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“It all just disappears, doesn’t it? Everything you are, gone in moment. Like breath on a
mirror. Any moment now, he’s a coming. We all change when you think about it. We’re all

different all through our lives. And that’s okay, that’s good. You’ve got to keeping moving. As
long as you remember all the people that you used to be. I will not forget one line of this, not

one day. I swear. I will always remember when the Doctor was me.”
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Sommario

Il contesto astrofisico all’interno del quale si inserisce il presente lavoro di tesi riguarda la com-

prensione della mutua interazione fra l’accrescimento attorno ai buchi neri supermassivi (SMBH)

e la formazione stellare all’interno delle galassie che li ospitano. Tale tema è uno dei maggiori

campi di ricerca dell’astronomia extragalattica moderna, in quanto è ormai chiaro che per com-

prendere la fisica di una galassia non si può prescindere dal considerare anche come l’AGN

centrale la influenzi. Dato che la radiazione elettromagnetica in continuo ed in riga è prodotta

da diversi processi astrofisici in bande differenti dello spettro, per avere la visione più completa

possibile di tali oggetti complessi è necessario un approccio multibanda che permetta di discrim-

inare quale sia il contributo relativo dei due processi all’energetica globale e di capire come si

influenzino reciprocamente.

Lo scopo di questo progetto di tesi è la comprensione dei fenomeni fisici di una Seyfert

dell’Universo vicino, NGC 34. Tale oggetto è stato scelto poiché presenta una vasta collezione di

dati multibanda in letteratura e, inoltre, è stato recentemente osservato dall’interferomentro sub-

mm ALMA in banda 9, i cui dati si trovano in archivio. La tesi si è sviluppata principalmente in

due parti: in primo luogo, sono stati calibrati e analizzati i dati di archivio ottenuti con ALMA

e sono state prodotte mappe in continuo a 435 µm e mappe e profili di riga della transizione

del monossido di carbonio CO(6-5) (νrest−frame = 691.473 GHz); successivamente, si è cercato

di dare una possibile interpretazione coerente dell’oggetto. Particolare attenzione è stata rivolta

allo studio del mezzo interstellare (ISM) per capire quali sono le sue proprietà fisiche in termini di

densità, composizione chimica e tipo di radiazione dominante (da formazione stellare o accresci-

mento). Tale studio è stato possibile analizzando la distribuzione spettrale di diverse transizioni

del CO (CO SLED), ottenuta unendo i dati relativi all’osservazione ALMA con altri presenti in

letteratura. In particolare, la CO SLED osservata è stata confrontata con modelli dell’ISM che

includono sia “Photo-Dissociation Regions” (PDRs), regioni dominate dalla radiazione ultravio-

letta prodotta da fotoni di origine stellare (6-13.6 eV), sia “X-ray Dominated Regions” (XDRs),

la cui componente prevalente è data da fotoni di alta energia (1-100 keV) prodotti dall’AGN. Tali

modelli sono stati prodotti utilizzando il codice di fotodissociazione CLOUDY. In tale contesto, i

dati della CO SLED sono stati messi in relazione con altre proprietà fisiche della sorgente, come

il tasso di formazione stellare, la massa di gas e la luminosità X, per avere un quadro complessivo

dell’oggetto. Per riprodurre i dati osservati della CO SLED, abbiamo preso in considerazione
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due diversi approcci: in primo luogo, si è ipotizzato che il contributo dato dalla formazione

stellare fosse dominante, utilizzando solo modelli di PDR (Modello 1 ); successivamente, si è ipo-

tizzato che le transizioni del CO più energetiche fossero prodotte dalla radiazione X proveniente

dall’AGN centrale, utilizzando anche modelli di XDR (Modello 2 ). Infine, è stato effettuato il test

statistico “F-test” per testare quale dei modelli analizzati riproducesse meglio i dati osservati.

Dall’analisi del “F-test” abbiamo trovato che il Modello 2, che prende in considerazione anche

il contributo dell’AGN, risulta più affidabile del Modello 1. Per un’analisi più approfondita sul

contributo delle XDR sarebbero necessarie osservazioni ALMA ad alta risoluzione della regione

nucleare della galassia, dove l’influenza dell’AGN può risultare dominante. Un’altra possibilità è

quella di analizzare l’emissione di molecole caratterizzate da un’alta densità critica (p.e., HCN),

in grado di tracciare le regioni più dense.

Questo lavoro mostra quale sia l’importanza cruciale di ALMA per aprire una nuova finestra

di indagine sulle componenti delle galassie e AGN, in quanto, grazie alla sua alta risoluzione

angolare e sensibilità, permette di esplorare le condizioni fisiche e la cinematica del mezzo inter-

stellare freddo e di definire nuovi diagnostici.

Questo lavoro di tesi è cos̀ı strutturato:

� nel Capitolo 1 viene presentata una panoramica sulla problematica scientifica, descrivendo

le proprietà principali di NGC 34, tratte dalla letteratura.

� nel Capitolo 2 vengono introdotti i principi di base dell’interferometria e le caratteristiche

principali dello strumento ALMA. Inoltre, vengono presentate la descrizione del processo

di calibrazione dei dati ALMA, le immagini prodotte e, infine, discussi i risultati ottenuti.

� nel Capitolo 3 vengono riassunte le principali caratteristiche del mezzo interstellare, intro-

ducendo PDRs e XDRs.

� nel Capitolo 4 vengono presentati i modelli di CLOUDY utilizzati, i risultati derivanti dal

confronto con i dati osservativi e l’analisi statistica effettuata.

� nel Capitolo 5 sono riassunti i risultati principali e presentate le prospettive future.



Abstract

The astrophysical context in which this thesis project lies concerns the comprehension of the

mutual interaction between the accretion onto a Super Massive Black Hole (SMBH) and the

Star Formation (SF), that take place in the host galaxy. This is one of the key topic of the

modern extragalactic astrophysical research. Indeed, it is widely accepted that to understand

the physics of a galaxy, the contribution of a possible central AGN must be taken into account.

Since line and continuum radiation are due to several astrophysical processes in different bands

of the electromagnetic spectrum, a multiwavelength approach has to be adopted in order to

distinguish which is the global role of the SF and the accretion activities and to understand how

they influence eachother.

The aim of this thesis is the study of the physical processes of the nearby Seyfert galaxy NGC

34. This source was selected because of the wide collection of multiwavelength data available

in the literature. In addition, recently, it has been observed with the Atacama Large Submil-

limeter/Millimeter Array (ALMA) in Band 9. This project is divided in two main parts: first

of all, we reduced and analyzed the ALMA data, obtaining the 435 µm and CO(6-5) maps

(νrest−frame = 691.473 GHz); then, we looked for a coherent explaination of NGC 34 physical

characteristics. In particular, we focused on the ISM physics, in order to understand its prop-

erties in terms of density, chemical composition and dominant radiation field (SF or accretion).

This work has been done through the analysis of the spectral distribution of several CO tran-

sitions as a function of the transition number (CO SLED), obtained joining the CO(6-5) line

with other transitions available in the literature. More precisely, the observed CO SLED has

been compared with ISM models, including Photo-Dissociation Regions (PDRs), regions whose

physics and chemistry are dominated by stellar UV radiation (6-13.6 eV), and X-ray-Dominated

Regions (XDRs), whose characteristics are mainly influenced by X-ray photons (1-100 keV) due

to the central AGN. These models have been obtained through the state-of-the-art photoion-

ization code CLOUDY. Along with the observed CO SLED, we have taken into account other

physical properties of NGC 34, such as the Star Formation Rate (SFR), the gas mass and the

X-ray luminosity. In order to reproduced the observed CO transitions, we have considered two

different approaches: initially, we have hypothesized that the star formation contribution was

dominant, using only PDR models (Model 1 ); then, we have used also XDR models, hypothesis-

ing that the more energetical CO transitions were due to the AGN (Model 2 ). Finally, we have

xi
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carried out a statistical analysis, through the F-test, to test which model best-fitted the observed

data. We found that Model 2, that requires the presence of a central AGN, is more reliable

than Model 1. Overall, ALMA high resolution observations of NGC 34 nuclear region, where the

influence of the accretion could dominate, are needed to determine the real contribution of the

AGN activity. Another possibility could be the study of high critical density molecules, such as

the HCN, which trace the ISM densest regions.

This thesis project points out the crutial role played by ALMA in shedding light on AGN

and SF galaxy components, since, thanks to its high angular and spatial resolution, allows to

investigate the ISM physical properties and kinematics and to define new diagnostics.

This thesis is organized as follows.

� Chapter 1 deals with an overview of the scientific background, focusing on the main prop-

erties of NGC 34, available in the literature;

� In Chapter 2, the basic principles of interferometry and the main ALMA features are

introduced. Furthermore, the ALMA data reduction and the relative results are presented.

� In Chapter 3, a general overview on ISM properties is proposed, introducing PDRs and

XDRs.

� In Chapter 4, CLOUDY models are presented, illustrating the results obtained by the

comparison with observed data and the statistical analysis carried out.

� In Chapter 5, we summarize the main results, focusing on the future perspectives.



Chapter 1

The AGN-starburst connection:

an intriguing case, NGC 34

1.1 Introduction

In the last decade, intensive observational and theoretical investigations have demonstrated how

the Star Formation Rates (SFRs) of galaxies and the Active Galactic Nuclei (AGN) phenom-

ena are deeply connected. There are many observational pieces of evidence that support this

connection, such as the tight relations between the Super Massive Black Hole (SMBH) mass

and the host galaxy properties (bulge mass and luminosity, velocity dispersion) or the similar

shape of the star formation and the BH accretion density as a function of the cosmic time. The

understanding of the physical processes relating the growth of the SMBH and its interplay with

the host galaxy is one of the key topic of the modern astrophysics.

This is the general context of the work presented in this thesis. In particular, a detailed

study of a local IR Luminous Seyfert galaxy, NGC 34, where the two phenomena co-exist, will

be presented, trying to gain a coherent picture of this galaxy, using all the available information.

The multi-band data presented in the literature will be “joined” with new ALMA data. In

particular, the analysis of the raw ALMA data corresponding to the Carbon-Monoxide (CO)

molecule will be presented. The CO is a very good tracer of the gas mass, and its emission as

a function of the rotational level can give important contraints on the physical properties of the

gas, such as density, temperature and the types of excitation source (SF or accretion).

In the following, we describe the scientific background of this study, providing a brief overview

of AGN and starburst activity. In addition, we focus on the Seyfert galaxy NGC 34, showing its

multiwavelength properties.

1
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1.2 A panchromatic view of Active Galactic Nuclei

AGN are among the brightest sources in the sky, shining over a broad range of frequencies,

from the radio to the gamma rays. They are characterized by a very powerful emission (L ≈
1042 − 1048 erg s−1), located into the central region (≈ 2 − 10 pc), whose luminosity cannot be

attributed to the components of normal galaxies, such as stars, gas and dust: it can outshine the

host galaxies by factors > 1000. The most efficient known way to release this amount of energy

is accretion into a relativistic deep gravitational potential. Indeed, these potentials are due to

SMBHs, with a mass in the range M ≈ 105 − 1010 M�. Arguably, every galaxy hosts a central

SMBH, but approximately 1-10% of them are known as active galaxies.

1.2.1 Main components of AGN

AGN are characterized by a compact central source, the SMBH, that provides a very intense

gravitational field, whose most basic feature is the presence of an event horizon, a boundary from

which matter and even light can never re-emerge. It is described by the gravitational radius,

defined as

Rg =
GMBH

c2
(1.1)

where G is the gravitational constant, MBH the black hole mass and c the speed of light.

Around the SMBH, there is an accretion disc, that forms as the gas spirals inward, on scales

down to a few gravitational radii. The infalling gas looses angular momentum, that is trans-

fered outward, owing to the viscosity and turbulent processes of the disc, and spirals into the

center, losing a considerable fraction of its gravitational energy. Friction heats the gas to high

temperatures (T > 104K), that accounts for optical through soft X-ray continuum emission.

A hot, rarefied gas (T ∼ 108 − 109 K ne ∼ 108 cm−3), located at ∼ 3− 10Rg above the disc,

constitutes the so-called hot corona. In this region, the soft thermal photons produced by the

disc are upscattered to X-ray, accounting for the energetic X-ray emission from AGN.

The deep gravitational potential at the center of the galaxy allows the presence of high

density (ne ≈ 109 − 1010 cm−3), high velocity (& 2000 km s−1) gas clouds with a temperature of

≈ 104 K in proximity of the central source, composing the so-called Broad Line Region (BLR).

The gas reprocesses the energy produced by the continuum source at ionizing ultraviolet energies,

through emission lines due to recombination or de-excitation of photoionized atoms. The electron

density is high enough to prevent forbidden lines from forming, being collisionally suppressed. In

addition, the permitted emission lines are broad, characterized by FWHM ≈ 103 − 104 km s−1.

Some clouds are located further away from the SMBH, constituting the Narrow Line Region

(NLR), the largest spatial scale where the ionizing radiation from the central source can excite

the surrounding medium. Here, the electron density is sufficiently low (104 cm−3) to allow the

presence of forbidden lines, with a FWHM ≈ 102 km s−1. The temperature is ≈ 1−2.5×104 K.

The accretion disc is surrounded by a dusty circumnuclear material, the so-called dusty torus,

whose typical size is around ∼ 1 − 10 pc. This region is located beyond the dust sublimation
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radius (the dust sublimation temperature is ≈ 1000− 1500 K), therefore is likely to contain dust

and molecular gas. More precisely, the gas at the inner radius is ionized by the central engine,

whereas at larger distances dominates the neutral and molecular material. The torus emits the

reprocessed radiation in the IR band, while appears to be opaque at all the other wavelength,

obscuring the central source for certain lines of sight.

Finally, AGN can produce the jets, outflows of magnetically-bound relativistic particles, that

can be extended up to ∼ 100 − 1000 kpc. Their formation mechanism is still unknown, but is

probably related to a fast rotating black hole and the presence of the magnetic field, that can

collimate the outflow of charged particles. The jet structure appears to origine in the location of

the optical-UV and X-ray continuum source and they mostly emit through synchrotron radiation,

from the radio band to the γ-rays. The most powerful jets can overcome the host galaxy,

propagating into the interstellar and intergalactic medium up to Mpc scales, while the weaker

decelerate closer to the central SMBH. Their interaction with the environment leads to the

formation of hot spots and large-scale radio lobes (Netzer, 2013).

The components discussed are illustrated in Fig. 1.1, while their typical sizes are summarized

in Tab. 1.1.

Figure 1.1: Typical structure (not on scale) of an AGN (from http://www.isdc.unige.ch).

AGN can be classified according to their emission properties in different spectral windows.

Here, we report the main classes. On the basis of their optical spectral properties, AGN are di-

vided in Type-I and Type-II. Type-I are objects with little or no obscuration of the central source

due to the circumnuclear dust and with optical spectra characterized by strong optical/UV con-

tinuum, broad emission lines, and narrow emission lines. On the contrary, Type-II are obscured
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Table 1.1: Typical size ranges of the different components of AGN.

Component Size

SMBH RS ∼ 0.01− 10 AU

Accretion disc Rin ∼ 0.01− 60 AU
Rout ∼ 1− 1000 AU

BLR RBLR ∼ 0.01− 1 pc

Dusty torus Rtorus ∼ 1− 10 pc

NLR RNLR ∼ 102 − 104 pc

Jet Rjet ∼ 100− 1000 kpc

AGN, whose main features are a very weak optical continuum and only narrow emission lines

(NLR).

Focusing on the X-ray spectral properties, the main differences between these two categories

are the progressive suppression of the primary power-law emission from Type-I to Type-II and the

limited presence of nuclear emission below 2 keV in the most oscured objects1. According to hy-

drogen column densities of the obscuring gas, they are divided in unobscured (NH < 1021 cm−2),

Compton-thin (1021 < NH < 1024 cm−2) and Compton-thick AGN (NH > 1024 cm−2)2.

In addition, concerning the radio domain, while most AGNs show some radio emission, there

seems to be a clear dichotomy in this property. Therefore, the “radio loudness” parameter, R,

was defined in order to separate radio-loud from radio-quiet AGNs. More precisely, an AGN is

referred to as radio-loud when R, namely the ratio between the radio (5 GHz) and optical (B-

band, 4400 Å) monochromatic luminosity, is > 10. Radio-loud objects, in turn, can be divided

according to the extended radio structure and to whether they are edge brightened (FRII sources)

or edge darkened (FRI sources). Among the radio-quiet AGN, there are the Seyfert galaxies,

divided in Seyfert 1 or Seyfert 2 on the basis of their optical spectra (Netzer, 2013).

1.2.2 The AGN family

Historically, there are several types of AGN with a variety of names that reflect, in many cases,

the period of discovery, rather than the physical properties of the objects in question. In the past,

the higher-luminosity radio-loud AGN were referred to as quasi-stellar radio objects (QSROs), in

order to distinguish them from radio-quiet luminous Type-I AGN, which were called quasi-stellar

1The correspondence between optical and X-ray Type I-II is ≈ 80% (Lanzuisi et al., 2013).
2Compton thick AGN are most commonly identified in the 2-10 keV X-ray band by the measurement of a flat

spectrum (Γ < 1.0) and a high Fe Kα line equivalent width (EW ), i.e. EW > 1 keV (Brightman and Nandra,
2011a).
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objects (QSOs). Radio galaxies are classified by their optical properties into broad-line radio

galaxies (BLRGs) and narrow-line radio galaxies (NLRGs). The optical-UV spectrum of BLRGs

is very similar to that of Type-I AGN with an additional nonthermal contribution to the optical

continuum. Such objects tend to show the broadest emission lines among Type-I AGN, probably

due to inclination effects. The optical emission-line spectrum of NLRGs is less well defined,

covering a broad range of properties, from high-ionization Type-II AGN to low-ionization LINERs

(i.e., Low-ionization nuclear emission-line regions). There are clear indications for obscuration

in many of them. Seyfert galaxies, first pointed out by C. Seyfert in 1943, are characterized by

the presence of strong high-ionization lines in their optical spectra, that distinguish them from

normal emission spectra of H II regions. They are divided in Type-I and Type-II, on the basis of

their optical spectral properties. Fig. 1.2 shows typical Seyfert galaxies spectra, illustrating the

different classification of Type-I and Type-II objects, valid for the majority of AGN. Then, there

is the group of blazars, that includes highly variable core-dominated radio-loud sources showing

polarization at radio and optical wavelengths. They can be divided into BL Lacertae (BL-

Lac) objects, highly variable and highly polarized objects, with virtually featureless continuous

spectra, and flat-spectrum radio-loud AGN. LINERs are usually the lowest-luminosity AGN,

with nuclear luminosity that can be smaller than the luminosity of high-ionization AGN by 1−5

orders of magnitude. Perhaps many LINERs may belong to the category of real Type-II AGN,

i.e. those AGN with no BLR (Netzer, 2013).

Figure 1.2: The top panel shows the typical spectrum of a Type-I Seyfert galaxy,
characterized by both broad and narrow emission lines, while the bottom panel illus-
trates the typical spectrum of a Type-II Seyfert galaxy, whose main features are nar-
row lines of highly ionized material and a partial absorption of the UV continuum (from
http://www.uni.edu/morgans/astro/course/Notes/section3/new13.html).
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AGN unified model and its limits

Antonucci (1993) and Urry and Padovani (1995) introduced the AGN unified model, in order

to construct a general picture, capable of shedding light on the various types of AGN. Its main

driving parameter are the orientation of the AGN with respect to the line of sight and the

radio loudness. The former determines the detectability of the central engine and the broad

line region in the optical domain, while the latter indicates whether or not the AGN produces

a significant jet. The simplest addition of a torus-like obscurer to the two central components,

BH and accretion disc, can explain most of the observed differences between radio-quiet Type-I

and Type-II AGN. Such a structure introduces a viewing angle parameter that determines what

AGN components will be seen from a given line of sight. This can account for the different

observed properties, such as the luminosity and variability of the optical–UV continuum, and

the different amount of obscuration of the central X-ray source. Nevertheless, it fails to explain

the properties of very low and very high luminosity AGN (e.g. some lineless AGN, the least

luminous LINERs and the most luminous AGN at high redshift), where the presence of such

an obscurer is questionable. In order to explain radio-loud objects, an additional component is

required: a relativistic jet emanating from the vicinity of the BH (Netzer, 2013). This simple

scheme is summarized in Fig. 1.3, that shows that Type-I AGN are nearly face-on objects,

where both the BLR and NLR can be directly seen. On the other hand, Type-II AGN have

larger viewing angles, that lead the line of sight to intercept the obscuring medium surrounding

the nucleus, the dusty torus.

This simple model, produced nearly 20 years ago, is now partially updated. The smooth torus

model has been recently replaced by a more sophisticated geometry (i.e., clumpy torus model,

Hönig and Kishimoto 2010). Even more important, the variety of the AGN population (see Sec.

1.2.2) is now believed to be related to both geometrical and evolutionary effects.
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Figure 1.3: Schematic representation of the AGN phenomenon in the unified scheme. The type of
the observed object depends on the viewing angle, whether or not the AGN produces a significant
jet emission, and how powerful the central engine is. Note that radio loud objects are generally
thought to display symmetric jet emission (Beckmann and Shrader, 2013).
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1.3 Luminous Infrared Galaxies

Luminous Infrared Galaxies (LIRGs), firstly observed in 1983 by the Infrared Astronomical Satel-

lite (IRAS), are remarkable galaxies of the local Universe exhibiting an extremely high IR lu-

minosity, L8−1000µm > 1011 L�. These objects are hosts of an intense starburst (SB) and/or

AGN activity, and are often part of a merging galaxy group (Armus et al., 1987). At the highest

luminosities (L8−1000µm > 1012 L�), these extreme objects are called Ultra-Luminous Infrared

Galaxies (ULIRGs) and appear to be mostly advanced mergers (Sanders and Mirabel, 1996).

