

brand, but it has to be considered as a group of approaches used to exploit the network

in a new and innovative way. With the 2.0 version, the web becomes a development

platform. For the companies the web is a business platform. For the marketers it is a

communication platform. For the journalists it is a new media platform. For the

technicians it is a new development platform and so on (McManus, 2005).

An important characteristic that defines the concept of Web 2.0 is represented by the

active participation of the clients. Before its advent, in both the web and the real world

the assets management was most of the times controlled by sector experts that

collected and organized the data. Now the user can participate and become an active

part that gives added value to the content. Another difference between the Web 1.0

and the 2.0 is the shift from the personal websites to blogs. A change that has

simplified a lot the web for its users. If before it was necessary to understand and know

how to write the Hypertext Markup Language (HTML) code for the pages, now

anybody can publish his/her own material and give it a pretty design nonetheless. All

of that without ever possessing any technical skill.

These new technologies allow the information to become independent from the person

or the site that created them. It becomes possible for the user to mix and update the

data collected for a particular purpose, contributing to the enrichment of those data.

The Web 2.0 is open source, meaning that it is a free source of information that allows

to easily share knowledge and spread it, creating, at the same time, new job

opportunities.

An important example of user participation is Wikipedia, a free encyclopaedia built

collaboratively, where every user can update the information stored at any given time.

It can be defined as “an open-architecture institute possible thanks to the lowering of

the barriers for the publication of new content, the way in which the clients can connect

11

their ideas and the bandwidth available with the upgrading of the computers and the

network” (Weinberger, 2007).

In an environment like this, we see people on the network become not just passive

users but active and responsive elements of the web. This brings us knowing that the

active participation of the users is a great example of democracy. Web services

are services offered by an electronic device to another electronic device,

communicating with each other via the World Wide Web for the purpose of exchanging

data. They are a central node of the Web 2.0 that leaves out the concept of specific

application. One must not consider the Web 2.0 as a well-defined application nor as a

specific service. It can be though as a group of websites, applications and resources

that work together and are easily accessible for the client.

The transition from the software as a product to the software as a service implies an

ongoing daily management, which, if omitted, can cause the termination of the

software.

The most known applications in the Web 2.0 can be classified as follows:

Level 3

It is the highest application level, which

only exists while connected to the

Internet and improves exploiting human

connections. The more it is used the

better it works.

Some examples are eBay, Skype and

AdSense.

Level 2

At this level we have applications that

can work off-line but gain many

advantages when on-line.

We can think of examples like Flickr,

which benefits from the sharing of photos

and videos and from the tags used to

identify the content.

12

Level 1

Level 1 applications can work off-line, but

have technical characteristics that only

work while connected.

Examples comprehend Google Docs,

which can synchronize the files modified

while off-line only when connected, or

iTunes with its music store.

Level 0

This level’s applications can work without

a live connection.

Examples include Google Maps and

Yahoo! Local, mapping applications that

gain value with the contributions of the

users.

As stated before, up until the Web 2.0 the duty to collect and organize the content,

both in the web and in the Knowledge Management (KM) environments was

considered a job for the experts, while the final user could only read it while playing a

passive role. The great news introduced with the Web 2.0 is the possibility given to the

user to actively participate in the management and sharing of knowledge. This active

involvement creates an added value to the information on the web, thanks to the

provision of new ideas and new experiences.

Now that the users are able and willing to create value, both actively and passively,

the enterprises create new systems to aggregate users’ data that will later be used to

build value as a collateral effect of the normal usage of the application.

With the advent of the Web 2.0 we witness a radical change in the classification

systems. From the classic taxonomy (or science of classification), enforced from web

programmers through the use of directories, to the new concept of folksonomy, a

classification made from the users via keywords called “tag”. These tags are chosen

not from a list but created as needed. The tags are then associated to the information

shared. They make the classification and the research of content possible and they

are usually chosen according to personal criteria.

This application is particularly developed in the “social bookmarking”, virtual

bookmarks freely available and shared with the other members of the web community.

13

“Tagging”, the act of linking a tag to some piece of information, allows everyone to

look for information through tags and obtain the lists of related topics that have been

labelled with the same tag.

The web has now an architecture that allows everyone to gain from it. The users exploit

the network for their own personal gain but, at the same time, contribute to the whole

community adding value to the contents. When a user adds new material or new web

pages, these are integrated in the web structure so that the other users will

immediately be able to discover it and contribute to its development.

Again, Wikipedia is a great example of the Web 2.0 new features. A free encyclopaedia

where each element can be written from a user and modified from another one at any

given time, built in the hope that every user would contribute with reliable information.

This “experiment” of trust in the final user allowed Wikipedia to enter in the top 10 of

the most popular websites, representing a profound change in the way content is

created.

The key to succeed in the Web 2.0 market is, thus, to master its collective intelligence

using the contributions of the users ad their interactions. Many companies already do

this and this way they also manage to save on advertisements, using viral marketing,

that is the word of mouth of the digital era, shared online for everyone to hear.

Summing up, the principles of the Web 2.0 are:

 The Web as a platform

 Services development

 Active participation of the users

 Improvement of the service with its use

 Collective intelligence

1.1. Social Networks

In this section, we are going to introduce the concept of Social Networks. Before trying

to give a definition, let us walk through the various stages that brought to their creation.

14

1.1.1. Origins of Social Networks

Social media has become a ubiquitous part of the daily life, but its growth and evolution

has been in the works since the late 80s. From primitive days of newsgroups, listservs

and the introduction of early chat rooms, social media has changed the way we

communicate, gather and share information, and have given rise to a connected global

society.

Let us have a brief look into the history of social networks, starting from the various

applications and services that came before them.

1978

The first service related with Social Networks appeared on the scene in

the 70s.

“The Bulletin Board System (BBS) was the first collaborative tool

available for the personal computer platform. The first BBS went up on

Feb. 16, 1978 in the suburban Chicago home of Walt Christensen.

(Carlson, s.d.). Once logged in, the user could perform functions such as

uploading and downloading software and data, reading news and

bulletins, and exchange messages with other users.

1980 Usenet is an internet service consisting of thousands of newsgroups.

Established in 1980, it is one of the oldest forms of computer network

communications still actively used today. Users can post to newsgroups

and access articles from years ago.

1980 CompuServe broke new ground in 1980 as the first online service to offer

real-time chat online with its CB Simulator, where CB stands for “citizens

band radio”, often abbreviated as CB radio. By 1982, the company had

formed its Network Services Division to provide wide-area networking

capabilities to corporate clients. (CompuServe, 2016)

1984 Prodigy Communications Corporation (Prodigy Services Corp., Prodigy

Services Co., Trintex) was an online service that offered its subscribers

access to a broad range of networked services, including news, weather,

shopping, bulletin boards, games, polls, expert columns, banking, stocks,

travel, and a variety of other features.

https://en.wikipedia.org/wiki/Download
https://en.wikipedia.org/wiki/Online_service

15

1988 Internet Relay Chat Protocol (IRCP) is an application layer protocol that

facilitates communication in the form of text.

The chat process works on a client/server networking model. IRC clients

are computer programs that users can install on their system. These

clients communicate with chat servers to transfer messages to other

clients (Oikarinen & Reed, 1993). IRC is mainly designed for group

communication in discussion forums but also allows one-on-one

communication via private messages (Kalt, 2000) as well as chat and

data transfer, including file sharing (Wallace, 2004) .

1996 ICQ is an open source instant messaging computer program that was first

developed and popularized by the Israeli company Mirabilis in 1996. The

name ICQ stands for "I Seek You". The ICQ client application and service

were initially released in November 1996 and the client was freely

available to download. Users could register an account and would be

assigned a number, like a phone number, for others to be able to contact

them (DeCoursy, 2001).

1997 In 1997 Andrew Weinreich created SixDegrees. With SixDegrees we

approach the first example of a real social network service website.

Named after the six degrees of separation concept it allowed users to

create an account and compile lists of "friends" or family members and

search for other users with similar interests.

1999 In one of the first attempts at social networking we also have LiveJournal.

LiveJournal is a community publishing platform, wilfully blurring the lines

between blogging and social networking. Since 1999 LiveJournal has

been home to a wide array of creative individuals looking to share

common interests, meet new friends, and express themselves.

LiveJournal encourages communal interaction and personal expression

by offering a user-friendly interface and a deeply customizable journal.

The service's individuality stems from the way highly dedicated users

utilize the tools, along with the instinct for individual expression, to create

new venues for online socializing (LiveJournal, 2016).

2001 Wikipedia is the first example of a successful social media that enabled

the users to actively collaborate toward a common goal.

https://en.wikipedia.org/wiki/Application_layer
https://en.wikipedia.org/wiki/Many-to-many
https://en.wikipedia.org/wiki/Many-to-many
https://en.wikipedia.org/wiki/Instant_messaging
https://en.wikipedia.org/wiki/Direct_Client-to-Client
https://en.wikipedia.org/wiki/Direct_Client-to-Client
https://en.wikipedia.org/wiki/File_sharing
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Instant_messaging
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Israel
https://en.wikipedia.org/wiki/Mirabilis_(company)
https://en.wikipedia.org/wiki/Social_network_service
https://en.wikipedia.org/wiki/Friending

16

“Wikipedia is a multilingual, web-based, free-

content encyclopaedia project supported by the Wikimedia

Foundation and based on a model of openly editable content.”

(Wikipedia, s.d.)

2003 MySpace is a social networking website offering an interactive, user-

submitted network of friends, personal profiles, blogs, groups, photos,

music, and videos.

The novelty here is the inclusion of music and videos in the network.

Artists can upload their songs onto Myspace and have access to millions

of people on a daily basis. Many artists became famous thanks to this.

As a result, MySpace had a significant influence on pop culture and

music.

2004 Facebook is the most known social network today. It is a for-

profit corporation and online social networking service based in Menlo

Park, California, United States.

After registering on the site, users can create a user profile, add other

users as "friends", exchange messages, post status updates and photos,

share videos, use various applications (apps), and receive notifications

when others update their profiles. Additionally, users may join common-

interest user groups organized by workplace, school, or other topics, and

categorize their friends into lists such as "People From Work" or "Close

Friends". In groups, editors can pin posts to top. Additionally, users can

complain about or block unpleasant people.

Since 2004, many more have spawn to populate the web, so we can see that the

efforts toward the creation of the perfect platform are not over yet.

https://en.wikipedia.org/wiki/Multilingualism
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Free_content
https://en.wikipedia.org/wiki/Free_content
https://en.wikipedia.org/wiki/Encyclopedia
https://en.wikipedia.org/wiki/Wikipedia:Wikimedia_Foundation
https://en.wikipedia.org/wiki/Wikipedia:Wikimedia_Foundation
https://en.wikipedia.org/wiki/Wikipedia:How_to_edit_a_page
https://en.wikipedia.org/wiki/Social_networking_website
https://en.wikipedia.org/wiki/Corporation
https://en.wikipedia.org/wiki/Social_networking_service
https://en.wikipedia.org/wiki/Menlo_Park,_California
https://en.wikipedia.org/wiki/Menlo_Park,_California
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/User_profile
https://en.wikipedia.org/wiki/Friending

17

Here we show the world map with the most popular networking sites by country:

 Facebook

 Twitter

 VKontakte

 QZone

 Odnoklassniki

 Facenama

 no data

(Alexa, 2016)

Attesting to the rapid increase in social networking sites' popularity, by 2005 it was

reported that Myspace was getting more page views than Google.

We can see from the timeline that the advent of social networks was neither a

coincidence nor a single brilliant idea. Instead, we read that over the years many teams

contributed incrementally to the development of what could have been the best way

to make people connect and share information over the Internet.

Adapting to the new technologies and the new trends, companies from all over the

world try to create innovative platforms able to reach out to customers willing to expand

their horizons and discover new ways to express themselves.

https://en.wikipedia.org/wiki/Myspace
https://en.wikipedia.org/wiki/Google

18

1.1.2. What is a Social Network

In the previous paragraph, we have cited many social media trying to explain what

kind of service each of them provides or provided to its users. In order to best express

ourselves, be objective and ultimately give the most comprehensible idea of what

exactly is a social network we will propose now some definitions given on this

phenomenon in recent years.

“A social networking service (also social networking site, SNS or social media) is a

platform to build social networks or social relations among people who share similar

personal and career interests, activities, backgrounds or real-life connections.”

(Buettner, 2016)

Social media is “a group of internet-based applications that build on the ideological

and technological foundations of Web 2.0, and that allow the creation and exchange

of UGC (User-Generated Content)”. (Kaplan & Haenlein, 2010)

“Internet-based software and interfaces that allow individuals to interact with one

another, exchanging details about their lives such as biographical data, professional

information, personal photos and up-to-the-minute thoughts.” (Investopedia, n.d.)

“Social Media is a new set of tools, new technology that allows us to more efficiently

connect and build relationships with our customers and prospects. It is doing what the

telephone, direct mail, print advertising, radio, television and billboards did for us up

until now. But social media is exponentially more effective.” (Safko, 2012)

“A Social Network is a dedicated website or other application which enables users

to communicate with each other by posting information, comments, messages,

images, etc.” (Oxford Dictionaries, n.d.)

As we can see from the few definitions given up until now there are many opinions on

what features a social media should or should not have. A review of the literature on

https://en.wikipedia.org/wiki/Social_media
https://en.wikipedia.org/wiki/Social_network
https://en.wikipedia.org/wiki/Social_relation

19

the topic can give us a more comprehensive view on the matter and sum up the main

characteristics that define a social media as such:

Social media are computer-mediated tools that allow people, companies and other

organizations to create, share, or exchange information, career interests, ideas, and

pictures/videos in virtual communities and networks. The variety of stand-alone and

built-in social media services currently available introduces challenges of definition;

however, there are some common features:

1. social media are Web 2.0 Internet-based applications,

2. UGC (User-Generated Content) such as text, digital photo or digital video posts

are the lifeblood of the social media organism,

3. users create their own profiles for the website or app, which is designed and

maintained by the social media organization, and

4. social media facilitate the development of online social networks by connecting a

user's profile with those of other individuals and/or groups.

5. Social media depend on mobile and web-based technologies to create highly

interactive platforms through which individuals and communities share, co-create,

discuss, and modify user-generated content.

6. They introduce substantial and pervasive changes to communication between

businesses, organizations, communities, and individuals.

(Buettner, 2016) (Obar & Wildman, 2015) (Kaplan & Haenlein, 2010) (Ellison, 2007)

(Kietzmann & Hermkens, 2011)

As explained, there are many social networks available on the web. Between them,

there are some of everyone’s knowledge by now, like Facebook, YouTube and Twitter,

quoted as the most popular social networking sites of 2016 (eBizMBA Inc., 2016).

https://en.wikipedia.org/wiki/Computer-mediated_communication
https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Virtual_community
https://en.wikipedia.org/wiki/Virtual_network
https://en.wikipedia.org/wiki/Web_2.0
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Mobile_app
https://en.wikipedia.org/wiki/Organization
https://en.wikipedia.org/wiki/Social_network
https://en.wikipedia.org/wiki/World_Wide_Web

20

Facebook’s page example (taken on July 15, 2016)

21

YouTube’s page example (taken on July 15, 2016)

Twitter’s page example (taken on July 15, 2016)

22

What is surprising about these platforms is that they are not only well known among

teenagers but among every age range; even people of 70 years of age know and use

them! This level of reach in the population makes them have an enormous amount of

users on the network. Consider that Facebook claims to have 1.13 billion daily active

users on average (stated on March 2016) (Facebook, 2016).

1.1.3. How does it work?

Social networks are based on the users’ ability to create personal profiles. It is than

possible for the users to provide some personal information regarding one’s tastes

and interests. Professional information is also useful in social network profiles;

descriptions of specialties, areas of expertise and professional interests give

opportunities to find colleagues with similar interests, experts in a particular area, etc...

(Angehrn, et al., 2008).

Social presence is created not only by static information in profiles, but also by

facilitating awareness about other people and their work. Awareness means an

“understanding of the activities of others, which provides a context for your own

activity” (Böhringer & Richter, 2009).

Once created the social profile, users are able to share text, images, sounds and

videos regarding any argument they want. This is because user-generated content is

the lifeblood of social media. It is through content that a user can discover other people

with the same interests and create connections. These connections enable then the

user to know more and more people, to the point that anyone is easy to reach. In this

case, it is easy to think about the six degrees of separation concept, which says that

everyone and everything is six or fewer steps away, by way of introduction, from any

other person in the world. Concerning the social media, we know that the number of

steps needed to reach someone can be reduced to one when the user is made able

to search for a specific profile. In this kind of environment, it is also possible to create

“groups” where a limited amount of users can talk about a specific subject and share

knowledge with a selected set of people. Another service offered to the users, between

the many, is the chance to create “events”, where friends can be invited to join and

participate in the discussions online before, during and after the occasion.

23

As we can see, there is no limit in the amount of services that can be offered to the

users from a social media. Every time a new need is identified, a new tool can be

developed in order to adjust the network to the users’ needs.

Regarding the low-level implementation of a social network there is very little

documentation on how exactly a social media works. What we know for sure is that

many programming languages and platforms can be used to create a social network.

Moreover, the differences between them are little when put in a condition to have to

satisfy millions of users around the world. At that level of complexity it does not matter

anymore if the language chosen is LAMP (Linux, Apache, MySQL, PHP/Python/Perl)

or Ruby on Rails with Jabber/XMPP (Extensible Messaging and Presence Protocol),

because as Blaine Cook, former Twitter architect, said “languages don't scale,

architectures do.” and at that level it is the architecture of the system that matters, with

its scalability and its ability to perform well under stressful situations.

1.2. Enterprise Social Networks (ESNs)

“Ask just about anyone today about social media, and they will probably acknowledge

using Facebook, knowing something about Twitter, and admit that social media are a

widespread, perhaps even global, trend. Push them a bit further, and they will affirm

that social media are genuinely significant somehow, but they might have a hard time

pinning down exactly how or why. If you probe deeper yet and ask them if or how

social media will transform the way businesses work, most people won’t have a clear

answer at all” (Hinchcliffe & Kim, 2012).

These doubts are entirely understandable, given how the digital world has virtually

remade the means and tools of digital communication in just a few years. As the

worldwide interactive marketing group-director of Coca-Cola, Michael Donnelly, said:

“Business is changing right before our very eyes. We are in a world of empowered

individuals with reliable, always-on, cross-media connectivity with a vivacious appetite

for continuous improvement to win amongst global competition.”

Operating a business through the social lens presents a profound new way of thinking.

Social media can benefit an enterprise in many ways. When talking about ESNs, social

24

media have to be seen as a means to an end, not the end itself. Enterprise Social

Networks enable “mass collaboration, in which a large and diverse group of people

who may have no pre-existing connections pursues a mutual purpose that creates

value” (Bradley & McDonald, 2011).

In the endless search for the customer needs and tastes, more and more companies

are shifting to social networks to get the answers they need in order to be able to

develop products that better reflect the preferences of their potential clients. Using

analytics and business intelligence, companies can give sense to the big amount of

data from the network, derive useful insight and glean value from the social media

relevant to the business. Instead of thinking on passively looking at the habits and

tastes of the customers, some companies bring them straight to the boardroom and

let them have a voice on the details of the final product or service.

In addition, businesses now can “pick and choose new partners in an open

marketplace, where business reputation and prior performance are shared and visible

for all to see” (Hinchcliffe & Kim, 2012). Every time there are teams, the social

approach can help. “What we are observing now is that social media have moved far

beyond a means to stay in touch with old friends and colleagues. They have become

how business gets done” (Hinchcliffe & Kim, 2012).

Operating a business through the social lens presents a profound new way of thinking.

In the attempt to provide employees, customers and partners the best tools to

cooperate and gain value from the whole community many companies are exploiting

the power of social media taking the matter in their own hands. In order to keep the

information shared safe and to personalize the experience given to the users the ESN

came to life. A private social network built specifically with the purpose to serve the

company, its employees, its partners and its clients. It is easy to imagine how the

purpose in this kind of networks is not the sharing of one’s personal thoughts (like on

Twitter) but to be available for everyone else involved, in case somebody would need

a particular skill or piece of knowledge.

The goal of the companies here is not only to give customers a loud voice, to flatten

the hierarchies making managers more approachable and to let the right person be

easily reachable but to embed mass collaboration in “who” they are and “how” they

work. They need to develop the right corporate skills to use this level of collaboration

25

again and again to deliver real business value, both inside and outside the enterprise,

all along the value chain.

The main tenets of this new philosophy are:

 Anyone can participate

Nearly all aspects of business, regarding employees, partners, customers and

everyone that can bring value to the community, will ultimately be open, social and

participative. “In general, the more open the participation, the more superior the

result.” (Hinchcliffe & Kim, 2012)

 Create shared value by default

Building value requires that, whenever possible, contributors automatically share

content with the entire community in as close to real-time as possible. The

reputation gained in the community by the author matters, as well as the resonance

of his/her contribution with others. Individual additions of shared value may seem

tiny at the moment, but when aggregated they build value exponentially.

 While participation is self-organizing, the focus is on business outcomes

Control in social businesses is ultimately embodied in those willing to participate

and contribute. Instead of having a well-defined chain of command, a classic

organizational hierarchy, the control processes of social businesses change

dynamically according to its community.

Even if social networks and ESN use the same processes and similar tools, the goals

are completely different. While classic social media goals are solely those of the

individuals, in social business the purpose is specifically about productive outcomes

shared from everyone involved.

We identified here few of the benefits of using a social approach. In the next chapters,

we will give a broader view of the subject and we will answer some of the questions

that might already arise like:

 With such seemingly uncontrolled processes how can work be done?

 How does a business maintain direction, focus, control and ownership of the

results?

 How does a business define and solve problems while deriving business value

from the community as a whole?

26

 Is it enough to provide the people with the necessary tools?

 Who is winning in social business and why?

27

2. Knowledge Management

“Social enterprising is based on effective knowledge management” (Keyes, 2013). It

is, thus, important to spend some time explaining what can be considered as

knowledge, what it means to manage knowledge and why it is so important.

2.1. What is “Knowledge”?

Every new piece of knowledge or theory is built on the background of previous

knowledge.

Over half of the work in developed countries is knowledge work. In some industries,

like in the finance field, more than three quarters of its workforce is dedicated to

creating and managing high value information. Information that is now the heart of the

world economy. As previously stated, from information comes knowledge, but what

exactly can be defined as knowledge?

A number of meanings of the term knowledge were proposed from the ancient to the

modern times. From the point of view of philosophy, knowledge can be considered as

“justified true belief” (Plato), though this definition is now agreed by most analytic

philosophers to be problematic because of the Gettier problems (Gettier, 1963), so a

better definition is “well-justified true belief”. Another definition could be “certain

understanding, as opposed to opinion” (Oxford Dictionaries, 2016). From the point of

view of economic theory, knowledge is a “critical organizational resource that provides

a sustainable and competitive advantage in a competitive and dynamic economy”

(Davenport & Prusak, 1998). For an enterprise, “knowledge is a key strategic asset for

organizations of all sizes” (Keyes, 2013).

Knowledge is defined in different ways depending on the context and purpose of the

definition. Often, it is defined by distinguishing among knowledge, information and data

(Alavi & Leidner, 2001).

28

As commonly accepted, data is referred to as raw numbers and facts, information as

processed data, and knowledge as authenticated information. However, it is not

obvious to know how to discern between information and knowledge.

The main aspects that help us distinguish between knowledge and information are the

following:

1. Knowledge is dynamic, it is created in the social interaction between individuals

and organizations and

2. Knowledge is context specific.

Without the social aspect and context, knowledge becomes close to just information

(Nonaka, et al., 2000).

Knowledge can also be understood as personalized information (which may or may

not be new, unique, useful, or accurate) related to facts, procedures, concepts,

interpretations, ideas, observations, and judgments (Alavi & Leidner, 2001) (Nonaka,

et al., 2000).

There are two kinds of knowledge when talking about social business: explicit and

tacit. Explicit knowledge can be expressed in a formal language and can be shared in

the form of data, scientific formulae, specifications, manuals and the like. It can be

processed, transmitted and stored relatively easily. In contrast, tacit knowledge is

highly personal and hard to formalize. It represents know-how and intuitive knowledge

which is rooted to context, experience, practice and values. Subjective insights,

intuitions and hunches fall into this category of knowledge. This is the kind of

knowledge that can lead innovation and breakthroughs (Frost, 2013) (Nonaka, et al.,

2000).

2.2. The Knowledge Worker

Knowledge workers are employees whose job is to “think for a living”, to use

knowledge in order to solve a problem through creative thinking. Knowledge workers

are considered to be the intellectual capital of a company and a key factor in its

sustainable development. Managers must value the knowledge obtained by the

employees and do all that is necessary to exploit it as much as possible.

29

For a knowledge worker working in a team, one of the problems that could slow down

and mine the efficacy and the efficiency of the team is having different team members

at different times during the development of the solution for a client. When this

happens, there are three different kind of problems to consider:

1. Loss of knowledge. The longer someone stays on a team, the more knowledge he

or she acquires about the project, the problem domain and the stakeholders.

Losing a team member means losing all of his or her experience and knowledge.

When dealing with this kind of problem the most common approach is to make sure

that the team has at least some stable team members.

2. Thinking differently. When a group of people work for a long time together, they get

to know each other and start to develop work patterns that make the team efficient.

When a new team member arrives, the team might need some time to adapt. It is

clear now that the commonly used solution to deal with the “loss of knowledge”

problem is not enough. Using a knowledge management system and social

networking technologies (e.g. knowledge bases, wikis, blogs, social networking

groups etc.) would greatly accelerate a new team member’s trip along the learning

curve.

3. Low commitment. When a worker knows that you are going to work for a short

amount of time on a team, it might be difficult for him or her to share the enthusiasm

and be totally committed to the team. Motivation is the key to solve this problem.

Reward systems are an effective method to overcome low commitment. Both

positive and negative rewards can be considered. While positive reward systems

(e.g. public validations, days off, bonus pay etc.) are the most commonly used,

negative reinforcement approaches should be considered as well, since they are

the best way for an employee to understand in little time where he or she is doing

something wrong and why.

Researchers see a strong, on-going linkage between knowledge workers and

innovation, but the pace and manner of interaction have become more advanced

(Tapscott & Williams, 2006). The many social media tools can drive more powerful

forms of collaboration. Knowledge workers now engage in ‘’peer-to-peer’’ knowledge

sharing across company boundaries, forming networks of expertise. Some of these

networks are even open to the public. While they share their concerns

over copyright and intellectual property law being challenged in the marketplace, they

30

feel strongly that businesses must engage in collaboration to survive. They highlight

the on-going alliance of public (government) and private (commercial) teams to solve

problems, referencing the open source Linux operating system along with the Human

Genome Project as examples where knowledge is being freely exchanged, with

commercial value being realized.

Many researched knowledge workers’ productivity and work patterns. Part of the

research has involved the analysis of how, on average, knowledge workers spend

their day. It has been noted that effective and efficient knowledge work relies on the

smooth navigation of unstructured processes and the elaboration of custom and one-

off procedures. "As we move to the 21st century business model, the focus must be

on equipping knowledge workers with tools and infrastructure that enable

communication and information sharing, such as networking, email, content

management and increasingly, social media." (Palmer, et al., 2014).

In the next section we will talk more about knowledge sharing (or information sharing),

analysing what exactly means “sharing” in this case and what kind of problems could

arise in the process.

2.3. Knowledge Management and Knowledge Sharing

“Knowledge management can be defined as the processes which support knowledge

collection, sharing, and dissemination. The expectations for knowledge management

are that it should be able to improve growth and innovation, productivity and efficiency

reflected in cost savings, customer relationships, decision making, innovation,

corporate agility, rapid development of new product lines, employee learning,

satisfaction and retention, and management decision. Interestingly, these are the

same expectations for social enterprising.” (Keyes, 2013)

It has been stated that the importance of Knowledge Management (KM) is no longer

restricted to knowledge intensive firms in the high-tech industries but to all sectors of

the economy (Teng & Song, 2011). Even companies in the traditional industries, such

31

as cement, can benefit greatly from KM (Zack, 2003). In essence KM is beneficial to

all sectors, be it educational, banking, telecommunications, manufacturing or even the

public sectors.

The management of knowledge has generated considerable interest in business and

management circles due to its ability to deliver to organisations strategic results

relating to profitability, competitiveness and capabilities enhancement. To state it more

clearly “Organisations that effectively manage and transfer their knowledge are more

innovative and perform better” (Riege, 2007). Successful organisations now

understand why they must manage knowledge, develop plans to accomplish this

objective and devote time and energies to these efforts.

Once understood the importance of having an effective knowledge flow between

employees, teams and departments in the company, it is central to start talking in more

detail about sharing the new knowledge produced during the everyday working hours.

Limiting the efforts or not giving the proper consideration to knowledge sharing can

have substantial effects on the organization. “It is estimated that an organization with

1,000 workers might easily incur a cost of more than $6 million per year in lost

productivity when employees fail to find existing knowledge and recreate knowledge

that was available but could not be located. On average, 6% of revenue, as a

percentage of budget, is lost from failure to exploit available knowledge.” (Keyes,

2013)

Even if it could seem useless at the moment of its definition, sharing and collecting

knowledge are the activities that best carry out the interests of the company, its

employees, its customers and its partners.

Looking at the definition of knowledge given by Davenport & Prusak as a critical

organizational resource one easily realizes that this resource, as any other, has to be

managed in the most optimal way to gain advantage of it. So what is the best way to

create, retain and exploit knowledge in a company? Simply put, sharing it.

“Knowledge sharing is the means through which employees can contribute to

knowledge creation, use and innovation to the competitive advantage of the

organization. Knowledge sharing refers to the provision of information and know-how

32

to help others and to collaborate with others to solve problems, develop new ideas, or

implement policies or procedures.” (Wang & Noe, 2009).

It has to be considered not only as the sharing of knowledge between individuals but

also between teams, organizational units and organizations. In general, knowledge

management is aimed at identifying and leveraging the collective and personal

knowledge, know-how, experiences and judgments inside and outside organizations

to bring additional value to organizations and help them compete. (Quaddus & Xu,

2012). In this definition, we can read the focus of knowledge sharing on both tacit and

explicit knowledge. This is why most managerial practices and efforts are devoted to

facilitating sharing of both types of knowledge.

The goal of knowledge sharing is to share the existing knowledge not just for future

uses but also to create new knowledge more quickly. It regards a profound new way

of thinking that requires openness and trust at first and that will lead to fast and

effective improvements in the everyday work.

2.4. Barriers to Knowledge Sharing

Technology itself does not make organisations share knowledge but, if people are

willing to share it, technology can increase the reach and scope of such exchanges.

Developing a KM system in place is not going to make people utilise it, but the success

of KM initiatives involves taking into account the socio-cultural factors that may inhibit

people to willingly share their knowledge, such as:

 lack of trust,

 lack of time or

 fear of being judged

 concerns about loss of power/status.

Lack of trust between employees is a well-known issue that endangers relations and

thus the efficiency of the whole company. In the case of knowledge sharing it makes

the member of the team avoid sharing his or her knowledge because there is no trust

in how that knowledge will be used or by who. To increase the level of trust between

33

workers it is useful to first have more information available about colleagues (Dignum

& Eijk, 2005) and then have closer and more frequent communications (Cheng, et al.,

2008). In this matter social networking tools help, providing more information about

members of the company and facilities for communication between co-workers

(Boeije, et al., 2009).

Lack of time is a common problem between workers that already spend a lot of time

on the projects they are working on and feel sharing knowledge not wrong but simply

as a waste of time, as if he or she is not paid to do so. In this case, it is necessary to

make it clear to everyone, even writing it on the contracts if necessary, that part of the

job is to define the notions learned and make them available for everyone to see. This

way everyone will take some time at the end of a project and complete the task feeling

rewarded from it.

The fear of being judged is usually felt by newcomers and, more in general, people

that are not very familiar with the subject they are going to talk about while sharing

their knowledge. It is completely normal to feel the pressure of the opinions of the co-

workers, to consider the possibility to be mocked or ridiculed. Everyone can make

mistakes. What is important is to learn from them. It is the company’s duty to clarify

that a behaviour that tries to diminish a colleague’s image will not be tolerated.

Loss of power or status are the concerns of the senior members of an enterprise. The

most experienced and knowledgeable elements of the company. This kind of

employees are the ones that should best embrace the sharing attitude, since their

contribution would greatly benefit the new members of the organization, making it

easier for them to catch up and be ready to help when needed. This said, it is not easy

for a person in a position of power to decide to share what made them reach that

specific position. They may fear that sharing their knowledge would make them lose

their job easily and the younger members of the company overtake them. In such a

case, it is advisable to create an environment where it is clear that such an outcome

is improbable and that the organization values very much the employee and its

contribution to the global knowledge of the company. More specifically, such an

outcome is possible only when the perceived benefits (some extrinsic motivation

solutions, such as bonuses, presents, etc) are higher than the perceived costs of

34

sharing (e.g. time and efforts for contributing knowledge). One of the immediate ways

to reduce perceived costs is to make it easier for people who share their knowledge

to do this, also with the help of IT, as well as make knowledge sharing secure from the

point of view of the loss of jobs or advantages (Cabrera & Cabrera, 2003).

To sum up, in order to deal with the issues stated above the main directions of efforts

are the following:

a) making knowledge visible and showing the role of knowledge in organizations,

b) building a knowledge infrastructure, not only technical system, but also

connections among people given space, time, tools and encouragement to interact

and collaborate,

c) developing knowledge-intensive and knowledge sharing culture in order to free

employees from fear of losing their advantages when sharing their unique

knowledge,

d) be liberated from the fear of losing important intellectual assets, if valued

colleagues leave the firm. (Yang & Chen, 2007)

The last point of the list explains in short one the most important features of knowledge

sharing: the possibility for a work team to preserve the knowledge of one of its

members if he or she leaves the team or the company. This way it is easier for the

team to recover from the loss and learn what they should in order to undertake the

work of the colleague.

In order to reach the goals set for knowledge management and realize an effective

knowledge sharing culture the company has to provide its employees the right tools,

education on how to use them and motivation to make it happen. Realizing the right

tools requires the chiefs of the departments involved to meet and make a list of all the

features that a proper tool must have in order to be both useful and easy to learn. The

IT department will be of help in this matter, yet the real problem is not the realization

of the tools, but giving the employees the motivation they need to use them. As we

read in (Argote, et al., 2003): “Organizational settings in the field of knowledge

management can impact an individual‘s ability to create, retain and share knowledge,

as well as provide motives and opportunities or tools to do this”.

35

It is clear by now that knowledge sharing is not necessarily synonymous with pro-

social behaviour. Indeed, knowledge sharing may involve significant effort or sacrifice.

For the most part knowledge-sharing barriers can be categorized into three

dimensions:

a. individual,

b. organizational and

c. technological.

A study of 1,180 staff members in the regional transport union of Palm Beach (Florida)

determined that its culture was not conducive to knowledge sharing for a variety of

reasons, including:

 absence of support systems,

 lack of training,

 lack of job security,

 lack of organizational culture,

 employee competition, and

 lack of recognition.

At the first element of the list, we find a huge technological problem. Having a good

technical support is key to make it easier for everyone to share one’s expertise and

later create new knowledge starting from the one collected so far.

The second issue in the list could be resolved exploiting technological tools, yet the

decision to make this kind of effort has to come from the organization itself. The

management have to evaluate the need for a proper introduction to the sharing

mechanisms for the employees. The third and fourth elements still are a responsibility

of the company, that must focus on creating a culture that considers the needs of the

employees while clarifying how useful for everyone is to work not as individuals or

small teams but as a community that involves all of the people at the company, the

customers and the enterprise’s partners.

Competition is usually good for business. It pushes everyone to “go the extra mile” to

become the best in what they do and be seen as such. As explained before, however,

this kind of behaviour can lead to difficulties in sharing one’s hardly achieved expertise.

It is necessary to do what it takes to make the employees certain that they will not lose

their advantage when sharing their unique knowledge.

36

The last point is an organizational problem as it is the company that has to recognize

the efforts of its workers. The solution for this problem can be found in a technical

approach that exploits social media tools to make it easy for both the worker and the

management to recognize when someone is making a significant effort in following the

sharing culture. This is possible through instruments that make it clear to everyone

who is the author of the shared piece of knowledge and who are the people that liked

or shared it. When number of “likes” or “share” is reached the software given the

employee a virtual medal, visible on his or her profile, which symbolizes the

achievement. In has been studied that this kind of tools greatly increases the

willingness of the stakeholders to participate in the community.

Beyond the effects of the introduction of technological tools, it has been proven that

there is also a relationship between group compatibility and knowledge sharing. The

more compatible a person is with the group in terms of age, gender, and other factors,

the more likely he or she is to practice knowledge sharing. Conversely, individuals who

perceive themselves in a minority (e.g. gender, marital status, education, etc...) are

less likely to participate in knowledge sharing. Of particular note is the finding that

women participants require a more positive social interaction culture before they

perceive a knowledge-sharing culture as positive. The list of compatibility variables

includes more than just the obvious traits of age, gender, ethnicity, and educational

level. Personality differences, communication skills, and individual values also

factored into the equation. (Keyes, 2013)

Another study, from (Wang & Noe, 2009), has shown instead that socially isolated

members or sub-groups are more likely to disagree with others and so contribute their

unique knowledge within a heterogeneous team.

We now know that people that perceive themselves as a minority in the team are less

likely to share their knowledge, but when everyone is a minority and the group is truly

heterogeneous then competition arises and knowledge sharing happens. In this case,

within a functionally diversified team, the acknowledgement of team members'

expertise also helps increase participation in knowledge sharing (Thomas-Hunt, et al.,

2003). This leads us to the understanding that, in order to obtain the knowledge

sharing pattern required to help group decision-making processes in the organization,

37

work teams should either be formed of people with similar status, education, gender,

age, skills and values or formed of a very heterogeneous set of team members.

In order to minimize the risks and increase the chances of success there are other

steps that can be followed. The research has proven that a less centralized

organizational structure can help facilitate the knowledge flow, as well as the open-

space working environment (Yang & Chen, 2007). Another research suggests that the

organizations should actively create opportunities for employee interactions to occur

and employees’ rank, position in the organizational hierarchy and seniority should be

deemphasized to facilitate knowledge sharing (Argote, et al., 2003).

We will later talk about the fact that many, if not all, of the guidelines collected can be

followed and made a reality in the organization using an ESN.

38

39

3. Transition to the Social Organization

The term Enterprise 2.0, as Social Organization, Social Business or Conversation

Company, means introduction of the Web 2.0 infrastructure and relative tools by

organizations (Levy, 2009). To explain the topic we start from the paper by A. P.

McAfee (McAfee, 2006) in which he claims that the conventional systems for

knowledge management are not enough or not suitable enough for successful

knowledge sharing and knowledge creation process. He states that the “newly

emerged technologies, such as blogs, wikis, instant messengers, social network tools,

and folksonomies may be more effective for knowledge management tasks”, and calls

a set of these technologies Enterprise 2.0.

3.1. Introducing the Social Business

Collaboration is the strategic factor required to compete in the global market.

Knowledge sharing allows the stakeholders to exchange ideas and, by working

together, obtain results that could not be achieved by working autonomously. The

Internet has become a fundamental platform to connect people and organizations.

Through the company’s work teams, it is possible to lower the costs and time to market

(TTM) of a product or service thanks to the new vision of the world: a wider and

connected environment, where personnel from multiple sectors can work on the same

subject together. This approach allows the parts to develop ideas and projects quickly,

managing to tap into the knowledge of a vast amount of people.

The challenge for the enterprises now is to get to the market quickly, having products

and services that well respond to the needs of the customers. It is important to

remember here that consumers nowadays are evermore informed, thanks to the web,

and demanding. The network offers the companies the chance to renew their business

models, not to modify what is done but how it is done. The Web 2.0 offers

decentralized offices the chance to collaborate through the network, creating virtual

work teams. The collaboration concept is shaping the way companies get the work

40

done, coming from a vertical integration system and a hierarchical company model to

a system that focuses on coordination and cooperation. All of this is possible thanks

to the Web 2.0 technologies, which allowed a significant reduction of the costs of

coordination between enterprises. This new organizational concept brings many

companies to collaborate and form a corporation able to better exploit the economies

of scale and quickly answer to the demands of the market. Through cooperation, the

corporation can reduce costs and increase its ability to innovate, making each of the

companies more competitive on the market and able to follow its trends even when

the skills of a single company would not be enough.

The Internet evolution allows not only the employees to better collaborate with the

management and the company’s partners but also with the stakeholders outside of the

company, like customers and shareholders. The network gathers billions of people

and potential customers that use blogs, chats and websites to interact, acquire

information, buy online and cooperate with organizations (e.g. evaluating their

products and advertisement campaigns) in a very easy, fast and inexpensive way.

This opportunity of interaction can be welcomed and seen as a fortuitous new way to

create value by the enterprises or it can be seen as a threat. It is up to the organizations

to decide whether there is a way to exploit the potential of the web in their line of

business or not.

The concept considered is self-organization, which is the idea that independent users

can work together, willingly or not, and generate something valuable and original. This

emergent phenomenon very often reveal itself as successful, yet difficult to control

because of its inherent self-regulation and their lack of a hierarchical structure. The

determination of the company’s boundaries is an important step for an enterprise,

which can obtain a significant advantage if it can identify the right mix between the

skills that have to remain in the company and those that can be found outside its

borders. Sometimes companies keep expertise that could be found outside. While

years ago the enterprises focused on the development of products or services using

only the company’s resources, nowadays a growing number of enterprises work

together to achieve those services. The competitive advantage will not concern a

single activity but a set of activities run by various firms that, put together, are hard to

imitate. While a single one can easily be reproduced, the competitors will have a hard

41

time obtaining the same benefits from this activity as those that it gives when placed

in a system.

In this context, new figures are emerging, like agents and intermediaries that do

nothing but drive other companies to the creation of the added value that can be found

exploiting the web and the global market. These societies are usually small in the

number of employees but handle large business volumes in every field.

Herbalife, a company that works in the health sector producing dietary supplements is

an example. Herbalife is a multinational corporation distributed in more than 90

different countries has its shares traded on the New York Stock Exchange (NYSE:

HLF) with net sales of $4.5 billion in 2015 (Herbalife, 2016). The strength of this

business is given by its ability to manage its resources, bringing their drugs

development teams, composed of doctors and scientists, in laboratories in China and

India while supervising their work from the corporation’s headquarters. The production

part is delegated to various satellite agencies located mostly in Asia and Europe while

the retail sales are assigned to thousands of independent distributors. The crucial part

handled by Herbalife is logistic, considered key from the management to ensure

availability of the products at all times. This focus on the supply-chain and the deals

with its partners grants Herbalife a net gain in respect to the centralized approach to

the business.

Wishing to expand their market share and their profits many companies find

themselves having to adapt their organization’s architecture and their business model

in order to achieve those results. The society will have to decide if to carry out

improvements following a traditional approach focusing in growing its personnel and

infrastructures and see its fixed costs or choose to merge with or acquire another

company. The merge and acquisition of another company allows to scale the business

rapidly. It lets two middle-level companies to share their knowledge in a single

development platform and become leader in the market. This way they can avoid new

fixed costs. Another alternative to the traditional growing approach is called “fast track

business model”. Many businesses, instead of following a more organic approach,

choose to establish contacts that let them create new value and grow their market

share. These enterprises usually acquire low-cost row materials and outsource the

production to some other company. They then exploit designers that offer their

42

services through the web and provide the company new ideas and new concepts for

the future. Ultimately, another partner handles the logistics. In the end, this kind of

corporations just need to manage the life cycle of a product employing a small number

of qualified staff. Taking advantage of the web it is possible to handle the whole supply-

chain in real-time reducing both development and production costs. Marketing and

advertisements are usually very expensive when considering the traditional approach,

especially when there is a product to sell but they require a limited budget when the

potential of the network is exploited. Targeted advertising and the online reviews of

the users create a powerful advertising campaign that counts on the word-of-mouth

and keep the budget low. Small companies are so free from many fixed costs that

burden the more traditional enterprises.

3.2. Key Enterprise 2.0 tools

The advantage of using the Web 2.0 is the possibility to exploit social networks to

create a “lever” effect for problem-solving and information management. To be able to

achieve this goal tools such as wikis, weblogs and microblogs, social tagging, RSS

and social networks are introduced to the enterprise context. Here we give a more

detailed overview on each of these concepts.

Wikis are sets of user-editable web pages that offer anyone the ability to easily create

and edit pieces of content built collaboratively (Lazar, 2007). This tool came to wide

popularity through sites such as Wikipedia.

As Andrew McAfee points out while talking about the benefits of wikis for the

enterprises: “The main one they get out of it so far has been the ability to find not so

much other pieces of information but other brains all the way across the community.”

Beyond the written articles that one can find, “because everyone’s contributions […]

are attributed rather than anonymous, if you’ve done something smart, I can find not

only what you’ve done, but I can find you. The point is, I would never have found you

within the intelligence community without the new tools.” (McAfee, 2010)

43

Plus, the ability to easily create links between wiki pages enhances the knowledge

sharing dimensions (Levy, 2009). Wikis are designed according to the eleven

principles, summarized by (Wagner, 2004).

Principle Explanation

Open If a page is found to be incomplete or poorly organized, any reader

can edit it as he/she sees fit. Wiki is based on open-source technology.

Incremental Pages can cite other pages, including pages that have not been

written yet.

Organic The structure and text content of the site is open to editing and

evolution.

Mundane A small number of (irregular) text conventions will provide access to

the most useful (but limited) page mark-up.

Universal The mechanisms of editing and organizing are the same as those of

writing, so that any writer is automatically an editor and organizer.

Overt The formatted (and printed) output will suggest the input required to

reproduce it. (For example, location of the page.)

Unified Page names will be drawn from a flat space so that no additional

context is required to interpret them.

Precise Pages will be titled with sufficient precision to avoid most name

clashes, typically by forming noun phrases.

Tolerant Interpretable (even if undesirable) behaviour is preferred to error

messages.

Observable Activity within the site can be watched and reviewed by any other

visitor to the site. Wiki pages are developed based on trust.

Convergent Duplication can be discouraged or removed by finding and citing

similar or related content.

(Wagner, 2004)

Weblogs (or blogs) are web pages for personal use written in the form of a diary. What

distinguishes them from a personal website is that blogs are written continually in one

page with different posts in chronological order. Blog entries can be commented by

other authors and readers, and can be followed with the use of alerts like RSS

44

technologies. When weblogs and their authors are united in communities, they form

social networks. (Levy, 2009).

Recently microblogs became widely popular primarily through the success of Twitter.

A microblog is a smaller version of a blog, where authors have limited logs (for

example, in Twitter each entry is limited to 140 symbols). Microblogs, like blogs, can

bring to features like social networking activities but with a strong focus on mobility

(Böhringer & Richter, 2009). Microblogging has also found its place in the enterprise

environment. The most popular enterprise microblogging tool is Yammer

(www.yammer.com). Its main focus is on inspiring people to share information on

“What are you working on”, compared to the focus of Twitter on “What are you doing?”.

As the Yammer webpage says: <Just by logging in and sharing “what are you working

on” you’re growing your company’s Yammer network and building a knowledge base

of information that will benefit your coworkers.>. (Böhringer & Richter, 2009), on the

basis of a case study, concluded that microblogging helps creating awareness in a

company to support collaboration, communication and coordination.

Tagging can be explained as a practice of attaching keywords to the content (text,

media or documents) shared on content management websites. Those keywords are

called tags and provide semantics to the content (Levy, 2009). Tagging is widely used

in bookmarking to let users quickly mark and find later items of interest based on

personal and others‘ categorization of the content. Tags build personal user

categorization systems called folksonomies, opposite to well-known taxonomies

defined by organizations (Levy, 2009). Tagging has become a standard element of

many blogs, wikis, websites and social networks.

Social Networking is the sum of every tool described above. It is based on the ability

of users to create a personal profile on the web unique for a particular website or

common (exploiting techniques such as OpenID, which allows the user to log in on a

website using the profile set on a different one). Profiles are created so that

interactions like contributing to wikis, social tagging and commenting on the

blogosphere create relationships between people (Tapiador, et al., 2006).

Barnes (1954) defined social network as a social structure comprised of nodes

(individuals or organizations) that are connected by one or more specific types of

relations and this definition is still valid today. In general, social networks and their

45

analysis are important for determining the ways groups operate, how problems are

solved and the extent to which people success in attaining goals (Lai & Turban, 2008).

Being already very popular on the Internet, social networking tools are introduced in

organizations. Profiling systems for employees, we see that the ability to author and

comment documents and pieces of knowledge in knowledge management systems

automatically creates relationships between people (Boeije, et al., 2009). During the

years, a wide variety of tools has been developed to increase the usefulness of social

networks. In the next paragraph we are going to analyse in more detail the kind of

social networks actually in use.

3.3. ESNs Examples

At this point, we are going to introduce some examples of enterprise social networks

in order to give a closer look on how an ESN can look like.

We will start talking about Salesforce. Salesforce is an enterprise customer

relationship management (CRM) giant, which has improved its CRM services

providing social networking capabilities. Its new Chatter service is available on

Salesforce’s real-time collaboration cloud. Users can use it to set up profiles and

generate status updates, which might be questions, bits of information and/or

knowledge or relevant hyperlinks. All of this is then aggregated and broadcasted to

co-workers on their personal page. Essentially, an employee’s personal page contains

a flow of comments and updates regarding those in that particular network. Employees

can also follow the rest of their colleagues from around the company, not just those in

their own personal network, enabling cross-organizational knowledge sharing.

Towards that end, Chatter also provides a profile database that users can tap into to

find someone with the needed skills for a particular project. All of this is accessible via

both desktop and mobile. Like Salesforce.com, many of well-known software

companies have developed collaboration tools with similar features.

46

Chatter page example

Oracle’s Beehive collaboration platform provides a suite of tools such as email,

calendar, voicemail, instant messaging, group chat, Presence, web conferencing,

audio conferencing, team workspaces, document sharing, and employee directory. It

has support for mobile devices and can be integrated with Cisco, Avaya and Nortel

infrastructures to deliver, as an example, voicemails and faxes to an email’s inbox.

Outlook can also be integrated in their software, providing access in particular to

personal email, address book and calendar in order, as an example, to schedule

appointments and deadlines. It also allows users to schedule conferences via

Microsoft Outlook, Beehive Webmail or any standards-based CalDAV client.

Calendaring Extensions to WebDAV, or CalDAV, is an Internet standard allowing a

client to access scheduling information on a remote server. It extends WebDAV

(HTTP-based protocol for data manipulation) specification and uses iCalendar format

for the data.

47

On Beehive, the work team can create its own workspace starting form given

templates and rely on various features like team wiki, calendar, team task

management, discussion forums, contextual search and team announcements

through an ad-hoc microblog and its RSS feeds. The most interesting feature for a

team is the document library, which allows users to:

 lock a file, to stop other to modify it

 use check in and check out operations, that let a user download a copy of a file

and later upload the new version in the library and merge it with its online

counterpart

 set up specific privileges for each user

 have control over the workflow of the project and

 remote content sharing with Oracle UCM (Universal Content Management)

Beehive is then extendible with the use of scalable Oracle technology like, but not

limited to, “Oracle Information Rights Management” (IRM) or “Oracle Secure

Enterprise Search” (SES). Beyond Oracle’s extensions, the system that can also be

personalized with its given RESTful (that follows the REpresentational State Transfer

principle) APIs that exploit BPEL (Business Process Execution Language) and other

common specifications like the with all the standard communication protocols (like

IMAP, SMTP, CalDAV, iSchedule, WebDAV, XMPP, FTP, OMA Data

Synchronization, PushIMAP, SIP, and VoiceXML). All of these compatibilities make

the developers’ life easy when building an addition for the platform. “Oracle Beehive

Mobile Communicator” is the name of the app for smartphones that help workers stay

connected using IM (Instant Messages) while away from the computer. (Oracle, 2016)

48

Beehive page example

Microsoft’s SharePoint is heavily used within many enterprises. It includes many

features like the creation of personal websites, personal tasks, blogs and microblogs,

team sites and community sites, which make it easy for users to find and connect with

the people and content that matter to them and to share information and ideas.

The developers can add new social features or extend the features that are already

available in SharePoint 2013. For example, you can create an app that lets you find

and follow people who have a common interest, create a custom visualization of feed

data, or publish custom activities to the feed.

SharePoint Server 2013 provides the following APIs that one can use to

programmatically work with social feeds:

 Client object models for managed code

o .NET client object model

o Silverlight client object model

o Mobile client object model

 JavaScript object model

 Representational State Transfer (REST) service

49

 Server object model

Newsfeed page example

While Oracle’s Beehive tries very hard to make it easy for developers to personalize

the environment and shows a platform similar to SharePoint, a significant difference

in the latter is the presence of the “feeds”. Regarding the handling of the feeds from

all the profiles in the network, SharePoint gives the users the ability to choose between

Yammer and Newsfeed.

SharePoint Newsfeed used to be the default option for social experiences in

Microsoft’s Office 365. It offers all the standard features such as the possibility to like,

comment, share the published content and follow others in order to have their feeds

straight in the homepage. It allows tagging and lets users cite each other in the feeds.

Newsfeed includes also an app for Windows Phone and iPhone smartphones that lets

employees to stay connected to your organization’s social pulse while on the go.

50

Yammer, instead, is a private, secure social network for an organization that will allow

people to collaborate securely across departments and geographies. It is designed to

inspire company-wide knowledge exchange and to increase team efficiency. Only

people with a verified company email address can join the company’s network.

To talk about Yammer we have to do a little digression talking about Twitter, a social

networking app made famous by celebrities who tweet hourly updates on what they

are doing (e.g., eating lunch, shopping, etc.). Twitter itself is not useful in a company’s

environment. It lacks to all the tools that an organization requires to control work teams

or share knowledge. This said, to bridge the gap Twitter developed an enterprise social

networking application called Yammer, bought in 2012 by Microsoft. With the ability to

integrate with tools such as SharePoint, Yammer provides a suite of tools including

enterprise microblogging, communities, company directory, direct messaging, groups,

and knowledge base. Much of what Yammer offers is free with the basic service. With

a fee, however, it provides niceties as security controls, admin controls, broadcast

messages, enhanced support, SharePoint integration, keyword monitoring, and virtual

firewall solution. Yammer can be used by the software development team to

interactively discuss any aspect of a project.

Project groups can use SharePoint in many ways:

 to write up personal research and make comments on others’ research;

 to ask questions;

 to post links to resources that might be of interest to others in the group;

 to add details for upcoming events and meetings;

 to let each other know what they’re up to;

 to add comments to other team members’ information and pages and

 to record minutes of meetings in real time.

(Microsoft, 2016)

51

Yammer page example

Yammer document sharing page example

52

Microsoft’s Skype for Business, formerly Lync, is another tool that Microsoft acquired

and integrated in its SharePoint platform. Skype for Business not only works on

desktops and mobiles but, most importantly, gives the users a way to communicate

not only through messages and images, but via voice, video, or document share from

anywhere with many people at a time, increasing even more the flexibility of the

system.

(Microsoft, 2016)

One of the first companies to work in the collaborative market was Lotus, with its

platform: Lotus Notes. Now owned by IBM, IBM Notes (formerly IBM Lotus Notes)

brings together a wide array of tools: instant messaging, team rooms, discussion

forums, and even application widgets. There is also a wide variety of free tools

available, which can be adapted for one’s purposes. IBM Notes does not use feeds

like SharePoint but exploits emails to handle communication and focuses on improving

what emails bring, together with plain text. In one email we can find:

 all the information on the contact that sent it

 the text of the email where parts of it can be made as “live text”, which enables the

recipient to, for example, call phone numbers or open Google Maps to see the

location cited in the email through a single click

 options to “like”, “follow” or “share” a document received or that is on the network,

in order to show appreciation, be notified when changes are made to the document

or simply share the file. It is also possible to write a personal comment that will later

be visible for all the community.

The email platform offers the user many features like drag-and-drop, which makes it

easier to select the recipients and the files to attach. Plus, there is a comprehensive

search option that allows the user to filter emails by the people involved as senders or

recipients, subject of the email, date in which it has been sent or simply “any column”,

which covers everything else.

53

IBM Notes page example

Another great example of a social environment is LinkedIn, which has been widely

used to provide networking capabilities for business people. A relevant feature is

LinkedIn groups. A group can be created for any purpose. In order to join a group a

user can either click on “Ask to join” on the group page or respond to an invitation from

a group member or manager. Thus, project teams can make use of the already-

developed facilities LinkedIn provides. Using this platform the employees can share

knowledge and handle team work. This said, there is one big issue regarding LinkedIn:

lack of confidentiality. Since it cannot be stored on the servers of the company, all the

information shared online from every member of the enterprise can be seen (at least)

from the LinkedIn system administrators, which may not be entrusted by the company

to look at their classified data. While usually this may not pose a threat, often the

information exchanged regards projects or initiatives that should remain visible only to

the employees of the company, which sign confidentiality agreements before

beginning their jobs. While for some organizations it could be just fine to make their

efforts visible, others like pharmaceutical companies would not agree in sharing details

on their researches.

54

LinkedIn groups example – Horizon 2020’s LinkedIn group

One might think that the use of these sorts of ad-hoc discussion tools would

degenerate into chaos. In truth, this rarely happens, even in a social network of

anonymous users. The largest wiki of all, Wikipedia, is fairly resistant to vandalism and

ideological battles. The reason for this is “the emergent behaviour of a Pro-Am

(meaning professional and amateur) swarm of self-appointed curators.” This group of

curators has self-organized what Anderson terms the most comprehensive

encyclopaedia in history—creating order from chaos. This is what is called “peer

production.” (Anderson, 2006)

These are only few of the many ESNs that are out there, trying to give the best platform

possible to employees of any company. We have covered here only the main features

of the ESNs considered, but it already shows the potential of social technologies.

55

3.4. Real-Life Stories

The first story we are going to investigate regards a German multinational software

giant that makes enterprise software to manage business operations and customer

relations: SAP SE (System analyses and Programme networking; Systems,

Applications & Products in Data Processing).

In the early 2000s, SAP encountered increasing challenges in the ways it provided its

network with information and its customers with support services. At the time, SAP

used common support channels like email and phone but it did not satisfy the clients.

Another issue was that potential customers were having trouble determining if SAP’s

complex software solutions would meet their needs.

In order to address the communication issues between SAP and its 170,000 clients a

proper solution had to be found. Experts determined that improving the old channels,

like adding more staff to existing support channels, would have had minimal impact.

At the time, online communities were new to the market, used to connect with people

with similar interests. Nevertheless, SAP had both the resources and the motivation

to test these new concepts for its service issues. The goal was to enlist clients and

other stakeholders to join the community to share ideas and solve problems. This way,

not only SAP could have had a new platform to communicate with the clients in a more

efficient way, but also customers could work together directly and exchange valuable

knowledge. Mark Finnern, who went on to become an SAP community evangelist (a

formally recognized champion of the service), said: “To make it work, we knew we

would have to put the people in our company on the front line before customers would

engage. It would be 90% of us and 10% of them at first. But we knew if we did that it

would eventually be 10% of us and 90% of them.” (Happe, 2010) It is essential for the

social organizations to commit seriously in order to kick-start participation by

customers and partners. Using this approach in just two years 100,000 customers

joined. “By plugging customers into the process of creating reusable knowledge, every

contribution made both SAP and the community much richer and more useful. What’s

more, the process was repeatable, scalable and relatively inexpensive compared to

traditional customer support methods.” (Hinchcliffe & Kim, 2012) The social network

works every day, 24 hours a day, and delivers high-quality information to stakeholders

56

making the company save on support costs. Moreover, it improves customer retention,

which is a crucial aspect for a company like SAP.

The second story regards another software giant that develops, manufactures,

licenses, supports and sells computer software, consumer electronics and personal

computers and services: Microsoft.

In 2009, a survey revealed that Microsoft’s partners were less than satisfied with the

company. Precisely, 62% of them expressed desire for a stronger support that would

not include just periodical formal email announcements and occasional updates.

Microsoft executives decided to take action and use the same social media used by

others to organize quickly and effectively: Twitter and blogs. For each country, a new

Twitter account was set up to best address the partners while speaking in their own

language (e.g. https://twitter.com/microsoftfrance or https://twitter.com/microsoftde),

fostering participation. Microsoft applied a fast read-and-respond strategy that aimed

at answering as fast as possible to every question/problem. Satisfaction levels

increased by 15% the first year and 17% in the second while phone calls for assistance

dropped, substantiating the fact that the program was working. (Klier, 2011)

Many social business transformation stories exist outside the technology industry. Let

us look at how rethinking existing business processes can affect one of the biggest

consumer products multinational companies: Procter and Gamble Co. (P&G).

One of its best-known products, Old Spice, once a customer favourite, was losing

market share, especially among young consumers. In response, Old Spice used

advertising slogans like “If your grandfather hadn’t worn it, you wouldn’t exist”, but it

did little to increase sales. Since the traditional approach did not work, they had to

figure out a new way to communicate with the customers. The idea they came up with

required the use of both traditional methods and social media. Following this then-

revolutionary concept, the brand launched a new campaign during the Super Bowl and

on television, starring actor Isaiah Mustafa. The social media came into play when all

the television commercials were posted on YouTube, with the @OldSpice Twitter

account engaging with consumers in real-time. When somebody wrote to @OldSpice,

Mustafa answered to those messages with new spots posted on YouTube and then

referenced on Twitter. Advertisements that typically take weeks were produced in a

https://twitter.com/microsoftfrance
https://twitter.com/microsoftde

57

matter of hours, with a copywriter standing by, an actor and a warehouse full of

costumes where one could shoot the ad.

One of the many cited tweets (starring Isaiah Mustafa)

“The wide reach across traditional media kick-started social media participation, which

then led to compelling two-way conversations in social media between Old Spice and

consumers.” (Hinchcliffe & Kim, 2012) On the very first day, it received 6 million views

and in just six months achieved 1.4 billion views. The combined campaign reached

half of the Internet over its lifetime (Schroeder, 2010). After years of declining sales,

the new campaign helped increase the sales for Old Spice up by 107% (Griner, 2010).

At the same time, Old Spice has become the #1 Most Viewed Sponsored YouTube

Channel (P&G, s.d.).

A good example of crowdsourcing, which is the process of obtaining needed services,

ideas, or content by soliciting contributions from a large group of people (Merriam-

58

Webster, 2016), is the “Goldcorp Challenge”. Goldcorp, a Canadian mining firm, was

having difficulties finding more gold to prospect on its 55,000 acres in Ontario. In literal

desperation, it opened up all its 400 megabytes of its valuable prospecting data to the

geological community for help. Despite worries about loss of secrecy and looking

foolish for not finding it themselves, they offered a $575,000 in prize for successful

recommendations. More than one thousand entities from over 50 countries applied

unique and highly disparate methods to crunch the data, including applied

mathematics, advanced physics, computer visualization and many other creative

methods. The success rate was impressive. Over 80% of new targets provided form

the community yielded useful finds. Ultimately, the challenge unearthed 8 million

ounces of gold and catapulted the organization form a poorly performing company

worth a mere $100 million into a $9 billion mining giant in a few years. (Tapscott &

Williams, 2006) (Hinchcliffe & Kim, 2012)

In 2010, the leaders of NASA’s Marshall Space Flight Centre (MSFC) found

themselves having to deal with some serious problems. The space shuttle was

reaching its end of life and the plans for its replacement were not going anywhere

while the Constellation program and the Ares rockets were being criticized from

outside scientists and engineers. The Constellation program main goals were the

"completion of the International Space Station (ISS)" and the "return to the Moon no

later than 2020" with a crewed flight to the planet Mars as the ultimate goal. The Ares

rockets, instead, were the program's booster rockets. The ones that had to be used to

take the shuttle to its destination. (Connolly, 2006). So the shuttle and NASA’s

programs for the future of space exploration were at risk when President Barack

Obama announced a proposal to cancel NASA’s program in favour of privatization. As

MSFC leaders began rethinking the nature and value of the space mission, recognized

the importance of involving more people in the process of dealing with these

fundamental questions. They began envisioning how community collaboration could

help the mission and increase awareness of the value NASA and MSFC provide to the

world. (Pettus & Bradley, 2009)

Jonathan Pettus, Chief Information Officer at MSFC, said:

“We believed that social media could have a significant impact on how

we pursue our mission. That using it could help us collaborate in new

ways to build rockets better, but you cannot just put the technology out

59

there and expect big results. It is not that easy. We are not all the way

there yet, but we are moving forward towards out goals and our focus on

vision and purpose has provided a foundation for continued progress.”

(Pettus, 2011)

Organizations like NASA begun to use social media to exploit the advantages of

community collaboration. Some pursue it sporadically, but some are considering

involving the “social” part in their day-to-day operations. To give an example on how

things improved during the years for NASA we can look at the New Horizons space

probe that, on July 14, 2015, turned all its sensors to Pluto for a 20-hour long flyby.

Before it went dark – no contact with Earth – New Horizons sent one last chunk of data

home. Contained therein was the best picture of Pluto in history. When it received that

image, the agency did something unique: NASA posted the image on Instagram.

Doing so, NASA allowed people to share and comment not only on Instagram, but

also on many other social networks all over the world, receiving hundreds of thousands

of “likes” and comments. From putting the science team on Reddit for an AMA (Ask

Me Anything) (NASA, 2015) to pulling questions from Twitter during live press

briefings, the New Horizons mission reached out to millions of fans. Moreover, it is not

just New Horizons, NASA’s social media strategy is ambitious and, most importantly,

carefully planned.

Concerning the need to help its mission, NASA organized a series of call of proposals

with the aim to complement its research and speed up the development of new

technologies. They launched competitions for each piece of technology or theory

needed to move forward in the reach for Mars, coordinating with internal and external

stakeholders, including academia, industry and other government agencies. As an

example, the “Sample Return Robot Competition” is going to grant a $1.5 Million

reward to whoever manages to build a robot that can locate, collect and return geologic

samples on natural terrain without human control and within a specified time (NASA,

2016).

These innovations may enhance NASA's space exploration capabilities and could

have applications on Earth. All these projects, built outside the agency, are going to

save it both time and money. As stated by the presidential panel appointed for this

purpose on 2009, “allowing companies to build and launch their own rockets and

spacecraft to carry American astronauts into orbit would save money and also free up

60

NASA to focus on more ambitious, longer-term goals.” (Pasztor, 2010) This kind of

initiatives surely encourages innovation and allows NASA’s employees to go forward

and tackle the rest of the challenges that need to be addressed before launching the

next mission.

It is paramount to have a clear vision regarding social media and community

engagement that states the potential benefits for the organization. A vision statement,

similar to the Pettus declaration, which expresses these concepts serves two main

purposes. First, it articulates the belief of leadership in the importance and value of

community based collaboration. Second, it concretely identifies significant

opportunities for the firm where such collaboration can add value by helping the

organization move closer to its goals (Bradley & McDonald, 2011).

In general, the vision on ESNs is that everybody inside and outside of an organization,

from the CEO (Chief Executive Officer) to the newcomers, from the partners to the

customers and the fans, can provide a solution to a company’s problem or have

anyway a meaningful impact in a project’s development. The Internet has enabled

everyone to learn everything. Hence, a 12-years-old boy or girl can now be more

knowledgeable on a subject than a 30-years-old can just because the latter lacked the

passion needed to study the subject in detail. Considering this, it becomes easy to

understand the truth is this vision.

3.5. Benefits of Knowledge Management Systems (KMSs) and

Enterprise Social Networks (ESNs)

The main principles when talking about social businesses, KMSs and ESNs are the

following:

I. Harnessing collective intelligence implies benefiting from the cumulative

expertise of a group, rather than an individual, to make decisions

(Lykourentzou, et al., 2010).

61

II. Authoring is important to elicit the contribution of every person to collaborative

efforts or products and the contribution of any kind, whether it is knowledge,

insight, experience, a comment, a fact, an edit, a link and so on (McAfee, 2006).

III. Folksonomies are user-generated classifications enabled by tagging. They

reflect the information structures and relationships that people actually use, not

a classification planned before. Besides, user tags reflect the popularity of

subjects and identify knowledge pieces most used by employees. Since they

are generated without control, they can be redundant. In any case, they create

a one-level classification (McAfee, 2006).

IV. Reputation of an author or an object (a wiki article, blog, etc…) is defined not

by some set of characteristics but by the number of links directing to the object;

number of followers, “likes” etc... In order to make this principle work many

people must have the ability to build and share links, in general to express one’s

appreciation. This principle is highly dependent on the number of participants

in a network.

V. Recommendations are used to propose to users the items most relevant to their

interests based on their previous behaviour (McAfee, 2006).

VI. Signals (RSS, notifications) are useful to notify users when new content of

interest, comment, new post or reply appears.

VII. “Wisdom of crowds” effect implies that a large number of people making small

contributions can create a quality product (Kittur & Kraut, 2008).

VIII. Network Externalities or “network effect” means that the more users a system

has the more valuable it becomes for every single user (Kim, et al., 2009).

If the principles stated above are respected, using KMSs together with ESNs creates

many benefits for an organization. Hereunder are explained the most important ones.

1. Enabling better and faster decision making

When faced with the need to respond to a customer, solve a problem, analyse trends,

assess markets, benchmark against peers, understand competition, create new

offerings, to plan strategy and think critically one typically looks for the information and

the resources needed to support these activities. By delivering relevant information at

62

the right time through structure, search, subscription, syndication and support, a

knowledge management environment like the ESNs can provide the knowledge

necessary to take well-thought decisions. The power of collaboration remains in

bringing together a large number of people with diverse opinions and experiences that

will allow the discovery of the best-fitting solutions.

2. Reusing ideas, documents, and expertise

Once the company develops an effective process, it will be desirable to share that

knowledge and let others use the same process each time a similar problem arises,

avoiding redundant efforts. “No one likes to spend time doing something over again”

(Garfield, 2014). Just as the recycling of materials is good for the environment, reuse

is good for organizations because it minimizes rework, prevents risks, saves time and

money, keeps employees morale up and accelerates progress. This approach allows

employees to learn how things are done, leads to predictable and high-quality results

and enables large organizations to be consistent in how work is performed. Moreover,

the reuse of knowledge allows the outcomes to be based on actual experiences,

making the task easier for everyone involved.

3. Accelerating delivery to customers

Speed of execution is another important differentiator among competitors. All other

things being equal, the company that can deliver sooner wins. Knowledge sharing,

reuse and innovation can significantly reduce the time needed to deliver a proposal,

product or service to a customer.

4. Avoiding making the same mistakes twice

George Santayana said, "Those who ignore history are doomed to repeat it."

Knowledge management allows the sharing of the lessons learned not only about

successes but also about failures. In order to do so the organization must have a

culture of trust, openness, and reward for willingness to talk about what someone did

wrong. The potential benefits are enormous. We can give many examples. Think of

NASA, if it learns why a space shuttle exploded, it can prevent it to happen again and

save lives. If FEMA (Federal Emergency Management Agency) learns what went

wrong in responding to Hurricane Katrina, it can reduce the losses caused by future

disasters. If engineers learn why highways and buildings collapsed during a previous

http://www.fema.gov/

63

earthquake, they can design new ones to better withstand future earthquakes.

(Garfield, 2014)

5. Communicating important information widely and quickly

There are two arguments that should be considered in this matter. First, when working

in a team of 10 people it is easy to talk and share information with every other member.

As the number of people increases, though, communication becomes increasingly

difficult. It is fundamental to actively enable the organization to leverage its size.

Second, since almost everyone today is an information worker either completely or

partially, we all need information to do our jobs effectively. A problem that can arise

today when reaching for information is called “information overload”: it refers to the

difficulty a person can have understanding an issue and making decisions caused by

the presence of too much information.

How can we get to everyone in the company information that is targeted, useful, and

timely without drowning in a sea of email, having to visit hundreds of web sites, or

reading through tons of printed material? Knowledge management helps address this

problem through personalized portals, targeted subscriptions, RSS feeds, tagging,

and specialized search engines. To best share the knowledge with the rest of the

organization we can make use of tools like community discussion forums, training

events, ask the expert systems, recorded presentations, podcasts and blogs.