The trigger for the intense IR emission seems to be the strong interaction/merger of molecular

gas-rich spirals, and the bulk of the IR luminosity for all but the most luminous objects is due

to dust heating from an intense starburst within giant molecular clouds.

Mapping of these galaxies in H I and CO has provided several important clues regarding

the physical nature and origin of LIRGs. The integrated H I profiles of these galaxies are

characterized by distorted 21 cm profiles and deep absorption. High-resolution HI mapping

with the VLA reveals complex structures, with much of the atomic gas spread between long tidal

tails and the main body of the galaxies. Sometimes the H I shows central concentration, but

often there is a central depression where the gas is predominantly molecular. The H I in the tails

provides a powerful diagnostic of the orbital kinematics of the interaction or merger (Kennicutt

et al., 1996).

The studies of the molecular gas, principally traced by molecules such as CO and HCN, show

that the SFRs of (U)LIRGs are fueled by molecular gas masses of 109 − 1010 M�, with a Star

Formation Efficiency of SFE = LIR/M(H2) ∼ 500 L�/M�. Such high SFEs are equal to the

maximum reachable value, set by the radiative feedback of massive stars on the dust, mixed with

the molecular gas, accreted by the star-forming sites, and are one of the many indicators of the

extreme interstellar medium (ISM) conditions found in such systems (Papadopoulos et al., 2010).

The large amount of cool gas is located in the central region of the galaxy, concentrated into a

radius of r ≤ 0.5 − 1 kpc, with densities around 104 cm−3 (Downes and Solomon, 1998). Such

enormous gas concentrations are an ideal breeding ground for a variety of powerful phenomena,

including powerful starbursts that generate superwinds, the formation of massive star clusters

and, possibly, the building and/or fuelling of an AGN. Indeed, (U)LIRGs are very likely to

represent an important link between starburst galaxies and the AGN phenomena. Nevertheless,

it is hard to distinguish the relative roles of these power sources, owing to heavy dust obscuration.

Indeed, the fraction of galaxies hosting AGN activity is correlated to IR luminosity in the

range (8 − 1000µm) or SFR. On the basis of optical spectroscopy, the AGN fraction rises from

≈ 5% for galaxies with LIR < 1011 L�, to ≈ 15% for LIRGs and ≈ 25% for ULIRGs, as shown in

Fig. 1.4 (Veilleux, 1999). Concerning (U)LIRGs, the AGN fractions increase to ≈ 50−80% when

including MIR spectroscopy and X-ray spectra analysis (e.g., Nardini et al. 2010 and Lehmer

et al. 2010). These results show that the BH grows almost continuously during periods of intense

star formation.

Their large reservoirs of molecular gas mass, along with clear evidence of strong dynam-
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Figure 1.4: Optical spectral classification on the function of IR luminosity, showing H II
galaxies (star-forming galaxies with spectra resembling those of normal H II regions), LIN-
ERs (Low-Ionization Nuclear Emission-Line Regions), Seyfert 2s (AGN with strong low- and
high-ionization lines) and Seyfert 1s (AGN with broad, quasar-like recombination lines with
FWHM ≈ 2000 km s−1) fractions in (U)LIRGs (Veilleux, 1999).

ical interactions and mergers, make these systems unique local examples of dust-enshrouded

galaxy formation in the distant Universe (Papadopoulos et al., 2012). Actually, (U)LIRGs are

thought to represent the transitional phase in evolution from a SB galaxy to elliptical/lenticular

galaxies (Sanders et al., 1988), and thus must quench their star formation during this period.

Since (U)LIRGs offer a unique insight into this transitional phase from star-forming to quiescent

galaxies, understanding which mechanisms are affecting the star-forming gas is crucial (Rosen-

berg et al., 2015).

In order to trace the high amount of injected energy, a multiwavelength approach is required,

studying the emission lines that serve as a coolant along with IR emission. In particular, molec-

ular spectral line energy distributions (SLEDs) constitute a key tool for probing the heating

source of the molecular gas (SF VS AGN) and for estimating total molecular gas masses.

1.4 AGN-starburst connection

Massive galaxies in the local Universe host a central SMBH with a mass proportional to the mass

and the velocity dispersion, following the relations (Magorrian et al. 1998, Ferrarese and Merritt

2000):

MBH ∝ 10−3Mbulge

MBH ∝ σ4
bulge

(1.2)

This tight correlation (shown in Fig. 1.5) has suggested a symbiotic connection between the

formation and growth of the galaxies (directly linked to the SFR) and the BH growth (related
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to AGN activity).

Figure 1.5: The mass of SMBHs as a function of the velocity dispersion of the stars in the host
galaxy (Ferrarese and Merritt, 2000).

Indeed, while recent studies find no clear correlation between instantaneous BH growth and

SF (i.e., Mullaney et al. 2012), probably to different time scales, the black hole accretion density

and SFR history of the Universe show a similar trend with a significant growth at high redshift, a

peak around z ≈ 2 and then a decline (see Fig. 1.6) Another clue that suggests a deep connection

between AGN and SF is that young stars are often found in the central regions of nearby AGN.

These studies demonstrated that in 30%-50% of the cases AGN activity is associated with young

stars, aged less than a few 100 Myr. This connection could stem from the fact that both these

two phenomena need gas to fuel them and in some galaxies a large amount of gas has fallen

towards the central region, because of an interaction or secular evolution. In addition, Davies

et al. (2007), using spatially resolved spectroscopy of the central regions of nine nearby Seyfert

galaxies, found that the peak of AGN activity occurs ≈ 50− 200 Myr after the beginning of SF.

This time delay suggests that the AGN may be fuelled by the gas located in the star-forming

region through winds and supernovae (SNe) explosions.

BH growth relies on the accretion of cool gas, either from the host galaxy or the extragalactic

environment, that inflows from kpc scales down to the central region. More precisely, the gas

has to be driven down to ≈ 10 pc before coming under the influence of the BH. The most

important barrier to overcome is the angular momentum, that prevents the gas from reaching

the central regions: the gas has to lose ≈ 99% of its angular momentum to pass from a stable

orbit at r = 10 kpc to r = 10 pc (Alexander and Hickox, 2012). However, it can be overcome

through a series of gravitational instabilities, such as large-scale gravitational torques, produced
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Figure 1.6: Comparison of the best-fit star formation history (thick solid curve) with the accretion
history from X-ray (red curve, Shankar et al. 2009; green curve, Aird et al. 2010) and IR (light
blue shading, Delvecchio et al. 2014) data. The shading indicates the ±1σ uncertainty range on
the total bolometric luminosity density. The comoving rates of black hole accretion have been
scaled up by a factor of 3300 to facilitate visual comparison to the star-formation history (SFH)
(Madau and Dickinson, 2014).

by galaxy bars and gas instabilities (internal mechanisms), or by galaxy interactions and galaxy

major mergers (external mechanisms), summarized in Fig. 1.7. Internal processes and galaxy

interactions are usually referred to as secular evolution. The rapid flow of cold gas, that is crucial

to fuel an AGN, is extremely likely to result also in high rates of SF. In fact, mergers of gas-rich

galaxies are also very efficient in producing elevated SFRs, leading to a luminous IR-active phase,

making the galaxy either a LIRG or an ULIRG, according to its IR luminosity. When sufficient

matter is transported to the nuclear region, an oscured quasar, whose emission becomes far

brighter than the galaxy itself, forms. At higher LIR the fraction of the luminosity related to the

AGN component rises and the BH growth appears to be partially or totally obscured, because

of the large amount of nuclear gas and dust. Then, the SFR is quenched due to AGN and SN

feedback. The models based on this evolutionary scenario seem to follow the local observations.

Nevertheless, powerful starbursts are rare in the local Universe and it is still unknown whether

this starburst-quasar scenario (shown in Fig. 1.8) is dominant at high redshift, during the peak

of AGN activity (Alexander and Hickox, 2012).
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Figure 1.7: Scheme that illustrates the large-scale processes that appear to trigger the AGN
activity: major merger of gas-rich galaxies, secular evolution and hot halo accretion, that seems
to dominate in low-excitation radio-loud AGN (Alexander and Hickox, 2012).

Figure 1.8: Diagram that illustrates the principal phases of the major-merger evolutionary sce-
nario, firstly proposed by Sanders et al. 1988 (Alexander and Hickox, 2012).
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1.5 Diagnostic diagrams

Optical line ratios have long provided a good discriminator between AGN and SB-dominated

galaxies, since different line ratio values are due to different excitation mechanisms. An em-

pirical diagnostic diagram was developed by Baldwin et al. (1981) and refined by Veilleux and

Osterbrock (1987). In some cases, such as for (U)LIRGs and for some Seyfert 2 galaxies, the

optical spectroscopy may fail to reveal an AGN owing to dust obscuration in the galaxy center.

However, in all but the most of extreme cases is still reliable (e.g., Veilleux 1999).

Baldwin et al. (1981) proposed a suite of three diagnostic diagrams to classify the domi-

nant energy source in emission-line galaxies. These diagrams are commonly known as Baldwin-

Phillips-Terlevich (BPT) diagrams and are based on these four optical line ratios: [O III]/Hβ,

[N II]/Hα, [S II]/Hα and [O I]/Hα. In addition, Kewley et al. (2001) (hereafter Ke01) created a

theoretical maximum starburst line on the BPT diagrams, using a combination of stellar popula-

tion synthesis models and detailed self-consistent photoionization models. Galaxies lying above

this line are likely to be dominated by an AGN. Finally, Kauffmann et al. (2003) (hereafter

Ka03) added an empirical line to divide pure star-forming galaxies from Seyfert-HII composite

objects, whose spectra are affected by significant contribution of both AGN and SF (see Fig.

1.9). Actually, composite galaxies are likely to contain a metal-rich stellar population and an

AGN.

In panel (a) of Fig. 1.9 is shown the [O III]/Hβ versus [N II]/Hα standard optical diagnostic

diagram for the galaxy sample analyzed by Kewley et al. (2006). Galaxies that are located below

the dashed Ka03 line are classified as HII-region-like galaxies. Star-forming galaxies form a tight

sequence, the star-forming sequence, from low metallicities (low [N II]/Hα, high [O III]/Hβ) to

high metallicities (high [N II]/Hα, low [O III]/Hβ). The AGN mixing sequence starts from the

high metallicity end of the star-forming sequence and extends towards high [O III]/Hβ and [N

II]/Hα values.

Panel (b) and (c) of Fig. 1.9 show the [O III]/Hβ versus [S II]/Hα and [O I]/Hα, respectively.

The blue solid line represents the Seyfert-LINER classification line (hereafter Ke06), determined

by Kewley et al. (2006), that divides Seyfert galaxies and LINERs. The former lie above the

blue solid line, while the latter below it, because of their low-ionization line emission.

Zhang et al. (2008) showed that Seyfert 1 and Seyfert 2 galaxies have different distribution

on the [O III]/Hβ and [N II]/Hα diagram. They contend that, as the extinction increases,

the distribution on BPT diagram moves to larger [N II]/Hα value. Indeed, Seyfert 2 galaxies

in their sample display a clear left boundary on the BPT diagram and only 7.3% of them lie

beyond. Consequently, they added to BPT diagrams their S12 line, that divides Seyfert 1 from

the majority of Seyfert 2 galaxies.



14CHAPTER 1. THE AGN-STARBURST CONNECTION: AN INTRIGUING CASE, NGC 34

Figure 1.9: The three BPT diagrams. (a) The [O III]/Hβ versus [N II]/Hα diagnostic diagram.
The red solid line represents the ke01 classification line, the blue dashed line the ka03 classification
line. (b) The [O III]/Hβ versus [S II]/Hα. (c) The [O III]/Hβ versus [O I]/Hα. The blue solid
line is the ke06 classification line (Kewley et al., 2006).

Figure 1.10: BPT diagram for Seyfert 2 (left panel) galaxies and Seyfert 1 (right panel). The
lower curve is the ke01 classification line. The straight line is the S12 line, that divides Seyfert 1
from the majority of Seyfert 2 galaxies, mainly located on the right side of the line (Zhang et al.,
2008).
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1.6 MIR-X-ray correlation

The dusty circumnuclear material (see Sec. 1.2.1) around the AGN absorbs the intrinsic ultravi-

olet and optical radiation from the accretion disc, and typically emits, in turn, in the MIR/FIR

regime. Before the Very Large Telescope (VLT), it was very difficult to disentangle the MIR emis-

sion due to the AGN from other contanination sources (i.e., clouds heated by stellar radiation).

Nowadays, thanks to the VISIR3 instrument at the VLT (θ ≈ 0.3�−0.4�), it has been possible

to isolate the nuclear region for local galaxies. This has been done by Gandhi et al. (2009), who

found that the MIR emission is an independent isotropic AGN indicator. The authors obtained

a narrow relation from the nuclear MIR emission and the intrinsic 2− 10 keV luminosity, whose

best-fit is given by:

log

(
LMIR

1043

)
= (0.19± 0.05) + (1.11± 0.07)log

(
L2−10 keV

1043

)
(1.3)

Fig. 1.11 shows the MIR-X-ray correlation. In addition, they found that both Seyfert 1 and

Seyfert 2 follow the same correlation. This result was not predicted by radiative transfer models,

based on a torus with a continuous smooth dust distribution, since an optically-thick line-of-

sight through the torus will primarily show cooler dust and a lower MIR luminosity for the same

L2−10 keV than does an optically-thin one.

Figure 1.11: In the left panel, the MIR-X-ray correlation for the sample analyzed by Gandhi
et al. (2009) is illustrated. The observed galaxies are split into Seyfert 1 − 1.5 (blue squares),
Seyfert 1.8 − 2 (red diamonds), LINERs (green triangles) and Compton-thick AGN (in pink).
The well-resolved sources are circled and the dashed line is their fitted correlation, shown in Eq.
1.3. The dotted grey line is the correlation fit to all the sample. In the right panel, the MIR-X-ray
correlation for the Compton-thin sources only is shown (Gandhi et al., 2009).

3The VLT spectrometer and imager for the mid-infrared.
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1.7 SFR indicators

There are many SFR indicators, directly or indirectly linked to the stellar emission, depending

on the considered band. In the UV/optical/near-IR range (≈ 0.1 − 5µm), the SFR indicators

probe the direct stellar light emerging from galaxies, while in the MIR/FIR (≈ 5 − 1000µm)

trace the stellar light reprocessed by dust. As the vast majority of galaxies contain at least

some dust, the first types of indicators need to be accurately corrected for the dust attenuation

to be reliable. In addition, also the ionizing photons by massive stars can be used to define

SFR indicators. These SFR tracers comprise hydrogen recombination lines, from the optical to

radio wavelengths and forbidden metal lines. Finally, even the X-ray emission produced by high-

mass X-ray binaries (HMXB), massive stars and SNe, and the radio synchrotron emission from

galaxies, due to electrons accelerated by SN explosions, can be used as SFR indicators (Calzetti,

2013).

The emission contribution of a potential AGN to the luminosity (in continuum or line) used as

SFR indicator can lead to a significant deviation from the correlations described in the following

sections. In this case, the galaxies containing the AGN can be recognized.

1.7.1 FIR-radio correlation

In star-forming galaxies, FIR luminosity appears to be connected to radio continuum by a tight

relation spanning four orders of magnitude in luminosity and up to high redshift (e.g., van der

Kruit 1973, Garrett 2002):

log(LFIR) = (0.98± 0.06)log(L1.4GHz) + 15.4± 1.6 (1.4)

with a dispersion around the best-fit relation of 0.18 (Ranalli et al., 2003). It is thought that

this is due to the presence of massive, young stars (M & 5 M�) embedded in dust, that absorbs

their UV radiation and re-emits in the IR band, while SN explosions may produce the observed

synchrotron emission. Therefore, these luminosities are assumed to be indicators of the global

SFR in a galaxy (Condon 1992, Kennicutt 1998)4:

SFR =
L1.4 GHz

4.0× 1028
M� yr−1

SFR =
LFIR

2.2× 1043
M� yr−1

(1.5)

where the FIR flux is defined after Helou et al. (1985) as

FIR = 1.26× 10−14(2.58S60µm + S100µm) W m−2 (1.6)

4L1.4GHz is in erg s−1 Hz−1, LFIR in erg s−1 and IR fluxes in Jy.
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In addition, Helou et al. (1985) defined the parameter

q ≡ log
(

FIR

3.75× 1012 W m−2

)
− log

(
S1.4GHz

W m−2 Hz−1

)
(1.7)

as a logarithmic measure of the FIR/radio flux-density ratio. The distribution of q was found

to be quite narrow, 〈q〉 ' 2.3 with a rms scatter ' 0.2, among spiral galaxies in Virgo, a large,

inhomogeneous sample of spiral and irregular galaxies, Sbc galaxies, E/S0 galaxies with different

level of star formation, and radio flux-limited samples of normal galaxies (Condon, 1992).

1.7.2 X-ray-FIR-radio correlation

Since star-forming galaxies are also luminous sources in the X-ray band, because of the great

amount of HMXB, young supernova remnants remnants (SNR) and hot plasmas associated to

star-forming regions and galactic winds, a relation that links FIR and X-ray emission is expected.

In addition, since FIR and radio continuum appear to be connected, also an association between

X-ray and radio continuum is foreseeable. Indeed, a relation between FIR and soft X-ray lu-

minosities, i.e. 0.5 − 3.0 keV, was found (e.g., Griffiths and Padovani 1990) and then extended

from Ranalli et al. (2003) to the 2 − 10 keV band, which is essentially free from absorption. In

particular, Ranalli, starting from Eq. 1.4, obtained:

log(L2−10) = log(LFIR)− 3.62 (3.68)

log(L2−10) = log(L1.4 GHz) + 11.13 (11.12)
(1.8)

with a dispersion of ' 0.29 for both fits (see Fig. 1.12). The existence of these tight linear

relations suggest that the three considered bands carry the same information, which means that

even X-ray luminosity can be considered as a SFR indicator (Ranalli et al., 2003). We report

the so-called Ranalli relation linking the X-ray luminosity and the SFR:

SFR = 2.0× 10−40 L2−10 keV M� yr−1 (1.9)
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Figure 1.12: The 2.0 − 10 keV luminosity of local star-forming galaxies with respect to FIR and
radio luminosities. The squares and the crosses represent the local and supplementary sample
taken into account by Ranalli et al. (2003), respectively, while the dotted lines are the best fits,
shown in Eq. 1.8 (Ranalli et al., 2003).

1.8 NGC 34: a nearby “ambiguous” object

NGC 34 has been originally classified as a Seyfert 2 because of the lack of broad component

in its optical spectrum (Véron-Cetty and Véron, 2006). However, others have emphasized the

apparent weakness of the [O III] (5007µm) emission line with respect to the Balmer lines Hα

and Hβ, classifying it as a narrow-emission-line galaxy (e.g., Veilleux and Osterbrock 1987) or

a starburst galaxy (e.g, Mazzarella et al. 1991). Recently, the nuclear spectrum of NGC 34 has

been decomposed in two components: on (≈ 75% of the total bolometric luminosity, Imanishi and

Alonso-Herrero 2004) due to the SF, and the other (≈ 25% of the total) due to the AGN. Previous

studies (Gonçalves et al., 1999) pointed out a ≈ 90% and ≈ 10% contributions, respectively.

The exact nature and origin of NGC 34 optical nuclear spectrum have long been controversial.

However, it is widely accepted that this galaxy is a composite object, whose nuclear spectrum

is related to both the presence of a starburst and an AGN. More precisely, because of its high

luminosity in the IR band (log(LIR) ' 11.42, Gruppioni et al. 2016), NGC 34 was classified as a

LIRG, while its X-ray luminosity (log(L2−10 keV) ' 42, Brightman and Nandra 2011a) indicates

the likely presence of an AGN.

NGC 34 is definitively gas rich, and thus, can sustain its strong central starburst and present

mild AGN activity (Schweizer and Seitzer, 2007). In particular, Schweizer and Seitzer (2007)

carried out a detailed analysis of NGC 34, showing that this galaxy is a late stage merger with

prominent tidal tails. Their results are consistent with a merger of two gas-rich galaxies with
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mass ratio of m/M ' 1/2− 1/3, whose disks are already coalesced with a separation limit of 50

pc for any possible double nuclei configuration (Xu et al., 2014). Fig. 1.13 shows a HST image

of NGC 34, with its single nucleus and tidal tails.

Figure 1.13: A HST image of NGC 34. This galaxy features a single nucleus, containing a blue
central disk with delicate fine structure in the outer parts and tidal tails, indicative of a merger of
two former disk galaxies of unequal mass. By now, these galaxies appear to have completed their
merger. Image Credit: NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collabo-
ration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University).

NGC 34 is a local galaxy at redshift z ' 0.0196, and thus it is located at a luminosity distance

DL ' 85.7 Mpc (h = 0.696, ΩM = 0.286 and ΩΛ = 0.714). Thanks to its vicinity, there are

many detailed data available, from the X-rays (XMM) to the sub-mm (ALMA), for studying and

characterising in detail its activity.

This galaxy is part of the local 12µm sample of Seyfert galaxies (12MGS, Rush et al. 1993),

a sample of AGN unbiased against absorption, given to its MIR selection (see Sec. 1.6). In the

following section, we will show the available data found in the literature and the corresponding

classification.

1.8.1 NGC 34 Spectral Energy Distribution

Recently, Gruppioni et al. (2016) disentangled the AGN and SF component for the majority

of the local sample 12MGS, using a detailed broad-band spectral energy distribution (SED)

decomposition, developed by Berta et al. (2013), including three components: the emission of
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stars, dust heated by stars and a possible AGN dusty torus. In order to constrain the stellar, AGN

and star-formation contributions, they took advantage of data also from the X-ray. Moreover,

the availability of Spitzer-IRS low resolution MIR spectra played a fundamental role to put

constrains on the dusty torus component. Thanks to the very detailed data, available for this

local sample, they could determine the crucial physical quantities that characterize the AGN and

its host galaxy, such as SFR, AGN luminosity, stellar mass and AGN fraction. This has been

possible because of the vicinity of these galaxies.

Fig. 1.14 shows the NGC 34 SED in the 0.1−1000µm range, where all the three components

(i.e., emission of stars, the dust heated by star formation and the AGN dusty torus) are shown,

while Tab. 1.2 reports the main properties of NGC 34 obtained from SED-fitting decomposition.

In particular, the total IR luminosity was obtained by integrating the SED in the 8 − 1000µm

rest-frame, while the SFR was obtained through the Kennicutt 1998 relation, converted to a

Chabrier IMF.

Table 1.2: In this table are shown the main properties of NGC 34, derived from the SED
decomposition from Gruppioni et al. 2016. In the columns are reported the logarithm of the
total IR luminosity, the SFR, the logarithm of the IR luminosity due to SF, the AGN fraction
and the logarithm of the bolometric AGN luminosity (in the IR and X-ray bands), respectively
(Gruppioni et al., 2016).

log(LIR) SFR log(LSFIR ) fAGN log(LAGNbol )IR log(LAGNbol )X−ray

log(L�) M� yr−1 log(L�) log(L�) log(L�)
11.42± 0.05 24.44± 1.79 11.39± 0.07 0.19± 0.10 11.03± 0.05 9.79± 0.17

Thanks to the SED decomposition made by Gruppioni et al. 2016, it is possible to isolate

the torus contribution and calculate the corresponding MIR intrinsic luminosity, interpolating

the SED at 12.3µm and applying the correct K-correction5. The obtained value is logLMIR '
42.13 erg s−1. As Fig. 1.15 shows, NGC 34 appears to follow the Gandhi relation found for

Seyfert galaxies (see Sec. 1.6), reinforcing the hypothesis of a nuclear AGN.

5The K correction ”corrects” for the fact that sources observed at different redshifts are, in general, compared
with standards or each other at different rest-frame wavelengths.
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Figure 1.14: Observed SED of NGC 34, decomposed into stellar, AGN and star-formation com-
ponents. The black filled circles with error bars are the observed data of Gruppioni et al. 2016,
the blue dotted line shows the unabsorbed stellar component, the red dashed line shows the com-
bination of extinguished stars and dust IR emission, the long-dashed green line shows the dusty
torus emission, whereas the pale-blue dot-dashed line shows the dust re-emission, only linked to
SF. Finally, the black solid line is the sum of all components (Gruppioni et al., 2016).
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Figure 1.15: The 2.0 − 10 keV luminosity of the sample analyzed by Gandhi et al. 2009 with
respect to MIR luminosity at 12.3µm. NGC 34 is shown by the cyan circle. This figure is taken
from Gandhi et al. 2009 (see the right panel of Fig. 1.11).
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1.8.2 Optical data

The classical optical method of defining AGN activity type is through BPT diagrams, discussed

in Sec. 1.5, making use of the optical emission lines ratios to determine the dominant ionizing

source in emission-line galaxies, that can be related to photoionization by stars, to a harder

non-thermal source such as an AGN or to collisional excitation by shocks, as may be the case of

LINERs. Brightman and Nandra (2011b) used the scheme introduced by Kewley et al. (2006)

to classify the galaxies in 12MGS. Using the narrow-line ratios reported in Tab. 1.3 for NGC 34,

our source is classified as an AGN according to the [O III]/Hβ versus [N II]/Hα diagram and as

a Seyfert 2 from [O III]/Hβ versus [S II]/Hα and [O III]/Hβ versus [O I]/Hα (see Fig. 1.16).

Table 1.3: NGC 34 BPT diagnostic ratios, reported by Brightman and Nandra 2011a.

[OIII]/Hβ [NII]/Hα [SII]/Hα [OI]/Hα
2.86 1.20 0.52 0.11

Figure 1.16: BPT diagrams for the 12MGS: H II galaxies (in black), composite galaxies (in
cyan) and Sy2s and LINERs (in green) are separated using the classification scheme of Kewley
et al. 2006. NGC 34 is shown in red. The first diagram identifies pure H II galaxies (in black),
H II/AGN composites (in cyan) and pure AGN (in green), but does not distinguish between Sy2s
and LINERs, unlike the other two diagrams (Brightman and Nandra, 2011a).

1.8.3 IR data

Another way for examining starburst and AGN activities is through the relative strengths of the

fine-structure MIR lines in different ionization stages, that can be excited by SF, an AGN or

both. The typical AGN lines are [Ne V] (14.32 and 24.32 µm) and [O IV] (25.89 µm), since

they are not affected by the photoionization of stars, i.e. are weak in spectra of star-forming

regions, given their high ionization potentials, 97 and 84.9 eV, respectively (Genzel et al., 1998).

On the other hand, the lines and features that are mainly produced in star-forming regions are:

polycyclic aromatic hydrocarbons (PAHs, 6.2µm, 11.2µm), [Ne II] (12.8µm), [S III] (18.7µm,
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33.5µm), [Si II] (34.5µm), [O I] (63µm, 145.5µm), [N II] (121.9µm) and [C II] (157.7µm). Other

lines, such as [S IV] (10.5µm), [Ne III] (15.5µm), [O III] (52µm, 57µm) and [N III] (57µm), are

excited by both AGN and SF. These lines cover a wide range of critical densities and ionization

stages, tracing different astrophysical conditions: from Photo-dissociation Regions (PDRs, see

Ch. 3), to stellar/HII regions, to the AGN (Gruppioni et al., 2016). Therefore, combining their

ratios has a huge importance in the definition of AGN versus SF diagnostic diagrams.

Concerning NGC 34, in the near-IR (NIR, 0.8− 2.4µm), relatively weak forbidden emission

lines from [C I], [S III], and [Fe II] were detected, in addition to the usual permitted lines of H I,

H2, and He I, whereas in the MIR (5− 20µm) the spectrum appears to be dominated by strong

emission lines from PAHs and a broad, deep Silicate absorption at 10µm (Schweizer and Seitzer,

2007). Because of the latter features, NGC 34 was declared to be the archetype of a large group

of (mostly Seyfert) galaxies with very red nuclear continua, suggestive of cool dust and strong

PAH emission lines (Buchanan et al., 2006). Riffel et al. (2006) stress that these absorption

features are mainly of stellar origin, which suggests that NGC 34 is not a genuine AGN or that

it has a buried nuclear activity at a level that is not observed at NIR wavelengths. Additional

support for this conclusion comes from the lack of high-ionization lines in its spectrum, i.e. the

two [Ne V] lines and the [O IV] line. As noted previously, these lines are exclusively excited by

AGN and can be considered AGN spectral signatures (Tommasin et al., 2010). Consequently,

Riffel et al. 2006 classified NGC 34 as a starburst galaxy.

1.8.4 X-ray data

One of the most solid evidence for the existence of an AGN in NGC 34 is found in the X-ray

domain. Brightman and Nandra (2011a) developed a systematic approach to the spectral fit-

ting of their sample, in order to determine the intrinsic X-ray continuum slope Γ, the neutral

absorption column density, NH , and the 2 − 10 keV intrinsic source power, L2−10 keV (reported

in Tab. 1.4). The value of the primary power-law slope, Γ, is fundamental to shed light on

the primary X-ray generation process in AGN, that is likely to be produced by the hot corona,

through the Comptonization of the accretion disc photons. Moreover, this intrinsic source con-

tinuum parameter allows to compare different types of sources, such as Seyfert 1s and Seyfert

2s (Brightman and Nandra, 2011a). In addition, they defined a set of unambiguous X-ray AGN

as galaxies with an observed 2 − 10 keV luminosity greater than ≈ 1042 erg s−1. Indeed, these

sources are certainly powered by the accretion of material on to a SMBH, since no local pure

star-forming galaxy has ever presented a 2− 10 keV luminosity above this limit. This criterium

gives a contamination rate of only 3% from star-forming galaxies and appears to be in good

agreement with the optical classification made through BPT diagrams, therefore is an effective

discriminator for AGN activity (Brightman and Nandra, 2011b).

Given the above criteria, Brightman and Nandra (2011b) classified NGC 34 as an AGN with

a luminosity L2−10 keV ≈ 1042 erg s−1, in good agreement with the optical classification made

through BPT diagrams (see Sec. 1.8.2).
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Table 1.4: Principal parameters of the spectral fitting method obtained by Brightman and Nandra
2011a. NH is the neutral gas column density measured in the primary power law, due to the
comptonization of accretion disc photons by the hot corona. Γ is the power-law index of the
primary power law, that was fixed in the fit. L2−10 keV is the intrinsic luminosity in the 2−10 keV
band.

NH Γ L2−10 keV

[1022 cm−2] [erg s−1]

47.0+30.4
−21.2 1.9 1042

1.8.5 X-ray-FIR-radio correlations in NGC 34

Fig. 1.17 shows the FIR-X-ray correlation (see Eq. 1.8) and the Ranalli relation (see Eq. 1.9),

where NGC 34 is indicated in red. We have obtained the FIR luminosity through the value

of the FIR intrinsic quantity (see 1.6), estimated to be around 7.08 × 10−10 erg s−1 cm−2, from

the interpolation of NGC 34 SED (see Fig. 1.14). It can be noticed a difference of at least 3 σ

between NGC 34 observed X-ray luminosity and the expected X-ray luminosity. Furthermore, the

measured SFR of NGC 34 from the SED decomposition is SFR ' 24 M� yr−1, while according

to Eq. 1.9, should be around 100 M� yr−1, if the observed X-ray luminosity was only due to star

formation. These differences suggest that the observed X-ray radiation cannot be explained only

by the star formation, requiring the presence of an AGN. Fig. 1.18, instead, shows the FIR-X-ray

correlation for a sample of galaxies that comprises star-forming galaxies, LINERs and Seyferts

(LLAGN, Terashima et al. 2002), including NGC 34, that is indicated in red. As Ranalli et al.

(2003) point out, the X-ray-FIR luminosity ratio for Seyfert and LINERs generally exceeds that

of star-forming galaxies.

Concerning the FIR-radio relation, NGC 34 appears to have a flux of (67.5 ± 2.5) mJy at

1.4 GHz (Condon et al., 1998), while, as reported above, the intrinsic quantity FIR (see 1.6)

is around 7.08 × 10−10 erg s−1 cm−2. Therefore, we obtained a value for the q parameter (Eq.

1.7) around 2.45, that is consistent with the one found by Clemens et al. 2008 (q = 2.49± 0.02)

and in line with the typical value for star-forming galaxies (q = 2.3±0.02), reported in Sec. 1.7.1.

Overall, we conclude that the the X-ray-FIR correlation suggests the presence of AGN activ-

ity, while the FIR-radio correlation and the q parameter indicate that there is no evidence of an

excess of radio emission due to the AGN.
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Figure 1.17: The 2.0 − 10 keV luminosity of local star-forming galaxies with respect to FIR
luminosity. The squares and the crosses represent the local and supplementary sample taken into
account by Ranalli et al. (2003), respectively, while the dotted lines are the best fits, shown in
Eq. 1.8. NGC 34 is indicated in red (from Ranalli et al. 2003).

Figure 1.18: The 2.0 − 10 keV luminosity of local star-forming galaxies with respect to FIR
luminosity. The squares and the crosses represent the local and supplementary sample taken into
account by Ranalli et al. (2003), while the filled triangles and circles indicate LINERs and Seyfert
galaxies, respectively. NGC 34 is shown in red. The dotted line is the best fit, shown in Eq. 1.8
(from Ranalli et al. 2003).



Chapter 2

Analysis of ALMA data

2.1 An introduction to interferometry

Interferometry involves the combination of signals received from the sky by two or more physically

separated antennas. The signals arrive at slightly different times, according to antenna’s location

in the array. As a result, an interferometer measures the interference pattern produced by the

difference in the radiation path length, which is sinusoidal, by combining the signal from each

antenna with that from every other, thanks to the correlator. Each data, called a visibility,

consists of the brightness of the emission on the angular scale sampled, that is the amplitude of

the sinusoid, and the relative position of that brightness on the sky, related to the phase of the

sinusoid. All these pieces of information are contained in the u-v plane, which is the Fourier-

transform plane of the angular distribution of the source on the sky. Since the complex visibility

is the Fourier transform of the sky brightness distribution in the image plane, the sky brightness

distribution is in turn the inverse Fourier transform of the complex visibility distribution in the

visibility plane:

V(u, v) =

∫ ∫
T (x, y) e2πi(ux+vy) dx dy

T (x, y) =

∫ ∫
V(u, v) e−2πi(ux+vy) du dv

(2.1)

A pair of antennas instantaneously samples a single scale of the sky brightness distribution, which

corresponds to two visibilities in the u-v plane, one at (u,v) and its complex conjugate at (-u,-v),

since visibilities are Hermetian complex numbers. In general, an array of N antennas will have

N(N-1)/2 indipendent baselines (i.e., the distance between two antennas), with each providing

a single pair of points in this plane. How well the image reflects the actual sky brightness

distribution depends on how completely the u-v plane has been covered. That is why a wide

range of angular scales must be traced and this can be done in several ways, such as by including

many pairs of antennas at different distances in an array, taking advantage of the rotation of the

27
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Earth, that, changing the projected separations of the antenna pairs, allows more angular scales

to be sampled, or arranging antennas in several configurations in order to sample different parts

of the u-v plane (Asayama et al. 2016, Taylor et al. 1999).

One of the biggest advantages of interferometry is its extremely high angular resolution,

defined as:

θ ∝
λ

Bmax
(2.2)

In fact, θ is inversely proportional to the largest distance among antennas, that can change

according to the chosen configuration. On the the other hand, one of the main drawbacks is

related to the largest angular scale measured, defined as

LAS ∝
λ

Bmin
(2.3)

where Bmin is the shortest baseline possible and, in an array, it occurs when two antennas are

adjacent to each other. Of course, the antennas cannot be moved physically closer than their

diameters, leaving a hole in the distribution of baselines at short (“short spacing” problem)

and zero (“zero spacing” problem) baseline separations. As a result, spatial information from

baselines shorter than the shortest baseline is not recovered. This problem has a huge impact

on observations of extended objects, particularly those in which the emitted power is dominated

by their large scale structures. In these cases, a possible solution is to take into account also

a more compact antenna configuration (e.g., the Atacama Compact Array in ALMA), that can

trace the shortest baseline, and thus the largest angular scales. Another solution is to fill in the

interferometric short and zero spacings with total power maps, producing complete images.

In addition, an interferometer measures the Fourier transform of the sky brightness distribu-

tion multiplied by the antenna power response, or in other words, its relative sensitivity, which

is higher on-axis. Fig. 2.1 shows an example of a one-dimensional antenna power response1 for

a 12 m diameter parabolic antenna, uniformly illuminated by emission of wavelength ≈ 0.85 mm

(350 GHz). The central Gaussian-like feature is referred to as the primary beam or the antenna

beam size and it has a Half Power Beam Width (HPBW) equal to 1.02λ/D. The antenna power

response reaches a high peak and then a low one repeatedly at ever larger angles. The construc-

tive and destructive interference at larger angles leads to successive sidelobes, whose maxima go

down as the angle increases, and nulls respectively. In particular, at the off-axis angle of 1.22λ/D

radians, the path difference across the antenna diameter will equal one wavelength of the inci-

dent emission. The combination of such emission at the focus leads to destructive interference at

that angle. Therefore, to counteract the angular fall-off of sensitivity due to the primary beam

response, or even to observe a source more extended than the primary beam, an interferometer

must observe adjacent positions, producing a mosaic (Asayama et al., 2016).

Another important feature of an interferometer is its sensitivity (i.e., the rms noise in the

1On the real sky, the antenna power response is two-dimensional, and is obtained by rotating the function
shown in Fig.2.1 about its central axis.
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Figure 2.1: Normalized 1-D antenna power response for a 12-m antenna uniformly illuminated
at 350 GHz (Asayama et al., 2016).

signal. The sensitivity is given by the formula2

rms =
2kB
η Aeff

Tsys
(N(N − 1) ∆ν∆t np)1/2

(2.4)

where Tsys is the brightness temperature equivalent to the flux received from the antenna, that

depends especially on the atmosphere, but also on the instrumental noise and the observed source.

Thus, many factors can improve an interferometer sensitivity: a large number of antennas, a high

spectral and time resolution and a low brightness temperature.

2.1.1 Peculiarities of waves at mm wavelengths

The sub-mm band ranges between 30− 1000 GHz. Radiation at these wavelengths comes from

vast cold clouds in interstellar space (few tens of degrees above absolute zero), associated to

dense regions where star formation takes place, and from some of the earliest and most distant

galaxies in the Universe. Observing at these frequencies allows to study the chemical and physical

conditions in molecular clouds, providing theorists with new constraints on the physical state

of the star-forming cold gas, and gives information on the mechanisms for the formation and

evolution of galaxies. These observations reveal chemical abundances and cooling mechanisms for

2kB is the Boltzmann constant, Aeff the effective area, N the number of antennas and np the number of
polarizations.
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the molecules which comprise these regions, dark and obscured in visible light, but bright in this

part of the spectrum, whose emission is characterized by electronic, rotational and vibrational

transitions. In addition, the sub-mm emission is of particular interest in the study of star

formation in high-z galaxies, because as the dust SED shifts to higher and higher redshifts, we

observe closer and closer to the peak of the dust emissivity. This negative K-correction is such

that it roughly compensates the inverse square law of decreasing flux density with z, due to the

increased luminosity distance. Thus, a galaxy with a fixed IR luminosity will show about the

same sub-mm flux density at any redshift 1 < z < 6 (Decarli et al., 2014). Furthermore, this

band is not affected by external human interference.

On the other hand, the effect of the troposphere, the lowest layer of the atmosphere (at an

elevation of 7 km to 10 km), over these wavelengths cannot be overlooked. In this layer, composed

mainly of N2, O2, water vapour, N2O, CO2, and particulates, such as liquid water and dust in

clouds, the temperature decreases with altitude, clouds form and the effect of convection can be

significant. The ability of the atmosphere to allow radiation to pass through is referred to as

its transmissivity. However, it becomes increasingly opaque as the frequency increases, mostly

because of the absorption by O2 and H2O. In particular, the atmosphere is composed by a dry

component (e.g. O2, O3) and a wet component (e.g. H2O vapour/clouds). Both heavily absorbe

signals from space and, in turn, emit radiation. Consequently, the brightness temperature of an

observed source will be given by:

Treceived = Tsourcee
τatm/cosz + Tatm(1− e−τatm/cosz) (2.5)

where Tatm is the brightness temperature of the atmosphere, z is the zenith distance and τ is

atmosphere opacity.

A significant quantity that must be taken into account is the precipitable water vapour

(PWV), that is defined as the depth of the water vapour if converted to the liquid phase and

enhances opacity as it increases. As PWV changes, variations in the effective electrical path

length take place, because of the variation of the refractive index of the atmosphere. As a

result, the phase of an electromagnetic wave propagating through the troposphere changes. This

phenomenon is referred to as phase noise and its effect is enhanced at increasing PWV values,

that is to say at increasing frequencies. The relationship that links the electrical pathlegth, Le,

and the PWV is given by:

Le = 1.7× 103 PWV

Tatm
≈ 6.3PWV

that, for Tatm ≈ 270 K, can be also written as:

φe ≈
12.6π

λ
PWV (2.6)

where φe is the phase change experienced by an electromagnetic wave that passes through the

troposphere. This relation has been verified experimentally for a number of atmospheric con-
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ditions (Carilli and Holdaway, 1999). PWV variations in the line-of-sight of an antenna lead

to significant delay corrections, up to 0.3 mm/s which is 30°of phase/s at 90 GHz and scales

in phase linearly with frequency. Furthermore, since the refractive index of the atmosphere is

similar for close antennas, the longer a baseline b is, the higher the phase noise appears, following

the formula:

φrms ∝
bα

λ
(2.7)

where α is a parameter dependent on weather conditions.

Clearly, phase noise can be the limiting factor for the coherence time and spatial resolution of

mm interferometers, that is why telescopes for this kind of astronomy must be built on high, dry

sites, such as the 5000-m high plateau at Chajnantor for ALMA, one of the highest astronomical

observatory sites on Earth.

Fig.2.2 illustrates the overall effect of the atmosphere, showing a series of strong absorption

lines that eventually becomes an opaque “pseudo-continuum”, due to the sum of the pressure

broadened line wings of a lot of sub-mm and IR lines of water vapour, and the effect of PWV.

Figure 2.2: Atmosphere transmissivity in the 0-1000 GHz range and the effect of PWV (Asayama
et al., 2016).

2.2 ALMA telescope

The Atacama Large Millimeter/sub-millimeter Array is located on the 5000-m high plateau at

Chajnantor of the Chilean Andes, where the sky conditions are exceptionally dry and clear for

the reasons explained in Sec. 2.1.1. When ALMA is completed, it will cover the wavelength

range from 10 to 0.32 mm (31 − 950 GHz) and will be composed of 66 high-precision antennas
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set up in (Fig. 2.3):

� the Main Array, a large array of fifty 12-m antennas, used for sensitive and high-resolution

imaging, with a minimum baseline of 15 m and a maximum of 16 km. The 12-m Array con-

figurations have been designed so that in the most extended the spatial angular resolution

will be as small as 5 marcsec at 950 GHz.

� the Atacama compact array (ACA), composed of 12 closely spaced 7-m antennas and four

12-m antennas for single-dish (or total power) observations, in order to achieve high-fidelity

imaging of sources with emission on angular scales larger than those corresponding to the

minimum spacing of the 12-m Array. This array configuration is designed to fill missing

spacings from about 0 m to ≈ 30 m, accounting for the “short” and “zero spacing” problem

(Sez. 2.1).

Figure 2.3: 12-m Array on the right and Atacama compact array on the left
(http://www.almaobservatory.org/en/about-alma/origins-of-the-alma-project).