6. Showing customers how knowledge is used for their benefit

In competitive situations, it is important to be able to differentiate yourself from other

firms. Demonstrating to potential and current customers that the enterprise has

widespread expertise and has ways of bringing it to bear for their benefit can help

convince them to start or continue doing business with the company. Conversely,

failure to do so could leave the company vulnerable to competitors who can

demonstrate their knowledge management capabilities and benefits. (Garfield, 2014)

Between the researches on the subject, an interesting interview nicely explains some

of the benefits of using an ESN:

“We made knowledge maps – knowledge areas and persons and put this in the

system. I like it and I know that younger generation loves it, too. The older

generation says they know everybody. But it is interesting to have this

64

discussion between the older and the younger people, saying “You know

everybody, but I can’t get into your network” – “Then just call me”. But then he

(an expert in some field) starts complaining that he is constantly being

questioned about trivial things. Then he realizes that it is interesting to write it

down. Besides, I can always say that if you have a question about

manufacturing engineering ask “Jan”, because he knows everybody, who

knows something about the question. But then Jan will start to complain for

constantly being bothered by people with some questions. And then they agree

on writing down who knows what.” (Gordeyeva, 2010)

3.6. The Right ESN

In the previous sections and chapters, we have talked about a wide variety of social

networks and tools. The reason why we did so is to introduce the concept of Enterprise

Social Networks and give a more comprehensive view on the subject. It is necessary

now to state that even if we introduced many examples and considered many

technologies, when talking about social media the focus should never be on

technology but on conversations between people, since it is the conversations that

have the power to influence opinions. Billions of conversations take place every day

about new products, new promotions, the prices of the goods and services and the

opinions (both good and bad) of the customers on a brand (Keller, 2007). These types

of conversations strongly affect the opinions and the purchasing behaviour of the

consumers. (InSites Consulting, 2012) Even if the majority of conversations of this kind

takes place offline (InSites Consulting, 2009), online conversations have the

advantages to be able to reach large audiences quickly, easily and cheaply. Numerous

studies have underlined the relationship between positive conversations and good

sales figures (Herr, et al., 1991). Being able to exploit this potential can increase

people’s perception of the company and this will not only increase the sales, but also

make it easier to recruit new talented staff.

The highest proportion of unused conversation potential can be found among

customers and staff. Everyone will agree that satisfied customers are important.

Satisfied customers who talk about the company are even more important. A

65

European survey of various sectors showed that 28 percent of customers were very

satisfied with particular products or services they received, but did not talk with anyone

about them (Bellenghem, 2012). In other words, almost a third of the consumers had

a good experience of a product or service but said nothing about it to anyone. It is

clear that the amount of unused conversation potential cited before can be quite

alarming. Reducing the level of unused conversation potential makes a company have

a wider reach and greater impact in everything it does, from the development stage to

the customer relationship management.

In order to choose the ESN that best fits an organization, and that will likely increase

conversations on their products and services, there are many factors to take into

consideration.

First, does the company need its products and services to be developed and improved

within a community of people or is it fine to use the traditional approach that limits a

specific team of employees to work on them?

To limit the number of employees working on a project makes it easy to the

team to work as a unit and have good communication. This said, it also limits

the amount of innovation put in the development phase and it does not

guarantee that all the knowledge needed to build a product or service is already

in the team. New requirements may come up and new technologies be

considered while brainstorming the new service or product and it would be

useful to be able to easily spot who can help or manage to read a report on a

previous project developed with that technology.

Second, does the company need a way to build knowledge retention and knowledge

search or does it just want to improve the way it communicates the news to the

consumers?

A simple Facebook page or Twitter account, possibly supported by an

Instagram or YouTube channel, could be enough to engage the customers and

raise the awareness on the brand. Yet Twitter’s 140 characters cannot really

be knowledge. There is not much that can be written there. One can put a

question or an answer. Still, it facilitates conversation since writing a short

message does not require major efforts. On the other hand, if the goal is to

collect knowledge to be used in the future by any of the stakeholders, than a

Twitter account will not be enough. In this case, a dedicated ESN can be the

66

right solution, since it helps making personal and corporate knowledge more

visible and accessible for everybody.

Third, does the company need its partners to be able to contact any of the employees

in order to get the best answers to their questions or is it preferable to have a single

element in the organization to take care of this kind of public relations?

Without social tools, there would probably be a single person responsible for

the client. If that person is an expert on the field it could already be enough.

This said, the enterprise might want to speed up the learning curve of its

employees and be sure that its workers can always find the answers they need

for their client in little time. Social networking tools create social presence

(which means having some information about each person on the network) and

context for communication, so that a person’s job, title and responsibilities are

visible to everyone else. Thanks to this, both partners and colleagues are able

to recognise when somebody is the right person to contact or not.

Fourth, is it important to the managers to talk with any other employee easily or do

they prefer a more hierarchical arrangement, where a worker can speak only to his

peers and its direct supervisor?

With a hierarchical approach, the work environment is a more predictable and

manageable place where everyone just follows what the management says. In

this kind of circumstances, only few people can take initiatives. Using dedicated

Enterprise Social Networks flattens the traditional chain of command making

any member of the company, including the managers and chiefs, more

approachable. This allows everyone to obtain knowledge and get a feedback

from any employee while highlighting the most useful interventions, which will

receive more “likes” or similar tokens of appreciation. This way it is harder for

the management to play their role, but it uses this wider reach to get better

ideas from many more sources.

Fifth, how confidential is the information that is going to be exchanged on the network?

The traditional approach keeps using closed systems, like emails, that shield

the company from involuntarily leaking data outside the intranet. Having a more

open approach, on the other hand, gives the company all the benefits that we

discussed earlier.

67

Questions like these help narrowing down the characteristics that an enterprise is

looking for. Once those are known, a proper ESN can be chosen or even developed

from scratches. It cannot be emphasized enough, though, that having a tool as an

ESN does not mean that it is going to be used as much as expected. It is crucial when

becoming a social organization to have a Vision and a Culture that supports it. Without

these two elements, the best ESN is useless. Moreover, using a social approach does

not simply mean that the enterprise gets another tool. It is necessary to rethink the

way the company does business, because it is going to alter all the processes used to

build the final products and services. “Social business amplifies partner activities by

driving network effects and other ecosystem benefits, such as having the organization

come together with all of its partner companies to market, sell, innovate, support or

otherwise accomplish business objectives” (Hinchcliffe & Kim, 2012). This means that

the company will have to take into account all the entities involved instead of deciding

by itself.

68

69

4. CERN as a Social Organization

This chapter will introduce CERN and present Social, its enterprise social network.

4.1. CERN

At the end of the Second World War, European science was no longer world-class.

Following the example of international organizations, a handful of visionary scientists

imagined creating a European atomic physics laboratory. Raoul Dautry, Pierre Auger

and Lew Kowarski in France, Edoardo Amaldi in Italy and Niels Bohr in Denmark were

among these pioneers. Such a laboratory would not only unite European scientists but

also allow them to share the increasing costs of nuclear physics facilities.

French physicist Louis de Broglie put forward the first official proposal for the creation

of a European laboratory at the European Cultural Conference, which opened in

Lausanne on 9 December 1949. A further push came at the fifth UNESCO General

Conference, held in Florence in June 1950, where American physicist and Nobel

laureate Isidor Rabi tabled a resolution authorizing UNESCO to "assist and encourage

the formation of regional research laboratories in order to increase international

scientific collaboration…"

At an intergovernmental meeting of UNESCO in Paris in December 1951, the first

resolution concerning the establishment of a European Council for Nuclear Research

(Conseil Européen pour la Recherche Nucléaire) was adopted. Two months later, 11

countries signed an agreement establishing the provisional council – the acronym

CERN was born (CERN, 2016).

70

On 17 May, 1954, the first shovel of earth was dug on the Meyrin site in Switzerland under

the eyes of Geneva officials and members of CERN staff.

At CERN, many experiments are carried out at the same time with one main goal, to

understand the fundamental structure of the universe and push the boundaries of the

human knowledge a little further. Physicists and engineers use state-of-the-art

technology and most complex scientific instruments to study the basic constituents of

matter – the fundamental particles. The particles are accelerated close to the speed

of light and made to collide together in order to split and reveal the sub-particles they

are made of. The process gives clues about how the particles interact and provides

insights into the fundamental laws of nature.

The instruments used at CERN are purpose-built particle accelerators, like the Large

Hadron Collider (LHC), and detectors. Accelerators boost beams of particles to high

energies before the beams are made to collide with each other or with stationary

targets. Detectors observe and record the results of these collisions. Approximately

600 million times per second, particles collide within the Large Hadron Collider (LHC).

Each collision generates particles that often decay in complex ways into even more

particles. Electronic circuits record the passage of each particle through a detector as

71

a series of electronic signals, and send the data to the CERN Data Centre (DC) for

digital reconstruction. The digitized summary is recorded as a "collision event".

Physicists must then sift through the 30 petabytes or so of data produced annually to

determine if the collisions have thrown up any interesting physics (CERN, 2016).

Founded in 1954, the CERN laboratory sits astride the Franco-Swiss border near

Geneva. It was one of Europe's first joint ventures and now has 22 member states.

CERN’s member states

4.2. CERN Communications Strategy

On June 28 2010, Rolf Heuer, the Ex Director General (DG) of CERN, decided to invite

the InterAction Collaboration to conduct a peer review of the communication, outreach

and education activities at the CERN Laboratory. The purpose was “to develop internal

communication, local communication and communication at the political level”.

On November of the same year, after extensive presentations and discussion with

CERN management and staff, the review committee delivered its final report at a

72

closeout that included the Director General and multiple members of the senior

management. In the report, between the many, there is a specific section regarding

“Publications, Web and Social Media” where the findings, comments and

recommendations of the review on the subject are summarized. It is important to

consider all these parts in order to fully understand the situation in 2010 and the

recommendations given.

Findings:

 CERN publishes a very wide range of printed materials:

 The CERN Courier is a much-respected traditional publication and

targeted for the scientific community.

 The Bulletin is very heavy to produce:

o It is a hybrid publication: half of the contents are printed, and

everything is posted on the Web.

o The Bulletin does produce high-quality contents that are

suitable for internal and external readers.

 CERN prepares brochures in many languages. These brochures

contain appropriate contents for first time visitors.

 The Communication Group publishes the CERN Annual Report each

year, which is a significant time commitment for the communication

staff.

 The Web specialists in the CERN Communication Group are introducing a new

content management system with the help of appropriate expertise from the IT

division.

 A new domain name to represent CERN’s global status is being discussed:

cern.org.

 CERN does have a very visible presence on Twitter: approximately 208,000

followers, “No. 1 in the scientific category”

 CERN provides timely updates of developing events. For example, CERN used

the Web and Twitter to post regular updates from the First Physics event.

 The CERN Courier has a different domain name: cerncourier.com, operated by

the Institute of Physics.

73

Comments:

 The staff is highly motivated to produce high quality articles:

 Translating the articles into multiple languages takes a large amount of

human resources and tends to slow down the process.

 The contents and exact wording require delicate proof readings, given

the diplomatic and scientific situation of CERN.

 An effort to make Web content more easily manageable is commendable.

 The target audiences for each medium are mixed:

 No regular publications for non-technical audiences or for the general

public exist.

 Brochure content could be more coherent with the Web.

 The CERN Courier is not visible on the CERN website.

 Many articles in the Bulletin are good and interesting to internal and

external readers, including journalists.

 The Bulletin might be much more effective if articles are posted and updated

daily.

 Website coherency is an issue

 No one is in charge of editorial management of the Web, which leads to

the lack of long term and daily decision-making.

Recommendations:

 Push ahead with the reorganisation of the CERN website.

 Consider adding contract support to the CERN team to support this goal.

 Use the reorganisation of the website to strengthen the brand image of CERN

and to restructure how target audiences reach news, bulletins and the CERN

Courier.

 Synchronise the printing process with Web publishing.

 Establish a coherent mechanism to share information among staff writers and

editors.

 Better utilise the power of the Web to reach the general public:

 Daily CERN news, scientific news

 Implement a process to evaluate the real time impact of publications, Web and

social media.

74

 Develop a social media policy and plan.

(InterAction Collaboration, 2010)

As we can see, the focus is on creating a plan to handle the news and delivering the

information to the right audiences at the right time exploiting the Web. In fact, “the role

of communications is to plan strategically, manage and sustain an organization’s

relationship with key audiences, taking responsibility for the organization’s reputation

and thereby helping the leadership to achieve its strategic and operational goals”

(CERN IR-ECO group, 2016). As such, communications is an integral part of

management responsibility. Mainly, people with management-level accountabilities at

CERN are the Director General and the Directorate, which assists the DG and runs

the laboratory through a structure of departments. The Directorate is formed by the

chiefs of the following areas:

 Accelerators and Technology, currently Frédérick Bordry

 Research and Computing, currently Eckhard Elsen

 Finance and Human Resources, currently Martin Steinacher

 International Relations, currently Charlotte Warakaulle

Between the many groups forming the International Relations sector, the

Communications group (DG-CO) is the most interesting for the purpose of the thesis.

Its mandate is to generate public engagement in science, to produce and distribute

information, to foster community building and to build support for CERN and its

missions. The key audiences are:

 The general public – to foster engagement with scientific issues

 The scientific community – to provide information about CERN's activities

 Science and technology decision makers – to promote CERN's activities

 The CERN community – to provide information and build motivation

 Local communities – to provide information and promote events, including

activities for local schools

(CERN IR-ECO group, 2016)

The recommendations from the Interactive Collaboration have been of great help

devising where to focus resources and time. In support to the review from the

http://press.web.cern.ch/biographies/frederick-bordry-born-1954-french
http://press.web.cern.ch/biographies/eckhard-elsen-born-1955-german
http://press.web.cern.ch/biographies/martin-steinacher-born-1958-swiss
http://press.web.cern.ch/biographies/charlotte-lindberg-warakaulle-born-1970-danish

75

Interactive Collaboration, the CERN communications group (IR-ECO) worked on

redacting a more exhaustive document that could provide valuable knowledge to the

directorate in order to take the necessary steps to further improve communications at

CERN.

Presented in October 2011, the “CERN communications strategy 2012-2016” was a

draft document that outlined the strategic vision for official communications at CERN

and was the product of many months of consultation with key stakeholders by the

communications group. It had been informed by independent research conducted by

external partners, as well as the peer review process led by the InterAction

Collaboration. Its purpose was to generate and secure sustained political, financial

and popular support for CERN’s scientific and societal missions from all its stakeholder

groups. One of the tools used to achieve that goal is Social media. They are a

component of the CERN communication strategy and are used in order to disseminate

information.

By 2014, the CERN Computer Security Team wrote the guidelines (CERN Computer

Security team, 2014) regarding the use of Social Media from its contributors (i.e. staff

members, fellows, apprentices, associates, users or students), who comment

professionally or privately about their activities at CERN using Social Media. They refer

to the CERN Code of Conduct (CERN, 2015) and explain what is considered a proper

behaviour on the network. Its talks about all the aspects that can interest a user when

going online, like the use of the CERN’s logo, confidential information, intellectual

property, how to handle differences in opinion and gives contacts for everyone who

needs to ask a question or need an advice about the Social Media policy. This way

everyone can have a reference on how to use the Media.

“Through the DG-CO group CERN devotes about 0.25% of its resources to the

organization communications function with further resources being deployed in other

Departments and Groups. At a time of unprecedented, global reputational potential for

CERN, the current resource levels and structures entail reputational risks for the

Organisation. These risks can also have a direct influence on the Organization’s

budget and ability to operate. The communications strategy defines the messaging

architecture, maps out target audiences, and formulates key messages and proof

points. It also proposes a structural alignment of CERN’s communications functions in

order to mitigate the risks and, just as importantly, to ensure that CERN is fit to meet

76

the communications requirements of its stakeholders in the second decade of the

21st century”. (CERN IR-ECO group, 2016)

4.3. Social at CERN

There are three main strands to the social media strategy:

1. Begin a journey

Key messages are disseminated by repackaging CERN’s online content for the

different social media channels. Most social media content contains links

forwarding back to the CERN website, starting a journey for the user to find out

more.

2. Foster engagement

CERN’s presence on social media channels fosters engagement in the public

and helps to form an online community of stakeholders interested in the

laboratory and its work. The level of engagement, through the shares, likes and

comments, on CERN information is regularly monitored.

3. Retain positive sentiment

Social media is a way to reach the public and to monitor sentiment towards the

organization. By keeping the sentiment positive and handling the negative

sentiment constructively, by responding as appropriate to questions or

concerns, CERN’s strong brand identity is retained.

(CERN, 2016)

CERN began using the social media channels in 2008. By August 2014, its Twitter

account had more than a million followers keen to find out news about the organization.

“During the 4 July 2012 Higgs announcement CERN’s live tweets reached journalists

faster than the press release and helped contribute to worldwide coverage of the

particle discovery and an October 2013 study (Lüfkens, 2013) cited CERN as the most

effective international organization on Twitter” (CERN, 2016).

Currently active on Twitter, Facebook, YouTube, Google+, Instagram and LinkedIn,

CERN is actively working on engaging its fans and followers, providing insights in the

everyday work of thousands of scientists and answering to every question on their

77

work. The most important questions and answers are collected and displayed on the

CERN Media and Press Relations webpage, like:

 Is the Large Hadron Collider dangerous?

No. Although powerful for an accelerator, the energy reached in the Large

Hadron Collider (LHC) is modest by nature’s standards. Cosmic

rays – particles produced by events in outer space – collide with particles in the

Earth’s atmosphere at much greater energies than those of the LHC. These

cosmic rays have been bombarding the Earth’s atmosphere as well as other

astronomical bodies since these bodies were formed, with no harmful

consequences. These planets and stars have stayed intact despite these higher

energy collisions over billions of years.

 What happened with the LHC in 2015 and what does CERN plan to do in 2016?

The Large Hadron Collider (LHC) restarted at a collision energy of 13

teraelectronvolts (TeV) in June 2015. Throughout September and October

2015, CERN gradually increased the number of collisions, while remaining at

the same energy. In November, as with previous LHC runs, the machine run

with lead ions instead of protons until mid-December when it had its winter

technical stop. The most powerful collider in the world was switched back on in

March 2016, followed by a period of tests. After a period of commissioning, the

LHC experiments began taking physics data for 2016. Over the coming months,

the LHC operators plan to increase the intensity of the beams so that the

machine produces a larger number of collisions. This will enable physicists to

have a better understanding of fundamental physics. Towards the end of year

the machine will be set up for a four-week run colliding protons with lead ions.

 Why is the Higgs boson referred to as the God particle?

The Higgs boson is the linchpin of the Standard Model of particle physics but

experimental physicists were not able to observe it until the arrival of the LHC,

nearly 50 years after the particle was first postulated. Leon Lederman coined

the term ‘the God particle’ in his popular 1993 book ‘The God Particle: If the

Universe Is the Answer, What is the Question?’ written with Dick Teresi. In their

book, Lederman and Teresi claim the nickname originated because the

publisher would not allow them to call it ‘the Goddamn Particle’ – a name that

reflected the difficulty in observing the elusive boson. The name caught on

78

through the media attention it attracted but is disliked by both clerics and

scientists.

(CERN Media and Press Relations, 2016)

Usually every answer carries one or more hyperlinks to direct the users to other web

pages on the CERN site that can better explain the subject.

CERN’s Twitter page

Since CERN is a public non-profit organization and does not produce any product or

service to sell, its objective is not to make advertising campaigns like Old Spice nor to

ask for suggestions from the public on how to build particle accelerators. The goal is

79

the sharing of knowledge on new discoveries and increase awareness on what kind

of experiments are being carried on and why.

Being on many public social networks lets CERN take care of its fans and followers,

but does not help its employees. In order to give the proper support to its personnel, it

has to adopt a different system.

One approach uses emails to exchange knowledge. Primarily used for communication,

thanks to its flexibility it now also serves as to-do list, personal information

management tool, archive, mechanism to foster coordination and collaboration among

colleagues and source for assigning and delegating tasks (Mark & Voida, 2012). In

summary, its usage goes well beyond what it was originally built for, making us

checking email about 36 times an hour (Renaud, et al., 2006).

Looking at the research about social media, we find that another possible approach

considers ESNs. They started taking an important role inside organizations, with

Gartner stating that, by 2016 50% of large organizations will have ESN and 30% of

these will be considered as essential as email is today (Gartner, 2013). This clearly

indicates that the private sector realized the potential benefits and, at the same time,

the current workforce is getting more and more adapted to ESN, setting them as a

natural and essential tool at the workplace. We also know that ESNs allow solving

problems faster and better as knowledge becomes available and searchable. Instead

of seeking colleagues, one can go directly to the ESN and search for an answer. If no

results are found, questions can be posted very quickly on a lightweight and informal

way without causing interruptions. In a sense, ESNs can become an “internal Google”

to find relevant answers. ESNs empower people, everyone has an equal voice, it

encourages people to speak up giving them an opportunity to make meaningful

contributions with their skills and ideas, and again leveraging innovation. It increases

engagement by humanizing the way in which people work (Li, 2012), opposing to the

classic and formal way to communicate provided by email.

We can say that an experimental study has shown that people deprived of email

multitasked less had longer focus and even lower levels of stress (Mark & Voida,

2012). Using an ESN would allow us to keep the email channel for formal

communication while deferring informational emails to pull-oriented channels like the

ESN or RSS feeds. Email is also not adapted for all kind of communications. For

80

example, the case of the “reply-all syndrome”, when every employee willing to answer

an email replies to everyone and causes everyone to receive a huge number of emails

to read. It can cause all kind of reactions on members of a distribution list. At the same

time, how many times opportunities for a constructive dialog or opinion were missed

just because email is not suited? Knowledge residing inside mailboxes is locked. The

amount of knowledge that is inaccessible to others and eventually deleted (when the

mailbox owner leaves the organization) is unmeasurable. ESN’s by their nature, as

open communication platforms where everyone has an equal voice, can clearly unlock

opportunities for collaboration and capture existing knowledge for everyone.

Choosing between ESN and RSS technologies, we notice that RSS feed is a pull

communication channel, thus the information is published and then gathered by the

consumers, but it does not offer social interaction features – e.g. comments, sharing

or networking. (De Sousa, et al., 2015) These reasons brought to the adoption of an

ESN.

Another aspect to consider when approaching social media is how to build the

network. Many questions arise, like: Do we want to build the enterprise social network

from scratches or do we want to use one that is already online, like Trello? Do we need

a specific one? In case we want to have a private ESN, do we have to build it or not?

Do we have any reason to distrust the ones available on the market? In case we want

to use a software like Oracle’s Beehive to set up our private social network, what

software should we use between the many?

Like many agencies, CERN considers much of the information exchanged between

employees as classified, so in this case it is not possible to choose an existing social

network as platform for the CERN social network. This is because all the information

exchanged on social networks like Trello has to be stored on their servers, thus

violating confidentiality. In particular, sharing specifics about the developed projects

could give the hackers and crackers, individuals with extensive computer knowledge

whose purpose is to breach or bypass internet security or gain access to software

without paying royalties, which daily try to violate the CERN network useful material to

exploit the hypothetical vulnerabilities of the system. The best solution is to maintain

the data inside CERN at all times using a private ESN. At this point, the choice is

between building the ESN from zero or adopt one of the many management platforms

available on the market. The management at CERN decided that the best choice

would be to follow the latter option and selected SharePoint to be the best platform.

81

On March 2014, the pilot service bringing social networking capabilities for CERN

people started (De Sousa, 2014). Available at the address https://social.cern.ch,

Social introduces a lightweight communication channel, which aims to become a

central tool for people to follow and interact with information and at the same time

enrich existing communication channels with social features. The goal is to achieve

the potential benefits of an ESN by proposing rich profiles along with microblogging

features to communicate and share with CERN people.

Social main components are:

 Blogs and Wikis

 Personal homepages

 Calendaring and Task Managing features

 Communities and Workgroups

 Microblogs and Instant Messaging

 Social Network

 Suggestion System and Social Voting

 OneDrive for Business

Blogs and Wikis are available for anyone who wants to share knowledge, create a

personal website or start a wiki on a particular topic. Each of them can be accessed

from Social and users are able to comment and share the content.

Profiles are pre-filled with basic contact information like phone number, email address

and office location. Moreover, users can add their photo and information about

themselves, like areas of knowledge, past projects, relevant experiences or interests

that will help on the discovery of expertise on the network. This is extremely useful in

this kind of environment because of the broad range of skills of the employees and it

can help creating opportunities for new projects and collaborations. Social profiles also

include the activities made on the platform (as messages shared with everyone),

followed people, participation on communities or liked content. This makes profiles

rich and constantly updated with the latest information depending on the person’s

activity. At the same time, activities automatically shared can be configured on the

profile’s settings in order to adapt to the preferences of the user. As a platform open

to everyone at CERN, the variety of the content can be broad and thus not relevant to

https://social.cern.ch/

82

all. The solution adopted makes it possible to follow content either by person or by

hashtag, making the consumption easy and customizable. This allows the users to

decide what content will be shown on their personal homepages after login.

Workgroups let team members express themselves on the work in progress, discuss

about it and ask for suggestions from the colleagues while been sure that only the

members will be able to see them and participate. This is useful in order to have a

private section where only the messages regarding one project are posted and, at the

same time, keep the information classified. Specific tools have been implemented for

workgroups, like a calendar where the members can add their tasks and their

deadlines, so that the rest of the team can program in advance the next steps.

Microblogging is at the hearth of Social – known as the Newsfeed. Using the textbox

available on the top of the homepage, one can very easily broadcast a message to

everyone or a limited group of people. Hashtags can be used to add context and

meaning to a post e.g. #chep2015, making it easier to find content or even get insights

of current trends on what people is talking about. To catch the attention from someone

the character @ appended by the person’s name, can be used for mentions. Social

interaction happens by adding comments to posts for conversation or giving “likes” for

public validation and relevance.

83

Social Newsfeed example

SharePoint query suggestions are phrases that we want the search system to suggest

to users as they start typing a query. They help make any research in the system

quicker and help filling the blanks when one cannot remember the full name or there

are more people with similar credentials. Social voting is another way to collect

feedback from the network, where an opinion can be expressed using one of many

options like the thumb up/thumb down system or the star system, where a user

express their vote on a scale from one to five stars.

OneDrive for Business is the default document library in a user's “My Sites” section in

SharePoint Server 2013 or SharePoint Online. The contents of the library can

optionally be synchronized with one or more of the user's computers or devices.

OneDrive for Business ensures that users’ business files are stored in a central

location. Storing business files in one location makes it easy for users to share and

collaborate on documents. Using Office 365 for enterprises, one can also reduce the

on-premises storage costs by moving the users' files to the cloud.

84

SharePoint OneDrive for Business page example

The features described above can also be used by CERN Service Accounts (CERN,

2015) making it possible for CERN services or events to be organized on Social to

communicate with everyone. An example are the IT Lightning Talks (ITLT), which “are

regular sessions of 5-10 short presentations (maximum 5 minutes long) on any topic

related to computing technology or to the IT department with the goal to have a

lightweight, informal and open communication channel, where everyone can share

experience, seek advice, propose ideas, find others interested, brainstorm, team-up...

and maybe create the next IT revolution!” (CERN, s.d.). ITLT use Social to publicize

presentations and, at the same time, promote discussion on the presented topics.

Social also provides the grounds to build communities where people sharing similar

interests can discuss about a topic, on a “questions and answers” oriented format,

similar to discussion forums. A Social Community takes form on a dedicated website

that can be created by CERN people using WebServices (CERN, s.d.). Those are

easily customizable in terms of look and feel. Permissions access is very flexible,

communities can be restricted to determined individuals, groups like CERN e-groups

(CERN, s.d.) or even people outside CERN whom can sign-in with public service

accounts like Facebook, Google or Microsoft account. There is a large set of features

to make the administration of the communities effortless and adapted to the needs,

like categories to organize discussions, badges, reputation settings for participants

and options for moderation. (De Sousa, et al., 2015) A very popular example of a

Social Community is the CERN Market (CERN, s.d.).

85

CERN Market’s Social Community page

86

Social Community Reputation and Badges settings page

Social Communities are directly connected with Social Newsfeed. Hashtags and

mentions can also be used on community posts, thus if a followed hashtag is used it

will be visible in the Newsfeed (or Yammer) page, even if the user is not aware that

the community exists. This makes the Social Newsfeed (or Yammer) the single place

where all the relevant content will be presented. At the same time, email based alerts

are available on communities, as it can be useful for the owners or most active

members. Email alerts can be triggered every time an activity occurs or be a summary

scheduled either daily or weekly at specific times. Social Communities can be explored

from a dedicated site exposing them by popularity.

The integration of Social with the existing Web environment is very important in order

to extend its usage to other contexts. Social is tightly integrated with the Collaboration

Workspaces through the implementation of microblogging in the context of team

collaborations for specific projects or services. This approach has shown very good

87

results in the context of the CERN WebServices team by increasing the

communication flow between team members that are responsible for different

platforms based on different technologies. This allowed to build better team spirit and

create synergies between the functional elements of the service.

By means of a REST API (CERN, 2014) a set of Drupal modules (CERN, 2014) is

available to introduce social features and content to existing CERN websites. It is

possible to embed information about a specific profile, show all conversations with a

known hashtag or list the picture and contact details of all members of a known

department or group at CERN (De Sousa, et al., 2015).

Posts from a

 specific profile

Posts with a specific hashtag

(#drupal)

All members of a

specific group (IT/OIS)

4.3.1. System Architecture

An application’s design is the set of activities aimed at identifying the best solution in

order to meet the functional (and non-functional) objectives expected by the customer

and the end user. These activities can be of various kinds, be carried out at different

times and different ways depending on the approach used. In general, they help the

architect and the development team to take important decisions, often of a structural

nature. Design shares with programming the tendency to use an abstract

88

representation of the information and the logical sequence of development steps, but

the level of detail in the two cases is different. The design builds a representation of

the software that considers many aspects. It focuses on the structure of the system

and the existing relations between the constituent parts, identifies the logical

operations that must be carried out and identifies the way in which the system can

interact with the outside world.

The result of the design is the definition of the system architecture, meaning the

structural organization of the system itself, which includes its software components,

the externally visible properties of each of them (the interfaces) and the relationships

between the parties. In this case, "software component" means any entity forming part

of a system, at different levels of detail and granularity, from the simple application

module (for example, a class in an application based on the object-oriented paradigm)

to the complex subsystem (for example, a DBMS or an LDAP server) (Bass, et al.,

2003). In line with the definitions given, we can say that every software system has its

own architecture since each system can be viewed as an aggregate of its constituent

parts and the relationships between them. In the simplest and trivial cases a system

is composed of a single constituent element. In these situations, the architecture is not

complex and is probably uninteresting. In more complex cases the software system is

formed by a series of heterogeneous subsystems that interoperate with each other

using more or less complicated mechanisms for communication, working with huge

amounts of data and users. In these cases, steps need to be taken in order to

guarantee the security and reliability of the system.

Developed using SharePoint 2013, the architecture of Social consists on a highly

available set up with mirrored database servers (MS SQL Always On technology), with

one Application Server running SharePoint specific services and three web front-end

servers. The main reason that brings to this choice is related with high-availability.

Downtime can happen because of hardware/software failure or during maintenance

operations, which can require services/servers restarts. Therefore, it is crucial to have

roles redundancy at both logical and physical level.

The SharePoint service at CERN is considered as critical not because of Social Web

App but because of the Collaboration Workspaces (https://espace.cern.ch). People at

CERN can store procedures and documentation in those workspaces (e.g. LHC

operations, schedules, Fire Brigade operations, IT services procedures, Pension Fund

https://espace.cern.ch/

89

management, etc.), thus downtime must be avoided. On the other hand, SharePoint

specific services are for example the Search Service or the User Profiles Application.

Those are services that do not need to run on the web front-ends. For those services

we do not have redundancy because in case of downtime those do not prevent the

web applications to work.

In addition, in order to be able to develop new tools and improve Social’s

functionalities, a development environment has been created. Identical to the

production environment, this setting allows the developers to test out thoroughly the

new modifications before the final release.

4.3.2. Deployment and Future Plans

Opposed to classic deployment where the technology is made available, training is

provided and then people are expected to use it, the deployment of ESN is 80%

cultural change and 20% about technology. It should not be seen as a one-department

initiative, but as part of a broader change at the organization level. Many obstacles

can be expected during the roll out of ESN. It is predictable to see adoption drop-off

from users after a grace period of time. This is why it is important to keep users

engaged and, in order to do that, take one step at the time and carefully follow a plan.

Part of the plans for the future of Social involve feeding the Newsfeed with content by

adding more sources with relevant information. Simple examples like posting daily

CERN restaurant’s menu or migrating existing classifieds site CERN Market to Social

Community had very positive effects and added new features to existing services.

Bidirectional integration is available for other CERN Web platforms to allow users to

share context-based information directly to Social. It is important to highlight that

programmatic interfaces are easy to use and allow both consuming and feeding new

data.

New features are also under development like the Social Feed that consists on a topic-

based microblog feed. This will allow, for example, lightweight departmental and

private discussions and will make the conversation open to external people. One

example is available at https://cern.ch/chep2015. We also expect that, in part, Social

Feeds will replace the heavy usage of mailing lists when the purpose is mostly non-

critical information exchange. Finally yet importantly, the development of

https://cern.ch/chep2015

90

comprehensive usage analytics to measure the engagement of CERN people or

success of communication campaigns is also part of the plans (De Sousa, et al., 2015).

91

5. Hands-on Social Development

In this chapter, we are going to introduce the Technical Student Programme and the

work I have done on Social while attending it.

5.1. Technical Student Programme

CERN gives every student the possibility to participate in one of projects at the

laboratory. It is the case of the Technical Student Programme. Aimed for

undergraduate in Applied Physics, Engineering or Computing looking for a practical

training period or a place to complete their final project, the programme allows a

student to spend 4 to 12 months at CERN during the course of the studies (Bachelor

or Master). An extension of up to a maximum of 14 months may be given.

The technical student programme gives the students a broader view of the world,

thanks to the mix of people with their own customs and traditions xcoming from all

around the world. It allows the students to take part in the research field and work on

a specific project. Most importantly, it is possible express an opinion on the project

and its development while being taken in serious consideration. Furthermore, one can

attend several seminars on a large number of subjects, expanding one’s knowledge

of the field of study.

The main jobs I completed for this thesis have been:

 The implementation of the design for Social Mobile

 The creation of a Resource Planning Tool (RPT)

 The creation of the Social API

5.2. Social Mobile

SharePoint 2013 offered the possibility to set up the Social environment while

providing many integrated features to support it. In addition, “for smartphone mobile

92

devices SharePoint Server 2013 provides a lightweight, contemporary view browsing

experience for users to navigate and access document libraries, lists, wikis, and Web

Parts” (Microsoft, 2013). In fact, SharePoint 2013 offers the “SharePoint Newsfeed”

app to work with Social using Windows phones, iPhones and iPads. Unfortunately, it

does not cover other environments, like Android. In this kind of OSs, without proper

management, the website is always shown to the users in the same manner, meaning

that a smartphone would receive a web page content thought for a wide screen.

Shrinked to fit the screen of a smartphone, a page like that becomes very small,

showing small fonts, links and images. Since Android has a market share much larger

than all the other smartphone operating systems (OS) combined, it has been

necessary to develop a solution to this problem.

5.2.1. Development

In order to have a mobile-optimised implementation of Social for those environments,

SharePoint gives two main options: Responsive Web Design (RWD) and Device

Channels. Before describing the chosen approach, we will briefly explore what the

options have to offer and run through some of their benefits and limitations.

RWD relies on grid layouts, media queries and CSS to alter the display of a web site

based on the width of the browser accessing that site. The main benefit of RWD is that

no matter what the device width is, the site will display in its optimal (or nearest-to-

optimal) form. The method is also search engine friendly. Search engines prefer a URL

to always render the same HTML and utilising RWD achieves this. RWD, however,

does not come without its faults. Its biggest drawback is what enables that SEO-

friendly approach – the fact that the HTML served is the same. This means that while

images or sections may be hidden in the CSS, the resources will still be served to the

device which is not an optimal approach when targeting low-bandwidth mobile devices

(Menezes, 2014). It also provides a less flexible approach to targeting a given device

allowing less options for modifying the display. On top of this, RWD can often be costly

to implement in terms of the number of tweaks and regressions required when

targeting different browser widths. Todd Baginski and Michael Sherman, in their

SharePoint Conference session SPC390, stated that they anecdotally noted that 25%

93

of developer time was spent dealing with such requirements (Baginski & Sherman,

2014).

SharePoint 2013’s Device Channels rely instead on targeting the device accessing the

page and serving up customised HTML based on the device which will be rendering

the content. This ensures that one can provide a completely customised user

experience depending on whether the user is on a desktop, tablet or phone. One could

even go as far as serving up different content depending on the type of device (iPad,

Surface, Android for instance). This option comes, therefore, with many advantages.

It negates the main drawback of the responsive designs – HTML can be served in a

manner that completely optimises the page load for the device being targeted. A

desktop version could be highly interactive and visual, serving large images where the

mobile experience could be lightweight for improved performance. The disadvantages

of this approach mirror the advantages of the responsive approach. As has been

previously stated, search engines prefer the HTML being rendered at a given URL to

be identical. However, device channels serve up different content at the same URL for

different devices (Menezes, 2014).

In the end, it has been decided to create a mobile version of the website using the

Responsive Web Design, using CSS to get the responsiveness needed for the mobile

environment. This way the webpage can be personalized for both tablets and

smartphones and we are able to configure the outcome as needed. To work with the

RWD it is essential to activate or deactivate the following site features as specified:

o Mobile View – Deactivate

o Wiki Page Home Page – Deactivate

o Publishing – Activate

It is important to know that the “mobile view” did not help Social to be available on

mobiles and that it is necessary to deactivate that feature as a prerequisite for using

the RWD approach. After this, in order to have the “Master page” feature under

“Settings  Look and Feel” on SharePoint 2013 it is indispensable to first activate the

“SharePoint Server Publishing Infrastructure”, and then the “SharePoint Server

Publishing”, which can be found at:

Settings  Site Collection Features  SharePoint Server Publishing Infrastructure;

Settings  Site features  SharePoint Server Publishing.

94

It is now possible to work with the “Master page” feature and we can assign

personalized CSS files to it. The use of a customized CSS (appendix A) added the

responsiveness needed for Social. Many parts of the page can be hidden and others

moved and enlarged in order for the users to have the core functionalities of Social

well visible and usable.

To have a responsive design, the most important rule used in the custom CSS file is

“@media”. Using a rule like the following it is possible to define the rules that have to

be used when the screen of the device has a maximum width of 750px:

@media only screen and (max-device-width:750px), media only

screen and (max-width:750px) {…}

In order to have a responsive design that can adapt to smaller devices other

arrangements have been done. The viewport is the user's visible area of a web page.

In this case, the viewport has been manually set, from the Master page, to:

<meta name="viewport" content="width=device-width, initial-

scale=1.0">

This helps fixing the scale of the page and allowing it to have a consistent behaviour

between devices while using the custom CSS file.

Special units have been used, like vw and vh instead of pt or px, to define for example

the font-size, the width of the HTML divisions and the margins. Responsive units like

vw allow us to have an element that adapts to the width of the device, while units like

vh allow the element to adapt to its height. Exploiting this kind of CSS rules and

measures it has been possible to adapt the normal view of the Social into a more

mobile friendly one. After the development of the new website appearance, a

documentation has been written for the users in order to explain how to have the best

experience possible from any device.

95

On the left, mobile Social design displaying Tim Bell’s page; on the right, the feeds coming

from the people and groups followed by the user

96

Mobile Social design displaying all the feeds having the #Social tag

5.2.2. Testing

The tests have first been carried out on an Android smartphone, but the resulting

responsive design has been realized to work on any mobile device. The modifications

have first taken place in the development environment, where it has been possible to

test the behaviour of the page without bothering the production environment used by

the people at CERN. Once satisfied with the adjustments, a number of colleagues

helped to test the result in any sort of device, from Windows phones to Blackberries

and iPads.

97

5.2.3. Problems Encountered and Limitations

During the development of the mobile version of Social many design problems arose,

particularly when passing from testing the site on small devices like smartphones to

testing it on tablets, which are bigger and demanded a revision of the design in order

to adjust the given measures. Most of them regarded the outcome design, but some

were more difficult to handle and demanded some study of SharePoint. An example

regards the possibility for a user to click on a hashtag in a message in order to see

visualized all the feeds containing the same tag. This became a problem because,

even if they seem identical, the master page used when displaying the feeds

containing the same hashtag is different from the main one used to display the feeds

from followed people or groups, so the custom CSS file is applied only in the main

one. This was the problematic piece of code used in the main master page to include

the custom CSS file:

<SharePoint:AjaxDelta id="DeltaPlaceHolderAdditionalPageHead"

Container="false" runat="server">

<asp:ContentPlaceHolder

id="PlaceHolderAdditionalPageHead" runat="server" />

<link href="SiteAssets/CustomResponsive.css"

rel="stylesheet" type="text/css" ms-design-css-

conversion="no" />

<SharePoint:DelegateControl runat="server"

ControlId="AdditionalPageHead"

AllowMultipleControls="true" />

<asp:ContentPlaceHolder id="PlaceHolderBodyAreaClass"

runat="server" />

</SharePoint:AjaxDelta>

A very small correction in this case meant everything for SharePoint. Just adding a “/”

at the beginning of the URL of the CSS file solved the issue, explaining to the

environment that the CSS code had to be applied on every master page. This is the

final code:

98

<SharePoint:AjaxDelta id="DeltaPlaceHolderAdditionalPageHead"

Container="false" runat="server">

<asp:ContentPlaceHolder

id="PlaceHolderAdditionalPageHead" runat="server" />

<link href="/SiteAssets/CustomResponsive.css"

rel="stylesheet" type="text/css" ms-design-css-

conversion="no" />

<SharePoint:DelegateControl runat="server"

ControlId="AdditionalPageHead"

AllowMultipleControls="true" />

<asp:ContentPlaceHolder id="PlaceHolderBodyAreaClass"

runat="server" />

</SharePoint:AjaxDelta>

The only limitation there is in this case is the absence of a link to the documents stored

on SharePoint, so the user cannot access to the online files. It would be a useful

improvement for the future.

5.3. Resource Planning Tool (RPT)

The engineers and physicists at CERN work every day to build, check and upkeep the

high-end instruments used for the research in particle physics. To achieve that, they

use a multitude of sophisticated pieces of equipment. For organizational purposes, the

IT department has been asked to develop an online service that could allow the

personnel to plan the use of the equipment. In particular, the requirements include:

 The possibility to book one or more instruments and define a task for a set time

period;

 The possibility to associate an activity with the tool needed for it, the project to

which the activity is associated with and the employee that is going to carry out

the task using the booked equipment;

 The possibility to group some instruments in the same category;

99

 The possibility, for the project managers, to assign a person to a certain activity

and some equipment;

 The possibility to specify the amount of magnets to control;

 Having a visual representation of the schedule for each activity and each tool.

5.3.1. Development

To develop the service it has been decided to integrate the new service in the social

media at CERN. This way the social environment would expand becoming even more

useful and anyone willing to add an entry to the Resource Planning Tool (RPT) would

be able to do so without having to access to a secondary system.

Between the many features offered by SharePoint 2013 there is the possibility to

create a scheduled list of tasks through the “Tasks” feature. The tasks and subtasks

are then represented with start and end dates in a graphical timeline. The purpose of

such a tool is to allow all the members of a workgroup to know their respective jobs

and deadlines, in order to increase coordination and efficiency. Users have the ability

to add or remove tasks or subtasks from the timeline and display them with various

colours. The timeline allows the users to be easily be aware of the time period in which

the tasks have to be executed. Each Task can be moved upside or downside and re-

organized with a simple Drag&Drop action. Unfortunately, it is not possible to move

the tasks laterally in order to adjust the task’s time frame. To do so, a user has to

access the task’s “edit date range” page.

100

Standard SharePoint 2013 timeline example

When a task is selected, a “Timeline” tab appears in the ribbon at the top of the page.

This tab lets a user configure the look and feel of each individual task and, as an

example, make it be represented as a coloured bar or as a callout outside the timeline.

Standard SharePoint 2013 timeline example

101

Apparently, SharePoint does not offer a utility that can satisfy all of the requirements.

Nevertheless, the Tasks list feature could be used as a starting point to develop all the

functionalities asked. Two webpages will need to be modified. The first is the one

provided to create a new task (creating a new task in the Tasks list on SharePoint) or

modify one. Beyond the standard entries, this page will need to ask to the user extra

information, including:

1. The name of the project

2. The name of the instrument

3. The available tools’ categories, because a tool can be part of a group and the

group name has to be visible

4. The activity of the project for which the equipment is needed

5. The amount of magnets to check (used in the particle accelerators).

Since it is important to insert the correct names for the project, the equipment category

and the equipment booked, it has been decided to use drop-down menus to make it

easier for the users to insert the right name choosing between all the possibilities

already listed.

The list of data asked when creating a new task

Moreover, the scientists required to be able to see the timeline while creating a new

task. Since this is not possible when using the standard SharePoint interface, we need

102

to introduce a custom modification in order to retrieve the data from SharePoint and

display a custom timeline above the “New Task” form. This way, a user can easily

check when some equipment is available while defining the details of his or her task.

Talking about SharePoint 2013, we note that it implements Client Site Rendering

(CSR), which is a term used to express a technology that allows the data to be

transformed on the client side, rather than on the server. This means that it uses client-

side technologies, such as HTML and JavaScript. This allows developers to style

SharePoint elements using JavaScript, rather than having to write XSLT. In particular,

the “clienttemplate.js” file is the SharePoint 2013 CSR framework core file intended to

implement all JavaScript logic of CSR (Quinto, 2016). This means that in order to be

able to communicate with SharePoint we need to wait until the core file is loaded in

the page. To apply any modification to the webpage, the first function to call is

“ExecuteOrDelayUntilScriptLoaded”, which is defined in SharePoint Foundation and

executes the specified function if the specified file is loaded; otherwise, waits until the

file is loaded before executing the function. Therefore, we need to call the function:

ExecuteOrDelayUntilScriptLoaded(registerRenderer,

'clienttemplates.js');

Through this function, the webpage waits until the “clienttemplate.js” file is available

and then uses the “registerRenderer” function to override the registered templates in

the SPClientTemplates object and set our custom function to handle the visualization

of the information on the page. The function is the following:

function registerRenderer()

{

 var ctxForm = {};

 ctxForm.Templates = {};

 ctxForm.OnPreRender = OnPreRenderDocItemTemplate;

 ctxForm.OnPostRender = {};

SPClientTemplates.TemplateManager.RegisterTemplateOverrid

es(ctxForm);

}

103

We can then retrieve the information regarding the Task lists creating a new instance

of the SP.ClientContext object for our SharePoint site. To do this, we need to wait for

another file to be loaded in the webpage: “sp.js”, which “provides a subset of types

and members in the Microsoft.SharePoint namespace for working with a top-level site

and its lists or child Web sites” (Microsoft, n.d.). To be sure of that we can use the

same function as before. Once the SP namespace is loaded, we can navigate the data

and read any list we need, like “Equipment”. We can continue to use this operation for

each list and use the items retrieved to display a custom timeline with the equipment

on the side, the dates horizontally and the activities, together with the amount of

magnets used and the user to whom the task is assigned to, in coloured boxes inside

the timeline. In this case, the Drag&Drop function has to be removed to prevent one

activity to end up in the wrong row. We must avoid it, since it would mean that the user

would need a different instrument to carry out that task.

At this point, we can personalize the timeline even more, displaying for example the

tasks of one colour for each project or one colour for each user, so that a user could

easily find his or her own activities. In addition, the time span of the timetable can be

set as adjustable, spanning for example from few days to a year. Many details of the

page have been handled this way, like the automatic refresh of the equipment‘s drop-

down menu, where every time someone selects a category of tools only the

instruments belonging to the chosen category become available in the equipment’s

drop-down menu.

To use the custom JS file (appendix B) we need to deactivate the "Minimal Download

Strategy" feature for the site (from Settings  Manage site features). Then the file has

to be added to the site using the “Miscellaneous” options of the existing SharePoint

Web Part. The first thing to do is to load it on SharePoint, in a folder like “SiteAssets”.

Then, it has to be linked to the site using a URL like the following:

~sitecollection/SiteAssets/CustomTimeline_newTaskForm.js

104

Example of the new custom timeline

105

Since we now have two dimensions in the timeline, dates and equipment, and

SharePoint does not consider the possibility to have more than one dimension (the

dates), we need to create a new control for the New Task page in order to properly

check the availability of the chosen tool for the given dates before allowing the user to

save the task. The function used to achieve this goal is:

function updateSaveButtonOnClickEvent(){

var oldOnClickString =

$("input[value='Save']").attr('onclick');

var newOnClickString = 'if(consistencyCheckOnDates()){' +

oldOnClickString +';}else{alert("The selected equipment is

not available in the chosen period. Please enter different

dates.");}';

 // Updating the onclick event

$("input[value='Save']").attr('onclick',

newOnClickString);

}

Using this code, the “onclick” function of the “Save” button in the New Task form is

modified to first, include a check on the chosen dates, and second, launch the old

code to normally check the content of every input element compiled from the user. A

new JS file can be created to separate the operations regarding the timeline from the

ones regarding the New Task form. In this case, to include the JS file

“newTaskForm.js” (appendix B) in the page we can create a new empty “Content

Editor” Web Part and link the file as Content Link. The URL used will be like the

following:

/timelineWebsite/SiteAssets/newTaskForm.js

This way all the requirements for this page are met.

We have discussed about adding the timeline to the “New Task” page. The second

page that requires to be modified is the one containing the timeline and the list of tasks

that have been uploaded. In order to show it in the main webpage as well we need to

first hide the regular timeline unchecking the option in Web Part properties  Show

106

timeline. Then, we need to repeat the previous operation and add the JS file

“customTimeline.js” (appendix B) to the Web Part through the JSLink in the Web Part

properties  Miscellaneous with the link:

~sitecollection/SiteAssets/CustomTimeline.js

In the main webpage, beyond the timeline, there is shown a list of the saved tasks.

The basic list view in SharePoint offers few elements and no classification. During the

development of the RPT, the scientists asked to create a custom view for that list.

Using a Custom List View, we can show the tasks in the main page differently. This

way one can decide which property has to be displayed and where. In our case, it has

been possible to create groups of tasks according to the project to which they belong.

The new Custom List View is displayed in the next page.

As we can see, the tasks are grouped by project and the most important information

is on the left while the less important one is shown on the right.

107

Example of a Custom List View

108

5.3.2. Testing

The development of the Resource Planning Tool required many tests on different

machines and browsers to be sure that the final outcome would be seen the same

from every employee and every platform. The JS code has been tested thoroughly

using several SharePoint accounts in order to check its behaviour in different

conditions. Smoke tests have been carried out in order to seek for possible bugs while

using inconsistent values, like using letters to tell the number of magnets required for

an activity or requiring to use an equipment already booked for the selected dates.

5.3.3. Problems Encountered and Limitations

Few small problems were encountered while approaching the world of SharePoint’s

customization and have been the portability of the code for the many platforms used

at CERN and browsers and finding the right information between the SharePoint’s

data structures, which did not present intuitive names.

5.4. Social API

In computer programming, an Application Programming Interface (API) is a set

of subroutine definitions, protocols, and tools for building software and applications. An

API specification can take many forms, but often include specifications

for routines, data structures, object classes, variables, or remote calls.

Just as a graphical user interface (GUI) makes it easier for people to use programs,

application programming interfaces make it easier for developers to use certain

technologies in building applications. By abstracting the underlying implementation

and only exposing objects or actions the developer needs, an API reduces the

cognitive load on a programmer. While a graphical interface for an email client might

provide a user with a button that performs all the steps for fetching and highlighting

new emails, an API for file input/output might give the developer a function that copies

a file from one location to another without requiring the developer to understand the file

system operations occurring behind the scenes (Clarke, 2004).

109

APIs have many uses, depending on the context:

 Libraries and frameworks

In the first case, an API use can vary depending on the type of programming

language involved. An API for a procedural language, such as Lua, could

primarily consist of basic routines to execute code, manipulate data, or handle

errors, while an API for an object-oriented language such as Java would provide

a specification of classes and their class methods (de Figueiredo, et al., 1994)

(Sintes, 2001). An API can also be related to a software framework. A

framework can be based on several libraries implementing several APIs, but

unlike the normal use of an API, the access to the behaviour built into the

framework is mediated by extending its content with new classes plugged into

the framework itself.

 Operating Systems

APIs that can specify the interface between an application and the operating

system (Lewine, 1994). POSIX, for example, specifies a set of common APIs

that aims to enable an application written for a POSIX conformant operating

system to be compiled for another POSIX conformant operating

system. Linux and Berkeley Software Distribution are examples of operating

systems that implement the POSIX APIs (West & Dedrick, 2001).

 Remote APIs

Remote APIs allow developers to manipulate remote resources

through protocols, specific standards for communication that allow different

technologies to work together, regardless of language or platform. For example,

the Java Database Connectivity API allows developers to query many different

types of databases with the same set of functions, while the Java remote

method invocation API uses the Java Remote Method Protocol to

allow invocation of functions that operate remotely, but appear local to the

developer (Bierhoff, 2009) (Wilson, 2001). Therefore, remote APIs are useful in

maintaining the object abstraction in object-oriented programming; a method

call, executed locally on a proxy object, invokes the corresponding method on

110

the remote object, using the remoting protocol, and acquires the result to be

used locally as return value. A modification on the proxy object will also result

in a corresponding modification on the remote object (Henning & Vinoski,

1999).

 Web APIs

Web APIs are the defined interfaces through which interactions happen

between an enterprise and applications that use its assets. An API approach is

an architectural approach that revolves around providing programmable

interfaces to a set of services to different applications serving different types of

consumers. (Rudrakshi, et al., 2014) When used in the context of web

development, an API is typically defined as a set of Hypertext Transfer

Protocol (HTTP) request messages, along with a definition of the structure of

response messages, which is usually in an Extensible Markup Language (XML)

or JavaScript Object Notation (JSON) format.

In the case of the Social API, it can be seen as a Web API that handles HTTP request

messages and uses the JSON format in order to deliver information, but it can also be

seen as a remote API, since it allows the user to read and manipulate remote

resources. It does not only give an interface to interact with the resources, but

implements all the functions needed to achieve that purpose.

The following list contains several examples of popular APIs:

1. Google Maps API

Google Maps API lets developers embed Google Maps on any webpage using

a JavaScript interface. It is designed to work on both mobile and desktop

devices.

2. Google YouTube APIs

These APIs let developers integrate YouTube videos and functionality into

websites or applications. YouTube APIs include the YouTube Analytics API,

YouTube Data API, YouTube Live Streaming API, YouTube Player APIs and

others.

3. Flickr API

The Flickr API is used by developers to access the Flickr photo sharing

community data.

111

4. Twitter APIs

Twitter offers two APIs. The REST API allows developers to access core Twitter

data and the Search API provides methods for developers to interact with

Twitter Search and trends data.

5. Amazon’s Product Advertising API

Amazon's Product Advertising API gives developers access to Amazon's

product selection and discovery functionality. It is commonly used to advertise

Amazon products and monetize a website.

5.4.1. Development

The Social API (appendix C) is meant to be used from any of the CERN's employees

to retrieve the feeds from the Social Network and add them to a webpage, which can

be, for example, the experiment’s webpage, like the one for ATLAS, the departmental

webpage, like the one for Theoretical Physics, or even the CERN's homepage. It

allows users to talk with the SharePoint server and show the data retrieved on any

kind of webpage, taking also care of the design given to the information displayed. The

Social API implements not only a superficial interface for the developers, but also the

data structures and the functions needed to carry out the operations provided. The

API has been developed using the agile approach. It has been built incrementally from

the start, with each iteration producing a new functionality, instead of trying to deliver

it all at once near the end. The functions implemented have been the sum of the efforts

made to satisfy both the needs of the departments and the additional requests made

from the employees, which added value to the final outcome.

The development of the Social API required the use of many technologies:

 JavaScript

 jQuery

 SharePoint 2013 REpresentational State Transfer (REST) interface

 HTML

 CSS

112

JavaScript is a high-level, dynamic, untyped, and interpreted programming language,

standardized in the ECMAScript language specification (Flanagan, 2011).

Alongside HTML and CSS, it is one of the three core technologies of World Wide

Web content production; the majority of websites employ it and it is supported by all

modern Web browsers without plug-ins. JavaScript is prototype-based with first-class

functions, making it a multi-paradigm language, supporting object-oriented, imperative

and functional programming styles (Ecma International, 2016). JavaScript is also used

in environments that are not Web-based, such as PDF documents, site-specific

browsers, and desktop widgets. Newer and faster JavaScript virtual machines (VMs)

and platforms built upon them have also increased the popularity of JavaScript for

server-side Web applications. On the client side, JavaScript has been traditionally

implemented as an interpreted language, but more recent browsers perform just-in-

time compilation. It is also used in game development, the creation of desktop and

mobile applications, and server-side network programming with run-time

environments such as Node.js.

jQuery is a fast, small, and feature-rich JavaScript library. It makes things like HTML

document traversal and manipulation, event handling, animation, and Ajax much

simpler with an easy-to-use API that works across a multitude of browsers. With a

combination of versatility and extensibility, jQuery makes easier to both read and write

JavaScript (jQuery Foundation, 2016). The reasons why we use jQuery over plain

JavaScript can be explained with an example on how the two handle one simple

operation. The purpose of the code in both cases will be to make a line of text in the

HTML page change colour using its class name.

The JavaScript version:

var d = document.getElementsByClassName("goodbye");

var i;

for (i = 0; i < d.length; i++) {

 d[i].className = d[i].className + " selected";

}

The jQuery version of the code obtaining the same result:

$(".goodbye").addClass("selected");

While JavaScript makes the code difficult to read even for a simple action like the one

described, jQuery shortens the code while making it more readable. This, when writing

113

a high number of lines of code, allows us, and whoever will ever work on the API, to

effortlessly understand how it works.

The SharePoint 2013 REpresentational State Transfer (REST) interface permits

developers to interact remotely with SharePoint data by using any technology that

supports REST web requests, like JavaScript. This means that developers can

perform Create, Read, Update, and Delete (CRUD) operations from their SharePoint

Add-ins, solutions, and client applications, using REST web technologies and standard

Open Data Protocol (OData) syntax.

SharePoint REST service architecture

CRUD operations can be summarized in the following table:

Operation
Relative

HTTP
request

Keep in mind

Read a
resource

GET

Create or
update a
resource

POST Use POST to create entities such as lists and sites. The
SharePoint 2013 REST service supports sending
POST commands that include object definitions to
endpoints that represent collections.
For POST operations, any properties that are not
required are set to their default values. If you attempt to
set a read-only property as part of a POST operation, the
service returns an exception.

Update or
insert a
resource

PUT Use PUT and MERGE operations to update existing
SharePoint objects.

114

Any service endpoint that represents an object
property set operation supports both PUT requests and
MERGE requests.

 For MERGE requests, setting properties is
optional; any properties that you do not explicitly
set retain their current property.

 For PUT requests, if you do not specify all
required properties in object updates, the REST
service returns an exception. In addition, any
optional properties you do not explicitly set are set
to their default properties.

Delete a
resource

DELETE Use the HTTP DELETE command against the specific
endpoint URL (Uniform Resource Locator) to delete the
SharePoint object represented by that endpoint.
In the case of recyclable objects, such as lists, files, and
list items, this results in a Recycle operation.

(Microsoft, 2015)

In order to be able to perform any CRUD operation we need to construct a fully

qualified REST URL for the JavaScript calls to the SharePoint Server. To achieve that

it is necessary to prepend http://server/site/_api/ followed by the right URL

fragment. In the table hereunder are few examples for URL endpoint fragments:

Description URL endpoint
HTTP

method
Body content

Retrieves
the title of
a list

web/title GET Not applicable

Retrieves
all lists on
a site

lists GET Not applicable

Retrieves
a single
'list's
metadata

lists/getbytitle('listname') GET Not applicable

Retrieves
items
within a
list

lists/getbytitle('listname')/item
s

GET Not applicable

115

Retrieves
a specific
property of
a
document.
(In this
case, the
document
title.)

lists/getbytitle('listname')?sele
ct=Title

GET Not applicable

Creates a
list

lists POST {

'_metadata':{'type'

:SP.List},

'AllowContentTypes'

: true,

 'BaseTemplate':

104,

'ContentTypesEnable

d': true,

 'Description':

'My list

description',

 'Title':

'RestTest'

}

Adds an
item to a
list

lists/getbytitle('listname')/item
s

POST {

'_metadata':{'type'

:SP.listnameListIte

m},

 'Title': 'MyItem'

}

(Microsoft, 2015)

In the Social API, the URL to prepend is https://social.cern.ch/_api/,

followed by a specific URL fragment according to our needs that will specify the service

we need and all the variables we need to pass to SharePoint and conditions we want

to be applied on the results. An example is:

https://social.cern.ch/_api/search/query?querytext='tags:"+tag

Text+"'&sourceid='459dd1b7-216f-4386-9709-

287d5d22f568'&sortlist='created:1'

https://social.cern.ch/_api/
https://social.cern.ch/_api/search/query?querytext='tags:%22+tagText+%22'&sourceid='459dd1b7-216f-4386-9709-287d5d22f568'&sortlist='created:1
https://social.cern.ch/_api/search/query?querytext='tags:%22+tagText+%22'&sourceid='459dd1b7-216f-4386-9709-287d5d22f568'&sortlist='created:1
https://social.cern.ch/_api/search/query?querytext='tags:%22+tagText+%22'&sourceid='459dd1b7-216f-4386-9709-287d5d22f568'&sortlist='created:1

116

We will explain the content of those URLs later on in this chapter.

HyperText Markup Language (HTML) is the standard markup language for

creating web pages and web applications. With Cascading Style Sheets (CSS),

and JavaScript, it forms a triad of cornerstone technologies for the World Wide Web

(Flanagan, 2011). Web browsers receive HTML documents, where it is described the

structure of the web page, from a server or from local storage and render them into

multimedia web pages. HTML5 is the fifth major revision of the core language of the

World Wide Web: the HTML. “In this version, new features are introduced to help Web

application authors, new elements are introduced based on research into prevailing

authoring practices, and special attention has been given to defining clear

conformance criteria for user agents in an effort to improve interoperability." (W3C,

2014)

In the Social API many HTML5 features have been exploited, like the <canvas>

element, to draw 2D and 3D tag clouds in the webpage, and the XMLHttpRequest API,

which allows fetching synchronously or asynchronously parts of the page, allowing it

to display dynamic content, varying according to the time, the situation on the ESN

and user actions (Mozilla Developer Network, 2016).

Cascading Style Sheets (CSS) is a style sheet language used for describing

the presentation of a document written in a markup language. The latter can be any

kind of markup language. It can be HTML, but also XML(Extensible Markup Language)

or XUL(XML User Interface Language) for example (Mozilla Developer Network,

2015).

CSS is designed primarily to enable the separation of document content from

document presentation, including aspects such as the layout, colours, and fonts (W3C,

2010). This separation improves content accessibility, provides more flexibility and

control in the specification of presentation characteristics, enables multiple HTML

pages to share formatting by specifying the relevant CSS in a separate .css file and

reduces complexity and repetition in the structural content. This separation of

formatting and content makes it possible to present the same markup page in different

styles for different rendering methods, such as on-screen or in print. It can also be

used to display the web page differently depending on the screen size or device on

117

which it is being viewed. To display the information coming from Social correctly, a

dedicated CSS file has been created to handle the design of the feeds displayed using

the API. The Social API’s CSS is included in the HTML page from the developers.

Then, the API adds new elements to the webpage using specific attributes to let the

CSS distinguish the feeds displayed using the API from the rest of the webpage.

The API has been implemented following the jQuery example. In order to use a

function defined in the jQuery library a developer needs to write a prefix like “jQuery.”

or “$.” before calling the function. In the Social API, any function can be called using

the prefix “socialAPI().”, followed by the name of the function and its parameters. No

data structure or function of the API is available outside it without the use of its prefix.

This is an important feature for the API, since it will have to work in any kind of website,

where probably many other CSS and JS files will be used. This way we manage to

avoid conflicts with other resources, like having more than one JavaScript function

with a particular name.

When using the Social API, we find ourselves having to incorporate data from various

sources. We have to access data from the website domain and the SharePoint

domain. For security reasons though, there are blocking mechanisms that prevent

communication with more than one domain at a time. These security mechanisms are

implemented in most browsers, making difficult or impossible to accomplish client-side

calls across domains. In order to be able to work this way we need to exploit the

SharePoint cross-domain library, which is a client-side library in the form of a

JavaScript file (SP.RequestExecutor.js) that makes it possible to use Cross-Origin

Resource Sharing (CORS) requests.

The most important functionalities provided from the API are:

Operation Corresponding Social API function

Retrieve the feeds regarding only the
people or groups followed by the user. If
already displayed, refresh the content.

updateFollowedFeeds

Retrieve the feeds from Social coming
from a specific profile. If already
displayed, refresh the content.

updateFeedsFromProfile

118

Retrieve the feeds from Social regarding
a specific hashtag, like “#HiggsBoson”. If
already displayed, refresh the content.

updateFeedsWithSameHashtag

Retrieve the tags from Social and display
them in a Tag Cloud.

loadTagCloud

Retrieve information about the people
working in a specific department, group
and section.

updateGroupInfo

Post a message on Social through the
Social API.

postToMyFeeds

In order for the Social API to work properly, it is necessary to include few other files,

together with the API, in the HTML webpage:

socialAPI.js The Social API itself.

socialAPI.css The CSS file that takes care of the design given to the
information displayed using the Social API.

jquery.js The jQuery library, needed from the API to work with
jQuery.

SP.RequestExecutor.js Needed to access SharePoint 2013 data using CORS
requests.

tagcanvas.min.js Used to display the 2D or 3D tag cloud in every browser
except Internet Explorer.

excanvas.js Necessary to display the 2D or 3D tag cloud when using
Internet Explorer.

We will now present each function described above explaining the operations required

for them to work. We will start from the “updateFollowedFeeds” function. Its input

parameters are explained in the following table.

Name of the parameter Description

whereToWrite The name of the HTML section where the feeds will have
to be written.

updateInterval The update interval, in case we want the function to
automatically refresh the feeds every tot seconds. In this
case, the values as negative numbers, 0, “null” or
“undefined” are used to express the will to avoid the auto-
refresh behaviour.

119

numFeeds The number of feeds to display in the page with this
function.

flagDisplayReplies This flag tells the function if the replies to the feeds have
to be displayed or not.

In the function, some comments can be found to allow the reader to better understand

the code. Each comment line starts with the double slash punctuation (// comment). A

more throughout description of the code is given after the function. The function is the

following:

function updateFollowedFeeds(whereToWrite, updateInterval,

numFeeds, flagDisplayReplies){

// Sanitizing the input. encodeURI() is used instead of

encodeURIComponent() when there has to be allowed the

possibility to have hashtags.

 whereToWrite = encodeURI(whereToWrite);

 updateInterval = encodeURIComponent(updateInterval);

 if(numFeeds == null || numFeeds == undefined){ numFeeds =

0; }

if(flagDisplayReplies == null ||

 flagDisplayReplies == undefined){ flagDisplayReplies =

true; }

 // Consistency checks.

if(updateInterval===null ||

 updateInterval===undefined ||

 updateInterval<0){ updateInterval = 0; }

 if(whereToWrite[0] !== '#'){

 whereToWrite = '#' + whereToWrite;

 }

// Saving the name of the parent HTML section of the feeds.

var parentWhereToWrite = whereToWrite;

120

// Updating the global variables. These variables will be

necessary when the User needs to post a new message on

Social

 followedFeedsWhereToWrite = whereToWrite;

 followedFeedsUpdateInterval = updateInterval;

 followedFeedsNumFeeds = numFeeds;

 followedFeedsFlagDisplayReplies = flagDisplayReplies;

// Converting the time from seconds to milliseconds

if(updateInterval < 1000)

{ updateInterval = updateInterval*1000; }

 var tempSectionID = whereToWrite.substring(1);

// Section check. If the HTML section is present in the

webpage we can move on, otherwise the function has to stop.

 if(document.getElementById(tempSectionID) === null){

// Error. No HTML section found to display the feeds

from Social.

$(whereToWrite).html('<div class="feedsItem"> <p

id="text"> There has been a problem while

communicating with the server.
Please try again

later refreshing the page. </p> </div>');

console.log('Error while trying to write the followed

feeds. The section ID passed in input seems not to be

present in the webpage.');

 return;

 }

// If there are no feeds (there can be error message), so

we clean the section

 if($(whereToWrite +" .feedsItem").length == '' ||

 $(whereToWrite +" .feedsItem").length == null ||

 $(whereToWrite +" .feedsItem").length == undefined){

$(whereToWrite).html('');

121

// Clearing the section of the feeds that the user is

following.

 }

// Adding a new wrapping section in the HMTL page to make

the SocialAPI's CSS file point only at this part of the

webpage, in case many CSS files are used.

if($(whereToWrite).html() == ''){

// If there are no feeds in the section yet...

 var wrapSection = '<div class="socialAPIWrapClass">'+

 '<div

id="socialAPIFollowedFeeds">'+

 '</div>'+

 '</div>';

 $(whereToWrite).html(wrapSection);

 }

// We need to re-authenticate on Social every time

authenticateOnSocial();

 if(updateInterval > 0){

clearInterval(followedFeedsUpdatesHandler);

// Deleting the old automatic refresh of the feeds

// Creating the new automatic refresh of the feeds.

The followed feeds will be updated every

"updateInterval" seconds. This variable will be

necessary when the User needs to post a new message

on Social.

followedFeedsUpdatesHandler = setInterval(function(){

updateFollowedFeeds(whereToWrite, updateInterval,

numFeeds, flagDisplayReplies); }, updateInterval);

122

// Updating the focused section that we will pass to

the following function the new ID, which is inside the

new wrapper div.

whereToWrite = '#socialAPIFollowedFeeds';

executeRestCallExtendedSix(myFeedManagerEndpoint +

"my/news", 'GET', null,

checkDataReceivedAndDisplayTheFeeds, onError,

whereToWrite, parentWhereToWrite, numFeeds, numFeeds,

flagDisplayReplies);

// Searches the feeds and passes them to the function

"checkDataReceivedAndDisplayTheFeeds()"

 }else{

// If we reach this part of the code it means that the

function has to retrieve the feeds without the

automatic refresh.

 if(followedFeedsUpdatesHandler != 'a'){

// If there is an active automatic update of the

feeds

 clearInterval(followedFeedsUpdatesHandler);

// Deleting the old automatic refresh of the

feeds

 followedFeedsUpdatesHandler = 'a';

 }

whereToWrite = '#socialAPIFollowedFeeds'; //

Updating the focused section that we will pass to the

following function the new ID, which is inside the new

wrapper div.

executeRestCallExtendedSix(myFeedManagerEndpoint +

"my/news", 'GET', null,

checkDataReceivedAndDisplayTheFeeds, onError,

whereToWrite, parentWhereToWrite, numFeeds, numFeeds,

flagDisplayReplies);

123

// searches the feeds and passes them to the function

"checkDataReceivedAndDisplayTheFeeds()"

 }

}

As we can see, the function begins sanitizing the input and checking if some of the

variables are in the right range of admissible values. Then, it checks if the HTML

section passed in input actually exists in the page. This is important, since the function

cannot put the feeds wherever it likes. There has to be a wrapper HTLM section – like

<div id=”feeds”> – that suggests the function where it is safe to display the feeds. If

the HTML division is available, then a new <div> section is created inside with

"socialAPIWrapClass" as its class. This way we know we are printing the feeds in the

right spot and, at the same time, we make the CSS file included in the page, called

“socialAPI.css” (appendix C), work only on the elements inside the new HTML section.

After that, the user is authenticated on Social and the API executes a REST call to the

SharePoint interface to ask for the feeds. The function

“checkDataReceivedAndDisplayTheFeeds” is set to be executed in case of success,

so it will be the one taking the data coming from SharePoint. The URL used for the

request is formed by the variable “myFeedManagerEndpoint”, which contains the

address https://social.cern.ch/_api/social.feed/, and the string “my/news”, so we are

using the SharePoint interface to the social feeds looking for the “news” of the user,

which correspond to the most recent feeds regarding all the actors he or she follows

on the network. If needed, we can use the “setInterval” function to set up the automatic

refresh of the feeds. Otherwise, a button can be created to call the same function and

have a manual update of the feeds.