Antennas configuration can be changed, using the two special purpose ALMA antenna trans-

porters. All the antennas have a similar arrangement: each one has one front-end, including

a cryostat, that can accommodate up to 10 receiver bands, an Amplitude Calibration Device

(ACD) and backend electronics. In particular, the ACD measures in each spectral channel, by

consecutive autocorrelation (or total-power) integrations, the Trx, that is the receiver tempera-

ture, and the Tsys, that is the total brightness temperature measured, related to several factors,

such as the atmosphere, the electronics and the observed source. Furthermore, the antennas

of the 12-m array contains a Water Vapour Radiometer (WVR), that measures the amount of

PWV, in order to correct pathlength fluctuations in the troposphere, by observing the emission

of the atmospheric water line within four spectral bands near 183 GHz at a rate of about 1 Hz.

The online WVR correction reduces variance in visibility phases (phase noise) and allows to keep
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coherence in longer-time integration of the visibilities. On the other hand, ACA do not contain

a WVR, since it is so compact that PWV fluctuation does not matter (Asayama et al., 2016).

Each receiver band detects two orthogonal linear polarizations at an observed sky frequency,

that need to be down converted to frequency bands between 0−2 GHz in order to send the signals

to the correlator. The frequency down conversion involves a set of Local Oscillators (LOs). It

is possible to observe only one band at any time, that is chosen according to weather conditions

(the lowest the PWV is, the highest frequency can be observed), up to three can be switched on

simultaneously and rapid switching between those bands is possible (Asayama et al., 2016).

In particular, Band 9 covers the frequency range 602 − 720 GHz (0.50 − 0.42 mm) and

its atmospheric transmission is higly dependent on the PWV. Phase stability also limits when

observations can be made. Therefore, most observations in Band 9 will be done at night during

austral winter. As well as having a higher atmospheric opacity and a less stable atmosphere,

Band 9 provides several challenges for observing: finding sufficiently bright calibrators (most

QSOs are relatively faint at this frequency), requiring accurate pointing for the relatively small

primary beam and the need for the highest level of stability in the rest of the system. Overall,

this band (and also Band 10) is referred to as “out of the ordinary” (Asayama et al., 2016).

Fig. 2.4 and Fig. 2.5 show the trasmissivity of the atmosphere and the brightness temperature

measured by the receiver due to the atmosphere contribution only, respectively.

Figure 2.4: Band 9 zenith transmission as a function of the frequency (in GHz) for PWV =
0.2, 0.5, 1mm (Asayama et al., 2016).
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Figure 2.5: Temperature of the receiver (i.e., Tsys, in K) as a function of the frequency (in GHz)
at zenith for Band 9 with PWV = 0.472 mm (Asayama et al., 2016).

2.3 The ALMA archive

ALMA observations are organized in Cycles (up to now, from Cycle 0 to Cycle 4). An observing

proposal submitted to the ALMA archive will have an associated structure, the so-called Observ-

ing project, set up and divided into several hierarchical steps. Generally, observations are divided

into Science Goals (SG), namely the minimum proposed observational unit, including targets

in the same sky regions that roughly share the same calibration, aimed at reaching a requested

sensitivity in a given angular resolution, largest angular scale and spectral setup. Each SG is

converted into scheduling blocks (SBs), that are the minimum observational units, including tar-

gets in the same sky region and their calibrators, observed with the same instrumental setup.

Generally, each SB lasts ≈ 30min, in order to allow flexibility of scheduling. Each repetition of

the observation of a SB is defined as an Execution Block (EB), that is the minimum observative

and data reduction unit (including all the calibrators for an observative session). Typically, an

observation is composed by several EBs, separated by observations that check atmospherical

conditions. Finally, ALMA data are set up in several tables, called measurement sets (MS), that

contain all the pieces of information about visibilities, that can be reduced and/or displayed with

CASA (Common Astronomy Software Application) software.

The ALMA Archive is at the center of the operations of the telescope array and is designed

to manage the 200 TB of data that are taken each year. It stores the observed raw data and

metadata, as well as the reduced data products and their metadata resulting of the second

Quality Assurance (QA2) processing3. So, from the archive it is possible to download raw

data, calibration scripts and tables, that allow to generate the calibrated data, using the proper

3The ALMA QA2 data reduction team performs for each ALMA science data set a detailed analysis to confirm
that the observations have achieved the science goals requested by the PI, and thus the frequency setup, spatial
setup, and continuum and line detection sensitivity are verified.
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version of CASA, and also reliable science-ready final data product. Ultimately, the large amount

of easily accessible science-grade data are a fundamental resource, since there is strong demand

for new ALMA data.

Nevertheless, early science Cycles might differ in product formats, pipeline availability or

CASA version to run calibration scripts. During Cycle 0 (September 30, 2011 - January 1,

2013), the whole array was on Science Verification phase: only a limited number of antennas,

frequencies, array configurations, observing modes were available and there was no pipeline

(Vilaro and Nyman, 2011). Furthermore, data were calibrated with CASA 3.2-3.4, but there

have been several updates since then. Ultimately, the rule of thumb is to download ALMA Cycle

0 data and reduce them again, before making any scientific consideration.

The data analyzed in this thesis project were carried out during ALMA Early Science Cycle

0 program. Our aim is to obtain good final products, therefore we reduced ALMA archival data,

using the last CASA version (4.5.2), checking for the reliability of the calibration.

2.4 NGC 34: ALMA data reduction and analysis

In this thesis project, archival band 94 ALMA data of NGC 34 have been reduced and analyzed.

These data are part of the ALMA Cycle 0 Early Science program. In addition to what said in Sec.

2.3, the main reason why Cycle 0 data re-processing is strongly recommended, is that a more reli-

able flux calibration can be obtained, owing to the new flux model libraries available. Therefore,

making use of the CASA software, version 4.5.2, we have generated new reduction scripts and

compared them with those of the archive5, analysing step by step the archival calibration and

processing raw data, for the purpose of possibly providing an improvement. Overall, this section

deals with the calibration and analysis of ALMA Cycle 0 observation of the CO(6-5) line emission

and of the dust continuum emission in the nuclear region of NGC 34 (project 2011.0.00182.S). In

particular, we present data properties and the steps followed for the reduction process, focusing

on some peculiarities of the analyzed dataset.

2.4.1 NGC 34 Band 9 observation

NGC 34 observation is divided in six EBs, whose main features are summarized in Tab. 2.1.

Xba3, Xd36, Xec9, X334 and X4c7 are characterized by an extended antennas configuration (see

Fig. 2.6), while the last EB, X43b, has both a compact and an extended configuration and a

larger number of antennas (see Fig. 2.7). In order to make Band 9 observations, PVW must

have quite small values: looking at Tab. 2.1, it is evident that these data are affected by minimal

atmospheric absorption, with the average PWV ranging from 0.29 to 0.59 mm. The four spectral

windows are centered at the sky frequencies of 679.8, 678.0, 676.3 and 674.3 GHz, respectively,

each with a bandwidth of ≈ 2 GHz and are divided in 128 channels (time division mode). The

4See Sec. 2.2.
5The archival data were published by Xu et al. 2014.
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Table 2.1: Main properties of the ALMA Cycle 0 observations of NGC 34. Columm (1) -
observation date; (2) - identificative archival name of the EBs; (3) - observation time; (4) -
antennas configuration; (5) - mean amount of PWV; (6) - number of antennas; (7) - the system
temperature mean value.

Date EBs Time [UTC] Configuration Avg PWV # Ant Tsys
[mm] [K]

2012-05-20 Xba3 09:17:15-10:35:34 E 0.39 16 850
2012-05-20 Xd36 10:48:14-12:06:33 E 0.35 16 653
2012-05-20 Xec9 12:22:31-13:07:05 E 0.34 16 654
2012-05-21 X334 09:47:04-11:06:00 E 0.31 16 634
2012-05-21 X4c7 11:20:00-10:41:09 E 0.29 16 528
2012-08-25 X43b 03:30:38-05:01:41 E+C 0.59 28 1058

Figure 2.6: Extended antenna configuration (EB X334).



2.4. NGC 34: ALMA DATA REDUCTION AND ANALYSIS 37

Figure 2.7: Extended and compact antenna configuration (EB X43b).

total on-target integration time was 2.25 hr. The calibrators observed are the QSOs 2348-165

and 3C 454.3, and the asteroid Pallas6, and are the same for all the EBs.

2.4.2 An overview on calibration

A two-element correlation interferometer measures the spatial coherence function of the radiation

field at a location given by the antenna separation, or baseline, measured in wavelength. All these

measurements can be considered to lie upon a plane. This spatial coherence is referred to as true

visibility function (V ijtrue). An interferometer samples the measured visibility function (V ijobs),

obtained by recording data collected from each antenna pair, that differs from the true visibility

for a multitude of reasons, such as antenna tracking inaccuracies, the effect of atmosphere and

problems related to electronics. The calibration consists in finding out the corrections (i.e., gains)

to apply to the observed visibility, in order to recover the true visibility (Taylor et al., 1999).

The basic calibration formula can be written as:

V ijobs(ν, t) = Gij(ν, t)V ijtrue(ν, t) + εij(ν, t) + ηij(ν, t) (2.8)

where Gij are the baseline-based complex gain, εij is a baseline-based complex offset and ηij is

6Pallas, minor-planet designation 2 Pallas, is the second asteroid to have been discovered (after Ceres), and it
is one of the largest asteroids in the Solar System, located in the asteroid belt.
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a stochastic complex noise. Two hypotheses have to be considered:

� nearly all of the corrections are antenna-based: all the effects that occur in the signal

path are associated with one particular antenna, from the troposphere above the antenna,

through all of the electronic processing along the antenna path, up to the correlator;

� frequency corrections are time-independent, while time corrections are frequency-independent.

The baseline-based complex gain Gij can be approximated by the product of the two associated

antenna-based complex gains gi and gj , that are often described by their amplitude and phase

components, since virtually all of the calibrations operate on amplitude and phase, rather than

real and imaginary parts of the visibility function:

Gij(ν, t) = gi(ν, t)g
∗
j (ν, t) = ai(ν, t)aj(ν, t)e

i(φi(ν,t)−φjν,(t)) (2.9)

where ai(ν, t) is an antenna-based amplitude correction and φi(ν, t) is the antenna-based phase

correction. Interferometric ALMA observations rely upon accurate and trustworthy calibration

of the electronics and atmospheric phase and amplitude variations in order to produce high

quality scientific data. Short observations (scans, that is to say the fundamental observational

piece) of radio sources as calibrators are included in observing programs in order to determine

these variations with time and frequency. Therefore, Gij for each of the N(N-1)/2 baselines can

be determined by comparing well known calibrator sources to models taken into account, that

are the Fourier transform of the expected calibrator image:

Gij = Vobs/Vmodel (2.10)

Quasars are among the best radio source candidates because their emission is bright, lack spectral

features and are point-like, with a size smaller than 0.01 arcsec.

2.4.3 A typical observation

Fig. 2.8 illustrates the observing schedule of the EB X334, showing that a typical observation

starts with a bandpass calibration, in order to measure the spectral response of the system.

Therefore, the bandpass calibrator should be a bright source with simple spectral properties,

such as a bright quasar, that is a point-like source with no emission or absorption lines and a

reasonably flat spectrum. The flux (or amplitude) calibration is taken, by observing the flux

of a well-known source, that will be compared with its own established model flux, in order to

obtain the scaling factor (from Kelvin to Jansky) to apply to all the other sources in the SB.

Ideally, these sources should be small with respect to the synthesized beam, so as not to resolve

the source structure. At mm-wavelengths, quasars have a very variable flux density, thus solar

system objects, such as planets and moons, are usually preferred as flux calibrators. Finally,

the phase calibrator is observed with the purpose of calibrating the phase variation of the target
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during an observation, caused by the unpredictable variations of the atmosphere. The phase is

expected to change much more rapidly in time than the amplitude. Therefore, this calibrator

is observed several times, before and after the observation of the science target, and the phase

corrections to apply to the target are computed by a linear interpolation in time. Furthermore,

since the phase varies on small scales on the sky, this calibrator must be as close as possible to

the target, so their signals will have similar paths through the atmosphere (van Kempen et al.,

2014). In addition, the receiver temperature and the sky emission are measured by comparing

the signals on the sky, ambient and instrumentation. This is known as atmospheric calibration,

required to correct for differences in the atmospheric transmission between the science and the

celestial amplitude calibrators, and is normally done during observations, both near the science

target and the flux calibrator (Asayama et al., 2016).

Figure 2.8: Observing schedule for X334: the bandpass calibration is indicated in red, the flux
calibration in green and the phase calibration in cyan, while the target calibration is shown in
blue. The observations made to check the pointing precision are indicated in orange, whereas the
atmospheric calibration in yellow.

2.4.4 Data calibration

After having imported the data stored in the archive, the reduction of the six EBs is done thanks

to the reduction scripts generated by CASA 4.5.2 and can be divided in these main steps:

1. Editing;

2. Tsys and WVR corrections;
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3. Antenna positions check;

4. Frequency-depend calibration (i.e., bandpass calibration);

5. Time-dependent calibration (i.e., phase calibration);

6. Modeling the flux calibrator and amplitude calibration;

7. Application of the calibration tables obtained.

After the application of the calibration tables, the EBs will be concatenated to obtain only one

measurement set, where cleaning algorithm is applied (see Sec. 2.5). In the following, the several

steps involved will be explained in details.

Editing

Data editing, also known as flagging, consists in removing data affected by spurious fluctuations

related to instrumental problems (e.g., an antenna with a high Tsys), that cannot be solved by

the calibration. In addition, there is a group of initial flags, which can be done “a priori” (i.e.,

without inspecting data), comprising:

� Pointing and Atmosphere: scans performed to check the poiting precision and for the

atmosphere calibration, which are automatically saved in a subtable of the main table that

gathers all the data);

� Autocorrelations: the combination of the signal of each antenna with itself, flagged owing

to its high noise;

� Shadowing : the removal of data by antennas that were partially or totally shadowed during

the observations, according to the declination of the sources;

� Edge channels: the edge channels of each spectral window, that appear to be more affected

by noise than the central channels.

Tsys and WVR corrections

At millimeter and submillimeter wavelengths, the atmosphere both attenuates signals and acts

as a black body emitter, adding additional noise to any measurements. This effect depends

on frequency, elevation, the column of wet and dry constituents of the atmosphere, and the

temperature of the atmosphere.

The ACD (see Sec. 2.2) samples the receiver temperature Trx and the total brightness

temperature Tsys every 5-15 minutes, depending on the observed frequency, since the opacity

of the atmosphere becomes higher and higher, as the frequency increases (see Sec. 2.1.1). A

higher level of opacity, related to the presence of an emission line, means that the signal is more

absorbed and this leads to a higher value of Tsys. For instance, Fig. 2.9 shows all the antenna
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responses for each spectral window of the EB X334, as a function of frequency at a given time.

It can be noticed that all the antenna responses are characterized by the same features, that

represent the typical atmosphere emission lines. This can be verified by looking at the black line,

that represents the trasmissivity of the atmosphere (see Sec. 2.1.1), because it declines exactly

in corrispondence of the emission lines. In particular, this curve is drawn such that 0% is at the

bottom and 100% is at the top of the y-axis, regardless of what plotrange is set for the amplitude

and is produced by taking into account a median value of PWV. The trasmissivity in the four

spectral windows is equal to 54%, 52%, 56% and 57%, respectively.

Figure 2.9: Tsys of the EB X43b, colorized per antenna, as a function of frequency, at a given
time, in the four spectral windows. The solid and the dashed lines represent the two polarizations,
XX and YY. The black line on the top indicates the trasmissivity, that in the four spectral windows
is equal to 54%, 52%, 56% and 57%, respectively.

Ultimately, the Tsys calibration corrects for the effects of the atmosphere opacity, that causes

signal attenuation and fake absorption lines in the spectra. Once the Tsys gains have been

obtained, it is useful to inspect them, in order to check for the presence of atmospheric emission

features and unusual antenna behaviours. For example, in the EB X43b the antenna DV 03

measured a much higher Tsys than all the others. This was likely due to a malfunction, and thus
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we decided to flag it (Fig.2.10).

Figure 2.10: Tsys of the EB X43b, colorized per antenna, as a function of frequency, at a given
time, in the four spectral windows. The solid and the dashed lines represent the two polarizations,
XX and YY. It is evident that the antenna DV03 (in orange) measures a Tsys far higher than
all the others.

The WVR (see Sec. 2.2), instead, corrects the observed visibilities for the phase variations on

short timescales, the phase noise (see Sec. 2.1.1), depending on the amount of PWV. Atmospheric

models are used to convert the emission measured into delay changes, that is given by Eq.2.6.

This estimated delay difference between any two antennas is removed from the visibility phase,

that will appear slightly less affected by dispersion. Fig. 2.11 shows the phases before and after

the WVR corrections, in blue and in green respectively, for each antenna in the EB X334. In

general, it can be noticed that the phase fluctuation is more enhanced before the application of

the corrections. Nevertheless, there is only a slight improvement between the blue and the green

curves. Indeed, both the phase delay and the correction applied are inversely proportional to

the observed wavelength, thus in Band 9 observations the effect of PWV is more significant and

it is difficult to see the difference between corrected and not corrected visibilities, especially for

the longest baselines.
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Figure 2.11: Phase as a function of time before and after the WVR corrections, in blue and in
green respectively, for each antenna in the EB X334. The phase fluctuation of the blue curve is
slightly enhanced with respect to the greeen curve.
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Antenna positions check

The relative location of each antenna (i.e., the relative positions of their focal points) must be

known to within a fraction of the observing wavelength, about 50 microns. The baseline runs

(as they are called) are executed by the ALMA staff at least once per week, but also whenever

one or more antennas change pad locations. The observations cover a wide range of elevation

and azimuth to determine the three spatial offsets of the antenna position. Because of weather

conditions and other array operation constraints, the position of a recently moved antenna may

not be updated for several days. Consequently, the correlator delay model will be incorrect and

the visibility phase for data associated with this antenna can have significant phase variations

(Asayama et al., 2016). For example, after having completed all the calibration steps, the an-

tenna DA41 appeared to have the same phase offset in all the data collected during May, 2013.

Furthermore, the images obtained concatenating all the EBs were characterized by parallel band

features, that were evidently related to an error in phase calibration. That is why, we came up

with the solution that DA41 position had to be corrected. After having applied this correction,

the phase offset and the parallel features are less visible (Fig.2.12-2.13 and Fig.2.14-2.15).

Figure 2.12: Phase as a function of time before
correcting DA41.

Figure 2.13: Phase as a function of time after
correcting DA41.

Frequency-dependent calibration

In order to correct the variation of phase and amplitude as a function of frequency due to the

electronics, the bandpass calibration is applied, using the CASA task bandpass. As introduced

in Sec. 2.4.3, the bandpass calibrator must be a bright QSOs, observed at the beginning of

the observation, that allows to obtain a high signal-to-noise ratio (SNR) in a short observation

time-scale. In our data, the bandpass calibrator is the QSO 3C 454.3.

The frequency gains are found by comparing the bandpass calibrator to its model, a point-

like source, characterized by a unitary amplitude and a phase equal to 0, and then applied to all

sources, including the science target. Since we assume frequency variations as time-indipendent

(see Sec. 2.4.2), these gains can be worked out averaging over all integration time, maximizing

the SNR. Actually, in order to avoid signal decorrelation, before solving for bandpass, the phase



2.4. NGC 34: ALMA DATA REDUCTION AND ANALYSIS 45

Figure 2.14: Continuum image before correcting
DA41 (see Sec. 2.5).

Figure 2.15: Continuum image after correcting
DA41 (see Sec. 2.5).

corrections as a function of time, on very short timescale, must be calculated, using the gaincal

task, in order to apply them “on the fly” when calculating bandpass ones. Since our data are

Band 9 observations, the bandpass calibrator 3C 454.3 appears to be very weak and the signal-to-

noise ratio of the solutions found very low. Consequently, we found phase gains every 60 s (using

the solint=60s parameter), instead of for any integration (solint=int), in order to maximize the

SNR, and we put the signal-to-noise threshold equal to 1.5, instead of 3, the recommended value,

to find as many solutions as possible. Finally, in order to maximize the bandpass gain SNR,

we computed one bandpass solution every 30 channels (solint=’inf,30ch’ ), instead of for any

channel.

The observed visibilities will be corrected by interpolating the bandpass gains with a broken

line. This can be considered a big approximation, because the randomatic effect of noise can be

overlooked. Another possibility is to carry out a polynomial fit for every channel7 (using band-

type=BPOLY parameter, instead of bandtype=B). We compared the two different approaches,

that are shown in Fig.2.16 for the antenna DV08 of the EB X4c7, where the broken lines rep-

resent the B solution for the two polarizations (XX in blue and YY in green), while the curves

represent the BPOLY solution for the two polarizations (XX in black and YY in cyan). It can

be noticed that at certain frequencies, the BPOLY interpolation appears to oscillate too much

with respect to the B one, probably because of the lower SNR of the solutions. That is why,

finally we decided to apply the B solution type.

Nevertheless, since 3C 454.3 is very weak, at the end of the calibration process, after the

concatenation of the six EBs, we found again bandpass solutions, using the phase calibrator.

This procedure out of the ordinary is added at the end, because when the visibilities are already

7Here it was not possible to average channels, because otherwise the polynomial fit did not work. However,
this means that the solutions SNR is lower.
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Figure 2.16: Comparison between the two bandpass solution for the antenna DV08 in the EB
X4c7. The broken lines represent the B solution for the two polarizations (XX in blue and YY
in green), while the curves represent the BPOLY solution for the two polarizations (XX in black
and YY in cyan)

calibrated, it could be easier to track the systematic offset due to the electronics.