Once the data reach the “checkDataReceivedAndDisplayTheFeeds” function, the

received JSON file is parsed and analysed, in order to understand if there has been

any problem while communicating with the server, any internal error, if the request

was not well formed, if there is a problem in the data received, or if the ESN service is

down. If everything went well the feeds are passed to the “appendFeeds” function that

will take care of adding them to the webpage.

The function described can be called using the following code:

socialAPI().updateFollowedFeeds("#feedsFollowed", 60);

https://social.cern.ch/_api/social.feed/

124

The function displays the feeds followed from the current user and takes in input the

number of seconds of interval after which these feeds will be automatically refreshed,

if the number of seconds is 0 (zero) the feeds will not be automatically updated. With

this approach, the logical level of the API can remain separated from its

implementation.

Every CORS request made with JavaScript follows the same pattern, explained by the

following diagram.

CORS flow of information (Hossain, 2013)

In the Social API, the CORS requests are handled by functions like

“executeRestCallExtendedSix”, used in “updateFollowedFeeds”. The

XMLHttpRequest element in it, necessary to proceed with the CORS request, is

created in the function “createCORSRequest”. Both those functions can be found

hereunder.

function executeRestCallExtendedSix(url, method, data, onSucc,

onError, whereToWrite, id, numFeeds, numFeedsStillToGet, flag)

{

125

 var xhr = createCORSRequest(method, url);

// Is the CORS request supported?

 if (!xhr) {

 // If it is not supported we have to stop…

 throw new Error('CORS not supported');

 }else{

// …otherwise we can continue.

// Setting the function to be called in case of

success.

xhr.onload = function () {

// passing the parameters and the results of the

RESTcall to the function pointed by 'onSucc'.

onSucc(xhr.responseText, whereToWrite, id,

numFeeds, numFeedsStillToGet, flag);

 };

// Setting the function to be called in case of error.

 xhr.onerror = onError;

// Sending the CORS request, with or without a body.

if (data !== null && data !== undefined && data !==

''){

 xhr.send(data);

 }else{

 xhr.send();

 }

 }

}

function createCORSRequest(method, url) {

 var xhr = new XMLHttpRequest();

if ("withCredentials" in xhr) {

126

// In case the XMLHttpRequest object has a

"withCredentials" property, which only exists on

XMLHTTPRequest2 objects, we use this version of the

“open” function.

 xhr.open(method, url, true);

 } else if (typeof XDomainRequest != "undefined") {

 // Otherwise, check if XDomainRequest is defined.

// XDomainRequest only exists in Internet Explorer

(IE).

// It is IE's way of making CORS requests. In this

case we need to use this other version of the “open”

function.

 xhr = new XDomainRequest();

 xhr.open(method, url);

 } else {

// Otherwise, CORS is not supported by the browser.

 xhr = null;

 }

 if(xhr !== null){ // if the CORS is supported…

// We prepare now the xhr element for the request,

setting “withCredentials” to “true” and asking

SharePoint for a JSON formatted file, with the

“verbose” version of the reply, containing all the

information we need.

 xhr.withCredentials = true;

xhr.setRequestHeader("accept", "application/json;

odata=verbose");

 }

 return xhr;

}

127

In particular, about the .withCredentials we know that standard CORS requests

do not send or set any cookies by default. In order to include cookies as part of the

request, the XMLHttpRequest’s .withCredentials property has to be set to true.

In order for this to work, the server must also enable credentials by setting the Access-

Control-Allow-Credentials response header to “true”. The .withCredentials

property will include any cookies from the remote domain in the request, and it will

also set any cookies from the remote domain. Note that these cookies still honour

same-origin policies, so the JavaScript code cannot access the cookies from

document.cookie or the response headers. They can only be controlled by the

remote domain.

Before displaying any feed on the webpage, the message is checked to prevent any

problem in the HTML page. This is because if some code is injected into a Social entry,

it has to be properly sanitized when displayed in the webpage. The function written for

this purpose exploits a regular expression to replace the following characters and thus

sanitize a string from containing executable code: <, >, ", ', `, !, @, $, {, |, }, [,], \, ^.

In order to do this, the characters are mapped with their correspondences and passed

to the “replace” function. So, the input message is encoded to be correctly represented

in an HTML webpage. To do this, we need the following function.

function myEscapeHTML(text){

 var MAP = {

'<': '<', '>': '>', '"': '"', "'":

''', '`': '`', '!': '!', '@': '@',

'$': '$', '{': '{', '|': '|', '}':

'}', '[': '[', ']': ']', '\\': '\',

'^': '^'

};

// Note that the single quote (') cannot be replaced with

''', because it is not valid HTML 4. We have to use

'''.

// The message is returned to the calling function with

the characters replaced by the strings defined in MAP.

128

return text.replace(/[\<\>\"\'\`\!\@\$\{\|\}\[\]\\\^]/g,

function (a) { return MAP[a]; });

}

After this, we introduce the second function: “updateFeedsFromProfile”. The input

parameters are explained in the following table.

Name of the parameter Description

accountName The name of the actor on Social (e.g. “Marco Carlo
Cavalazzi” or “CERN Bulletin”)

whereToWrite The name of the HTML section where the feeds will have
to be written.

updateInterval The update interval, in case we want the function to
automatically refresh the feeds every tot seconds. In this
case, the values as negative numbers, 0, “null” or
“undefined” are used to express the will to avoid the auto-
refresh behaviour.

numOfFeeds The maximum number of feeds to display in the page
with this function.

flagDisplayReplies This flag tells the function whether we want the replies to
the feeds to be shown or not.

In the function, some comments can be found to allow the reader to better understand

the code. A more throughout description of the code is given after the function. The

function is the following:

function updateFeedsFromProfile(accountName, whereToWrite,

updateInterval, numOfFeeds, flagDisplayReplies){

 // Consistency checks

if(updateInterval===null || updateInterval===undefined ||

updateInterval<0)

{ updateInterval = 0; }

if(numOfFeeds===null || numOfFeeds===undefined ||

numOfFeeds<0 || numOfFeeds>20){ numOfFeeds = 0; }

if(flagDisplayReplies===null ||

flagDisplayReplies===undefined)

{ flagDisplayReplies = true; }

129

// Sanitizing the input (encodeURI() is used instead of

encodeURIComponent() when there has to be allowed the

possibility to have hashtags.):

 accountName = encodeURIComponent(accountName);

 whereToWrite = encodeURI(whereToWrite);

 updateInterval = encodeURIComponent(updateInterval);

 numOfFeeds = encodeURIComponent(numOfFeeds);

 if(whereToWrite[0] !== '#'){

 whereToWrite = '#' + whereToWrite;

 }

var tempSection = whereToWrite.substring(1); // It will be

the ID of the HTML section in which we want to write the

information without the hashtag as first character.

// Temporary variable used to store new elements inside

globalArrayOfProfiles.

var tempElement;

// Memorizing the main section

var parentWhereToWrite = whereToWrite;

// Converting the time from seconds to milliseconds

if(updateInterval < 1000){

updateInterval = updateInterval*1000;

}

// Section check. If the HTML section is present in the

webpage we can move on, otherwise the function has to stop.

 if(document.getElementById(tempSection) === null){

// Error. No HTML section found to display the

followed feeds on Social. Please add a <div

id="feedsFromProfile"> section.

130

console.log('Error while trying to write the feeds

from the specific profile. See function

updateFeedsFromProfile().');

$(whereToWrite).append('<div class="feedsItem"> <p

id="text"> There has been a problem while

communicating with the server.
Please try again

later refreshing the page. </p> </div>');

 return;

 }

var innerWrap = "socialAPIFeedsFromProfile"+

whereToWrite.substring(1) + accountName;

var wrapSection = '<div class="socialAPIWrapClass">'+

 '<div id="'+ innerWrap +'">'+

 '</div>'+

 '</div>';

// Adding a new wrapping section in the HMTL page to make

the SocialAPI's CSS file point only at this part of the

webpage, in case many CSS files are used.

if($(whereToWrite +" .feedsItem").length == 0 &&

$(whereToWrite +" .socialAPIWrapClass").length == 0){

// If there is the HTML section and it is still empty...

 $(whereToWrite).html(wrapSection);

 }

// We need to re-authenticate on Social every time

authenticateOnSocial();

 try{

 if(updateInterval > 0){

// The function “checkPresenceOfElement“ returns

-1 if the element is not in the array.

131

var indexOfElement =

checkPresenceOfElement(parentWhereToWrite,

globalArrayOfProfiles);

// If the element is inside the array, than we

have to clear the interval and pop the element

from the array before creating a new automatic

update interval.

if(indexOfElement > -1 && indexOfElement <

globalArrayOfProfiles.length){

// Stopping the old automatic refresh of the

feeds

clearInterval(globalArrayOfProfiles[indexO

fElement].automaticUpdatesHandlersCode);

// Creating the new automatic refresh of the

feeds

globalArrayOfProfiles[indexOfElement].auto

maticUpdatesHandlersCode =

setInterval(function(){

updateFeedsFromProfile(accountName,

parentWhereToWrite, updateInterval,

numOfFeeds, flagDisplayReplies); },

updateInterval);

// The feeds will be updated every

"updateInterval" seconds

 whereToWrite = '#' + innerWrap;

 // Retrieving the feeds

executeRestCallExtendedSix(myFeedManagerEn

dpoint +

"actor(item='cern\\"+accountName+"')/Feed"

, 'GET', null,

checkDataReceivedAndDisplayTheFeeds,

132

onError, whereToWrite, parentWhereToWrite,

numOfFeeds, numOfFeeds,

flagDisplayReplies); // getting the

feeds and passing them to the function

checkDataReceivedAndDisplayTheFeeds()

 }

 else{

 // Creating the automatic refresh of the

feeds.

var tempHandler = setInterval(function(){

updateFeedsFromProfile(accountName,

parentWhereToWrite, updateInterval,

numOfFeeds, flagDisplayReplies); },

updateInterval);

// The followed feeds will be updated every

"updateInterval" seconds.

tempElement = new updateObj(accountName,

whereToWrite, tempHandler, updateInterval,

numOfFeeds, flagDisplayReplies);

globalArrayOfProfiles.push(tempElement);

// Inserting the new element in the

'globalArrayOfProfiles'.

 whereToWrite = '#' + innerWrap;

 // Retrieving the feeds.

executeRestCallExtendedSix(myFeedManagerEn

dpoint +

"actor(item='cern\\"+accountName+"')/Feed"

, 'GET', null,

checkDataReceivedAndDisplayTheFeeds,

onError, whereToWrite, parentWhereToWrite,

numOfFeeds, numOfFeeds,

flagDisplayReplies);

133

// getting the feeds and passing them to the

function

checkDataReceivedAndDisplayTheFeeds()

 }

 }

 else{

// If we are here it means that the function has

to retrieve the feeds without automatically

update them.

var indexOfElement =

checkPresenceOfElement(parentWhereToWrite,

globalArrayOfProfiles);

// The function “checkPresenceOfElement” returns

-1 if the element is not in the array.

// If the element is not inside the array, than

we have to add it.

 if(indexOfElement === -1){

tempElement = new updateObj(accountName,

whereToWrite, null, 0, numOfFeeds,

flagDisplayReplies);

// Pushing the new element in the

'globalArrayOfProfiles'.

globalArrayOfProfiles.push(tempElement);

 }

 whereToWrite = '#' + innerWrap;

// getting the feeds and passing them to the

function. checkDataReceivedAndDisplayTheFeeds()

executeRestCallExtendedSix(myFeedManagerEndpoin

t + "actor(item='cern\\"+accountName+"')/Feed",

'GET', null,

134

checkDataReceivedAndDisplayTheFeeds, onError,

whereToWrite, parentWhereToWrite, numOfFeeds,

numOfFeeds, flagDisplayReplies);

 }

 }catch(e){

$(whereToWrite).html('<div>There has been a problem

while retrieving the feeds.
Please try again

later. </div>');

 }

}

As we can see from the code, the function also begins sanitizing and controlling the

input for possible problems. It checks the presence of the dedicated HTML section in

the page, creates the new division (with class “socialAPIWrapClass”) for the feeds and

authenticates on Social. At this point its behaviour becomes different from the previous

function, because in this case we have to take into consideration the fact that more

sections of the page can have this kind of feeds, each linked to a different profile on

Social. In order to take care of every profile considered we need to store them in a

global variable: “globalArrayOfProfiles”. This way we are able to take care of the

automatic refresh of each section separately, launch or stop a single timer or all at

once. After this, the CORS request is executed to get the feeds, using the URL

https://social.cern.ch/_api/social.feed/actor(item='cern\\"+accountName+"')/Feed. As

we can see, the SharePoint interface used in this case requires a specific actor’s name

to get his or her feeds and uses the variable “accountName” from the input parameters

to take care of the issue. As in the previously examined function, in case of success

the function “checkDataReceivedAndDisplayTheFeeds” takes the data in input and

checks for exceptions, after which the “appendFeeds” function takes care of the

displaying of the feeds. Even in this case we can set an automatic or manual update

of the feeds.

The third function is “updateFeedsWithSameHashtag”. Its input parameters are

explained in the following table.

https://social.cern.ch/_api/social.feed/actor(item='cern/%22+accountName+%22')/Feed

135

Name of the parameter Description

tag The hashtag in which we are interested in (e.g. “#CERN”,
“#Drupal” or “#LHC”)

whereToWrite The name of the HTML section where the feeds will have
to be displayed.

updateInterval The update interval, in case we want the function to
automatically refresh the feeds every tot seconds. In this
case, the values as negative numbers, 0, “null” or
“undefined” are used to express the will to avoid the auto-
refresh behaviour.

numOfFeeds The maximum number of feeds to display in the page
with this function.

flagDisplayReplies This flag tells the function whether we want the replies to
the feeds to be shown or not.

In the function, some comments can be found to allow the reader to better understand

the code. A more throughout description of the code is given after the function. The

code is the following:

function updateFeedsWithSameHashtag(tag, whereToWrite,

updateInterval, numOfFeeds, flagDisplayReplies){

 // Consistency checks

if(updateInterval===null || updateInterval===undefined ||

updateInterval<0){ updateInterval = 0; }

if(numOfFeeds===null || numOfFeeds===undefined ||

numOfFeeds<0 || numOfFeeds>20){ numOfFeeds = 0; }

if(flagDisplayReplies===null ||

flagDisplayReplies===undefined){ flagDisplayReplies =

true; }

// Sanitizing the input (encodeURI() is used instead of

encodeURIComponent() when there has to be allowed the

possibility to have hashtags.).

// Splitting the input tags from one string to an array of

strings.

 var noSharpTagArray = tag.split(' ');

136

 var noSharpTagString = '';

 // This variable will be used for the innerWrap variable

only.

var noSpaceNoSharpTagString = '';

for(var i=0; i<noSharpTagArray.length; i++){

 if(noSharpTagArray[i][0] === '#'){

noSharpTagArray[i] =

noSharpTagArray[i].substring(1,

noSharpTagArray[i].length);

 }

 noSpaceNoSharpTagString +=

encodeURI(noSharpTagArray[i]); // Adding the tag only

 if(i < noSharpTagArray.length-1){

// Adding the tag plus an empty space

noSharpTagString +=

encodeURI(noSharpTagArray[i]) + ' ';

 }else{

// Adding the last tag

 noSharpTagString +=

encodeURI(noSharpTagArray[i]);

 }

 }

 whereToWrite = encodeURI(whereToWrite);

 updateInterval = encodeURIComponent(updateInterval);

 numOfFeeds = encodeURIComponent(numOfFeeds);

 if(whereToWrite[0] !== '#'){

 whereToWrite = '#' + whereToWrite;

 }

if(document.getElementById(whereToWrite.substring(1))===n

ull){

console.log("The HTML section appears not to exist.

See updateFeedsWithSameHashtag() function.");

 return;

137

 }

var tempSection = whereToWrite.substring(1,

whereToWrite.length);

if(updateInterval < 1000)

{

// Converting the time from seconds to milliseconds

updateInterval = updateInterval*1000;

}

 var parentWhereToWrite = whereToWrite;

// Section's check. If the HTML section is present in the

webpage we can move on, otherwise the function has to stop.

 if(document.getElementById(tempSection) === null){

// Error. No HTML section found to display the

followed feeds on Social. Please add a <div

id="feedsWithSameHashtag"> section.

console.log('Error while trying to write the feeds

with the same hashtag. The section ID passed in input

is not present in the web page.');

 return;

 }

 $(whereToWrite).html(''); // Clearing the feeds

displayed.

// We need to re-authenticate on Social every time

 authenticateOnSocial();

// Adding a new wrapping section in the HMTL page to make

the SocialAPI's CSS file point only at this part of the

webpage, in case many CSS files are used.

138

var innerWrap = "socialAPIFeedsWithSameHashtag"+

whereToWrite.substring(1, whereToWrite.length) +

noSpaceNoSharpTagString;

var wrapSection = '<div class="socialAPIWrapClass">'+

 '<div id="' + innerWrap + '">'+

 '</div>'+

 '</div>';

 $(whereToWrite).html(wrapSection);

 try{

 // Activating the automatic refresh of the feeds

 if(updateInterval > 0){

var index = checkPresenceOfElement(whereToWrite,

globalArrayOfHashtags); // Checking the

presence of the element inside the array.

// If the element is already present we can

simply modify the information about it.

if(index >= 0 && index <

globalArrayOfHashtags.length){

clearInterval(globalArrayOfHashtags[index]

.automaticUpdatesHandlersCode); //

stopping the previously set automatic

updater

var handlerCode = setInterval(function() {

updateFeedsWithSameHashtag(noSharpTagStrin

g, whereToWrite, updateInterval,

numOfFeeds, flagDisplayReplies); },

updateInterval);

// The feeds will be updated every

"updateInterval" seconds

globalArrayOfHashtags[index].automaticUpda

tesHandlersCode = handlerCode;

139

globalArrayOfHashtags[index].timeInterval

= updateInterval;

 }else{

// else: we have to add a new element to the

array.

var handlerCode = setInterval(function() {

updateFeedsWithSameHashtag(noSharpTagStrin

g, whereToWrite, updateInterval,

numOfFeeds, flagDisplayReplies); },

updateInterval);

// The feeds will be updated every

"updateInterval" seconds.

// Updating the global array for the timed

updates.

globalArrayOfHashtags.push(new

updateObj(noSharpTagString, whereToWrite,

handlerCode, updateInterval, numOfFeeds,

flagDisplayReplies));

 }

 }else{

var index = checkPresenceOfElement(whereToWrite,

globalArrayOfHashtags); // Checking the

presence of the element inside the array

// If the element is already present we can

simply modify the information about it

if(index === -1){

// If the element is not yet in the array…

globalArrayOfHashtags.push(new

updateObj(noSharpTagString, whereToWrite,

null, 0, numOfFeeds, flagDisplayReplies));

 // Adding the element to the array

 }

 }

140

// We want to write in the inner section.

whereToWrite = "#" + innerWrap;

// Retrieving the feeds with the same tag(s) and

writing them in the section of the HTML page with

ID='feedsWithSameHashtag'.

retrieveFeedsWithSameTag(noSharpTagString,

whereToWrite, parentWhereToWrite, numOfFeeds,

flagDisplayReplies);

 }catch(e){

$(whereToWrite).html('There has been an error while

trying to write the feeds with the same hashtag.

Please try again later.');

 }

}

As in the other functions, here the code begins sanitizing and checking the input for

possible consistency issues. It checks the presence of the dedicated HTML section in

the webpage, authenticates on Social and creates the new division (with class

“socialAPIWrapClass”) for the feeds. After this, the function is similar to the previous

one, since we are facing the same possible issue: there can be more than one section

with feeds with the same hashtag in the page and each can have feeds containing a

different hashtag. As we can see from the code, the global variable

“globalArrayOfHashtags” is used to solve the issue. It is important to notice that we

can look for feeds with a variable number of hashtags in them. We can look for all the

feeds with a single hashtag, like #IT, or multiple ones, like #SharePoint and #API. In

the case with multiple hashtags, the API will retrieve all the feeds containing all of the

specified hashtags in their text. Next, through the function

“retrieveFeedsWithSameTag” it creates the CORS request for the SharePoint

interface using the URL:

“https://social.cern.ch/_api/search/” + "query?querytext='tags:"+ tagText

+"'&sourceid='459dd1b7-216f-4386-9709-287d5d22f568'”.

We can see that here is used the Search REST service. The tags, placed after the

keyword “tags:”, will be a series of strings without any “#”, separated by a space. The

“sourceid” used is a special string that lets SharePoint know that we are looking for

141

the tags from the Conversations on Social and that it should not look for tags in other

areas like Collaboration Workspaces. The feeds are then passed to the

“retrieveFeedsWithSameTagBodyFunction” function, which will take care of displaying

the feeds on the page.

142

Examples of sidebars created on Drupal using the Social API.

On the left, it shows the feeds from the followed actors on Social; on the right, it shows the

most recent feeds with both #Social and #Drupal hashtags (CERN, 2015)

143

The fourth function considered is “loadTagCloud”. Its input parameters are explained

in the following table.

Name of the parameter Description

whereToWrite The ID of the HTML section where the feeds will have to
be placed.

maxNumTags The maximum number of tags to retrieve. Used to limit
the tags displayed in the cloud canvas.

textColor The colour of the text.

textBorderColor In the 3D Tag Cloud it is possible to set the colour of the
border of the text, which appears when the mouse is over
the tag.

numDimensions The number of dimensions to take into account (2= 2D
Tag Canvas, 3=3D Tag Cloud).

weightFlag It is possible to set this flag as “true” if we need the size
of the text for each tag to be related to the frequency in
which they are present on Social. This means that the
more frequent a tag is used on the network the bigger will
be displayed in the canvas (up to a maximum).

periodOfTime The period of the time we are looking for ('lastDay',
'lastWeek', 'lastMonth', 'lastYear', 'allTime').

In the function, some comment lines can be found to allow the reader to better

understand the code. A more throughout description of the code is given after the

function:

function loadTagCloud(whereToWrite, maxNumTags, textColor,

textBorderColor, numDimensions, weightFlag, periodOfTime){

// Section checks. If the HTML sections are presents in the

webpage we can move on, otherwise the function has to stop.

 while(whereToWrite[0] === '#' && whereToWrite.length > 0){

 whereToWrite = whereToWrite.substring(1);

 }

 if(document.getElementById(whereToWrite) === null){

// Error. No HTML section found to display the

followed feeds on Social. Please add a <div id="+

whereToWrite +"> section.

144

console.log('Error while trying to write the tags for

the Tag Cloud. The HTML section appears not to exist.

See the function loadTagCloud().');

 return;

 }

 var date = new Date(); // Reading today's date

 switch(periodOfTime){

 case 'lastDay':

 date.setDate(date.getDate()-1);

// Going back one day.

 break;

 case 'lastWeek':

 date.setDate(date.getDate()-7);

// Going back one week.

 break;

 case 'lastMonth':

 date.setDate(date.getDate()-30);

// Going back one month.

 break;

 case 'lastYear':

 date.setDate(date.getDate()-365);

// Going back one year.

 break;

 case 'allTime':

 date = null;

// We will retrieve all the tags ever used (with

their number of occurrences).

 break;

 default:

 date = null;

// We will retrieve all the tags ever used (with

their number of occurrences).

145

 }

 // This will be the URL used to retrieve the tags from

Social.

var querySiteToGetTheTags;

 if(date === null){

 querySiteToGetTheTags = querySiteToGetAllTheTags;

 }else{

 var day, month;

 month = date.getMonth() + 1;

if(month < 10){ month = '0' + month; }

// We want the 'month' string to have always two chars.

 day = date.getDate();

if(day < 10){ day = '0' + day; }

// We want the 'day' string to have always two chars.

querySiteToGetTheTags = searchRestService +

"query?querytext='ContentTypeId:0x01FD* write>=\""+

date.getFullYear() +"-"+ month +"-"+ day +"

00:00:01Z\" -ContentClass=urn:content-

class:SPSPeople'&refiners='Tags'";

 }

executeRestCallExtendedSeven(querySiteToGetTheTags,

'GET', null, drawUserTagsInCanvas, onError, whereToWrite,

maxNumTags, textColor, textBorderColor, numDimensions,

weightFlag);

// Getting all the tags from Social and passing them to the

function drawUserTagsInCanvas().

}

146

A the beginning of the function we can find the controls on the input, in particular on

the HTML section. We then create the “date” variable, which will tell SharePoint from

what point in time we need to examine the Social tags. The CORS request is then

launched using the URL:

“https://social.cern.ch/_api/search/” + "query?querytext='ContentTypeId:0x01FD*

write>=\""+ date.getFullYear() +"-"+ month +"-"+ day +" 00:00:01Z\" -

ContentClass=urn:content-class:SPSPeople'&refiners='Tags'"

Even in this case the Search REST service is exploited. In the URL, the string

“ContentTypeId:0x01FD*” specifically calls for trending tags, while the “write” keyword

is used to get everything written from the date given in input to the present. Then the

time string “00:00:01Z\" is passed, stating that we need the feeds written from the first

second of the given day. “ContentClass” is a mandatory property for SharePoint 2013

for this kind of requests and states that the content we are looking for does not regard

the People on Social (Microsoft, 2015). Instead, we can read from the last part,

“refiners='Tags'”, that our interest is for hashtags only. The feeds are then passed to

the “drawUserTagsInCanvas” function, which will take the data from the server and

take care of displaying the feeds on the canvas element in the HTML page.

147

Social API use example (CERN, 2015)

We will now present each function described above explaining the operations required

for them to work. We will start from the “updateGroupInfo” function. Its input

parameters are explained in the following table.

Name of the parameter Description

whereToWrite The name of the HTML section where the feeds will have
to be written.

updateInterval The update interval, in case we want the function to
automatically refresh the feeds every tot seconds. In this
case, the values as negative numbers, 0, “null” or
“undefined” are used to express the will to avoid the auto-
refresh behaviour.

numFeeds The number of feeds to display in the page with this
function.

148

flagDisplayReplies This flag tells the function if the replies to the feeds have
to be displayed or not.

In the function, some comments can be found to allow the reader to better understand

the code. A more throughout description of the code is given after the function. The

function is the following:

function updateGroupInfo(whereToWrite, department, group,

section, imageFlag, departmentFlag, numFeeds){

// Sanitizing the input (encodeURI() is used instead of

encodeURIComponent() when there has to be allowed the

possibility to have hashtags.):

 whereToWrite = encodeURI(whereToWrite);

 department = encodeURI(department);

 group = encodeURI(group);

 section = encodeURI(section);

// Resetting the global variable

numOfElementsAlreadyDisplayed = 0;

if(department === null || department === 'null' ||

department === undefined || department === '' ||

department.length < 1){

$('#content').html('<div class="feedsItem"> <p

id="text"> There has been a problem while retrieving

the feeds. Please try again later. </p> </div>');

 return;

 }

 var groupString;

if(group == null || group == 'null' || group == undefined

|| group == ''){

 groupString = '';

 }else{

if(typeof(group) === 'string' && group.length > 1

&& group.length < 20){

149

 groupString = '/' + group;

 }else{

 groupString = '';

 }

 }

 var sectionString;

if(section == null || section == 'null' || section ==

undefined || section == ''){

 sectionString = '';

 }else{

if(typeof(section) === 'string' && section.length >

1 && section.length < 20){

 sectionString = ' Section:' + section;

 }else{

 sectionString = '';

 }

 }

 if(whereToWrite[0] !== '#'){

 whereToWrite = '#' + whereToWrite;

 }

 var tempElement;

 var parentWhereToWrite = whereToWrite;

 // Clearing the section of the feeds I am following

 $(whereToWrite).html('');

var tempSectionID = whereToWrite.substring(1,

whereToWrite.length);

// Section check. If the HTML section is present in the

webpage we can move on, otherwise the function has to stop.

 if(document.getElementById(tempSectionID) === null){

150

// Error. No HTML section found to display the

followed feeds on Social. Please add a <div

id="feedsFollowed"> section.

$(whereToWrite).append('<div class="feedsItem"> <p

id="text"> There has been a problem while

communicating with the server.
Please try again

later. </p> </div>');

console.log('Error while trying to write the followed

feeds. The section ID passed in input seems not to be

present in the webpage.');

 return;

 }

// Adding a new wrapping section in the HMTL page to make

the SocialAPI's CSS file point only at this part of the

webpage, in case many CSS files are used.

var wrapSection = '<div class="socialAPIWrapClass">'+

'<div id="socialAPIDepartment' +

tempSectionID +'">'+

 '</div>'+

 '</div>';

 $(whereToWrite).append(wrapSection);

 whereToWrite = '#socialAPIDepartment' + tempSectionID;

var searchForGroupInfoSite = searchRestService +

"query?querytext='department:" +department + groupString +

sectionString+"'&sourceid='B09A7990-05EA-4AF9-81EF-

EDFAB16C4E31'";

 // In the variable 'searchForGroupInfoSite', the code:

 // sourceid='B09A7990-05EA-4AF9-81EF-EDFAB16C4E31'

151

// tells the Server that we are looking for People (possible

search options: Everything, People, Conversations,

Videos).

try{

// Launching the function that executes the CORS

request.

executeRestCallExtendedSeven(searchForGroupInfoSite,

'GET', null, updateGroupInfoBodyFunction, onError,

whereToWrite, department, group, section, imageFlag,

departmentFlag, numFeeds);

 }

catch(err){

errorHandlerFunction(11, "There was a problem while

communicating with the Server.\nPlease try again

later.");

}

}

152

Example of the Social API retrieving information on the People working in the IT/CDA/FW

section (written as department/group/section) (CERN, 2015)

At this point, we will look at the “postToMyFeeds” function. This function has the

purpose to post a new feed on Social using the user’s credentials. Its input parameters

are explained hereunder.

Name of the parameter Description

message The message to post to Social.

inputFunction The function that we need to launch as soon as the
message is posted successfully.

153

A more throughout description of the code is given after the function presented here:

function postToMyFeeds(message, inputFunction) {

// If no message is given in input... [the function is

called as "postToMyFeeds();"]

if(typeof(message) !== "string" || message === null ||

message === "" || message === undefined){

// Reading the message from the page.

message =

document.getElementById("textareaPostNewFeed").value

;

 // If the message is still null

if(message === null || message === "" || message ===

undefined){

console.log("Error: No message passed in input.

The new feed can not be created.");

$('#nextToPostButton').html("<i> Please

write some text first.</i>");

// The “setTimeout” function will hide the

message after 3 seconds.

setTimeout("socialAPI().clearMessageToTheUser('

nextToPostButton');", 3000);

 return;

 }

 else{

// Removing any text eventually present in this

section of the HTML file.

$('#nextToPostButton').html("");

 }

 }

 if(inputFunction == null || inputFunction == undefined

){

 inputFunction = function(flag){

154

 if(flag){ alert("Message posted."); }

else{ alert("There has been a problem while

posting the message. Please try again later.");

}

 }

}

// Calling the function that will read the text from the

<p> HTML section and post it online.

executeRestCallExtended(formDigestUrl, "POST", null,

postMessage, onError, message, inputFunction);

}

This is only the first of the two CORS requests needed to upload the post online. It is

necessary in order to get the “formDigest” value and be able to set the "X-

RequestDigest" property in the RequestHeader of the second XMLHttpRequest to the

formDigest value, like this:

xhr.setRequestHeader("X-RequestDigest", formDigest);

So, if the CORS request is successful, the “postMessage” function is called. It first

reads the message written in the page. Checks if there actually is any message and

reads the data from SharePoint to obtain the formDigest. Next, we need to consider

that if there is any hashtag or web link in the message and we want them to be

recognised as such, instead of simple text, then we need to substitute them with

tokens, like {0} or {1}, and store their real values in a different location. Later, we will

add their real values in the JSON file for the SharePoint service.

If there are already some parts of the text that could be exchanged from SharePoint

as tokens, we need to modify those parts in order to avoid problems like unintended

repetitions of tags in the post. Using the regular expression (RE) /\{[0-9]+\}/ we

can identify the presence of any token-like string in the message. Those “fake tokens”

are modified simply adding a blank space between the parentheses and the content,

so that SharePoint will not see those as tokens and, at the same time, the message

will still be clear.

155

At the same time, using JSON as the format to exchange data, it is important to avoid

having more than one open or closed curly bracket at a time, like “{{“, because it would

cause problems while formatting the message for SharePoint. Even this issue can be

solved adding a simple space between the parentheses.

At this point the function looks for any hashtag or link in the page, so that they can be

correctly reported to SharePoint and be represented as such on Social. The words in

the text are split into an array using the space are key character and examined one by

one. Looking for hashtags, we just need to look for the “#” symbol, followed by a series

of simple numbers or letters. If found, the hashtag is saved in a list and replaced by a

token. In order to acknowledge the presence of web links we can use a regular

expression that checks for every possible combination of letters, symbols and

numbers that could represent a web link. The RE used is:

/^((ftp|https?):\/\/)?(www\.)?([\w\-]{2,})([\.][\w\-

]{2,})*([\.][a-z]{2,})+([\/][\w\+\-

\?\.\&\%\=\#\:\;\(\)\~]{2,})*[\/]?/i

Next, the JSON file is formed respecting the following structure (expressed in

JavaScript), which includes the metadata needed form SharePoint to recognize its

content:

" { 'restCreationData':{ " +

" '__metadata':{

'type':'SP.Social.SocialRestPostCreationData'}, " +

" 'ID': null, " +

" 'creationData':{ " +

"

 '__metadata':{'type':'SP.Social.SocialPostCreationData'},

" +

" 'Attachment': null," +

" 'ContentItems': " + contentItemsString +

" 'ContentText':'" +message+

"','UpdateStatusText':false "+

" } " +

" }}";

156

Now, the JSON file format varies slightly according to the presence/absence of

hashtags and links or the presence/absence of an attachment, but it always follows

the same design. In particular, we can see that, in this case, there is no attachment

and the text of the message will go in the “ContentText” section, while the real values

of the tokens will be written in the “ContentItems” division.

5.4.2. Testing

Software testing is an investigation conducted to provide stakeholders with information

about the quality of the product or service under test (Kaner, 2006). Test techniques

include the process of executing a program or application with the intent of

finding software bugs (errors or other defects). Software testing involves the execution

of a software component or system component to evaluate one or more properties of

interest. In general, these properties indicate the extent to which the component or

system under test:

 meets the requirements that guided its design and development,

 responds correctly to all kinds of inputs,

 performs its functions within an acceptable time,

 is sufficiently usable,

 can be installed and run in its intended environments, and

 achieves the general result its stakeholders desire.

The testing phase followed the agile approach used for the development of the API.

Therefore, it took place iteratively for each of the functions implemented. In order to

check the behaviour of the API and its CSS, the tests have first been carried out on a

Windows machine using all of the most used browsers, like Mozilla Firefox, Google

Chrome, Internet Explorer, Opera and Safari. Then, for compatibility purposes, older

versions of the same environments have been tested out. Almost every environment

required adjustments and it was often necessary to adopt ad hoc solutions.

After these tests, similar ones have been executed on Linux and Apple machines. This

has been crucial because all these three systems are used in the everyday work at

CERN.

https://en.wikipedia.org/wiki/Software_bug

157

5.4.3. Problems Encountered and Limitations

During the development of the API, a number of problems arose and many requests

were presented during its development. It has been difficult to sort out the vast amount

of information returned from SharePoint in JSON format in order to find information

like the name of the author of a feed or the ID of the feed itself. As an example, to

capture the array of tags retrieved using the Search REST service for the tag cloud

we need to look deep in the JSON structure for the results. The resulting line of code

is:

tags =

result.d.query.PrimaryQueryResult.RefinementResults.Refiners.r

esults[0].Entries.results;

In the code presented, the first “result” corresponds to the main section of the JSON

file while every dot corresponds to opening a subsection in order to go deeper in the

file structure and find what we are looking for. As we can see, there are many levels

of information and it has been necessary to analyse them all. In a complex situation

like this one, where no detailed documentation from Microsoft can be found, it has not

been easy to find every piece of information required for the API functions to work.

In order to satisfy the requirements it has been essential to update the functions

developed many times in order to make them adaptable to any kind of preference,

from the section in which the feeds have to be displayed and the amount of seconds

to wait before a refresh of the feeds to the colour of the text. In addition, the design is

made responsive, so that it can adapt to the size of the HTML section in the webpage.

If the feeds are displayed in a sidebar the text shrinks, while if the feeds are displayed

in the centre of the page the text can have a larger font size and both the profile and

attached pictures can take more room.

158

Problem example: the post is repeated between its replies

As stated before, on Social it is possible to cite other authors in the feeds. The

limitations of the API include the impossibility to cite other authors in the feeds posted

through the API, writing for example “@Marco Carlo Cavalazzi” in order to notify the

user to look at that particular feed. This has been a conscious choice made during the

development process. The reason is that in order to get that kind of feature a user

should cite the person with their correct name on Social and it is unmanageable to

remember the name of all the people working at CERN. Now, this problem could be

solved using the SharePoint suggestion system, which suggests possible names while

typing them into the feed, but it would have introduced a high number of calls to the

SharePoint service and it has been decided that since it is not a crucial feature it was

not worth the risk of overloading the CERN’s network. It is possible to write that kind

of text in a post, but it will not trigger a notification.

In addition, the API will not be able to work on old browsers, like Internet Explorer 7,

especially because of the lack of support for CORS requests. A documentation has

been redacted for the users and developers who need the Social API, which clarifies

the problem and how to solve it.

159

6. Conclusions

The benefits of ESNs are undeniable. The extensive research on the subject proves

that the possibilities of an ESN can provide a useful platform on which everyone can

express opinions, ask questions and join discussions contributing to the process of

knowledge sharing, which creates a self-reinforcing flow of information that contributes

in making the organization ever more ready for future’s challenges.

We have seen how the IT department can develop tools and improvements for the

organization’s ESN. More importantly, we know that when a new collaboration tool is

necessary it can be integrated in the existing environment, making it a well-worth long-

term investment.

Clearly, the biggest challenge for most knowledge management initiatives is the

willingness of people to share knowledge with others both in their work groups and

across groups, as the cultural shift is significant. Social business requires a minor

revolution in thought and a steady evolution in cooperative action. In order for the

social approach to succeed there should be an organizational need, a problem in daily

processes or communications that can be solved by the introduction of new

communication media. In addition, new technologies should be easy enough to use.

Simplicity of social tools in both usage and installation facilitates the bottom-up

initiatives of adoption. Furthermore, certain organizational settings, such as open

enough culture, encouragement of innovation, clear intentions, policies and guidelines

towards the social organization should be in place. It may seem difficult. However, as

we have seen in many examples, there is no doubt that the potential benefits are worth

the efforts. “Social business successes of well-known, market-leading organizations

offer compelling evidence of the returns on this evolution of business” (Hinchcliffe &

Kim, 2012).

In order to work as a social organization, the enterprise has also to make use of new

success indicators, like:

 Financial returns, no more based on sole profit, but identified following the

evolution during and after the change towards the conversation company;

 Savings, that become evident when the number of conversations increases and

becomes less necessary to pay for expensive advertising;

160

 The number of extremely satisfied customers and employees, since it is by

looking at those elements that the highest standards can be met;

 Conversations, making sure that the conversation potential is fully exploited;

 Knowledge integration, paying attention so that business is done in a way that

follows the new philosophy.

At CERN, the goal is to provide a stimulating environment where people and

newcomers can learn from each other. To provide a mean of communication and way

to access to knowledge adapted this new era, in order to attract, engage and finally

keep talents. This will help to foster innovation, which is, naturally, part of CERN’s

essence. ESNs empower people, everyone has an equal voice, it encourages people

to speak up giving them an opportunity to make meaningful contributions with their

skills and ideas, and again leveraging innovation. It increases engagement by

humanizing the way in which people work (Li, 2012), opposing to the classic and formal

way to communicate provided by email.

Social at CERN is being progressively promoted and it is expected an increase in its

usage while existing communication channels are being moved to Social. The tools

and improvements discussed in the last chapter are now used for the everyday

operations. In particular, the Social API is now used in some Drupal modules. Those

are important for the integration aspects of existing public facing websites (running on

Drupal) with Social. Part of the plans and future of Social at CERN involve feeding the

Newsfeed with content by adding more sources with relevant information. Simple

examples like posting daily CERN restaurant’s menu or migrating existing classifieds

site CERN Market to the Social community had very positive effects and added new

features to existing services. Bi-directional integration is available for other CERN Web

platforms to allow users to share context-based information directly on Social. It is

important to maintain programmatic interfaces easy to use to allow both consumption

and feeding of data. New features are also under development like the Social Feed

that consists on a topic-based microblog feed. This will allow, for example, lightweight

departmental and private discussions, which can be opened to external people. It is

also expected for the heavy usage of mailing lists to be replaced by Social Feeds when

the purpose is mostly non-critical information exchange. Finally yet importantly, the

development of comprehensive usage analytics to measure the engagement of CERN

161

people or success of communication campaigns is also part of the plans (De Sousa,

et al., 2015).

The effective management of knowledge has been described as a critical ingredient

for organisations seeking to ensure a sustainable and strategic competitive advantage.

It has been brought out that processes and technology alone are not enough to drive

an organisation, but its people and the knowledge that resides in them are an integral

pivot in organisation’s success. It is therefore essential for management in

organisations to look for means to gain, maintain and leverage knowledge not for a

brief period but on a regular basis.

The ESN empowers people, giving them the tools to share knowledge and, at same

time, have available, at any time, all the knowledge present in the KMS of the

company. This way the company can react faster to new problems and be ready to

spot new business opportunities.

162

163

Appendix A

Here is displayed the code regarding the custom responsive design for Social Mobile.

File “CustomResponsiveness.css”:
/********** Custom SharePoint 2013 Responsive **********/

/* @media only screen and (max-device-width:750px), media only screen and (max-width:750px) { */

@media only screen and (max-device-width:750px), media only screen and (max-width:750px) { /* The order in which the conditions are written is IMPORTANT! */

 div.toolbar-wrapper{width:100.1% !important;}

 #cern-toolbar{height:110px !important;}

 #cern-toolbar h1{

 margin-top: 1em !important;

 }

 #cern-toolbar h1 a{

 font-size:3em;

 margin-top: 12%;

 }

 #cern-toolbar h1 span {

 display: none;

 }

 #cern-toolbar ul {

 border-right: 1px solid #000;

 -moz-box-shadow: 1px 0 0 #444;

 -webkit-box-shadow: 1px 0 0 #444;

 box-shadow: 1px 0 0 #444;

 }

 #cern-toolbar ul li{

 height:9em;

 padding:0 !important;

 }

 #cern-toolbar li {

 padding: 0;

 margin: 0 1em 0 1em !important;

 border-left: 2px solid #000;

 }

 #cern-toolbar li a {

 background-image: url("/_layouts/15/images/cern/toolbar/toolbarsprite.png");

 background-repeat: no-repeat;

 height: 67px;

 width: 90px;

 -moz-border-radius: 0;

 -webkit-border-radius: 0;

 border-radius: 0;

 text-indent: -5000px;

 overflow: hidden;

 border-left: 2px solid #444;

 }

 #cern-toolbar .cern-account {

 background-position: 9px 0;

 }

 #cern-toolbar .cern-directory {

 background-position: 16px -107px;

 background-size: 175%;

 height: 120px;

 padding-left: 2em;

 }

 #cern-toolbar .cern-signout {

 background-position: 21px -221px;

 background-size: 175%;

 height: 120px;

 padding-left: 2em;

 margin-left: 0 !important;

 }

 #cern-toolbar .active .cern-account {

 background-position: -31px 0;

 }

 #cern-toolbar .active .cern-directory {

 background-position: -31px -40px;

 }

 #cern-toolbar .cern-accountlinks span {

 display: none;

 }

 #cern-toolbar .cern-multifactor {

 background-image: none;

 padding: 0;

 }

}

/********** Mobile (All Screens Up to 750px) **********/

164

/*

@media only screen and (max-device-width:480px), media only screen and (max-width:480px){

@media only screen and (max-device-width:750px), media only screen and (max-width:750px){

For the Master page use: <SharePoint:ScriptLink language="javascript" name="cssToggle.js" OnDemand="true" runat="server" Localizable="false" />

*/

@media only screen and (max-device-width:750px), media only screen and (max-width:750px) { /* this condition is just for debugging, use the ones before this. */

 /* General CSS. */

 .ms-dialog body{background-image: none !important;}

 .ms-dialog #s4-titlerow{display: none !important;}

 .ms-dialog #contentBox{background-image: none !important;}

/* Global Body */

 body{

 overflow: auto;

 background-image: none !important;

 background-color: rgba(255, 255, 255, 0.95);

 font-size: 4.5vw;

 margin-top:2.5em; /* Used to place the content below the CERN Toolbar. */

 height:110%;

 }

 #contentBox{

 margin-left:auto;margin-right:auto;

 width:90% !important;

 }

 div.desktopOrMobileVersion{ /* This is the parent section of the link to go to the Desktop version. It will appear at the bottom of the page. */

 float:left;

 width:100%;

 margin-left:-10px;

 padding:26px 11.2% 26px 0;

 text-align:center;

 background-color:#D8D8D8;

 }

 div.desktopOrMobileVersion a{ /* This is the link to go to the Desktop version.*/

 margin-left:9.5%;

 text-decoration:none;

 }

/* Hiding the extra information on the TITLES of the web pages. */

 #mysite-titlerow{ /* Modifying the title row of the webpage. E.g.: "About Marco Xyyyy". */

 font-size:0.7em !important;

 position: absolute;

 top: 0px;

 left: 0;

 width:31em;

 height:110px;

 overflow:hidden;

 word-wrap:break-word;

 }

 .ams-profile-editAndFollowLinks span.ms-textXLarge{display:none;}

 .ms-profile-editAndFollowLinks{display:none;}

/* Correcting the displaying of the textarea used to write a new post on Social. */

 div.ms-microfeed-focusBox.ms-microfeed-focusBoxNoFocus{outline: 1px solid #ababab}

 div.ms-microfeed-focusBox.ms-microfeed-focusBoxInFocus{outline: 1px solid #ababab}

/* Resizing the "Following Everyone Mentions" string's area and font-size. */

 span#ms-microfeed-titleViewSelectorPivotContainer{width:92vw !important;}

 div.ms-microfeed-titlePivotControl span{font-size:6.5vw !important;}

/* Resizing the spaces between the strings "Following", "Everyone" and "Mentions". */

 div.ms-microfeed-titlePivotControl span a{margin-right:4vw;} /* Following and Everyone */

 div.ms-microfeed-titlePivotControl span a.ms-pivotControl-surfacedOpt[alt="Mentions"]{margin-right:0 !important;} /* Mentions */

 div.ms-microfeed-titlePivotControl span a.ms-pivotControl-surfacedOpt-selected[alt="Mentions"]{margin-right:0 !important;} /* Mentions selected */

/* Changing the font-size of the options from the "everyone" drop down menu near "Share with". */

 .ms-core-menu-list{font-size: 3em; max-height: 14em;}

 /* Changin the size of the arrow on the right of "everyone". */

 span.s4-clust.ms-viewselector-arrow.ms-menu-stdarw{height: 8px !important; width: 17px !important;} /* The parent section. */

 span.s4-clust.ms-viewselector-arrow.ms-menu-stdarw img{ /* The image itself. */

 height: 1580px !important;

 width: 400px !important;

 margin-top: -345px !important;

 }

/* Hiding the dots after the "Following Everyone Mentions" titles. */

 .ms-pivotControl-overflowDot{display:none;}

/* Expanding width of the parent section of the feeds. */

 #ms-feeddiv{width:22em;}

/* Extending the width of the feed. */

 .ms-microfeed-text{max-width:90%;}

 .ms-microfeed-likeImageParent{width:40px;height:40px; margin-bottom:-5px;} /* Enlarging the container. */

 .ms-microfeed-likeImageParent img{ /* Enlarging the image. */

 width:400px !important;

 height:400px !important;

 top: 0px !important;

 left:-900% !important;/*left:-360px;*/

 }

 .ms-microfeed-attachmentImage{ /* Expanding the size of the attachment images published with the feeds (and the replies). */

 width:500px;

 max-width: 500px;

 max-height:500px;

 }

/* Adjusting the size of the profile pictures. */

 .ms-peopleux-userImgWrapper{width:3em !important; height:3em !important;}

 .ms-peopleux-userImg{width:3em !important; height:3em !important; max-width:3em !important; clip:rect(0px, 3em, 3em, 0px) !important;}

/* Adjusting the position of the profile pictures to make it align with the feed's author's name. */

 div.ms-microfeed-userThumbnailAreaRootPadding, .ms-microfeed-userThumbnailAreaReplyPadding{padding-top: 0.1em;}

 div.ms-microfeed-replyBody{margin-left:21%;}

165

/* Hiding the white stripe on the left of the profile picture, because it comes from a sprite image and it is thus not expandable. */

 .ms-imnlink{display:none;}

/* Adapting the right side of the feeds (with author and text) to consider the bigger user profile pictures. */

 .ms-microfeed-rootBody{margin-left: 16%;}

/* Enlargin the images near the system informations like "Bruno is now following Marco." */

 .ms-microfeed-iconImage{width:0.7em; height:0.7em;}

/* Mention feeds: we are expanding the size of the image displaying an "@" to the left at "@Mentioned by..." string. */

 .ms-microfeed-activityImage{width:0.7em; height:0.7em;}

 /* We also have to add some space below the string "Posts that mention you in this view." */

 .ms-microfeed-viewDescription{margin-top: -20px; padding-bottom: 40px;}

/* Hiding the RIGHT SIDEBAR area on the right which contains the search area and shows below the number of people followed, the number of documents, sites and tags. */

 /* In a user's page we want to show the details of the user, which are in the "#MiddleLRightCell" section. */

 #followedPeopleContainer{display:none;}

 #searchInputBox{display:none;}

 #WebPartWPQ6{display:none;} /* Section with the information about the number of followed people etc... */

 #MiddleLRightCell #WebPartWPQ7{display:none;} /* Hiding the trending tags */

/* Resizing the textarea to POST A NEW FEED and refine the settings for the links below the textarea, like "Following", "People" and "Mentions". */

 .ms-microfeed-microblogpart#ms-microblogdiv{color:black; margin-bottom:1em; max-width:none; min-width:0; width:90vw;}

 #DeltaPlaceHolderMain #MiddleLeftCell{width:100%;}

 #ms-microfeed-titleViewSelectorPivotContainer{margin-right:0;}

 .ms-microfeed-postBox{width: 98.5%; color: black;} /* This line makes the textarea and its container have the same dimensions. */

 div.ms-microfeed-postBox.ms-textSmall.ms-microfeed-replyMentionHighlightDiv{height:93% !important;}

/* Enlarging the camera icon below it that is used to upload a picture with the feed. */

 #ms-addImageButton_Span{width:50px;height:45px;} /* Enlarging the container. */

 #ms-addImageButton_Span img{ /* Enlarging the image. */

 width:800px;

 height:800px;

 position:relative;

 top:-640px;

 left:-320px;

 }

/* Enlarging the "X" button at the top right corner of every feed usable to delete them. It is visible when the user clicks (touches) the feed's area. */

 button.ms-microfeed-button.ms-microfeed-deleteButton{margin-left:-30px;}

 button.ms-microfeed-button.ms-microfeed-deleteButton span.ms-microfeed-deleteButtonImageParent{width:40px;height:40px; margin-bottom:-5px;} /* Enlarging the

container. */

 button.ms-microfeed-button.ms-microfeed-deleteButton span.ms-microfeed-deleteButtonImageParent img{ /* Enlarging the image. */

 width: 900px !important;

 height:900px !important;

 top: -1030% !important;

 left:-1660% !important;

 }

 .ms-core-menu-root{display:none;} /* Hiding the dots at the right of the "Like" and "Reply" links below the feeds. */

/* Adapting the font of the "Post" button. */

 #ms-postbutton{font-size:0.7em;}

/* Modifying how the links for "Following", "People" and "Mentions" are displayed. */

 #ms-microfeed-titleViewSelectorPivotContainer{padding:0;}

 #ms-titlebararea{margin-bottom:0 !important; padding-bottom:1.5em !important;}

 #ms-titlebardiv{margin-bottom:0;padding:0; width:94%;}

 #ms-feedthreadsdiv{margin-top:-20px; padding-top:20px;}

@media only screen and (max-device-width: 319px), media only screen and (max-width: 319px){

 #ms-microfeed-titleViewSelectorPivotContainer{font-size: 1.27em; }

}

/* Top Links */

 #suiteBar{display:none;}

 .ms-core-suiteLinkList{}

 #welcomeMenuBox, .ms-cui-TabRowRight{}

 #suiteBarLeft,

 #suiteBarRight{}

/* Top Links */

 #ms-titlebararea{width:22em; padding-bottom:1.5em;}

/* Remove SharePoint Logo */

 .ms-tableRow .ms-core-brandingBox{display: none;}

/* Bottom Section Container */

 .ms-core-overlay{background-image: none; background-color: transparent !important;}

 #s4-workspace{overflow: visible; height: 100% !important; width: 100% !important;}

/* Header Section */

 #s4-titlerow{border-bottom: 0px #FFF solid !important; padding-top: 11px !important; background-color: transparent !important;}

/* Search */

 .ms-mpSearchBox{}

 .ms-mpSearchBox, #searchInputBox{background-color: transparent;}

 .ms-srch-sb{background-color:#FFF; border: none !important; border-radius:6px; padding: 5px;}

 .ms-srch-sb>input{font-size: 1.2em !important;}

/* Logo */

 #siteIcon{

 float: none;

 padding-left: 0px;

 margin-top: 50px !important;

 margin-bottom: 0px !important;

 line-height:normal !important;

 text-align: center;

 height: 100%;

 margin-right: 0px;

 margin-left: 0px;

 width: auto;

 display: block;

166

 }

/* Navigation and Page Title */

 .ms-breadcrumb-box{padding-top: 0px; margin: 10px 20px -35px 20px !important; width: auto; height: 100%;}

/* Main Navigation */

 .ms-core-navigation{}

 .ms-core-listMenu-horizontalBox,

 .ms-core-listMenu-horizontalBox ul,

 .ms-core-listMenu-horizontalBox li,

 .ms-core-listMenu-horizontalBox .ms-core-listMenu-item,

 .ms-core-listMenu-horizontalBox > ul > li > table{display: block;}

 .ms-core-listMenu-horizontalBox > .ms-core-listMenu-root > .ms-listMenu-editLink{

 margin-left:0px;

 }

 .ms-core-listMenu-horizontalBox .ms-core-listMenu-selected,

 .ms-core-listMenu-horizontalBox > ul > li > ul > li{

 border: 1px #FFF solid !important;

 margin: 15px 0px !important;

 background-color: #FFF !important;

 border-radius:6px;

 font-size: 1em !important;

 padding: 5px 5px 5px 5px !important;

 }

 .ms-core-listMenu-horizontalBox > ul > li > ul > li a{

 padding: 0px !important;

 }

 .ms-core-listMenu-horizontalBox > ul > li > ul > li > ul .dynamic{

 display: none;

 }

 .ms-core-listMenu-horizontalBox > ul > li > ul > li:hover{

 background-color: #CCC;

 }

 .ms-core-listMenu-horizontalBox .ms-core-listMenu-selected{

 background-color: transparent !important;

 color: #FFF !important;

 }

 .ms-core-listMenu-horizontalBox .ms-core-listMenu-selected:hover{

 background-color: #000 !important;

 }

 .ms-core-listMenu-horizontalBox a.ms-core-listMenu-item,

 .ms-core-listMenu-horizontalBox a.ms-core-listMenu-item.ms-core-listMenu-selected,

 .ms-core-listMenu-horizontalBox .ms-listMenu-editLink{

 padding: 10px;

 color: #000 !important;

 }

 .ms-core-listMenu-horizontalBox .ms-listMenu-editLink{

 padding: 10px;

 font-size: 2.0em !important;

 display: none;

 }

 .ms-navedit-flyoutArrow{background-image: none !important;}

 .ms-core-listMenu-horizontalBox a.ms-core-listMenu-item:hover,

 .ms-core-listMenu-horizontalBox a.ms-core-listMenu-item.ms-core-listMenu-selected:hover,

 .ms-core-listMenu-horizontalBox a.ms-core-listMenu-item.ms-listMenu-editLink:hover{

 color: #000 !important;

 }

 .ms-core-listMenu-horizontalBox a.ms-core-listMenu-item.ms-core-listMenu-selected,

 .ms-core-listMenu-horizontalBox a.ms-core-listMenu-item.ms-core-listMenu-selected:hover{

 color: #FFF !important;

 font-weight: bold;

 }

/* Content Section Container */

 #contentRow{}

/* Left Navigation */

 #sideNavBox{display: none;}

/* If we want only the profile picture visible, but everything else in the #sideNavBox hidden... */

 /*#sideNavBox ms-profile-image{margin-bottom: -20px;}

 #sideNavBox a.ms-uppercase{display:none;}

 #sideNavBox a.ms-textLarge{display:none;}

 #sideNavBox div#DeltaPlaceHolderLeftNavBar{display:none;}*/

/* Content Area */

 #contentBox{

 min-width: 0px;

 margin: 0px;

 padding: 0px 10px;

 border: 1px #FFF solid;

 background-color: transparent;

 border: none !important;

 }

 #layoutsTable td{display: inline-block !important; float: left !important; width: 100% !important;}

 #layoutsTable .ms-wiki-columnSpacing{padding: 0px;}

 #layoutsTable td td{display: table-cell !important; float: none !important; width: auto !important;}

 .ms-rte-layoutszone-outer{display: block;}

 .ms-promlink-root{display: none;}

 .ms-microfeed-fullMicrofeedDiv{min-height:72vh;} /* The height of this section has to be minimum of this size, to let the "Desktop version" link be at the bottom

even if there are no feeds listed. */

 .ms-hashTagProfile-mainColumn{min-height:73.3vh;} /* Feeds with same hashtag: the height of this section has to be minimum of this size, to let the "Desktop version"

link be at the bottom even if there are no feeds listed. */

 .ms-microfeed-fullMicrofeedDiv, .ms-microfeed-siteFeedMicroBlogPart, .ms-microfeed-feedPart, .ms-microfeed-rootText, .ms-microfeed-replyArea, .ms-microfeed-newReplyDiv{min-

width: 0px !important;}

 .ms-microfeed-message{padding-right: 0px;}

 .ms-viewlsts{

 border: 0px #FFF solid;

 background-color: transparent;

 margin: 0px;

 }

 .lm_wb_webzone-title{

 font-size: 1.5em !important;

167

 border-bottom: 1px #FFF solid;

 padding: 0px 0px 5px 0px;

 }

 .ms-webpart-titleText.ms-webpart-titleText,

 .ms-webpart-titleText > a{

 font-size: 1.3em !important;

 font-weight: normal;

 }

 .ms-webpart-titleText.ms-webpart-titleText{

 border-bottom: 1px #FFF solid;

 padding: 0px 0px 5px 0px;

 }

 .lm_wb_webzone-content{padding: 5px 0px 0px 0px;}

 .ms-headerCellStyleIcon, .ms-vb-imgFirstCell{display: none;}

 /* Resizing the little icon image on the left of "Show all x replies" when a conversation has more than 2 replies. */

 span.ms-microfeed-moreRepliesImageParent{width:28px;height:28px; margin-bottom:2px; margin-right:10px;}

 span.ms-microfeed-moreRepliesImageParent img.ms-microfeed-moreRepliesImageDown{

 width: 900px !important;

 height:900px !important;

 top: -2896% !important;

 left:-904% !important;

 }

 span.ms-microfeed-moreRepliesImageParent img.ms-microfeed-moreRepliesImageUp{

 width: 900px !important;

 height:900px !important;

 top: -1680% !important;

 left:-2376% !important;

 }

/*************** CSS of the REPLY area ****************/

 .ms-microfeed-replyArea{padding-left:16.3%; max-width:16em;} /* Moving the whole reply area. */

 .ms-microfeed-replyArea .ms-microfeed-userThumbnailAreaRootPadding, .ms-microfeed-replyArea .ms-microfeed-userThumbnailAreaReplyPadding{padding-top: 0px;}

 .ms-microfeed-replyArea .ms-microfeedReplyContent{margin-left:3.5em;} /* Moving the textarea with post buttons. */

 .ms-microfeed-replyArea .ms-microfeed-postButton{font-size:0.6em;} /* Changin the font size in the post button. */

 .ms-microfeed-replyArea .ms-microfeed-focusBox{width:99.5%; margin-top:2px;} /* Enlarging the textarea. */

 .ms-microfeed-replyArea .ms-microfeed-postBox{width: 98% !important; color: black;} /* Changing the reply's textarea. */

 .ms-microfeed-replyArea .ms-microfeed-postBox.ms-textSmall.ms-helperText.ms-microfeed-rootOrReplyPostBox{height:64px;}

 /* Enlarging the camera icon below it that is used to upload a picture with the feed. */

 .ms-microfeed-replyArea span.ms-microfeed-addImageButtonImageParent{width:50px;height:45px;} /* Enlarging the container. */

 .ms-microfeed-replyArea span.ms-microfeed-addImageButtonImageParent img{ /* Enlarging the image. */

 width:800px;

 height:800px;

 position:relative;

 top:-640px;

 left:-320px;

 }

/*************** CSS for the "About" webpage of a User on Social ****************/

 /* Modifying the CSS of the title when the User looks at somebody else's page. */

 #mysite-titlerow{margin-bottom:6em; margin-left:-5px;}

 div.ms-profile-aboutMe div.ms-askMeAbout-aboutMe{text-indent:-9999px; margin-bottom:4em;} /* Hiding the text but not the whole section saying: "Tell others

about yourself and share your areas of expertise by editing your profile.". It is used in this case to add empty space between the title ("About Marco...") and the feeds. This section is

present only in the user's About webpage. */

 div.ms-askMeAbout-valuesFiveOrLess{text-indent:-9999px; margin-bottom:4em;} /* Hiding the text but

not the whole section saying: "Tell others about yourself and share your areas of expertise by editing your profile.". It is used in this case to add empty space between the title ("About

Bruno...") and the feeds. This section is present only in the others About webpages. */

 div.ms-profile-image{background-color:white;} /* div containing the image. */

 img.ms-profile-image{height:190px; margin-left:5%;} /* the profile picture. */

 h2#ms-currentFeedLabel{display:none;} /* Hiding the string that says like "Marco Xyyy activities...". */

 .ms-profile-profileInfo{position:absolute; left:0.3em; top:1.9em; word-wrap:break-word; -ms-word-break: break-all;}

 div#WebPartWPQ6_ChromeTitle{display:none !important;} /* Hiding the "In common" string next to the "About Marco ..." one.

 .ms-askMeAbout-aboutMe{width:20em;} /* Enlargin the section with the "Tell others about yourself and..." text on top of the page, right below the

title. */

 #ms-titlebararea{margin-bottom:1em;} /* Adding some space below the string "[User name]'s Activities". */

 #WebPartWPQ5 #ProfileViewer_ValueProperties{display:none;} /* Hiding the "SHOW MORE" option below the information fields below the title. */

 .ms-microfeed-seeMoreThreadsDiv{left:-52%;}

/*************** Modifying the appearance of the pop-up window used to UPLOAD A PICTURE with the feed ****************/

 div.ms-dlgContent{width: 80% !important; height:11em !important; top: 20% !important; left: 10% !important;} /* Expanding the whole area. This section has the outer

white background. */

 div.ms-dlgContent div.ms-dlgBorder{width:100% !important; height: 100% !important; margin-left:35px;} /* Expanding the sub-parent section. */

 div.ms-srch-hover-postPersona{padding-right:20px;} /* Increasing the distance between profile image and feed text. */

 div.ms-dlgContent iframe{min-width:95%; width:95% !important; height:390px !important; margin-top: -1em;} /* Expanding the parent section that contains the

"Browse", the "Upload" and the "Cancel" buttons. This section has the inner white background (try to increase the 'height' to see it). */

 /* Resizing the "X" at the top-right corner of the pop-up window. */

 div.ms-dlgContent div.ms-dlgTitle span#dlgTitleBtns{display:none;} /* Hiding hte "X" button on the top-right corner of the pop-up window. The User can use the "Cancel"

button to go back to the main page. */

 html.ms-dialog body div#mysite-titlerow{display:none} /* If this section is shown it is placed from the browser on top of the button "Browse..." and it will make it

unclickable. */

 div.ms-dlgContent table.ms-main input#profileimagepickerinput{height:2em;} /* Increasing the height of the "Browse" button used to select the picture to upload on Social. */

 html.ms-dialog body{font-size: 2em !important;}

 html.ms-dialog #pageStatusBar{font-size: 1em !important;} /* Resizing the font in the status bar that can appear if the User clicks ont he "Upload" button before having

chose an image. */

 div.ms-dlgOverlay{width:100% !important;} /* Modifying the width of the overlay section that makes the background darker while the user chooses the image to upload. */

 html.ms-dialog body input[type="file"]{font-size: 1em; width:98%;} /* Resizing the "browse" element. */

 html.ms-dialog div.ms-core-form-bottomUploadButtonBox{margin-top: 50px}

 html.ms-dialog body input[type="button"].ms-ButtonHeightWidth{ /* Resizing the "Upload" and "Cancel" buttons. */

 font-size: 1em !important;

 padding-top:0.5em;

 padding-bottom:0.6em;

 margin-left:50px;

 }

168

 html.ms-dialog div.desktopOrMobileVersion{display:none;} /* Hiding the "Desktop version" link at the bottom. */

/*************** Modifying the appearance of the pop-up window used to UPLOAD A PICTURE with the feed ****************/

 div.ms-microfeed-confirmationDiv{max-width:80% !important; font-size:1.5em;}

 div.ms-microfeed-confirmationDiv button{font-size:0.5em;}

 div.ms-microfeed-confirmationDiv button.ms-microfeed-confirmationDivButton.ms-microfeed-cancelButton{margin-left:30px !important;}

/*************** SPECIFIC HASHTAG: Modifying the appearance of the window used to show the feeds containing a specific hashtag (es. #social). ****************/

 body div.ms-hashTagProfile-mainColumn{width:100%; margin-top:3em; word-wrap:break-word; -ms-word-break: break-all;} /* Defining new rules for the main section (with the

feeds). */

 div.ms-hashTagProfile-rightColumn{display:none;} /* Hiding the right column with "Add a related tag" and "SEE ALL". */

 div.ms-hashTagProfile-mainColumn div.ms-srch-item{width:95vw !important;} /* Adjusting the width of the feeds. */

 div.ms-hashTagProfile-mainColumn div.ms-srch-item-body{width:80%;} /* Adjusting the width of the main part of the feeds (the part without the profile

picture). */

 div.ms-hashTagProfile-mainColumn div.ms-srch-item-metadataContainer{width:24%;} /* Adjusting the width of the info on each feed which are displayed at the bottom-

right corner of the feed's space. */

 div.ms-hashTagProfile-mainColumn ul.cbs-List{width:3em !important;} /* This section expands its width when the user goes in all paging

pages except the first one. */

 div.ms-srch-hover-outerContainer{display:none !important;} /* This section of the page would show more details on the feed when the user goes hover it with the mouse. In the

Mobile version this area is hidden. */

 /* Enlarging the star icon at the left of the first string "(star)follow this #tag". */

 div.ms-hashTagProfile-mainColumn a#HashTagProfile_FollowTagLinkOption1 span{height:40px !important; width:40px !important; margin-bottom:11px;} /* Enlarging the parent

span. */

 div.ms-hashTagProfile-mainColumn a#HashTagProfile_FollowTagLinkOption1 span img.ms-hashTagProfile-followTag-img{height:240px !important; width:240px !important; margin-left:-

64px !important} /* Enlarging the image itself. */

 div.ms-hashTagProfile-mainColumn li#PagingImageLink{display:none;} /* Hding the small icons on the top-left of the page that are meant to allow the User to move

forward and back through the paging of the feeds. The User can anyway use a better designed link at the bottom centre of the page. */

 div.ms-hashTagProfile-mainColumn span.ms-srchnav-quotationopenglyph-span{width:22px; height:22px; margin-bottom: 7px;}

 div.ms-hashTagProfile-mainColumn span.ms-srchnav-quotationcloseglyph-span{width:22px; height:22px; margin-bottom: 7px;}

 div.ms-hashTagProfile-mainColumn span.ms-srchnav-quotationopenglyph-span img{width:200px; height:200px; left:-170px !important; top: -33px;}

 div.ms-hashTagProfile-mainColumn span.ms-srchnav-quotationcloseglyph-span img{width:200px; height:200px; left:-156px !important; top: -65px;}

 div.ms-hashTagProfile-mainColumn .ms-srch-result #Paging{margin: 45px 0 30px 7%;} /* Centering the paging numbered links (1 2 3). */

/* end of mobile CSS */

}

169

Appendix B

The code below regards the custom Resource Planning Tool integrated into

SharePoint.

File “customTimeline_newTaskForm.js”:

// Adding jQuery to the webpage

document.write('<script type="text/javascript" src="//code.jquery.com/jquery-1.11.0.min.js"></script>');

// Global variables that hold the names of the lists on SharePoint

var globalUsersListName = 'Users'; // The list containing the name of the User and the color to assign to it.

var globalEquipmentListName = 'Equipment';

var globalProjectsListName = 'Projects';

var globalTasksListName = 'Tasks';

// Calling the first function

ExecuteOrDelayUntilScriptLoaded(registerRenderer, 'clienttemplates.js'); // The first function launched

// The second function launched, after loading the file 'clienttemplates.js'.

function registerRenderer()

{

 var ctxForm = {};

 ctxForm.Templates = {};

 ctxForm.OnPreRender = OnPreRenderDocItemTemplate;

 ctxForm.OnPostRender = {};

 SPClientTemplates.TemplateManager.RegisterTemplateOverrides(ctxForm);

}

/******* Code regarding specifically the "New Task" form for a new task. ********/

// Function that will be called only once, when the page is loaded. It shrinks the Equipment list to consider only the elements related to the selected category.

function editNewTaskFormEquipment() {

 var listItemEnumerator = equipmentListItems.getEnumerator();

 var categories = document.querySelectorAll('[title="Equipment Category"]')[0];

 var categoriesIndex = categories.selectedIndex; // Chaching the HTML section with the categories' drop-down list

 var selectedCategory = categories[categoriesIndex].innerHTML; // Catching the selected element in the list

 categories.setAttribute("onchange", "onCategoryChange()"); // Setting an 'onchange' event that will ebtriggered everytime the chosen category changes.

 try{

 var removeButton = document.querySelectorAll('input[value="< Remove"]')[0];

 removeButton.setAttribute("onclick", "onCategoryChange()"); // Setting an 'onclick' event that will ebtriggered everytime some equipment is

removed from the list.

 }catch(e){}

 var equipmentDisplayedList = document.querySelectorAll('[title="Equipment Name"]')[0]; // Chaching the HTML section with the equipment' drop-down list

 if(equipmentDisplayedList == undefined || equipmentDisplayedList == null){

 equipmentDisplayedList = document.querySelectorAll('[title="Equipment Name possible values"]')[0];

 }

 equipmentDisplayedList.innerHTML = ''; // Clearing the equipment' list

 var item, equipmentName, category;

 var dropDownElement = ''; // The HTMl string that will be put in the equipment' drop-down list

 while (listItemEnumerator.moveNext()) {

 item = listItemEnumerator.get_current().$5_0.$1h_0.$m_dict; // The current examined item

 equipmentName = item.Title; // The Equipment name. E.g.: "AC mole #6"

 equipmentCategory = item.Parent_x0020_Category.$2e_1; // The Category in which the equipment is included. E.g.: "3-D Mapper Bench"

 equipmentID = item.ID; // The value associated with the task name. E.g.: 62

 if(equipmentCategory == selectedCategory){

 dropDownElement = '<option value="'+ equipmentID +'">'+ equipmentName +'</option>';

 equipmentDisplayedList.innerHTML += dropDownElement;

 }

 }

}

function onCategoryChange(){

 var listItemEnumerator = equipmentListItems.getEnumerator();

 var categories = document.querySelectorAll('[title="Equipment Category"]')[0];

 var categoriesIndex = categories.selectedIndex; // Chaching the HTML section with the categories' drop-down list

 var selectedCategory = categories[categoriesIndex].innerHTML; // Catching the selected element in the list

 var equipmentDisplayedList = equipmentDisplayedList = document.querySelectorAll('[title="Equipment Name possible values"]')[0]; // Chaching the HTML section with the

equipment' list

 equipmentDisplayedList.innerHTML = ''; // Clearing the equipment' list

 var chosenEquipmentArray = new Array(); // This array will contain the name of the equipment chosen from the User (so equipment put in the area ont he right).

 var chosenEquipmentList = document.querySelectorAll('[title="Equipment Name selected values"]')[0]; // Chaching the HTML section with the equipment' drop-down list

 for(var i=0; i<chosenEquipmentList.length; i++){

 chosenEquipmentArray.push(chosenEquipmentList[i].text);

 }

 var item, equipmentName, category;

170

 var dropDownElement = ''; // The HTMl string that will be put in the equipment' drop-down list

 while (listItemEnumerator.moveNext()) {

 item = listItemEnumerator.get_current().$5_0.$1h_0.$m_dict; // The current examined item

 equipmentName = item.Title; // The Equipment name. E.g.: "AC mole #6"

 equipmentCategory = item.Parent_x0020_Category.$2e_1; // The Category in which the equipment is included. E.g.: "3-D Mapper Bench"

 equipmentID = item.ID; // The value associated with the task name. E.g.: 62

 if(equipmentCategory == selectedCategory && chosenEquipmentArray.indexOf(equipmentName) == -1){

 dropDownElement = '<option value="'+ equipmentID +'" title="'+ equipmentName +'">'+ equipmentName +'</option>';

 equipmentDisplayedList.innerHTML += dropDownElement;

 }

 }

 var equipmentArea = document.querySelectorAll('[title="Equipment Name selected values"]')[0];

 for(var i=0; i<equipmentArea.length; i++){

 $(equipmentArea[i]).unbind();

 $(equipmentArea[i]).off();

 equipmentArea[i].ondblclick = onCategoryChange ;

 }

 /***** Modifying the category shown in the timeline. *****/

 updateCategoryInTimeline();

}

// This function is very wimilar to "onQuerySucceededEquipment()", but it handles the case in which every call tot he Server has already been made, so that we just have to use the global

variables already available for us.

function updateCategoryInTimeline(){

 // Resetting the global variables

 globalEquipmentArray = new Array();

 globalCategoriesArray = new Array();

 globalCustomTimelineEquipmentHTMLstring = '';

 var equipmentList = '<div style="float:left; margin-top: 42px;">';

 var numRows = 0; // Variable used to know the amount of rows to display.

 var firstItem = true; // Boolean to treat differently the first item of the array. It needs a greater padding-top.

 var listItemEnumerator = equipmentListItems.getEnumerator();

 var innerListItemEnumerator = equipmentListItems.getEnumerator();

 var category = '';

 var firstOfEquipment = true;

 var ua = window.navigator.userAgent;

 var msie = ua.indexOf("MSIE ") > -1 || !!navigator.userAgent.match(/Trident.*rv\:11\./); // "True" if the Browser is IE (with support for IE 11).

 var firefox = ua.toLowerCase().indexOf('firefox') > -1; // Detects any version of Firefox. "True" if we are using Firefox;

 while (listItemEnumerator.moveNext()) {

 var oListItem = listItemEnumerator.get_current();

 try{

 category = oListItem.get_item('Parent_x0020_Category').$2e_1;

 if(category != null && globalCategoriesArray.indexOf(category) == -1){ // If we have not met this category before...

 globalCategoriesArray.push(category); // We add it to the 'globalCategoriesArray'

 // setting local variables

 var equipmentName, innerListItem;

 var tempEquipmentString = '';

 var firstOfCategory = true;

 innerListItemEnumerator = equipmentListItems.getEnumerator(); // Resetting the 'innerListEnumerator'

 // Reading the selected category from the drop-down list in the webpage

 var categories = document.querySelectorAll('[title="Equipment Category"]')[0];

 var categoriesIndex = categories.selectedIndex; // Chaching the HTML section with the categories' drop-

down list

 var selectedCategory = categories[categoriesIndex].innerHTML; // Catching the selected element in the list

 // Seek for every equipment belonging to that category and add it to the HTML string.

 while(innerListItemEnumerator.moveNext()){

 var innerListItem = innerListItemEnumerator.get_current();

 if(category !== selectedCategory){ continue; }

 if(category == innerListItem.get_item('Parent_x0020_Category').$2e_1){ // If the currently considered category

 equipmentName = innerListItem.get_item('Title');

 globalEquipmentArray.push(equipmentName); // Memorizing the name of the Equipment. We will need it later while

displaying the Tasks in the timeline

 var stringHeight;

 if(msie || firefox){ // If IE or Firefox...

 stringHeight = 9;

 }else{

 stringHeight = 22;

 }

 if(firstOfCategory){ // If it is the first element of a category...

 if(firstOfEquipment){ // If it is the first line of equipment to be written (in absolute)...

 tempEquipmentString += '<p id="categoriesList" style="padding:0; margin-top:3px; margin-left:-

110px; height:'+ stringHeight +'px; -webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;"><span style="display:inline-block; margin-top:11px; width:120px;" title="'+

category +'">' +category + ' <span style="display:inline-block; margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden; margin-bottom: -3px;"

title="'+ equipmentName +'">' + equipmentName +'</p>';

 firstOfEquipment = false;

 }else{

 tempEquipmentString += '<p id="categoriesList" style="padding:0; margin-left:-110px; height:'+

stringHeight +'px; -webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;">'

+category + ' <span style="display:inline-block; margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden; margin-bottom: -3px;" title="'+

equipmentName +'">' + equipmentName +'</p>';

 }

 firstOfCategory = false; // This has to be done in any case

 }else{

 tempEquipmentString += '<p id="categoriesList" style="padding:0; margin-left:-110px; height:'+ stringHeight +'px;

-webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;"> <span style="display:inline-block;

margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden;" title="'+ equipmentName +'">' + equipmentName +'</p>';

 }

 numRows++; // Increasing the rows' counter (Used to set the height of the Timeline with the Tasks)

 }

171

 }

 equipmentList += tempEquipmentString;

 }

 }catch(e){}

 }

 equipmentList += '</div>';

 // Passing the local variables' values to the global ones.

 globalCustomTimelineEquipmentHTMLstring = equipmentList;

 // Re-populating the timeline

 onQuerySucceededTasks();

}

/********* Timeline customization code: through this code we can display the timeline above the "New Task" form and then launch the code above. *********/

// The system tries to prerender 3 times.

// The first one is useless in Chrome and Firefox (it is useful in IE), it gives us no data from the Server, so we can avoid it. After that call on Firefox it works fine, while on Chrome

the system gives us the error:

// Uncaught Error: The collection has not been initialized. It has not been requested or the request has not been executed. It may need to be explicitly requested.

// but it does not matter. The code makes the third call that solves the problem even on Chrome.

var firstCallAlreadyMade = false;

function OnPreRenderDocItemTemplate(renderCtx) {

 SP.SOD.executeOrDelayUntilScriptLoaded(loadContext, 'sp.js');

 function loadContext() {

 var ua = window.navigator.userAgent;

 var msie = ua.indexOf("MSIE ") > -1 || !!navigator.userAgent.match(/Trident.*rv\:11\./); // "True" if the Browser is IE (with support for IE

11).

 if(msie){

 checkSituationAndLunch();

 }else{

 if(firstCallAlreadyMade == false){

 checkSituationAndLunch();

 firstCallAlreadyMade = true;

 }

 }

 }

}

function checkSituationAndLunch(){

 try{

 // This control has been implemented since for some actions SharePoint refreshes the webparts without refreshing the whole webpage.

 // We are talking about operations like expanding or collapsing a Group of Tasks.

 if(document.getElementById("innerTimeline")){ // If the timeline is already in the webpage...

 return; // Do not add code to the timeline.

 }

 // Reading the Equipment and the Categories from SharePoint

 retrieveEquipmentAndCategories();

 }catch(e){ return; }

}

// Retrieving information on every equipment and every category from SharePoint.

function retrieveEquipmentAndCategories() {

 /* In the "New Task" form this function is called many times and the variable "equipmentListItems" is re-written for many times.

 * This leads to a race condition when the first sequence of function tries in the code to read some data from it in order to display the "Equipment" and their "Categories",

 * thus causing, some times, to find the resource locked and so having as output the HTML section thought for the equipment empty. */

 if (this.equipmentListItems != null && this.equipmentListItems != undefined){

 return;

 }

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx

 // We want something like "https://espace2013.cern.ch/test-Timeline"

 // Correcting the URL (if necessary)

 if(siteUrl == null || siteUrl == undefined){ siteUrl = window.location.href; }

 var numSlashes = 0;

 for(var i=0; i<siteUrl.length; i++){

 if(siteUrl[i] == '/'){

 numSlashes++;

 if(numSlashes == 4){

 siteUrl = siteUrl.substring(0, i);

 break;

 }

 }

 }

 var clientContext = new SP.ClientContext(siteUrl);

 var oList = clientContext.get_web().get_lists().getByTitle(globalEquipmentListName);

 var camlQuery = new SP.CamlQuery();

 camlQuery.set_viewXml('<View><Query><Where>' +

 '</Where></Query></View>');

 this.equipmentListItems = oList.getItems(camlQuery);

 clientContext.load(equipmentListItems);

 clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededEquipment), Function.createDelegate(this, this.onQueryFailed));

}

// Global variables for categories and equipment

var globalEquipmentArray = new Array(); // This global variable will keep the names of the Equipment to let the User change timespan in the timeline if needed, without

recalling the Server for this information.

var globalCategoriesArray = new Array(); // This global variable will keep the names of the Categories.

172

var globalCustomTimelineEquipmentHTMLstring = '';

function onQuerySucceededEquipment(){

 // Resetting the global variables

 globalEquipmentArray = new Array();

 globalCategoriesArray = new Array();

 globalCustomTimelineEquipmentHTMLstring = '';

 var equipmentList = '<div style="float:left; margin-top: 42px;">';

 var numRows = 0; // Variable used to know the amount of rows to display.

 var firstItem = true; // Boolean to treat differently the first item of the array. It needs a greater padding-top.

 var listItemEnumerator = equipmentListItems.getEnumerator();

 var innerListItemEnumerator = equipmentListItems.getEnumerator();

 var category = '';

 var firstOfEquipment = true;

 var ua = window.navigator.userAgent;

 var msie = ua.indexOf("MSIE ") > -1 || !!navigator.userAgent.match(/Trident.*rv\:11\./); // "True" if the Browser is IE (with support for IE 11).

 var firefox = ua.toLowerCase().indexOf('firefox') > -1; // Detects any version of Firefox. "True" if we are using Firefox;

 while (listItemEnumerator.moveNext()) {

 var oListItem = listItemEnumerator.get_current();

 try{

 category = oListItem.get_item('Parent_x0020_Category').$2e_1;

 if(category != null && globalCategoriesArray.indexOf(category) == -1){ // If we have not met this category before...

 globalCategoriesArray.push(category); // We add it to the 'globalCategoriesArray'

 // setting local variables

 var equipmentName, innerListItem;

 var tempEquipmentString = '';

 var firstOfCategory = true;

 innerListItemEnumerator = equipmentListItems.getEnumerator(); // Resetting the 'innerListEnumerator'

 // Reading the selected category from the drop-down list in the webpage

 var categories = document.querySelectorAll('[title="Equipment Category"]')[0];

 var categoriesIndex = categories.selectedIndex; // Chaching the HTML section with the categories' drop-

down list

 var selectedCategory = categories[categoriesIndex].innerHTML; // Catching the selected element in the list

 // Seek for every equipment belonging to that category and add it to the HTML string.

 while(innerListItemEnumerator.moveNext()){

 var innerListItem = innerListItemEnumerator.get_current();

 if(category !== selectedCategory){ continue; }

 if(category == innerListItem.get_item('Parent_x0020_Category').$2e_1){ // If the currently considered category

 equipmentName = innerListItem.get_item('Title');

 globalEquipmentArray.push(equipmentName); // Memorizing the name of the Equipment. We will need it later while

displaying the Tasks in the timeline

 var stringHeight;

 if(msie || firefox){ // If IE or Firefox...

 stringHeight = 9;

 }else{

 stringHeight = 22;

 }

 if(firstOfCategory){ // If it is the first element of a category...

 if(firstOfEquipment){ // If it is the first line of equipment to be written (in absolute)...

 tempEquipmentString += '<p id="categoriesList" style="padding:0; margin-top:3px; margin-left:-

110px; height:'+ stringHeight +'px; -webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;"><span style="display:inline-block; margin-top:11px; width:120px;" title="'+

category +'">' +category + ' <span style="display:inline-block; margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden; margin-bottom: -3px;"

title="'+ equipmentName +'">' + equipmentName +'</p>';

 firstOfEquipment = false;

 }else{

 tempEquipmentString += '<p id="categoriesList" style="padding:0; margin-left:-110px; height:'+

stringHeight +'px; -webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;">'

+category + ' <span style="display:inline-block; margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden; margin-bottom: -3px;" title="'+

equipmentName +'">' + equipmentName +'</p>';

 }

 firstOfCategory = false; // This has to be done in any case

 }else{

 tempEquipmentString += '<p id="categoriesList" style="padding:0; margin-left:-110px; height:'+ stringHeight +'px;

-webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;"> <span style="display:inline-block;

margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden;" title="'+ equipmentName +'">' + equipmentName +'</p>';

 }

 numRows++; // Increasing the rows' counter (Used to set the height of the Timeline with the Tasks)

 }

 }

 equipmentList += tempEquipmentString;

 }

 }catch(e){}

 }

 equipmentList += '</div>';

 // Passing the local variables' values to the global ones.

 globalCustomTimelineEquipmentHTMLstring = equipmentList;

 // Calling the next function for the retrieval of the Projects

 retrieveProjects();

}

function retrieveProjects(){

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx

 // We want something like "https://espace2013.cern.ch/test-Timeline"

 // Correcting the URL (if necessary)

 if(siteUrl == null || siteUrl == undefined){ siteUrl = window.location.href; }

 var numSlashes = 0;

 for(var i=0; i<siteUrl.length; i++){

 if(siteUrl[i] == '/'){

 numSlashes++;

173

 if(numSlashes == 4){

 siteUrl = siteUrl.substring(0, i);

 break;

 }

 }

 }

 var clientContext = new SP.ClientContext(siteUrl);

 var oList = clientContext.get_web().get_lists().getByTitle(globalProjectsListName);

 var camlQuery = new SP.CamlQuery();

 camlQuery.set_viewXml('<View><Query><Where>' +

 '</Where></Query></View>');

 this.projectListItems = oList.getItems(camlQuery);

 clientContext.load(projectListItems);

 clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededProjects), Function.createDelegate(this, this.onQueryFailed));

}

var globalProjectsArray = new Array(); // This global variable will keep the names of the Projects and their associated colors.

function onQuerySucceededProjects(){

 // Variables necessary to read the query results

 var listItemEnumerator = projectListItems.getEnumerator();

 var innerListItemEnumerator = projectListItems.getEnumerator();

 var project, color;

 while (listItemEnumerator.moveNext()) {

 var oListItem = listItemEnumerator.get_current();

 try{

 project = oListItem.get_item('Title');

 color = oListItem.get_item('Color');

 globalProjectsArray.push({'projectName':project, 'projectColor':color});

 }catch(e){}

 }

 // Calling the next function for the retrieval of the Users

 retrieveUsers();

}

function retrieveUsers(){

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx

 // We want something like "https://espace2013.cern.ch/test-Timeline"

 // Correcting the URL (if necessary)

 if(siteUrl == null || siteUrl == undefined){ siteUrl = window.location.href; }

 var numSlashes = 0;

 for(var i=0; i<siteUrl.length; i++){

 if(siteUrl[i] == '/'){

 numSlashes++;

 if(numSlashes == 4){

 siteUrl = siteUrl.substring(0, i);

 break;

 }

 }

 }

 var clientContext = new SP.ClientContext(siteUrl);

 var oList = clientContext.get_web().get_lists().getByTitle(globalUsersListName);

 var camlQuery = new SP.CamlQuery();

 camlQuery.set_viewXml('<View><Query><Where>' +

 '</Where></Query></View>');

 this.userListItems = oList.getItems(camlQuery);

 clientContext.load(userListItems);

 clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededUsers), Function.createDelegate(this, this.onQueryFailed));

}

var globalUsersArray = new Array(); // This global variable will keep the names of the Users (saved in a list on SharePoint).

function onQuerySucceededUsers(){

 // Variables necessary to read the query results

 var listItemEnumerator = userListItems.getEnumerator();

 var innerListItemEnumerator = userListItems.getEnumerator();

 var user, color;

 while (listItemEnumerator.moveNext()) {

 var oListItem = listItemEnumerator.get_current();

 try{

 user = oListItem.get_item('User');

 color = oListItem.get_item('Color');

 globalUsersArray.push({'userName':user, 'userColor':color});

 }catch(e){}

 }

 // Calling the next function for the retrieval of the Tasks

 retrieveTasksListItems();

}

// Retrieving information about each of the Tasks and adding them to the Timeline

function retrieveTasksListItems(){

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx

 // We want something like "https://espace2013.cern.ch/test-Timeline"

 // Correcting the URL (if necessary)

 if(siteUrl == null || siteUrl == undefined){ siteUrl = window.location.href; }

 var numSlashes = 0;

 for(var i=0; i<siteUrl.length; i++){

 if(siteUrl[i] == '/'){

 numSlashes++;

 if(numSlashes == 4){

 siteUrl = siteUrl.substring(0, i);

 break;

 }

 }

174

 }

 var clientContext = new SP.ClientContext(siteUrl);

 var oList = clientContext.get_web().get_lists().getByTitle(globalTasksListName);

 var camlQuery = new SP.CamlQuery();

 camlQuery.set_viewXml('<View><Query><Where>' +

 '</Where></Query></View>');

 this.tasksListItems = oList.getItems(camlQuery);

 clientContext.load(tasksListItems);

 clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededTasks), Function.createDelegate(this, this.onQueryFailed));

}

function onQueryFailed(sender, args) {

 alert("There has been a problem communicating with the Server. Please try again later.");

 console.log('Request failed. ' + args.get_message() + '\n' + args.get_stackTrace());

}

// Reading the Tasks saved in the timeline

var addTasksToTimelineFlag = false; // This variable will tell the system if the function "addTasksToTimeline" has already been called at least once or not.

function onQuerySucceededTasks(){

 var numRows = globalEquipmentArray.length;

 var equipmentHTMLstring = globalCustomTimelineEquipmentHTMLstring;

 // Deleting the previously shown timeline (if present)

 try{

 var temp = document.getElementById('timelineArea');

 temp.parentNode.removeChild(temp);

 }catch(e){}

 // Catching the area for the timeline in the HTML code

 var timelineArea = $('div[id^="MSOZoneCell_"]')[0]; // Chatching the HTMl section in which we want to add the customized timeline

 // e.g.: id="MSOZoneCell_WebPart"...WPQ3"

 $(timelineArea).prepend('<div id="timelineArea"></div>');

 timelineArea = document.getElementById("timelineArea");

 // Modifying the CSS for the section to include the Rows on the Left of the Timeline.

 // (if dynamic width) Each character equals 0.7em, so the amount of space on the left has to be 0.7*maxNumCharacters.

 timelineArea.style.paddingLeft = "120px"; //(0.7*maxNumCharacters) + 'em'; // Making space on the left of the Timeline for the Rows' titles.

 timelineArea.style.height = ((22*numRows)+70) + 'px'; // Expanding the area including the timeline to push down the rest of the webpage (the list containing the Tasks).

 // Creating some radio buttons to enable the User to change the timespan of the timeline

 var radioButtons = 'Timespan <input type="radio" onclick="addTasksToTimeline(7, 1060);" name="time span" value="Week"

checked>Week ' +

 '<input type="radio" onclick="addTasksToTimeline(15, 1060, null);"

name="time span" value="2 Weeks">2 Weeks ' +

 '<input type="radio" onclick="addTasksToTimeline(31, 1060, null);"

name="time span" value="Month">Month ' +

 '<input type="radio" onclick="addTasksToTimeline(90, 1060, null);"

name="time span" value="3 Month">3 Months ' +

 '<input type="radio" onclick="addTasksToTimeline(210, 1060, null);"

name="time span" value="7 Month">7 Months ' +

 '<input type="radio" onclick="addTasksToTimeline(365, 1060, null);"

name="time span" value="Year">Year ' +

 '

                ' +

 'Color ' +

 '<input type="radio"

onclick="colorTasksInTimeline(\'colorByProject\');" name="color choice" value="Color the tasks by Project" checked>by Project ' +

 '<input type="radio"

onclick="colorTasksInTimeline(\'colorByUser\');" name="color choice" value="Color the tasks by User">by User ' +

 '';

 // Adding the resources found in the list as rows in the Timeline

 var resourcesSection = document.getElementById("timelineRadioButtons");

 if(resourcesSection == undefined || resourcesSection == null){ // If there is our custom Resources list and the rows have not yet been added...

 timelineArea.innerHTML = radioButtons + equipmentHTMLstring + '<div id="timeline"></div>' + timelineArea.innerHTML;

 var timeline = document.getElementById('timeline');

 if(numRows > 1){

 timeline.style.height = ((22*numRows)-2) + 'px'; // Enlarging the height of the timeline in order to have one line for each Resource.

 // The last line will not need a white space below it. That's why we take out 2px fromt he result.

 }else{

 timeline.style.height = '20px'; // Enlarging the height of the timeline in order to have one line for each Resource.

 }

 var timelineWidth = 1060;

 timeline.style.width = timelineWidth + 'px'; // Manually setting the width of the timeline to override the behaviour of SharePoint, which would expand the

timeline according to the width of the page.

 timeline.style.display = "inline";

 }

 // Reading the selected category from the drop-down list in the webpage

 var categories = document.querySelectorAll('[title="Equipment Category"]')[0];

 var categoriesIndex = categories.selectedIndex; // Chaching the HTML section with the categories' drop-down list

 var selectedCategory = categories[categoriesIndex].innerHTML; // Catching the selected element in the list

 /******* Adding our code to the timeline. *******/

 var numOfDaysInTimeline=7;

 addTasksToTimeline(numOfDaysInTimeline, timelineWidth, selectedCategory, 'colorByProject');

 /******* We are also ready to modify the equipment present in the drop-down list of the "New Task" form. *******/

 editNewTaskFormEquipment();

}

// This function will color the tasks in the timeline according to the equipment or the personnel.

function colorTasksInTimeline(colorRule){

 var timelineWidth = document.getElementById('timeline').style.width;

 var numOfDaysInTimeline = 7; // Initializing the variable for the consistency check

175

 var radioButtons = document.getElementById('timelineRadioButtons').getElementsByTagName('input');

 var numOfDaysArray = [7, 15, 31, 90, 210, 365]; // Defining the array containing the number of days considered for each possible time span

 for(var i=0; i<radioButtons.length; i++){

 if(radioButtons[i].checked){

 numOfDaysInTimeline = numOfDaysArray[i];

 break;

 }

 }

 // Reading the selected category from the drop-down list in the webpage

 var categories = document.querySelectorAll('[title="Equipment Category"]')[0];

 var categoriesIndex = categories.selectedIndex; // Chaching the HTML section with the categories' drop-down list

 var selectedCategory = categories[categoriesIndex].innerHTML; // Catching the selected element in the list

 if(colorRule == 'colorByProject'){

 addTasksToTimeline(numOfDaysInTimeline, timelineWidth, selectedCategory, 'colorByProject');

 }else{

 addTasksToTimeline(numOfDaysInTimeline, timelineWidth, selectedCategory, 'colorByUser');

 }

}

// This function will add the tasks read from the Server to the timeline "manually" (instead of using the SharePoint's disposition.

function addTasksToTimeline(numOfDaysInTimeline, timelineWidth, selectedCategory, colorRule){

 // Checking the input

 if(typeof(numOfDaysInTimeline) == 'string'){ numOfDaysInTimeline = parseInt(numOfDaysInTimeline); }

 if(typeof(timelineWidth) == 'string'){ timelineWidth = parseInt(timelineWidth); }

 if(selectedCategory == null || selectedCategory == undefined){

 // Reading the selected category from the drop-down list in the webpage

 var categories = document.querySelectorAll('[title="Equipment Category"]')[0];

 var categoriesIndex = categories.selectedIndex; // Chaching the HTML section with the categories' drop-down list

 var selectedCategory = categories[categoriesIndex].innerHTML; // Catching the selected element in the list

 }

 var siteUrl = document.URL;

 // Correcting the URL (if necessary)

 if(siteUrl == null || siteUrl == undefined){ siteUrl = window.location.href; }

 var numSlashes = 0;

 for(var i=0; i<siteUrl.length; i++){

 if(siteUrl[i] == '/'){

 numSlashes++;

 if(numSlashes == 4){

 siteUrl = siteUrl.substring(0, i);

 break;

 }

 }

 }

 var timeline = document.getElementById('timeline');

 /****** If the User clicks on the timeline radio buttons we have to read which radio button ******/

 if(colorRule == null){

 // Reading the color rule to apply to the tasks

 var radioButtons = document.getElementById('colorRadioButtons').getElementsByTagName('input'); // The radio buttons for the color rules

 if(radioButtons[0].checked){ // If the first radio button is checked...

 colorRule = 'colorByProject';

 }else{

 colorRule = 'colorByUser';

 }

 }

 /******* This piece of code will be used to refresh the timeline when selecting different time spans (e.g.: 1 week, 2 week, 1 month etc...). *******/

 // only if the timeline is set as "shown" from SharePoint. If "hidden" we can work without it.

 var indexOfTasks = timeline.innerHTML.indexOf('<div class="ms-tl-today"');

 if(indexOfTasks > -1){ // Using "timeline" as first variable in the next line does not work. We have to re-catch the HTML section.

 timeline.innerHTML = timeline.innerHTML.substring(0, indexOfTasks); // We are deleting the tasks that were in the

 }else{ // If the "Today"'s flag is not present...

 indexOfTasks = timeline.innerHTML.indexOf('<div class="timeline-dates"');

 if(indexOfTasks > -1){

 timeline.innerHTML = timeline.innerHTML.substring(0, indexOfTasks); // We are deleting the tasks that were in the

 }

 }

 // Defining the dates to write on the X axis of the timeline

 var datesStrings = new Array();

 var today = new Date();

 var timeSpan; // It will signal to the createDateString() function the kind of string we want in output.

 if(numOfDaysInTimeline == 7){ timeSpan = 'week'; }

 else{

 if(numOfDaysInTimeline == 15){ timeSpan = 'twoWeeks'; }

 else{

 if(numOfDaysInTimeline == 31){ timeSpan = 'month'; }

 else{

 if(numOfDaysInTimeline == 90){

 // Re-calculating the number of days int he three months according to the months considered.

 numOfDaysInTimeline = daysInMonth(today.getMonth(),today.getFullYear()); // Adding the days in this month

 today.setDate(1);

 today.setMonth(today.getMonth() -1);

 numOfDaysInTimeline += daysInMonth(today.getMonth(),today.getFullYear()); // Adding the days in the previous

month

 today.setMonth(today.getMonth() +1);

 today.setMonth(today.getMonth() +1);

 numOfDaysInTimeline += daysInMonth(today.getMonth(),today.getFullYear()); // Adding the days in the following

month

 today = new Date(); // Resetting 'today'

 timeSpan = 'threeMonths'; }

 else{

176

 if(numOfDaysInTimeline == 210){ timeSpan = 'sevenMonths'; }

 else{

 if(numOfDaysInTimeline == 365){ timeSpan = 'year'; }

 else{ timeSpan = 'year'; }

 }

 }

 }

 }

 }

 // Adding the flag that signals today's date on the timeline

 /*

 if(timeSpan == 'week'){

 // "Today" label's code

 // I do not know why but SharePoint displays this label differently when adding it to the webpage the first time or some other time through Javascript and the

radio buttons.

 if(addTasksToTimelineFlag == false){ // If this is the first time that the function has been called...

 var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14; border-color:

rgb(0, 114, 198); height: 22px; top: 42px; left: -605px;"></div>' +

 '<div class="ms-tl-todayLabel" style="position:absolute; background-color:rgb(0,

114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: 23px; left: -628px; background-color: rgb(0, 114, 198);">Today</div>';

 timeline.innerHTML += todayLabel;

 }else{

 var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14; border-color:

rgb(0, 114, 198); height: 22px; top: -23px; left: 227px;"></div>' +

 '<div class="ms-tl-todayLabel" style="position:absolute; background-color:rgb(0,

114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: -42px; left: 204px; background-color: rgb(0, 114, 198);">Today</div>';

 timeline.innerHTML += todayLabel;

 }

 }else{

 if(timeSpan == 'twoWeeks'){

 // "Today" label's code

 var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14; border-color:

rgb(0, 114, 198); height: 24px; top: -24px; left: 106px;"></div>' +

 '<div class="ms-tl-todayLabel" style="position:absolute; background-color:rgb(0,

114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: -42px; left: 81px; background-color: rgb(0, 114, 198);">Today</div>';

 timeline.innerHTML += todayLabel;

 }else{

 if(timeSpan == 'month'){

 // "Today" label's code

 var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14;

border-color: rgb(0, 114, 198); height: 24px; top: -24px; left: 119px;"></div>' +

 '<div class="ms-tl-todayLabel" style="position:absolute;

background-color:rgb(0, 114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: -42px; left: 95px; background-color: rgb(0, 114, 198);">Today</div>';

 timeline.innerHTML += todayLabel;

 }

 }

 }

 */

 // Creating local variables

 var horizontalSectionWidth = timelineWidth/numOfDaysInTimeline; // We need to keep it as float, because when it comes to the "year" time span we

have to keep the decimal values to keep the result for the left margin of every section correct.

 var remainingHorizontalSpace = timelineWidth - (horizontalSectionWidth*numOfDaysInTimeline);

 var minDate = new Date();

 var maxDate = new Date();

 if(timeSpan == 'week'){

 // Saving the first date on the left and the last date ont he right of the timeline.

 minDate.setDate(today.getDate() -1); // The 10% of the timeSpan regards the past

 maxDate.setDate(today.getDate() + numOfDaysInTimeline-2); // The 90% of the timeSpan regards the future (90% less the present

day)

 today.setDate(today.getDate() - 2); // Bringing the today's date back to the first day of the timeline less one.

 for(var i=0; i<numOfDaysInTimeline; i++){

 today.setDate(today.getDate() + 1); // Updating the date object that we want to pass to the function

createDateString()

 datesStrings.push(createDateString(today, timeSpan)); //

Creating the dates strings passing to the function

 }

 }else{

 if(timeSpan == 'twoWeeks' || timeSpan == 'month'){

 // Saving the first date on the left and the last date ont he right of the timeline.

 minDate.setDate(today.getDate() -(Math.floor(numOfDaysInTimeline/10))); // The 10% of the timeSpan regards the past

 maxDate.setDate(today.getDate() + (Math.floor(numOfDaysInTimeline/10*9))); // The 90% of the timeSpan regards the future (90%

less the present day)

 today.setDate(today.getDate() - (Math.floor(numOfDaysInTimeline/10)+1)); // Bringing the today's date back to the first day of the timeline

less one.

 for(var i=0; i<numOfDaysInTimeline; i++){

 today.setDate(today.getDate() + 1); // Updating the date object that we want to pass to the function

createDateString()

 datesStrings.push(createDateString(today, timeSpan)); //

Creating the dates strings passing to the function

 }

 }else{

 if(timeSpan == 'threeMonths'){

 // Saving the first date on the left and the last date on the right of the timeline.

 // minDate = the present month

 minDate.setDate(1); // The first day of the present month

 maxDate = new Date();

 maxDate.setMonth(maxDate.getMonth() +3); // To have the maxDate set on the last day of the next month we can forward by 2

months and then move 1 day back.

 maxDate.setDate(1); // Setting the date on the first day of the month

 maxDate.setDate(maxDate.getDate() -1); // Going to the last day of the previous month for maxDate (two months ahead for

us).

 datesStrings.push(createDateString(minDate, timeSpan));

 minDate.setMonth(minDate.getMonth()+1);

 datesStrings.push(createDateString(minDate, timeSpan));

 minDate.setMonth(minDate.getMonth()-1); // Bringing the minDate back to its original date (for the future

operations that use this variable)

 datesStrings.push(createDateString(maxDate, timeSpan));

 }else{

177

 if(timeSpan == 'sevenMonths'){

 // Saving the first date on the left and the last date ont he right of the timeline.

 if(minDate.getDate() == 31){ minDate.setDate(30); } // We need this check because the next

function rewinds at most for 30 days (Javascript bug)

 minDate.setMonth(minDate.getMonth() -1);

 minDate.setDate(1); // The result will be the first day of the previous month.

 maxDate = new Date();

 maxDate.setMonth(maxDate.getMonth() +6); // To have the maxDate set on the last day of the next month we can

forward by 2 months and then move 1 day back.

 maxDate.setDate(1); // Setting the date on the first day of the month

 maxDate.setDate(maxDate.getDate() -1); // Going to the last day of the previous month for maxDate (next month

for us).

 if(maxDate.getMonth() === 'January'){ maxDate.setFullYear(minDate.getFullYear() +1) }

 datesStrings.push(createDateString(minDate, timeSpan));

 minDate.setMonth(minDate.getMonth()+1);

 datesStrings.push(createDateString(minDate, timeSpan));

 minDate.setMonth(minDate.getMonth()+1);

 datesStrings.push(createDateString(minDate, timeSpan));

 minDate.setMonth(minDate.getMonth()+1);

 datesStrings.push(createDateString(minDate, timeSpan)); // This month

 minDate.setMonth(minDate.getMonth()+1);

 datesStrings.push(createDateString(minDate, timeSpan));

 minDate.setMonth(minDate.getMonth()+1);

 datesStrings.push(createDateString(minDate, timeSpan));

 minDate.setMonth(minDate.getMonth()-5); // Bringing the minDate back to its original date (for

the future operations that use this variable)

 datesStrings.push(createDateString(maxDate, timeSpan));

 }else{

 if(timeSpan == 'year'){

 // Saving the first date on the left and the last date ont he right of the timeline.

 minDate = new Date(new Date().getFullYear(), 0, 1); // First of January

 maxDate = new Date(new Date().getFullYear(), 11, 31); // End of this Year

 datesStrings.push("January");

 datesStrings.push("February");

 datesStrings.push("March");

 datesStrings.push("April");

 datesStrings.push("May");

 datesStrings.push("June");

 datesStrings.push("July");

 datesStrings.push("August");

 datesStrings.push("September");

 datesStrings.push("October");

 datesStrings.push("November");

 datesStrings.push("December");

 }

 }

 }

 }

 }

 minDate.setHours(0);

 minDate.setMinutes(0);

 minDate.setSeconds(0);

 minDate.setMilliseconds(0);

 maxDate.setHours(0);

 maxDate.setMinutes(0);

 maxDate.setSeconds(0);

 maxDate.setMilliseconds(0);

 // Creating the HTML code for the X axis of the timeline (the dates)

 var datesAxisString = ''; // The dates for the X axis in the timeline

 var separatorsString = ''; // The string with the small vertical separators between the dates on the timeline

 var timelineNumColumns;

 if(timeSpan == 'week'){ timelineNumColumns = 7; }

 else{ if(timeSpan == 'twoWeeks'){ timelineNumColumns = 15; }

 else{ if(timeSpan == 'month'){ timelineNumColumns = 31; }

 else{ if(timeSpan == 'threeMonths'){ timelineNumColumns = 3; } // 3 months

 else{ if(timeSpan == 'sevenMonths'){ timelineNumColumns = 7; } // 7 months

 else{ if(timeSpan == 'year'){ timelineNumColumns = 12; }}}}}} // 12 months

 var sectionWidthInTimeline = Math.floor(timelineWidth/timelineNumColumns)-5; // Adjusting the width counting the padding-left property in the space sections

 for(var i=0; i<timelineNumColumns; i++){

 if(i==timelineNumColumns-1){

 datesAxisString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; font-family: \'Segoe UI\'; font-size: 8pt; float: left;

text-align: left; padding-left: 5px; padding-bottom: 5px; width: '+ (sectionWidthInTimeline+remainingHorizontalSpace) +'px;">'+ datesStrings[i] +'';

 separatorsString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; float: left; border-left-width: 1px; border-left-style: solid;

border-color: rgb(213, 213, 213); width: '+ (sectionWidthInTimeline+remainingHorizontalSpace+4) +'px;">';

 }else{

 datesAxisString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; font-family: \'Segoe UI\'; font-size: 8pt; float: left;

text-align: left; padding-left: 5px; padding-bottom: 5px; width: '+ sectionWidthInTimeline+'px;">'+ datesStrings[i] +'';

 separatorsString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; float: left; border-left-width: 1px; border-left-style:

solid; border-color: rgb(213, 213, 213); width: '+ (sectionWidthInTimeline+4) +'px;">';

 }

 }

 // The timeline is 1060px width, so we have to split this value in the number of subsections we want to create (es. number of days, hours of the day ecc...)

 // We are adding 220px to the left margin to make space for the categories and equipment.

 var timelineXaxis = '<div class="timeline-dates" style="width: '+ (timelineWidth+1) +'px; height:20px; margin-left:220px; left:0px; top:-20px; padding-right:28px;">' +

 '<div style="padding: 0px; left: 0px; top: 0px; overflow: hidden; position:inherit; height:

19px; background-repeat: repeat-x;"></div>' +

 '<div style="white-space:nowrap; overflow:hidden; position: relative; color: rgb(119, 119, 119);

border-bottom-width: 1px; border-bottom-style: hidden; border-bottom-color: rgb(119, 119, 119); height: 20px; top: 0px; left: 0px; margin-left: 2px;">' +

 datesAxisString +

 '</div>' +

 '<div style="white-space:nowrap; overflow:hidden; position:relative; color: rgb(119, 119, 119);

border-bottom-width: 1px; border-bottom-style: hidden; border-bottom-color: rgb(119, 119, 119); height: 10px; top: -16px; left: 0px; margin-left: 0px;">' +

 separatorsString +

 '</div>' +

 '</div>' +

178

 '<div id="innerTimeline" style="margin-left:220px; border:1px solid black; margin-top:13px;

position:relative;"></div>';

 // Adding the dates on the X axis to the timeline

 timeline.innerHTML += timelineXaxis;

 // Reading height and width of the timeline

 var timelineHeight = timeline.style.height;

 var timelineWidth = timeline.style.width;

 timeline = document.getElementById("innerTimeline");

 // Adjusting the height of the inner timeline

 timeline.style.height = timelineHeight; // Enlarging the height of the timeline in order to have one line for each Equipment

 timeline.style.width = timelineWidth;

 var listItemEnumerator = tasksListItems.getEnumerator(); // Resetting the enumerator

 var authorsArray = new Array(); // The array containing the names of the creators of the tasks

 var text = ''; // The HTML code of the task to add to the timeline

 while(listItemEnumerator.moveNext()){

 var oListItem = listItemEnumerator.get_current();

 var author = oListItem.get_item('Author');

 var project = oListItem.get_item('Project');

 var taskTitle = oListItem.get_item('Title');

 var assignedTo = oListItem.get_item('AssignedTo');

 var startDate = oListItem.get_item('StartDate');

 var dueDate = oListItem.get_item('DueDate');

 var equipmentCategory = oListItem.get_item('Equipment_x0020_Category');

 var equipmentName = oListItem.get_item('Equipment_x0020_Name');

 var amountOfMagnets = oListItem.get_item('Amount_x0020_of_x0020_magnets'); // The string "x0020" is a space in the SharePoint's list's property.

 var taskID = oListItem.get_item('ID');

 var contentTypeId = oListItem.get_item('ContentTypeId').$c_1;

 var listId = tasksListItems.get_path().get_$1O_0().$r_1; // Here we get a string with a lot of information. E.g.: "740c6a0b-85e2-48a0-a494-

e0f1759d4aa7:site:5224dfee-cb44-4a8b-ada7-ed36f701eb5f:web:35c8c320-4179-49d9-9bd6-325be8036e6b:list:08e544cf-2b93-4378-b3bd-16ca91cae1e9"

 var idIndex = listId.indexOf("list:"); // Reading where the ID of the list

starts in the string.

 var equipmentArray = new Array(); // This array will contain, if necessary, the array of equipment. If not used its length will be =

0.

 // Taking only the "listId" and Formatting it for the EditItem2() method that will be created later.

 listId = listId.substring(idIndex + 5, listId.length); // Keeping only the ID of the list.

 listId = listId.toUpperCase().replace(/-/g, '%2D');

 listId = '%7B' + listId +'%7D';

 // Consistency checks and updates

 if(author != null){ author = author.$2e_1; }

 if (project != null && project != undefined){ project = project.$2e_1; }

 if (equipmentCategory != null && equipmentCategory != undefined){ equipmentCategory = equipmentCategory.$2e_1; }

 if (equipmentName != null && equipmentName != undefined){

 // We are considering both the possibilities for 'single equipment' or 'list of equipment' (when on SharePoint the element can have "multiple values").

 if(equipmentName.$2e_1 != null && equipmentName.$2e_1 != undefined){

 equipmentName = equipmentName.$2e_1;

 }else{

 equipmentArray = equipmentName; // 'equipmentName' is an array of equipment

 }

 }

 if(assignedTo != null && assignedTo != undefined){

 // We are considering both the possibilities for 'single user' or 'list of users' (when on SharePoint the element can have "multiple values").

 if(assignedTo.$2e_1 != null && assignedTo.$2e_1 != undefined){

 assignedTo = ' - ' + assignedTo.$2e_1;

 }else{

 // It is a list of people

 assignedTo = ' - ' + assignedTo[0].$2e_1;

 }

 }

 if(amountOfMagnets == null || amountOfMagnets == undefined){ amountOfMagnets = 0; }

 amountOfMagnets = '#' + amountOfMagnets;

 var authorIndex = authorsArray.indexOf(author);

 if(authorIndex == -1 || authorIndex == undefined || authorIndex == null){ // If the author's name is not yet in the array...

 authorsArray.push(author); // Adding the author's name

 authorIndex = authorsArray.indexOf(author); // Recreating the index (which will now be >-1)

 }

 if(equipmentArray.length > 0){

 for(var tempEquipmentIndex=0; tempEquipmentIndex<equipmentArray.length; tempEquipmentIndex++){

 equipmentName = equipmentArray[tempEquipmentIndex].$2e_1; // Reading the current equipment in the array of equipment related to

this task.

 var equipmentIndex = globalEquipmentArray.indexOf(equipmentName);

 // If this element have an equipment assigned to it and If the task is not set for some dates outside the timeline we can

proceed...

 if(equipmentIndex > -1 && !(dueDate<minDate) && !(startDate>maxDate)){

 var distanceFromTopInTheTimeline = 0; // It is the minimum distance from the top to appear

int he innerTimeline, since the task has 'absolute' positioning.

 distanceFromTopInTheTimeline += 22 * equipmentIndex; // Only the integer value, the 'px' part will be

attached in the "text" string.

 // Defining the width of the task block in the timeline.

 var taskDaysGap;

 var taskWidth;

 // If both the start date and the due date are outside the timeline... (the task starts before the first date in

the timeline and finishes after the last date in the timeline)

 if(startDate <= minDate && dueDate >= maxDate){

 taskWidth = parseInt(timelineWidth.substring(0, timelineWidth.length-2));

 // Using the whole width of the timeline. We first need to convert the string "1060px" in an integer leaving the last 2 characters.

 }else{

 if(startDate >= minDate && dueDate <= maxDate){

 taskDaysGap = dueDate.getTime() - startDate.getTime()+1; // The +1 is necessary, otherwise

sometimes a day is lost, ending up counting e.g. 2 days gap instead of 3.

 taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24)); // Getting the

difference in days

179

 taskWidth = horizontalSectionWidth * taskDaysGap; //

+horizontalSectionWidth is necessary to add one plus section's width to make the items display correctly.

 if(timeSpan == 'week'){ taskWidth -= 1; }

 else{ if(timeSpan == 'twoWeeks'){ taskWidth -=3; }

 else{ if(timeSpan == 'threeMonths'){ taskWidth -=3; }

 else{ if(timeSpan == 'sevenMonths'){ taskWidth -= 4; }

 } } }

 if(dueDate.getDay() === maxDate.getDay() && dueDate.getMonth() === maxDate.getMonth() &&

dueDate.getFullYear() === maxDate.getFullYear()){ if(timeSpan == 'week'){ taskWidth += 2; }} // If the item fits in the timeline but finishes

 }else{

 // At least one of the dates is inside of the timeline. Checking which one.

 if(startDate >= minDate){

 taskDaysGap = maxDate.getTime() - startDate.getTime()+1; // Using the max date

present on the timeline as "dueDate"

 taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24)); //

Getting the difference in days

 taskWidth = horizontalSectionWidth * taskDaysGap;

 if(timeSpan == 'week'){ taskWidth += 1; }

 else{ if(timeSpan == 'twoWeeks'){ taskWidth -=4; }}

 //if(timeSpan == 'month' || timeSpan == 'twoWeeks') -> no need to add

value in these cases

 }else{

 if(dueDate <= maxDate){

 taskDaysGap = dueDate.getTime() - minDate.getTime(); // Using

the min date present on the timeline as "startDate"

 taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 *

24)); // Getting the difference in days

 taskWidth = (horizontalSectionWidth * taskDaysGap) +

horizontalSectionWidth -1; // +horizontalSectionWidth is necessary to add one plus section's width to make the items display correctly.

 if(timeSpan == 'twoWeeks'){ taskWidth -=1; }

 else{ if(timeSpan == 'threeMonths'){ taskWidth -= 4; }}

 }

 }

 }

 }

 // In any case we want the width to lose a pixel, because in the "New Task" form we increase by one the 'leftPadding' of each of

them.

 // Except when the task takes the whole timeline.

 if(taskWidth != parseInt(timelineWidth.substring(0, timelineWidth.length-2))){

 taskWidth--;

 }

 if(taskWidth < 2){ taskWidth = 2; } // Setting a minimum width

 // Calculating the space to be added on the left of the task in the timeline

 var leftMargin = 0; // It is the minimum distance from the left border in order for the Task to appear

in the innerTimeline (because it has 'absolute' positioning.

 if(startDate > minDate){

 var daysDifference = startDate.getTime() - minDate.getTime();

 daysDifference = Math.ceil(daysDifference / (1000 * 3600 * 24));

 leftMargin += Math.floor(horizontalSectionWidth * daysDifference)+1;

 if(timeSpan == 'month'){

 leftMargin -= 2;

 taskWidth += 1;

 }else{

 if(timeSpan == 'twoWeeks'){

 leftMargin -= 2;

 }else{

 if(timeSpan == 'threeMonths'){

 leftMargin -= 6;

 taskWidth += 1;

 }else{

 if(timeSpan == 'sevenMonths'){

 leftMargin -= 7;

 }

 }

 }

 }

 if(leftMargin < 0) { leftMargin = 0; } // Bounding the value of 'leftMargin'

 }

 // We want the dates to be in the format "22/10". We convert now the Date objects in strings to display in the

HTML element.

 var startDateString = startDate.getDate() +'/'+ (parseInt(startDate.getMonth())+1);

 var dueDateString = dueDate.getDate() +'/'+ (parseInt(dueDate.getMonth())+1);

 taskWidth = Math.floor(taskWidth); // Re-adjusting the width, in case there are decimal numbers in it.

 var backgroundColor = 'white'; // Setting the default background color

 if(colorRule == 'colorByProject'){ // If we want every project to have a different background color...

 // We have to find the related project in the 'globalProjectsArray' and use the linked color.

 var tempLength = globalProjectsArray.length;

 for(var x=0; x<tempLength; x++){

 if(globalProjectsArray[x].projectName == project){

 backgroundColor = globalProjectsArray[x].projectColor;

 break;

 }

 }

 }else{ // Each User will have a different color associated with it and so its Tasks.

 // We have to find the related user in the 'globalUsersArray' and use the linked color.

 var tempLength = globalUsersArray.length;

 var tempAssignedTo = assignedTo.replace(/ /g, '').substring(1);

 for(var x=0; x<tempLength; x++){

 if(globalUsersArray[x].userName.$2e_1 == tempAssignedTo){

 backgroundColor = globalUsersArray[x].userColor;

 break;

 }

 }

 }

 var equipmentHTMLString = ''; // String that will appear if the user clicks on the task in the

timeline.

 // We are already sure that this task has multiple equipment assigned to it.

 for(var tempHTMLindex = 0; tempHTMLindex<equipmentArray.length; tempHTMLindex++){

 equipmentHTMLString += ' '+ equipmentArray[tempHTMLindex].$2e_1 +'
';

180

 }

 text = '<div class="ms-tl-bar" tabindex="0" style="position:absolute; cursor:pointer; margin-bottom:2px; width: '+

taskWidth +'px; height: 20px; top: '+ distanceFromTopInTheTimeline +'px; left: '+ leftMargin +'px; background-color:'+ backgroundColor +'; white-space:nowrap; overflow:hidden;">' +

 '<span class="ms-tl-barTitle" unselectable="on" style="margin-left:

5px; width: 625px; text-overflow: ellipsis; color: rgb(68, 68, 68); font-family: \'Segoe UI\'; font-size: 8pt;">'+ taskTitle + assignedTo +' : '+ equipmentName + amountOfMagnets

+' magnets' +

 ''+ project +

 '<a href="#"

onclick="javascript:closeDialogWindow();"><input type="button" value="×" class="closeButton" style="float:right; cursor:pointer; padding:1px 0 3px; min-width:2.1em;"/>
'+

taskTitle + assignedTo +'
'+

 'Equipment:
'+ equipmentHTMLString +

 amountOfMagnets +' magnets
Time period: '+

startDateString +' - '+ dueDateString +

 '<input type="button" value="Edit"

style="float:right; cursor:pointer; padding:2px 0; min-width:4em;" onclick="EditItem2(event, \''+ siteUrl +'/_layouts/15/listform.aspx?PageType=6&ListId='+ listId +'&ID='+ taskID

+'&ContentTypeID='+ contentTypeId +'\')">' +

 '' +

 '</div>';

 timeline.innerHTML += text;

 }

 }

 }else{

 var equipmentIndex = globalEquipmentArray.indexOf(equipmentName);

 // If this element have an equipment assigned to it and If the task is not set for some dates outside the timeline we can proceed...

 if(equipmentIndex > -1 && !(dueDate<minDate) && !(startDate>maxDate)){

 var distanceFromTopInTheTimeline = 0; // It is the minimum distance from the top to appear int he

innerTimeline, since the task has 'absolute' positioning.

 distanceFromTopInTheTimeline += 22 * equipmentIndex; // Only the integer value, the 'px' part will be attached in the

"text" string.

 // Defining the width of the task block in the timeline.

 var taskDaysGap;

 var taskWidth;

 // If both the start date and the due date are outside the timeline... (the task starts before the first date in the timeline and

finishes after the last date in the timeline)

 if(startDate <= minDate && dueDate >= maxDate){

 taskWidth = parseInt(timelineWidth.substring(0, timelineWidth.length-2)); // Using

the whole width of the timeline. We first need to convert the string "1060px" in an integer leaving the last 2 characters.

 }else{

 if(startDate >= minDate && dueDate <= maxDate){

 taskDaysGap = dueDate.getTime() - startDate.getTime()+1; // The +1 is necessary, otherwise sometimes a day is

lost, ending up counting e.g. 2 days gap instead of 3.

 taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24)); // Getting the difference in days

 taskWidth = horizontalSectionWidth * taskDaysGap; // +horizontalSectionWidth is

necessary to add one plus section's width to make the items display correctly.

 if(timeSpan == 'week'){ taskWidth -= 1; }

 else{ if(timeSpan == 'twoWeeks'){ taskWidth -=3; }

 else{ if(timeSpan == 'threeMonths'){ taskWidth -=3; }

 else{ if(timeSpan == 'sevenMonths'){ taskWidth -= 4; }

 } } }

 if(dueDate.getDay() === maxDate.getDay() && dueDate.getMonth() === maxDate.getMonth() && dueDate.getFullYear()

=== maxDate.getFullYear()){ if(timeSpan == 'week'){ taskWidth += 2; }} // If the item fits in the timeline but finishes

 }else{

 // At least one of the dates is inside of the timeline. Checking which one.

 if(startDate >= minDate){

 taskDaysGap = maxDate.getTime() - startDate.getTime()+1; // Using the max date present on the

timeline as "dueDate"

 taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24)); // Getting the

difference in days

 taskWidth = horizontalSectionWidth * taskDaysGap;

 if(timeSpan == 'week'){ taskWidth += 1; }

 else{ if(timeSpan == 'twoWeeks'){ taskWidth -=4; }}

 //if(timeSpan == 'month' || timeSpan == 'twoWeeks') -> no need to add value in these

cases

 }else{

 if(dueDate <= maxDate){

 taskDaysGap = dueDate.getTime() - minDate.getTime(); // Using the min date

present on the timeline as "startDate"

 taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24)); //

Getting the difference in days

 taskWidth = (horizontalSectionWidth * taskDaysGap) + horizontalSectionWidth -1;

 // +horizontalSectionWidth is necessary to add one plus section's width to make the items display correctly.

 if(timeSpan == 'twoWeeks'){ taskWidth -=1; }

 else{ if(timeSpan == 'threeMonths'){ taskWidth -= 4; }}

 }

 }

 }

 }

 // In any case we want the width to lose a pixel, because in the "New Task" form we increase by one the 'leftPadding' of each of them.

 // Except when the task takes the whole timeline.

 if(taskWidth != parseInt(timelineWidth.substring(0, timelineWidth.length-2))){

 taskWidth--;

 }

 if(taskWidth < 2){ taskWidth = 2; } // Setting a minimum width

 // Calculating the space to be added on the left of the task in the timeline

 var leftMargin = 0; // It is the minimum distance from the left border in order for the Task to appear in the

innerTimeline (because it has 'absolute' positioning.

 if(startDate > minDate){

 var daysDifference = startDate.getTime() - minDate.getTime();

 daysDifference = Math.ceil(daysDifference / (1000 * 3600 * 24));

 leftMargin += Math.floor(horizontalSectionWidth * daysDifference)+1;

 if(timeSpan == 'month'){

 leftMargin -= 2;

 taskWidth += 1;

 }else{

 if(timeSpan == 'twoWeeks'){

 leftMargin -= 2;

 }else{

 if(timeSpan == 'threeMonths'){

 leftMargin -= 6;

181

 taskWidth += 1;

 }else{

 if(timeSpan == 'sevenMonths'){

 leftMargin -= 7;

 }

 }

 }

 }

 if(leftMargin < 0) { leftMargin = 0; } // Bounding the value of 'leftMargin'

 }

 // We want the dates to be in the format "22/10". We convert now the Date objects in strings to display in the HTML element.

 startDate = startDate.getDate() +'/'+ (parseInt(startDate.getMonth())+1);

 dueDate = dueDate.getDate() +'/'+ (parseInt(dueDate.getMonth())+1);

 taskWidth = Math.floor(taskWidth); // Re-adjusting the width, in case there are decimal numbers in it.

 var backgroundColor = 'white'; // Setting the default background color

 if(colorRule == 'colorByProject'){ // If we want every project to have a different background color...

 // We have to find the related project in the 'globalProjectsArray' and use the linked color.

 var tempLength = globalProjectsArray.length;

 for(var x=0; x<tempLength; x++){

 if(globalProjectsArray[x].projectName == project){

 backgroundColor = globalProjectsArray[x].projectColor;

 break;

 }

 }

 }else{ // Each User will have a different color associated with it and so its Tasks.

 // We have to find the related user in the 'globalUsersArray' and use the linked color.

 var tempLength = globalUsersArray.length;

 var tempAssignedTo = assignedTo.replace(/ /g, '').substring(1);

 for(var x=0; x<tempLength; x++){

 if(globalUsersArray[x].userName.$2e_1 == tempAssignedTo){

 backgroundColor = globalUsersArray[x].userColor;

 break;

 }

 }

 }

 text = '<div class="ms-tl-bar" tabindex="0" style="position:absolute; cursor:pointer; margin-bottom:2px; width: '+ taskWidth +'px;

height: 20px; top: '+ distanceFromTopInTheTimeline +'px; left: '+ leftMargin +'px; background-color:'+ backgroundColor +'; white-space:nowrap; overflow:hidden;">' +

 '<span class="ms-tl-barTitle" unselectable="on" style="margin-left: 5px; width:

625px; text-overflow: ellipsis; color: rgb(68, 68, 68); font-family: \'Segoe UI\'; font-size: 8pt;">'+ taskTitle + assignedTo +' : Equipment:'+ equipmentName + amountOfMagnets +'

magnets' +

 ''+ project +

 '<input

type="button" value="×" class="closeButton" style="float:right; cursor:pointer; padding:1px 0 3px; min-width:2.1em;"/>
'+ taskTitle + assignedTo +'
'+

 equipmentName + amountOfMagnets +' magnets
Time period: '+

startDate +' - '+ dueDate +

 '<input type="button" value="Edit" style="float:right;

cursor:pointer; padding:2px 0; min-width:4em;" onclick="EditItem2(event, \''+ siteUrl +'/_layouts/15/listform.aspx?PageType=6&ListId='+ listId +'&ID='+ taskID +'&ContentTypeID='+

contentTypeId +'\')">' +

 '' +

 '</div>';

 timeline.innerHTML += text;

 }

 }

 // End of tasks cycle.

 }

 // Applying the onclick behaviour to the Tasks

 $(".ms-tl-bar").click(

 function(e) {

 // If the dialog window is already open we close the previously opened to then open a new one.

 if($(".task-pop-up-window")){

 $(".task-pop-up-window").remove();

 }

 // Creating a new element in the document

 var text = $(this)[0].lastChild.innerHTML;

 var tempElem = document.createElement('span');

 tempElem.innerHTML = text;

 // Showing the element properly formatted

 $(tempElem).show()

 .attr('class', 'task-pop-up-window')

 .css('top', e.pageY - 95)

 .css('left', e.pageX - 305)

 .css('position', 'absolute')

 .css('border', '1px solid #1a1a1a')

 .css('background', '#eeeeee')

 .css('color', 'black')

 .css('width', '280px')

 .css('padding', '10px')

 .appendTo('body');

 }

);

 addTasksToTimelineFlag = true; // Updating the flag that tells the system if this function has been called.

}

// This function allows the user to close the dialog window.

function closeDialogWindow(){

 // Check if the dialog window is open and if that is the case close it.

 if($(".task-pop-up-window")){

 $(".task-pop-up-window").remove();

 }

}

182

/* This function returns the number of days contained in the considered month (considers also the leap years).

 * Input:

 * - the month and the year considered. */

function daysInMonth(month,year) {

 month += 1; // Month has to be 1 based -> [1,12] instead of the Javascript usual zero-based month -> [0,11]

 return new Date(year, month, 0).getDate();

}

/* This function creates the string that will display the date and time of each feed and reply.

 * Input:

 * - the date object of the feed or reply

 * - the string defining the considered time span. */

function createDateString(dateObj, timeSpan){

 var day = dateObj.getDay();

 var month = dateObj.getMonth();

 if(timeSpan == 'week' || timeSpan == 'twoWeeks'){

 switch(day){

 case 0: day="Sun";

 break;

 case 1: day="Mon";

 break;

 case 2: day="Tue";

 break;

 case 3: day="Wed";

 break;

 case 4: day="Thu";

 break;

 case 5: day="Fri";

 break;

 case 6: day="Sat";

 break;

 default: day = "Mon";

 break;

 }

 if(timeSpan == 'week'){

 switch(month){

 case 0: month="January";

 break;

 case 1: month="February";

 break;

 case 2: month="March";

 break;

 case 3: month="April";

 break;

 case 4: month="May";

 break;

 case 5: month="June";

 break;

 case 6: month="July";

 break;

 case 7: month="August";

 break;

 case 8: month="September";

 break;

 case 9: month="October";

 break;

 case 10: month="November";

 break;

 case 11: month="December";

 break;

 default: month="January";

 break;

 }

 }else{

 switch(month){

 case 0: month="Jan";

 break;

 case 1: month="Feb";

 break;

 case 2: month="Mar";

 break;

 case 3: month="Apr";

 break;

 case 4: month="May";

 break;

 case 5: month="Jun";

 break;

 case 6: month="Jul";

 break;

 case 7: month="Aug";

 break;

 case 8: month="Sep";

 break;

 case 9: month="Oct";

 break;

 case 10: month="Nov";

 break;

 case 11: month="Dec";

 break;

 default: month="Jan";

 break;

 }

 }

 }else{

 if(timeSpan == 'month'){

 switch(day){

 case 0: day="Sun";

183

 break;

 case 1: day="Mon";

 break;

 case 2: day="Tue";

 break;

 case 3: day="Wed";

 break;

 case 4: day="Thu";

 break;

 case 5: day="Fri";

 break;

 case 6: day="Sat";

 break;

 default: day = "Mon";

 break;

 }

 switch(month){

 case 0: month="Jan";

 break;

 case 1: month="Feb";

 break;

 case 2: month="Mar";

 break;

 case 3: month="Apr";

 break;

 case 4: month="May";

 break;

 case 5: month="Jun";

 break;

 case 6: month="Jul";

 break;

 case 7: month="Aug";

 break;

 case 8: month="Sep";

 break;

 case 9: month="Oct";

 break;

 case 10: month="Nov";

 break;

 case 11: month="Dec";

 break;

 default: month="Jan";

 break;

 }

 }else{

 if(timeSpan == 'threeMonths' || timeSpan == 'sevenMonths'){

 switch(month){

 case 0: month="January";

 break;

 case 1: month="February";

 break;

 case 2: month="March";

 break;

 case 3: month="April";

 break;

 case 4: month="May";

 break;

 case 5: month="June";

 break;

 case 6: month="July";

 break;

 case 7: month="August";

 break;

 case 8: month="September";

 break;

 case 9: month="October";

 break;

 case 10: month="November";

 break;

 case 11: month="December";

 break;

 default: month="January";

 break;

 }

 }

 }

 }

 var numberOfTheDay = dateObj.getDate(); // Returns the day of the month (from 1-31)

 if(numberOfTheDay < 10){

 numberOfTheDay = '0' + parseInt(numberOfTheDay, 10); // This way if the month is the 5th it will be displayed as "05", instead of "5"

 }

 if(timeSpan == 'week' || timeSpan == 'twoWeeks'){

 return day+ ' ' +numberOfTheDay+ ' ' +month;

 }else{

 if(timeSpan == 'month'){

 return numberOfTheDay+ ' ' +month;

 }else{

 return month;

 }

 }

}

File “newTaskForm.js”:

184

<script src="//code.jquery.com/jquery-1.11.0.min.js"></script>

<script src="/_layouts/15/clientpeoplepicker.js"></script>

<script type="text/javascript">

 // This jQuery configuration is MANDATORY to work with "_spPageContextInfo".

 $(document).ready(function ()

 {

 // Updating the "Save" button in the "new task" form.

 updateSaveButtonOnClickEvent();

 if(window.location.pathname.endsWith("NewForm.aspx"))

 {

 if (SP.ClientContext != null) {

 SP.SOD.executeOrDelayUntilScriptLoaded(GetCurrentUser, 'SP.js');

 }

 else {

 SP.SOD.executeFunc('sp.js', null, GetCurrentUser);

 }

 }

 // This code adds the Username of the current user that is creating the new task to the "Assigned To" field (as a default content).

 function GetCurrentUser()

 {

 var userid = _spPageContextInfo.userId;

 var requestUri = _spPageContextInfo.webAbsoluteUrl + "/_api/web/getuserbyid(" + userid + ")";

 var requestHeaders = { "accept" : "application/json;odata=verbose" };

 $.ajax({ url : requestUri, contentType : "application/json;odata=verbose", headers : requestHeaders, success : onSuccess, error : onError});

 }

 function onSuccess(data, request)

 {

 var loginName = data.d.LoginName;

 SetUserFieldValue("Assigned To",loginName);

 }

 function onError(error)

 {

 //alert(error);

 }

 function SetUserFieldValue(fieldName, userName)

 {

 var _PeoplePicker = $("div[title='" + fieldName + "']");

 var _PeoplePickerTopId = _PeoplePicker.attr('id');

 var _PeoplePickerEditer = $("input[title='" + fieldName + "']");

 _PeoplePickerEditer.val(userName);

 var _PeoplePickerOject = SPClientPeoplePicker.SPClientPeoplePickerDict[_PeoplePickerTopId];

 _PeoplePickerOject.AddUnresolvedUserFromEditor(true);

 }

 // This function updates the content of the onclick string of the 'Save' button of the new task form.

 function updateSaveButtonOnClickEvent(){

 var oldOnClickString = $("input[value='Save']").attr('onclick');

 var newOnClickString = 'if(consistencyCheckOnDates()){' + oldOnClickString +';}else{alert("The selected equipment is not available in the chosen

period. Please enter different dates.");}';

 // Updating the onclick event

 $("input[value='Save']").attr('onclick', newOnClickString);

 }

 });

 // Global variable

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx

 // We want something like

"https://espace2013.cern.ch/test-Timeline"

 // Global functions (available for the code in the webpage):

 /* INPUT VALIDATION

 * This function is activated when pressing the "Save" button in the form.

 * It checks if the dates entered in the form are valid (if the chosen period intersect with another task's period).

 * We need to have any equipment booked at most for one task on a certain date. */

 function consistencyCheckOnDates(){

 // Reading the dates entered in the form

 var formStartDate = $("input[title='Start Date'")[0].value;

 var formDueDate = $("input[title='Due Date'")[0].value;

 var formSelectedEquipmentName;

 var formSelectedEquipmentArray = new Array();

 formSelectedEquipmentName = $("select[title='Equipment Name']").find('option:selected').text(); // Reading the selected equipment from

the drop-down list.

 if(formSelectedEquipmentName == null || formSelectedEquipmentName == undefined || formSelectedEquipmentName == ''){

 formSelectedEquipmentName = $("select[title='Equipment Name selected values']")[0]; // Reading the selected equipment from

the drop-down list.

 for(var i=0; i<formSelectedEquipmentName.length; i++){

 formSelectedEquipmentArray.push(formSelectedEquipmentName[i].innerHTML);

 }

 }

 // Creating the Date objects in Javascript.

185

 var year, month, day;

 try{

 day = formStartDate.split('/')[0];

 month = formStartDate.split('/')[1];

 year = formStartDate.split('/')[2];

 formStartDate = new Date(year, (month-1), day, 0,0,0,0);

 day = formDueDate.split('/')[0];

 month = formDueDate.split('/')[1];

 year = formDueDate.split('/')[2];

 formDueDate = new Date(year, (month-1), day, 0,0,0,0);

 }catch(e){ return false; }

 var listItemEnumerator = tasksListItems.getEnumerator();

 while (listItemEnumerator.moveNext()) {

 var oListItem = listItemEnumerator.get_current();

 var equipmentName;

 try{

 equipmentName = oListItem.get_item('Equipment_x0020_Name');

 }catch(e){ continue; } // In case of exception we allow the creation of the task.

 var equipmentsArray = new Array();

 if(equipmentName.$2e_1 == null || equipmentName.$2e_1 == undefined){

 equipmentsArray = equipmentName;

 }

 // If there is more than one equipment...

 if(equipmentsArray.length > 0){

 // we check the dates regarding each of the equipments

 for(var tempIndex=0; tempIndex<equipmentsArray.length; tempIndex++){

 equipmentName = equipmentsArray[tempIndex].$2e_1;

 if(formSelectedEquipmentArray.indexOf(equipmentName) > -1){ // If the task is using

the chosen equipment...

 var startDate = oListItem.get_item('StartDate');

 var dueDate = oListItem.get_item('DueDate');

 // Checking if the chosen dates fall inside the period in which another task has to be executed.

 var startDateNotValid = formStartDate >= startDate && formStartDate <= dueDate; // If the formStartDate falls in the

period already chosen for another task -> True.

 var dueDateNotValid = formDueDate >= startDate && formDueDate <= dueDate;

 // If the formDueDate falls in the period already chosen for another task -> True.

 var periodNotValid = (formStartDate < startDate && formDueDate >= startDate) || (formDueDate > dueDate &&

formStartDate <= dueDate); // If the chosen period comprehends the period chosen for this task.

 // If the start date or the due date chosen are falling inside the chosen period we have to tell the User to select

different dates.

 if(startDateNotValid || dueDateNotValid || periodNotValid){

 return false;

 }

 }

 }

 }else{

 if(equipmentName == formSelectedEquipmentName){ // If the task is using the

 var startDate = oListItem.get_item('StartDate');

 var dueDate = oListItem.get_item('DueDate');

 // Checking if the chosen dates fall inside the period in which another task has to be executed.

 var startDateNotValid = formStartDate >= startDate && formStartDate <= dueDate; // If the formStartDate falls in the period already

chosen for another task -> True.

 var dueDateNotValid = formDueDate >= startDate && formDueDate <= dueDate; // If

the formDueDate falls in the period already chosen for another task -> True.

 var periodNotValid = (formStartDate < startDate && formDueDate >= startDate) || (formDueDate > dueDate && formStartDate <=

dueDate); // If the chosen period comprehends the period chosen for this task.

 // If the start date or the due date chosen are falling inside the chosen period we have to tell the User to select different

dates.

 if(startDateNotValid || dueDateNotValid || periodNotValid){

 return false;

 }

 }

 }

 }

 // If all the Tasks using the selected equipment have been examined and no one is using the equipment in the chosen period we can say that everything is ok.

 return true;

 }

</script>

File “customTimeline.js”:

// Adding jQuery to the webpage

document.write('<script type="text/javascript" src="//code.jquery.com/jquery-1.11.0.min.js"></script>');

// Global variables that hold the names of the lists on SharePoint

var globalUsersListName = 'Users'; // The list containing the name of the User and the color assigned to it (the color is saved as a

string).

var globalEquipmentsListName = 'Equipments'; // The list containing the name of the Equipments and their relative Category (lookup field)

var globalProjectsListName = 'Projects'; // The list containing the name of the Project and the color assigned to it (the color is saved as a string).

var globalTasksListName = 'Tasks'; // The list containing the name of the Tasks and their relative Project (lookup field)

// Calling the first function

186

ExecuteOrDelayUntilScriptLoaded(registerRenderer, 'clienttemplates.js'); // Telling to the webpage to launch our postTaskFormRenderer() function during the post rendering phase.

function registerRenderer()

{

 var ctxForm = {};

 ctxForm.Templates = {};

 ctxForm.OnPreRender = OnPreRenderDocItemTemplate;

 SPClientTemplates.TemplateManager.RegisterTemplateOverrides(ctxForm);

}

// The system tries to prerender 3 times.

// The first one is useless in Chrome and Firefox (it is useful in IE), it gives us no data from the Server, so we can avoid it. After that call on Firefox it works fine, while on Chrome

the system gives us the error:

// Uncaught Error: The collection has not been initialized. It has not been requested or the request has not been executed. It may need to be explicitly requested.

// but it does not matter. The code makes the third call that solves the problem even on Chrome.

var firstCallAlreadyMade = false;

function OnPreRenderDocItemTemplate(renderCtx) {

 SP.SOD.executeOrDelayUntilScriptLoaded(loadContext, 'sp.js');

 function loadContext() {

 var ua = window.navigator.userAgent;

 var msie = ua.indexOf("MSIE ") > -1 || !!navigator.userAgent.match(/Trident.*rv\:11\./); // "True" if the Browser is IE (with support for IE

11).

 if(msie){

 checkSituationAndLunch();

 }else{

 if(firstCallAlreadyMade == false){

 checkSituationAndLunch();

 firstCallAlreadyMade = true;

 }

 }

 }

}

function checkSituationAndLunch(){

 try{

 // This control has been implemented since for some actions SharePoint refreshes the webparts without refreshing the whole webpage.

 // We are talking about operations like expanding or collapsing a Group of Tasks.

 if(document.getElementById("innerTimeline")){ // If the timeline is already in the webpage...

 return; // Do not add code to the timeline.