Time-dependent calibration

Once the corrections in frequency have been found, it is necessary to work out the time-dependent

gains, due to the atmospheric turbolence, using the CASA task gaincal. Time-dependent gains

are obtained by comparing the phase calibrator with its point-like source model, applying on

the fly the bandpass solutions calculated before, in order to avoid signal decorrelation, when

averaging in frequency. As said in Sec. 2.4.3, the phase calibrator is typically a QSOs with

known characteristics, such as position, spectrum and flux-density, that has to be as close as

possible to the observed target. In our data, the phase calibrator is the QSO 2348-165. Since

these gains are assumed to be frequency-independent (see Sec. 2.4.2), it is possible to average over

all frequencies to obtain a higher SNR. In addition, the phase gains are found by computing one

solution every 60 s (one for each polarization and spectral window) to obtain a more statistically

significant solution. Finally, the amplitude solutions are calculated, computing one solution for

both polarizations. The possible signal loss due to decorrelation is avoided thanks to the previous

phase correction. Once the phase calibrator has been corrected, it has flat amplitudes and phases
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at zero.

Modeling the flux calibrator and amplitude calibration

This step consists in modeling the flux calibrator by comparing it with its own model flux, using

the CASA task setjy, with the purpose of obtaining the scaling factor (from Kelvin to Jansky)

to apply to the other calibrators (i.e., bandpass and phase calibrators), and thus carrying out

the amplitude calibration.

The model applied to the flux calibrator fills the Model column of the MS with the cor-

responding information of the source. For well-known flux calibrators, the task automatically

computes the flux density as a function of time, frequency and baseline length. The flux cali-

brator models are stored in Butler-JPL-Horizons standards, where these objects are currently

modeled as uniform temperature disks (this may oversimplify objects, in particular asteroids),

on the basis of their ephemerides at the time of the observation (Butler, 2012). We have applied

the “Butler-JPL-Horizons 2012” model to Pallas, the asteroid used as flux calibrator. Fig. 2.17

compares this calibration Pallas model amplitude as a function of the UV distance (i.e. the in-

creasing baseline length for each antenna pair), represented by the upper curve, with the archival

model (“Butler-JPL-Horizons 2010”), the lower curve. It is evident that there is a difference of

about 20% between the two cases. Indeed, Butler 2012 contend that many of the models used

to calculate the flux density calculation of solar system bodies in the 2010 version were incorrect

with respect to the new ones of 2012 (i.e., Butler-JPL-Horizons 2012), that use new brightness

temperature models and a new flux calculation code that replaces the “Butler-JPL-Horizons

2010” standard used before. Concerning Pallas, its new constant brightness temperature value

is 189 K, obtained from a combination of Chamberlain et al. 2009 and Altenhoff et al. 1994,

while previously its value was 164 K (unknown provenance). This means that the flux densities

calculated with “Butler-JPL-Horizons 2012” are expected to give higher and more precise values

of the calibrators flux density, that is to say more precise values of the object flux densities.

Finally, using the CASA fluxscale task, the scaling factor from Kelvin to Jansky, obtained

thanks to the flux calibrator, is applied to the bandpass and phase calibrators, since the raw

correlation amplitudes are in Kelvin units, but the flux density is measured in Jansky. In

Tab. 2.2 the bandpass and phase calibrators fluxdensities obtained by this work calibration

are compared with the ones reported in the archive. Overall, our fluxdensity values are 20%

higher than those from archive. The error in the flux calibration is estimated to be ≈ 15% for

Band 9 data (Asayama et al., 2016).

Ideally, the flux calibrators should be small with respect to the synthesized beam, so as not

to resolve the source structure. However, solar system objects structures may be moderately

resolved. For example, during the observation of the last EB, X43b, the flux calibrator, Pallas,

was by far nearer to Earth (d ≈ 2.154 UA, while, for instance, in the EB X334 d ≈ 3.566 UA),

and, as a result, it appears more resolved (Fig. 2.18-2.19). As said before, the Solar System ob-

jects are modeled as uniform temperature disks, and thus their Fourier transform in the visibility
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Figure 2.17: Comparison between the model amplitude as a function of UV distance for our data
reduction (upper curve) and the archival one (lower curve). The two curves are colorized per
spectral window. It is evident that there is a difference of about 20% between the two cases.

Table 2.2: This table compares the flux density values obtained by this work calibration with
the one reported in the archive. 3C 454.3 is the bandpass calibrator, while 2348-165 is the phase
calibrator. All the values are reported in Jy. The curves are colorized per spectral windows.

This work Archive This work Archive
EBs 3C 454.3 3C 454.3 2348-165 2348-165
Xba3 0.57 0.45 0.56 0.41
Xd36 0.52 0.41 0.53 0.40
Xec9 0.52 0.43 0.47 0.37
X334 0.73 0.63 0.86 0.72
X4c7 0.55 0.44 0.43 0.35
X43b 0.96 0.82 0.97 0.73



2.4. NGC 34: ALMA DATA REDUCTION AND ANALYSIS 49

plane is a Bessel function. According to the Bessel function theoretical shape, the flux density

drops down to zero and then rises again, as is shown in Fig. 2.18, while the phases have a jump

at ±180°. In 2.19 the drop is not visible because Pallas is less resolved. Null flux density value

cannot be used for computing the K/Jy scaling factor. In this case, the time-dependent gains of

the flux calibrator have to be computed on a subset of antennas, excluding the outermost ones

(i.e. the antennas corresponding to the largest baselines).

Figure 2.18: Flux calibrator model in X43b. Figure 2.19: Flux calibrator model in X334.

Application of the calibration tables obtained

Once all the correction factors have been computed computed, we applied the bandpass, flux

calibrated amplitude and phase solutions to the observed visibilities. The corrected data were

then inspected, in order to check the reliability of the calibration procedure, by making plots of

the corrected phase and amplitude as a function of time, colorized per field (Fig. 2.20 and Fig.

2.21). As expected, the bandpass (in black) and phase (in green) calibrators have flat phases,

centered at zero and a constant amplitude, since they are modeled as point-like sources.

In order to check the frequency-dependent calibration, the amplitude of the phase calibrator

as a function of frequency is shown in Fig. 2.22, 2.23, 2.24 and 2.25 for spectral windows 0, 1, 2

and 3, respectively. As expected, the amplitudes appear generally constant all over the bandpass.

Before concatenating the six EBs and starting with the imaging process, we further inves-

tigated the quality of this work calibration, by producing the QA2 (see Sec. 2.3) diagnostic

plots. For instance, Fig. 2.26 and 2.27 show two significant diagnostic plots, representing the

amplitude and phase gains, respectively, as a function of time for each antenna. Generally, when

low amplitude gains are found, the corresponding antenna is flagged. Concerning phases, when

the gains show a meaningful phase scatter, it is recommended to check their effect on corrected

data. Fig. 2.26 and 2.27 show that overall the computed gains are stable for all the antennas.
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Figure 2.20: Phase of the corrected visibilities as a function of time for the EB X334, colorized
per field: the bandpass calibrator is indicated in black, the flux calibrator in orange, the phase
calibrator in green and the target in brown.

Figure 2.21: Amplitude of the corrected visibilities as a function of time, colorized per field: the
bandpass calibrator is indicated in black, the flux calibrator in orange, the phase calibrator in
green and the target in brown.
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Figure 2.22: Phase calibrator amplitude as a
function of frequency in spw 0, colorized per po-
larization.

Figure 2.23: Phase calibrator amplitude as a
function of frequency in spw 1, colorized per po-
larization.

Figure 2.24: Phase calibrator amplitude as a
function of frequency in spw 2, colorized per po-
larization.

Figure 2.25: Phase calibrator amplitude as a
function of frequency in spw 3, colorized per po-
larization.
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Figure 2.26: Amplitude solutions as a function of time for each antenna, colorized by polarization.

Figure 2.27: Phase solutions as a function of time for each antenna, colorized by polarization.



2.4. NGC 34: ALMA DATA REDUCTION AND ANALYSIS 53

Lastly, we concatenated the six EBs, obtaining one final measurement set. Fig. 2.28 shows

the part of the spectrum of NGC 34 with the CO(6-5) emission line, clearly visible at the ob-

served frequency νobs = 678.181 GHz, while Fig. 2.29-2.30-2.31 show the continuum emission.

The emission line has a broadened double horn profile, which suggests that the gas emitting

region is rotating.

Figure 2.28: Spectrum of NGC34 in spw 0:
CO(6-5) emission line.

Figure 2.29: Spectrum of NGC34 in spw 1: con-
tinuum emission.

Figure 2.30: Spectrum of NGC34 in spw 3: con-
tinuum emission.

Figure 2.31: Spectrum of NGC34 in spw 3: con-
tinuum emission.
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2.5 Imaging

As the interferometer observes a point on the celestial sphere, the rotation of the Earth causes

the u and v components of the baseline to trace out an elliptical locus. For an array of antennas

the ensemble of elliptical loci is referred to as the transfer function or sampling function, s(u, v),

which is a function of the declination of the observation as well as the antenna configuration. The

transfer function indicates the values of u and v at which the visibility function is sampled, in

particular it traces the response of the array as a spatial frequency filter. The visibility function

for a point source at the (l,m) origin is a constant in u and v, that is why the Fourier transform of

the transfer function indicated the response to a point source, i.e., the synthesized beam (Taylor

et al., 1999). This means that the interferometer elements are sensible to the direction of arrival

of the radiation, that is referred to as primary beam effect. Eq. 2.1 then becomes:

V(u, v) =

∫ ∫
A(x, y)T (x, y) e2πi(ux+vy) dx dy (2.11)

where A(x, y) is the primary beam pattern. Consequently, the response of the antennas in the

array must be corrected for during imaging to get accurate intensities for source outside the core

of the beam and this procedure is called cleaning.

2.5.1 Cleaning

The Fourier domain is sampled at discrete points, so the measured and (now) calibrated visibil-

ities are given by the convolution between the true visibilities and the sampling function, that is

equal to 1 at points where visibilities are measured and equal to 0 where they are not:

Vmeas(u, v) = s(u, v)Vtrue(u, v) (2.12)

The incomplete sampling of the u-v plane causes alias in the dirty image, which are copies of

the source, apparently unnoticeable from the real one. The Fourier transform of the sampled

visibilities, that is named dirty image, gives the true sky brightness convolved with the Fourier

transform of the sampling function, called dirty beam, that is the instrument point spread function

(PSF). Therefore, the cleaning procedure consist in doing the deconvolution for the dirty beam,

using CASA clean task, with the a priori hypothesis that the observed source is composed by N

point-like sources, following several steps:

� the residual map is initialized to the dirty image;

� the pixel that corresponds to the maximum emission is located in the residual map and seen

as a point-like source, then a Dirac delta function is saved among the clean components;

� each clean component is convolved with a fraction of the dirty beam (10-15%) and sub-

tracted from the residual map;
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� these steps are repeated, considering other peaks, until a flux threshold or a number of

iterations have been reached;

� finally, the saved clean components are convolved with the clean beam, obtained by fitting

the dirty beam with a gaussian curve, and restored to the residual map.

This procedure is partially interactive because, thanks to the viewer task, it is possible to draw

a region, that is referred to as a mask, on the initial image, where the peaks are likely to be found.

The interferometer resolution is given by the Fourier transform of the sampling function. Ac-

cording to Nyquist theorem, to result in a faithful sampling of the instrument resolution, the

pixel size (called cellsize) must be ≈ 1/5 of the synthesized beam. We have chosen a cellsize

equal to 0.03 arcsec.

Each visibility has its own weight, that depends on the inverse of its noise variance, related to

the Tsys measured. Furthermore, some u-v ranges are sampled more than others. The clean task

allows to choose which weight to associate to each baseline, thanks to the weighting parameter.

For weighting=’natural’, visibilities are weighted only by the data weights. Even though this

generally produces images with the poorest angular resolution, since short baselines are sampled

more than the long ones, we have chosen this option because it produces images with the lowest

noise. Other two possibilities are weighting=’uniform’ and weighting=’briggs’. For the former,

the dependence of spatial-scale sensitivity on the density of visibilities in uv-plane is removed

(i.e., even though short baselines are sampled more than the long ones, they are associated to

the same weight); this sharpens the resolution and reduces the sidelobe level in the field-of-view,

but increases the rms imagine noise. The latter is a middle way between the other two options,

introduced to bridge the extremes (Asayama et al., 2016).

2.5.2 The phase calibrator image

Before starting with the cleaning procedure, we have checked the image of the phase calibrator,

shown in Fig. 2.32, in order to verify the quality of the calibration. As said in Sec. 2.4.3,

at (sub)millimeter wavelengths, generally the phase calibrator is a bright quasar, that, once

calibrated, should appear as a point-like source in the image plane, as Fig. 2.32 confirms. Since

it is a point-like source, the flux density must be given by the peak value: the peak value of

our image is ≈ 0.60 Jy, in line with the calibration results. The rms can be estimated by the

signal-free portion of the image and it will be always bigger than the theoretical value given by

Eq. 2.4, owing to the calibration errors. In this image, the rms is ≈ 2.0mJy. In general, the

flux uncertainties are given by the formula

σ =
√

(0.15F )2 + rms2 (2.13)
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where F is the flux, and they are dominated by the flux calibration error. Tab. 2.3 compares

our peak value and its corresponding rms with the archival results. It can be noticed that, as

already said in Sec. 2.4.4, 2348-165 flux density is at least a 20% higher than the one reported

in the archive8. Furthermore, despite the higher value obtained for the phase calibrator flux, the

rms values are consistent: this implies that our image is improved with respect to the archival

one.

Figure 2.32: Image of the phase calibrator 2348-165. The peak flux is 0.60 ± 0.09 Jy, while the
rms is ≈ 2.0mJy.

Table 2.3: This table compares the phase calibrators peak value and its corresponding rms
obtained by this work calibration with those reported in the archive.

2348-165 Peak flux rms
[Jy] [mJy]

This work calibration 0.60± 0.09 2.0
Archival calibration 0.38± 0.06 1.0

8Actually, here the difference is ≈ 40%. Indeed, in the archival calibration, the flux density of the phase
calibrator was fixed to the value of 0.38 Jy, on the basis of 2348-165 spectral index and flux measurements,
estimated by SMA (Submillimeter Array) observations, made in may 2013.
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2.5.3 Self-calibration

Calibration is the most important factor in determining the quality of the final deconvolved image,

because small quasi-random errors in the amplitude and phase calibration of the visibility data

produce an increased level of noise in the weaker regions of the image, and other systematic

errors can cause defects in the final image. The ordinary calibration procedure described in Sec.

2.4.2 is based on observations of well-known radio sources in order to determine gains that will

be applied to observed data. The gain for any array element has two contributing components:

a slowly varying instrumental part and a more rapidly varying part due to atmosphere, that

nearly always dominate the overall variation of the element gains. The solutions obtained for

the phase calibrator are transferred to a different (even though near) position in the sky where

the target is located, at a different time and the linear interpolation is an assumption (Asayama

et al., 2016).

Hence, self-calibration is another method like the cleaning, that is used to interpret the

visibility data. This procedure is based on the idea that objects with enough signal-to-noise

ratio can be used to calibrate themselves. In order to do this, a model of the sky intensity

distribution of the source is needed and can be obtained by carrying out an initial imaging of

the source. The procedure can be iterated as model improves and usually starts by calibrating

only the phase and finally, if it is needed at all, the amplitude. A typical procedure in which the

model is iteratively refined is the following:

� an initial image of the source is made following the cleaning procedure and the deconvolu-

tion builds a model;

� data are calibrated to match to the model, finding solutions averaged in time (gaincal task);

� the new calibration is applied (applycal task);

� a new image of the better calibrated data is made;

� if the image is improved (higher signal-to-noise ratio), the procedure can be iterated.

Even if the source is bright enough, some degree of averaging is usually needed. In general, the

time interval chosen to average data must be longer than a scan.

We have made the image of the emission in spectral window 0 by selecting only the channels

were the emission line was brighter, built a model and found phase solutions averaged on 600

s (i.e., approximately two scans). Then, we iterated again and found phase and amplitude

solutions, averaging 1200 s and combining scans. Fig. 2.33, 2.34 and 2.35 illustrates the steps

of the self-calibration applied: the first panel shows the initial image, the second shows what

changed after the application of the phase correction and the last the final image, after having

applied the phase and amplitude corrections. The contours [-1, 1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 24,

30, 40] are set in units of the rms noise level of the image.
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Figure 2.33: Image of the emission in spw 0, obtained by selecting only the channels were the
emission line was brighter, before applying the self-calibration. The contours [-1, 1, 2, 3, 4, 6,
8, 10, 12, 16, 20, 24, 30, 40] are set in units of the rms noise level of the image.

Figure 2.34: Image of the emission in spw 0, obtained by selecting only the channels were the
emission line was brighter, after the self-calibration of the phase. The contours [-1, 1, 2, 3, 4,
6, 8, 10, 12, 16, 20, 24, 30, 40] are set in units of the rms noise level of the image. It can be
noticed that there is an improvement with respect to Fig. 2.33.
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Figure 2.35: Image of the emission in spw 0, obtained by selecting only the channels were the
emission line was brighter, after the self-calibration of the amplitude. The contours [-1, 1, 2, 3,
4, 6, 8, 10, 12, 16, 20, 24, 30, 40] are set in units of the rms noise level of the image.

2.5.4 Analysis of fluxes, maps and moments obtained

Each spectral window has 128 channels and a 2 GHz width, therefore the channel resolution is

≈ 30 MHz. Frequency/channels and velocity are linked by the relation:

∆v

c
=

∆νchan
ν

(2.14)

Therefore, the velocity resolution is ≈ 14 km/s. We created a data cube, a three-dimensional ar-

ray of images, where the x, y and z axis are RA and DEC coordinates and channel/frequency/velocity,

respectively, binning into channels with a width of ≈ 34z km/s, in order to increase the signal-

to-noise ratio. After having subtracted the continuum emission, thanks to the uvcontsub task,

we obtained the channel map of the CO(6-5) emission line, showed in Fig. 2.36, where contours

in units of the rms noise level of the image are set. The rms of this image is ≈ 6.7 mJy.

Fig. 2.37 shows the asymmetrical double horn line profile.

The CASA Viewer can collapse a data cube into an image, in particular there are two math-

ematical formula particularly important:

� Moment 0, that allows to obtain the integrated emission of the line:∫
Sv dv [Jy km s−1] (2.15)
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Figure 2.36: Channel map of the CO(6-5) line. The wedge on the right shows the color-scale of
the map in Jy beam−1. The rms of this image is ≈ 6.7 mJy.

Figure 2.37: Asymmetrical double horn profile of the CO(6-5) emission line. The x-axis indicates
the velocity in kms−1 in the BARY (Solar System Barycenter) reference frame, while the y-axis
the corrisponding flux.
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� Moment 1, that indicates the velocity value in the various regions of the source:∫
Sv v dv

Sv dv
[km s−1] (2.16)

In order to avoid to sum the rms during the integration of Moment 1, we put a flux threshold

equal to ≈ 3− 5 rms (in our case, we chose a threshold of 30 mJy).

Fig. 2.38 shows the Moment 0 of the line emission, where contours in units of the rms noise

level of the image are set. The rms of the image is 1.3 Jy.

Figure 2.38: Integrated emission of the CO(6-5) line. The wedge on the right shows the color-
scale of the map in Jy beam−1 kms−1. The rms noise level is ≈ 1.3 Jy kms−1. The integrated
flux density results (731± 110) Jy kms−1.

We choose not to fit the emission with a 2D gaussian, because the emission line has a double

asymmetrical horn, so we drew several circular regions around the emission, at different radii

and then we produced a graph, that shows the flux density as a function of the area considered

(obtained multiplying the number of pixels comprised in each region by the pixel size in pc). As

Fig. 2.39 shows, the broader is the area considered, the higher the flux density is, until it reaches

a plateau.
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Figure 2.39: Flux density of the integrated line emission as a function of the area of the region
considered.

Considering a radius of ≈ 0.8�, the Moment 0 is (731 ± 109.7) Jy km/s with a peak of

(213 ± 40.0) Jy km/s and the emission comes from a region, whose size is ≈ 200 × 200 pc2. In

Tab. 2.4, this work calibration and archival data for the channel maps rms and Moment 0

characteristics are reported. It can be noticed that we obtained a Moment 0 value that is ≈ 25%

lower than the archival one, while the peak flux and rms values are totally consistent. In order

to understand the cause of this discrepancy, we tried to reproduce archival images, following

archival scripts, but we have not been able to reproduce such results.

Table 2.4: This table compares the line image characteristics obtained by this work calibration
with the archival results. In the second column is reported the rms of the channel maps, shown in
Fig. 2.37. In the last three columns are reported the Flux of the integrated line, the corresponding
rms and the peak flux, respectively.

NGC 34 channel maps: rms Moment 0: Flux rms Peak flux
[mJy] [Jy km s−1] [Jy km s−1] [Jy km s−1]

This work calibration 6.7 731± 110 1.3 213± 40
Archival calibration 5.5 1004± 41 1.2 196± 29
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As Fig. 2.40 shows, the emitting region has diffent velocities, ranging from 5550 to 5850

km/s (in the topocentric coordinate system), and is clearly rotating, since the blue region is

blue-shifted, while the red one is red-shifted.

Figure 2.40: Moment 1. The emission is restricted to regions where the rms in the CO data cube
is larger than 3. The color bar on the right shows the color scale in kms−1.

Fig. 2.41 shows NGC 34 nuclear region continuum emission (spws 1, 2 and 3), associated to

dust continuum emission. We obtained a flux density equal to (277.8 ± 41.7) mJy, with a peak

of (98.6 ± 14.8) mJy. The rms of the image is ≈ 1.0 mJy. The size of the emitting region (de-

convolved) is 452.4 × 282.5 marcsec2, that corresponds to ≈ 187.8 × 117.4 pc2, considering a

luminosity distance of 85.7 Mpc. Furthermore, Fig. 2.41 shows also contours set in units of the

rms noise level of the image.

Tab 2.5 compares the continuum flux, rms and peak obtained from this work calibration with

the archival results. It can be noticed that, the flux values are consistent, while our rms appears

slightly lower and the peak flux higher.