 }

 // Reading the Equipments and the Categories from SharePoint

 retrieveEquipmentsAndCategories();

 }catch(e){ return; }

}

/********* Timeline customization code: through this code we can display the timeline above the "New Task" form. *********/

// Retrieving information on every equipment and every category from SharePoint.

function retrieveEquipmentsAndCategories() {

 /* In the "New Task" form this function is called many times and the variable "equipmentListItems" is re-written for many times.

 * This leads to a race condition when the first sequence of function tries in the code to read some data from it in order to display the "Equipments" and their "Categories",

 * thus causing, some times, to find the resource locked and so having as output the HTML section thought for the equipments empty. */

 if (this.equipmentListItems != null && this.equipmentListItems != undefined){

 return;

 }

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx

 // We want something like "https://espace2013.cern.ch/test-Timeline"

 // Correcting the URL (if necessary)

 if(siteUrl == null || siteUrl == undefined){ siteUrl = window.location.href; }

 var numSlashes = 0;

 for(var i=0; i<siteUrl.length; i++){

 if(siteUrl[i] == '/'){

 numSlashes++;

 if(numSlashes == 4){

 siteUrl = siteUrl.substring(0, i);

 break;

 }

 }

 }

 var clientContext = new SP.ClientContext(siteUrl);

 var oList = clientContext.get_web().get_lists().getByTitle(globalEquipmentsListName);

 var camlQuery = new SP.CamlQuery();

 camlQuery.set_viewXml('<View><Query><Where>' +

 '</Where></Query></View>');

 this.equipmentListItems = oList.getItems(camlQuery);

 clientContext.load(equipmentListItems);

 clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededEquipments), Function.createDelegate(this, this.onQueryFailed));

}

// Reading the categories and equipments

var globalEquipmentsArray = new Array(); // This global variable will keep the names of the Equipment to let the User change timespan in the timeline if needed, without

recalling the Server for this information.

var globalCategoriesArray = new Array(); // This global variable will keep the names of the Categories.

var globalCustomTimelineEquipmentsHTMLstring = '';

function onQuerySucceededEquipments(){

 var equipmentList = '<div style="float:left; margin-top: 42px;">';

 var numRows = 0; // Variable used to know the amount of rows to display.

 var firstItem = true; // Boolean to treat differently the first item of the array. It needs a greater padding-top.

 var listItemEnumerator = equipmentListItems.getEnumerator();

187

 var innerListItemEnumerator = equipmentListItems.getEnumerator();

 var category = '';

 var firstOfEquipments = true;

 var ua = window.navigator.userAgent;

 var msie = ua.indexOf("MSIE ") > -1 || !!navigator.userAgent.match(/Trident.*rv\:11\./); // "True" if the Browser is IE (with support for IE 11).

 var firefox = ua.toLowerCase().indexOf('firefox') > -1; // Detects any version of Firefox. "True" if we are using Firefox;

 while (listItemEnumerator.moveNext()) {

 var oListItem = listItemEnumerator.get_current();

 try{

 category = oListItem.get_item('Parent_x0020_Category').$2e_1;

 if(category != null && globalCategoriesArray.indexOf(category) == -1){ // If we have not met this category before...

 globalCategoriesArray.push(category); // We add it to the 'globalCategoriesArray'

 // setting local variables

 var equipmentName, innerListItem;

 var tempEquipmentsString = '';

 var firstOfCategory = true;

 innerListItemEnumerator = equipmentListItems.getEnumerator(); // Resetting the 'innerListEnumerator'

 // Seek for every equipment belonging to that category and add it to the HTML string.

 while(innerListItemEnumerator.moveNext()){

 var innerListItem = innerListItemEnumerator.get_current();

 if(category == innerListItem.get_item('Parent_x0020_Category').$2e_1){ // If the currently considered category

 equipmentName = innerListItem.get_item('Title');

 globalEquipmentsArray.push(equipmentName); // Memorizing the name of the Equipment. We will need it later while

displaying the Tasks in the timeline

 var stringHeight;

 if(msie || firefox){ // If IE or Firefox...

 stringHeight = 9;

 }else{

 stringHeight = 22;

 }

 if(firstOfCategory){ // If it is the first element of a category...

 if(firstOfEquipments){ // If it is the first line of equipments to be written (in absolute)...

 tempEquipmentsString += '<p id="categoriesList" style="padding:0; margin-top:3px; margin-left:-

110px; height:'+ stringHeight +'px; -webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;"><span style="display:inline-block; margin-top:11px; width:120px;" title="'+

category +'">' +category + ' <span style="display:inline-block; margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden; margin-bottom: -3px;"

title="'+ equipmentName +'">' + equipmentName +'</p>';

 firstOfEquipments = false;

 }else{

 tempEquipmentsString += '<p id="categoriesList" style="padding:0; margin-left:-110px; height:'+

stringHeight +'px; -webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;">'

+category + ' <span style="display:inline-block; margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden; margin-bottom: -3px;" title="'+

equipmentName +'">' + equipmentName +'</p>';

 }

 firstOfCategory = false; // This has to be done in any case

 }else{

 tempEquipmentsString += '<p id="categoriesList" style="padding:0; margin-left:-110px; height:'+ stringHeight +'px;

-webkit-margin-before: 0em!important; -webkit-margin-after: 0em!important;"> <span style="display:inline-block;

margin-top:10px; width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden;" title="'+ equipmentName +'">' + equipmentName +'</p>';

 }

 numRows++; // Increasing the rows' counter (Used to set the height of the Timeline with the Tasks)

 }

 }

 equipmentList += tempEquipmentsString;

 }

 }catch(e){}

 }

 equipmentList += '</div>';

 // Passing the local variables' values to the global ones.

 globalCustomTimelineEquipmentsHTMLstring = equipmentList;

 // Calling the next function for the retrieval of the Projects

 retrieveProjects();

}

function retrieveProjects(){

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx

 // We want something like "https://espace2013.cern.ch/test-Timeline"

 // Correcting the URL (if necessary)

 if(siteUrl == null || siteUrl == undefined){ siteUrl = window.location.href; }

 var numSlashes = 0;

 for(var i=0; i<siteUrl.length; i++){

 if(siteUrl[i] == '/'){

 numSlashes++;

 if(numSlashes == 4){

 siteUrl = siteUrl.substring(0, i);

 break;

 }

 }

 }

 var clientContext = new SP.ClientContext(siteUrl);

 var oList = clientContext.get_web().get_lists().getByTitle(globalProjectsListName);

 var camlQuery = new SP.CamlQuery();

 camlQuery.set_viewXml('<View><Query><Where>' +

 '</Where></Query></View>');

 this.projectListItems = oList.getItems(camlQuery);

 clientContext.load(projectListItems);

 clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededProjects), Function.createDelegate(this, this.onQueryFailed));

}

188

var globalProjectsArray = new Array(); // This global variable will keep the names of the Projects and their associated colors.

function onQuerySucceededProjects(){

 // Variables necessary to read the query results

 var listItemEnumerator = projectListItems.getEnumerator();

 var innerListItemEnumerator = projectListItems.getEnumerator();

 var project, color;

 while (listItemEnumerator.moveNext()) {

 var oListItem = listItemEnumerator.get_current();

 try{

 project = oListItem.get_item('Title');

 color = oListItem.get_item('Color');

 globalProjectsArray.push({'projectName':project, 'projectColor':color});

 }catch(e){}

 }

 // Calling the next function for the retrieval of the Users

 retrieveUsers();

}

function retrieveUsers(){

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx

 // We want something like "https://espace2013.cern.ch/test-Timeline"

 // Correcting the URL (if necessary)

 if(siteUrl == null || siteUrl == undefined){ siteUrl = window.location.href; }

 var numSlashes = 0;

 for(var i=0; i<siteUrl.length; i++){

 if(siteUrl[i] == '/'){

 numSlashes++;

 if(numSlashes == 4){

 siteUrl = siteUrl.substring(0, i);

 break;

 }

 }

 }

 var clientContext = new SP.ClientContext(siteUrl);

 var oList = clientContext.get_web().get_lists().getByTitle(globalUsersListName);

 var camlQuery = new SP.CamlQuery();

 camlQuery.set_viewXml('<View><Query><Where>' +

 '</Where></Query></View>');

 this.userListItems = oList.getItems(camlQuery);

 clientContext.load(userListItems);

 clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededUsers), Function.createDelegate(this, this.onQueryFailed));

}

var globalUsersArray = new Array(); // This global variable will keep the names of the Users (saved in a list on SharePoint).

function onQuerySucceededUsers(){

 // Variables necessary to read the query results

 var listItemEnumerator = userListItems.getEnumerator();

 var innerListItemEnumerator = userListItems.getEnumerator();

 var user, color;

 while (listItemEnumerator.moveNext()) {

 var oListItem = listItemEnumerator.get_current();

 try{

 user = oListItem.get_item('User');

 color = oListItem.get_item('Color');

 globalUsersArray.push({'userName':user, 'userColor':color});

 }catch(e){}

 }

 // Calling the next function for the retrieval of the Tasks

 retrieveTasksListItems();

}

// Retrieving information about each of the Tasks and adding them to the Timeline

function retrieveTasksListItems(){

 var siteUrl = document.URL; // It is going to be something like: https://espace2013-dev.cern.ch/test-Timeline/Lists/Tasks/AllItems.aspx

 // We want something like "https://espace2013.cern.ch/test-Timeline"

 // Correcting the URL (if necessary)

 if(siteUrl == null || siteUrl == undefined){ siteUrl = window.location.href; }

 var numSlashes = 0;

 for(var i=0; i<siteUrl.length; i++){

 if(siteUrl[i] == '/'){

 numSlashes++;

 if(numSlashes == 4){

 siteUrl = siteUrl.substring(0, i);

 break;

 }

 }

 }

 var clientContext = new SP.ClientContext(siteUrl);

 var oList = clientContext.get_web().get_lists().getByTitle(globalTasksListName);

 var camlQuery = new SP.CamlQuery();

 camlQuery.set_viewXml('<View><Query><Where>' +

 '</Where></Query></View>');

 this.taskListItems = oList.getItems(camlQuery);

 clientContext.load(taskListItems);

 clientContext.executeQueryAsync(Function.createDelegate(this, this.onQuerySucceededTasks), Function.createDelegate(this, this.onQueryFailed));

}

function onQueryFailed(sender, args) {

 alert("There has been a problem communicating with the Server. Please try again later.");

 console.log('Request failed. ' + args.get_message() + '\n' + args.get_stackTrace());

189

}

// Reading the Tasks saved in the timeline

var addTasksToTimelineFlag = false; // This variable will tell the system if the function "addTasksToTimeline" has already been called at least once or not.

function onQuerySucceededTasks(){

 var numRows = globalEquipmentsArray.length;

 var equipmentsHTMLstring = globalCustomTimelineEquipmentsHTMLstring;

 // Catching the rows of the timeline in the HTML code

 var timelineArea = $('div[id^="MSOZoneCell_"]')[0]; // Chatching the HTMl section in which we want to add the customized timeline

 // e.g.: id="MSOZoneCell_WebPart"...WPQ3"

 $(timelineArea).prepend('<div id="timelineArea"></div>');

 timelineArea = document.getElementById("timelineArea");

 // Modifying the CSS for the section to include the Rows on the Left of the Timeline.

 // (if dynamic width) Each character equals 0.7em, so the amount of space on the left has to be 0.7*maxNumCharacters.

 timelineArea.style.paddingLeft = "120px"; //(0.7*maxNumCharacters) + 'em'; // Making space on the left of the Timeline for the Rows' titles.

 timelineArea.style.height = ((22*numRows)+70) + 'px'; // Expanding the area including the timeline to push down the rest of the webpage (the list containing the Tasks).

 // Creating some radio buttons to enable the User to change the timespan of the timeline

 var radioButtons = 'Timespan <input type="radio" onclick="addTasksToTimeline(7, 1060);" name="time span" value="Week"

checked>Week ' +

 '<input type="radio" onclick="addTasksToTimeline(15, 1060, null);"

name="time span" value="2 Weeks">2 Weeks ' +

 '<input type="radio" onclick="addTasksToTimeline(31, 1060, null);"

name="time span" value="Month">Month ' +

 '<input type="radio" onclick="addTasksToTimeline(90, 1060, null);"

name="time span" value="3 Month">3 Months ' +

 '<input type="radio" onclick="addTasksToTimeline(210, 1060, null);"

name="time span" value="7 Month">7 Months ' +

 '<input type="radio" onclick="addTasksToTimeline(365, 1060, null);"

name="time span" value="Year">Year ' +

 '

                ' +

 'Color ' +

 '<input type="radio"

onclick="colorTasksInTimeline(\'colorByProject\');" name="color choice" value="Color the tasks by Project" checked>by Project ' +

 '<input type="radio"

onclick="colorTasksInTimeline(\'colorByUser\');" name="color choice" value="Color the tasks by User">by User ' +

 '';

 // Adding the resources found in the list as rows in the Timeline

 var resourcesSection = document.getElementById("timelineRadioButtons");

 if(resourcesSection == undefined || resourcesSection == null){ // If there is our custom Resources list and the rows have not yet been added...

 timelineArea.innerHTML = radioButtons + equipmentsHTMLstring + '<div id="timeline"></div>' + timelineArea.innerHTML;

 var timeline = document.getElementById('timeline');

 if(numRows > 1){

 timeline.style.height = ((22*numRows)-2) + 'px'; // Enlarging the height of the timeline in order to have one line for each Resource.

 // The last line will not need a white space below it. That's why we take out 2px fromt he result.

 }else{

 timeline.style.height = '20px'; // Enlarging the height of the timeline in order to have one line for each Resource.

 }

 var timelineWidth = 1060;

 timeline.style.width = timelineWidth + 'px'; // Manually setting the width of the timeline to override the behaviour of SharePoint, which would expand the

timeline according to the width of the page.

 timeline.style.display = "inline";

 }

 /******* Adding our code to the timeline. *******/

 var numOfDaysInTimeline=7;

 addTasksToTimeline(numOfDaysInTimeline, timelineWidth);

}

// This function will color the tasks in the timeline according to the equipment or the personnel.

function colorTasksInTimeline(colorRule){

 var timelineWidth = document.getElementById('timeline').style.width;

 var numOfDaysInTimeline = 7; // Initializing the variable for the consistency check

 var radioButtons = document.getElementById('timelineRadioButtons').getElementsByTagName('input');

 var numOfDaysArray = [7, 15, 31, 90, 210, 365]; // Defining the array containing the number of days considered for each possible time span

 for(var i=0; i<radioButtons.length; i++){

 if(radioButtons[i].checked){

 numOfDaysInTimeline = numOfDaysArray[i];

 break;

 }

 }

 if(colorRule == 'colorByProject'){

 addTasksToTimeline(numOfDaysInTimeline, timelineWidth, 'colorByProject');

 }else{

 addTasksToTimeline(numOfDaysInTimeline, timelineWidth, 'colorByUser');

 }

}

// This function will add the tasks read from the Server to the timeline "manually" (instead of using the SharePoint's disposition.

function addTasksToTimeline(numOfDaysInTimeline, timelineWidth, colorRule){

 // Checking the input

 if(typeof(numOfDaysInTimeline) == 'string'){ numOfDaysInTimeline = parseInt(numOfDaysInTimeline); }

 if(typeof(timelineWidth) == 'string'){ timelineWidth = parseInt(timelineWidth); }

 var siteUrl = document.URL;

 // Correcting the URL (if necessary)

 if(siteUrl == null || siteUrl == undefined){ siteUrl = window.location.href; }

 var numSlashes = 0;

 for(var i=0; i<siteUrl.length; i++){

 if(siteUrl[i] == '/'){

190

 numSlashes++;

 if(numSlashes == 4){

 siteUrl = siteUrl.substring(0, i);

 break;

 }

 }

 }

 var timeline = document.getElementById('timeline');

 /****** If the User clicks on the timeline radio buttons we have to read which radio button ******/

 if(colorRule == null){

 // Reading the color rule to apply to the tasks

 var radioButtons = document.getElementById('colorRadioButtons').getElementsByTagName('input'); // The radio buttons for the color rules

 if(radioButtons[0].checked){ // If the first radio button is checked...

 colorRule = 'colorByProject';

 }else{

 colorRule = 'colorByUser';

 }

 }

 /******* This piece of code will be used to refresh the timeline when selecting different time spans (e.g.: 1 week, 2 week, 1 month etc...). *******/

 // only if the timeline is set as "shown" from SharePoint. If "hidden" we can work without it.

 var indexOfTasks = timeline.innerHTML.indexOf('<div class="ms-tl-today"');

 if(indexOfTasks > -1){ // Using "timeline" as first variable in the next line does not work. We have to re-catch the HTML section.

 timeline.innerHTML = timeline.innerHTML.substring(0, indexOfTasks); // We are deleting the tasks that were in the

 }else{ // If the "Today"'s flag is not present...

 indexOfTasks = timeline.innerHTML.indexOf('<div class="timeline-dates"');

 if(indexOfTasks > -1){

 timeline.innerHTML = timeline.innerHTML.substring(0, indexOfTasks); // We are deleting the tasks that were in the

 }

 }

 // Defining the dates to write on the X axis of the timeline

 var datesStrings = new Array();

 var today = new Date();

 var timeSpan; // It will signal to the createDateString() function the kind of string we want in output.

 if(numOfDaysInTimeline == 7){ timeSpan = 'week'; }

 else{

 if(numOfDaysInTimeline == 15){ timeSpan = 'twoWeeks'; }

 else{

 if(numOfDaysInTimeline == 31){ timeSpan = 'month'; }

 else{

 if(numOfDaysInTimeline == 90){

 // Re-calculating the number of days int he three months according to the months considered.

 numOfDaysInTimeline = daysInMonth(today.getMonth(),today.getFullYear()); // Adding the days in this month

 today.setDate(1);

 today.setMonth(today.getMonth() -1);

 numOfDaysInTimeline += daysInMonth(today.getMonth(),today.getFullYear()); // Adding the days in the previous

month

 today.setMonth(today.getMonth() +1);

 today.setMonth(today.getMonth() +1);

 numOfDaysInTimeline += daysInMonth(today.getMonth(),today.getFullYear()); // Adding the days in the following

month

 today = new Date(); // Resetting 'today'

 timeSpan = 'threeMonths'; }

 else{

 if(numOfDaysInTimeline == 210){ timeSpan = 'sevenMonths'; }

 else{

 if(numOfDaysInTimeline == 365){ timeSpan = 'year'; }

 else{ timeSpan = 'year'; }

 }

 }

 }

 }

 }

 // Adding the flag that signals today's date on the timeline

 /*

 if(timeSpan == 'week'){

 // "Today" label's code

 // I do not know why but SharePoint displays this label differently when adding it to the webpage the first time or some other time through Javascript and the

radio buttons.

 if(addTasksToTimelineFlag == false){ // If this is the first time that the function has been called...

 var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14; border-color:

rgb(0, 114, 198); height: 22px; top: 42px; left: -605px;"></div>' +

 '<div class="ms-tl-todayLabel" style="position:absolute; background-color:rgb(0,

114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: 23px; left: -628px; background-color: rgb(0, 114, 198);">Today</div>';

 timeline.innerHTML += todayLabel;

 }else{

 var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14; border-color:

rgb(0, 114, 198); height: 22px; top: -23px; left: 227px;"></div>' +

 '<div class="ms-tl-todayLabel" style="position:absolute; background-color:rgb(0,

114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: -42px; left: 204px; background-color: rgb(0, 114, 198);">Today</div>';

 timeline.innerHTML += todayLabel;

 }

 }else{

 if(timeSpan == 'twoWeeks'){

 // "Today" label's code

 var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14; border-color:

rgb(0, 114, 198); height: 24px; top: -24px; left: 106px;"></div>' +

 '<div class="ms-tl-todayLabel" style="position:absolute; background-color:rgb(0,

114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: -42px; left: 81px; background-color: rgb(0, 114, 198);">Today</div>';

 timeline.innerHTML += todayLabel;

 }else{

 if(timeSpan == 'month'){

 // "Today" label's code

 var todayLabel = '<div class="ms-tl-today" style="position:absolute; background-color:rgb(0, 114, 198); color:white; z-index=14;

border-color: rgb(0, 114, 198); height: 24px; top: -24px; left: 119px;"></div>' +

191

 '<div class="ms-tl-todayLabel" style="position:absolute;

background-color:rgb(0, 114, 198); color:white; text-align:center; z-index=14; width: 49px; height: 20px; top: -42px; left: 95px; background-color: rgb(0, 114, 198);">Today</div>';

 timeline.innerHTML += todayLabel;

 }

 }

 }

 */

 // Creating local variables

 var horizontalSectionWidth = timelineWidth/numOfDaysInTimeline; // We need to keep it as float, because when it comes to the "year" time span we

have to keep the decimal values to keep the result for the left margin of every section correct.

 var remainingHorizontalSpace = timelineWidth - (horizontalSectionWidth*numOfDaysInTimeline);

 var minDate = new Date();

 var maxDate = new Date();

 if(timeSpan == 'week'){

 // Saving the first date on the left and the last date ont he right of the timeline.

 minDate.setDate(today.getDate() -1); // The 10% of the timeSpan regards the past

 maxDate.setDate(today.getDate() + numOfDaysInTimeline-2); // The 90% of the timeSpan regards the future (90% less the present

day)

 today.setDate(today.getDate() - 2); // Bringing the today's date back to the first day of the timeline less one.

 for(var i=0; i<numOfDaysInTimeline; i++){

 today.setDate(today.getDate() + 1); // Updating the date object that we want to pass to the function

createDateString()

 datesStrings.push(createDateString(today, timeSpan)); //

Creating the dates strings passing to the function

 }

 }else{

 if(timeSpan == 'twoWeeks' || timeSpan == 'month'){

 // Saving the first date on the left and the last date ont he right of the timeline.

 minDate.setDate(today.getDate() -(Math.floor(numOfDaysInTimeline/10))); // The 10% of the timeSpan regards the past

 maxDate.setDate(today.getDate() + (Math.floor(numOfDaysInTimeline/10*9))); // The 90% of the timeSpan regards the future (90%

less the present day)

 today.setDate(today.getDate() - (Math.floor(numOfDaysInTimeline/10)+1)); // Bringing the today's date back to the first day of the timeline

less one.

 for(var i=0; i<numOfDaysInTimeline; i++){

 today.setDate(today.getDate() + 1); // Updating the date object that we want to pass to the function

createDateString()

 datesStrings.push(createDateString(today, timeSpan)); //

Creating the dates strings passing to the function

 }

 }else{

 if(timeSpan == 'threeMonths'){

 // Saving the first date on the left and the last date on the right of the timeline.

 // minDate = the present month

 minDate.setDate(1); // The first day of the present month

 maxDate = new Date();

 maxDate.setMonth(maxDate.getMonth() +3); // To have the maxDate set on the last day of the next month we can forward by 2

months and then move 1 day back.

 maxDate.setDate(1); // Setting the date on the first day of the month

 maxDate.setDate(maxDate.getDate() -1); // Going to the last day of the previous month for maxDate (two months ahead for

us).

 datesStrings.push(createDateString(minDate, timeSpan));

 minDate.setMonth(minDate.getMonth()+1);

 datesStrings.push(createDateString(minDate, timeSpan));

 minDate.setMonth(minDate.getMonth()-1); // Bringing the minDate back to its original date (for the future

operations that use this variable)

 datesStrings.push(createDateString(maxDate, timeSpan));

 }else{

 if(timeSpan == 'sevenMonths'){

 // Saving the first date on the left and the last date ont he right of the timeline.

 if(minDate.getDate() == 31){ minDate.setDate(30); } // We need this check because the next

function rewinds at most for 30 days (Javascript bug)

 minDate.setMonth(minDate.getMonth() -1);

 minDate.setDate(1); // The result will be the first day of the previous month.

 maxDate = new Date();

 maxDate.setMonth(maxDate.getMonth() +6); // To have the maxDate set on the last day of the next month we can

forward by 2 months and then move 1 day back.

 maxDate.setDate(1); // Setting the date on the first day of the month

 maxDate.setDate(maxDate.getDate() -1); // Going to the last day of the previous month for maxDate (next month

for us).

 if(maxDate.getMonth() === 'January'){ maxDate.setFullYear(minDate.getFullYear() +1) }

 datesStrings.push(createDateString(minDate, timeSpan));

 minDate.setMonth(minDate.getMonth()+1);

 datesStrings.push(createDateString(minDate, timeSpan));

 minDate.setMonth(minDate.getMonth()+1);

 datesStrings.push(createDateString(minDate, timeSpan));

 minDate.setMonth(minDate.getMonth()+1);

 datesStrings.push(createDateString(minDate, timeSpan)); // This month

 minDate.setMonth(minDate.getMonth()+1);

 datesStrings.push(createDateString(minDate, timeSpan));

 minDate.setMonth(minDate.getMonth()+1);

 datesStrings.push(createDateString(minDate, timeSpan));

 minDate.setMonth(minDate.getMonth()-5); // Bringing the minDate back to its original date (for

the future operations that use this variable)

 datesStrings.push(createDateString(maxDate, timeSpan));

 }else{

 if(timeSpan == 'year'){

 // Saving the first date on the left and the last date ont he right of the timeline.

 minDate = new Date(new Date().getFullYear(), 0, 1); // First of January

 maxDate = new Date(new Date().getFullYear(), 11, 31); // End of this Year

 datesStrings.push("January");

 datesStrings.push("February");

 datesStrings.push("March");

 datesStrings.push("April");

 datesStrings.push("May");

 datesStrings.push("June");

 datesStrings.push("July");

 datesStrings.push("August");

192

 datesStrings.push("September");

 datesStrings.push("October");

 datesStrings.push("November");

 datesStrings.push("December");

 }

 }

 }

 }

 }

 minDate.setHours(0);

 minDate.setMinutes(0);

 minDate.setSeconds(0);

 minDate.setMilliseconds(0);

 maxDate.setHours(0);

 maxDate.setMinutes(0);

 maxDate.setSeconds(0);

 maxDate.setMilliseconds(0);

 // Creating the HTML code for the X axis of the timeline (the dates)

 var datesAxisString = ''; // The dates for the X axis in the timeline

 var separatorsString = ''; // The string with the small vertical separators between the dates on the timeline

 var timelineNumColumns;

 if(timeSpan == 'week'){ timelineNumColumns = 7; }

 else{ if(timeSpan == 'twoWeeks'){ timelineNumColumns = 15; }

 else{ if(timeSpan == 'month'){ timelineNumColumns = 31; }

 else{ if(timeSpan == 'threeMonths'){ timelineNumColumns = 3; } // 3 months

 else{ if(timeSpan == 'sevenMonths'){ timelineNumColumns = 7; } // 7 months

 else{ if(timeSpan == 'year'){ timelineNumColumns = 12; }}}}}} // 12 months

 var sectionWidthInTimeline = Math.floor(timelineWidth/timelineNumColumns)-5; // Adjusting the width counting the padding-left property in the space sections

 for(var i=0; i<timelineNumColumns; i++){

 if(i==timelineNumColumns-1){

 datesAxisString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; font-family: \'Segoe UI\'; font-size: 8pt; float: left;

text-align: left; padding-left: 5px; padding-bottom: 5px; width: '+ (sectionWidthInTimeline+remainingHorizontalSpace) +'px;">'+ datesStrings[i] +'';

 separatorsString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; float: left; border-left-width: 1px; border-left-style: solid;

border-color: rgb(213, 213, 213); width: '+ (sectionWidthInTimeline+remainingHorizontalSpace+4) +'px;">';

 }else{

 datesAxisString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; font-family: \'Segoe UI\'; font-size: 8pt; float: left;

text-align: left; padding-left: 5px; padding-bottom: 5px; width: '+ sectionWidthInTimeline+'px;">'+ datesStrings[i] +'';

 separatorsString += '<span style="white-space: nowrap; overflow: hidden; height: 100%; float: left; border-left-width: 1px; border-left-style:

solid; border-color: rgb(213, 213, 213); width: '+ (sectionWidthInTimeline+4) +'px;">';

 }

 }

 // The timeline is 1060px width, so we have to split this value in the number of subsections we want to create (es. number of days, hours of the day ecc...)

 // We are adding 220px to the left margin to make space for the categories and equipments.

 var timelineXaxis = '<div class="timeline-dates" style="width: '+ (timelineWidth+1) +'px; height:20px; margin-left:220px; left:0px; top:-20px; padding-right:28px;">' +

 '<div style="padding: 0px; left: 0px; top: 0px; overflow: hidden; position:inherit; height:

19px; background-repeat: repeat-x;"></div>' +

 '<div style="white-space:nowrap; overflow:hidden; position: relative; color: rgb(119, 119, 119);

border-bottom-width: 1px; border-bottom-style: hidden; border-bottom-color: rgb(119, 119, 119); height: 20px; top: 0px; left: 0px; margin-left: 2px;">' +

 datesAxisString +

 '</div>' +

 '<div style="white-space:nowrap; overflow:hidden; position:relative; color: rgb(119, 119, 119);

border-bottom-width: 1px; border-bottom-style: hidden; border-bottom-color: rgb(119, 119, 119); height: 10px; top: -16px; left: 0px; margin-left: 0px;">' +

 separatorsString +

 '</div>' +

 '</div>' +

 '<div id="innerTimeline" style="margin-left:220px; border:1px solid black; margin-top:13px;

position:relative;"></div>';

 // Adding the dates on the X axis to the timeline

 timeline.innerHTML += timelineXaxis;

 // Reading height and width of the timeline

 var timelineHeight = timeline.style.height;

 var timelineWidth = timeline.style.width;

 timeline = document.getElementById("innerTimeline");

 // Adjusting the height of the inner timeline

 timeline.style.height = timelineHeight; // Enlarging the height of the timeline in order to have one line for each Equipment

 timeline.style.width = timelineWidth;

 var listItemEnumerator = taskListItems.getEnumerator(); // Resetting the enumerator

 var authorsArray = new Array(); // The array containing the names of the creators of the tasks

 var text = ''; // The HTML code of the task to add to the timeline

 while(listItemEnumerator.moveNext()){

 var oListItem = listItemEnumerator.get_current();

 var author = oListItem.get_item('Author');

 var project = oListItem.get_item('Project');

 var taskTitle = oListItem.get_item('Title');

 var assignedTo = oListItem.get_item('AssignedTo');

 var startDate = oListItem.get_item('StartDate');

 var dueDate = oListItem.get_item('DueDate');

 var equipmentCategory = oListItem.get_item('Equipment_x0020_Category');

 var equipmentName = oListItem.get_item('Equipment_x0020_Name');

 var amountOfMagnets = oListItem.get_item('Amount_x0020_of_x0020_magnets'); // The string "x0020" is a space in the SharePoint's list's property.

 var taskID = oListItem.get_item('ID');

 var contentTypeId = oListItem.get_item('ContentTypeId').$c_1;

 var listId = taskListItems.get_path().get_$1O_0().$r_1; // Here we get a string with a lot of information. E.g.: "740c6a0b-85e2-48a0-a494-

e0f1759d4aa7:site:5224dfee-cb44-4a8b-ada7-ed36f701eb5f:web:35c8c320-4179-49d9-9bd6-325be8036e6b:list:08e544cf-2b93-4378-b3bd-16ca91cae1e9"

 var idIndex = listId.indexOf("list:"); // Reading where the ID of the list

starts in the string.

 var equipmentsArray = new Array(); // This array will contain, if necessary, the array of equipments. If not used its length will be

= 0.

 // Taking only the "listId" and Formatting it for the EditItem2() method that will be created later.

 listId = listId.substring(idIndex + 5, listId.length); // Keeping only the ID of the list.

 listId = listId.toUpperCase().replace(/-/g, '%2D');

193

 listId = '%7B' + listId +'%7D';

 // Consistency checks and updates

 if(author != null){ author = author.$2e_1; }

 if (project != null && project != undefined){ project = project.$2e_1; }

 if (equipmentCategory != null && equipmentCategory != undefined){ equipmentCategory = equipmentCategory.$2e_1; }

 if (equipmentName != null && equipmentName != undefined){

 // We are considering both the possibilities for 'single equipment' or 'list of equipments' (when on SharePoint the element can have "multiple values").

 if(equipmentName.$2e_1 != null && equipmentName.$2e_1 != undefined){

 equipmentName = equipmentName.$2e_1;

 }else{

 equipmentsArray = equipmentName; // 'equipmentName' is an array of equipments

 }

 }

 if(assignedTo != null && assignedTo != undefined){

 if(assignedTo.$2e_1 != null && assignedTo.$2e_1 != undefined){

 assignedTo = ' - ' + assignedTo.$2e_1;

 }else{

 if(assignedTo[0] != null && assignedTo[0] != undefined){

 assignedTo = ' - ' + assignedTo[0].$2e_1;

 }else{

 assignedTo = '';

 }

 }

 }

 if(amountOfMagnets == null || amountOfMagnets == undefined){ amountOfMagnets = 0; }

 amountOfMagnets = '#' + amountOfMagnets;

 var authorIndex = authorsArray.indexOf(author);

 if(authorIndex == -1 || authorIndex == undefined || authorIndex == null){ // If the author's name is not yet in the array...

 authorsArray.push(author); // Adding the author's name

 authorIndex = authorsArray.indexOf(author); // Recreating the index (which will now be >-1)

 }

 if(equipmentsArray.length > 0){

 for(var tempEquipmentIndex=0; tempEquipmentIndex<equipmentsArray.length; tempEquipmentIndex++){

 equipmentName = equipmentsArray[tempEquipmentIndex].$2e_1; // Reading the current equipment in the array of equipments related

to this task.

 var equipmentIndex = globalEquipmentsArray.indexOf(equipmentName);

 // If this element have an equipment assigned to it and If the task is not set for some dates outside the timeline we can

proceed...

 if(equipmentIndex > -1 && !(dueDate<minDate) && !(startDate>maxDate)){

 var distanceFromTopInTheTimeline = 0; // It is the minimum distance from the top to appear

int he innerTimeline, since the task has 'absolute' positioning.

 distanceFromTopInTheTimeline += 22 * equipmentIndex; // Only the integer value, the 'px' part will be

attached in the "text" string.

 // Defining the width of the task block in the timeline.

 var taskDaysGap;

 var taskWidth;

 // If both the start date and the due date are outside the timeline... (the task starts before the first date in

the timeline and finishes after the last date in the timeline)

 if(startDate <= minDate && dueDate >= maxDate){

 taskWidth = parseInt(timelineWidth.substring(0, timelineWidth.length-2));

 // Using the whole width of the timeline. We first need to convert the string "1060px" in an integer leaving the last 2 characters.

 }else{

 if(startDate >= minDate && dueDate <= maxDate){

 taskDaysGap = dueDate.getTime() - startDate.getTime()+1; // The +1 is necessary, otherwise

sometimes a day is lost, ending up counting e.g. 2 days gap instead of 3.

 taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24)); // Getting the

difference in days

 taskWidth = horizontalSectionWidth * taskDaysGap; //

+horizontalSectionWidth is necessary to add one plus section's width to make the items display correctly.

 if(timeSpan == 'week'){ taskWidth -= 1; }

 else{ if(timeSpan == 'twoWeeks'){ taskWidth -=3; }

 else{ if(timeSpan == 'threeMonths'){ taskWidth -=3; }

 else{ if(timeSpan == 'sevenMonths'){ taskWidth -= 4; }

 } } }

 if(dueDate.getDay() === maxDate.getDay() && dueDate.getMonth() === maxDate.getMonth() &&

dueDate.getFullYear() === maxDate.getFullYear()){ if(timeSpan == 'week'){ taskWidth += 2; }} // If the item fits in the timeline but finishes

 }else{

 // At least one of the dates is inside of the timeline. Checking which one.

 if(startDate >= minDate){

 taskDaysGap = maxDate.getTime() - startDate.getTime()+1; // Using the max date

present on the timeline as "dueDate"

 taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24)); //

Getting the difference in days

 taskWidth = horizontalSectionWidth * taskDaysGap;

 if(timeSpan == 'week'){ taskWidth += 1; }

 else{ if(timeSpan == 'twoWeeks'){ taskWidth -=4; }}

 //if(timeSpan == 'month' || timeSpan == 'twoWeeks') -> no need to add

value in these cases

 }else{

 if(dueDate <= maxDate){

 taskDaysGap = dueDate.getTime() - minDate.getTime(); // Using

the min date present on the timeline as "startDate"

 taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 *

24)); // Getting the difference in days

 taskWidth = (horizontalSectionWidth * taskDaysGap) +

horizontalSectionWidth -1; // +horizontalSectionWidth is necessary to add one plus section's width to make the items display correctly.

 if(timeSpan == 'twoWeeks'){ taskWidth -=1; }

 else{ if(timeSpan == 'threeMonths'){ taskWidth -= 4; }}

 }

 }

 }

 }

 // In any case we want the width to lose a pixel, because in the "New Task" form we increase by one the 'leftPadding' of each of

them.

 // Except when the task takes the whole timeline.

 if(taskWidth != parseInt(timelineWidth.substring(0, timelineWidth.length-2))){

 taskWidth--;

194

 }

 if(taskWidth < 2){ taskWidth = 2; } // Setting a minimum width

 // Calculating the space to be added on the left of the task in the timeline

 var leftMargin = 0; // It is the minimum distance from the left border in order for the Task to appear

in the innerTimeline (because it has 'absolute' positioning.

 if(startDate > minDate){

 var daysDifference = startDate.getTime() - minDate.getTime();

 daysDifference = Math.ceil(daysDifference / (1000 * 3600 * 24));

 leftMargin += Math.floor(horizontalSectionWidth * daysDifference)+1;

 if(timeSpan == 'month'){

 leftMargin -= 2;

 taskWidth += 1;

 }else{

 if(timeSpan == 'twoWeeks'){

 leftMargin -= 2;

 }else{

 if(timeSpan == 'threeMonths'){

 leftMargin -= 6;

 taskWidth += 1;

 }else{

 if(timeSpan == 'sevenMonths'){

 leftMargin -= 7;

 }

 }

 }

 }

 if(leftMargin < 0) { leftMargin = 0; } // Bounding the value of 'leftMargin'

 }

 // We want the dates to be in the format "22/10". We convert now the Date objects in strings to display in the

HTML element.

 var startDateString = startDate.getDate() +'/'+ (parseInt(startDate.getMonth())+1);

 var dueDateString = dueDate.getDate() +'/'+ (parseInt(dueDate.getMonth())+1);

 taskWidth = Math.floor(taskWidth); // Re-adjusting the width, in case there are decimal numbers in it.

 var backgroundColor = 'white'; // Setting the default background color

 if(colorRule == 'colorByProject'){ // If we want every project to have a different background color...

 // We have to find the related project in the 'globalProjectsArray' and use the linked color.

 var tempLength = globalProjectsArray.length;

 for(var x=0; x<tempLength; x++){

 if(globalProjectsArray[x].projectName == project){

 backgroundColor = globalProjectsArray[x].projectColor;

 break;

 }

 }

 }else{ // Each User will have a different color associated with it and so its Tasks.

 // We have to find the related user in the 'globalUsersArray' and use the linked color.

 var tempLength = globalUsersArray.length;

 var tempAssignedTo = assignedTo.replace(/ /g, '').substring(1);

 for(var x=0; x<tempLength; x++){

 if(globalUsersArray[x].userName.$2e_1 == tempAssignedTo){

 backgroundColor = globalUsersArray[x].userColor;

 break;

 }

 }

 }

 var equipmentHTMLString = ''; // String that will appear if the user clicks on the task in the

timeline.

 // We are already sure that this task has multiple equipments assigned to it.

 for(var tempHTMLindex = 0; tempHTMLindex<equipmentsArray.length; tempHTMLindex++){

 equipmentHTMLString += ' '+ equipmentsArray[tempHTMLindex].$2e_1 +'
';

 }

 text = '<div class="ms-tl-bar" tabindex="0" style="position:absolute; cursor:pointer; margin-bottom:2px; width: '+

taskWidth +'px; height: 20px; top: '+ distanceFromTopInTheTimeline +'px; left: '+ leftMargin +'px; background-color:'+ backgroundColor +'; white-space:nowrap; overflow:hidden;">' +

 '<span class="ms-tl-barTitle" unselectable="on" style="margin-left:

5px; width: 625px; text-overflow: ellipsis; color: rgb(68, 68, 68); font-family: \'Segoe UI\'; font-size: 8pt;">'+ taskTitle + assignedTo +' : '+ equipmentName + amountOfMagnets

+' magnets' +

 ''+ project +

 '<a href="#"

onclick="javascript:closeDialogWindow();"><input type="button" value="×" class="closeButton" style="float:right; cursor:pointer; padding:1px 0 3px; min-width:2.1em;"/>
'+

taskTitle + assignedTo +'
'+

 'Equipments:
'+ equipmentHTMLString +

 amountOfMagnets +' magnets
Time period: '+

startDateString +' - '+ dueDateString +

 '<input type="button" value="Edit"

style="float:right; cursor:pointer; padding:2px 0; min-width:4em;" onclick="EditItem2(event, \''+ siteUrl +'/_layouts/15/listform.aspx?PageType=6&ListId='+ listId +'&ID='+ taskID

+'&ContentTypeID='+ contentTypeId +'\')">' +

 '' +

 '</div>';

 timeline.innerHTML += text;

 }

 }

 }else{

 var equipmentIndex = globalEquipmentsArray.indexOf(equipmentName);

 // If this element have an equipment assigned to it and If the task is not set for some dates outside the timeline we can proceed...

 if(equipmentIndex > -1 && !(dueDate<minDate) && !(startDate>maxDate)){

 var distanceFromTopInTheTimeline = 0; // It is the minimum distance from the top to appear int he

innerTimeline, since the task has 'absolute' positioning.

 distanceFromTopInTheTimeline += 22 * equipmentIndex; // Only the integer value, the 'px' part will be attached in the

"text" string.

 // Defining the width of the task block in the timeline.

 var taskDaysGap;

 var taskWidth;

 // If both the start date and the due date are outside the timeline... (the task starts before the first date in the timeline and

finishes after the last date in the timeline)

 if(startDate <= minDate && dueDate >= maxDate){

 taskWidth = parseInt(timelineWidth.substring(0, timelineWidth.length-2)); // Using

the whole width of the timeline. We first need to convert the string "1060px" in an integer leaving the last 2 characters.

195

 }else{

 if(startDate >= minDate && dueDate <= maxDate){

 taskDaysGap = dueDate.getTime() - startDate.getTime()+1; // The +1 is necessary, otherwise sometimes a day is

lost, ending up counting e.g. 2 days gap instead of 3.

 taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24)); // Getting the difference in days

 taskWidth = horizontalSectionWidth * taskDaysGap; // +horizontalSectionWidth is

necessary to add one plus section's width to make the items display correctly.

 if(timeSpan == 'week'){ taskWidth -= 1; }

 else{ if(timeSpan == 'twoWeeks'){ taskWidth -=3; }

 else{ if(timeSpan == 'threeMonths'){ taskWidth -=3; }

 else{ if(timeSpan == 'sevenMonths'){ taskWidth -= 4; }

 } } }

 if(dueDate.getDay() === maxDate.getDay() && dueDate.getMonth() === maxDate.getMonth() && dueDate.getFullYear()

=== maxDate.getFullYear()){ if(timeSpan == 'week'){ taskWidth += 2; }} // If the item fits in the timeline but finishes

 }else{

 // At least one of the dates is inside of the timeline. Checking which one.

 if(startDate >= minDate){

 taskDaysGap = maxDate.getTime() - startDate.getTime()+1; // Using the max date present on the

timeline as "dueDate"

 taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24)); // Getting the

difference in days

 taskWidth = horizontalSectionWidth * taskDaysGap;

 if(timeSpan == 'week'){ taskWidth += 1; }

 else{ if(timeSpan == 'twoWeeks'){ taskWidth -=4; }}

 //if(timeSpan == 'month' || timeSpan == 'twoWeeks') -> no need to add value in these

cases

 }else{

 if(dueDate <= maxDate){

 taskDaysGap = dueDate.getTime() - minDate.getTime(); // Using the min date

present on the timeline as "startDate"

 taskDaysGap = Math.ceil(taskDaysGap / (1000 * 3600 * 24)); //

Getting the difference in days

 taskWidth = (horizontalSectionWidth * taskDaysGap) + horizontalSectionWidth -1;

 // +horizontalSectionWidth is necessary to add one plus section's width to make the items display correctly.

 if(timeSpan == 'twoWeeks'){ taskWidth -=1; }

 else{ if(timeSpan == 'threeMonths'){ taskWidth -= 4; }}

 }

 }

 }

 }

 // In any case we want the width to lose a pixel, because in the "New Task" form we increase by one the 'leftPadding' of each of them.

 // Except when the task takes the whole timeline.

 if(taskWidth != parseInt(timelineWidth.substring(0, timelineWidth.length-2))){

 taskWidth--;

 }

 if(taskWidth < 2){ taskWidth = 2; } // Setting a minimum width

 // Calculating the space to be added on the left of the task in the timeline

 var leftMargin = 0; // It is the minimum distance from the left border in order for the Task to appear in the

innerTimeline (because it has 'absolute' positioning.

 if(startDate > minDate){

 var daysDifference = startDate.getTime() - minDate.getTime();

 daysDifference = Math.ceil(daysDifference / (1000 * 3600 * 24));

 leftMargin += Math.floor(horizontalSectionWidth * daysDifference)+1;

 if(timeSpan == 'month'){

 leftMargin -= 2;

 taskWidth += 1;

 }else{

 if(timeSpan == 'twoWeeks'){

 leftMargin -= 2;

 }else{

 if(timeSpan == 'threeMonths'){

 leftMargin -= 6;

 taskWidth += 1;

 }else{

 if(timeSpan == 'sevenMonths'){

 leftMargin -= 7;

 }

 }

 }

 }

 if(leftMargin < 0) { leftMargin = 0; } // Bounding the value of 'leftMargin'

 }

 // We want the dates to be in the format "22/10". We convert now the Date objects in strings to display in the HTML element.

 startDate = startDate.getDate() +'/'+ (parseInt(startDate.getMonth())+1);

 dueDate = dueDate.getDate() +'/'+ (parseInt(dueDate.getMonth())+1);

 taskWidth = Math.floor(taskWidth); // Re-adjusting the width, in case there are decimal numbers in it.

 var backgroundColor = 'white'; // Setting the default background color

 if(colorRule == 'colorByProject'){ // If we want every project to have a different background color...

 // We have to find the related project in the 'globalProjectsArray' and use the linked color.

 var tempLength = globalProjectsArray.length;

 for(var x=0; x<tempLength; x++){

 if(globalProjectsArray[x].projectName == project){

 backgroundColor = globalProjectsArray[x].projectColor;

 break;

 }

 }

 }else{ // Each User will have a different color associated with it and so its Tasks.

 // We have to find the related user in the 'globalUsersArray' and use the linked color.

 var tempLength = globalUsersArray.length;

 var tempAssignedTo = assignedTo.replace(/ /g, '').substring(1);

 for(var x=0; x<tempLength; x++){

 if(globalUsersArray[x].userName.$2e_1 == tempAssignedTo){

 backgroundColor = globalUsersArray[x].userColor;

 break;

 }

 }

 }

 text = '<div class="ms-tl-bar" tabindex="0" style="position:absolute; cursor:pointer; margin-bottom:2px; width: '+ taskWidth +'px;

height: 20px; top: '+ distanceFromTopInTheTimeline +'px; left: '+ leftMargin +'px; background-color:'+ backgroundColor +'; white-space:nowrap; overflow:hidden;">' +

196

 '<span class="ms-tl-barTitle" unselectable="on" style="margin-left: 5px; width:

625px; text-overflow: ellipsis; color: rgb(68, 68, 68); font-family: \'Segoe UI\'; font-size: 8pt;">'+ taskTitle + assignedTo +' : Equipments:'+ equipmentName + amountOfMagnets

+' magnets' +

 ''+ project +

 '<input

type="button" value="×" class="closeButton" style="float:right; cursor:pointer; padding:1px 0 3px; min-width:2.1em;"/>
'+ taskTitle + assignedTo +'
'+

 equipmentName + amountOfMagnets +' magnets
Time period: '+

startDate +' - '+ dueDate +

 '<input type="button" value="Edit" style="float:right;

cursor:pointer; padding:2px 0; min-width:4em;" onclick="EditItem2(event, \''+ siteUrl +'/_layouts/15/listform.aspx?PageType=6&ListId='+ listId +'&ID='+ taskID +'&ContentTypeID='+

contentTypeId +'\')">' +

 '' +

 '</div>';

 timeline.innerHTML += text;

 }

 }

 // End of tasks cycle.

 }

 // Applying the onclick behaviour to the Tasks

 $(".ms-tl-bar").click(

 function(e) {

 // If the dialog window is already open we close the previously opened to then open a new one.

 if($(".task-pop-up-window")){

 $(".task-pop-up-window").remove();

 }

 // Creating a new element in the document

 var text = $(this)[0].lastChild.innerHTML;

 var tempElem = document.createElement('span');

 tempElem.innerHTML = text;

 // Showing the element properly formatted

 $(tempElem).show()

 .attr('class', 'task-pop-up-window')

 .css('top', e.pageY - 95)

 .css('left', e.pageX - 305)

 .css('position', 'absolute')

 .css('border', '1px solid #1a1a1a')

 .css('background', '#eeeeee')

 .css('color', 'black')

 .css('width', '280px')

 .css('padding', '10px')

 .appendTo('body');

 }

);

 addTasksToTimelineFlag = true; // Updating the flag that tells the system if this function has been called.

}

// This function allows the user to close the dialog window.

function closeDialogWindow(){

 // Check if the dialog window is open and if that is the case close it.

 if($(".task-pop-up-window")){

 $(".task-pop-up-window").remove();

 }

}

/* This function returns the number of days contained in the considered month (considers also the leap years).

 * Input:

 * - the month and the year considered. */

function daysInMonth(month,year) {

 month += 1; // Month has to be 1 based -> [1,12] instead of the Javascript usual zero-based month -> [0,11]

 return new Date(year, month, 0).getDate();

}

/* This function creates the string that will display the date and time of each feed and reply.

 * Input:

 * - the date object of the feed or reply

 * - the string defining the considered time span. */

function createDateString(dateObj, timeSpan){

 var day = dateObj.getDay();

 var month = dateObj.getMonth();

 if(timeSpan == 'week' || timeSpan == 'twoWeeks'){

 switch(day){

 case 0: day="Sun";

 break;

 case 1: day="Mon";

 break;

 case 2: day="Tue";

 break;

 case 3: day="Wed";

 break;

 case 4: day="Thu";

 break;

 case 5: day="Fri";

 break;

 case 6: day="Sat";

 break;

 default: day = "Mon";

 break;

 }

197

 if(timeSpan == 'week'){

 switch(month){

 case 0: month="January";

 break;

 case 1: month="February";

 break;

 case 2: month="March";

 break;

 case 3: month="April";

 break;

 case 4: month="May";

 break;

 case 5: month="June";

 break;

 case 6: month="July";

 break;

 case 7: month="August";

 break;

 case 8: month="September";

 break;

 case 9: month="October";

 break;

 case 10: month="November";

 break;

 case 11: month="December";

 break;

 default: month="January";

 break;

 }

 }else{

 switch(month){

 case 0: month="Jan";

 break;

 case 1: month="Feb";

 break;

 case 2: month="Mar";

 break;

 case 3: month="Apr";

 break;

 case 4: month="May";

 break;

 case 5: month="Jun";

 break;

 case 6: month="Jul";

 break;

 case 7: month="Aug";

 break;

 case 8: month="Sep";

 break;

 case 9: month="Oct";

 break;

 case 10: month="Nov";

 break;

 case 11: month="Dec";

 break;

 default: month="Jan";

 break;

 }

 }

 }else{

 if(timeSpan == 'month'){

 switch(day){

 case 0: day="Sun";

 break;

 case 1: day="Mon";

 break;

 case 2: day="Tue";

 break;

 case 3: day="Wed";

 break;

 case 4: day="Thu";

 break;

 case 5: day="Fri";

 break;

 case 6: day="Sat";

 break;

 default: day = "Mon";

 break;

 }

 switch(month){

 case 0: month="Jan";

 break;

 case 1: month="Feb";

 break;

 case 2: month="Mar";

 break;

 case 3: month="Apr";

 break;

 case 4: month="May";

 break;

 case 5: month="Jun";

 break;

 case 6: month="Jul";

 break;

 case 7: month="Aug";

 break;

 case 8: month="Sep";

 break;

 case 9: month="Oct";

 break;

 case 10: month="Nov";

 break;

198

 case 11: month="Dec";

 break;

 default: month="Jan";

 break;

 }

 }else{

 if(timeSpan == 'threeMonths' || timeSpan == 'sevenMonths'){

 switch(month){

 case 0: month="January";

 break;

 case 1: month="February";

 break;

 case 2: month="March";

 break;

 case 3: month="April";

 break;

 case 4: month="May";

 break;

 case 5: month="June";

 break;

 case 6: month="July";

 break;

 case 7: month="August";

 break;

 case 8: month="September";

 break;

 case 9: month="October";

 break;

 case 10: month="November";

 break;

 case 11: month="December";

 break;

 default: month="January";

 break;

 }

 }

 }

 }

 var numberOfTheDay = dateObj.getDate(); // Returns the day of the month (from 1-31)

 if(numberOfTheDay < 10){

 numberOfTheDay = '0' + parseInt(numberOfTheDay, 10); // This way if the month is the 5th it will be displayed as "05", instead of "5"

 }

 if(timeSpan == 'week' || timeSpan == 'twoWeeks'){

 return day+ ' ' +numberOfTheDay+ ' ' +month;

 }else{

 if(timeSpan == 'month'){

 return numberOfTheDay+ ' ' +month;

 }else{

 return month;

 }

 }

}

199

Appendix C

Hereunder is displayed the code regarding the Social API.

File “socialAPI.js”:

/*

 * Version 5.2

 * - Now when some feeds are already displayed and new feeds are retrieved from the Server the function only adds the new ones, without refreshing the whole HTML section.

 * - Improved the displaying of the feeds with same hashtag.

 */

// Creating the global variable socialAPI.

// It is made global to let other libraries and code inside the HTML page use it.

var socialAPI;

// The API:

(function ($) {

 /********************************

 * DEFINITION OF LOCAL VARIABLES

 ********************************/

 // DEVELOPMENT LINKS

 /*

 var socialWebsite = "https://social-dev.cern.ch/";

 var requestExecutorSite = 'https://social-dev.cern.ch/_layouts/15/AppWebProxy.aspx'; // Site used to authenticate to the social network

 var searchRestService = "https://social-dev.cern.ch/_api/search/";

 var formDigestUrl = "https://social-dev.cern.ch/_api/contextinfo";

 var myFeedManagerEndpoint = "https://social-dev.cern.ch/_api/social.feed/"; // From this site we can derive every other for post, delete and get

feeds

 var apiEndpoint = "https://social-dev.cern.ch/_api/";

 var querySiteToGetAllTheTags = searchRestService + "query?querytext='ContentTypeId:0x01FD* -ContentClass=urn:content-class:SPSPeople'&refiners='Tags'";

 // This variable is used only if the Canvas with tags is displayed

 */

 // PRODUCTION LINKS

 var socialWebsite = "https://social.cern.ch/";

 var requestExecutorSite = 'https://social.cern.ch/_layouts/15/AppWebProxy.aspx'; // Site used to authenticate to the social network

 var searchRestService = "https://social.cern.ch/_api/search/";

 var formDigestUrl = "https://social.cern.ch/_api/contextinfo";

 var myFeedManagerEndpoint = "https://social.cern.ch/_api/social.feed/"; // From this site we can derive every other for post, delete and get feeds

 var apiEndpoint = "https://social.cern.ch/_api/";

 var querySiteToGetAllTheTags = searchRestService + "query?querytext='ContentTypeId:0x01FD* -ContentClass=urn:content-class:SPSPeople'&refiners='Tags'";

 // This variable is used only if the Canvas with tags is displayed

 var hashtagCheckTimer; // This timer will check if any feed with the same hashtag has been retrieved from

the Server. If not, it will display a message to the User.

 var globalArrayOfProfiles = new Array(); // Array of objects like (accountName, whereToWrite, tempHandler, updateInterval, numOfFeeds)

 var globalArrayOfHashtags = new Array(); // Array of objects like (noSharpTagString, whereToWrite, handlerCode, updateInterval, numOfFeeds)

 var globalArrayOfSingleConversations = new Array(); // Array of objects like (URL, whereToWrite)

 var followedFeedsWhereToWrite = ''; // global variable that stores the section containing the followed feeds

 var followedFeedsUpdateInterval; // global variable that stores the update interval for the followed feeds

 var followedFeedsNumFeeds = 0; // global variable that stores the maximum number of feeds to display

 var followedFeedsFlagDisplayReplies = false;// global variable that stores the boolean var that says if to display the replies or not.

 var followedFeedsUpdatesHandler = 'a'; // global variable that keeps the number of the automatic feeds updates handler

 var errorHandlerFunction = function(){ alert("Error while making the CORS request."); }; // This variable will have the pointer to the function that will

eventually handle the exceptions while making the CORS requests.

 jQuery.support.cors = true; // Used for createCORSRequest()

 /**************************

 * DEFINITION OF FUNCTIONS

 **************************/

 // This function authenticates the User on Social (transparently to the User)

 function authenticateOnSocial(inputFunction){

 var executor = new SP.RequestExecutor(requestExecutorSite);

 executor.executeAsync(

 {

 url: formDigestUrl,

 method: "GET",

 headers: {

 "Accept": "application/json; odata=verbose",

 "Access-Control-Allow-Origin": "*",

 },

 dataType: "json",

 error: function (xhr, ajaxOptions, thrownError) {

 // This function will be executed always. It is not an actual 'error' situation.

 try{

 // After the authentication completes we use the function passed in input, that will contain the

calls for any other function on Social

 if(inputFunction !== null && inputFunction !== undefined){

 inputFunction();

 }

 }catch(e){ console.log("Error: input function parameter in the authentication function is not valid."); return; }

200

 }

 }

);

 }

 // This function executes a REST call and passes all the data retrieved to the 'onSucc' function specified by the calling function.

 function executeRestCall(url, method, data, onSucc, onError) {

 var xhr = createCORSRequest(method, url);

 if (!xhr) {

 throw new Error('CORS not supported');

 }

 else{

 xhr.onload = function () {

 onSucc(xhr.responseText);

 };

 xhr.onerror = onError;

 if (data !== null && data !== undefined && data !== ''){

 xhr.send(data);

 }else{

 xhr.send();

 }

 }

 }

 // This function executes a REST call and passes all the data retrieved to the 'onSucc' function specified by the calling function.

 function executeRestCallExtended(url, method, data, onSucc, onError, whereToWrite, id) {

 var xhr = createCORSRequest(method, url);

 if (!xhr) {

 throw new Error('CORS not supported');

 }

 else{

 xhr.onload = function () {

 onSucc(xhr.responseText, whereToWrite, id); // passing the parameters and the results of the RESTcall to the 'onSucc' pointed

function

 };

 xhr.onerror = onError;

 if (data !== null && data !== undefined && data !== ''){

 xhr.send(data);

 }else{

 xhr.send();

 }

 }

 }

 function executeRestCallExtendedFour(url, method, data, onSucc, onError, whereToWrite, id, numFeeds) {

 var xhr = createCORSRequest(method, url);

 if (!xhr) {

 throw new Error('CORS not supported');

 }

 else{

 xhr.onload = function () {

 onSucc(xhr.responseText, whereToWrite, id, numFeeds); // passing the parameters and the results of the RESTcall to the

'onSucc' pointed function

 };

 xhr.onerror = onError;

 if (data !== null && data !== undefined && data !== ''){

 xhr.send(data);

 }else{

 xhr.send();

 }

 }

 }

 function executeRestCallExtendedFive(url, method, data, onSucc, onError, whereToWrite, id, numFeeds, tagText) {

 var xhr = createCORSRequest(method, url);

 if (!xhr) {

 throw new Error('CORS not supported');

 }

 else{

 xhr.onload = function () {

 onSucc(xhr.responseText, whereToWrite, id, numFeeds, tagText); // passing the parameters and the results of the

RESTcall to the 'onSucc' pointed function

 };

 xhr.onerror = onError;

 if (data !== null && data !== undefined && data !== ''){

 xhr.send(data);

 }else{

 xhr.send();

 }

 }

 }

 function executeRestCallExtendedSix(url, method, data, onSucc, onError, whereToWrite, id, numFeeds, numFeedsStillToGet, flag) {

 var xhr = createCORSRequest(method, url);

 if (!xhr) {

 throw new Error('CORS not supported');

 }

 else{

 xhr.onload = function () {

 onSucc(xhr.responseText, whereToWrite, id, numFeeds, numFeedsStillToGet, flag); // passing the parameters and the

results of the RESTcall to the 'onSucc' pointed function

 };

 xhr.onerror = onError;

 if (data !== null && data !== undefined && data !== ''){

201

 xhr.send(data);

 }else{

 xhr.send();

 }

 }

 }

 function executeRestCallExtendedSeven(url, method, data, onSucc, onError, whereToWrite, id, textColor, textBorderColor, numDimensions, weightFlag) {

 var xhr = createCORSRequest(method, url);

 if (!xhr) {

 throw new Error('CORS not supported');

 }

 else{

 xhr.onload = function () {

 onSucc(xhr.responseText, whereToWrite, id, textColor, textBorderColor, numDimensions, weightFlag); // passing the

parameters and the results of the RESTcall to the function pointed by 'onSucc'.

 };

 xhr.onerror = onError;

 if (data !== null && data !== undefined && data !== ''){

 xhr.send(data);

 }else{

 xhr.send();

 }

 }

 }

 function createCORSRequest(method, url) {

 var xhr = new XMLHttpRequest();

 if ("withCredentials" in xhr) {

 // Check if the XMLHttpRequest object has a "withCredentials" property.

 // "withCredentials" only exists on XMLHTTPRequest2 objects.

 xhr.open(method, url, true);

 } else if (typeof XDomainRequest != "undefined") {

 // Otherwise, check if XDomainRequest.

 // XDomainRequest only exists in IE, and is IE's way of making CORS requests.

 xhr = new XDomainRequest();

 xhr.open(method, url);

 } else {

 // Otherwise, CORS is not supported by the browser.

 xhr = null;

 }

 if(xhr !== null){ // if the CORS is supported...

 xhr.withCredentials = true;

 xhr.setRequestHeader("accept", "application/json; odata=verbose");

 }

 return xhr;

 }

 function onError() {

 errorHandlerFunction();

 }

 // This function retrieves the value associated to an element inside an array with elements like (name, value), if that element is present.

 function getValue(key, results) {

 try {

 var postItem = jQuery.grep(results, function (e) {

 if (e.Key === key){

 return e;

 }

 })[0].Value;

 return postItem;

 }

 catch (err) {

 return null;

 }

 }

 // Function that draws on the screen the news feeds.

 function checkDataReceivedAndDisplayTheFeeds(data, whereToWrite, parentWhereToWrite, numOfFeedsTotal, numFeedsStillToGet, flagDisplayReplies) {

 var tempCheck;

 if(whereToWrite[0] === '#'){

 // 'whereToWrite' can be something like "#feedsFollowed". To use the function 'getElementById' we have to skip the '#'. We do that using the

'substring' function.

 tempCheck = document.getElementById(whereToWrite.substring(1)); // Checking the existence of the div section in the html code. If

(tempCheck = null) then no section has been found.

 }else{

 tempCheck = document.getElementById(whereToWrite);

 whereToWrite = '#' + whereToWrite;

 }

 // If the section foreseen for the feeds (section id = whereToWrite) exists, then...

 if(tempCheck !== null)

 {

 try{

 var result = JSON.parse(data); // parsing the data obtained from the social network

 }catch(e){

 $(whereToWrite).append('<div class="feedsItem"> <p id="text"> There has been a problem while communicating with the server.

Please try again later refreshing the page. </p> </div>');

 console.log("There was a problem while communicating with the Server.\nSee checkDataReceivedAndDisplayTheFeeds() function.");

 return;

 }

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer

in the console log

 if(result.error){

 try{

 if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exist on Social

202

 $(whereToWrite).append('<div class="feedsItem"> <p id="text"> Your account has not been found on

Social.
Please visit https://social.cern.ch and create the account first. </p> </div>');

 }else{ // Other error

 $(whereToWrite).append('<div class="feedsItem"> <p id="text"> There has been a problem while

communicating with the server.
Please try again later refreshing the page. </p> </div>');

 }

 console.log("Bad request.\nPlease review the checkDataReceivedAndDisplayTheFeeds() function.");

 return;

 }catch(e){console.log("Exception thrown in function showUserInformationInFeedsWithSameTagBodyFunction()"); return;}

 }

 // Consistency check : if no information has been retrieved...

 if(result.d === null || result.d === undefined)

 {

 // Printing the "problem" message on the screen

 $(whereToWrite).append('<div class="feedsItem"> <p id="text"> Network problem. Please try again later. </p> </div>');

 }

 else

 {

 var feeds;

 // Reading the feeds when there are no feeds can cause an exception, so we use a try/catch section.

 try{

 feeds = result.d.SocialFeed.Threads.results; // capturing the feeds

 feeds.sort(function(a,b){ // This function sorts the elements of the array according to the date of creation

of the feeds. The most recent one will be the first of the array.

 var dateA = new Date(a.RootPost.CreatedTime);

 var dateB = new Date(b.RootPost.CreatedTime);

 return dateB-dateA;

 });

 // If no feeds are found... (it is an array, so we can check the length)

 if(feeds.length == 0){

 // Printing the "no feed" message on the screen

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id,

otherwise the function 'fadeOut' will work only once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> No (more) feeds

available. </p> </div>'); // Printing the "problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the

warning from the HTML code after 7 seconds.

 }

 else{ //else: every feed found is printed

 appendFeeds(feeds, whereToWrite, parentWhereToWrite, numOfFeedsTotal, numFeedsStillToGet,

flagDisplayReplies); // Displaying the new feeds

 }

 } catch(err) { $(whereToWrite).html("A problem occurred while reading the feeds. \nThe server is probably under maintenance.

\nPlease try again later."); }

 }

 }

 // else: no feeds are written now.

 }

 function updateGroupInfo(whereToWrite, department, group, section, imageFlag, departmentFlag, numFeeds){

 // Sanitizing the input (encodeURI() is used instead of encodeURIComponent() when there has to be allowed the possibility to have hashtags.):

 whereToWrite = encodeURI(whereToWrite);

 department = encodeURI(department);

 group = encodeURI(group);

 section = encodeURI(section);

 numOfElementsAlreadyDisplayed = 0; // Resetting the global variable

 if(department === null || department === 'null' || department === undefined || department === '' || department.length < 1){

 $('#content').html('<div class="feedsItem"> <p id="text"> There has been a problem while retrieving the feeds. Please try again later. </p>

</div>');

 return;

 }

 var groupString;

 if(group == null || group == 'null' || group == undefined || group == ''){

 groupString = '';

 }else{

 if(typeof(group) === 'string' && group.length > 1 && group.length < 20){

 groupString = '/' + group;

 }else{

 groupString = '';

 }

 }

 var sectionString;

 if(section == null || section == 'null' || section == undefined || section == ''){

 sectionString = '';

 }else{

 if(typeof(section) === 'string' && section.length > 1 && section.length < 20){

 sectionString = ' Section:' + section;

 }else{

 sectionString = '';

 }

 }

 if(whereToWrite[0] !== '#'){

 whereToWrite = '#' + whereToWrite;

 }

 var tempElement;

 var parentWhereToWrite = whereToWrite;

 $(whereToWrite).html(''); // Clearing the section of the feeds I am following

 var tempSectionID = whereToWrite.substring(1, whereToWrite.length);

203

 // Section check. If the HTML section is present in the webpage we can move on, otherwise the function has to stop.

 if(document.getElementById(tempSectionID) === null){

 // Error. No HTML section found to display the followed feeds on Social. Please add a <div id="feedsFollowed"> section.

 $(whereToWrite).append('<div class="feedsItem"> <p id="text"> There has been a problem while communicating with the server.
Please try again

later. </p> </div>');

 console.log('Error while trying to write the followed feeds. The section ID passed in input seems not to be present in the webpage.');

 return;

 }

 // Adding a new wrapping section in the HMTL page to make the SocialAPI's CSS file point only at this part of the webpage, in case many CSS files are used.

 var wrapSection = '<div class="socialAPIWrapClass">'+

 '<div id="socialAPIDepartment' + tempSectionID +'">'+

 '</div>'+

 '</div>';

 $(whereToWrite).append(wrapSection);

 whereToWrite = '#socialAPIDepartment' + tempSectionID ;

 var searchForGroupInfoSite = searchRestService + "query?querytext='department:" +department + groupString + sectionString+"'&sourceid='B09A7990-05EA-4AF9-81EF-

EDFAB16C4E31'";

 // In the variable 'searchForGroupInfoSite', the code:

 // sourceid='B09A7990-05EA-4AF9-81EF-EDFAB16C4E31'

 // tells the Server that we are looking for People (possible search options: Everything, People, Conversations, Videos).

 try{

 executeRestCallExtendedSeven(searchForGroupInfoSite, 'GET', null, updateGroupInfoBodyFunction, onError, whereToWrite, department, group, section,

imageFlag, departmentFlag, numFeeds);

 }

 catch(err){ errorHandlerFunction(11, "There was a problem while communicating with the Server.\nPlease try again later."); }

 }

 // This function displays the elements found using "updateGroupInfo()".

 function updateGroupInfoBodyFunction(data, whereToWrite, department, group, section, imageFlag, departmentFlag, numFeeds){

 var peopleArray = JSON.parse(data);

 try{

 peopleArray = peopleArray.d.query.PrimaryQueryResult.RelevantResults.Table.Rows.results; // Reading people's data.

 }catch(e){

 console.log("There has been a problem while communicating with the Server. Please check updateGroupFeedsBodyFunction() function.");

 $(whereToWrite).append('<div class="feedsItem"> <p id="text"> There has been a problem while communicating with the Server. Please try again

later. </p> </div>');

 }

 if(peopleArray.length < 1){

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'fadeOut' will work

only once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> No (more) people found for the department. </p> </div>');

 // Printing the "problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds.

 return;

 }

 var numOfFeedsToDisplay = 0;

 if(numFeeds < peopleArray.length && numFeeds > 0){

 numOfFeedsToDisplay = numFeeds;

 }else{

 numOfFeedsToDisplay = peopleArray.length;

 }

 var pictureString = '';

 var profilePictureUri = '';

 var departmentString = '';

 var personalSite = '';

 for(var i=0; i<numOfFeedsToDisplay; i++){

 if(departmentFlag){

 departmentString = getValue("Department", peopleArray[i].Cells.results); // Reading the Department from the first person

 if(departmentString.substring(0, department.length) != department){

 continue;

 }

 departmentString = '<div> <p>Department: '+ departmentString +'</p> </div>';

 }

 if(imageFlag){ // If we want to show the image we update the pictureString

 personalSite = getValue("Path", peopleArray[i].Cells.results);

 profilePictureUri = getValue("PictureURL", peopleArray[i].Cells.results);

 if(profilePictureUri == null || profilePictureUri == undefined || profilePictureUri == 'null' || profilePictureUri == ''){

 // If there is no URL for the profile picture we display the anonymous profile image.

 pictureString = '<div class="picSection">' +

 '<div id="picSection">' +

 '<a href="'+

personalSite +'" target="_blank">' +

 '<img

src="'+ socialWebsite + '_layouts/15/images/PersonPlaceholder.42x42x32.png?rev=23" id="myPicture" />' +

 '' +

 '</div>' +

 '</div>';

 }else{

 pictureString = '<div class="picSection">' +

 '<div id="picSection">' +

 '<a href="'+

personalSite +'" target="_blank">' +

 '<img

src="'+ profilePictureUri +'" id="myPicture" />' +

 '' +

 '</div>' +

 '</div>';

 }

 } // else: the 'pictureString' variable will be an empty string.

204

 var name = getValue("PreferredName", peopleArray[i].Cells.results);

 var email = getValue("WorkEmail", peopleArray[i].Cells.results);

 $(whereToWrite).append('<div class="feedsItem">' +

 pictureString +

 '<div class="notPicSection">' +

 '<h2 id="author"> '+ name + ' </h2>' +

 departmentString +

 '<p>email: '+ email +'</p>' +

 '</div>' +

 '</div>');

 }

 // If there are less than 10 elements displayed -> we call for more

 if(document.getElementsByClassName("notPicSection").length < 10){

 moreGroupElements(whereToWrite, department, group, section, imageFlag, departmentFlag, numOfFeedsToDisplay);

 return;

 }

 // Adding a button to retrieve more elements

 $(whereToWrite).append('<a id="moreFeedsButton'+ whereToWrite.substring(1) +'" class="moreFeedsButton" href="javascript:socialAPI().moreGroupElements(''+

whereToWrite +'', ''+ department +'', ''+ group +'', ''+ section +'', ''+ imageFlag +'', ''+ departmentFlag +'', ''+ numOfFeedsToDisplay

+'')"> Show more elements

 ');

 }

 var numOfElementsAlreadyDisplayed=0; // Global variable

 function moreGroupElements(whereToWrite, department, group, section, imageFlag, departmentFlag, numFeeds){

 numOfElementsAlreadyDisplayed += parseInt(numFeeds); // Updating the global variable

 $('#moreFeedsButton'+ whereToWrite.substring(1)).remove(); // Removing the old "more elements" link

 var groupString;

 if(group == null || group == 'null' || group == undefined || group == ''){

 groupString = '';

 }else{

 if(typeof(group) === 'string' && group.length > 1 && group.length < 20){

 groupString = '/' + group;

 }else{

 groupString = '';

 }

 }

 var sectionString;

 if(section == null || section == 'null' || section == undefined || section == ''){

 sectionString = '';

 }else{

 if(typeof(section) === 'string' && section.length > 1 && section.length < 20){

 sectionString = ' Section:' + section;

 }else{

 sectionString = '';

 }

 }

 var searchForGroupInfoSite = searchRestService + "query?querytext='department:" +department + groupString + sectionString+"'&startrow='"+

numOfElementsAlreadyDisplayed +"'&sourceid='B09A7990-05EA-4AF9-81EF-EDFAB16C4E31'";

 /* In the variable 'searchForGroupInfoSite', the code:

 * sourceid='B09A7990-05EA-4AF9-81EF-EDFAB16C4E31'

 * tells the Server that we are looking for People (possible search options: Everything, People, Conversations, Videos).

 */

 try{

 executeRestCallExtendedSeven(searchForGroupInfoSite, 'GET', null, updateGroupInfoBodyFunction, onError, whereToWrite, department, group, section,

imageFlag, departmentFlag, numFeeds);

 }

 catch(err){ errorHandlerFunction(11, "There was a problem while communicating with the Server.\nPlease try again later."); }

 }

 function conversationObj(URL, sectionID){

 this.URL = URL;

 this.sectionID = sectionID;

 }

 /* Ths function will retrieve the info about one particular thread. The one that can be found at the URL passed in input.

 * Input:

 * - whereToWrite: the id of the HTML section in which we want to display the feed.

 * - url: the URL at which the feed can be found (loading it in a normal browser). */

 function updateSingleFeed(whereToWrite, url){

 if(whereToWrite[0] != '#'){

 whereToWrite = '#' + whereToWrite;

 }

 // Updating global variables

 globalArrayOfSingleConversations.push(new conversationObj(url, whereToWrite));

 // Checking the presence of the HTML section in the webpage:

 if(document.getElementById(whereToWrite.substring(1)) == null){

 console.log("No HTML section found. Please check the ID of the HTML section passed in input to the function updateSingleFeed().");

 return;

 }

 var parentWhereToWrite = whereToWrite;

 $(whereToWrite).html(''); // Clearing the HTML section.

 // Adding a new wrapping section in the HMTL page to make the SocialAPI's CSS file point only at this part of the webpage, in case many CSS files are used.

 var wrapSection = '<div id="'+ parentWhereToWrite.substring(1) +'" class="'+ parentWhereToWrite.substring(1) +'">' +

 '<div class="socialAPIWrapClass">'+

205

 '<div class="socialAPISingleFeed"

id="socialAPISingleFeed">'+

 '</div>'+

 '</div>'+

 '</div>';

 $(whereToWrite).append(wrapSection);

 whereToWrite = '#socialAPISingleFeed';

 executeRestCallExtendedFour(formDigestUrl, 'POST', null, updateSingleFeedBodyFunction, onError, parentWhereToWrite, whereToWrite, url); //

calling for the formDigest to make the request

 }

 // Function called from updateSingleFeedInfo if the CORS request succeeds. It will use the formDigest coming from the Server to call for the data about a single feed. The

responce will be passed to the showUserInformationInFeedsWithSameTagBodyFunction() function, that will display correctly the feed in the webpage.

 function updateSingleFeedBodyFunction(data, parentWhereToWrite, whereToWrite, url){

 try{

 var result = JSON.parse(data); // Parsing the data obtained from the social network

 var formDigest = result.d.GetContextWebInformation.FormDigestValue;

 }catch(e){

 console.log("There was a problem while communicating with the Server.\nSee updateSingleFeedInfoBodyFunction() function.");

 $(whereToWrite).html("There was a problem while communicating with the Server. Please try again later.");

 return;

 }

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console

log

 if(result.error){

 console.log("Error: "+ result.error.message.value +"\nPlease review the updateSingleFeedInfoBodyFunction() function.");

 try{

 if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exists on Social

 $(whereToWrite).html('<div class="feedsItem"> <p id="text"> Your account has not been found on Social.
Please

visit https://social.cern.ch and create the account first. </p> </div>');

 }else{ // Other error

 $(whereToWrite).html('<div class="feedsItem"> <p id="text"> There was a problem while communicating with the

Server. Please try again later. </p> </div>');

 }

 return;

 }catch(e){console.log("Exception thrown in function showUserInformationInFeedsWithSameTagBodyFunction()"); return;}

 }

 try{

 var id = url.split("ThreadID=");

 id = id[id.length-1];

 }catch(e){

 console.log("Error: "+ result.error.message.value +"\nPlease review the updateSingleFeedInfoBodyFunction() function.");

 $(whereToWrite).html("There was a problem while reading the ID of the feed. Please try again later.");

 return;

 }

 var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post"); // Creating CORSRequest to Like the feed

 xhr.onload = function(){ showUserInformationInFeedsWithSameTagBodyFunction(this.responseText, whereToWrite, parentWhereToWrite,

parentWhereToWrite.substring(1));

 };

 xhr.onerror = console.log("CORS request encountered an error.\nSee updateSingleFeedInfoBodyFunction() function.");

 xhr.withCredentials = true;

 xhr.setRequestHeader("X-RequestDigest", formDigest);

 xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose");

 var data = "{ 'ID':'"+id+"' }"; // Including the ID of the feed we want to analize.

 xhr.send(data); // Sending the information

 }

 // Function that retrieves the feeds from the section Everyone on Social and print them in the webpage.

 function updateFeedsFromEveryone(whereToWrite, updateInterval){

 //// Sanitizing the input (encodeURI() is used instead of encodeURIComponent() when there has to be allowed the possibility to have hashtags.):

 whereToWrite = encodeURI(whereToWrite);

 updateInterval = encodeURIComponent(updateInterval);

 var tempSectionID;

 if(whereToWrite[0] === '#'){

 tempSectionID = whereToWrite.substring(1, whereToWrite.length);

 }else{

 tempSection = whereToWrite;

 whereToWrite = '#' + whereToWrite;

 }

 // Section check. If the HTML section is present in the webpage we can move on, otherwise the function has to stop.

 if(document.getElementById(tempSectionID) === null){

 // Error. No HTML section found to display the followed feeds on Social. Please add a <div id="feedsFromEveryone"> section.

 return;

 }

 moreFeedsButtonPressed = false; // If the User has asked for a manual update then the automatic updates can be re-activated

 $('#feedsSectionName').html("#feedsFromEveryone"); // Writing the name of the section. It will be read from checkDataReceivedAndDisplayTheFeeds().

 executeRestCall("https://social.cern.ch/_api/social.feed/actor(item=@v)/feed?@v='https://espace2013.cern.ch/it-dep-ois/newsfeed.aspx'", 'GET', null,

checkDataReceivedAndDisplayTheFeeds, onError); // getting the feeds and passing them to the function checkDataReceivedAndDisplayTheFeeds()

 }

 // Function used to automatically update the feeds every tot seconds.

 function updateFollowedFeeds(whereToWrite, updateInterval, numFeeds, flagDisplayReplies){

 // Sanitizing the input. encodeURI() is used instead of encodeURIComponent() when there has to be allowed the possibility to have hashtags.

 whereToWrite = encodeURI(whereToWrite);

 updateInterval = encodeURIComponent(updateInterval);

 if(numFeeds == null || numFeeds == undefined){ numFeeds = 0; }

 if(flagDisplayReplies == null || flagDisplayReplies == undefined){ flagDisplayReplies = true; }

 // Consistency checks

 if(updateInterval===null || updateInterval===undefined || updateInterval<0){ updateInterval = 0; }

206

 if(whereToWrite[0] !== '#'){

 whereToWrite = '#' + whereToWrite;

 }

 var tempElement;

 var parentWhereToWrite = whereToWrite;

 // Updating the global variables. These variables will be necessary when the User needs to post a new message on Social

 followedFeedsWhereToWrite = whereToWrite;

 followedFeedsUpdateInterval = updateInterval;

 followedFeedsNumFeeds = numFeeds;

 followedFeedsFlagDisplayReplies = flagDisplayReplies;

 if(updateInterval < 1000){ updateInterval = updateInterval*1000; } // Converting the time from seconds to milliseconds

 var tempSectionID = whereToWrite.substring(1);

 // Section check. If the HTML section is present in the webpage we can move on, otherwise the function has to stop.

 if(document.getElementById(tempSectionID) === null){

 // Error. No HTML section found to display the feeds from Social.

 $(whereToWrite).html('<div class="feedsItem"> <p id="text"> There has been a problem while communicating with the server.
Please try again

later refreshing the page. </p> </div>');

 console.log('Error while trying to write the followed feeds. The section ID passed in input seems not to be present in the webpage.');

 return;

 }

 // If there are no feeds (there can be error message), so we clean the section

 if($(whereToWrite +" .feedsItem").length == '' || $(whereToWrite +" .feedsItem").length == null || $(whereToWrite +" .feedsItem").length == undefined){

 $(whereToWrite).html(''); // Clearing the section of the feeds I am following

 }

 // Adding a new wrapping section in the HMTL page to make the SocialAPI's CSS file point only at this part of the webpage, in case many CSS files are used.

 if($(whereToWrite).html() == ''){ // If there are no feeds in the section yet...

 var wrapSection = '<div class="socialAPIWrapClass">'+

 '<div id="socialAPIFollowedFeeds">'+

 '</div>'+

 '</div>';

 $(whereToWrite).html(wrapSection);

 }

 authenticateOnSocial(); // We need to re-authenticate on Social every time

 if(updateInterval > 0){

 clearInterval(followedFeedsUpdatesHandler); // Deleting the old automatic refresh of the feeds

 // Creating the new automatic refresh of the feeds. The followed feeds will be updated every "updateInterval" seconds.

 followedFeedsUpdatesHandler = setInterval(function(){ updateFollowedFeeds(whereToWrite, updateInterval, numFeeds, flagDisplayReplies); },

updateInterval); // This variable will be necessary when the User needs to post a new message on Social

 whereToWrite = '#socialAPIFollowedFeeds'; // Updating the focused section that we will pass to the following function the new ID, which is

inside the new wrapper div.

 executeRestCallExtendedSix(myFeedManagerEndpoint + "my/news", 'GET', null, checkDataReceivedAndDisplayTheFeeds, onError, whereToWrite,

parentWhereToWrite, numFeeds, numFeeds, flagDisplayReplies); // searches the feeds and passes them to the function "checkDataReceivedAndDisplayTheFeeds()"

 }else{

 // If we are here it means that the function has to retrieve the feeds without automatically update them.

 if(followedFeedsUpdatesHandler != 'a'){ // If there is an active automatic update of the feeds

 clearInterval(followedFeedsUpdatesHandler); // Deleting the old automatic refresh of the feeds

 followedFeedsUpdatesHandler = 'a';

 }

 whereToWrite = '#socialAPIFollowedFeeds'; // Updating the focused section that we will pass to the following function the new ID, which is

inside the new wrapper div.

 executeRestCallExtendedSix(myFeedManagerEndpoint + "my/news", 'GET', null, checkDataReceivedAndDisplayTheFeeds, onError, whereToWrite,

parentWhereToWrite, numFeeds, numFeeds, flagDisplayReplies); // searches the feeds and passes them to the function "checkDataReceivedAndDisplayTheFeeds()"

 }

 }

 // This is an object representing a User profile on Social and the section in the webpage in which we want its feeds be displayed.

 function updateObj(keyValue, sectionID, automaticUpdatesHandlersCode, timeInterval, numOfFeedsToRetrieve, flagDisplayReplies){

 this.keyValue = keyValue;

 this.sectionID = sectionID;

 this.automaticUpdatesHandlersCode = automaticUpdatesHandlersCode;

 this.timeInterval = timeInterval;

 this.numOfFeeds = numOfFeedsToRetrieve;

 this.flagDisplayReplies = flagDisplayReplies;

 }

 /* This function check the presence of an object with one element which is equal to the sectionId in input in an array.

 * Input:

 * - the ID of the HTML section in which the feeds have to be displayed. It is the string that the function will try to find in the elements in the array

 * - the array in which the function will look into.

 * Output:

 * - If the element has been found the function will return the index of the element in the array

 * - else: it will return -1

 */

 function checkPresenceOfElement(sectionId, array){

 var length = array.length; // This line of code will allow us to read to length of the array only once (and not at each cycle in the "for" statement),

speeding up the execution of the code.

 for(var i=0; i<length; i++){

 if(array[i].sectionID === sectionId){

 return i;

 }

 }

 return -1;

 }

207

 function feedsToDisplayObj(sectionID, numFeedsAlreadyDisplayed){

 this.sectionID = sectionID;

 this.numFeedsAlreadyDisplayed = numFeedsAlreadyDisplayed;

 }

 // Function that retrieves the feeds from the page of an Actor on Social and print them in the webpage.

 // The name of the actor is read from the html page, from a field invisible to the User.

 function updateFeedsFromProfile(accountName, whereToWrite, updateInterval, numOfFeeds, flagDisplayReplies){

 // Consistency checks

 if(updateInterval===null || updateInterval===undefined || updateInterval<0){ updateInterval = 0; }

 if(numOfFeeds===null || numOfFeeds===undefined || numOfFeeds<0 || numOfFeeds>20){ numOfFeeds = 0; }

 if(flagDisplayReplies===null || flagDisplayReplies===undefined){ flagDisplayReplies = true; }

 // Sanitizing the input (encodeURI() is used instead of encodeURIComponent() when there has to be allowed the possibility to have hashtags.):

 accountName = encodeURIComponent(accountName);

 whereToWrite = encodeURI(whereToWrite);

 updateInterval = encodeURIComponent(updateInterval);

 numOfFeeds = encodeURIComponent(numOfFeeds);

 if(whereToWrite[0] !== '#'){

 whereToWrite = '#' + whereToWrite;

 }

 var tempSection = whereToWrite.substring(1); // It will be the ID of the HTML section in which we want to write the information without the hashtag as first

character.

 var tempElement; // Temporary variable used to store new elements inside 'globalArrayOfProfiles'.

 var parentWhereToWrite = whereToWrite; // Memorizing the main section

 if(updateInterval < 1000){ updateInterval = updateInterval*1000; } // Converting the time from seconds to milliseconds

 // Section check. If the HTML section is present in the webpage we can move on, otherwise the function has to stop.

 if(document.getElementById(tempSection) === null){

 // Error. No HTML section found to display the followed feeds on Social. Please add a <div id="feedsFromProfile"> section.

 console.log('Error while trying to write the feeds from the specific profile. See function updateFeedsFromProfile().');

 $(whereToWrite).append('<div class="feedsItem"> <p id="text"> There has been a problem while communicating with the server.
Please try again

later refreshing the page. </p> </div>');

 return;

 }

 var innerWrap = "socialAPIFeedsFromProfile"+ whereToWrite.substring(1) + accountName;

 var wrapSection = '<div class="socialAPIWrapClass">'+

 '<div id="'+ innerWrap +'">'+

 '</div>'+

 '</div>';

 // Adding a new wrapping section in the HMTL page to make the SocialAPI's CSS file point only at this part of the webpage, in case many CSS files are used.

 if($(whereToWrite +" .feedsItem").length == 0 && $(whereToWrite +" .socialAPIWrapClass").length == 0){ // If there is the HTML section and it

is still empty...

 $(whereToWrite).html(wrapSection);

 }

 authenticateOnSocial(); // We need to re-authenticate on Social every time

 try{

 if(updateInterval > 0){

 var indexOfElement = checkPresenceOfElement(parentWhereToWrite, globalArrayOfProfiles); // The function returns

-1 if the element is not in the array.

 // If the element is inside the array, than we have to clear the interval and pop the element from the array before creating a

new automatic update interval.

 if(indexOfElement > -1 && indexOfElement < globalArrayOfProfiles.length){

 // Stopping the old automatic refresh of the feeds

 clearInterval(globalArrayOfProfiles[indexOfElement].automaticUpdatesHandlersCode);

 // Creating the new automatic refresh of the feeds

 globalArrayOfProfiles[indexOfElement].automaticUpdatesHandlersCode = setInterval(function(){

updateFeedsFromProfile(accountName, parentWhereToWrite, updateInterval, numOfFeeds, flagDisplayReplies); }, updateInterval); // The followed feeds will be updated every

"updateInterval" seconds

 whereToWrite = '#' + innerWrap;

 // Retrieving the feeds

 executeRestCallExtendedSix(myFeedManagerEndpoint + "actor(item='cern\\"+accountName+"')/Feed", 'GET', null,

checkDataReceivedAndDisplayTheFeeds, onError, whereToWrite, parentWhereToWrite, numOfFeeds, numOfFeeds, flagDisplayReplies); // getting the feeds and passing them to the function

checkDataReceivedAndDisplayTheFeeds()

 }

 else{

 // Creating the automatic refresh of the feeds

 var tempHandler = setInterval(function(){ updateFeedsFromProfile(accountName, parentWhereToWrite, updateInterval,

numOfFeeds, flagDisplayReplies); }, updateInterval); // The followed feeds will be updated every "updateInterval" seconds

 tempElement = new updateObj(accountName, whereToWrite, tempHandler, updateInterval, numOfFeeds,

flagDisplayReplies);

 globalArrayOfProfiles.push(tempElement); // Inserting the new element in the 'globalArrayOfProfiles'

 whereToWrite = '#' + innerWrap;

 // Retrieving the feeds

 executeRestCallExtendedSix(myFeedManagerEndpoint + "actor(item='cern\\"+accountName+"')/Feed", 'GET', null,

checkDataReceivedAndDisplayTheFeeds, onError, whereToWrite, parentWhereToWrite, numOfFeeds, numOfFeeds, flagDisplayReplies); // getting the feeds and passing them to the function

checkDataReceivedAndDisplayTheFeeds()

 }

 }

 else{

 // If we are here it means that the function has to retrieve the feeds without automatically update them.

 var indexOfElement = checkPresenceOfElement(parentWhereToWrite, globalArrayOfProfiles); // The function returns

-1 if the element is not in the array.

 // If the element is not inside the array, than we have to add it.

 if(indexOfElement === -1){

 tempElement = new updateObj(accountName, whereToWrite, null, 0, numOfFeeds, flagDisplayReplies);

 globalArrayOfProfiles.push(tempElement); // Inserting the new element in the 'globalArrayOfProfiles'

 }

208

 whereToWrite = '#' + innerWrap;

 executeRestCallExtendedSix(myFeedManagerEndpoint + "actor(item='cern\\"+accountName+"')/Feed", 'GET', null,

checkDataReceivedAndDisplayTheFeeds, onError, whereToWrite, parentWhereToWrite, numOfFeeds, numOfFeeds, flagDisplayReplies); // getting the feeds and passing them to the function

checkDataReceivedAndDisplayTheFeeds()

 }

 }catch(e){

 $(whereToWrite).html('<div>There has been a problem while retrieving the feeds.
Please try again later. </div>');

 }

 }

 // Function that retrieves the feeds with the same hashtag on Social and print them in the webpage.

 function updateFeedsWithSameHashtag(tag, whereToWrite, updateInterval, numOfFeeds, flagDisplayReplies){

 // Consistency checks

 if(updateInterval===null || updateInterval===undefined || updateInterval<0){ updateInterval = 0; }

 if(numOfFeeds===null || numOfFeeds===undefined || numOfFeeds<0 || numOfFeeds>20){ numOfFeeds = 0; }

 if(flagDisplayReplies===null || flagDisplayReplies===undefined){ flagDisplayReplies = true; }

 // Sanitizing the input (encodeURI() is used instead of encodeURIComponent() when there has to be allowed the possibility to have hashtags.):

 var noSharpTagArray = tag.split(' '); // Splitting the input tags from one string to an array of strings.

 var noSharpTagString = '';

 var noSpaceNoSharpTagString = ''; // This variable will be used for the innerWrap variable only.

 for(var i=0; i<noSharpTagArray.length; i++){

 if(noSharpTagArray[i][0] === '#'){

 noSharpTagArray[i] = noSharpTagArray[i].substring(1, noSharpTagArray[i].length);

 }

 noSpaceNoSharpTagString += encodeURI(noSharpTagArray[i]); // Adding the tag only

 if(i < noSharpTagArray.length-1){

 noSharpTagString += encodeURI(noSharpTagArray[i]) + ' '; // Adding the tag plus an empty space

 }else{

 noSharpTagString += encodeURI(noSharpTagArray[i]); // Adding the last tag

 }

 }

 whereToWrite = encodeURI(whereToWrite);

 updateInterval = encodeURIComponent(updateInterval);

 numOfFeeds = encodeURIComponent(numOfFeeds);

 if(whereToWrite[0] !== '#'){

 whereToWrite = '#' + whereToWrite;

 }

 if(document.getElementById(whereToWrite.substring(1)) === null){

 console.log("The HTML section appears not to exist. See updateFeedsWithSameHashtag() function.");

 return;

 }

 var tempSection = whereToWrite.substring(1, whereToWrite.length);

 if(updateInterval < 1000){ updateInterval = updateInterval*1000; } // Converting the time from seconds to milliseconds

 var parentWhereToWrite = whereToWrite;

 // Section's check. If the HTML section is present in the webpage we can move on, otherwise the function has to stop.

 if(document.getElementById(tempSection) === null){

 // Error. No HTML section found to display the followed feeds on Social. Please add a <div id="feedsWithSameHashtag"> section.

 console.log('Error while trying to write the feeds with the same hashtag. The section ID passed in input is not present in the web page.');

 return;

 }

 $(whereToWrite).html(''); // Clearing the feeds displayed.

 authenticateOnSocial(); // We need to re-authenticate on Social every time

 // Adding a new wrapping section in the HMTL page to make the SocialAPI's CSS file point only at this part of the webpage, in case many CSS files are used.

 var innerWrap = "socialAPIFeedsWithSameHashtag"+ whereToWrite.substring(1, whereToWrite.length) + noSpaceNoSharpTagString;

 var wrapSection = '<div class="socialAPIWrapClass">'+

 '<div id="' + innerWrap + '">'+

 '</div>'+

 '</div>';

 $(whereToWrite).html(wrapSection);

 try{

 // Activating the automatic refresh of the feeds

 if(updateInterval > 0){

 var index = checkPresenceOfElement(whereToWrite, globalArrayOfHashtags); // Checking the presence of the element inside the

array

 // If the element is already present we can simply modify the information about it

 if(index >= 0 && index < globalArrayOfHashtags.length){

 clearInterval(globalArrayOfHashtags[index].automaticUpdatesHandlersCode); // stopping the previously set

automatic updater

 var handlerCode = setInterval(function() { updateFeedsWithSameHashtag(noSharpTagString, whereToWrite,

updateInterval, numOfFeeds, flagDisplayReplies); }, updateInterval); // The feeds will be updated every "updateInterval" seconds

 globalArrayOfHashtags[index].automaticUpdatesHandlersCode = handlerCode;

 globalArrayOfHashtags[index].timeInterval = updateInterval;

 }else{

 // else: we have to add a new element to the array

 var handlerCode = setInterval(function() { updateFeedsWithSameHashtag(noSharpTagString, whereToWrite,

updateInterval, numOfFeeds, flagDisplayReplies); }, updateInterval); // The feeds will be updated every "updateInterval" seconds

 globalArrayOfHashtags.push(new updateObj(noSharpTagString, whereToWrite, handlerCode, updateInterval, numOfFeeds,

flagDisplayReplies)); // Updating the global array for the timed updates

 }

 }

 else{

 var index = checkPresenceOfElement(whereToWrite, globalArrayOfHashtags); // Checking the presence of the element inside the

array

 // If the element is already present we can simply modify the information about it

 if(index === -1){ // If the element is not yet in the array:

209

 globalArrayOfHashtags.push(new updateObj(noSharpTagString, whereToWrite, null, 0, numOfFeeds,

flagDisplayReplies)); // Adding the element to the array

 }

 }

 whereToWrite = "#" + innerWrap; /* We want to write in the inner section. */

 // Retrieving the feeds with the same tag(s) and writing them in the section of the HTML page with ID='feedsWithSameHashtag'.

 retrieveFeedsWithSameTag(noSharpTagString, whereToWrite, parentWhereToWrite, numOfFeeds, flagDisplayReplies);

 }catch(e){

 $(whereToWrite).html('There has been an error while trying to write the feeds with the same hashtag. Please try again later.');

 }

 }

 // This function returns the corrispondent handler for the 'whereToWrite' section ID.

 function findMyHandler(whereToWrite){

 var length;

 if(whereToWrite === followedFeedsWhereToWrite){

 return followedFeedsUpdatesHandler;

 }else{

 length = globalArrayOfProfiles.length;

 for(var i=0; i<length; i++){

 if(whereToWrite === globalArrayOfProfiles[i].sectionID){

 return globalArrayOfProfiles[i].automaticUpdatesHandlersCode;

 }

 }

 // If the element has not yet been found...

 length = globalArrayOfHashtags.length;

 for(var i=0; i<length; i++){

 if(whereToWrite === globalArrayOfHashtags[i].sectionID){

 return globalArrayOfHashtags[i].automaticUpdatesHandlersCode;

 }

 }

 }

 // If the handler has not been found...

 return -1;

 }

 // This function returns the corrispondent handler for the 'whereToWrite' section ID.

 function findMyUpdateInterval(whereToWrite){

 var length;

 if(whereToWrite === followedFeedsWhereToWrite){

 return followedFeedsUpdateInterval;

 }else{

 length = globalArrayOfProfiles.length;

 for(var i=0; i<length; i++){

 if(whereToWrite === globalArrayOfProfiles[i].sectionID){

 return globalArrayOfProfiles[i].timeInterval;

 }

 }

 // If the element has not yet been found...

 length = globalArrayOfHashtags.length;

 for(var i=0; i<length; i++){

 if(whereToWrite === globalArrayOfHashtags[i].sectionID){

 return globalArrayOfHashtags[i].timeInterval;

 }

 }

 }

 // If the handler has not been found...

 return -1;

 }

 /*

 * This function displays the feeds into the webpage.

 * Input:

 * - the feeds to display

 * - the ID of the HTML section where to display the feeds

 * - the ID of the parent HTML section where to display the feeds

 * - the maximum number of feeds to display

 */

 function appendFeeds(feeds, whereToWrite, parentWhereToWrite, numFeedsTotal, numFeedsStillToGet, flagDisplayReplies){

 var numFeedsToDisplay;

 if((typeof numFeedsTotal) === 'string'){ numFeedsTotal = parseInt(numFeedsTotal); }

 if((typeof numFeedsStillToGet) === 'string'){ numFeedsStillToGet = parseInt(numFeedsStillToGet); }

 if((typeof flagDisplayReplies) === 'string'){

 if(flagDisplayReplies == "false"){

 flagDisplayReplies = false;

 }else{

 flagDisplayReplies = true;

 }

 }

 if(feeds.length == 0){

 // Printing the "no feed" message on the screen

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'fadeOut' will work

only once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> No (more) feeds available. </p> </div>'); //

Printing the "problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds.

 return;

 }

 if(numFeedsTotal == null || numFeedsTotal == undefined || numFeedsTotal <= 0 || numFeedsTotal > 20){

 numFeedsToDisplay = 100; // The highest number of feeds will be 100.

210

 }

 else{

 numFeedsToDisplay = Math.min(feeds.length, numFeedsStillToGet);

 }

 var numFeedsDisplayed = 0;

 var picturePresentFlag = false;

 // Reading if there is already a "picSection" inside the "whereToWrite" section of the page.

 if(document.getElementById(whereToWrite.substring(1)).getElementsByClassName('picSection').length > 0){ picturePresentFlag = true ; }

 // If we don't want to display the replies we want to show the profile Picture and Name ONCE. Now:

 if(feeds.length > 0 && (!flagDisplayReplies) && (!picturePresentFlag)){

 var participants = feeds[0].Actors.results;

 var accountName, profilePicUri;

 if(participants[feeds[0].OwnerIndex].AccountName === null || participants[feeds[0].OwnerIndex].AccountName === undefined){

 accountName = participants[feeds[0].OwnerIndex+1].AccountName.split("\\");

 profilePicUri = participants[feeds[0].OwnerIndex+1].ImageUri; // Reading the URI of the profile picture of the User.

 owner = participants[feeds[0].OwnerIndex+1].Name;

 }else{

 accountName = participants[feeds[0].OwnerIndex].AccountName.split("\\");

 profilePicUri = participants[feeds[0].OwnerIndex].ImageUri; // Reading the URI of the profile picture of the User.

 owner = participants[feeds[0].OwnerIndex].Name;

 }

 accountName = accountName[accountName.length-1];

 var personalAboutPage = socialWebsite + "Person.aspx?accountname=CERN%5C" + accountName;

 // Consistency check. If no picture is found -> use the anonymous profile picture.

 if(profilePicUri === null || profilePicUri === undefined || profilePicUri ===""){

 profilePicUri = socialWebsite + "_layouts/15/images/PersonPlaceholder.42x42x32.png?rev=23";

 }

 var group = ''; // The variable that will (if present) store the title of the group in which the User posted the

feed.

 if(participants[0].ActorType === 2){

 group = participants[0].Name;

 }

 var groupString = ''; // The string that will tell the group in which the User posted the feed

 if(group !== ''){

 groupString = ' > '+ group +''; // output example: " > IT/OIS"

 }

 if(participants[feeds[0].OwnerIndex].IsFollowed){

 var authorString = ' '+ owner + ' '+ groupString;

 }else{

 var authorString = ' '+ owner + ' '+ groupString;

 }

 $(whereToWrite).append('<div class="feedsItem" id="beginFeedsSection"> ' +

 '<div class="picSection">' +

 '' +

 '<img

src="'+profilePicUri+'" id="profilePicture" /> ' +

 '' +

 '</div> ' +

 '<div class="notPicSection">' +

 '<p>' + authorString +

'</p>' +

 '</div>' +

 '</div>');

 }else{

 // We still apply our initiali div section to allow the code write the new feeds at the beginning of the section without refreshing the whole

section.

 if($(whereToWrite).html() == ''){ // If there are no feeds displayed yet...

 $(whereToWrite).append('<div id="beginFeedsSection"> </div>');

 }

 }

 // Reading the most recent feed's ID from the ones already displayed.

 var addingFeedsFlag = false;

 var dateOfTheLatestFeedAlreadyDisplayed;

 try{

 var mostRecentId = $(whereToWrite +" #feedId").html(); // reading the IDs of the feeds already displayed.

 if(typeof(mostRecentId) == 'string' && mostRecentId != null && mostRecentId != undefined && mostRecentId != ''){

 addingFeedsFlag = true; // There are already feeds in the page. We are adding feeds.

 }

 dateOfTheLatestFeedAlreadyDisplayed = $(whereToWrite +" .feedsItem .date")[0].innerHTML; // Reading the date of the first feed in the HTML

section which is the date of the earliest feed retrieved so far.

 dateOfTheLatestFeedAlreadyDisplayed = new Date(dateOfTheLatestFeedAlreadyDisplayed); // Re-creating the Date obj from the

information found in the HTML section

 }catch(e){}

 // If there are already some feeds displayed...

 if(addingFeedsFlag == true){

 // We want to read the feeds in the array that are not yet displayed. Since the array is ordered having the most recent one at the beginning we

will copy the feeds that are not yet displayed until we find int eh array coming from the Server the last one displayed from the last session.

 var tempIndex = 0;

 var length = feeds.length;

 var tempArray = new Array();

 // We want to take only the feeds that are not in the webpage already.

 while(tempIndex < length && $(whereToWrite).html().indexOf(feeds[tempIndex].Id) == -1){

 tempArray.push(feeds[tempIndex]);

 tempIndex++;

 }

 feeds = tempArray;

 if(feeds.length == 0){

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function

'fadeOut' will work only once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> No new feeds available. </p> </div>'); //

Printing the "problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

211

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7

seconds.

 return;

 }

 try{

 var dateOfTheLatestFeedRetrieved = new Date(feeds[0].RootPost.CreatedTime);

 // If we created a correct Date object and there are some more feeds coming from Social but those have been already displayed...

 if(dateOfTheLatestFeedAlreadyDisplayed instanceof Date && dateOfTheLatestFeedRetrieved >= dateOfTheLatestFeedAlreadyDisplayed

){

 feeds = feeds.reverse(); // Inverting the array of feeds to let the function add the oldest one first using

"insertAfter".

 var howToWriteFeeds = "prepend";

 }

 else{

 // We are dealing with older feeds, we want them to be displayed after the ones already int he webpage

 var howToWriteFeeds = "append";

 }

 }catch(e){ var howToWriteFeeds = "append"; }

 }

 // Foreach feed

 var i = 0, thread, participants;

 while(numFeedsDisplayed < numFeedsToDisplay && i < feeds.length){

 thread = feeds[i]; // Capturing the i-th feed

 i++; // Increasing the index

 // If the feed has already been displayed we can analize the following one

 participants = thread.Actors.results; // Reading the creators of the feed

 var group = ''; // The variable that will (if present) store the title of the group in which the User posted the

feed.

 if(participants[0].ActorType === 2){

 group = participants[0].Name;

 }

 // If the feed is on a page like IT/OIS that the author will be the one following the Owner.

 var owner;

 var accountName;

 var tempIndex;

 var profilePicUri;

 // Reading the name of the owner of the feed

 if(participants[thread.OwnerIndex].AccountName === null || participants[thread.OwnerIndex].AccountName === undefined){

 owner = participants[thread.OwnerIndex+1].Name;

 accountName = participants[thread.OwnerIndex+1].AccountName.split("\\");

 tempIndex = thread.OwnerIndex+1;

 profilePicUri = participants[thread.OwnerIndex+1].ImageUri; // Reading the URI of the profile picture of the User.

 }

 else{

 owner = participants[thread.OwnerIndex].Name;

 accountName = participants[thread.OwnerIndex].AccountName.split("\\");

 tempIndex = thread.OwnerIndex;

 profilePicUri = participants[thread.OwnerIndex].ImageUri; // Reading the URI of the profile picture of the User.

 }

 accountName = accountName[accountName.length-1]; // From something like "CERN/mcavalaz" we save "mcavalaz".

 var personalAboutPage = socialWebsite + "Person.aspx?accountname=CERN%5C" + accountName;

 var dateTimeFeed = new Date(thread.RootPost.CreatedTime); // The Date construct allows the User to automatically

see the local time on the webpage

 var dateString = createDateString(dateTimeFeed);

 var threadId = thread.Id; // This is important to memorize on the html page. It will not be shown to the User, but it will become very useful

for the other functions (e.g.: for the Replies).

 // Consistency check. If no picture is found -> use the anonymous profile picture.

 if(profilePicUri === null || profilePicUri === undefined || profilePicUri ===""){

 profilePicUri = socialWebsite + "_layouts/15/images/PersonPlaceholder.42x42x32.png?rev=23";

 }

 // Checking the presence of attachments, like image, to the feeds.

 var att = thread.RootPost.Attachment;

 var attachmentUri = null;

 // If there is any attachment...

 if(att !== null && att !== undefined){

 // and it is an image (image -> AttachmentKind = 0)...

 if(att.AttachmentKind === 0){

 attachmentUri = att.Uri; // Memorizing the URI of the image attachment

 }

 }

 var attachmentString;

 if(attachmentUri === undefined || attachmentUri === null || attachmentUri === ''){

 attachmentString = '';

 }else{

 attachmentString = '<p>

</p>';

 }

 var actorId; // This variable will be used for the feeds from other Users.

 var likeCounterString; // The string stating the number of people that likes the post

 var text = thread.RootPost.Text; // The text of the message

 // If the feed retrieved is only a message from the system like "Marco is now following Eduardo" LikerInfo will be undefined or null, therefore...

 if(thread.RootPost.LikerInfo === undefined || thread.RootPost.LikerInfo === null)

 {

 continue;

 }

 // If we reach this line the feed will be displayed.

 numFeedsDisplayed++; // Increasing the number of feeds displayed.

 text = myEscapeHTML(text); // Preventing code injection!

212

 text = formatText(text, parentWhereToWrite);

 /***

 * Checking the existence of people that like the message.

 ***/

 // If the number of people who likes this post is 0 (no-one)

 if(thread.RootPost.LikerInfo.TotalCount == 0 || thread.RootPost.LikerInfo.TotalCount === null || thread.RootPost.LikerInfo.TotalCount ===

undefined){

 likeCounterString = ""; // If nobody liked the feed nothing particular is shown

 }else{

 // If someone liked the post... e.g. 23 liked the post -> (smile 23)

 likeCounterString = " " + thread.RootPost.LikerInfo.TotalCount + " ";

 }

 // If the User already likes the feed...

 if(thread.RootPost.LikerInfo.IncludesCurrentUser){

 var likeString = '<a onclick="socialAPI().unlikeFeedFunction(''+threadId+' '+whereToWrite+'')"

href="javascript:void(0);"> Unlike ';

 }

 else{

 var likeString = '

Like ';

 }

 try{

 // To 'Unfollow' that person the User will need the 'actorId'.

 actorId = participants[thread.OwnerIndex].Id;

 }catch(e){}

 var updateInterval = findMyUpdateInterval(whereToWrite);

 var deleteString;

 if(whereToWrite === "#socialAPIFollowedFeeds"){

 if(participants[thread.OwnerIndex].IsFollowed){

 // therefore it will not be possible for the User to Delete this feed.

 // Instead, the User will be able to 'Unfollow' that person.

 deleteString = '<a href="javascript:void(0);" id="deleteFeed" onclick="socialAPI().unfollowPerson(''+owner+'-

-'+actorId+'- -'+participants[tempIndex].AccountName.replace("\\","\\\\")+'- -'+whereToWrite+'- -'+updateInterval+'')"> X ';

 }else{

 deleteString = '<a href="javascript:void(0);" id="deleteFeed"

onclick="socialAPI().deleteFeed(''+threadId+'')"> X ';

 }

 }

 else{

 deleteString = '';

 }

 var groupString = ''; // The string that will tell the group in which the User posted the feed

 if(group !== ''){

 groupString = ' > '+ group +''; // output example: " > IT/OIS"

 }

 // If the creator of the thread is followed it means that it is NOT the User

 if(participants[thread.OwnerIndex].IsFollowed){

 var authorString = ' '+ owner + ' '+ groupString

+ deleteString;

 var actorString = '<p id="feedId" class="actorId'+threadId+'">'+actorId+'</p>';

 }

 else

 {

 var authorString = ' '+ owner + ' '+ groupString

+ deleteString;

 var actorString = ''; // There is no need of the actorId if the feed is from the User itself

 }

 // If the feeds are to be displayed without replies we want to show only once the profile Picture and Name

 var profilePicString;

 if(!flagDisplayReplies){

 profilePicString = '<div>'; // Hiding totally the picture and the name of the author, allowing at the same time the text section

of the feed to be shown.

 }else{

 // Standard format of the picture section

 profilePicString = '<div class="picSection">' +

 '<a href="'+personalAboutPage+'"

target="_blank">' +

 '<img

src="'+profilePicUri+'" id="profilePicture" /> ' +

 '' +

 '</div> ' +

 '<div class="notPicSection">' +

 '<p>' + authorString + '</p>';

 }

 var conversationUri = thread.Permalink; // This will be the link to the conversation on Social

 var openConversationString = '';

 var replySectionString = '';

 if(!flagDisplayReplies){ // In case we don't want to see the replies we will not show the "Reply" button also, and we will instead show the

link to the conversation for every feed to let the Users reply if they want to.

 openConversationString = '<p class="openConversationLink"><a href="javascript:void(0);"

onclick="socialAPI().moreRepliesFunction(''+ thread.Permalink +'');"> > Open conversation </p>';

 }else{

 replySectionString = '<a onclick="socialAPI().showReplySection(''+parentWhereToWrite+' '+whereToWrite+' '+threadId+'')"

href="javascript:void(0);"> Reply ';

 // If more than 2 replies are present for this thread only 2 will be shown now.

 // A button is created for the User to see the other replies if needed.

 if(thread.TotalReplyCount >= 3){

 // Adding an extra element to the replies section.

 // This button will allow the User to ask for more replies.

213

 openConversationString = '<p class="openConversationLink"><a href="javascript:void(0);"

onclick="socialAPI().moreRepliesFunction(''+ thread.Permalink +'');"> > Open entire conversation </p>';

 }

 else{

 openConversationString = '';

 }

 }

 var strOutput = '<div class="feedsItem" id="feedsItem'+threadId+'"> ' +

 '<div class="table">' +

 profilePicString +

 '<p id="feedText'+threadId+'">' + text

+ '</p>' +

 attachmentString +

 '<span

class="date" id="date'+threadId+'">' + dateString + ' ' +

 '' +

 '<span

id="feed'+threadId+'">' + likeCounterString + '' + likeString + ' ' + replySectionString + '' +

 '' +

 openConversationString +

 '<p id="feedId"

class="feedId'+threadId+'">'+threadId+'</p>' +

 actorString +

 '</div>' +

 '</div>' +

 '</div>';

 // If we are writing new feeds (there are already some in the HTML web section).

 if(howToWriteFeeds == "prepend"){

 var newFeedsSection = $(whereToWrite +"

#beginFeedsSection");//document.getElementById(whereToWrite).getElementById('beginFeedsSection'); // Reading the div section at the beginning and inside of the HTML section

"whereToWrite"

 if(!flagDisplayReplies){ // Adding a separation line between the feeds only if there have to be no replies.

 $('<hr style="border-top: dotted 1px; margin:0; padding:0 0 8px; clear:both; height:0;"

/>').insertAfter(newFeedsSection);

 }

 // Displaying the feed

 $(strOutput).hide().insertAfter(newFeedsSection).fadeIn(800 + (i*120)); // The (i*120) helps creating a cool

effect so that the feeds are displayed fading in one after another, instead than fading in all at the same time.

 }else{

 // We are adding the feeds in the section for the first time

 // Displaying the feed

 $(strOutput).hide().appendTo(whereToWrite).fadeIn(800 + (i*120)); // The (i*120) helps creating a cool effect so that

the feeds are displayed fading in one after another, instead than fading in all at the same time.

 if(!flagDisplayReplies){ // Adding a separation line between the feeds only if there have to be no replies.

 $(whereToWrite).append('<hr style="border-top: dotted 1px; margin:0; padding:0 0 8px; clear:both; height:0;" />');

 }

 }

 // Appending first the hidden reply textarea

 var tempParentWhereToWrite;

 if(parentWhereToWrite[0] === '#'){ tempParentWhereToWrite = parentWhereToWrite.substring(1); }

 else{ tempParentWhereToWrite = parentWhereToWrite; }

 var thisFeedSection = $(whereToWrite+" #feedsItem"+threadId.replace(/(:|\.|\[|\])/g, "\\$1")); // Catching this feed's section

 // Appending the reply section that will be shown when pressing the "reply" button of a feed.

 $('<div class="textbox'+ tempParentWhereToWrite + threadId +'">' +

 '<p id="textAreaReplySection"> <textarea placeholder="" wrap="hard" id="textareaReply" class="textareaReply'+

tempParentWhereToWrite + threadId +'"></textarea> </p>' +

 '<p class="replyButtonsGroup"> <input type="button" value="Reply" id="replyButton" class="uploadMessage'+

tempParentWhereToWrite + threadId +'" onclick="socialAPI().createReply(''+tempParentWhereToWrite+' '+whereToWrite+' '+threadId+'')"> </p>' +

 '</div>').insertAfter(thisFeedSection);

 // To include also the "Clear text area" button, use this code: <input type="button" value="Clear text" id="replyButton"

class="clearMessage'+threadId+'" onclick="clearReplyText(''+tempParentWhereToWrite+' '+whereToWrite+' '+threadId+'')">

 // We are now hiding the textAreaRreply section. This has to do be done here and not in the CSS because otherwise it will not work well in IE

(even IE11), causing the whole page to crash if Enter is pressed while the cursor is inside the textbox (my personal comment: <the "good" old IE>).

 var elem = getElementInsideContainer(whereToWrite, "textareaReply" + tempParentWhereToWrite + threadId); // Getting the element of the

'textareaReply' just appended to the 'whereToWrite' section.

 $(elem).hide();

 if(!flagDisplayReplies){ // If we don't want to display the replies

 continue; // we can stop here and go on to the next feed.

 }

 var replies = thread.Replies.results; // Catching the eventually present replies of this thread

 // We now look at the replies for this particular post. If any is found it is showed to the User.

 // The User is able to delete answers written by other people.

 if(replies.length > 0){

 var parts;

 var prefix = "http://";

 var index;

 for(var j=0; j < replies.length; j++) {

 /* The Server gives us the replies in inverted chronological order (most recent feed first),

 * but we want to display them like on Social, so oldest first

 * --> then we will use [replies.length -1 -j] as index for the single reply to be displayed. */

 var reply = replies[replies.length -1 -j]; // Capturing a single

reply

 var creatorOfTheReply = thread.Actors.results[reply.AuthorIndex]; // Reading the creator of the reply

 // Checking the presence of attachments, like image, to the feeds.

 att = reply.Attachment;

214

 attachmentUri = null; // Resetting the attachment Uri

 // If there is any attachment...

 if(att !== null && att !== undefined){

 // and it is an image (image -> AttachmentKind = 0)...

 if(att.AttachmentKind === 0){

 attachmentUri = att.Uri; // Memorizing the URI of the image attachment

 }

 }

 var attachmentString;

 if(attachmentUri === undefined || attachmentUri === null || attachmentUri === ''){

 attachmentString = '';

 }else{

 attachmentString = '<p> <img id="attachmentImage" src="'+attachmentUri+'"

onerror="this.parentElement.removeChild(this);" /> </p>';

 }

 // "accountName" and "personalAboutPage" has already been declared before, so we will not use the keyword "var".

 accountName = creatorOfTheReply.AccountName.split("\\");

 accountName = accountName[accountName.length-1];

 personalAboutPage = socialWebsite + "Person.aspx?accountname=CERN%5C" + accountName;

 dateTime = new Date(reply.CreatedTime);

 dateString = createDateString(dateTime);

 replyId = reply.Id; // This is important to memorize on the html page. It will not be shown to the User, but it

will become very useful for the other functions (e.g.: for the Replies).

 profilePicUri = creatorOfTheReply.ImageUri; // Reading the URI of the profile picture of the User.

 // Consistency check. If no picture is found -> use the anonymous profile picture.

 if(profilePicUri === null || profilePicUri === undefined || profilePicUri ===""){

 profilePicUri = socialWebsite + "_layouts/15/images/PersonPlaceholder.42x42x32.png?rev=23";

 }

 text = reply.Text;

 text = myEscapeHTML(text); // Preventing code injection!

 text = text.replace(/\n/g, "</br>"); // Replacing all the new line character ('\n') with

the equivalent in HTML.

 text = formatText(text, whereToWrite); // This function will adapt the text to our needs

 /***

 * Checking the existence of people that like the message.

 ***/

 // If the number of people who likes this reply is 0 (no-one)

 if(reply.LikerInfo.TotalCount === 0){

 likeCounterString = ""; // If nobody liked the reply nothing particular is

shown

 }else{

 // If someone liked the post... e.g. 23 liked the reply -> (smile 23)

 likeCounterString = " " + reply.LikerInfo.TotalCount + "";

 }

 // If the User likes the reply we will show the 'Unlike' button

 if(reply.LikerInfo.IncludesCurrentUser){

 likeString = ' <a onclick="socialAPI().unlikeReplyFunction(''+threadId+' '+j+'

'+whereToWrite+'')" href="javascript:void(0);"> Unlike ';

 }else{

 // Otherwise we show the 'Like' button

 likeString = ' <a onclick="socialAPI().likeReplyFunction(''+threadId+' '+j+'

'+whereToWrite+'')" href="javascript:void(0);"> Like ';

 }

 if(whereToWrite === "#socialAPIFollowedFeeds"){

 deleteString = ' <a href="javascript:void(0);" id="deleteReply"

onclick="socialAPI().deleteReply(''+replyId+'')"> X ';

 }

 else{

 deleteString = '';

 }

 /* id = var specifying the feed.

 * j = var specifying the reply.

 * id j = the reply number j of the feed number id. */

 var replyStr = '<div class="replyItem" id="replyItem'+threadId+' '+j+'"> ' +

 '<div class="table">' +

 '<div

class="picSection">' +

 '' +

 ' ' +

 '' +

 '</div>' +

 '<div

class="notPicSection">' +

 '<p>

 '+ creatorOfTheReply.Name + ' '+ deleteString +' </p>' +

 '<p

id="replyText'+threadId+' '+j+'">' + text + '</p>' +

 attachmentString +

 '<span

class="noWrapString">' + dateString + ' ' +

 '<span

class="noWrapString">' +

 '' + likeCounterString + '' + likeString + '' +

 '' +

215

 '<p

class="replyId" id="replyId'+threadId+' '+j+'">'+replyId+'</p>' +

 '</div>' +

 '</div>' +

 '</div>';

 $(replyStr).hide().insertAfter(thisFeedSection).fadeIn(800 + (i*120) + (j*120));

 }

 }

 // Let's examine the next feed

 }

 // If we are adding new feeds at the top of the section...

 if(howToWriteFeeds == "prepend"){

 return; // ...we can end here the function, without check for more feeds.

 }

 // Reading again the name of the owner of the feed because if there is any reply it would have been replaced by now.

 if(participants[thread.OwnerIndex].AccountName === null || participants[thread.OwnerIndex].AccountName === undefined){

 accountName = participants[thread.OwnerIndex+1].AccountName.split("\\");

 }

 else{

 accountName = participants[thread.OwnerIndex].AccountName.split("\\");

 }

 accountName = accountName[accountName.length-1];

 // Adding an extra element to the feeds section.

 // This button will allow the User to ask for more feeds.

 var dateTimeString = dateTimeFeed.toJSON(); // Converting the dateTime of the last feed printed to give the function the correctly formatted string, that will

work for the REST calls.

 // numFeedsDisplayed = document.getElementById(whereToWrite.substring(1)).getElementsByClassName("feedsItem").length; // Reading the number of feeds

displayed in the "whereToWrite" HTML section.

 if(numFeedsTotal == 0){ // If the User wants to retrieve all the feeds

 moreFeedsFunction(dateTimeString, whereToWrite, parentWhereToWrite, accountName, 0, numFeedsStillToGet, flagDisplayReplies); // We

keep retrieving the feeds as long as there are some.

 }else{

 if(numFeedsStillToGet - numFeedsDisplayed > 0){ // If not even "numFeedsToDisplay" feeds have been retrieved from Social...

 // we call for more.

 moreFeedsFunction(dateTimeString, whereToWrite, parentWhereToWrite, accountName, numFeedsTotal, numFeedsStillToGet-

numFeedsDisplayed, flagDisplayReplies);

 }else{

 if((numFeedsTotal !== null && numFeedsTotal !== undefined && numFeedsTotal > 0 && numFeedsTotal <= 20) && numFeedsToDisplay <

numFeedsStillToGet){ // If we displayed every feed we could and there are no more feeds on Social:

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the

function 'fadeOut' will work only once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> No more feeds available. </p>

</div>'); // Printing the "problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML

code after 7 seconds.

 }else{

 // Enough feeds have been displayed for now.

 // Stopping the retrieval of feeds and displaying the button to retrieve even more feeds.

 $(whereToWrite).append('<a id="moreFeedsButton" class="moreFeedsButton"

href="javascript:socialAPI().moreFeedsFunction(''+ dateTimeString +'', ''+ whereToWrite +'', ''+ parentWhereToWrite +'', ''+ accountName +'', ''+

numFeedsTotal +'', ''+ numFeedsTotal +'',''+ flagDisplayReplies +'')"> Show more posts ');

 }

 }

 }

 }

 /* This function uses a regular expression to replace the following characters and thus sanitize a string from containing executable code:

 * <, >, &, ", ', `, , !, @, $, %, (,), =, +, -, {, |, }, ~, [,], ., \, ^, :, ;, ?

 * including the space character!

 * In order to do this we map the correspondences and use the replace function.

 * Input: the string

 * Output: the message, encoded to be correctly represented in a HTML webpage. */

 function myEscapeHTML(text){

 // We don't use the complete map because it can interfere with the

 // var completeMAP = {

 // '<': '<', '>': '>', '&': '&', '"': '"', "'": ''', '`': '`', ' ': ' ', '!': '!', '@': '@', '$': '$',

'%': '%', '(': '(', ')': ')', '=': '=', '+': '+', '-': '-', '{': '{', '|': '|', '}': '}', '~': '~', '[': '[', ']': ']', '.': '.',

'\\': '\', '^': '^', ':': ':', ';': ';', '?': '?'

 // }; // note: the single quote (') cannot be replaced with ''', because it is not valid HTML 4. We have to use '''.

 var MAP = {

 '<': '<', '>': '>', '"': '"', "'": ''', '`': '`', '!': '!', '@': '@', '$': '$', '{': '{', '|': '|', '}':

'}', '[': '[', ']': ']', '\\': '\', '^': '^'

 }; // note: the single quote (') cannot be replaced with ''', because it is not valid HTML 4. We have to use '''.

 return text.replace(/[\<\>\"\'\`\!\@\$\{\|\}\[\]\\\^]/g, function (a) { return MAP[a]; });

 }

 /* This function is called to substitute a tag contained in a feed with a link construct. That will let the User be able, clicking on the tag, to retrieve all the feed with

that tag

 * Input:

 * - the text of the feed

 * - the index of the tag inside the feed

 * - the tag to substitute

 * - the section where the tag will be written

 * Output:

 * - the updated text of the feed

 */

 function tagReplace(text, index, tag, whereToWrite){

216

 var gap;

 if(socialWebsite === "https://social-dev.cern.ch/"){

 gap = ''+ tag

+'';

 }else{

 // else: we are in the Production environment

 gap = ''+ tag

+'';

 }

 // var functionInputStr = "'"+ tag +"','"+ whereToWrite +"', 0"; // we have to adopt this method to pass the two input variable to the next function.

 // var gap = ''+ tag +'';

 var textLength = text.length;

 var textBeforeTheTag = text.substring(0, index);

 var textAfterTheTag = text.substring(index+tag.length, text.length);

 var textAndLengthOfString = new textObj(textBeforeTheTag + gap + textAfterTheTag, gap.length - tag.length);

 return textAndLengthOfString;

 }

 function textObj(text, length){

 this.text = text;

 this.gap = length;

 }

 // This function checks if there is a substring inside a longer string

 function compareSubstring(str, startIndex, numberOfCharsToCheck, strToCompare){

 var index = startIndex;

 var j=0;

 while(j < numberOfCharsToCheck){

 if(str[index] !== strToCompare[j]){

 return false;

 }

 // else: the character is the same

 index++;

 j++;

 }

 // all the characters found are equal

 return true; // the strings are equal

 }

 /* This function creates the string that will display the date and time of each feed and reply.

 * Input:

 * - the date object of the feed or reply */

 function createDateString(dateObj){

 var day = dateObj.getDay();

 switch(day){

 case 0: day="Sun";

 break;

 case 1: day="Mon";

 break;

 case 2: day="Tue";

 break;

 case 3: day="Wed";

 break;

 case 4: day="Thu";

 break;

 case 5: day="Fri";

 break;

 case 6: day="Sat";

 break;

 default: day = "Mon";

 break;

 }

 var month = dateObj.getMonth();

 switch(month){

 case 0: month="Jan";

 break;

 case 1: month="Feb";

 break;

 case 2: month="Mar";

 break;

 case 3: month="Apr";

 break;

 case 4: month="May";

 break;

 case 5: month="Jun";

 break;

 case 6: month="Jul";

 break;

 case 7: month="Aug";

 break;

 case 8: month="Sep";

 break;

 case 9: month="Oct";

 break;

 case 10: month="Nov";

 break;

 case 11: month="Dec";

 break;

 default: month="Jan";

 break;

 }

217

 var numberOfTheDay = dateObj.getDate(); // Returns the day of the month (from 1-31)

 if(numberOfTheDay < 10){

 numberOfTheDay = parseInt(0, 10).toString() + parseInt(numberOfTheDay, 10); // This way if the month is the 5th it will be displayed

as "05", instead of "5"

 }

 var hours = dateObj.getHours();

 if(hours < 10){

 hours = parseInt(0, 10).toString() + parseInt(hours, 10);

 }

 var minutes = dateObj.getMinutes();

 if(minutes < 10){

 minutes = parseInt(0, 10).toString() + parseInt(minutes, 10);

 }

 var seconds = dateObj.getSeconds();

 if(seconds < 10){

 seconds = parseInt(0, 10).toString() + parseInt(seconds, 10);

 }

 var time = hours+ ':' +minutes+ ':' +seconds; // Creates a time string like "09:15:42"

 var str = day+ ' ' +month+ ' ' +numberOfTheDay+ ' ' +dateObj.getFullYear()+ ' ' +time; // The final string that will be given as output

 return str;

 }

 // This function retrieves an element in a container. It is used to retrieve the reply sections inside the section for the feeds coming from a specific profile.

 // Use: var e = getElementInsideContainer("div1", "edit2");

 function getElementInsideContainer(containerID, childClass) {

 if(childClass[0] === '#'){ childClass = childClass.substring(1); }

 var elm = document.getElementsByClassName(childClass);

 if(elm.length === 0 || elm === null || elm === undefined){ return null; } // Consistency check

 // Checking the ID string

 if(containerID[0] === '#'){

 containerID = containerID.substring(1, containerID.length);

 }

 var parent;

 for(i=0; i<elm.length; i++){

 parent = elm[i] ? elm[i].parentNode : {};

 // If there is a parent node

 if(parent)

 {

 if(parent.id === containerID){

 return elm[i]; // The element returned will be the one inside the section with class 'containerID'

 }

 else

 {

 parent = parent.parentNode.parentNode;

 if(parent.id && parent.id === containerID){

 return elm[i]; // The element returned will be the one inside the section with class

'containerID'

 }

 }

 }

 }

 return null; // Default return value;

 }

 /* This function returns True if the string passed in input is a valid URL, False otherwise.

 * Input: the string to analize

 * Output:

 * - True if the string contains an URL

 * - False otherwise

 */

 function validateURL(str) {

 // RegEx: Development word used to find this function easily while programming.

 // Creating a Regular Expression to recognise if the string is a website or not.

 // string to be deleted: left for development purpose. ^((?!href\=\").)

 var pattern = /^((ftp|https?):\/\/)?(www\.)?([\w\-]{2,})([\.][\w\-]{2,})*([\.][a-z]{2,})+([\/][\w\+\-\?\.\&\%\=\#\:\;\(\)\~]{2,})*[\/]?/i;

 // Testing the string with the regular expression

 if(!pattern.test(str)) {

 return false; // It has not been recognised as a URL. Display it as simple string.

 } else {

 return true; // Otherwise: display it as a link.

 }

 }

 // Function called by the User while pressing the button "More feeds".

 function moreFeedsFunction(dateTime, whereToWrite, parentWhereToWrite, accountName, numFeedsToDisplay, numFeedsStillToGet, flagDisplayReplies){

 if(whereToWrite === "#socialAPIFollowedFeeds"){

 // Example of website to refer to: https://social.cern.ch/_api/social.feed/my/news(OlderThan=@v)?@v=datetime'2014-01-20T07:52:40.5567953Z'

 executeRestCallExtendedSix(myFeedManagerEndpoint + "my/news(OlderThan=@v)?@v=datetime'"+dateTime+"'", 'GET', null, moreFeedsBodyFunction,

onError, whereToWrite, parentWhereToWrite, numFeedsToDisplay, numFeedsStillToGet, flagDisplayReplies); // searches the feeds and passes them to the function "moreFeedsBodyFunction()"

 }

 else{

 var tagText = accountName;

 if(tagText[0] === '#'){ tagText = tagText.substring(1); }

 if(whereToWrite.substring(0, 30) === "#socialAPIFeedsWithSameHashtag"){

 executeRestCallExtendedFive(searchRestService + "query?querytext='tags:%23"+ tagText +" write<\""+ dateTime

+"\"'&sourceid='459dd1b7-216f-4386-9709-287d5d22f568'&sortlist='created:1'", 'GET', null, retrieveFeedsWithSameTagBodyFunction, onError, whereToWrite, parentWhereToWrite, numFeedsToDisplay,

flagDisplayReplies); // searches the tags and display the tagged feeds grouped

 }else{

218

 // else: The button is in a section feedsFromProfile...

 // Example of website to refer to:

https://social.cern.ch/_api/social.feed/actor(item='cern\\actorName')/feed(OlderThan=@v)?@v=datetime'2014-01-20T07:52:40.5567953Z'

 executeRestCallExtendedSix(myFeedManagerEndpoint +

"actor(item='cern\\"+accountName+"')/feed(OlderThan=@v)?@v=datetime'"+dateTime+"'", 'GET', null, moreFeedsBodyFunction, onError, whereToWrite, parentWhereToWrite, numFeedsToDisplay,

numFeedsStillToGet, flagDisplayReplies); // searches the feeds and passes them to the function "moreFeedsBodyFunction()"

 }

 }

 }

 function moreFeedsBodyFunction(data, whereToWrite, parentWhereToWrite, numFeedsToDisplay, numFeedsStillToGet, flagDisplayReplies){

 try{

 var result = JSON.parse(data); // parsing the data obtained from the social network

 }catch(e){

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'fadeOut' will work

only once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> Network problem. Please try to refresh the page later. </p>

</div>'); // Printing the "problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds.

 console.log("There was a problem while communicating with the Server.\nSee moreFeedsBodyFunction() function.");

 return;

 }

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console

log

 if(result.error){

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'fadeOut' will work

only once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> Network problem. Please try to refresh the page later. </p>

</div>'); // Printing the "problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds.

 console.log("Bad request.\nPlease review the moreFeedsBodyFunction() function.");

 return;

 }

 // Consistency check : if no information has been retrieved...

 if(result.d === null || result.d === undefined)

 {

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'fadeOut' will work

only once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> Network problem. Please try to refresh the page later. </p>

</div>'); // Printing the "problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds.

 return;

 }

 // else...

 // Stopping the automatic retrieval of new feeds that would hide the "extra" feeds that the User may be reading at the moment.

 // To refresh the feeds and reactivate the automatic retrieval (of the feeds) the User may click on the "News" button on the right top of the page, or refresh

the whole web-page.

 try{

 var handler = findMyHandler(whereToWrite);

 if(handler !== -1){

 clearInterval(handler);

 }

 var button = getElementInsideContainer(whereToWrite, "moreFeedsButton");

 button.parentNode.removeChild(button); // Removing the "Show more posts" button, if there is.

 }catch(err){}

 var feeds = result.d.SocialFeed.Threads.results; // capturing the feeds

 // If no feed is found... (it is an array, so we can check the length)

 if(feeds.length === 0){

 // Printing the "no feed" message on the screen

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'fadeOut' will work

only once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> No more feeds available. </p> </div>'); // Printing the

"problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds.

 return;

 }

 else{ //else: every feed found is printed

 appendFeeds(feeds, whereToWrite, parentWhereToWrite, numFeedsToDisplay, numFeedsStillToGet, flagDisplayReplies); //

Appending the new feeds to the previous ones.

 }

 }

 // This function opens the thread considered, with all of its replies, in a new tab in the browser.

 // It opens the website memorized in the "permalink" variable into a new tab.

 function moreRepliesFunction(permalink){

 window.open(permalink, '_blank');

 }

 // This function deletes the feed considered (the i-th feed)

 // 'id' is the unique id of the feed that has to be deleted

 function deleteFeed(id){

219

 var x = confirm("Are you sure you want to get rid of this conversation?");

 if(x === false) { return; } // If the User clicks on 'No' then -> do nothing; else: continue

 $('#tempID').html(id); // Memorizing the id into an invisible html field

 executeRestCall(formDigestUrl, 'POST', null, deleteFeedFunction, onError);

 }

 // This function follows "deleteFeed(i)".

 // If the feed has any reply the feed is deleted and the replies are deleted with it.

 function deleteFeedFunction(data){

 try{

 var result = JSON.parse(data); // parsing the data obtained from the social network

 }catch(e){

 console.log("There was a problem while communicating with the Server.\nSee deleteFeedFunction() function.");

 return;

 }

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console

log

 if(result.error){

 console.log("Bad request.\nPlease review the deleteFeedFunction() function.");

 return;

 }

 var formDigest = result.d.GetContextWebInformation.FormDigestValue;

 var threadId = $('#tempID').html(); // reading the id of the message to delete

 // Starting the request for the deletion of the feed.

 // Deleting the feed any reply is discarded with it.

 var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Delete"); // Creating CORSRequest to Delete the message

 xhr.onload = function () {

 // After the operation the User has to see the feed disappear from the page

 var el = document.getElementById('feedsItem'+threadId);

 el.parentNode.removeChild(el);

 // var firstReply = $('#replyItem'+threadId+' 0');

 var firstReply = document.getElementById('replyItem'+threadId+' 0');

 if(firstReply !== null){

 var elReply;

 // If there is even only one reply to this feed we need to refresh the page to make the replies disappear

 for(var i=0; (document.getElementById('replyItem'+threadId+' '+i)) !== null; i++){

 // We do not need to call the function "deleteReply()", because deleting the feed will also delete its replies.

 // We just need to delete the replies from the html page.

 elReply = document.getElementById('replyItem'+threadId+' '+i);

 elReply.parentNode.removeChild(elReply);

 }

 }

 // If no more feeds are displayed... (if even the first feed (feed[0]) has been deleted...)

 if (isEmpty($("#socialAPIFollowedFeeds"))) {

 $("#socialAPIFollowedFeeds").append('<div class="feedsItem"> <p id="text"> No feeds available </p> </div>');

 }

 };

 xhr.onerror = function (e1, e2, e3) {

 errorHandlerFunction(2, 'There has been an error while deleting the feed. Please try again later.');

 };

 xhr.withCredentials = true;

 xhr.setRequestHeader("X-RequestDigest", formDigest);

 xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose");

 var data = "{ 'ID':'"+threadId+"' }"; // Including the ID of the feed we want to 'Delete'

 xhr.send(data); // Sending the 'Delete' request

 }

 /* This function returns the content of an html section avoiding to consider spaces and line breaks.

 * Input:

 * the html element to control

 * Output:

 * True = the section is empty

 * False = the section is not empty

 */

 function isEmpty(el){

 return !$.trim(el.html());

 }

 // This function deletes the reply message

 function deleteReply(replyId){

 var x = confirm("Get rid of this reply?");

 if(x === false) { return; } // If the User clicks on 'No' then -> do nothing; else: continue

 $('#tempReplyIndex').html(replyId); // Memorizing the index that the reply has on Social

 executeRestCall(formDigestUrl, 'POST', null, deleteReplyFunction, onError);

 }

 function deleteReplyFunction(data){

 try{

 var result = JSON.parse(data); // parsing the data obtained from the social network

 }catch(e){

 console.log("There was a problem while communicating with the Server.\nSee deleteReplyFunction() function.");

 return;

220

 }

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console

log

 if(result.error){

 console.log("Bad request.\nPlease review the deleteReplyFunction() function.");

 return;

 }

 var formDigest = result.d.GetContextWebInformation.FormDigestValue;

 var replyId = $('#tempReplyIndex').html(); // reading the index of the reply on Social

 var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Delete"); // Creating CORSRequest to Delete the message

 xhr.onload = function () {

 // After the operation the User has to see the feed disappear from the page

 manuallyUpdateAllTheFeeds(); // Updating all the feeds displayed

 };

 xhr.onerror = function (e1, e2, e3) {

 errorHandlerFunction(3, "There has been an error while deleting the reply.");

 };

 xhr.withCredentials = true;

 xhr.setRequestHeader("X-RequestDigest", formDigest);

 xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose");

 var data = "{ 'ID':'"+replyId+"' }"; // Including the ID of the feed we want to 'Delete'

 xhr.send(data); // Sending the 'Delete' request

 }

 /* Function that realizes the unfollow operation.

 * If a User wants to delete a feed posted from another User he has to "unfollow" that User. Otherwise the feed will remain as is.

 */

 function unfollowPerson(temp){

 var temp2 = temp.split("- -");

 // Reading the actor name of the followed User and its nickname on Social

 var actorName = temp2[0];

 var actorId = temp2[1];

 var whereToWrite = temp2[3];

 var updateInterval = temp2[4];

 temp = temp2[temp2.length-1].split("\\"); // 'temp' should become from "cern\\name" an array like "[cern,name]"

 var accountName = temp[temp.length-1];

 // Is the User sure?

 var x = confirm("Would you like to stop following " + actorName + " and no longer receive this person's updates in your feed?");

 if(x === false){ return; } // If the User clicks on 'No' then -> do nothing; else: continue

 // Saving variables in invisible fields into the html page

 $('#accountName').html(accountName); // Memorizing the account's name into an invisible html field

 $('#tempID').html(actorId); // Memorizing the account's id into an invisible html field

 $('#feedsSectionName').html(whereToWrite);

 $('#messageToUpload').html(updateInterval);

 // Calling the Server to get the formDigest and then calling the function 'unfollowPersonFunction()' to call the "unfollow" operation.

 executeRestCallExtendedFour(formDigestUrl, 'POST', null, unfollowPersonFunction, onError);

 }

 function unfollowPersonFunction(data){

 try{

 var result = JSON.parse(data); // parsing the data obtained from the social network

 }catch(e){

 console.log("There was a problem while communicating with the Server.\nSee unfollowPersonFunction() function.");

 return;

 }

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console

log

 if(result.error){

 console.log("Bad request.\nPlease review the unfollowPersonFunction() function.");

 return;

 }

 var formDigest = result.d.GetContextWebInformation.FormDigestValue;

 var actorId = $('#tempID').html();

 var accountName = $('#accountName').html();

 var whereToWrite = $('#feedsSectionName').html();

 var updateInterval = $('#messageToUpload').html();

 /* This is the main code for unfollowing a User. It tells:

 * - the domain\username attributes of the User to unfollow

 * - the id of the User to unfollow

 */

 var xhr = createCORSRequest("POST", apiEndpoint + "social.following/stopfollowing(ActorType=0,AccountName='cern\\"+ accountName +"',Id='"+actorId+"')");

 // Creating CORSRequest to Stop Following the Actor

 // ActorType 0 is for the Users, 1 is for the Documents, 2 for sites and 3 for Tags.

 xhr.onload = function () {

 // After the operation the User has to see the Actor's feeds disappear from the page.

 // We refresh the feeds to hide the ones from the Actor that the User has just stopped following:

 updateFollowedFeeds(whereToWrite, updateInterval); // updating the followed feeds

 };

 xhr.onerror = function (e1, e2, e3) {

 errorHandlerFunction(4, "'Stop follow' operation error. Please try again later.\n\nIf the problem persists for more than 24 hours please contact

the IT Services.");

 };

 xhr.withCredentials = true;

 xhr.setRequestHeader("X-RequestDigest", formDigest);

 xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose");

221

 var data = null;

 xhr.send(data); // Sending the 'Stop Following' request

 }

 /* Function that implements the mechanism of 'Like' (about feeds)

 * Input = one string containing:

 * - the ID of the feed

 * - the HTML section in which the feeds are displayed.