Fig. 2.42 illustrates the integrated emission of the CO(6-5) line with continuum contours and

this suggests that both the emissions come from the same region of the galaxy. More precisely,

the continuum appears to be only in the inner part of the CO(6-5) disk. Xu et al. 2014 contend

that both the size and the orientation of the continuum emission region agree well with those of

the “nuclear bulge” found in the HST-V-band image by Schweizer and Seitzer 2007. In addition,

they said that there is a hint that the CO(6-5) line emission may have a central component
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Figure 2.41: Continuum emission. The flux obtained is equal to (277.8± 41.7) mJy, with a peak
of (98.6± 14.8)mJy. The rms of the image is ≈ 1.0 mJy

Table 2.5: This table compares the continuum image characteristics with those reported in the
archive: the continuum flux, its corresponding rms and the peak flux.

NGC 34 continuum image Flux rms Peak flux
[mJy] [mJy] [mJy]

This work calibration 278± 42 1.0 98.6± 14.8
Archival calibration 275± 41 1.9 76.2± 11.4
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corresponding to the same nuclear bulge and a more extended component, undetetected in the

continuum, that corresponds to the V-band nuclear disk.

Figure 2.42: Integrated emission of the CO(6-5) line with continuum contours [0.2, 0.4, 0.6, 0.8].
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Chapter 3

The Physics of Interstellar

Medium

The gaseous component of galaxies is generally referred to as interstellar medium (ISM), the

diffuse matter. It can be seen as the primary galactic “repository”, where star formation takes

place and deposits energy, momentum and enriched material. Consequently, the ISM plays a

crucial role in the galactic matter cycle, both in the formation and evolution of galaxies. Its

physical properties are governed by the radiation emitted by stars, the far-ultraviolet (FUV)

radiation (6 eV< hν < 13.6 eV), that has an influence on the chemistry of the neutral atomic gas

and much of the molecular gas in galaxies (Hollenbach and Tielens, 1999). In addition, it can

be exposed also to X-ray radiation, that can have profound effects on the chemical and thermal

structure of molecular clouds (MCs) (Maloney et al., 1999). Overall, the ISM properties and

dynamics on large scales are influenced by the microphysics behind the heating and cooling pro-

cesses. Moreover, there is a great number of competing feedback loops, such as winds, ultraviolet

fluxes and supernova explosions of stars, capable of triggering or quenching star formation and

generating turbulence1 (Klessen and Glover, 2014).

3.1 The ISM composition and gas phases

The ISM is mainly composed by hydrogen (H, ≈ 70%) and helium (He, ≈ 28%), and a little

amount of metals (Z, ≈ 2%), that, even though negligible in terms of mass, is essential for cooling

processes. The thermal and chemical state of the ISM are conventionally described in terms of

a number of distinct phases, defined by the chemical state of hydrogen, that can be ionized,

neutral or molecular. More precisely, the ISM is composed by a neutral phase, an ionized phase

and by dense molecular gas, constituting the Giant Molecular Clouds (GMCs), in which stars

1Turbulence plays a dual role: it creates overdensities that lead to gravitational contraction or collapse and
counters gravity in these overdense regions.

67
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form. Their main properties are summarized in Tab. 3.1 and discussed in more detail in what

follows.

Table 3.1: ISM gas phases.

Component Temperature Density Fractional ionization
[K] [cm−3]

Molecular gas 10-20 > 102 < 10−6

Cold Neutral Medium (CNM) 50-100 20-50 ∼ 10−4

Warm Neutral Medium (WNM) 6000-8000 0.2-0.5 ∼ 0.1
Warm Ionized Medium (WIM) ∼ 104 0.2-0.5 1.0

Hot Ionized Medium (HIM) ∼ 106 ∼ 10−3 1.0

3.1.1 Atomic neutral gas

The neutral gas is characterized by two different termally stable phases: one of cold, dense gas

that is traditionally considered to be distributed in compact clouds with temperatures around

70 K, called cold neutral medium (CNM), and a second related to warm and diffuse gas with

temperatures around 6000-8000 K, defined as warm neutral medium (WNM). Field et al. (1969)

demonstrated that the CNM and the WNM could coexist in pressure equilibrium, so that the

neutral atomic gas could be considered to be a two-phase medium.

The properties of atomic hydrogen (H I) are best studied by looking at the 21cm hyperfine

transition. More precisely, the transition happens between the coupled and decoupled spins of

electron and proton in the hydrogen atom at its lowest energy state, as Fig. 3.1 shows. Within

the ISM, collisions are frequent and what usually happens, such as in this case, is that the excited

state is collisionally induced. This is a forbidden transition because the Einstein coefficient of

spontaneous emission is A21 = 2.8 × 10−15 s−1, that corresponds to a spontaneous emission

timescale of τ21cm ' 107 yr. Despite this drawback, this transition is observed thanks to the

great abundance of hydrogen atoms and represents the best way to study the distribution of gas

in local galaxies, since from the line width it is possible to measure the typical random velocities

of the gas. The observed lines are approximately gaussian with a dispersion that ranges from

7 to 20 km s−1, that is far larger than the value they would have taking into account only the

thermal broadening. This leads to the conclusion that the ISM is turbolent.

3.1.2 Ionized gas

McKee and Ostriker (1977) extended the two-phase model proposed by Field et al. (1969), adding

a third, hot phase, the hot ionized medium2 (HIM). What happens is that blast waves, generated

by supernova explosions, create large, collisionally ionized bubble, filled with hot (T ≈ 106 K)

2The supernova-shocked inter-cloud medium.
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Figure 3.1: Hydrogen hyperfine transition (from https://safe.nrao.edu/wiki/bin/view/Main/ Ex-
galHIProject).

and diffuse gas (n ≈ 3×10−3 cm−3) in pressure equilibrium with the neutral diffuse gas. In order

to ionize the gas collisionally, a very high temperature is required, according to the condition

k Tion > 13.6 eV (3.1)

which leads to a temperature of Tion & 1.6 × 105 K. However, given that the distribution of

particle velocities is Maxwellian, even for temperatures far below this value (≈ 2× 104 K), there

are some particles with a very high velocity, due to shock waves, capable of ionizing most of the

gas. Collisionally ionized gas accounts for the majority of the radiation at soft X-ray wavelengths,

emitted mainly for thermal bremsstrahlung, radiation caused by the collisions between electrons

and ions. This gas would eventually cool, but in a very long time, as the relation of the cooling

time of thermal bremsstrahlung suggests:

τcool ∝ 103 T
1/2

n
yr (3.2)

There is also another ionized phase in the ISM, related to radiatively ionized hydrogen with

density n ≈ 1 cm−3 and T ≈ 104 K, the warm ionized medium (WIM). Photo-ionized regions are

called HII regions and are located in the surroundings of massive O and B stars, characterized

by a surface temperature around T ≈ 2−5×105 K. O and B stars irradiate photons with energy

hν > 13.6 eV, capable of ionizing neutral hydrogen in a sphere all around (the so called Strömgren

sphere). In an homogeneous medium, HII regions would appear to be spheres filled with almost

fully ionized medium and sharp edges, that divide them from almost fully neutral medium. The

size of the Strömgren sphere is obtained by solving the equilibrium equation between recombina-
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tion and ionization. When recombination occurs, the electron does not necessarily fall directly

to the ground state, producing a number of lower energy photons, that are not capable of ion-

izing anymore. HII regions are traced through the hydrogen recombination lines (e.g., Balmer

lines) or forbidden lines of extremely low density elements, such as [O III] or [N II]. In addition,

photo-ionized gas emits, like any plasma with free electrons, for bremsstrahlung, that, at typical

temperature of HII regions (T ' 104 K), shines at radio wavelengths3.

3.1.3 Molecular gas

The transition between atomic and molecular gas occurs at very low temperatures (below 40 K) in

GMCs, which are sufficiently dense and well-shielded against the dissociating effects of ultraviolet

radiation to allow H atoms to bind together. These regions are composed mainly of H2, that

is highly simmetric, since it contains two identical hydrogen atoms. Due to this simmetry, the

molecule has no dipole moment (i.e., is an homonuclear molecule) and exists in two indipendent

states, namely ortho-H2 (spins of H nuclei parallel) and para-H2 (spins antiparallel). As a result,

ro-vibrational dipole transitions (J + 1 → J , where J is the rotational quantum number) are

forbidden (i.e., their Einstein coefficient are very low, indicating that these transitions are quite

unlikely), so within the electronic ground state H2 weakly radiates only through quadrupolar

transitions (J + 2 → J). The first allowed electronic dipole transitions occur in the presence of

FUV radiation. In these cases, the molecule is radiatively pumped into its electronically excited

states and, as it decays back into the electronic ground state, it populates the high vibrational

levels, producing IR emission. Therefore, direct detections of H2 are not trivial. Electronic

transitions occur in the ultraviolet, to which Earth’s atmosphere is opaque, so observations can

only be made from space, while ro-vibrational transitions appear to be very weak. Concerning

IR emission, it is generally related to gas strongly heated by shocks or radiation (T > 100 K),

tracing only a small fraction of the overall amount of molecular hydrogen. This is the reason why

the H2 cooling is efficient at relatively high temperatures (T > 100 K) (Habart et al., 2004)).

Hence, carbon mono-oxide (CO), the second most abundant molecule in the universe (even

though about 10−5 times less abundant than H2) is the most widely used tracer of molecular

gas. In fact, CO is far easier to detect, emitting radio and sub-millimeter emission through

rotational transitions. The easier CO isotopologue to observe is 12C16O (namely, 12C or just

CO) thanks to its large quantity, but often it is so abundant that its emission appear to be

optically thick. This means that it can be used to trace conditions only in the surface layers.

Other important isotopologues are 13C16O (usually called just 13C) and 12C18O (usually just

C18O), whose optically thin emission allows to trace the full volume of the cloud. CO cooling

dominates once the gas density reach n ' 1000 cm−3 at temperatures T < 100 K, typical values

of the MCs.

3The bremsstrahlung spectrum is rather constant until a cut-off frequency, that depends only on the temper-
ature of the gas and is given by the relation: vcut−off ' 1010×T Hz.
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3.2 Interstellar Dust

The reddening of starlight in the ISM and its tight correlation with the hydrogen column density

point out that there is an additional component of the ISM, capable of absorbing light over a

wide range of frequencies. Furthermore, measurement of elemental abundances in the local ISM

reveals that a number of elements, notably silicon and iron, are considerably less abundant in

the gas-phase than in the Sun. Finally, mid-infrared and far-infrared observations show that

there is a widespread continuum emission, with a spectrum close to that of a black body and an

intensity that correlates well with the hydrogen column density. All these pieces of information

lead to the conclusion that there must be a particulate component, which is associated to CNM

and GMCs, and accounts for around 1% of the total mass of the ISM, commonly referred to as

dust (Klessen and Glover, 2014).

Dust has a crucial role in several physical processes, such as the formation of molecular

hydrogen and the absorpion of UV and optical radiation. In addition, since it absorbs UV

radiation that can dissociate molecules and, in turn, emits radiation at FIR wavelengths, it

facilitates ISM chemistry and helps in cooling the gas, accelerating the process of star formation.

This phenomenon of absorbing and scattering part of the electromagnetic radiation emitted by

an astronomical object is called extinction. As Fig. 3.2 shows, the intensity of radiation that

passes through a cloud of dust and gas appears to be attenuated by a factor that depends on its

wavelength, the depth l, the density n of the cloud and the cross section of the material σ:

Iλ = I0λe
−τλ (3.3)

where τ is the optical depth, given by the relation τ =
∫
σndl, in which N = nl [cm−2] is the

column density of the gas. An object that suffers from extinction appears to be “reddened” since

the redder wavelengths have arrived to the observer, while the bluer ones have not. Therefore,

this phenomenon is referred to as interstellar reddening.

Figure 3.2: Radiation emitted by an astronomical object that passes through a cloud of dust grains
and gas is partly extincted in function of its frequency: the higher frequencies (UV, optical)
appears to be scattered and absorbed, while the redder ones (IR) can pass through unchanged
(from http://english.cas.cn/newsroom/research news/201504/t20150416 146426.shtml).
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The amount of extinction measured in magnitudes at a certain wavelength is given by

Aλ = −2.5log

(
Iλ
I0λ

)
(3.4)

and is related to the optical depth by the formula:

Aλ = 1.086 τλ (3.5)

Assuming a gas-to-dust ratio, it is possible to obtain a relation between the extinction and the

column density of the gas. In any photometric system interstellar reddening can be described by

color excess, defined as the difference between an object’s observed color index and its intrinsic

color index, E(B − V ) = (B − V )obs − (B − V )0.

Approximately, individual dust grains absorb only those photons with wavelengths smaller

than the physical size of the grain (a & λ/(2π)). Therefore, the fact that we see a large amount

of absorption and scattering in the ultraviolet (λ ' 0.1µm), somewhat less in the optical and

even less at infrared wavelengths (≈ 1µm) provides immediately that the majority of dust grains

are small (≈ 0.016µm), rather than large (≈ 0.1µm) (Cardelli et al., 2004). Dust particles

usually range in size from the molecular domain to sizes around 0.3µm and are composed largely

of amorphus carbon or graphite, aromatic hydrocarbons, silicates, ices, silicon carbide, and,

possibly, iron particles, metallic oxides and sulfides. At the small end of the size regime lie

polycyclic aromatic hydrocarbons (PAHs), which are large, planar molecules. The extinction

curve gives information on which kind of grain can lead to a particular feature, such as the 2175

Å bump, associated to graphite, or the infrared bands at 9.7µm and 18µm, related to amorphous

silicates (Klessen and Glover, 2014). In the wavelength range of 0.125µm≤ λ ≤ 3.5µm, the

Galactic extinction curves (Fig. 3.3) can be approximated by an analytical formula, depending

only on the parameter RV = AV /E(B−V ), the total-to-selective extinction ratio, with RV ≈ 3.1

for the Galactic average (Cardelli et al., 2004). The optical/UV extinction curves and RV show

considerable variations, that depend on the environment. Lower-density regions have a smaller

RV , a stronger 2175 Å bump and a steeper far-UV rise (λ−1 > 4µm−1), implying smaller dust

grains in these regions. On the other hand, denser regions have a larger RV , a weaker 2175 Å

bump and a flatter far-UV rise, which means that dust grains are larger.
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Figure 3.3: Interstellar extinction curve of the Milky Way (RV = 2.75, 3.1, 4.0, 5.5). There are
significant variations in the Galactic optical/UV extinction curves, indicating that dust grain size
distribution changes, according to the line-of-sight (from https://ned.ipac.caltech.edu).
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3.3 Molecular clouds

The molecular gas out of which stars form is located in GMCs, which play a negligible role in

filling the gas volume, but comprise a significant fraction of the mass. These regions have masses

in excess of 103 M� and up to 106− 107 M�, and a hierarchical structure, that extends from the

scale of the cloud4 (r ≈ 10 − 30 pc) down to overdense and less massive regions (r ≈ 10−2 pc,

M ≈ 1 M�), termed clumps and cores5. Typical temperatures within MCs, inferred from the

CO luminosity and theoretically reproduced through numerical simulations, ranges from T ≈ 10

K to T ' 50− 60 K (see 3.1).

Even though stars continuously form, MCs tend to be very close to an equilibrium condition,

which means that their self-gravity attraction is balanced by internal forces. Their formation

and evolution are intrinsically connected with the physical properties of the surrounding ISM

and stem from the complex interplay between the turbulence, the action of the magnetic field

and the effect of gravitation. Molecular cloud formation is a very complex and still not quite

yet understood process. One of the simplest models is the coagulation model, firstly proposed

by Oort (1954) and then improved by other authors (e.g, Tasker and Tan 2009). According to

this model, in the ISM the cold atomic and molecular gas are set up in clouds with a range of

different masses. The smaller clouds dissipate energy through collisions and tend to coagulate,

forming larger and larger clouds. Eventually, they become big enough to shield themselves from

the incident radiation, becoming dominated by molecular gas. However, this model suffers from

a major problem, related to the fact that the largest MCs (106 − 107 M�) would be built in

≈ 100 Myr, that is an order of magnitude larger than the estimate GMCs lifetime6 (Klessen

and Glover, 2014). Overall, MCs are likely to be the highest density regions within a far more

extended turbolent flow of gas, rather than discrete objects (converging or colliding flow model,

Clark et al. 2012).

Generally, MCs are surrounded by a layer of atomic gas that shields the molecules from the

interstellar UV radiation field, preventing them from being photodissociated. In the solar vicinity,

this layer is observed to have a column density of NH ' 2×1020 cm−2, corresponding to a visual

extinction AV ' 0.1 mag (Bohlin et al., 1978)7. The typical hydrogen column density of a GMC

is around 1022 cm−2, i.e., AV ≈ 10, but variations are observed in the range 1021 − 1023 cm−2,

i.e., AV ≈ 1− 100 (McKee and Ostriker, 2007). Therefore, in regions with low column densities

(NH < 1020cm−3), photodissociation of H2 and CO is very efficient and the amount of molecular

gas is small. On the other hand, in regions with high column densities, molecular self-shielding

and dust shielding dramatically reduce the photodissociation rates of H2 and CO, allowing the

equilibrium molecular fraction to become large. In particular, dust plays a crucial role in the

4In the solar neighborhood, the mean diameter of a GMC is around 45 pc (Blitz, 1993).
5Cores are the densest parts of GMCs where SF occurs.
6Estimated by the stars inside them.
7(Bohlin et al., 1978) found out a relation that links total neutral hydrogen N(H I+H2) to color excess E(B-V):

〈N(H I+H2)/E(B − V ) = 5.8 × 1021 atoms cm−2 mag−1. This relation was obtained by analysing Copernicus
data, that surveyed the specral region near Lyα in order to trace the column density of interstellar H I toward
100 stars.
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formation of H2. In fact, the simplest way to form H2 in the ISM would be through the radiative

association of two hydrogen atoms:

H + H→ H2 + γ (3.6)

Nevertheless, this reaction is quite unlikely since the rate coefficient for this reaction is very small.

Another way, that accounts only for a H2 fractional abundance larger than around fH2
≈ 10−2,

can be via the ion-neutral reaction pathways:

H + e− → H− + γ

H− + H→ H2 + e−
(3.7)

and

H + h+ → H+
2 + γ

H+
2 + H→ H2 + H+

(3.8)

Overall, even though we observe large quantities of H2 in MCs, the gas-phase formation of H2 in

typical ISM conditions appears to be very inefficient (Klessen and Glover, 2014). What happens

is that most of the H2 in the ISM does not form in the gas-phase, but on the surface of dust

grains (Gould and Salpeter, 1963), as Fig. 3.4 shows. Association reactions between adsorbed

hydrogen atoms occur readily on grain surfaces in two possible ways:

� diffusive mechanism (Langmuir-Hinshelwood): an H atom is adsorbed by a dust grain and,

thanks to its mobility, it scans the surface until it finds another atoms to combine with; the

energy released in the reaction that produces H2 in the ground state is ∆E = 4.5 eV, large

enough to overcome the H2-grain bonds, so the molecule is ejected from the grain surface.

� direct mechanism (Eley-Rideal): an H atom collides with the grain, it combines with

another atom and the newly formed H2 leaves the grain with a certain velocity; this process

becomes significant at higher temperatures than diffusive mechanism.

3.3.1 Molecular gas mass

As reported in Sec. 3.1.3, although H2 is the most abundant molecule, CO molecule is used

as tracer of the molecular content. CO formation takes place around NH ' 1021 cm−2 and

from the luminosity of the CO(1-0) transition at 115 GHz is possible to derive the H2 molecular

mass. The CO(1-0) rotational transition is chosen because it has a low critical density, around

2.1 × 103 cm−3, so it traces extended and diffuse regions, which constitutes the majority of the

mass (overdense regions have a crucial role in the formation of stars, but account for a little

fraction of the mass). Furthermore, the intensity of higher J transitions is more related to the

heating source, rather than to the gas mass. The relation between the hydrogen column density
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Figure 3.4: Formation of H2 on a dust grain (from http://phys.org/news/2014-04-group-
interstellar-molecules.html).

NH2
and the CO(1-0) intensity ICO(1−0) is:

N(H2)

ICO(1−0)
= X (3.9)

where X ≈ 2×1020 cm−2 K−1 km−1 s for the Milky Way (MW). Various methods have been used

to infer the value of X in the Galaxy, such as:

� subtracting the neutral atomic hydrogen contribution to the total amount of interstellar

matter, estimated from observations of γ-rays emitted by cosmic rays interacting with the

ISM (X ' 1.9× 1020 cm−2 K−1 km−1 s, Strong and Mattox 1996);

� comparing the predicted molecular column density map, obtained from complete and

unbiased FIR and 21 cm surveys of MW, with the observed CO intensity map (X '
1.8× 1020 cm−2K−1 km−1 s, Dame et al. 2001).

A corollary of Eq. 3.9 arises from integrating over the emitting area and correcting by the

mass contribution of heavier elements:

Mmol = αCOLCO(1−0) (3.10)

where Mmol has units of M� and LCO is usually expressed in units of K km s−1 pc2. LCO(1−0)

is related to the observed integrated flux density in galaxies through the equation:

LCO(1−0) = 3.25× 107Sdννobs
−2DL

2(1 + z)−3 (3.11)

where Sdν is the integrated CO flux in Jy km s−1, νobs is the observed frequency in GHz and

DL is the luminosity distance in Mpc (Solomon et al., 1997). Thus, αCO is a mass-to-light
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ratio, estimated to be ≈ 4.3 M�/(K km s−1 pc2) for star-forming galaxies similar to the MW and

≈ 0.8 M�/(K km s−1 pc2) for starburst systems.