 */

 function likeFeedFunction(idwhereToWrite) {

 var id = idwhereToWrite.split(' ')[0];

 var whereToWrite = idwhereToWrite.split(' ')[1];

 executeRestCallExtended(formDigestUrl, 'POST', null, likeFeedBodyFunction, onError, id, whereToWrite);

 }

 // This function shows that the pressing of the 'Like' button has been handled successfully and changes the code to show the 'Unlike' button (with its associated onclick

function)

 function likeFeedBodyFunction(data, id, whereToWrite){

 try{

 var result = JSON.parse(data); // parsing the data obtained from the social network

 }catch(e){

 console.log("There was a problem while communicating with the Server.\nSee likeFeedBodyFunction() function.");

 return;

 }

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console

log

 if(result.error){

 try{

 if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exists on Social

 alert("We couldn't get data from Social. Please visit https://social.cern.ch to set up your profile first.");

 }else{ // Other error

 console.log("Bad request.\nPlease review the likeFeedBodyFunction() function.");

 }

 return;

 }catch(e){console.log("Exception thrown in function likeFeedBodyFunction()"); return;}

 }

 $(whereToWrite).html(''); // Empting the HTMl section to force the update...() function to re-display every feed (with the new .

 var formDigest = result.d.GetContextWebInformation.FormDigestValue;

 var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Like"); // Creating CORSRequest to Like the feed

 xhr.onload = function () {

 // If the code reaches this part the operation was a success... and the message has been liked.

 manuallyUpdateAllTheFeeds(); // and we call the manual update of the feeds to let the User see the new ones.

 };

 xhr.onerror = function (e1, e2, e3) {

 errorHandlerFunction(5, 'There has been an error while trying to like the feed. \nPlease try again later.');

 };

 xhr.withCredentials = true;

 xhr.setRequestHeader("X-RequestDigest", formDigest);

 xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose");

 var data = "{ 'ID':'"+id+"' }"; // Including the ID of the feed we want to 'Like'

 xhr.send(data); // Sending the 'Like'

 }

 /* Function that implements the mechanism of Unlike (about feeds)

 * Input = one string containing:

 * - the ID of the feed

 * - the HTML section in which the feeds are displayed.

 */

 function unlikeFeedFunction(iwhereToWrite){

 // i is both the unique id and the index of the feed considered

 var i = iwhereToWrite.split(' ')[0];

 var whereToWrite = iwhereToWrite.split(' ')[1];

 executeRestCallExtended(formDigestUrl, 'POST', null, unlikeFeedBodyFunction, onError, i, whereToWrite);

 }

 // This function shows that the pressing of the 'Unlike' button has been handled successfully and changes the code to show the 'Like' button (with its associated onclick

function)

 function unlikeFeedBodyFunction(data, id, whereToWrite){

 try{

 var result = JSON.parse(data); // parsing the data obtained from the social network

 }catch(e){

 console.log("There was a problem while communicating with the Server.\nSee unlikeFeedBodyFunction() function.");

 return;

 }

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console

log

 if(result.error){

 try{

 if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exists on Social

 alert("We couldn't get data from Social. Please visit https://social.cern.ch to set up your profile first.");

 }else{ // Other error

 console.log("Bad request.\nPlease review the likeFeedBodyFunction() function.");

 }

 return;

 }catch(e){console.log("Bad request.\nPlease review the unlikeFeedBodyFunction() function."); return;}

 }

 $(whereToWrite).html(''); // Empting the HTMl section to force the update...() function to re-display every feed (with the new .

 var formDigest = result.d.GetContextWebInformation.FormDigestValue;

 var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Unlike"); // Creating CORSRequest to Unlike the feed

 xhr.onload = function () {

 // If the code reaches this part the operation was a success... and the message has been uploaded.

222

 manuallyUpdateAllTheFeeds(); // and we call the manual update of the feeds to let the User see the new ones.

 };

 xhr.onerror = function (e1, e2, e3) {

 errorHandlerFunction(6, "There has been an error while trying to unlike the feed. \nPlease try again later");

 };

 xhr.withCredentials = true;

 xhr.setRequestHeader("X-RequestDigest", formDigest);

 xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose");

 var data = "{ 'ID':'"+id+"' }"; // Including the ID of the feed we want to 'Like'

 xhr.send(data); // Sending the 'Like'

 }

 // This function executes a 'Like' to a reply of a post

 function likeReplyFunction(inputString){

 var id = '';

 for(var i=0; i<inputString.split(' ').length-1; i++){

 id += inputString.split(' ')[i] + ' ';

 }

 id = id.substring(0,id.length-1); // Taking away the extra space at the end of the string

 var whereToWrite = inputString.split(' ')[inputString.split(' ').length-1];

 try{

 // Let's find the ID of the reply

 var replyId = document.getElementById("replyId"+id).innerHTML;

 }catch(e){ replyId = id; }

 executeRestCallExtended(formDigestUrl, 'POST', null, likeReplyBodyFunction, onError, replyId, whereToWrite);

 }

 // Function that executes after likeReplyFunction(). Launched from executeRestCall(formDigestUrl, 'POST', null, likeReplyBodyFunction, onError); if the operation is successful.

 function likeReplyBodyFunction(data, id, whereToWrite){

 try{

 var result = JSON.parse(data); // parsing the data obtained from the social network

 }catch(e){

 console.log("There was a problem while communicating with the Server.\nSee likeReplyBodyFunction() function.");

 return;

 }

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console

log

 if(result.error){

 try{

 if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exists on Social

 alert("We couldn't get data from Social. Please visit https://social.cern.ch to set up your profile first.");

 }else{ // Other error

 console.log("Bad request.\nPlease review the likeFeedBodyFunction() function.");

 }

 return;

 }catch(e){console.log("Bad request.\nPlease review the likeReplyBodyFunction() function."); return;}

 }

 $(whereToWrite).html('');

 var formDigest = result.d.GetContextWebInformation.FormDigestValue;

 var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Like"); // Creating CORSRequest to Like the feed

 xhr.onload = function () {

 manuallyUpdateAllTheFeeds();

 };

 xhr.onerror = function (e1, e2, e3) {

 errorHandlerFunction(7, 'Error while trying to like a feed.');

 };

 xhr.withCredentials = true;

 xhr.setRequestHeader("X-RequestDigest", formDigest);

 xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose");

 var data = "{ 'ID':'"+id+"' }"; // Including the ID of the feed we want to 'Like'

 xhr.send(data); // Sending the 'Like'

 }

 // This function executes a 'Unlike' to a reply of a post

 function unlikeReplyFunction(inputString){

 var id = '';

 for(var i=0; i<inputString.split(' ').length-1; i++){

 id += inputString.split(' ')[i] + ' ';

 }

 id = id.substring(0,id.length-1); // Taking away the extra space at the end of the string

 var whereToWrite = inputString.split(' ')[inputString.split(' ').length-1];

 try{

 // Let's find the ID of the reply

 var replyId = document.getElementById("replyId"+id).innerHTML;

 }catch(e){ replyId = id; }

 executeRestCallExtended(formDigestUrl, 'POST', null, unlikeReplyBodyFunction, onError, replyId, whereToWrite);

 }

 // Function that executes after unlikeReplyFunction().

 // Launched from executeRestCall(formDigestUrl, 'POST', null, unlikeReplyBodyFunction, onError); if the operation is successful

 function unlikeReplyBodyFunction(data, id, whereToWrite){

 try{

 var result = JSON.parse(data); // parsing the data obtained from the social network

 }catch(e){

 console.log("There was a problem while communicating with the Server.\nSee unlikeReplyBodyFunction() function.");

 return;

 }

223

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console

log

 if(result.error){

 try{

 if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exists on Social

 alert("We couldn't get data from Social. Please visit https://social.cern.ch to set up your profile first.");

 }else{ // Other error

 console.log("Bad request.\nPlease review the likeFeedBodyFunction() function.");

 }

 return;

 }catch(e){console.log("Bad request.\nPlease review the unlikeReplyBodyFunction() function."); return;}

 }

 $(whereToWrite).html('');

 var formDigest = result.d.GetContextWebInformation.FormDigestValue;

 var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Unlike"); // Creating CORSRequest to Unlike the feed

 xhr.onload = function () {

 manuallyUpdateAllTheFeeds();

 };

 xhr.onerror = function (e1, e2, e3) {

 errorHandlerFunction(8, 'Error while trying to unlike a reply.');

 };

 xhr.withCredentials = true;

 xhr.setRequestHeader("X-RequestDigest", formDigest);

 xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose");

 var data = "{ 'ID':'"+id+"' }"; // Including the ID of the feed we want to 'Like'

 xhr.send(data); // Sending the 'Like'

 }

 // This function Posts a new feed on the personal social web page.

 function postToMyFeeds(message, inputFunction) {

 // If no message is given in input... [the function is called as "postToMyFeeds();"]

 if(typeof(message) !== "string" || message === null || message === "" || message === undefined){

 message = document.getElementById("textareaPostNewFeed").value; // Getting the feed

 // If the message is still null

 if(message === null || message === "" || message === undefined){

 console.log("Error: No message passed in input. The new feed can not be created.");

 $('#nextToPostButton').html("<i> Please write some text first.</i>");

 setTimeout("socialAPI().clearMessageToTheUser('nextToPostButton');", 3000); // This function will

hide the message after 3 seconds.

 return;

 }

 else{

 $('#nextToPostButton').html(""); // Removing text eventually present in this section of the HTML file

 }

 }

 if(inputFunction == null || inputFunction == undefined){

 // Default function to execute in case of success.

 inputFunction = function(flag){

 if(flag){ alert("Message posted."); }

 else{ alert("There has been a problem while posting the message. Please try again later."); }

 }

 }

 executeRestCallExtended(formDigestUrl, "POST", null, postMessage, onError, message, inputFunction); // Calling the function that will read the text from

the p section and post it online

 }

 /* Function that is demanded to post a message on the Social Network.

 * The message is read from the <p id="messageToUpload"> section from the html file.

 */

 function postMessage(data, message, inputFunction) {

 // Consistency check

 if(message === null || message === "" || message === undefined){

 console.log("Error: no message to upload");

 return;

 }

 try{

 var result = JSON.parse(data); // parsing the data obtained from the social network

 }catch(e){

 console.log("There was a problem while communicating with the Server.\nSee postMessage() function.");

 return;

 }

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console

log

 if(result.error){

 try{

 if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exists on Social

 alert("We couldn't get data from Social. Please visit https://social.cern.ch to set up your profile first.");

 }else{ // Other error

 console.log("Bad request.\nPlease review the postMessage() function.");

 }

 return;

 }catch(e){console.log("Exception thrown in function postMessage()"); return;}

 }

 var formDigest = result.d.GetContextWebInformation.FormDigestValue;

 // Since the tags are written as tokens like {0} or {1} we have to make any kind of text which has

 // numbers (only numbers) between curly parentheses be modified in order to avoid unintended repetitions

 // of tags in the post.

224

 var fakeTokensArePresent = message.match(/\{[0-9]+\}/); // The '+' means that we are considering only positive integers.

 if(fakeTokensArePresent !== null){

 message = message.replace(/\{/g,"{ ");

 message = message.replace(/\}/g," }");

 }

 // Using more than one curly bracket per time can bring problems while composing the message for Sharepoint.

 // The simple solution uses a space between every couple of brackets. Now the brackets do not bother the tags and do not bother while composing the message.

 if(message.match("{{")){

 message = message.replace(/\{\{/g,"{ {");

 }

 if(message.match("}}")){

 message = message.replace(/\}\}/g,"} }");

 }

 /***

 * Looking for websites and tags inside the message

 ***/

 var sitesAndTagsArray = new Array();

 var tempTag = "";

 var dataItemNumber=0; // number of read tags used for the tokens to apply in the message

 var tempToken;

 /* Checking the existence of links to websites inside the text of the message. */

 // Now we try to find possible URL links inside the text.

 var parts = message.split(" "); // Splitting the message using the spaces (URLs don't have spaces)

 var i=0;

 for(var x=0; x<parts.length; x++){

 var afterUrl = '', beforeUrl = '';

 while(parts[x][0] === '(' && parts[x].length > 2){

 beforeUrl += '(';

 parts[x] = parts[x].substring(1);

 }

 while(parts[x][parts[x].length-1] === ')' && parts[x].length > 2){

 afterUrl += ')';

 parts[x] = parts[x].substring(0, parts[x].length-1);

 }

 if (validateURL(parts[x])){

 sitesAndTagsArray.push(new socialDataItemObj(parts[x], 4));

 tempToken = "{"+dataItemNumber+"}";

 parts[x] = beforeUrl + tempToken + afterUrl; // Replacing the website string into the message with a token like "{0}" or "{1}"

 dataItemNumber++; // increasing the number of read tags.

 continue;

 }

 // else: it is not a URL, so we can check for tags

 i=0;

 while(i < parts[x].length){ // It HAS TO recalculate the length everytime because it could happen that two or more tags are written one after

another without spacing.

 // Making sure that it is a tag (#something) and it is not the HTML code for e.g. curly brackets ("{" and "}")

 if(parts[x][i] === '#' && isOnlyLetterOrNumber(parts[x][i+1]) && (parts[x][i+1]!=='1' && parts[x][i+2]!=='2' &&

parts[x][i+3]!=='3' && parts[x][i+4]!==';') && (parts[x][i+1]!=='1' && parts[x][i+2]!=='2' && parts[x][i+3]!=='5' && parts[x][i+4]!==';') && (i+1) < parts[x].length){

 // The first element is a '#'

 tempTag += parts[x][i];

 i++; // moving on

 // From now on only letters and number will be accepted as part of the tag

 // Reading the tag

 while(i < parts[x].length && isOnlyLetterOrNumber(parts[x][i])){

 tempTag += parts[x][i]; // copying the i-th character of the message into "tempTag"

 i++;

 }

 sitesAndTagsArray.push(new socialDataItemObj(tempTag, 3)); // Copying the tag into 'sitesAndTagsArray'

 tempToken = "{"+dataItemNumber+"}";

 parts[x] = parts[x].replace(tempTag, tempToken); // Replacing the tag string into the message with a

token like "{0}" or "{1}"

 if(dataItemNumber < 10){

 // if there are less than 10 tags...

 i = i - tempTag.length + 2; // Since the message has been modified we have to move

the cursor according to the new string to continue examining the text from the right point.

 }else{

 if(dataItemNumber < 100){

 // if there are less than 100 tags but more than 9...

 i = i - tempTag.length + 3;

 }

 else{

 // There are more than 99 tags? Maybe there is a problem. Stopping the execution.

 return;

 }

 }

 tempTag = ""; // Resetting 'tempTag'

 dataItemNumber++; // increasing the number of read tags.

 }

 i++;

 }

 }

 /****************************

 * Re-assembling the message

 ****************************/

 message = "";

 for(x=0; x<parts.length; x++){

 message += parts[x] + ' ';

225

 }

 // Converting all the single quotes (') and backslashes (\) in the message adding and extra backslash to each char to let Javascript to read them correctly.

 // This is done because otherwise there would be a problem during the creation of the post in the 'try' section a few rows below this line.

 message = message.replace(/\\/g, "\\\\"); // To be able to post single backslashes we have to double each one of them

 message = message.replace(/'/g, "\\'"); // "\\'" is the right replacement to be able to post single quotes

 if(sitesAndTagsArray.length > 0){

 // We will now create the string to put inside the 'ContentItems' section of the data inside the CORSRequest

 var contentItemsString = '{ "results": [{ "__metadata": { "type": "SP.Social.SocialDataItem" }, "Text": "';

 i=0;

 while(i<sitesAndTagsArray.length){

 // if we are analysing the last tag...

 if(i === sitesAndTagsArray.length-1){

 contentItemsString += sitesAndTagsArray[i].value;

 if(sitesAndTagsArray[i].itemType == 4){

 contentItemsString += '","Uri": "'+sitesAndTagsArray[i].value;

 }

 contentItemsString += '","ItemType": '+ sitesAndTagsArray[i].itemType +' }]},';

 }else{

 contentItemsString += sitesAndTagsArray[i].value;

 if(sitesAndTagsArray[i].itemType == 4){

 contentItemsString += '","Uri": "'+sitesAndTagsArray[i].value;

 }

 contentItemsString += '","ItemType": '+ sitesAndTagsArray[i].itemType +' }, { "__metadata": { "type":

"SP.Social.SocialDataItem" }, "Text": "';

 }

 i++;

 }

 // Now the message is well-formed.

 // We try to post it.

 try

 {

 var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "my/Feed/Post");

 xhr.onload = function () {

 if(this.status == 200){ // If the operation succeeds... than the feed has been uploaded.

 if(inputFunction !== undefined && inputFunction !== null){

 inputFunction(true);

 }

 updateFollowedFeeds(followedFeedsWhereToWrite, followedFeedsUpdateInterval); //

...and we call the manual update of the feeds (to show the new one in the webpage)

 }else{ // We sent the request correctly but there has been a problem

 var response = this.responseText;

 if(response.indexOf("Internal error code: 83")){ // If the response from the Server says

that the problem is that the user has not been found...

 alert("We couldn't get data from Social. Please visit https://social.cern.ch to set

up your profile first.");

 }else{ // Generic error

 if(inputFunction !== undefined && inputFunction !== null){

 inputFunction(false);

 }

 }

 }

 };

 xhr.onerror = function (e1, e2, e3) {

 errorHandlerFunction(9, 'There has been an error while uploading the message. \nPlease try again later.');

 if(inputFunction !== undefined && inputFunction !== null){

 inputFunction(false);

 }

 };

 xhr.withCredentials = true;

 xhr.setRequestHeader("X-RequestDigest", formDigest);

 xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose");

 // Creating the data for the post

 var data = " { 'restCreationData':{ " +

 " '__metadata':{ 'type':'SP.Social.SocialRestPostCreationData'}, " +

 " 'ID': null, " +

 " 'creationData':{ " +

 "

 '__metadata':{'type':'SP.Social.SocialPostCreationData' }, " +

 " 'Attachment': null," +

 " 'ContentItems': " + contentItemsString +

 " 'ContentText':'" +message+ "',

'UpdateStatusText':false " +

 " } " +

 " }}";

 xhr.send(data); // Uploads the message

 }

 catch(err)

 {

 errorHandlerFunction(9, 'There has been an error while uploading the message. \nPlease try again later.');

 if(inputFunction !== undefined && inputFunction !== null){

 inputFunction(false);

 }

 return;

 }

 }

 else

 {

 // Now the message is well-formed.

 // We try to post it.

 try

 {

 var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "my/Feed/Post");

226

 xhr.onload = function () {

 if(this.status == 200){ // If the operation succeeds... than the feed has been uploaded.

 if(inputFunction !== undefined && inputFunction !== null){

 inputFunction(true);

 }

 updateFollowedFeeds(followedFeedsWhereToWrite, followedFeedsUpdateInterval); //

...and we call the manual update of the feeds (to show the new one in the webpage)

 }else{ // We sent the request correctly but there has been a problem

 var response = this.responseText;

 if(response.indexOf("Internal error code: 83")){ // If the response from the Server says

that the problem is that the user has not been found...

 alert("We couldn't get data from Social. Please visit https://social.cern.ch to set

up your profile first.");

 }else{ // Generic error

 if(inputFunction !== undefined && inputFunction !== null){

 inputFunction(false);

 }

 }

 }

 };

 xhr.onerror = function (e1, e2, e3) {

 errorHandlerFunction(9, 'There has been an error while uploading the message. \nPlease try again later.');

 if(inputFunction !== undefined && inputFunction !== null){

 inputFunction(false);

 }

 };

 xhr.withCredentials = true;

 xhr.setRequestHeader("X-RequestDigest", formDigest);

 xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose");

 // Creating the data for the post

 var data = " { 'restCreationData':{ " +

 " '__metadata':{ 'type':'SP.Social.SocialRestPostCreationData'}, " +

 " 'ID': null, " +

 " 'creationData':{ " +

 "

 '__metadata':{'type':'SP.Social.SocialPostCreationData' }, " +

 " 'ContentText':'" +message+ "',

'UpdateStatusText':false " +

 " } " +

 " }}";

 xhr.send(data); // Uploads the message

 }

 catch(err)

 {

 errorHandlerFunction(9, 'There has been an error while uploading the message. \nPlease try again later.');

 if(inputFunction !== undefined && inputFunction !== null){

 inputFunction(false);

 }

 return;

 }

 }

 }

 function socialDataItemObj(value, itemType){

 this.value = value;

 this.itemType = itemType;

 }

 /* This function deletes the text into the inner html section

 * Input:

 * - id = the Id of the section (it is used to to find the text to delete)

 */

 function clearMessageToTheUser(id){

 try{

 document.getElementById(id).innerHTML = "";

 }

 catch(e){ }

 }

 /* This function checks if the passed element is a letter or a number.

 * If so, it returns true, false otherwise.

 * Input:

 * - temp = a symbol

 */

 function isOnlyLetterOrNumber(temp){

 // Checking the ASCII character using the ASCII table at http://www.asciitable.com/

 if((asc(temp) >= 48 && asc(temp) <= 57) || (asc(temp) >= 65 && asc(temp) <= 90) || (asc(temp) >= 97 && asc(temp) <= 122) || (asc(temp) >= 128 && asc(temp) <=

255)){

 return true;

 }else{

 return false;

 }

 }

 // This function returns the corresponding number of the input symbol in the ASCII table.

 function asc(String){

 return String.charCodeAt(0);

 }

 /* This function shows the Reply textbox that will be used to send a reply to a feed.

 * Input:

 * - inputString: one string containing two sub-strings separated using a space character.

 * First there is the name of the section where the feed is written.

227

 * Next the id of the feed considered.

 */

 function showReplySection(inputString){

 // Reading the input

 var parentSection = inputString.split(' ')[0]; // the id of the parent section where to find the threadId passed in input (see next line)

 if(parentSection[0] === '#'){

 parentSection = parentSection.substring(1, parentSection.length); // Eliminating the '#' at the beginning. This is necessary for the

'getElementInsideContainer()' function

 }

 var textareaSectionID = inputString.split(' ')[1]; // The ID of the section where the textarea is.

 var id = inputString.split(' ')[2]; // The 'threadId'

 // The first thing to do is to stop the automatic update of the feeds.

 // Since the names of the sections are dynamic (decided from the developer when calling each function), we have to stop every automatic update.

 try{

 // Seeking the right update handler and stopping the automatic retrieval of the feeds of that section.

 var tempHandler = findMyHandler('#' + parentSection); // retrieves the handler starting from the 'parentSection'

 clearInterval(tempHandler);

 }catch(err){}

 var idPar = "textbox" + parentSection + id; // the id of the textbox to be shown

 var obj = getElementInsideContainer(textareaSectionID, idPar); // the object that holds the textbox for the reply

 var objText = getElementInsideContainer(textareaSectionID, "textareaReply" + parentSection + id); // the textbox for the reply

 var objButtonUploadReply = getElementInsideContainer(textareaSectionID, "uploadMessage" + parentSection + id); // the upload-the-reply button

 // var objButtonUploadFile = getElementInsideContainer(textareaSectionID, "replyButtonUploadFile" + id); // the upload-the-reply button

 // ToDO. Future development.

 slider = obj;

 var minHeight = 0;

 var maxHeight = 120;

 var time = 400; // The time needed to show the section

 var timer = null;

 if(obj === null || obj === undefined) { return; } // Consistency check

 // If the textbox for the replies is closed it slows down and shows itself to the User

 if(obj.offsetHeight == 0)

 {

 $(obj).show();

 // Apparently jQuery goes in conflict with "tagcanvas.min.js". Therefore we have to use only Javascript to make the window slide down or up.

 // Showing the reply section using Javascript

 slider.style.height = minHeight + 'px';

 var instanceheight = parseInt(slider.style.height, 10); // Current height

 var init = (new Date()).getTime(); //start time

 // var height = (toggled = !toggled) ? maxheight: minheight; //if toggled

 var height = maxHeight;

 var disp = height - parseInt(slider.style.height, 10);

 timer = setInterval(function() {

 var instance = (new Date()).getTime() - init; //animating time

 if(instance <= time) { //0 -> time seconds

 var pos = instanceheight + Math.floor(disp * instance / time);

 slider.style.height = pos + 'px';

 var op = pos / maxHeight; // pos * 1 / maxHeight where 1 is max-opacity-value

 slider.style.opacity = op;

 slider.style.filter = "alpha(opacity="+ (op*100) +")"; // for IE 8 and earlier

 }else {

 slider.style.height = height + 'px'; // safety side ^^

 slider.style.opacity = '1';

 slider.style.filter = "alpha(opacity=100)"; // for IE 8 and earlier

 objText.style.display = "flex"; // makes it visible

 // objButtonUploadFile.style.display = "inline"; // makes it visible // ToDO. Future

development.

 objButtonUploadReply.style.display = "inline"; // makes it visible

 objText.focus(); // Making the cursor move into the textbox. This way the User does not have to click

on "Reply" and in the textbox but only on "Reply".

 clearInterval(timer);

 }

 },1);

 }else{

 // Hide the reply section

 var instanceheight = parseInt(slider.style.height, 10); // Current height

 var init = (new Date()).getTime(); //start time

 // var height = (toggled = !toggled) ? maxheight: minheight; //if toggled

 var height = minHeight;

 var disp = height - parseInt(slider.style.height, 10);

 timer = setInterval(function() {

 var instance = (new Date()).getTime() - init; //animating time

 if(instance <= time) { //0 -> time seconds

 var pos = instanceheight + Math.floor(disp * instance / time);

 slider.style.height = pos + 'px';

 var op = pos / maxHeight; // pos * 1 / maxHeight where 1 is max-opacity-value

 slider.style.opacity = op;

 slider.style.filter = "alpha(opacity="+ (op*100) +")"; // for IE 8 and earlier

 }else {

 slider.style.height = height + 'px'; //safety side ^^

 slider.style.opacity = '0';

 slider.style.filter = "alpha(opacity=0)"; // for IE 8 and earlier

 // Now that the section is hidden we can make it invisible again.

 objText.style.display = "none"; // makes

it invisible

 // objButtonUploadFile.style.display = "none"; // makes it invisible // ToDO. Future

development.

 objButtonUploadReply.style.display = "none"; // makes it invisible

228

 clearInterval(timer); // Terminates itself

 }

 },1);

 }

 }

 /* Function that clears the text of the reply that the User is writing (in case the User would like to empty the textbox and re-write the reply)

 * Input:

 * - inputString: one string containing two sub-strings separated using a space character.

 * First there is the name of the section where the feed is written.

 * Next the id of the feed considered.

 */

 function clearReplyText(inputString){

 // Reading the input

 var parentSection = inputString.split(' ')[0]; // the id of the section in which the feeds are displayed.

 if(parentSection[0] === '#'){

 parentSection = parentSection.substring(1, parentSection.length); // Eliminating the '#' at the beginning. This is necessary for the

'getElementInsideContainer()' function

 }

 var whereToWrite = inputString.split(' ')[1]; // the id of the parent section where to find the threadId passed in input (see next line);

 if(whereToWrite[0] === '#'){

 whereToWrite = whereToWrite.substring(1, whereToWrite.length); // Eliminating the '#' at the beginning. This is necessary for the

'getElementInsideContainer()' function

 }

 var id = inputString.split(' ')[2]; // The 'threadId'

 var objText = getElementInsideContainer(parentSection, "textareaReply" + parentSection + id); // the textbox for the reply

 objText.value = "";

 }

 // This function creates a Reply

 function createReply(inputString) {

 // Reading the input

 var parentSection = inputString.split(' ')[0]; // the id of the section in which the feeds are displayed.

 if(parentSection[0] === '#'){

 parentSection = parentSection.substring(1); // Eliminating the '#' at the beginning. This is necessary for the

'getElementInsideContainer()' function

 }

 var whereToWrite = inputString.split(' ')[1]; // the id of the parent section where to find the threadId passed in input (see next line);

 if(whereToWrite[0] === '#'){

 whereToWrite = whereToWrite.substring(1); // Eliminating the '#' at the beginning. This is necessary for the 'getElementInsideContainer()'

function

 }

 var threadId = inputString.split(' ')[2];

 // Reading the text of the Reply

 var text = getElementInsideContainer(whereToWrite, "textareaReply"+ parentSection + threadId).value; // Getting the text

 if(text === null || text === "" || text === undefined){ // consistency check

 errorHandlerFunction(1, "No text present. Please write some text first.");

 return;

 }

 $("#"+whereToWrite).html(''); // Clearing the HTML section to force the update...() function to re-display every feed and its replies.

 /* TO BE IMPLEMENTED: (sending an image with the message)

 var attachmentUri = getElementInsideContainer(parentSection, "replyButtonUploadFile"+threadId).value; // Getting the URI of the attachment

 if(attachmentUri !== null || attachmentUri !== undefined){

 $('#tempTagText').html(attachmentUri); // Copying the URI of the attachment into the invisible p section with

"id=messageToUpload" in the HTML file

 }

 else

 {

 $('#tempTagText').html(""); // Setting the attachment to empty string

 } */

 // We are now ready to post the reply... calling the executeRestCall() function.

 executeRestCallExtendedFive(formDigestUrl, "POST", null, postReply, onError, text, threadId, parentSection, whereToWrite);

 // The algorithm continues in the postReply() function

 }

 /* Function that is demanded to post a Reply message on the Social Network.

 * The message is read from the <p id="messageToUpload"> section from the html file.

 */

 function postReply(data, message, postId, parentSection, whereToWrite) {

 try{

 var result = JSON.parse(data); // parsing the data obtained from the social network

 }catch(e){

 console.log("There was a problem while communicating with the Server.\nSee postReply() function.");

 return;

 }

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console

log

 if(result.error){

 try{

 if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The User does not exists on Social

 alert("We couldn't get data from Social. Please visit https://social.cern.ch to set up your profile first.");

 }else{ // Other error

 console.log("Bad request.\nPlease review the postReply() function.");

 }

 return;

 }catch(e){console.log("Exception thrown in function postMessage()"); return;}

 }

 var formDigest = result.d.GetContextWebInformation.FormDigestValue;

 // TO BE IMPLEMENTED: var attachmentUri = $('#tempTagText').html(); // and the URI of the attachment

 var attachmentUri = '';

229

 // Since the tags are written as tokens like {0} or {1} we have to make any kind of text which has

 // numbers (only numbers) between curly parentheses be coded in html to avoid unintended repetitions

 // of tags in the post.

 var fakeTokensArePresent = message.match(/\{[0-9]+\}/); // The '+' means that we are considering only positive integers.

 if(fakeTokensArePresent !== null){

 message = message.replace(/\{/g,"{ ");

 message = message.replace(/\}/g," }");

 }

 // Using more than one curly bracket per time can bring problems while composing the message for Sharepoint.

 // The simple solution uses a space between every couple of brackets. Now the brackets do not bother the tags and do not bother while composing the message.

 if(message.match("{{")){

 message = message.replace(/\{\{/g,"{ {");

 }

 if(message.match("}}")){

 message = message.replace(/\}\}/g,"} }");

 }

 /***

 * Looking for tags and websites inside the message

 ***/

 var sitesAndTagsArray = new Array();

 var tempTag = "";

 var dataItemNumber=0; // number of read tags used for the tokens to apply in the message

 var tempToken;

 /* Checking the existence of links to websites inside the text of the message. */

 // Now we try to find possible URL links inside the text.

 var parts = message.split(" "); // Splitting the message using the spaces (URLs don't have spaces)

 var i=0;

 for(var x=0; x<parts.length; x++){

 var afterUrl = '', beforeUrl = '';

 while(parts[x][0] === '(' && parts[x].length > 2){

 beforeUrl += '(';

 parts[x] = parts[x].substring(1);

 }

 while(parts[x][parts[x].length-1] === ')' && parts[x].length > 2){

 afterUrl += ')';

 parts[x] = parts[x].substring(0, parts[x].length-1);

 }

 if (validateURL(parts[x])){

 sitesAndTagsArray.push(new socialDataItemObj(parts[x], 4));

 tempToken = "{"+dataItemNumber+"}";

 parts[x] = beforeUrl + tempToken + afterUrl; // Replacing the website string into the message with a token like "{0}" or "{1}"

 dataItemNumber++; // increasing the number of read tags.

 continue;

 }

 // else: it is not a URL, so we can check for tags

 i=0;

 while(i < parts[x].length){ // It HAS TO recalculate the length everytime because it could happen that two or more tags are written one after

another without spacing.

 // Making sure that it is a tag (#something) and it is not the HTML code for e.g. curly brackets ("{" and "}")

 if(parts[x][i] === '#' && isOnlyLetterOrNumber(parts[x][i+1]) && (parts[x][i+1]!=='1' && parts[x][i+2]!=='2' &&

parts[x][i+3]!=='3' && parts[x][i+4]!==';') && (parts[x][i+1]!=='1' && parts[x][i+2]!=='2' && parts[x][i+3]!=='5' && parts[x][i+4]!==';') && (i+1) < parts[x].length){

 // The first element is a '#'

 tempTag += parts[x][i];

 i++; // moving on

 // From now on only letters and number will be accepted as part of the tag

 // Reading the tag

 while(i < parts[x].length && isOnlyLetterOrNumber(parts[x][i])){

 tempTag += parts[x][i]; // copying the i-th character of the message into "tempTag"

 i++;

 }

 sitesAndTagsArray.push(new socialDataItemObj(tempTag, 3)); // Copying the tag into 'sitesAndTagsArray'

 tempToken = "{"+dataItemNumber+"}";

 parts[x] = parts[x].replace(tempTag, tempToken); // Replacing the tag string into the message with a

token like "{0}" or "{1}"

 if(dataItemNumber < 10){

 // if there are less than 10 tags...

 i = i - tempTag.length + 2; // Since the message has been modified we have to move

the cursor according to the new string to continue examining the text from the right point.

 }else{

 if(dataItemNumber < 100){

 // if there are less than 100 tags but more than 9...

 i = i - tempTag.length + 3;

 }

 else{

 // There are more than 99 tags? Maybe there is a problem. Stopping the execution.

 return;

 }

 }

 tempTag = ""; // Resetting 'tempTag'

 dataItemNumber++; // increasing the number of read tags.

 }

 i++;

 }

 }

 /****************************

 * Re-assembling the message

 ****************************/

230

 message = "";

 for(x=0; x<parts.length; x++){

 message += parts[x] + ' ';

 }

 // Converting all the single quotes (') and backslashes (\) in the message to the respective HTML encoded symbols.

 // This is done because otherwise there would be a problem during the creation of the post in the 'try' section a few rows below this line.

 message = message.replace(/\\/g, "\\\\");

 message = message.replace(/'/g, "\\'");

 /**************************************

 * If there are some TAGS or WEBSITES

 **************************************/

 if(sitesAndTagsArray.length > 0){

 // We will now create the string to put inside the 'ContentItems' section of the data inside the CORSRequest

 var contentItemsString = '{ "results": [{ "__metadata": { "type": "SP.Social.SocialDataItem" }, "Text": "';

 i=0;

 while(i<sitesAndTagsArray.length){

 // if we are analysing the last tag...

 if(i === sitesAndTagsArray.length-1){

 contentItemsString += sitesAndTagsArray[i].value;

 if(sitesAndTagsArray[i].itemType == 4){

 contentItemsString += '","Uri": "'+sitesAndTagsArray[i].value;

 }

 contentItemsString += '","ItemType": '+ sitesAndTagsArray[i].itemType +' }]},';

 }else{

 contentItemsString += sitesAndTagsArray[i].value;

 if(sitesAndTagsArray[i].itemType == 4){

 contentItemsString += '","Uri": "'+sitesAndTagsArray[i].value;

 }

 contentItemsString += '","ItemType": '+ sitesAndTagsArray[i].itemType +' }, { "__metadata": { "type":

"SP.Social.SocialDataItem" }, "Text": "';

 }

 i++;

 }

 /**

 * If there are some TAGS and/or WEBSITES & an ATTACHMENT...

 **/

 if(attachmentUri !== "" && attachmentUri !== null && attachmentUri !== undefined){

 // Trying to post the message

 try

 {

 var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Reply");

 xhr.onload = function () {

 // If the code reaches this part the operation was a success... and the message has been sent.

 if(this.status == 200){ // If the operation succeeds... than the feed has been uploaded.

 if(whereToWrite == "socialAPISingleFeed"){ // If it is a conversation we update

only that HTML section

 // Looking for the section in the global array to retrieve the URL to

pass to the updateSingleFeed() function.

 var length = globalArrayOfSingleConversations.length;

 var tempElement;

 for(var i=0; i<length; i++){

 if(globalArrayOfSingleConversations[i].sectionID ==

'#'+parentSection){

 tempElement =

globalArrayOfSingleConversations.splice(i, 1); // Removing that element from the global array (because it will be re-inserted in the updateSingleFeed() function)

 updateSingleFeed(tempElement[0].sectionID, tempElement[0].URL);

 }

 }

 }else{

 manuallyUpdateAllTheFeeds(); // and we call the manual update of the

feeds to let the User see the new ones.

 }

 }else{ // We sent the request correctly but there has been a problem

 var response = this.responseText;

 if(response.indexOf("Internal error code: 83")){ // If the response from

the Server says that the problem is that the user has not been found...

 alert("We couldn't get data from Social. Please visit

https://social.cern.ch to set up your profile first.");

 }else{ // Generic error

 alert('There has been a problem while posting the reply. Please try

again later.');

 }

 }

 };

 xhr.onerror = function (e1, e2, e3) {

 errorHandlerFunction(10, 'There has been an error while uploading the reply. \nPlease try again

later.');

 };

 xhr.withCredentials = true;

 xhr.setRequestHeader("X-RequestDigest", formDigest);

 xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose");

 // Creating the data for the post

 var data = " { 'restCreationData':{ " +

 " '__metadata':{

'type':'SP.Social.SocialRestPostCreationData'}, " +

 " 'ID':'" + postId + "'," +

 " 'creationData':{ " +

 "

 '__metadata':{'type':'SP.Social.SocialPostCreationData' }, " +

 " 'Attachment': '"+attachmentUri+"'," +

 " 'ContentItems': " + contentItemsString

+

231

 " 'ContentText':'" + message + "',

'UpdateStatusText':false " +

 " } " +

 " }}";

 xhr.send(data); // Uploads the message

 }

 catch(err)

 {

 errorHandlerFunction(10, "There has been an error while uploading the reply. \nPlease try again later.");

 return;

 }

 }

 else

 {

 /**

 * else: there are some TAGS and/or WEBSITES but no ATTACHMENT

 **/

 // Trying to post the message

 try

 {

 var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post/Reply");

 xhr.onload = function(){

 // If the code reaches this part the operation was a success... and the message has been sent.

 if(this.status == 200){ // If the operation succeeds... than the feed has been uploaded.

 if(whereToWrite == "socialAPISingleFeed"){ // If it is a conversation we update

only that HTML section

 // Looking for the section in the global array to retrieve the URL to

pass to the updateSingleFeed() function.

 var length = globalArrayOfSingleConversations.length;

 var tempElement;

 for(var i=0; i<length; i++){

 if(globalArrayOfSingleConversations[i].sectionID ==

'#'+parentSection){

 tempElement =

globalArrayOfSingleConversations.splice(i, 1); // Removing that element from the global array (because it will be re-inserted in the updateSingleFeed() function)

 updateSingleFeed(tempElement[0].sectionID, tempElement[0].URL);

 }

 }

 }else{

 manuallyUpdateAllTheFeeds(); // and we call the manual update of the

feeds to let the User see the new ones.

 }

 }else{ // We sent the request correctly but there has been a problem

 var response = this.responseText;

 if(response.indexOf("Internal error code: 83")){ // If the response from

the Server says that the problem is that the user has not been found...

 alert("We couldn't get data from Social. Please visit

https://social.cern.ch to set up your profile first.");

 }else{ // Generic error

 alert('There has been a problem while posting the reply. Please try

again later.');

 }

 }

 };

 xhr.onerror = function (e1, e2, e3) {

 errorHandlerFunction(10, 'There has been an error while uploading the reply. \nPlease try again

later.');

 };

 xhr.withCredentials = true;

 xhr.setRequestHeader("X-RequestDigest", formDigest);

 xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose");

 // Creating the data for the post

 var data = " { 'restCreationData':{ " +

 " '__metadata':{

'type':'SP.Social.SocialRestPostCreationData'}, " +

 " 'ID':'" + postId + "'," +

 " 'creationData':{ " +

 "

 '__metadata':{'type':'SP.Social.SocialPostCreationData' }, " +

 " 'Attachment': null," +

 " 'ContentItems': " + contentItemsString

+

 " 'ContentText':'" + message + "',

'UpdateStatusText':false " +

 " } " +

 " }}";

 xhr.send(data); // Uploads the message

 }

 catch(err)

 {

 errorHandlerFunction(10, "There has been an error while uploading the reply. \nPlease try again later.");

 return;

 }

 }

 }

 else

 {

 /***

 * If there are no TAGS and/or WEBSITES but there is an ATTACHMENT...

 ***/

 if(attachmentUri !== "" && attachmentUri !== null && attachmentUri !== undefined){

 // Trying to post the message.

 try

 {

 var xhr = createCORSRequest("POST", myFeedManagerEndpoint + 'post/Reply');

232

 xhr.onload = function () {

 // If the code reaches this part the operation was a success... and the message has been sent.

 if(this.status == 200){ // If the operation succeeds... than the feed has been uploaded.

 if(whereToWrite == "socialAPISingleFeed"){ // If it is a conversation we update

only that HTML section

 // Looking for the section in the global array to retrieve the URL to

pass to the updateSingleFeed() function.

 var length = globalArrayOfSingleConversations.length;

 var tempElement;

 for(var i=0; i<length; i++){

 if(globalArrayOfSingleConversations[i].sectionID ==

'#'+parentSection){

 tempElement =

globalArrayOfSingleConversations.splice(i, 1); // Removing that element from the global array (because it will be re-inserted in the updateSingleFeed() function)

 updateSingleFeed(tempElement[0].sectionID, tempElement[0].URL);

 }

 }

 }else{

 manuallyUpdateAllTheFeeds(); // and we call the manual update of the

feeds to let the User see the new ones.

 }

 }else{ // We sent the request correctly but there has been a problem

 var response = this.responseText;

 if(response.indexOf("Internal error code: 83")){ // If the response from

the Server says that the problem is that the user has not been found...

 alert("We couldn't get data from Social. Please visit

https://social.cern.ch to set up your profile first.");

 }else{ // Generic error

 alert('There has been a problem while posting the reply. Please try

again later.');

 }

 }

 };

 xhr.onerror = function (e1, e2, e3) {

 errorHandlerFunction(10, 'There has been an error while uploading the reply. \nPlease try again

later.');

 };

 xhr.withCredentials = true;

 xhr.setRequestHeader("X-RequestDigest", formDigest);

 xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose");

 // execute post

 var data = " { 'restCreationData':{ '__metadata':{ 'type':'SP.Social.SocialRestPostCreationData'}, " +

 "'ID':'" + postId + "',"+

 " 'creationData':{

'__metadata':{'type':'SP.Social.SocialPostCreationData' }," +

 " 'Attachment':

'"+attachmentUri+"'," +

 " 'ContentText':'" +

message + "','UpdateStatusText':false " +

 " } " +

 "} }";

 xhr.send(data); // Sending the Reply

 }catch(err)

 {

 errorHandlerFunction(10, "There has been an error while uploading the reply. \nPlease try again later.");

 return;

 }

 }

 else

 {

 /**

 * else: there are no TAGS & no ATTACHMENT

 **/

 // Trying to post the message.

 try

 {

 var xhr = createCORSRequest("POST", myFeedManagerEndpoint + 'post/Reply');

 xhr.onload = function () {

 // If the code reaches this part the operation was a success... and the message has been sent.

 if(this.status == 200){ // If the operation succeeds... than the feed has been uploaded.

 if(whereToWrite == "socialAPISingleFeed"){ // If it is a conversation we update

only that HTML section

 // Looking for the section in the global array to retrieve the URL to

pass to the updateSingleFeed() function.

 var length = globalArrayOfSingleConversations.length;

 var tempElement;

 for(var i=0; i<length; i++){

 if(globalArrayOfSingleConversations[i].sectionID ==

'#'+parentSection){

 tempElement =

globalArrayOfSingleConversations.splice(i, 1); // Removing that element from the global array (because it will be re-inserted in the updateSingleFeed() function)

 updateSingleFeed(tempElement[0].sectionID, tempElement[0].URL);

 }

 }

 }else{

 manuallyUpdateAllTheFeeds(); // and we call the manual update of the

feeds to let the User see the new ones.

 }

 }else{ // We sent the request correctly but there has been a problem

 var response = this.responseText;

 if(response.indexOf("Internal error code: 83")){ // If the response from

the Server says that the problem is that the user has not been found...

 alert("We couldn't get data from Social. Please visit

https://social.cern.ch to set up your profile first.");

 }else{ // Generic error

 alert('There has been a problem while posting the reply. Please try

again later.');

 }

233

 }

 };

 xhr.onerror = function (e1, e2, e3) {

 errorHandlerFunction(10, 'There has been an error while uploading the reply. \nPlease try again

later.');

 };

 xhr.withCredentials = true;

 xhr.setRequestHeader("X-RequestDigest", formDigest);

 xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose");

 // execute post

 var data = " { 'restCreationData':{ '__metadata':{ 'type':'SP.Social.SocialRestPostCreationData'}, " +

 "'ID':'" + postId + "',"+

 "'creationData':{

'__metadata':{'type':'SP.Social.SocialPostCreationData' }," +

 " 'ContentText':'" + message +

"','UpdateStatusText':false " +

 "} " +

 "} }";

 xhr.send(data); // Sending the Reply

 }catch(err)

 {

 errorHandlerFunction(10, "There has been an error while uploading the reply. \nPlease try again later.");

 return;

 }

 }

 }

 }

 // This function allows both the API and the User to manually update the feeds in the web page.

 function manuallyUpdateAllTheFeeds(){

 var tempElement;

 var i=0;

 // Every REST call is made only if the corrispondent section exists in the HTML code.

 if(document.getElementById(followedFeedsWhereToWrite.substring(1, followedFeedsWhereToWrite.length)) !== null){

 clearInterval(followedFeedsUpdatesHandler);

 updateFollowedFeeds(followedFeedsWhereToWrite, followedFeedsUpdateInterval, followedFeedsNumFeeds, followedFeedsFlagDisplayReplies);

 }

 // For each profile that has to be read we retrieve the data from the globalArrayOfProfiles...

 var tempGlobalArray = new Array();

 var length = globalArrayOfProfiles.length;

 for(i=0; i<length; i++){

 tempElement = globalArrayOfProfiles.pop();

 if(tempElement.sectionID[0] === '#'){ tempElement.sectionID = tempElement.sectionID.substring(1); }

 tempGlobalArray.push(tempElement); // Saving the globalArrayOfProfiles in a temporary array to prevent 'race conditions' that could

happen while updating one feed and trying to read the next one.

 }

 // ...and we use those data to call for an update.

 for(i=0; i<length; i++){

 tempElement = tempGlobalArray.pop();

 if(document.getElementById(tempElement.sectionID) !== null){

 try{

 if(tempElement.automaticUpdatesHandlersCode !== null){

 clearInterval(tempElement.automaticUpdatesHandlersCode);

 }

 updateFeedsFromProfile(tempElement.keyValue, tempElement.sectionID, tempElement.timeInterval,

tempElement.numOfFeeds, tempElement.flagDisplayReplies);

 }catch(e){ console.log('There has been a problem updating the feeds of the account: ' + tempElement.keyValue); }

 }

 }

 // For each hashtag that has to be used to retrieve feeds with the same hashtag we retrieve the data from the globalArrayOfHashtags.

 tempGlobalArray = new Array();

 length = globalArrayOfHashtags.length;

 for(i=0; i<length; i++){

 tempElement = globalArrayOfHashtags.pop();

 if(tempElement.sectionID[0] === '#'){ tempElement.sectionID = tempElement.sectionID.substring(1); }

 tempGlobalArray.push(tempElement); // Saving the globalArrayOfHashtags in a temporary array to prevent 'race conditions' that could

happen while updating one feed and trying to read the next one.

 }

 // ...and we use those data to call for an update.

 for(i=0; i<length; i++){

 tempElement = tempGlobalArray.pop();

 if(document.getElementById(tempElement.sectionID) !== null){

 try{

 if(tempElement.automaticUpdatesHandlersCode !== null){

 clearInterval(tempElement.automaticUpdatesHandlersCode);

 }

 updateFeedsWithSameHashtag(tempElement.keyValue, tempElement.sectionID, tempElement.timeInterval,

tempElement.numOfFeeds, tempElement.flagDisplayReplies);

 }catch(e){ console.log('There has been a problem updating the feeds containing the tag: ' + tempElement.keyValue); }

 }

 }

 // Updating every section with a Single Conversation

 tempGlobalArray = new Array();

 length = globalArrayOfSingleConversations.length;

 for(i=0; i<length; i++){

 tempElement = globalArrayOfSingleConversations.pop();

 if(tempElement.sectionID[0] === '#'){ tempElement.sectionID = tempElement.sectionID.substring(1); }

 tempGlobalArray.push(tempElement); // Saving the globalArrayOfSingleConversations in a temporary array to prevent 'race conditions'

that could happen while updating one feed and trying to read the next one.

 }

 // ...and we use those data to call for an update.

 for(i=0; i<length; i++){

 tempElement = tempGlobalArray.pop();

 if(document.getElementById(tempElement.sectionID) !== null){

 try{

234

 updateSingleFeed(tempElement.sectionID, tempElement.URL);

 }catch(e){ console.log('There has been a problem updating the feeds containing the tag: ' + tempElement.keyValue); }

 }

 }

 // The automatic update of the feeds is re-activated during the execution of the called functions.

 }

 // Function that retrieves the feeds with the tag written from the User in the textarea.

 // (this has nothing to spare with the tags in the Canvas construct)

 function findTaggedFeeds(tag, whereToWrite){

 // Retrieving tag's name

 // If no tag is given in input... [the function is called as "findTaggedFeeds();"]

 if(typeof(tag) !== "string" || tag === null || tag === "" || tag === undefined){

 tag = document.getElementById("textareaRetrieveTags").value;

 if(tag === null || tag === undefined || tag === ""){ return; } // consistency check

 }

 // If no 'whereToWrite' section ID is given in input... [the function is called as "findTaggedFeeds();"]

 if(typeof(whereToWrite) !== "string" || whereToWrite === null || whereToWrite === undefined || whereToWrite === ""){

 whereToWrite = '#feedsWithSameTag';

 }

 // if(tag[0] !== '#') { tag = '#' + tag; } // We need the text with the # symbol at the beginning.

 /* If necessary, to make these feeds automatically updated use this code:

 var tempIndex = checkPresenceOfElement(whereToWrite, globalArrayOfHashtags);

 if(tempIndex >= 0){

 globalArrayOfHashtags.push(new updateObj(tag, whereToWrite, null, 0, numOfFeeds, flagDisplayReplies)); // Adding a new item to the

globalArrayOfHashtags, to let the automatic updates be know what to look for after tot seconds.

 } */

 retrieveFeedsWithSameTag(tag, whereToWrite);

 }

 /* Function that makes the REST call to retrieve the tags from Social that will be displayed in the Tag Cloud.

 * Input:

 * - whereToWrite: the ID of the HTML section in which the tags have to be displayed;

 * - maxNumTags: the maximum number of tags to retrieve;

 * - textColor: in the 3D Tag Cloud it is possible to set the color of the text (e.g.: '#3861aa');

 * - textBorderColor: in the 3D Tag Cloud it is possible to set the color of border of the text that appears when the mouse is over the tag (e.g.: '#3861aa');

 * - numDimensions: the number of dimensions to take into account. (2= 2D Tag Canvas, 3=3D Tag Cloud);

 * - weightFlag: it is possible to set the size of the text of each tag accordingly to the frequency in which they are present in Social;

 * - periodOfTime: the period of the time we are looking for ('lastDay', 'lastWeek', 'lastMonth', 'lastYear', 'allTime'). The case does not matter.

 */

 function loadTagCloud(whereToWrite, maxNumTags, textColor, textBorderColor, numDimensions, weightFlag, periodOfTime){

 // Section checks. If the HTML vsections are presents in the webpage we can move on, otherwise the function has to stop.

 while(whereToWrite[0] === '#' && whereToWrite.length > 0){

 whereToWrite = whereToWrite.substring(1);

 }

 if(document.getElementById(whereToWrite) === null){

 // Error. No HTML section found to display the followed feeds on Social. Please add a <div id="+ whereToWrite +"> section.

 console.log('Error while trying to write the tags for the Tag Cloud. The HTML section appears not to exist. See the function loadTagCloud().');

 return;

 }

 var date = new Date(); // Reading today's date

 switch(periodOfTime){

 case 'lastDay':

 date.setDate(date.getDate()-1); // Going back one day

 break;

 case 'lastWeek':

 date.setDate(date.getDate()-7); // Going back one week

 break;

 case 'lastMonth':

 date.setDate(date.getDate()-30); // Going back one month

 break;

 case 'lastYear':

 date.setDate(date.getDate()-365); // Going back one year

 break;

 case 'allTime':

 date = null; // We will retrieve all the tags ever used (with their number of occurrences)

 break;

 default:

 date = null; // We will retrieve all the tags ever used (with their number of occurrences)

 }

 var querySiteToGetTheTags; // This will be the URL used to retrieve the tags from Social

 if(date === null){

 querySiteToGetTheTags = querySiteToGetAllTheTags;

 }

 else{

 var day, month;

 month = date.getMonth() + 1;

 if(month < 10){ month = '0' + month; } // We want the 'month' string to have always two chars.

 day = date.getDate();

 if(day < 10){ day = '0' + day; } // We want the 'day' string to have always two chars.

 querySiteToGetTheTags = searchRestService + "query?querytext='ContentTypeId:0x01FD* write>=\""+ date.getFullYear() +"-"+ month +"-"+ day +"

00:00:01Z\" -ContentClass=urn:content-class:SPSPeople'&refiners='Tags'";

 }

 executeRestCallExtendedSeven(querySiteToGetTheTags, 'GET', null, drawUserTagsInCanvas, onError, whereToWrite, maxNumTags, textColor, textBorderColor,

numDimensions, weightFlag); // getting all the tags of Social and passing them to the function drawUserTagsInCanvas()

235

 }

 // This function reads the Social tags retrieved. It then writes them in the webpage as invisible fields.

 function drawUserTagsInCanvas(data, whereToWrite, maxNumTags, textColor, textBorderColor, numDimensions, weightFlag){

 // Standardizing and sanitizing the input parameters

 if(whereToWrite[0] === '#'){

 var length = whereToWrite.length;

 var i=0;

 while(whereToWrite[0] === '#' && i < length){

 whereToWrite = whereToWrite.substring(1, whereToWrite.length);

 }

 if(i >= (length-1)){

 console.log('Error while analyzing the input parameters of the function drawUserTagsInCanvas().');

 return;

 }

 }

 whereToWrite = encodeURI(whereToWrite); // Sanitizing the input.

 $('#' + whereToWrite).html(''); // Cleaning the HTML section.

 // Reading the data

 try{

 var result = JSON.parse(data); // parsing the data obtained from the social network

 }catch(e){

 console.log("There was a problem while communicating with the Server.\nSee drawUserTagsInCanvas() function.");

 return;

 }

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console

log

 if(result.error){

 console.log("Bad request.\nPlease review the drawUserTagsInCanvas() function.");

 return;

 }

 // Network check

 // If the Network has problems or the Server is not reachable or the User does not have the access (or any other problem like these) we hide the Canvas section

 if(result === null || result === undefined){

 // there are no tags to show, hide the canvas container

 document.getElementById(whereToWrite).innerHTML = '<p>No tags found for this period of time.
Please try again later.</p>';

 return;

 }

 var tagsRetrieved;

 try{

 tagsRetrieved = result.d.query.PrimaryQueryResult.RefinementResults.Refiners.results[0].Entries.results; // capturing the array of tags

 }

 catch(err){

 // there are no tags to show, hide the canvas container

 document.getElementById(whereToWrite).innerHTML = '<p>No hashtags found.</p>';

 return;

 }

 // every tag found is printed

 var tagCount; // the number of times the tag has been written on the Social Network

 var tagName; // the name of the tag

 if(document.getElementById('#socialAPIWeightenedTags'+whereToWrite) !== null){

 $("#socialAPIWeightenedTags"+whereToWrite).html(""); // Resetting the content of the section

 }

 else{

 $("body").append('<div id="socialAPIWeightenedTags'+whereToWrite+'"></div>');

 }

 var numTagsToPrint = 0;

 if(typeof(maxNumTags) === "number" && maxNumTags > 0 && maxNumTags < tagsRetrieved.length){

 numTagsToPrint = maxNumTags;

 }else{

 numTagsToPrint = tagsRetrieved.length;

 }

 // Foreach feed

 for (var i = 0; i < numTagsToPrint; i++) {

 tagCount = tagsRetrieved[i].RefinementCount;

 tagCount = parseInt(tagCount,10)+10; // 10 is used to give the text a minimal useful size into the canvas. This way a tag used only once will

have 11 (1+10), a tag used twice 12 (2+10) and so on...

 if(tagCount <= 0) { tagCount = 1; } // Security check. Bounding 'tagCount' to avoid bad appearance in the website and eventually

overflow.

 if(tagCount > 1000) { tagCount = 1000; } // Security check. Bounding 'tagCount' to avoid bad appearance in the website and eventually

overflow.

 tagName = tagsRetrieved[i].RefinementName;

 // Seen that the tag names are encoded like this (the tag is '#mud'): "L0|#006cdbd1c-84d7-42f0-af53-9d420d87deec|#mud"

 // we have to retrieve the name of the tag splitting the string at every '|' and reading the last string.

 tagName = tagName.split("|"); // splitting the string in many substrings

 tagName = tagName[tagName.length-1]; // retrieving the last substring as the Name

 $('#socialAPIWeightenedTags'+whereToWrite).append('<a href="'+ socialWebsite +'/search/Pages/conversationresults.aspx?k=%23'+

tagName.substring(1, tagName.length) +'" data-weight="'+ tagCount +'" target="_blank">'+ tagName +' '); // String used from the Canvas to display the tags into the sphere

 }

 // Now that the page has been loaded and the tags have been retrieved we can display them on canvas calling:

 createTagsCanvas('#' + whereToWrite, textColor, textBorderColor, numDimensions, weightFlag);

 }

 // This function displays on the webpage the Social tags retrieved using HTML5.

 function createTagsCanvas(whereToWrite, textColor, textBorderColor, numDimensions, weightFlag){

 var parentWhereToWrite = whereToWrite;

 // Creating the container section for the content coming from the SocialAPI.

236

 $(whereToWrite).append('<div class="socialAPIWrapClass" id="socialAPIWrapClassTagCloud'+ whereToWrite.substring(1, whereToWrite.length) +'"></div>');

 whereToWrite = "#socialAPIWrapClassTagCloud" + whereToWrite.substring(1, whereToWrite.length);

 // If we want a 3-dimensional canvas...

 if(numDimensions == 3){

 // Creating the canvas in the HTML code

 var canvasID = 'socialAPITagsCanvas' + whereToWrite.substring(1, whereToWrite.length);

 $(whereToWrite).append('<canvas id="'+ canvasID +'" height="' + $(whereToWrite).width() + '" width="' + $(whereToWrite).width() + '">' +

 '<p>' +

 'If you are reading

this, your browser does not support the canvas tag. ' +

 'Please try again using

a different browser.' +

 '</p>' +

 '</canvas>'); // This section is hidden if no tags

are retrieved.

 /*

 // To use the colours in the canvas uncomment this section and set 'both' for the "weightMode" property.

 // Create Linear Gradient to apply colors to the tags related to their weights

 canv = document.getElementById('socialAPITagsCanvas');

 // To realize colored tags into the canvas we create a gradient that will be relate to the weights of each tag (the number of times the tag has

been used on Social)

 var gradient = {

 0: '#f00', // red

 0.33: '#ff0', // yellow

 0.66: '#0f0', // green

 1: '#00f' // blue

 };

 // use getContext to use the canvas for drawing

 var ctx = canv.getContext('2d');

 var linearGrad = ctx.createLinearGradient(0,0,0,150);

 linearGrad.addColorStop(0, '#ff0000');

 linearGrad.addColorStop(0.3, '#00ff00');

 linearGrad.addColorStop(0.6, '#0000ff');

 linearGrad.addColorStop(1, '#00f'); */

 try {

 TagCanvas.interval = 20;

 TagCanvas.textFont = 'Impact,Arial Black,sans-serif';

 TagCanvas.textHeight = 25; // Height in pixels

 TagCanvas.outlineThickness = 2;

 if(textColor === null || textColor === undefined || textColor === ''){

 TagCanvas.textColour = '#3861aa';

 }else{

 TagCanvas.textColour = textColor;

 }

 if(textBorderColor === null || textBorderColor === undefined || textBorderColor === ''){

 TagCanvas.outlineColour = '#3861aa';

 }else{

 TagCanvas.outlineColour = textBorderColor;

 }

 TagCanvas.maxSpeed = 0.07;

 TagCanvas.minBrightness = 0.25;

 TagCanvas.depth = 0.8;

 TagCanvas.pulsateTo = 0.2;

 TagCanvas.pulsateTime = 0.75;

 TagCanvas.initial = [0.03,-0.03]; // Initial spin of the sphere

 TagCanvas.decel = 0.98; // Controls the deceleration when the mouse leaves the

canvas area

 TagCanvas.reverse = true; // Sets the way the mouse moves the sphere

 if(weightFlag){

 TagCanvas.weight = true;

 TagCanvas.weightFrom = 'data-weight';

 TagCanvas.weightMode = 'size'; // The weights are emphasized with the size of the

text (the greater the weight the bigger the size)

 // ! The options for 'SizeMin' and 'SizeMax' have to be both set to work.

 TagCanvas.weightSizeMin = 11;

 TagCanvas.weightSizeMax = 46;

 }

 TagCanvas.fadeIn = 800; // Let the canvas fade in when loaded

 TagCanvas.hideTags = true; // This function hides the tag elements from the webpage (same effect as display:none;)

 TagCanvas.Start(canvasID,'socialAPIWeightenedTags'+parentWhereToWrite.substring(1, parentWhereToWrite.length));

 } catch(e) {

 // Something went wrong, showing the User an error message:

 document.getElementById(whereToWrite.substring(1, whereToWrite.length)).innerHTML = '<p>' +

 'If you are reading this, your browser does not support the canvas tag. ' +

 'Please try again using a different browser.' +

 '</p>';

 console.log('Error while setting the Tag Cloud 3D. Please debug function createTagsCanvas().');

 }

 }else{

 // In this case, it will be a 2-dimensional graphic (list-like).

 // Hiding the tags

 $('#socialAPIWeightenedTags'+parentWhereToWrite.substring(1, parentWhereToWrite.length)).hide();

 // Reading the tags

 var tagsForTagCloud2D = $('#socialAPIWeightenedTags'+parentWhereToWrite.substring(1, parentWhereToWrite.length));

237

 try{

 tagsForTagCloud2D = tagsForTagCloud2D[0].childNodes;

 }catch(e){

 $(whereToWrite).append('<p>There is a problem communicating with the Server.
Please try again later. </p>');

 console.log('No readable tags found for Tag Cloud 2D. Please debug function createTagsCanvas().');

 }

 var weight = 1; // Variable containing the number of occourrences of the tag (the max number will be 10000, see function

drawUserTagsInCanvas(). Minimum font-size = 0.8em.

 try{

 var length = tagsForTagCloud2D.length;

 if(weightFlag){

 var minWeight=1000, maxWeight=0;

 // Reading the min and max weight present

 for(var i=0; i<length; i++){

 weight = $(tagsForTagCloud2D[i].childNodes[0]).data('weight');

 if(weight<minWeight){ minWeight = weight; }

 if(weight>maxWeight){ maxWeight = weight; }

 }

 var weightGap = maxWeight - minWeight;

 if(weightGap < 1){

 $(whereToWrite).append('<p>There is a problem displaying the tags.
Please try again later.

</p>');

 return;

 }

 }

 // Displaying the tags

 for(var i=0; i<length; i++){

 tagName = tagsForTagCloud2D[i].textContent;

 link = tagsForTagCloud2D[i].childNodes[0].href;

 if(weightFlag){

 // weight = tagsForTagCloud2D[i].childNodes[0].dataset.weight;

 weight = $(tagsForTagCloud2D[i].childNodes[0]).data('weight');

 weight = (parseFloat(weight) - minWeight) / weightGap; // This way we have the percentage in

which this value is in proportion to the weightGap [range: from 0 to 1]

 // Then we want the 0% to be 0.8em font-size and the 100% to be 1.8em font-size

 weight = weight + 0.8; // The font in em will be 0.8 (the minimum size) + [a value from 0 to

3]

 }

 // Building the tag string to print on the web page

 var tagString = ' '+ tagName

+'';

 // We increase the font-size accordingly to the data-weight of the tag.

 // Displaying the tag

 $(whereToWrite).append(tagString);

 }

 }catch(e){

 $(whereToWrite).append('<p>There is a problem displaying the tags.
Please try again later. </p>');

 console.log('There is a problem displaying the tags. Please debug function createTagsCanvas().');

 }

 }

 }

 /* Function that calls the server to retrieve the feeds with the same tag.

 * Input: the text of the tag to search.

 */

 function retrieveFeedsWithSameTag(tagText, whereToWrite, parentWhereToWrite, numOfFeeds, flagDisplayReplies){

 if(parentWhereToWrite === '' || parentWhereToWrite === null || parentWhereToWrite === undefined){ parentWhereToWrite = whereToWrite; }

 if(numOfFeeds <0 || numOfFeeds > 19 || numOfFeeds === null || numOfFeeds === undefined){ numOfFeeds = 0; }

 // To retrieve the posts with this tag we use the "id" inside the following REST call:

 // var filter = 'path:' + socialWebsite.substring(0, socialWebsite.length-1); // The 'filter' is used to filter the results and

receive only the ones coming from Social

 var searchForTagPostsSite = searchRestService + "query?querytext='tags:"+ tagText +"'&sourceid='459dd1b7-216f-4386-9709-287d5d22f568'&sortlist='created:1'";

 // The code '459dd1b7-216f-4386-9709-287d5d22f568' means 'Retrieve only Conversations'

 try{

 executeRestCallExtendedSeven(searchForTagPostsSite, 'GET', null, retrieveFeedsWithSameTagBodyFunction, onError, whereToWrite,

parentWhereToWrite, numOfFeeds, tagText, flagDisplayReplies, null); // searches the tags and display the tagged feeds grouped

 }

 catch(err){ errorHandlerFunction(11, "There was a problem while communicating with the Server.\nPlease try again later."); }

 }

 function retrieveFeedsWithSameTagBodyFunction(data, whereToWrite, parentWhereToWrite, numOfFeeds, tagText, flagDisplayReplies, variableNotUsed){

 if(whereToWrite === null){ return; } // consistency check

 if(whereToWrite[0] !== '#'){

 whereToWrite = '#' + whereToWrite.toString();

 }

 try{

 var result = JSON.parse(data); // parsing the data obtained from the social network

 }catch(e){

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'hide' will work only

once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> Network problem. Please try to refresh the page later. </p>

</div>'); // Printing the "problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds.

 console.log("There was a problem while communicating with the Server.\nSee retrieveFeedsWithSameTagBodyFunction() function.");

 return;

 }

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console

log

 if(result.error){

238

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'hide' will work only

once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> Network problem. Please try to refresh the page later. </p>

</div>'); // Printing the "problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds.

 console.log("Bad request.\nPlease review the retrieveFeedsWithSameTagBodyFunction() function.");

 return;

 }

 // Consistency check : if no information has been retrieved...

 if(result.d === null || result.d === undefined)

 {

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'hide' will work only

once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> Network problem. Please try to refresh the page later. </p>

</div>'); // Printing the "problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds.

 return;

 }

 // else...

 // Stopping the automatic retrieval of new feeds that would hide the "extra" feeds that the User may be reading at the moment.

 // To refresh the feeds and reactivate the automatic retrieval (of the feeds) the User may refresh the web-page.

 try{

 var handler = findMyHandler(whereToWrite);

 if(handler !== -1){

 clearInterval(handler);

 }

 // If it is the first step in displaying the feeds there will not be any button yet. It will be added in the printArrayOfFeedsWithSameTag()

function

 var button = getElementInsideContainer(whereToWrite, "moreFeedsButton");

 button.parentNode.removeChild(button); // Removing the "moreFeeds" button

 }catch(err){}

 var primaryQueryResultsFound = false;

 var secondaryQueryResultsFound = false;

 var primaryArray;

 var secondaryArray;

 try{

 // Trying to read the results from the PrimaryQueryResult

 primaryArray = result.d.query.PrimaryQueryResult.RelevantResults.Table.Rows.results;

 if(primaryArray.length > 0 && primaryArray !== "" && primaryArray !== undefined && primaryArray !== null){

 primaryQueryResultsFound = true;

 }else{

 primaryQueryResultsFound = false;

 }

 }catch(err){ }

 try{

 // If the PrimaryQueryResult does not contain the results then the SecondaryQueryResults will

 secondaryArray = result.d.query.SecondaryQueryResults.results[0].RelevantResults.Table.Rows.results;

 if(secondaryArray.length > 0 && secondaryArray !== "" && secondaryArray !== undefined && secondaryArray !== null){

 secondaryQueryResultsFound = true;

 }else{

 secondaryQueryResultsFound = false;

 }

 }

 catch(err){ }

 // If no results have been found then we can stop the function

 if(!primaryQueryResultsFound && !secondaryQueryResultsFound){

 // Telling the User that no feed has been found

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'hide' will work only

once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> No more feeds found with this tag. You may try again later. </p>

</div>'); // Printing the "problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds.

 return; // Terminating the function

 }

 // else: some results have been found -> continue

 // If there is nothing in the primary array...

 if(!primaryQueryResultsFound)

 {

 // We print the secondary array of feeds found

 try{

 printArrayOfFeedsWithSameTag(secondaryArray, whereToWrite, parentWhereToWrite, numOfFeeds, tagText, flagDisplayReplies);

 }catch(e){

 // Telling the User that no feed has been found

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'hide'

will work only once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> There has been a problem while reading the feeds.

Please try again later. </p> </div>'); // Printing the "problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7

seconds.

 return;

239

 }

 }

 else

 {

 // If the primaryArray is not null...

 // We check the secondary array. If it is empty...

 if(!secondaryQueryResultsFound)

 {

 // Printing feeds from the 'primaryArray'

 try{

 printArrayOfFeedsWithSameTag(primaryArray, whereToWrite, parentWhereToWrite, numOfFeeds, tagText,

flagDisplayReplies);

 }catch(e){

 // Telling the User that no feed has been found

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the

function 'hide' will work only once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> There has been a problem while

reading the feeds. Please try again later. </p> </div>'); // Printing the "problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML

code after 7 seconds.

 return;

 }

 }

 else

 {

 // If both the arrays are useful we merge the two of them and call the printArrayOfFeedsWithSameTag() function passing the merged

array.

 primaryArray = primaryArray.concat(secondaryArray); // Merging the two arrays into 'primaryArray'

 // Printing feeds found

 try{

 printArrayOfFeedsWithSameTag(primaryArray, whereToWrite, parentWhereToWrite, numOfFeeds, tagText,

flagDisplayReplies); // Examining the two arrays at once.

 }catch(e){

 // Telling the User that no feed has been found

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the

function 'hide' will work only once.

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> There has been a problem while

reading the feeds. Please try again later. </p> </div>'); // Printing the "problem" message on the screen

 $("#"+uniqueId).delay(5000).fadeOut('slow'); // This function will hide the warning after 5 seconds.

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML

code after 7 seconds.

 return;

 }

 }

 }

 }

 /* This function examines the content of the array and prints it on the screen in the 'whereToWrite' section.

 * input:

 * - array: the array to examine

 * - whereToWrite: section ID of the area where the feeds have to be displayed

 * - parentWhereToWrite: section ID of the parent area where the feeds are going to be displayed

 * - numFeeds: the maximum number of feeds to display

 * - tagText: the name of the tag with which we are requesting the feeds

 */

 function printArrayOfFeedsWithSameTag(array, whereToWrite, parentWhereToWrite, numFeeds, tagText, flagDisplayReplies){

 clearTimeout(hashtagCheckTimer); // This line stops the timer that is going to check the situation of the section that should contain the feeds

with same hashtag

 var arrayOfReadFeedsLinks = new Array(); // This array will contain only the 'original path' of the feeds already read and displayed.

 // Ordering the feeds in chronological order, from the most to the least recent one.

 // This operation is necessary because sometimes the results are coming from two concatenated arrays (each of them is ordered, buth concatenated they may be no

more).

 // array = array.sort();

 array = array.sort(function(a,b){

 var dateA = new Date(getValue("Created", a.Cells.results));

 var dateB = new Date(getValue("Created", b.Cells.results));

 return dateB - dateA; // Orders the feeds from the one with the most recent date to the one with the least recent date.

 });

 var itemResults;

 var originalPath;

 var parentLink;

 var numFeedsToDisplay;

 if(numFeeds === null || numFeeds === undefined || numFeeds <= 0){

 numFeedsToDisplay = array.length;

 }

 else{

 numFeedsToDisplay = Math.min(array.length, numFeeds);

 }

 var i = 0;

 while(i < numFeedsToDisplay && i < array.length) {

 itemResults = array[i].Cells.results;

 parentLink = getValue("ParentLink", itemResults); // The originalPath is not UNIQUE. In Sharepoint a single feed can

have multiple 'OriginalPaths' between the feed and the replies. This is why we use multiple elements to determine if the feeds has already been displayed or not.

 originalPath = getValue("OriginalPath", itemResults); // The originalPath is not UNIQUE. In Sharepoint a single feed can

have multiple 'OriginalPaths' between the feed and the replies. This is why we use multiple elements to determine if the feeds has already been displayed or not.

 // originalPath = getValue("RootPostUniqueID", itemResults); // Works only in the Development environment

 // Redundancy check - if this feed has already been displayed, we skip it.

 // The path can be different within the same feed, so we have to check the text and creation date.

 if(arrayOfReadFeedsLinks.indexOf(parentLink) == -1){ // If the originalPath has never been read before...

240

 document.getElementById(whereToWrite.substring(1, whereToWrite.length)).innerHTML += '<div id="'+originalPath+'"

class="'+originalPath+'"></div>';

 try{

 executeRestCallExtendedFive(formDigestUrl, 'POST', null, showUserInformationInFeedsWithSameTag, onError,

whereToWrite, parentWhereToWrite, originalPath, flagDisplayReplies);

 arrayOfReadFeedsLinks.push(parentLink);

 }catch(e){}

 }

 i++;

 }

 // If there is the chance that there are more feeds to retrieve...

 if(numFeedsToDisplay < array.length){

 // Adding an extra element to the feeds section.

 // This button will allow the User to ask for more feeds.

 var latestTimeFeed = new Date(getValue("Created", array[numFeedsToDisplay-1].Cells.results));

 var dateTimeString = latestTimeFeed.toJSON(); // Converting the dateTime of the last feed printed to give the function the correctly

formatted string, that will work for the REST calls.

 $(whereToWrite).append('<a id="moreFeedsButton" class="moreFeedsButton" href="javascript:socialAPI().moreFeedsFunction(''+ dateTimeString

+'', ''+ whereToWrite +'', ''+ parentWhereToWrite +'', ''+ tagText +'', ''+ numFeedsToDisplay +'',''+ flagDisplayReplies +'')"> Show more posts

');

 }

 // Activating a function that will check the situation of the page after 6 seconds.

 // If, after that time, the page is still empty we assume that no feeds have been retrieved. Thus, we show a message to the User explaining the situation.

 hashtagCheckTimer = setTimeout(function(){

 // If every feed found has no text they are not displayed and the "whereToWrite" section will remain empty. In this case:

 if($(whereToWrite).html() === null || $(whereToWrite).html() === "" || $(whereToWrite).html() === undefined){

 $(whereToWrite).append('<div class="feedsItem"> <p id="text"> No feeds found with this tag.
Please try again later.</p>

</div>'); // We write that there are no feeds containing the tag searched

 }

 },12000);

 }

 function showUserInformationInFeedsWithSameTag(data, whereToWrite, parentWhereToWrite, originalPath, flagDisplayReplies){

 try{

 var result = JSON.parse(data); // Parsing the data obtained from the social network

 var formDigest = result.d.GetContextWebInformation.FormDigestValue;

 }catch(e){

 console.log("There was a problem while communicating with the Server.\nSee showUserInformationInFeedsWithSameTag() function.");

 $(whereToWrite).html("There was a problem while communicating with the Server. Please try again later.");

 return;

 }

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer in the console

log

 if(result.error){

 console.log("Error: "+ result.error.message.value +"\nPlease review the showUserInformationInFeedsWithSameTag() function.");

 $(whereToWrite).html("There was a problem while communicating with the Server. Please try again later.");

 return;

 }

 var xhr = createCORSRequest("POST", myFeedManagerEndpoint + "post"); // Creating CORSRequest to Like the feed

 xhr.onload = function(){ showUserInformationInFeedsWithSameTagBodyFunction(this.responseText, whereToWrite, parentWhereToWrite, originalPath,

flagDisplayReplies); };

 xhr.onerror = console.log("CORS request encountered an error.\nSee showUserInformationInFeedsWithSameTag() function.");

 xhr.withCredentials = true;

 xhr.setRequestHeader("X-RequestDigest", formDigest);

 xhr.setRequestHeader("content-type", "application/json; charset=utf-8; odata=verbose");

 var data = "{ 'ID':'"+originalPath+"' }"; // Including the ID of the feed we want to analize. We can also use the URL of the feed as ID.

 xhr.send(data); // Sending the information

 }

 function showUserInformationInFeedsWithSameTagBodyFunction(result, whereToWrite, parentWhereToWrite, originalPath, flagDisplayReplies){

 /****************************

 * Reading the data received

 ****************************/

 var thread;

 try{

 result = JSON.parse(result); // parsing the data obtained from the social network

 // If the result object exists but has errors it means we made a bad request, than we have to stop the execution and signal it to the developer

in the console log

 if(result.error){

 setTimeout(function(){

 var innerDivs, numDivs, contentFlag = false;

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the

function 'fadeOut' will work only once.

 try{

 innerDivs = document.getElementById(whereToWrite.substring(1)).getElementsByTagName("div");

 numDivs = innerDivs.length;

 }catch(e){ numDivs = 0; } // We will not go in the following 'for' cycle

 for(var i=0; i<numDivs; i++){

 if(innerDivs[i].innerHTML !== ""){ // if there is some content in the 'div' section

 contentFlag = true;

 // we put the flag to 'true'

 break;

 // and stop the cycle

 }

 } // This cycle also avoids that more than one 'error' message is shown to the User.

 // If every feed found has no text they are not displayed and the "whereToWrite" section will remain empty for the

User. In this case:

 if(!contentFlag){

241

 try{

 if(result.error.message.value.indexOf("Internal error code: 83") > -1){ // The

User does not exists on Social

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p

id="text"> Your account has not been found on Social.
Please visit https://social.cern.ch and create the account first. </p> </div>');

 }else{ // Other error

 $(whereToWrite).append('<div class="feedsItem" id="'+uniqueId+'"> <p

id="text"> No feeds found. Please try again later. </p> </div>'); // We write that there are no feeds containing the tag searched

 }

 }catch(e){ console.log("Exception thrown in function

showUserInformationInFeedsWithSameTagBodyFunction()"); return; }

 }

 console.log("Error: "+ result.error.message.value +"\nPlease check

showUserInformationInFeedsWithSameTagBodyFunction() function.");

 return;

 }, 3000); // This function will be activated after some seconds from the call, to let other functions display some feeds in

the webpage.

 }

 thread = result.d.SocialThread; // If no errors occour we read the post in the answer coming from the Server.

 }catch(e){

 console.log("There was a problem while communicating with the Server.\nPlease check showUserInformationInFeedsWithSameTagBodyFunction()

function.");

 return;

 }

 var threadId = thread.Id; // The ID of the thread that we are examining.

 var conversationUri = thread.Permalink; // This is the link of the conversation. It will allow the User to go to the conversation on Social.

 // The originalPath has been used to set up a div section where we have to write our feed. Thus, we need to change the whereToWrite variable.

 if(whereToWrite === "#socialAPISingleFeed" || whereToWrite === "socialAPISingleFeed"){

 newWhereToWrite = getElementInsideContainer(originalPath, whereToWrite);

 }else{

 newWhereToWrite = getElementInsideContainer(whereToWrite, originalPath);

 }

 if(newWhereToWrite === null){

 var uniqueId = 'networkProblemsWarning'+Date.now(); // It is important to have a unique id, otherwise the function 'fadeOut' will work

only once.

 $(whereToWrite).html('<div class="feedsItem" id="'+uniqueId+'"> <p id="text"> There has been an error while writing the feeds. Please try again

later. </p> </div>');

 setTimeout(function(){ $("#"+uniqueId).remove(); }, 7000); // This function will remove the warning from the HTML code after 7 seconds.

 console.log("Error while writing the feeds in showUserInformationInFeedsWithSameTagBodyFunction(). No HTML section found.");

 return;

 }

 /***

 * Displaying the information of the FEED

 ***/

 // Checking the existence of people that like the message.

 var likesCount = thread.RootPost.LikerInfo.TotalCount;

 var likeCounterString;

 // If the number of people who likes this post is 0 (no-one)

 if(likesCount <= 0 || likesCount === '' || likesCount === null || likesCount === undefined){

 likeCounterString = ""; // If nobody liked the feed nothing particular is shown

 }else{

 // If someone liked the post... e.g. 23 liked the post -> (smile 23)

 likeCounterString = ' ' + likesCount + ' ';

 }

 var dateString = createDateString(new Date(thread.RootPost.CreatedTime)); // The Date construct allows the User to automatically

see the local time on the webpage

 var tempParentWhereToWrite;

 if(parentWhereToWrite[0] === '#'){

 tempParentWhereToWrite = parentWhereToWrite.substring(1);

 }else{ tempParentWhereToWrite = parentWhereToWrite; }

 var repliesSectionID = 'replyItemsSection'+ tempParentWhereToWrite + threadId;

 if(whereToWrite !== "#socialAPISingleFeed" && whereToWrite !== "socialAPISingleFeed"){

 var replyString = '<a onclick="socialAPI().showReplySection(''+tempParentWhereToWrite+' #'+newWhereToWrite.id+' '+threadId+'')"

href="javascript:void(0);"> Reply ';

 }else{

 // We are retrieving only one feed using updateSingleFeed() and we want the "Reply" button to not be shown.

 var replyString = '';

 }

 // Displaying the 'like' piece of information

 if(thread.RootPost.LikerInfo.IncludesCurrentUser){

 likeString = '' + dateString + ' '

+

 '' +

 likeCounterString +

 ' Unlike ' +

 ' '+ replyString +

 '';

 }

 else{

 likeString = '' + dateString + ' '

+

 '' +

 ''+ likeCounterString +'' +

 ' Like ' +

 ' ' + replyString +

 '';

 }

 var authorIndex;

 var groupString; // The string that will tell the group in which the User posted the feed

 if(thread.Actors.results[0].ActorType === 2){

 authorIndex = 1;

 groupString = ' > '+ thread.Actors.results[0].Name +''; // output example: " > IT/OIS"

242

 }

 else{

 authorIndex = 0;

 groupString = '';

 }

 var postAuthorName = thread.Actors.results[authorIndex].Name; // The name of the User that posted the feed

 var profileImageUri = thread.Actors.results[authorIndex].ImageUri; // The profile image of the Author of the feed

 // If the User has not yet a profile image a default one is visualized

 if(profileImageUri === null || profileImageUri === undefined || profileImageUri === ''){

 profileImageUri = socialWebsite + '_layouts/15/images/PersonPlaceholder.42x42x32.png?rev=23';

 }

 profileImageUri = '';

 var personalAboutPage = thread.Actors.results[authorIndex].PersonalSiteUri; // This is the Uri of the User's homepage on Social.

 var text = thread.RootPost.Text;

 // Consistency check - if the feed has no text the function ends.

 if(text === null || text === undefined || text === "")

 {

 return;

 }

 else

 {

 var matchString = "<c0>CERN</c0> Accelerating science <ddd/>";

 var tempIndex = text.indexOf(matchString); // If there is a string like 'matchString' in the text the output will be the index of that

substring.

 if(tempIndex !== -1){

 text = text.substring(0, tempIndex) + text.substring(tempIndex + matchString.length, text.length);

 }

 text = myEscapeHTML(text); // Preventing code injection!

 text = formatText(text, parentWhereToWrite); // This function will adapt the text to our needs

 }

 var attachmentUri;

 try{

 attachmentUri = thread.RootPost.Attachment.Uri;

 }catch(e){}

 var attachmentString;

 if(attachmentUri === undefined || attachmentUri === null || attachmentUri === ''){

 attachmentString = '';

 }else{

 attachmentString = '<p> </p>';

 }

 // Redundancy check - if this feed has already been displayed, we skip it.

 if(document.getElementById('profileImageSection'+ threadId)){

 return;

 }

 var strOutput = '<div class="feedsItem" id="feedsItem"> ' +

 '<div class="table">' +

 '<div class="picSection">' +

 ' ' +

 '<span id="picSection"

class="profileImageSection'+ threadId +'">' +

 profileImageUri +

 '' +

 '' +

 '</div>' +

 '<div class="notPicSection">' +

 '<p> '+ postAuthorName + ' ' + groupString + '</p>' +

 '<p>' + text + '</p>' +

 attachmentString +

 '<p id="likeString'+ threadId +'"> ' +

 likeString +

 '</p>' +

 '</div>' +

 '</div>' +

 '</div>' +

 '<div id="'+ repliesSectionID +'"></div>';

 $(strOutput).hide().appendTo(newWhereToWrite).fadeIn(800);

 // Appending the reply section that will be shown when pressing the "reply" button of a feed.

 $(newWhereToWrite).append('<div class="textbox'+ tempParentWhereToWrite + threadId +'">' +

 '<p id="textAreaReplySection"> <textarea

placeholder="" wrap="hard" id="textareaReply" class="textareaReply'+ tempParentWhereToWrite + threadId +'"></textarea> </p>' +

 '<p class="replyButtonsGroup"> <input type="button"

value="Reply" id="replyButton" class="uploadMessage'+ tempParentWhereToWrite + threadId +'" onclick="socialAPI().createReply(''+parentWhereToWrite+' '+newWhereToWrite.id+'

'+threadId+'')"> </p>' +

 '</div>');

 var containerID; // To have the container ID we have got to check if 'newWhereToWrite' is an object pointing to the HTML section or just the string

containing the ID of the section.

 if(whereToWrite !== "#socialAPISingleFeed" && whereToWrite !== "socialAPISingleFeed"){

 // In this case the reply button is already hidden from the CSS and we want to also hide the textarea.

 if(typeof(newWhereToWrite) !== "string"){

 containerID = newWhereToWrite.id;

 }

 else{

 containerID = newWhereToWrite;

 }

 // We are now hiding the textAreaRreply section. This has to do be done here and not in the CSS because otherwise it will not work well in IE

(even IE11), causing the whole page to crash if Enter is pressed while the cursor is inside the textbox.

 var elem = getElementInsideContainer(containerID, "textbox" + tempParentWhereToWrite +threadId); // Getting the element of the 'textbox'

just appended to the 'whereToWrite' section.

 $(elem).hide();

243

 }else{

 // The textarea is visible and we want to also show the 'Reply' button.

 if(typeof(newWhereToWrite) !== "string"){

 containerID = newWhereToWrite.id;

 }

 else{

 containerID = newWhereToWrite;

 }

 // We are now hiding the textAreaRreply section. This has to do be done here and not in the CSS because otherwise it will not work well in IE

(even IE11), causing the whole page to crash if Enter is pressed while the cursor is inside the textbox.

 var elem = getElementInsideContainer(containerID, "uploadMessage" + tempParentWhereToWrite +threadId); // Showing the "Reply" button that is

normally hidden through CSS.

 $(elem).css("display", "inline");

 }

 // If we don't want to display the replies...

 if(whereToWrite == "#socialAPISingleFeed" || whereToWrite == "socialAPISingleFeed" || !flagDisplayReplies){

 return; // Skipping the displaying of the replies. We want to see only the feeds.

 }

 /**

 * Displaying the information of the REPLIES

 **/

 // Displaying the replies

 var repliesSection = document.getElementById(repliesSectionID);

 var numberOfRepliesToShow = 0;

 var replyPicUri;

 var replyActorName;

 var text;

 var attachmentUri;

 var numberOfReplies = 0;

 try{

 numberOfReplies = thread.Replies.results.length;

 }

 catch(e){}

 if(numberOfReplies > 0){

 var replies = thread.Replies.results; // Catching the replies

 for(var y=numberOfReplies-1; y>=0; y--){

 authorIndex = replies[y].AuthorIndex; // Reading the index of the author inside the array of Actors in the thread

 var id = replies[y].Id; // The ID of the reply

 // Reading all the information about the reply

 replyPicUri = thread.Actors.results[authorIndex].ImageUri;

 // If the User has no profile image...

 if(replyPicUri === null || replyPicUri === undefined || replyPicUri === ''){

 replyPicUri = socialWebsite + "_layouts/15/images/PersonPlaceholder.42x42x32.png?rev=23"; // ...we set the default

image.

 }

 replyActorName = thread.Actors.results[authorIndex].Name; // Reading the name of the author of the reply

 personalAboutPage = thread.Actors.results[authorIndex].PersonalSiteUri; // The Uri of the User's homepage on

Social

 text = replies[y].Text; // Reading the content of the reply

 text = myEscapeHTML(text); // Preventing code injection!

 text = formatText(text, parentWhereToWrite); // This function will adapt the text to our needs

 var attachmentUri;

 try{

 attachmentUri = replies[y].Attachment; // Reading the attachment URI. If present it will be displayed,

otherwise its HTML section will self-remove itself.

 }catch(e){}

 var attachmentString;

 if(attachmentUri === undefined || attachmentUri === null || attachmentUri === ''){

 attachmentString = '';

 }else{

 attachmentString = '<p> <img id="attachmentImage" src="'+attachmentUri+'"

onerror="this.parentElement.removeChild(this);" /> </p>';

 }

 dateString = createDateString(new Date(replies[y].CreatedTime)); // creating the string with the date of last

modification of the feed

 likeString = createLikeReplyString(replies[y].LikerInfo.TotalCount, replies[y].LikerInfo.IncludesCurrentUser, id,

newWhereToWrite); // Creating the string about the likes of the feed

 // Writing the reply on the web page

 //repliesSection.innerHTML +

 var strOutput = '<div class="replyItem">' +

 '<div

class="table">' +

 '<div class="picSection">' +

 '' +

 '<div id="picSection">' +

 ' ' +

 '</div>' +

 '' +

 '</div>' +

 '<div class="notPicSection">' +

 '<p> '+ replyActorName + ' </p>' +

244

 '<p>' + text + '</p>' +

 attachmentString +

 '' +

 '' + dateString + ' ' +

 '' + likeString + ' ' +

 '' +

 '<p class="replyId" id="replyId'+id+'">'+id+'</p>' +

 '</div>' +

 '</div>'

+

 '</div>';

 $(strOutput).hide().appendTo(repliesSection).fadeIn(800);

 }

 }

 }

 // This function creates the string to upload into the reply section. Precisely regarding the people that like of the reply.

 function createLikeReplyString(likeCounter, userLikesTheFeedFlag, id, whereToWrite){

 /***

 * Checking the existence of people that like the message.

 ***/

 var likeCounterString;

 // If the number of people who likes this post is 0 (no-one)

 if(likeCounter == 0 || likeCounter === '' || likeCounter === null || likeCounter === undefined){

 likeCounterString = ""; // If nobody liked the feed nothing particular is shown

 }else{

 // If someone liked the post... e.g. 23 liked the post -> (smile 23)

 likeCounterString = " " + likeCounter + " ";

 }

 var likeString;

 // If the User likes the reply we will show the 'Unlike' button

 if(userLikesTheFeedFlag){

 // likeString = ' Unlike

';

 likeString = ' Unlike

';

 }else{

 // Otherwise we show the 'Like' button

 // likeString = ' Like ';

 likeString = ' Like

';

 }

 return likeCounterString + likeString;

 }

 /* This function will format the text given in input and give the formatted text in output.

 * The aim is to format it to fit the HTML language. */

 function formatText(text, whereToWrite){

 text = text.replace(/\n/g, "</br>"); // Replacing all the new line character ('\n') with the equivalent in HTML.

 text = checkSharpPresence(text); // Modifying the text received from Sharepoint to be read effectively from the next

two functions. (replacying "<c0>" with "#", but only when needed.

 text = text.replace(/<\/c0>/g, ""); // Deleting all the end tag character from Sharepoint ('</c0>').

 text = text.replace(/<ddd\/>/g, ""); // Deleting all the character from Sharepoint ('<ddd/>').

 text = checkForWebpages(text); // Modifying the text to contain links in case there are some tags in

it.

 if(typeof(whereToWrite) !== "string"){

 text = checkForTags(text, '#' + whereToWrite.id); // Modifying the text in case there are some links to webpages in it.

 }

 else{

 text = checkForTags(text, whereToWrite); // Modifying the text in case there are some links to webpages in it.

 }

 return text;

 }

 /* This function elaborates every element like "<c0>".

 * At the end no more elements like that will be inside the input string.

 * - input: a string

 * - output: the string with no more elements like "<c0>".

 */

 function checkSharpPresence(content){

 // If no elements like "<c0>" are inside the string -> end of the function.

 if(content.indexOf("<c0>") === -1){ return content; }

 // If there is a sharp before "<c0>" than the element is deleted, otherwise it is turned into a sharp ('#').

 if(content[content.indexOf("<c0>") -1] !== "#" && content[content.indexOf("<c0>") -1] !== "@" && content[content.indexOf("<c0>") + 4] !== "#")

 {

 content = content.replace("<c0>", "#"); // Replacing all the tag character from Sharepoint ('<c0>') with the equivalent in HTML..

 return checkSharpPresence(content);

 }

 else

 {

 content = content.replace("<c0>", ""); // Deleting the tag character from Sharepoint ('<c0>') with the equivalent in HTML..

 return checkSharpPresence(content);

 }

245

 }

 /* This function check the text for the presence of link to webpages.

 * If any link is found it is substituted with an <a> HTML statement to make the User able to go on that website using a new tab.

 */

 function checkForWebpages(text){

 // Now we try to find possible URL links inside the text.

 var parts = text.split(" "); // separate input by spaces (URLs don't have spaces)

 text = ""; // Resetting text

 var prefix = "http://";

 var linkFlag = false;

 // Attempt to validate each string as URL.

 // If it is an URL it is converted and then appended to the "text" string.

 // else: it is simply appended to the "text" string.

 for (var index = 0; index < parts.length; index++) {

 var afterUrl = '', beforeUrl = '';

 while(parts[index][0] === '(' && parts[index].length > 2){

 beforeUrl += '(';

 parts[index] = parts[index].substring(1);

 }

 while(parts[index][parts[index].length-1] === ')' && parts[index].length > 2){

 afterUrl += ')';

 parts[index] = parts[index].substring(0, parts[index].length-1);

 }

 try{

 linkFlag = validateURL(parts[index]);

 }catch(err){ linkFlag = false; }

 if(linkFlag){

 // If it is a valid URL then replace with anchor...

 // If the URL does not have the "http://" at the beginning we have to add it on the reference, otherwise it will point to a page

inside our website, which is not the target.

 if(parts[index][0] !== 'h' && parts[index][1] !== 't' && parts[index][2] !== 't' && parts[index][3] !== 'p')

 {

 text += beforeUrl +""+ parts[index] + ""+ afterUrl

+" ";

 }

 else

 {

 text += beforeUrl +""+ parts[index] + ""+ afterUrl +" ";

 }

 }

 else

 {

 if(index < (parts.length-1))

 {

 // It was not a valid URL. Appending the text as it is:

 text += parts[index] + " ";

 }

 else

 {

 // This is the last element, no space has to be added at the end.

 text += parts[index];

 }

 }

 }

 return text;

 }

 /* This function check the text of one feed for the presence of tags.

 * If any tag is found it is substituted with an <a> HTML statement to make the User able to call for feeds with that tag.

 */

 function checkForTags(text, whereToWrite){

 var tempTag = "";

 var tempStrToCompare = '<a ';

 var tempStrToCompareLength = tempStrToCompare.length;

 var tempRes = false;

 var x=0;

 // The field "text.length" has to be left as it is, because the length of the text changes everytime we find a tag, therefore it has to be retrieved dinamically.

 while(x < text.length){

 tempRes = compareSubstring(text, x, tempStrToCompareLength, tempStrToCompare);

 // If 'tempRes' is false the string "<a href" has not been found. Otherwise...

 if(tempRes === true)

 {

 // The string "<a href" has been found.

 // We have a link inside our message. We have to go forward in the message to the end of the link and continue our work from

there.

 x += 3; // We can move beyond the '<a ' string

 while(x < text.length){

 x++;

 while(text[x] !== '<' && x < text.length){

 x++;

 }

 // Now text[x] = '<'

 if(text[x+1] === '/' && text[x+2] === 'a' && text[x+3] === '>'){

 x += 4; // Goes beyond the "" tag

 break;

 }

 }

 }

 // Making sure that it is a tag (#something) and it is not the HTML code for curly brackets ("{" and "}")

 if(text[x] === '#' && isOnlyLetterOrNumber(text[x+1]) && (text[x+1]!=='1' && text[x+2]!=='2' && text[x+3]!=='3' && text[x+4]!==';') && (

text[x+1]!=='1' && text[x+2]!=='2' && text[x+3]!=='5' && text[x+4]!==';') && (text[x+1]!=='3' && text[x+2]!=='9' && text[x+3]!==';') && (x+1) < text.length){

246

 // The first element is a '#'

 tempTag += text[x];

 x++; // moving on

 // From now on only letters and number will be accepted as part of the tag

 // Reading the tag

 while(x < text.length && isOnlyLetterOrNumber(text[x])){

 tempTag += text[x]; // copying the x-th character of the text into the j-th position in "tempTag"

 x++;

 }

 var newTextObj = tagReplace(text, x-tempTag.length, tempTag, whereToWrite);

 text = newTextObj.text;

 x += newTextObj.gap-1; // The index is just beyond the tag. We have to add the string length and the length of the tag

again. -1 because the x will be increased by one at the end of the while cycle.

 tempTag = ""; // Resetting 'tempTag'

 }

 x++;

 }

 return text;

 }

 /*****************************

 * CREATION OF EVENT LISTENERS

 *****************************/

 /* No event listener is needed right now. If needed, use this function as example:

 window.onload = function ()

 {

 var elem;

 elem = document.getElementsByClassName('likeFeed'); // Retrieves all the elements with class = 'likeFeed'

 if(elem){

 var temp;

 var threadId;

 for(var i=0; i < elem.length; i++){

 temp = elem[i].parentElement.parentElement.parentElement.parentElement;

 threadId = temp.lastChild.innerHTML; // Reading the threadId from the span invisible field in the HTML page

 temp.lastChild.addEventListener('click', function(){ socialAPI().likeFeedFunction(threadId, whereToWrite) }, false);

 }

 }

 elem = document.getElementsByClassName('unlikeFeed'); // Retrieves all the elements with class = 'unlikeFeed'

 if(elem){

 var temp;

 var threadId;

 for(var i=0; i < elem.length; i++){

 temp = elem[i].parentElement.parentElement;

 threadId = temp.lastChild.innerHTML;

 // should I add the 'onclick' to the <a> section? But this would mean not having a onEvent situation...

 temp.lastChild.addEventListener('click', socialAPI().unlikeFeedFunction(threadId, whereToWrite), false);

 }

 }

 }

 */

 /**************************************

 * DEFINITION OF THE SOCIALAPI ELEMENT

 **************************************/

 // This element retrieves the elements from the web-page to which we would like to apply the changes.

 var SocialAPI = function(){ return; };

 /**

 * DEFINITION OF THE SOCIALAPI MAIN FUNCTION

 **/

 socialAPI = function() {

 return new SocialAPI();

 }

 // This line allows the Developer to call the prototyped functions (see below) from outside this environment simply writing something like:

 // socialAPI().nameOfPrototypedFunction(inputVariable);

 /***

 * DEFINITION OF THE PROTOTYPED FUNCTIONS

 ***/

 // Exposing the prototype object via socialAPI.fn so methods can be added later

 socialAPI.fn = SocialAPI.prototype = {

 // API methods

 // Main methods

 authenticateOnSocial: function(inputFunction){

 authenticateOnSocial(inputFunction);

 },

 updateFollowedFeeds: function(whereToWrite, updateInterval, numFeeds, flagDisplayReplies){

 updateFollowedFeeds(whereToWrite, updateInterval, numFeeds, flagDisplayReplies);

 },

 updateFeedsFromProfile: function(accountName, whereToWrite, updateInterval, numFeeds, flagDisplayReplies){

 updateFeedsFromProfile(accountName, whereToWrite, updateInterval, numFeeds, flagDisplayReplies);

247

 },

 updateFeedsWithSameHashtag: function(tag, whereToWrite, updateInterval, numOfFeeds, flagDisplayReplies){

 updateFeedsWithSameHashtag(tag, whereToWrite, updateInterval, numOfFeeds, flagDisplayReplies);

 },

 updateGroupInfo: function(whereToWrite, department, group, section, imageFlag, groupNameFlag, numFeeds){

 updateGroupInfo(whereToWrite, department, group, section, imageFlag, groupNameFlag, numFeeds);

 },

 updateSingleFeed: function(whereToWrite, url){

 updateSingleFeed(whereToWrite, url);

 },

 manuallyUpdateAllTheFeeds: function(){

 manuallyUpdateAllTheFeeds();

 },

 findTaggedFeeds: function(tag, whereToWrite){

 findTaggedFeeds(tag, whereToWrite);

 },

 loadTagCloud: function(whereToWrite, maxNumTags, textColor, textBorderColor, numDimensions, weightFlag, periodOfTime){

 loadTagCloud(whereToWrite, maxNumTags, textColor, textBorderColor, numDimensions, weightFlag, periodOfTime);

 },

 postToMyFeeds: function(inputMessage, inputFunction){

 postToMyFeeds(inputMessage, inputFunction);

 },

 // Other methods

 clearMessageToTheUser: function(id){

 clearMessageToTheUser(id);

 },

 moreFeedsFunction: function(dateTime, whereToWrite, parentWhereToWrite, accountName, numFeedsToDisplay, numFeedsStillToGet, flagDisplayReplies){

 moreFeedsFunction(dateTime, whereToWrite, parentWhereToWrite, accountName, numFeedsToDisplay, numFeedsStillToGet, flagDisplayReplies);

 },

 moreGroupElements: function(whereToWrite, department, group, section, imageFlag, departmentFlag, numFeeds){

 moreGroupElements(whereToWrite, department, group, section, imageFlag, departmentFlag, numFeeds);

 },

 moreRepliesFunction: function(link){

 moreRepliesFunction(link);

 },

 deleteFeed: function(id){

 deleteFeed(id);

 },

 unfollowPerson: function(inputString){

 unfollowPerson(inputString);

 },

 likeFeedFunction: function(threadId){

 likeFeedFunction(threadId);

 },

 unlikeFeedFunction: function(threadId){

 unlikeFeedFunction(threadId);

 },

 showReplySection: function(mixedInput){

 showReplySection(mixedInput);

 },

 createReply: function(str){

 createReply(str);

 },

 deleteReply: function(id){

 deleteReply(id);

 },

 likeReplyFunction: function(id){

 likeReplyFunction(id);

 },

 unlikeReplyFunction: function(id){

 unlikeReplyFunction(id);

 },

 setErrorHandler: function(func){

 errorHandlerFunction = func;

 }

 // We can write more methods here, each using 'return this', to enable chaining.

 };

}(jQuery));

File “socialAPI.css”:

/* Social API's CSS. Version 1.2

 * - Created a new rule that overrides a rule in the webpage which limits the max-width of a textarea at 50em.

 */

/*Fix img size problem from CERN theme*/

.socialAPIWrapClass img{

 width: 100%;

}

.socialAPIWrapClass{

 font-size: 18px;

}

.socialAPIWrapClass a{

 color: #4d94cc; /* To avoid blue underlined links */

 text-decoration: none;

}

.socialAPIWrapClass a:hover{

 color: #4d94cd;

}

248

.socialAPIWrapClass a:focus{

 color: #256ca4;

}

.socialAPIWrapClass a.link{

 color: blue;

}

.socialAPIWrapClass button{

 background-color: #297CCF;

 border: 0px;

 color: white;

 padding-top: 4px;

 padding-bottom: 2px;

 padding-left: 7px;

 padding-right: -2px;

}

.socialAPIWrapClass button:hover{

 background-color: #246fba;

}

.socialAPIWrapClass input{

 background-color: #297CCF;

 border: 0px;

 color: white;

 padding-top: 4px;

 padding-bottom: 2px;

 padding-left: 7px;

 padding-right: -2px;

}

.socialAPIWrapClass input:hover{

 background-color: #246fba;

}

/* misc */

.socialAPIWrapClass .left {

 float: left;

}

.socialAPIWrapClass .right {

 float: right;

}

.socialAPIWrapClass h1{

 color: #414141;

 font-size: 2.8rem;

 font-weight: bold;

 line-height: 3rem;

 font-family: "PT Sans",Verdana,Tahoma,"DejaVu Sans",sans-serif;

}

/* updates */

.socialAPIWrapClass .feedsItem .replyItem {

 border-bottom: 6px solid #FFF;

}

.socialAPIWrapClass .label {

 margin-top: 20px;

 margin-bottom: 23px;

 border: 3px solid #212121;

 overflow: hidden;

 text-align: center;

 padding: 0px 10px 0px 10px;

 -webkit-transition: color 0.2s linear, background 0.2s linear;

 -moz-transition: color 0.2s linear, background 0.2s linear;

 -ms-transition: color 0.2s linear, background 0.2s linear;

 -o-transition: color 0.2s linear, background 0.2s linear;

 transition: color 0.2s linear, background 0.2s linear;

}

.socialAPIWrapClass .label:hover{

 background: #212121;

}

.socialAPIWrapClass .label #title{

 font: normal 2em "Lucida Sans Unicode",sans-serif;

 line-height: 40px;

 padding-top: 10px;

}

.socialAPIWrapClass .label #subTitle{

 font: normal 1em "Lucida Sans Unicode",sans-serif;

 line-height: 15px;

 padding-bottom:10px; /* This line of code is necessary to make every part of the label as a link. Without it the bottom of the label is not a link. */

}

.socialAPIWrapClass #reply{

 font-size: 0.75em;

}

.socialAPIWrapClass #feed{

 font-size: 0.75em;

}

.socialAPIWrapClass #myCanvasContainer{

 vertical-align: top;

 display: inline-block;

 width: 45%;

}

249

.socialAPIWrapClass #feedsWithSameTagSphere{

 vertical-align: top;

 display: inline-block;

 width: 53%;

}

.socialAPIWrapClass #findTaggedFeedsArea{

 vertical-align: top;

 display: inline-block;

 width: 30%;

}

.socialAPIWrapClass #feedsWithSameTag{

 vertical-align: top;

 display: inline-block;

 width: 68%;

}

.socialAPIWrapClass .feedsItem {

 display: table;

 table-layout: fixed;

 word-wrap: break-word;

 font: normal 0.73em "Trebuchet MS",sans-serif;

 color: #565656;

 padding-bottom: 10px;

 overflow: hidden; /* necessary to hide text in excess */

 border-bottom: 1px solid #FFF;

 width: 100%;

 -webkit-transition: color 0.2s linear;

 -moz-transition: color 0.2s linear;

 -ms-transition: color 0.2s linear;

 -o-transition: color 0.2s linear;

 transition: color 0.2s linear;

}

.socialAPIWrapClass .feedsItem:hover{

 color: black;

}

.socialAPIWrapClass .feedsItem:hover #deleteFeed {

 filter: alpha(opacity=100);

 opacity: 1;

}

.socialAPIWrapClass .table{

 display: table-row;

}

.socialAPIWrapClass .picSection{

 display: table-cell;

 width: 50px;

}

.socialAPIWrapClass .feedsItem #picSection{

 padding-top: 3px;

 min-width: 38px;

}

.socialAPIWrapClass .feedsItem .notPicSection{

 display: table-cell;

 width:100%;

 padding-left: 10px;

 /* Now we put the name of the Author and the text near the user's picture starting at the right height. */

 vertical-align: top;

}

.socialAPIWrapClass .notPicSection p{

 margin-top: 0;

 margin-bottom: 8px;

}

.socialAPIWrapClass .notPicSection p a{

 word-break: break-all;

 display: inline-block;

 -ms-word-break: break-all; /* For IE */

}

.socialAPIWrapClass .feedsItem #deleteFeed{

 filter: alpha(opacity=0);

 opacity: 0;

 float: right;

 font-size: 1.3rem;

 font-family: Arial;

 /* The 'X' at the top right of the feed used to delete the feeds changes colour gradually. */

 transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear;

 -webkit-transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear;

 -moz-transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear;

 -o-transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear;

}

.socialAPIWrapClass .feedsItem span#author{

 font-size: 1.2em;

 margin: 0px;

 padding:0px;

}

.socialAPIWrapClass .feedsItem #authorOfFeedsWithSameTag{

 font-size: 1.39em;

}

.socialAPIWrapClass .feedsItem .date {

 color: #777777;

 font-size: 0.85em

}

.socialAPIWrapClass #textAreaReplySection{

 margin-left: 60px;

}

.socialAPIWrapClass textarea{

 max-width:none!important;

}

.socialAPIWrapClass #textareaReply{

250

 margin-top: 12px;

 font-size: 0.75em;

 width: 99.2%;

 height: 60px;

}

.socialAPIWrapClass .replyButtonsGroup{

 width: 100%;

 text-align: right;

}

.socialAPIWrapClass #replyButton{

 display: none;

 margin-bottom: 10px;

}

.socialAPIWrapClass #replyButtonUploadFile{

 display: none;

 margin-top: 0;

 margin-bottom: 10px;

 height: 35px;

}

.socialAPIWrapClass .feedsItem #feedId{

 display: none;

}

.socialAPIWrapClass .feedsItem a:hover {

 color: #444;

}

.socialAPIWrapClass .slideLeft{

 margin-left:-0.5em;

}

.socialAPIWrapClass .noWrapString{

 /* white-space: nowrap; */

 white-space: nowrap;

}

.socialAPIWrapClass .replyItem{

 display: table;

 font: normal 0.73em "Trebuchet MS",sans-serif;

 color: #444444;

 margin-left: 35px;

 padding-bottom: 6px;

 overflow: hidden; /* necessary to hide text in excess */

 border-bottom: 1px solid #FFF;

 table-layout: fixed;

 word-wrap: break-word;

 -webkit-transition: color 0.2s linear;

 -moz-transition: color 0.2s linear;

 -ms-transition: color 0.2s linear;

 -o-transition: color 0.2s linear;

 transition: color 0.2s linear;

}

@media screen and (-webkit-min-device-pixel-ratio:0) {

 .socialAPIWrapClass .replyItem{ margin-left: 23px; }

}

.socialAPIWrapClass .replyItem:hover{

 color: black;

}

.socialAPIWrapClass .replyItem:hover #deleteReply {

 filter: alpha(opacity=100);

 opacity: 1;

}

.socialAPIWrapClass .replyItem .replyId{

 display: none;

}

.socialAPIWrapClass .replyItem #picSection{

 float: left;

 padding-top: 3px;

 min-width: 50px;

 position: relative;

}

.socialAPIWrapClass .replyItem .notPicSection{

 display: table-cell;

 /* Now we put the name of the Author and the text near the user's picture starting at the right height. */

 vertical-align: top;

}

.socialAPIWrapClass .replyItem #deleteReply{

 filter: alpha(opacity=0);

 opacity: 0;

 float: right;

 font-size: 1.3rem;

 font-family: Arial;

 /* The 'X' at the top right of the reply used to delete the replies changes colour gradually. */

 transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear;

 -webkit-transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear;

 -moz-transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear;

 -o-transition: color 0.2s linear, opacity 0.2s linear, filter 0.2s linear;

}

.socialAPIWrapClass .replyItem span#author{

 font-weight: bold;

 font-size: 1.05em;

}

.socialAPIWrapClass .replyItem .date{

 color: #777777;

 font-size: 0.85em;

}

.socialAPIWrapClass .replyItem #replyText{

 font-size: 0.9em;

 margin: 0;

 padding: 0;

251

}

/* content */

.socialAPIWrapClass .label p {

 margin: 4px 0 10px 0;

}

.socialAPIWrapClass input{

 padding:5px;

 margin-top:5px;

}

.socialAPIWrapClass #tool{

 margin: 0 0 10px 0;

 background: #F0F0F0;

 padding: 5px;

 border: 1px solid black;

}

.socialAPIWrapClass #moreFeedsButton{

 clear: right;

 display: block;

 text-align: center;

 margin-top: 10px;

 margin-bottom: 10px;

 margin-right: auto;

 margin-left: auto;

}

.socialAPIWrapClass #moreFeedsButton:active{

 padding-top: 6px;

 padding-bottom: 4px;

 padding-left: 7px;

 padding-right: -2px;

}

.socialAPIWrapClass input#moreRepliesButton{

 clear: right;

 display: block;

 text-align: center;

 color: #454545;

 border-color: #a3a3a3;

 border-style: solid;

 border-width: 1px;

 margin-top: 10px;

 margin-bottom: 10px;

 background-image: -webkit-gradient(

 linear,

 left top,

 left bottom,

 color-stop(0, #F5F5F5),

 color-stop(1, #D4D4D4)

);

 background-image: -o-linear-gradient(bottom, #F5F5F5 0%, #D4D4D4 100%);

 background-image: -moz-linear-gradient(bottom, #F5F5F5 0%, #D4D4D4 100%);

 background-image: -webkit-linear-gradient(bottom, #F5F5F5 0%, #D4D4D4 100%);

 background-image: -ms-linear-gradient(bottom, #F5F5F5 0%, #D4D4D4 100%);

 background-image: linear-gradient(to bottom, #F5F5F5 0%, #D4D4D4 100%);

 /* To have rounded edges uncomment here:*/

 /*-webkit-border-radius: 5px; /* For Safari, etc. */

 /*-moz-border-radius: 5px; /* For Mozilla, etc.*/

 /*border-radius: 5px; /* CSS3 Feature */

 margin-right: auto;

 margin-left: auto;

}

.socialAPIWrapClass input#moreRepliesButton:hover{

 border-color: #7eba7e;

 background-image: -webkit-gradient(

 linear,

 left bottom,

 left top,

 color-stop(0, #95DE95),

 color-stop(1, #CCFFCC)

);

 background-image: -o-linear-gradient(top, #95DE95 0%, #CCFFCC 100%);

 background-image: -moz-linear-gradient(top, #95DE95 0%, #CCFFCC 100%);

 background-image: -webkit-linear-gradient(top, #95DE95 0%, #CCFFCC 100%);

 background-image: -ms-linear-gradient(top, #95DE95 0%, #CCFFCC 100%);

 background-image: linear-gradient(to top, #95DE95 0%, #CCFFCC 100%);

}

.socialAPIWrapClass input#moreRepliesButton:active{

 padding-top: 6px;

 padding-bottom: 4px;

 padding-left: 7px;

 padding-right: -2px;

 background: #95db95;

}

.socialAPIWrapClass #genericButton{

252

 margin: 10px 0 10px 0;

}

.socialAPIWrapClass #profilePicture{

 width: 50px;

 /* While the width is fixed, the 'height' property will adjust automatically */

 max-height: 50px; /* Bounding the height property. */

}

.socialAPIWrapClass #profileReplyPicture{

 width: 38px;

 /* While the width is fixed, the 'height' property will adjust automatically */

 max-height: 38px; /* Bounding the height property. */

 overflow: hidden;

}

.socialAPIWrapClass .smile{

 display: inline-block; /* This line makes us able to give a width and height to the span section. */

 width: 11px;

 height: 11px;

 background: url("https://social.cern.ch/_layouts/15/images/socialcommon.png?rev=23") -119px -1px;

}

.socialAPIWrapClass #attachmentImage{

 /* Same limits as on Social. */

 max-height: 300px;

 max-width: 300px;

}

.notPicSection #author a {

 word-break: normal;

 word-wrap: break-word;

}

253

Works Cited

Alavi, M. & Leidner, D. E., 2001. Review: Knowledge Management and Knowledge

Management Systems: Conceptual Foundations and Research Issues., s.l.: MIS

Quarterly.

Alexa, 2016. The top 500 Sites on the Web. [Online]

Available at: http://www.alexa.com/topsites/countries

[Accessed 30 08 2016].

Anderson, C., 2006. The Long Tail: Why the Future of Business Is Selling Less of

More.. s.l.:Hyperion.

Angehrn, A. A., Luccini, M. A. & Maxwell, K., 2008. InnoTube : A video-based

connection tool supporting collaborative innovation, Fontainebleau, France: Centre for

Advanced Learning Technologies (CALT).

Argote, L., McEvily, B. & Reagans, R., 2003. Managing Knowledge in Organizations:

An Integrative Framework and Review of Emerging Themes.. Management Science,

49(4), pp. 571-582.

Baginski, T. & Sherman, M., 2014. Creating Internet facing web sites with SharePoint

on-premises or in the cloud. [Online]

Available at: https://channel9.msdn.com/Events/SharePoint-

Conference/2014/SPC390

[Accessed 25 08 2016].

Bass, L., Clements, P. & Kazman, R., 2003. Software Architecture in Practice. 2nd ed.

s.l.:Addison-Wesley Professional.

Bellenghem, S. V., 2012. The Conversation Company. s.l.:Kogan Page Limited.

Benkler, Y., 2006. The Wealth of Networks: How Social Production Transforms

Markets and Freedom. London: Yale University Press.

254

Bierhoff, K., 2009. API Protocol Compliance in Object-Oriented Software. [Online]

Available at: https://www.cs.cmu.edu/~kbierhof/thesis/bierhoff-thesis.pdf

[Accessed 29 08 2016].

Boeije, R., Vries, P. D., Kolfschoten, G. L. & Veen, W., 2009. Knowledge Workers and

the Realm of Social Tagging. In "Proceedings of the 42nd Hawaii International

Conference on System Sciences"., s.l.: IEEE.

Boeije, R., Vries, P. D., Kolfschoten, G. L. & Veen, W., 2009. Knowledge Workers and

the Realm of Social Tagging. Proceedings of the 42nd Hawaii International

Conference on System Sciences.. s.l., IEEE.

Böhringer, M. & Richter, A., 2009. Adopting Social Software to the Intranet: A Case

Study on Enterprise Microblogging. In: Mensch und Computer. Berlin: s.n., pp. 1-10.

Böhringer, M. & Richter, A., 2009. Adopting Social Software to the Intranet: A Case

Study on Enterprise Microblogging.. Proceedings Mensch und Computer, pp. 1-10.

Bradley, A. J. & McDonald, M. P., 2011. The Social Organization. s.l.:Harvard

Business Review Press.

Buettner, R., 2016. Getting a Job via Career-oriented Social Networking Sites: The

Weakness of Ties. 49th Annual Hawaii International Conference on System Sciences.

Kauai, Hawaii, IEEE.

Cabrera, A. & Cabrera, E. F., 2003. Knowledge-Sharing Dilemmas. Organization

Studies, 23(5), pp. 687-710.

Carlson, D., n.d. Bulletin Board Systems. [Online]

Available at: http://iml.jou.ufl.edu/carlson/history/bbs.htm

[Accessed 30 08 2016].

CERN Computer Security team, 2014. Social Media guidelines. [Online]

Available at: https://security.web.cern.ch/security/rules/en/social-media.shtml

[Accessed 24 08 2016].

255

CERN IR-ECO group, 2016. Communications strategy 2012-2016 - extracts. [Online]

Available at: http://communications.web.cern.ch/strategy

[Accessed 12 08 2016].

CERN IR-ECO group, 2016. Welcome page. [Online]

Available at: http://communications.web.cern.ch/

[Accessed 12 08 2016].

CERN Media and Press Relations, 2016. CERN answers queries from social media.

[Online]

Available at: http://press.cern/backgrounders/cern-answers-queries-social-media

[Accessed 15 08 2016].

CERN, 2014. CERN Social integration. [Online]

Available at: https://entice.web.cern.ch/projects/cern-social-integration

[Accessed 15 08 2016].

CERN, 2014. Social API. [Online]

Available at: https://cern.ch/social-api

[Accessed 15 08 2016].

CERN, 2015. Account Management - Account Types. [Online]

Available at: https://account.cern.ch/account/Help/?kbid=011010

[Accessed 13 08 2016].

CERN, 2015. CERN Code of Conduct. [Online]

Available at: http://hr-dep.web.cern.ch/content/cern-code-conduct

[Accessed 24 08 2016].

CERN, 2015. CHEP 2015 Social feed. [Online]

Available at: https://cern.ch/chep2015

[Accessed 15 08 2016].

CERN, 2015. Social API demo on Drupal. [Online]

Available at: https://demo-social.web.cern.ch/

[Accessed 29 08 2016].

256

CERN, 2016. About CERN. [Online]

Available at: http://home.cern/about

[Accessed 11 08 2016].

CERN, 2016. CERN Social Media. [Online]

Available at: http://communications.web.cern.ch/social-media

[Accessed 12 08 2016].

CERN, 2016. Origins. [Online]

Available at: http://timeline.web.cern.ch/timelines/the-history-of-cern/overlay#1949-

12-09 00:45:00

[Accessed 11 08 2016].

CERN, n.d. CERN Market. [Online]

Available at: https://social.cern.ch/community/cern-market/SitePages/Community

Home.aspx

[Accessed 24 08 2016].

CERN, n.d. CERN Web Services. [Online]

Available at: https://webservices.web.cern.ch/webservices/

[Accessed 13 08 2016].

CERN, n.d. E-groups. [Online]

Available at: https://cern.ch/egroups

[Accessed 24 08 2016].

CERN, n.d. IT Lightning Talks (ITLT). [Online]

Available at: http://information-technology.web.cern.ch/about/meeting/it-lightning-

talks-itlt

[Accessed 13 08 2016].

CERN, n.d. Web Services. [Online]

Available at: https://webservices.web.cern.ch/webservices/

[Accessed 24 08 2016].

257

Cheng, W., Hailin, L. & Hongming, X., 2008. Does Knowledge Sharing Mediate the

Relationship between Trust and Firm Performance?. In: International Symposiums on

Information Processing. Moscow: IEEE, pp. 449-453.

Clarke, S., 2004. Measuring API Usability. [Online]

Available at: http://www.drdobbs.com/windows/measuring-api-usability/184405654

[Accessed 29 08 2016].

CompuServe, 2016. About CompuServe. [Online]

Available at: http://webcenters.netscape.compuserve.com/menu/about.jsp

[Accessed 30 08 2016].

Connolly, J. F., 2006. Constellation program overview. [Online]

Available at:

http://www.nasa.gov/pdf/163092main_constellation_program_overview.pdf

[Accessed 09 08 2016].

Davenport, T. H. & Prusak, L., 1998. Working Knowledge: How Organizations Manage

What They Know.. Boston: Harvard Business School press.

de Figueiredo, L. H., Ierusalimschy, R. & Filho, W. C., 1994. The design and

implementation of a language for extending applications, s.l.: TeCGraf Grupo de

Tecnologia em Computacao Grafica.

De Sousa, B. S., 2014. Social Networking for CERN. [Online]

Available at: http://indico.cern.ch/event/298144/contribution/0/material/slides/0.pdf

[Accessed 12 08 2016].

De Sousa, B. S., Wagner, A., Ormancey, E. & Grzywaczewski, P., 2015. Benefits of

Enterprise Social Networking Systems for High Energy Physics community, Geneva:

CERN.

DeCoursy, L., 2001. ICQ Surpasses 100 Million Registered Users. [Online]

Available at: http://www.timewarner.com/newsroom/press-releases/2001/05/09/icq-

celebrates-100-million-registered-users

[Accessed 30 08 2016].

258

Dignum, V. & Eijk, R. M., 2005. Towards a Model to Understand the Influence of Trust

in Knowledge Sharing Decisions. Utrecht, The Netherlands, Workshop On Trust -

AAMAS Conference.

eBizMBA Inc., 2016. Top 15 Most Popular Social Networking Sites. [Online]

Available at: http://www.ebizmba.com/articles/social-networking-websites

[Accessed 31 08 2016].

Ecma International, 2016. ECMAScript 2016 Language Specification. [Online]

Available at: http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-

262.pdf

[Accessed 29 08 2016].

Ellison, N. B., 2007. Social Network Sites: Definition, History, and Scholarship. Journal

of computer-mediated communication, 13(1), pp. 210-230.

Facebook, 2016. Stats. [Online]

Available at: http://newsroom.fb.com/company-info/

[Accessed 31 08 2016].

Flanagan, D., 2011. JavaScript: The Definitive Guide. 6th ed. s.l.:O'Reilly &

Associates.

Frost, A., 2013. The Different Types of Knowledge. [Online]

Available at: http://www.knowledge-management-tools.net/different-types-of-

knowledge.html

[Accessed 10 08 2016].

Frost, A., 2013. The Different Types of Knowledge. [Online]

Available at: http://www.knowledge-management-tools.net/different-types-of-

knowledge.html

[Accessed 10 08 2016].

Garfield, S., 2014. 15 Knowledge Management Benefits. [Online]

Available at: https://www.linkedin.com/pulse/20140811204044-2500783-15-

knowledge-management-benefits

[Accessed 09 08 2016].

259

Gartner, 2013. Gartner Says 80 Percent of Social Business Efforts Will Not Achieve

Intended Benefits Through 2015. [Online]

Available at: http://www.gartner.com/newsroom/id/2319215

[Accessed 13 08 2016].

Gettier, E. L., 1963. Is Justified True Belief Knowledge? Analysis, Minnesota:

University of Minnesota.

Gordeyeva, I., 2010. Enterprise 2.0: theoretical foundations of social media tools

influence on knowledge sharing practices in organizations, Twente: University of

Twente.

Griner, D., 2010. Hey Old Spice haters, sales are up 107%. [Online]

Available at: http://www.adweek.com/adfreak/hey-old-spice-haters-sales-are-107-

12422

[Accessed 09 08 2016].

Griner, D., 2010. Hey Old Spice haters, sales are up 107%. [Online]

Available at:

https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=

8&ved=0ahUKEwiq_K-

BlrTOAhUEVhoKHY4XA2AQFggeMAA&url=http%3A%2F%2Fwww.adweek.com%2

Fadfreak%2Fhey-old-spice-haters-sales-are-107-

12422&usg=AFQjCNGZPw4ekZSS6o-qVpSmKEUsITty4g

[Accessed 09 08 2016].

Happe, R., 2010. Managing The Social Ecosystem – A SAP Case Study. [Online]

Available at: https://www.communityroundtable.com/best-practices/managing-the-

social-ecosystem-an-sap-case-study/

[Accessed 08 08 2016].

Henning, M. & Vinoski, S., 1999. Advanced CORBA Programming with C++.

s.l.:Addison-Wesley.

260

Herbalife, 2016. About Herbalife. [Online]

Available at: http://company.herbalife.com/

[Accessed 4 August 2016].

Herr, P., Kardes, F. & Kim, J., 1991. Effects of word-of-mouth and product-attribute

information on persuasion: an accessibility-diagnosticity perspective.. Journal of

Consumer Research, 17(4), pp. 454-462.

Hinchcliffe, D. & Kim, P., 2012. Social Business by Design. s.l.:Jossey-Bass.

Hossain, M., 2013. Using CORS. [Online]

Available at: http://www.html5rocks.com/en/tutorials/cors/?redirect_from_locale=it

[Accessed 29 08 2016].

InSites Consulting, 2009. "ConAir" study, s.l.: s.n.

InSites Consulting, 2012. Social Media Around the World. [Online]

Available at: http://www.slideshare.net/InSitesConsulting/social-media-around-the-

world-2012-by-insites-consulting

[Accessed 09 08 2016].

InterAction Collaboration, 2010. Peer review of CERN communications. [Online]

Available at:

http://communications.web.cern.ch/system/files/docs/CERN_comms_peer_review_2

010.pdf

[Accessed 16 08 2016].

Investopedia, n.d. Social Media. [Online]

Available at: http://www.investopedia.com/terms/s/social-media.asp#ixzz4EPiNysnv

[Accessed 31 08 2016].

Jacques, B. & Chui, M., 2010. The Use of Web 2.0 in Businesses.. [Online]

Available at: http://www.ft.com/cms/s/0/c93e7bba-04a4-11e0-a99c-

00144feabdc0.html#axzz1f7uQIrhz

[Accessed 08 08 2016].

261

jQuery Foundation, 2016. jQuery. [Online]

Available at: https://jquery.com/

[Accessed 29 08 2016].

Kalt, C., 2000. RFC2810: Internet Relay Chat: Architecture. [Online]

Available at: https://tools.ietf.org/html/rfc2810

[Accessed 30 08 2016].

Kaner, C., 2006. Exploratory Testing. Orlando, FL, Florida Institute of Technology,

Quality Assurance Institute Worldwide Annual Software Testing Conference.

Kaplan, A. M. & Haenlein, M., 2010. Users of the world, unite! The challenges and

opportunities of social media. Business Horizons, 53(1), p. 61.

Keller, E., 2007. Opening speech. Womma Summit, s.n.

Keyes, J., 2013. Enterprise 2.0 - Social Networking Tools to Transform Your

Organization. s.l.:CRC Press - Taylor & Francis Group.

Kietzmann, J. & Hermkens, K., 2011. Social media? Get serious! Understanding the

functional building blocks of social media. Business Horizons, Volume 54, pp. 241-

251.

Kim, D. J., Hall, S. P., Yue, K. & Gates, T., 2009. Global Diffusion of the Internet XV:

Web 2.0 Technologies, Principles, and Applications: A Conceptual Framework from

Technology Push and Demand Pull Perspective.. Communications of the Association

for Information Systems, Volume 24, pp. 657-672.

Kittur, A. & Kraut, R. E., 2008. Harnessing the Wisdom of Crowds in Wikipedia: Quality

Through Coordination.. Proceedings of the ACM 2008 conference on Computer

supported cooperative work, pp. 37-46.

Klier, K., 2011. From Community to Kinship: Online Communities that Drive Business

Impact. Atlanta, USA, s.n.

Lai, L. S. & Turban, E., 2008. Groups Formation and Operations in the Web 2.0

Environment and Social Networks.. Group Decision and Negotiation, 17(5), pp. 387-

402.

262

Lazar, I., 2007. Creating Enterprise 2.0 From Web 2.0.. Business Communications

Review, 37(8), pp. 14-16.

Levy, M., 2009. WEB 2.0 implications on knowledge management.. Journal of

Knowledge Management, 13(1), pp. 120-134.

Lewine, D. A., 1994. POSIX Programmer's Guide. [Online]

Available at: ftp://gamma.sbin.org/pub/doc/books/OReilly_-

_POSIX_Programmers_Guide.pdf

[Accessed 29 08 2016].

Li, C., 2012. Making the Business Case for Enterprise Social Networks. [Online]

Available at: http://www.altimetergroup.com/2012/02/making-the-business-case-for-

enterprise-social-networks/

[Accessed 12 08 2016].

LiveJournal, 2016. About LiveJournal. [Online]

Available at: http://www.livejournal.com/about

[Accessed 30 08 2016].

Lüfkens, M., 2013. How do International Organisations Tweet in 2013?. [Online]

Available at: http://twiplomacy.com/blog/how-do-international-organisations-tweet/

[Accessed 12 08 2016].

Lykourentzou, I. et al., 2010. CorpWiki: A self-regulating wiki to promote corporate

collective intelligence through expert peer matching. Information Sciences, 180(1), pp.

18-38.

Mark, G. & Voida, S., 2012. Pace not Dictated by Electrons: An Empirical Study of

Work Without Email. [Online]

Available at:

https://www.ics.uci.edu/~gmark/Home_page/Research_files/CHI%202012.pdf

[Accessed 13 08 2016].

McAfee, A., 2010. Andrew McAfee on Enterprise 2.0 Today. [Online]

Available at: http://www.forbes.com/2010/04/07/mcafee-enterprise-2-point-0-

263

leadership-managing-mitsloan.html

[Accessed 3 August 2016].

McAfee, A. P., 2006. Enterprise 2.0: The Dawn of Emergent Collaboration., s.l.: MIT

Sloan Management Review..

McKinsey, 2013. Evolution of the networked enterprise: McKinsey Global Survey

results. [Online]

Available at: http://www.mckinsey.com/business-functions/business-technology/our-

insights/evolution-of-the-networked-enterprise-mckinsey-global-survey-results

[Accessed 13 09 2016].

McKinsey, 2015. Transforming the business through social tools. [Online]

Available at: http://www.mckinsey.com/industries/high-tech/our-insights/transforming-

the-business-through-social-tools

[Accessed 13 09 2016].

McManus, R., 2005. Web 2.0 Definition and Tagging. [Online]

Available at: http://www.readwriteweb.com/archives/web_20_definiti.php

[Accessed 01 02 2005].

Menezes, M., 2014. Responsive Web Design vs Device Channels in SharePoint 2013.

[Online]

Available at: https://spmatt.wordpress.com/2014/04/28/responsive-web-design-v-

device-channels-in-sharepoint-2013/

[Accessed 25 08 2016].

Merriam-Webster, 2016. Definition of Crowdsourcing. [Online]

Available at: http://www.merriam-webster.com/dictionary/crowdsourcing

[Accessed 10 08 2016].

Microsoft, 2013. What's new for mobile devices in SharePoint 2013. [Online]

Available at: https://technet.microsoft.com/en-us/library/fp161352.aspx

[Accessed 25 08 2016].

264

Microsoft, 2015. Get to know the SharePoint 2013 REST service. [Online]

Available at: https://msdn.microsoft.com/en-us/library/office/fp142380.aspx

[Accessed 29 08 2016].

Microsoft, 2015. SharePoint Power Searching Using ContentClass. [Online]

Available at:

https://blogs.msdn.microsoft.com/mvpawardprogram/2015/02/16/sharepoint-power-

searching-using-contentclass/

[Accessed 29 08 2016].

Microsoft, 2016. Office 365 enterprise social experience: Yammer and Newsfeed.

[Online]

Available at: https://support.office.com/en-us/article/Office-365-enterprise-social-

experience-Yammer-and-Newsfeed-21954c85-4384-47d4-96c2-dfa1c9d56e66

[Accessed 07 08 2016].

Microsoft, 2016. Skype for Business. [Online]

Available at: https://products.office.com/en/skype-for-business/

[Accessed 07 08 2016].

Microsoft, 2016. Social and collaboration features in SharePoint 2013. [Online]

Available at: https://msdn.microsoft.com/en-us/library/office/jj163280.aspx

[Accessed 07 08 2016].

Microsoft, n.d. SP namespace. [Online]

Available at: https://msdn.microsoft.com/en-us/library/office/jj246996.aspx

[Accessed 26 08 2016].

Mozilla Developer Network, 2015. CSS Developer Guide. [Online]

Available at: https://developer.mozilla.org/en-US/docs/Web/Guide/CSS

[Accessed 29 08 2016].

Mozilla Developer Network, 2016. HTML5. [Online]

Available at: https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5

[Accessed 29 08 2016].

265

NASA, 2016. Teams to Compete for $1.5 Million in Fifth Year of NASA’s Sample

Return Robot Competition. [Online]

Available at:

http://www.nasa.gov/directorates/spacetech/centennial_challenges/sample_return_r

obot/teams-compete-for-15-million-in-2016-sample-return-robot-competition.html

[Accessed 09 08 2016].

NASA, M. S., 2015. We're NASA Mars scientists. Ask us anything about today's news

announcement of liquid water on Mars.. [Online]

Available at:

https://www.reddit.com/r/IAmA/comments/3mq1wl/were_nasa_mars_scientists_ask_

us_anything_about/

[Accessed 09 08 2016].

Nonaka, I., Toyama, R. & Konno, N., 2000. SECI, Ba and Leadership: a Unified Model

of Dynamic Knowledge Creation. Long Range Planning, s.l.: Elsevier Science Ltd..

O’Reilly, T. & Battelle, J., 2009. What is Web 2.0. San Francisco, CA, Web 2.0 Summit.

Obar, J. A. & Wildman, S., 2015. Social media definition and the governance

challenge: An introduction to the special issue. Telecommunications policy, 39(9), p.

745–750.

Oikarinen, J. & Reed, D., 1993. RFC1459: Internet Relay Chat Protocol. [Online]

Available at: https://tools.ietf.org/html/rfc1459

[Accessed 30 08 2016].

Oracle, 2016. Beehive feature list. [Online]

Available at:

http://www.oracle.com/technetwork/middleware/beehive/overview/beehive-feature-

list-128862.pdf

[Accessed 07 08 2016].

Oxford Dictionaries, n.d. Social Network. [Online]

Available at: http://www.oxforddictionaries.com/definition/english/social-network

[Accessed 31 08 2016].

266

P&G, n.d. The “Smell Like a Man, Man” Campaign. [Online]

Available at:

https://www.pg.com/en_US/downloads/innovation/factsheet_OldSpice.pdf

[Accessed 09 08 2016].

Palmer, N., Swenson, K. & Carlsen, S., 2014. Empowering Knowledge Workers.

s.l.:Future Strategies Inc.

Pasztor, A., 2010. White House Decides to Outsource NASA Work. The Wall Street

Journal, Issue

http://www.wsj.com/articles/SB10001424052748704375604575023530543103488.

Pettus, J., 2011. Telephone conversation with Anthony J. Bradley on May 11. [Sound

Recording] (NASA MSFC).

Pettus, J. & Bradley, A. J., 2009. NASA MSFC Social Media Strategy Workshop, s.l.:

Gartner Inc..

Porter, M., 1996. What is Strategy?. s.l.:Harvard Business Review.

Quaddus, M. & Xu, J., 2012. Adoption and diffusion of knowledge management

systems: field studies of factors and variables.. Knowledge-Based Systems, Volume

27, pp. 18-28.

Quinto, J., 2016. SharePoint 2013 Client Side Rendering: register templates overrides

in detail. [Online]

Available at: http://josharepoint.com/2016/01/14/sharepoint-2013-client-side-

rendering-register-templates-overrides-in-detail/

[Accessed 26 08 2016].

Renaud, K., Ramsay, J. & Hair, M., 2006. You've Got E-Mail! Shall I Deal With It Now?.

Internation Journal of Cumputer-Human Interaction.

Riege, A., 2007. Actions to overcome knowledge transfer barriers in MNCs. Journal

of, 11(1), pp. 48-67.

Rudrakshi, C. et al., 2014. API-Fication, Core building Block of the Digital Enterprise,

s.l.: HCL Technologies.

267

Safko, L., 2012. The Social Media Bible: Tactics, Tools, and Strategies for Business

Success. 3rd ed. s.l.:Wiley.

Schroeder, S., 2010. Old Spice: The Archetype of a Successful Social Media

Campaign. [Online]

Available at: http://mashable.com/2010/07/15/old-spice-social-media-campaign/

[Accessed 09 08 2016].

Sintes, T., 2001. Just what is the Java API anyway?. [Online]

Available at: http://www.javaworld.com/article/2077392/java-se/just-what-is-the-java-

api-anyway.html

[Accessed 29 08 2016].

Swenson, E., 2013. Responsive Design for SharePoint 2013. [Online]

Available at: http://erikswenson.blogspot.it/2013/06/responsive-design-for-sharepoint-

2013.html

[Accessed 25 08 2016].

Tapiador, A., Fumero, A., Salvachua, J. & Aguirre, S., 2006. A Web Collaboration

Architecture.. International Conference on Collaborative Computing: Networking,

Applications and Worksharing, p. 12.

Tapscott, D. W. A. D., 2006. Wikinomics. s.l.:Tantor Media.

Tapscott, D. & Williams, A. D., 2006. Wikinomics: How Mass Collaboration Changes

Everything. s.l.:Portfolio.

Teng, J. T. C. & Song, S., 2011. An exploratory examination of knowledge-sharing

behaviours: solicited and voluntary.. Journal of Knowledge Management, 15(1), pp.

104-117.

Thomas-Hunt, M. C., Ogden, T. Y. & Neale, M. A., 2003. Who's really sharing? Effects

of social and expert status on knowledge exchange within groups.. Management

Science, 49(4), p. 464−477.

268

W3C, 2010. What is CSS?. [Online]

Available at: https://www.w3.org/standards/webdesign/htmlcss

[Accessed 29 08 2016].

W3C, 2014. HTML5 specification: W3C Recommendation. [Online]

Available at: https://www.w3.org/TR/html5/

[Accessed 29 08 2016].

Wagner, C., 2004. Wiki: a technology for conversational knowledge management and

group collaboration.. Communications of the Association for Information Systems,

Volume 13, pp. 265-289.

Wallace, W., 2004. Instant Messaging and Online Chat Rooms: Internet Relay Chat

(IRC). In: Steal this File Sharing Book. 1st ed. San Francisco, CA: No Starch Press,

pp. 61-67.

Wang, S. & Noe, R. A., 2009. Knowledge sharing: A review and directions for future

research., s.l.: Human Resource Management Review.

Weinberger, D., 2007. The real difference between the two 2.0s. KM World, 16(2).

West, J. & Dedrick, J., 2001. Open Source Standardization: The Rise of Linux in the

Network Era. Knowledge, Technology & Policy, 14(2), p. 88–112.

Wikipedia, n.d. Wikipedia:About. [Online]

Available at: https://en.wikipedia.org/wiki/Wikipedia:About

[Accessed 30 08 2016].

Wilson, M. J., 2001. Get smart with proxies and RMI. [Online]

Available at: http://www.javaworld.com/article/2076234/soa/get-smart-with-proxies-

and-rmi.html

[Accessed 29 08 2016].

Yang, C. & Chen, K., 2007. Can organizational knowledge capabilities affect

knowledge sharing behavior?. Journal of Information Science, Volume 33, pp. 95-109.

Zack, M. H., 2003. Rethinking the knowledge-based organization.. Sloan Management

Review, 44(4), pp. 37-71.

269

All rights on the images displayed belong to their rightful owners. No permission is given from the author

of the thesis to use those images for any purpose. The code displayed cannot be used for commercial

purposes without the prior written authorization from the author.

The opinions expressed do not necessarily reflect the position of CERN.

	Sommario
	Abstract
	Introduction
	1. Web 2.0
	1.1. Social Networks
	1.1.1. Origins of Social Networks
	1.1.2. What is a Social Network
	1.1.3. How does it work?

	1.2. Enterprise Social Networks (ESNs)
	1.
	1.1.
	1.2.

	2. Knowledge Management
	2.1. What is “Knowledge”?
	2.2. The Knowledge Worker
	2.3. Knowledge Management and Knowledge Sharing
	2.4. Barriers to Knowledge Sharing

	3. Transition to the Social Organization
	3.1. Introducing the Social Business
	3.2. Key Enterprise 2.0 tools
	3.3. ESNs Examples
	3.4. Real-Life Stories
	3.5. Benefits of Knowledge Management Systems (KMSs) and Enterprise Social Networks (ESNs)
	3.6. The Right ESN

	4. CERN as a Social Organization
	4.1. CERN
	4.2. CERN Communications Strategy
	4.3. Social at CERN
	4.3.1. System Architecture
	4.3.2. Deployment and Future Plans

	5. Hands-on Social Development
	5.1. Technical Student Programme
	5.2. Social Mobile
	5.2.1. Development
	5.2.2. Testing
	5.2.3. Problems Encountered and Limitations

	5.3. Resource Planning Tool (RPT)
	5.3.1. Development
	5.3.2. Testing
	5.3.3. Problems Encountered and Limitations

	5.4. Social API
	5.4.1. Development
	5.4.2. Testing
	5.4.3. Problems Encountered and Limitations

	6. Conclusions
	Appendix A
	Appendix B
	Appendix C
	Works Cited