The observed mass distribution of GMCs is a power law with a relatively sharp cutoff (McKee

and Ostriker, 2007):
dN

dM
∼M−α (3.12)

with α ≈ 1.5 (Rathborne et al., 2009). Defining dNc(M) as the number of GMCs with masses

in the range M to M + dM , observations of GMCs inside the solar circle are consistent with the

mass distribution obtained by (Williams and McKee, 1997):

dNc(M)

dlnM
= dNcu

(
Mu

M

)β
(3.13)

with β = α − 1 and no GMCs exceeding Mu. The quantity Ncu is approximately the number

of clouds in the mass range from Mu/2 to Mu. Using this notation, the total mass in GMCs

is related to the upper and lower mass cutoff (Ml < M < Mu, with Mu ' 6 × 106M� and

Ml ' 103M� for the MW) and the power law index by the relation:

Mtot =

∫ Mu

Ml

M
dNc
dlnM

dlnM (3.14)

which can be also written as

Mtot =
NuMu

1− β

[
1−

(
Ml

Mu

)1−β
]

(3.15)

The main implications are that most of the mass in GMCs is in large clouds: a significant fraction

is in clouds with mass above 106 M� and more than 80% is in clouds with mass above 105 M�.

The upper mass limit Mu may be set by the processes that form GMCs out of diffuse gas (McKee

and Ostriker 2007, Murray 2011).

3.3.2 Clumps and cores

GMCs are highly clumped: a typical molecule is in a region with a density significantly greater

than the average. Furthermore, star-forming clumps are themselves clumpy and contain the

cores that will evolve into stars. The typical density of molecular gas in the Galactic plane

is nH ' 3 × 103 cm−3 (Liszt, 1993), but the mean density is considerably less. Given that

M ∝ nH R
3 and N̄H ∝ nH R, the mean density is:

n̄H =
84

M
1/2
6

(
N̄H

1.5× 1022 cm−2

)3/2

cm−3 (3.16)
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where the column density is normalized to the typical value of Solomon et al. (1987) sample.

Consequently, the effective filling factor of the molecular gas is:

φ ≡ n̄H
nH

=
0.028

M
1/2
6

(
3000 cm−3

nH

)(
N̄H

1.5× 1022 cm−2

)3/2

(3.17)

Clouds with M . 103 M� and typical density of nH ∼ 3000 cm−3 must have column densities

smaller than the Solomon et al. (1987) value, since φ ≤ 1. Generally, turbolent clouds are

expected to have small filling factor (McKee and Ostriker, 2007).

3.4 Photo-Dissociation Regions

The gas in the diffuse phases of the ISM is almost entirely atomic, whereas MCs are, by definition,

dominated by molecular gas. Photo-Dissociation Regions (PDRs, Hollenbach and Tielens 1999)

form at the surfaces of MCs, where FUV radiation (6 eV< hν < 13.6 eV) due to stellar sources,

dominated by the emission of O and B stars, encounters and dissociates the molecular gas. They

are the transition zone between the dense, cold molecular gas and the tenuous, warm ionized

gas. PDRs are defined as regions whose thermal and chemical structure completely stems from

the FUV flux, that has a dramatic effect on the structure and line emission as deep as Av ≈ 10

into MCs. As explained in Sec. 3.3, MCs have column densities in the range 1022 − 1023 cm−2,

and thus PDRs include a significant volume and mass of the dense, opaque clouds (Tielens and

Hollenbach, 1985). Studying these environments allows to understand the energy balance of

interstellar gas (heating VS cooling) and how processes in ISM work.

3.4.1 Key parameters and physical processes

The key parameters that influence mostly the global characteristics of PDRs are:

� the strength of the FUV incident radiation field, G0
8, that is related to the total available

radiative flux;

� the total hydrogen density, n = n(H) + 2n(H2), that, together with the temperature, plays

an important role in the pace of the chemical reactions and the excitation rates of the

coolants;

� the metallicity Z, in units of the solar value Z�, that has an influence on the total abun-

dances possible for carbon and oxigen species, affecting the chemical and thermal struc-

ture9;

8G0 is expressed in units of an average interstellar flux between 6 eV< hν < 13.6 eV of 1.6×10−3 erg cm−2 s−1

and is referred to as Habing flux.
9A low metallicity galaxy will have a low dust content, which means that UV photons can penetrate deeper

into the cloud, resulting in smaller MCs.



3.4. PHOTO-DISSOCIATION REGIONS 79

� the spectral shape of the incident radiation field, in function of the colour temperature

Teff for black bodies or the frequency slope for power laws, that fixes the distribution of

photon flux over energy.

Heating processes

The penetrating FUV photons drive the chemistry and the composition of PDRs through pho-

toionization and photodissociation reactions. They can have an influence on the large number of

physical processes that play a role in determining the global properties of PDRs. Broadly speak-

ing, the gas heating always happens through the transfer of kinetic energy to atoms, molecules

and ions. The main heating processes in PDRs are (Meijerink and Spaans, 2005):

� photo-electric emission;

� gas-grain collisional heating;

� gas-grain viscous heating10;

� H2 photo-dissociation (FUV pumping), followed by collisional de-excitation;

� carbon ionization.

The dominant source of heating to a column density of 1022 cm−2 is photo-electric emission

from grains (i.e., Coulomb heating with thermal electrons). What happens is that dust grains

and polycyclic aromatic hydrocarbons (PAHs) absorb FUV radiation, that causes the photoelec-

tric ejection of electrons, which eventually heat the gas collisionally (Fig. 3.5). The resulting

free electron has an energy Ee = hν−W , where W is the work done to extract the electron from

the grain and hν the energy of the incident photon. For instance, W ' 5 eV for carbonaceous

grains, which means that an energy around Ee ≥ 1 eV is released in the gas in the form of heat.

Furthermore, gas and grain temperature or velocity can be different. In the first case, they

can transfer heat through collisions, while in the latter, grains are accelerated relative to the gas

because of the radiation pressure, so the resulting drag contributes viscous heating to the gas

(Meijerink and Spaans, 2005).

FUV pumping of H2 consists in absorbing a UV photon (E > 11.2 eV), pumping the molecule

to a bound excited electronic state and then releasing radiation. If this transition occurs into

a bound ro-vibrational level in the ground state, the molecule survives. If it occurs into the

vibrational continuum, instead, H2 dissociates and the probability that it happens is around

15%. The UV absorption lines produced by this process are referred to as the Lyman and Werner

bands. At low densities, the excited (bound) vibrational states can cascade down to the ground

vibrational state through the emission of IR photons, while at high densities (n & 104−5 cm−3),

10Viscous heating represents the effect of an irreversible process by means of which the work done by a fluid on
adjacent layers due to the action of shear forces is transformed into heat.
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Figure 3.5: A schematic view of the photoelectric heating mechanism. A FUV photon absorbed
by a dust grain leads to the ejection of a photoelectron which diffuses through the grain until it
loses all its excess energy due to collisions. For PAHs, the diffusion is not significant. A simple
expression for the heating efficiency ε is reported (from Hollenbach and Tielens 1999).

collisions with atomic H can be an important deexcitation mechanism, resulting in heating the

gas and thermalizing the rotovibrational states (Hollenbach and Tielens 1999, Klessen and Glover

2014).

Finally, at the edge of the cloud, there is a large amount of singly ionized carbon, whose

photo-electron energy released in an ionization is ∆E = 1.06 eV. This heating process can play

an important role when the density is higher.

Overall, according to the various characteristics of the gas, some processes can have a higher

influence than others. Meijerink and Spaans (2005) carried out a series of models of PDRs,

taking into account different values of the density of the gas and radiation field:

� Model 1: n ≈ 103 cm−3, FFUV = 1.6 erg cm−2 s−1, G0 = 103;

� Model 2: n ≈ 103 cm−3, FFUV = 160 erg cm−2 s−1, G0 = 105;

� Model 3: n ≈ 105.5 cm−3, FFUV = 1.6 erg cm−2 s−1, G0 = 103;

� Model 4: n ≈ 105.5 cm−3, FFUV = 160 erg cm−2 s−1, G0 = 105.

Although photo-electric emission from grains is generally the dominant source of heating, in

case of moderately low density and radiation field (Model 1), viscous heating is about equally

important and, if the radiation field increases (Model 2), it contributes more. If the radiation

field is lower, but the density value increases (Model 3), carbon ionization appears to be the

second most significant process. When both the density and the radiation field are high (Model

4), H2 pumping becomes the second most important. Furthermore, at high column densities

(e.g., NH > 1022.5 cm−2), [O I] 63 µm absorption and gas-grain heating play an important role.

In particular, [O I] 63 µm becomes dominant when the density decreases (Models 1 and 2),
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Figure 3.6: A schematic view of H2 FUV pumping, dissociation and heating mechanism. εH2

indicates a simple expression for the heating efficiencies, where fH2 is the fraction of the FUV
photon flux pumping H2. A simple expression for the heating efficiency ε is reported (from
Hollenbach and Tielens 1999).
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while gas-grain heating gains in importance at higher density values (Models 3 and 4). Other

heating processes have a little impact, contributing less than 10%, but they may play a role in

determining the thermal balance.

Cooling processes

Cooling processes fundamentally involve the convertion of kinetic energy into radiation that

escapes from the gas. In the ISM, the gas is generally cooled by (Tielens and Hollenbach, 1985):

� radiative cooling, due to infrared fine-structure lines from atoms (e.g., [C I] 609, [C II] 158,

[O I] 146 and 63 µm);

� molecular line cooling by warm molecular gas (e.g., CO, H2, H2O, OH and CH);

� electronic recombination on dust grains.

Looking at Meijerink and Spaans (2005) models, discussed above, [O I] 63 µm cooling domi-

nates at column densities around NH = 1021.5 cm−2. When the density is low (Models 1 and 2),

[C II] 158 µm contribution is higher than 10% of the total cooling rate, while at higher densitie

values (Models 3 and 4), gas-grain cooling becomes the second most important contribute and

gains importance (till 40%) with increasing radiation field (Model 4). At higher column densities,

going deep into the cloud, [C I] 609 µm and CO line cooling play an important role, while H2

contribution never overcomes the 10% of the total cooling rate.

3.4.2 The penetration of FUV radiation

The penetration of FUV radiation is linked to dust absorption and scattering, as well as to the

geometry and the global structure of interstellar clouds. In particular, the mean intensity of the

FUV continuum flux deep inside semi-infinite slabs is given by the relation:

Iλ ∝ e−kξλAV (3.18)

where k is a quantity that depends on the scattering properties11, ξλ is the ratio of the extinction

at λ to that at visual wavelength and AV is the visual extinction measured in magnitudes from

the surface. A factor that should be taken into account and that makes the situation far more

complex, since it can have a profound influence on the penetration of FUV flux, is that interstellar

clouds appear to have a clumpy nature, being inhomogeneous on all scales. Fig. 3.7 shows a

clumpy PDR: FUV photons scatter and penetrate through the interclump medium, reaching far

deeper points in the region than if the material had an uniform density.

11At the first order, k is given by the diffusion approximation, k =
√

3(1− ω)(1− ωg), where ω is the albedo
and g the mean cosine of the scattering angle.
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Figure 3.7: Illustration of a clumpy PDR. FUV photons scatter and penetrate through the inter-
clump material and, thanks to its clumpiness, can reach considerable depths.

3.4.3 Chemical and thermal structure

The intense FUV flux generally is not energetic enough to ionize hydrogen and create HII regions,

but can dissociate the molecules and photoionize those heavy elements with ionization potentials

smaller than the Lyman limit. It originates the majority of the non-stellar infrared, associated

with interstellar dust, and the millimeter and submillimeter CO emission, having an influence

even on the chemistry of oxygen, carbon and the ionization fraction.

A scheme of a typical PDR is shown in Fig. 3.8. The ultraviolet flux from nearby hot

stars or the interstellar radiation field (ISRF) reaches a neutral cloud of density n. PDRs are

often surrounded by HII gas and a thin HII/HI interface, where the Lyman continuum photons

are absorbed. As one moves into a PDR, the extinction along the line of sight increases and

the incident radiation field is attenuated. The first fundamental change that takes place is

the transition of H to H2. In fact, in the outer part there is a layer filled with H, whose

extention depends on the ratio G0/n and typically is around hydrogen nucleus column densities

of N = 2− 4× 1021 cm−2, followed by an H/H2 interface, that corresponds to a peak in the far-

ultraviolet emission from H2. Deeper into the PDR, there are a layer of C+ and one of atomic

oxygen. Eventually, as the FUV flux decreases due to dust absorption and H2 self-shielding,

even the transition from C+ to the neutral state and then to CO occurs. PDRs key parameters,

described above, can play a role even in determining the location of the transitions from H to

H2 and from C+ to CO, which generally appear to be quite sharp. In fact, if a cloud is exposed

to a stronger radiation field, the transitions occur deeper, since the photo-dissociation rates are

larger. At higher densities, the transitions occur closer to the surface of the cloud, since the

recombination rates scale as n2. Furthermore, the H+ and O+ fractional abundances are far

higher in the low density models (Meijerink and Spaans, 2005).
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Figure 3.8: A schematic diagram of a PDR, illuminated from the left and extended from the
predominantly atomic surface region (NH ≈ 2× 1021 cm−2, i.e., AV ≈ 1) to the point where O2

is not appreciably photodissociated (NH ≈ 2× 1022 cm−2, i.e., AV ≈ 10). From Hollenbach and
Tielens (1999).

Ultimately, PDRs consist of gas that is predominantly neutral, characterized by large column

of warm O, C, C+, CO and vibrationally excited H2, including all the atomic and at least 90%

of the molecular gas of the galaxy. An example of PDR is showed in Fig. 3.9, that illustrates

a schematic diagram of the derived morphology of M17SW, a star-forming region, where dense

clumps are embedded in an interclump medium in the core, surrounded by a more diffuse halo

(Hollenbach and Tielens, 1999).

Transition from H to H2

If H2 is not formed on grain surfaces (see Sec. 3.3), then the important mechanism for H2

formation is by radiative association reaction

H + e− → H− + hν (3.19)

followed by the associative detachment reaction

H− + H → H2 + e− (3.20)
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Figure 3.9: A schematic view of the M17SW PDR region, showing a three component clumpy
core and halo model, whose approximate densities and temperatures are reported. The [O I], [Si II]
and high-level CO originate in the high-density clumps, embedded in the interclump medium in
the core, whereas the [C II], [C I] and low-level CO in lower-density interclump gas (Hollenbach
and Tielens, 1999).

Then, in a warm and dense gas, such as in molecular outflows, molecular hydrogen can be

collisionally dissociated by

H2 + H → H + H + H

H2 + H2 → H + H + H20
(3.21)

However, the dominant process capable of destroying H2 in the local ISM is photodissociation.

An important property of molecular hydrogen is self-shielding, that stems from the fact that H2

photodissociation is line-based. What happens is that, in a region with a high H2 column density,

the Lyman-Werner photons are mostly absorbed by H2 in the outer layers of the region and cannot

pass through. This process is efficient as soon as the column density exceeds NH2 ≈ 1014 cm−2. In

case of an unshielded gas, the total column density of molecular hydrogen depends on the strength

of the ISRF (given by G0 in Habing units) and the density of the gas. In order to reduce the

H2 photodissociation rate by a factor of ten, the visual extinction required is around AV ≈ 0.65,

which corresponds to a total hydrogen column density N ≈ 1021 cm−2. This means that, if

G0/N is small, such as in CNM clouds far away from the regions of massive star formation, the

effect of dust shielding becomes important later than self-shielding, while, if G0/N is large, like

in photodissociation regions close to massive stars, dust extinction becomes far more significant

(Klessen and Glover, 2014). The location of the H I/H2 is related to the effect of self-shielding,

that dominates on dissociation; therefore the transition zone appears to be very sharp.



86 CHAPTER 3. THE PHYSICS OF INTERSTELLAR MEDIUM

Transition from C+ to CO

Atomic carbon forms via the radiative recombination of C+

C+ + e− → C + γ (3.22)

and is destroyed by photoionization

C + γ → C+ + e− (3.23)

However, the situation is far more complex, since there are various pathways responsible for CO

formation. Most of CO located in clouds stems from chemical intermediates, such as hydroxyl

(OH), its positive ion (OH+) and their products, or the hydrocarbons CH and CH2 and their

positive ions. Then, it can form thanks to the neutral-neutral reaction, whose effectiveness lasts

even at low temperatures, since it has no activation energy:

C + OH → CO + H (3.24)

Furthermore, if there is a large amount of C+, another forming mechanism can be:

C+ + OH → CO+ + H

CO+ + H → CO + H+
(3.25)

or
CO+ + H2 → HCO+ + H

HCO+ + e− → CO + H
(3.26)

The rate-limiting step of these reactions is the formation of the initial OH+ ion, that involves

directly or indirectly the presence of H2. This means that CO formation via the OH pathway

is very sensitive to the amount of H2. As we said before, CO can be formed even thanks to the

hydrocarbons CH and CH2, whose pathway shares some common features with the OH pathway,

confirming that substantial quantities of CO will form only in regions that are already filled with

H2, even though timescales involved in its formation are in general shorter.

The destruction of CO is dominated by photodissociation

CO + γ → C + O (3.27)

that occurs when a UV photon with E > 11.09 eV causes an electronic state to be excited.

Dissociation is typically more likely than decay back to the ground state, therefore the lifetimes

of the excited electronic states are very short and, because of Heinsenberg’s uncertainty principle,

the absorption lines associated with this process are much broader than those of H2, resulting in

a far less effective self-shielding (Klessen and Glover, 2014).
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3.5 X-ray Dominated Regions

Molecular gas can be exposed to X-rays in several astrophysical environments. AGNs, SNR, fast

shocks and X-ray binaries some of the main sources of X-ray photons. Clouds exposed directly

to X-ray have a highly ionized surface, resulting in an HII region, followed by a PDR only if the

ratio of X-ray flux to gas density is low. The deeper region of the cloud (NH ≈ 1−2×1022 cm−2)

is dominated by the X-ray flux, that has an influence on its heating and chemical composition,

creating the so-called X-ray Dominated Regions (XDRs, Maloney et al. 1999)). On the other

hand, if the cloud is shielded from the direct light of the source, the HII region and the PDR

will not be present.

3.5.1 Key parameters and physical processes

In general, the physical and chemical state of clouds illuminated by an X-ray source is not affected

by the shape of the X-ray spectrum, but depends mostly on the ratio between the local X-ray

energy deposition rate per particle12, HX , and the total hydrogen density of the gas, n. This

characteristic stems from the chemical and thermal balance, since the molecular destruction and

heating rates related to X-ray induced ionization are proportional to nHX , while the molecular

formation and cooling rates are generally proportional to n2 times a rate coefficient. As a result,

the X-ray deposition rates, and therefore the physical conditions, change slowly with depth.

Another important feature of XDRs is that 2-10 keV photons can penetrate deep in MCs,

up to a hydrogen column density of about 1024 cm−2, because of X-ray absorption cross sections

scale roughly as E−3, where E is the photon energy (Spaans et al., 2008). These characteristics

make XDRs noticeably different from PDRs, where the column density is limited to N ' 1021−
1022 cm−2 by dust absorption and the physical conditions change rapidly with depth because of

the dramatic decline of incident UV photons (Maloney et al., 1999). In addition, since X-ray

penetrate much deeper into the cloud, high temperatures are maintained to much greater depths.

Heating processes

The heating processes that play a role in the physics and chemistry of XDRs are the following

(Meijerink and Spaans, 2005):

� photo-ionisation heating (namely, Coulomb heating with thermal electrons);

� ion-molecule reactions driven by the ionisation degree;

� the ionisation balance of atomic gas due to photo-ionisation reactions driven by X-ray

photon and charge transfer.

12Adopting the X-ray photoelectric cross section per hydrogen nucleus σ of cold neutral matter (Morrison and
McCammon, 1983), the local X-ray energy deposition rate per particle is defined as HX =

∫
σ(E)F (E)dE, where

F (E) is the local photon energy flux per unit energy interval (Maloney et al., 1999).
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The flow chart in Fig. 3.10 provides detailed information about the several mechanisms that

make the electrons lose energy. Unlike PDRs, XDRs are mainly heated by direct photoionization

of the gas, resulting in the production of fast electrons that lose energy through collisions with

other electrons, as well as H and H2. An important thing to underline is that the ionization rate

of hydrogen related to X-ray irradiation of neutral gas is dominated by the secondary ionizations,

generated by the primary photoelectrons, owing to their large energies around ≈ keV.

Figure 3.10: Loss routes for energetic electrons in dense atomic and molecular gas. Note that the
widths of the arrows indicate the approximate fractions of the primary photoelectron energy that
are deposited in the indicated process, whereas the branching depends on the value of the electron
fraction xe and the molecular hydrogen fraction xH2 (Maloney et al., 1999).

In general, only a fraction of the energy locally deposited by the X-rays will heat the gas,

whereas the remainder will excite the atoms and molecules, which then release radiation. Eventu-

ally, this radiation is absorbed by dust. The energy deposition and the loss routes for energetic

electrons are related to the ionization fraction: if the gas is largely ionized (xe ≈ 1), all the

primary photoelectron kinetic energy deposited in the gas will result in heating, via Coulomb

interactions with the thermal electrons of the cloud; as the ionization fraction declines, heating
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via Coulomb losses plummets, and other mechanisms, such as ionization and excitation, gain

in importance (e.g., low-ionization limit: ≈ 40% in ionization, ≈ 50% in excitation and the

remainder in heating).

Assuming a pure atomic hydrogen gas, only electrons with energy greater than 10.2 eV

(threshold for excitation of Lyα) would excite or ionize the gas, while all of the secondary

less energetic ones would heat the gas. This would be the only possible heating process, that

becomes negligible at low ionization fraction. Nevertheless, MCs are composed of several molec-

ular species. In this case, the heating efficiency is much larger, because an ion can release its

energy into kinetic energy, either dissociatively recombining with an electron or reacting with

other species, resulting in heating the gas. For example, the reaction

H+
2 + H2 → H+

3 + H (3.28)

is exothermic, with a yield of 11 eV (Maloney et al., 1999).

Taking into account Meijerink and Spaans models discussed in Sec. 3.4.1, it is possible to

show the characteristics of XDRs and the differences among PDRs and XDRs. The parameters

used to describe XDRs are the same of PDRs:

� Model 1: n ≈ 103 cm−3, FX = 1.6 erg cm−2 s−1;

� Model 2: n ≈ 103 cm−3, FX = 160 erg cm−2 s−1;

� Model 3: n ≈ 105.5 cm−3, FX = 1.6 erg cm−2 s−1;

� Model 4: n ≈ 105.5 cm−3, FX = 160 erg cm−2 s−1.

Fig. 3.11 shows the different heating source as a function of the total hydrogen column density.

In general, the heating is all due to X-rays, depending on the ionization fractions. In the case

of Models 1, 2 and 4 (HX/n high to NH > 1023 cm−2), where the gas in highly ionized (i.e.,

xe ≈ 0.1), ≈ 70% of the kinetic energy of the non-thermal electrons goes into Coulomb heating.

If the ionization fraction is smaller (xe ≈ 10−4), ionizing heating contribution becomes significant

or even dominant. In Model 3, ionization heating and Coulomb heating are equally important

at NH < 1021.8 cm−2. Note that in all models, ionization heating dominates especially at high

column densities (Meijerink and Spaans, 2005).

There are differences that allows to discriminate between PDRs and XDRs. In fact, as we

said in Sec. 3.4.1, PDRs are generally dominated by dust grain photoelectric heating mechanism,

while XDRs are heated by the X-ray-induced photoelectrons from the gas. Consequently, in

XDRs gas heating is far higher than dust heating, resulting in a larger value of the ratio between

cooling lines and IR continuum. In addition, FUV photons in XDRs are capable to ionize other

atoms, such as carbon and sulfur, whereas those in PDRs are not energetic enough.
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Figure 3.11: Heating processes for Model 1 (top left), 2 (top right), 3 (bottom left) and 4 (bottom
right). From Meijerink and Spaans (2005).

Cooling processes

As said before in Sec. 3.4.1, cooling processes convert the kinetic energy into radiation, that

escapes from the gas. In XDRs, the main cooling processes are (Meijerink and Spaans, 2005),

shown in Fig. 3.12:

� emission from meta-stable lines of [C I] 9823, 9850 Åand [O I] 6300 Å, fine-structure line

cooling of [C II] 158 and [O I] 63 and 146 µm and Lyα emission;

� molecular line cooling, such as CO, H2, H2O and OH, as well as gas-grain cooling.

At the highest temperatures the dominant process is the collisional excitation of Lyα and forbid-

den and semiforbidden transitions, such as [O I], [C I], [Fe II] and [Si II], while as the temperature

decreases (T ≈ 5000 K) fine-structure transitions of neutral and singly ionized atomic species,

such as [O I], [Si II], [C II] and [C I], start to dominate. Other cooling mechanisms are related

to the rotational and vibrational transitions of H2, H2O, CO and OH.
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Figure 3.12: Cooling processes for Model 1 (top left), 2 (top right), 3 (bottom left) and 4 (bottom
right). From Meijerink and Spaans (2005).

3.5.2 Thermal and chemical structure

Fig. 3.13 shows the typical structure of an XDR. The structure of this environment is character-

ized by a warm (T ≈ 104 K), largely atomic (χH2
. 10−4), but partially ionized (χe ' 0.1) gas

located in the outer layers, where the ratio HX/n is high, and by a cool (T ≈ 10 K), molecular

(χH2
≈ 0.5) and largely neutral (χe ' 10−6) gas in the inner ones, with a low HX/n value

(Maloney et al., 1999). Looking at the thermal and chemical structure of an XDR, it can be

noticed that the most striking difference with PDRs is the absence of a well-defined transition

layer from C+ to CO, resulting in C and C+ particles throughout most of the cloud, whereas the

transition from atomic to molecular hydrogen happens more gradually (Meijerink and Spaans

2005, Maloney et al. 1999).
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Figure 3.13: A schematic structure of an X-ray dominated region.



Chapter 4

Interpreting the CO spectral line

distribution of NGC 34

Molecular gas plays a significant role in the physics of Luminous Infrared Galaxies, such as NGC

34, providing material for star formation and fueling a possible AGN. Therefore, shedding light

on the mechanisms driving the emission from molecular clouds (MCs) in crucial to understand

the physical processes ongoing in the central region of these galaxies, where MCs are mainly

located. In order to do this, we model the interaction between the radiation and the MCs, using

the state-of-the-art photoionization code CLOUDY (Ferland, 2013). The CLOUDY models allow

to determine the thermal and chemical balance of molecular gas exposed to X-rays (i.e., XDRs,

see Ch. 3) and FUV (i.e., PDRs, see Ch.3) radiation, as a function of depth. Ultimately, we

compared the observed data of CO rotational transitions with a grid of PDR and XDR models

that span ranges in density, distance from the source and column density, in order to understand

which is the dominant radiation field and the physical properties (e.g., density, temperature,

radius, mass) of the MCs.

4.1 Observed data

NGC 34 is characterized by a relatively high SFR, equal to SFR ≈ 24.44 (Gruppioni et al.,

2016), and is optically classified as a Seyfert 2 from BPT diagrams (Baldwin et al. 1981, see

Ch. 1), with an intrinsic X-ray luminosity in the range 2-10 keV ≈ 1042 erg s−1 (Brightman and

Nandra, 2011a). Theoretical models show that the spectral energy distribution of the radiation

due to star formation and AGN activity has a different influence on the thermal and chemical

balance of the ISM, creating PDRs and XDRs (see Ch. 3). The best way to probe deeply into the

large column densities of gas and dust is through atomic, nuclear and dust emission in the FIR

and (sub-)mm range (Meijerink et al., 2007). Consequently, we take into account CO rotational

transitions up to J=13 emitted by the molecular gas, investigating the physical origin of the CO

93
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emission as a function of the rotational transtion level J (i.e, the CO spectral line distribution,

CO SLED). The CO(6-5) transition was observed with ALMA and its analysis and characteris-

tics are described in Ch. 21. We have then considered Herschel/SPIRE FTS data (from J=4-3

to J=13-12) and ground-based observations for the lower-J transitions from the literature. The

NGC 34 CO SLED, obtained from the final data set, is shown in Fig. 4.1.

Figure 4.1: Observed CO SLED of NGC 34. The blue squares represent the low-J transitions
CO(1-0) and CO(2-1), the red triangle the CO(6-5) transition observed with ALMA and the
green circles the Herschel/SPIRE FTS data from Jup = 4 to Jup = 13.

Having a two different data set for the J=6-5 transition allows a consistency check. CO(6-5) in-

tegrated flux obtained with ALMA, though slightly smaller than Herschel/SPIRE measurement,

is in good agreement within 1σ.

In Tab. 4.1, Herschel/SPIRE FTS data are reported, while Fig. 4.2 shows NGC 34 spectrum,

observed by Herschel. The SPIRE/FTS beam size varies between 17�-42�, which correspond to

≈ 7 − 20 kpc at the distance of NGC 34 (DL ' 85.7) Mpc, appearing as a point-like source at

this resolution.

Since the flux value of the CO(10-9) transition is far lower than the others, we decided to

reject it in the CO SLED-fitting procedure described in the following sections. On the other

hand, Tab. 4.2 shows the ground-based observations for the lower-J transitions. The transi-

1The integrated flux of CO(6-5) is (731 ± 110) Jy km s−1. Taking into account the relationship that links
frequency and velocity, given by ∆v = ∆ν c/ν, and that 1 Jy = 10−26 W m−2 Hz−1, where 1 W= 107 erg s−1, it is
possible to obtain the integrated flux in units of erg s−1 cm−2. Finally, CO(6-5) integrated flux is (1.68± 0.25)×
10−14 erg s−1 cm−2 and the emission region is ≈ 200× 200 pc2.
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tion CO(1-0) was observed by the Combined Array for Reasearch in Millimeter-wave Astronomy

(CARMA) in 2011, that detected a regularly rotating disk of molecular gas with a diameter of

2.1 kpc. This molecular disk is located in the central region of NGC 34 and appears to be much

smaller than the optical disk, as Fig. 4.3 shows (Fernández et al., 2014).

Table 4.1: Herschel/SPIRE FTS data, that cover the 210 − 670µm (450 − 1440 GHz) spec-
tral range. Herschel beam size varies from 17�-42�. The integrated fluxes are in units of
10−14 erg s−1 cm−2 and have a calibration error around the 16% (from Rosenberg et al. 2015).

Transition Integrated flux Transition Integrated flux

CO(4-3) - CO(9-8) 2.80
CO(5-4) 1.97 CO(10-9) 1.55
CO(6-5) 2.13 CO(11-10) 2.39
CO(7-6) 2.43 CO(12-11) 1.63
CO(8-7) 2.90 CO(13-12) 1.23

Figure 4.2: Observed SPIRE/FTS spectra of NGC 34 (from Pereira-Santaella et al. 2014).
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Table 4.2: Ground-based CO data. The CO(1-0) is reported by Fernández et al. 2014, while the
CO(2-1) by Albrecht et al. 2007. The integrated flux is in units of 10−16 erg s−1 cm−2.

Transition Integrated flux

CO(1-0) 5.72± 0.43
CO(2-1) 29.7± 5.92
CO(3-2) -

Figure 4.3: This figure shows the maps of the distribution and kinematics of the CO(1-0) disk
at the center of NGC 34. (a) CO(1-0) emission is compared to the optical and HI emission; the
cyan contours indicate the CO(1-0) emission, while the blue contours show the HI emission in
levels of (8, 28, 48, 68, 108)×1019 cm−2, overlaid on an optical image. (b) CO(1-0) integrated flux
(Moment 0) contours drawn starting at 5% of the peak, in intervals of 10%. (c) The spectrum of
the CO(1-0) emission was obtained by setting a box around the emission, showing how much CO
there is in a given velocity bin. (d) Velocity map (Moment 1) overlaid with isovelocity contours
drawn in intervals of 50 km s−1. (e) Position-velocity diagram along the major axis of the optical
disk. These figures are taken from Fernández et al. 2014.
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4.1.1 Rotational lines as diagnostics

Molecular rotational lines are characteristic of the physical condition of the ISM and may be

used to constrain the gas emission densities and the incident radiation fields. As we have already

discussed in Sec. 3.1.3, CO is one of the most abundant molecules in ISM. Therefore, it is

considered a good tracer of the molecular gas and a fundamental tool in the study of the star

formation energetics and the effects of AGNs (Mashian et al., 2015). In Tab. 4.3, the main

properties of CO transitions are reported.

Table 4.3: In this table the fundamental parameters are summarized for CO rotational transitions
up to Jup = 13. E.P. is the excitation potential of the upper level above ground. A is the Einstein
coefficient related to spontaneous decay from an upper to a lower level. The critical density is
the density at which the rate of the collisional depopulation of a quantum level equals the
spontaneous radiative decay rate (Carilli and Walter, 2013).

Transition E.P. λ ν A ncrit
[K] [µm] [GHz] [s−1] [cm−3]

J=1-0 5.5 2601.0 115.3 7.2× 10−8 2.1× 103

J=2-1 16.6 1300.0 230.5 6.9× 10−7 1.1× 104

J=3-2 33.2 867.0 345.8 2.5× 10−6 3.6× 104

J=4-3 55.3 650.3 461.0 6.1× 10−6 8.7× 104

J=5-4 83.0 520.2 576.3 1.2× 10−5 1.7× 105

J=6-5 116.2 433.6 691.5 2.1× 10−5 2.9× 105

J=7-6 154.9 371.7 806.7 3.4× 10−5 4.5× 105

J=8-7 199.1 325.2 921.8 5.1× 10−5 6.4× 105

J=9-8 248.9 289.1 1036.9 7.3× 10−5 8.7× 105

J=10-9 304.2 260.2 1152.0 1.1× 10−4 1.1× 106

J=11-10 364.0 237.0 1267.0 1.4× 10−4 > 106

J=12-11 431.3 217.0 1382.0 1.9× 10−4 > 106

J=13-12 503.0 200.4 1496.9 2.4× 10−4 > 106

The effective critical densities for excitation rise from 2.1 × 103 for CO(1–0) to ≈ 106 cm−3

for Jup ' 13. This makes CO(1-0) the most sensitive to the total gas reservoir (see Sec. 3.3

for a complete discussion), including more diffuse components, whereas Jup > 1 transitions are

increasingly sensitive to the denser star-forming gas (Daddi et al., 2015). Furthermore, the lowest

three rotational transitions of CO have low excitation potentials, so they trace the cooler gas

component (T ' 10− 20K), and can be relatively easily observed with ground-based radio and

submillimeter telescopes in many local galaxies.

The mid-J CO line emission originates from warm molecular gas, as the upper-level energies

range from 55 to 500 K above the ground state, and can be excited through collisions, especially

with H2 and He (Narayanan and Krumholz, 2014). The higher is th J, the higher is the density

required to make collisions more likely.

On the other hand, FIR CO rotational lines, with Jup ≥ 13, arise from states 500 − 7000 K

above ground. These transitions trace the warmer and denser molecular gas in the center of

galaxies and are difficult to excite solely with star formation. Therefore, they represent the best
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way to test models that distinguish between AGN and starburst systems (Mashian et al., 2015).

4.2 Model description

The grid of PDR and XDR models adopted in these thesis have been taken from L. Vallini et al.

(in Preparation) an they are obtained with CLOUDY (Ferland, 2013), a photoionization code

designed to simulate conditions in ISM under a broad range of conditions. CLOUDY makes

prediction of intensities of a very large number of spectral lines. The input to the CLOUDY

code are:

� the shape and intensity of the external radiation field striking a cloud;

� the chemical composition and grain content of the gas;

� the geometry of the gas, including its radial extent and the gas density dependence on

radius.

The incident photons represent the external radiation field emitted by the central object (i.e.,

the collective light of stars in PDRs and an X-ray point-like source in XDRs) that impinges the

illuminated face of the cloud and is assumed as the only source of heat and ionization (see Fig.

4.4).

Figure 4.4: The star represents the source of ionizing radiation, while the shaded area represents
the cloud (from Ferland 2013).

In our PDR models, the SED of the stellar component is calculated using the stellar popu-

lation synthesis code Starburst99, assuming a Salpeter Initial Mass Function in the range 1-100



4.2. MODEL DESCRIPTION 99

M�, a solar metallicity and the SFR of NGC 34, as found by Gruppioni et al. 2016. In our XDR

models, the external radiation field is indicated as an intensity, namely the energy incident upon

a unit area of a cloud, obtained from the X-ray luminosity in the range 2-100 keV. In general,

the grain content of the gas is modelled, assuming the MW dust-to-gas ratio (≈ 160, e.g., Zubko

et al. 2004), whereas the region between the heating source and the clouds is assumed to be

dust-free.

The grid of models were constructed at three different typical distances from the source: 125,

250 and 500 pc. Consequently, in PDR models, the radiation fields at the cloud surface are:

� G0 = 1.76× 104 at r = 125 pc;

� G0 = 4.39× 103 at r = 250 pc;

� G0 = 1.10× 103 at r = 500 pc;

where G0 = 1 corresponds to a flux equal to 1.6 erg cm−2 s−1. In XDR models, instead, the

values of the radiation field at the cloud surface are:

� r = 125 pc, FX = 3.91 erg s−1 cm−2;

� r = 250 pc, FX = 0.97 erg s−1 cm−2;

� r = 500 pc, FX = 0.24 erg s−1 cm−2.

Concerning PDRs, we have created models with four different atomic H densities (102.5,

103.5, 104.5, 105 cm−3), while we consider only three atomic H densities for XDRs (103.5, 104.5,

105.5 cm−3).

The code computes the radiative transfer through the slab up to a hydrogen column density

N = 1023 cm−2, defined as:

N =

∫ {
n(HI) + n(H+) + 2n(H2) +Σn(Hother)

}
f(r)dr [cm−2] (4.1)

where f(r) is the filling factor. This stopping criterium is chosen for two main reasons (Vallini

et al., 2016):

� to cover the whole range of column densities of the clouds responsible for the observed CO

emission;

� to fully sample the molecular part of the illuminated slab, typically located at NH &

2× 1022 cm−2.

Increasing values of N correspond to larger and larger depths within the molecular gas.

Ultimately, each model represents an individual cloud, assumed to have a radius equal to the

depth reached, with a constant density and a fixed distance from the source.
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4.2.1 PDR models

In this section, we discuss how PDR models change as a function of the radiation field and the

density.

If a cloud is exposed to a stronger radiation field2, CO transitions (originating from molecular

gas phase) occur at higher depths, since the FUV photon dissociation molecules penetrate deeper

into the cloud. At higher density values (e.g., n ' 103.5 cm−3) the transitions occur closer to

the surface of the cloud, since the recombination scales as n2. In Fig. 4.5, we show three PDR

models that reproduce CO transitions in a gas with a density of n = 103.5 cm−3, located at

r = 125 pc, r = 250 pc, r = 500 pc from the source, respectively. In the x-axis there is the

number of the transition considered (Jup), while in the y-axis the integrated flux of the modelled

CO transitions. As the distance from the source increases, the radiation field decreases and the

CO SLED peaks at lower and lower Jup.

Figure 4.5: PDR models as a function of the radiation field. The three models describe a gas
with a density of n = 103.5 cm−3, at three different distance from the source: r = 125 pc (in red),
r = 250 pc (in blue), r = 500 pc (in green).

Fig. 4.6, instead, shows four PDR models that reproduce CO transitions in a gas located at

500 pc from the source, with a density of 102.5, 103.5, 104.5, 105 cm−3, respectively. As the density

increases, the CO SLED peaks at higher Jup (see Tab. 4.3).

2G0 ' 104 at r = 125 pc with respect to G0 ' 103 at r = 500 pc.
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Figure 4.6: PDR models as a function of the density. The four models describe a gas located at
500 pc from the source, with a density of 102.5 cm−3 (in red), 103.5 cm−3 (in blue), 104.5 cm−3

(in green), 105 cm−3 (in cyan), respectively.

Fig. 4.7 and Fig. 4.8 show how the temperature changes as a function of the distance from

the source and the density, respectively. In the x-axis there is the depth of the cloud in cm,

while in the y-axis the temperature in K. As Fig. 4.7 shows, the temperature decreases moving

deeper into the cloud. More precisely, Fig. 4.7 illustrates three PDR models that reproduce CO

transitions in a gas with a constant density of n = 102.5 cm−3, located at r = 125 pc, r = 250 pc,

r = 500 pc from the source, respectively. As the distance from the source increases, the FUV

flux at the cloud surface decreases (∝ r−2) and the temperature drops at lower column densities

into the MCs. Indeed, a lower radiation field (i.e., a lower number of incident photons) can heat

the gas, through photoelectric effect in dust grains. On the other hand, keeping constant the

distance (see Fig. 4.8), the higher the density, the smaller the depth into the MCs at which the

temperature drops. This is because the higher is n, the higher id the FUV optical depth, hence

the photoelectric heating caused by FUV photons affects the MC at shorter depths.
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Figure 4.7: PDR temperature as a function of the radiation field. The three models describe a
gas with a density of n = 102.5 cm−3, at three different distance from the source: r = 125 pc (in
red), r = 250 pc (in blue), r = 500 pc (in green).

Figure 4.8: PDR temperature as a function of the density. The four models describe a gas located
at 125 pc from the source, with a density of 102.5 cm−3 (in red), 103.5 cm−3 (in blue), 104.5 cm−3

(in green) and 105 cm−3 (in cyan), respectively.
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4.2.2 XDR models

In this section, we discuss how XDR models change as a function of radiation field and density.

As said in Sec. 4.2.1 for PDRs, keeping fixed the distance, as the density increases, the CO

SLED peaks at higher Jup (Fig. 4.10). A noticeable feature is that, at fixed n, XDR CO SLEDs

peak at higher Jup with respect to PDR CO SLEDs (see Fig. 4.6).

Figure 4.9: XDR models as a function of the radiation field. The three models describe a gas
with a density of n = 104.5 cm−3, at three different distance from the source: r = 125 pc (in red),
r = 250 pc (in blue), r = 500 pc (in green).

Fig. 4.11 and Fig. 4.12 show how the temperature changes as a function of the distance from

the source and the density, respectively. A closer look at these figures reveals that what said

before in Sec. 4.2.1 for PDRs is analogous for XDRs. Note that the cross section (σ) of X-rays

is smaller than that of FUV, being σ ∝ E−3. This is the reason why X-ray photons penetrate

deeper into the cloud, keeping the temperature higher at larger column densities into the MCs,

as the comparison between Fig. 4.7 and Fig. 4.9 shows. Moreover, X-ray heating efficiency (i.e.,

the fraction of initial energy that goes into gas heating) can be > 70%, unlike PDRs, where

about 0.5-3 % of the photon energy goes into gas heating.
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Figure 4.10: XDR models as a function of the density. The three models describe a gas located
at 125 pc from the source, with a density of 103.5 cm−3 (in red), 104.5 cm−3 (in blue), 105.5 cm−3

(in green), respectively.

Figure 4.11: XDR temperature as a function of the radiation field. The three models describe a
gas with a density of n = 104.5 cm−3, at three different distance from the source: r = 125 pc (in
red), r = 250 pc (in blue), r = 500 pc (in green).
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Figure 4.12: XDR temperature as a function of the density. The three models describe a gas
located at 125 pc from the source, with a density of 103.5 cm−3 (in red), 104.5 cm−3 (in blue),
105.5 cm−3 (in green), respectively.

4.3 CO SLED fitting

In order to model the observed CO emission in NGC 34, we consider the molecular gas in the

galaxy as a collection of clouds with different densities, radii and distances from the radiation

source (either SF and AGN). The output of a single MC model is the multiplied by a factor that

represents the number of that particular type of clouds. A constrain to the number of clouds

is the filling factor φ (Eq. 3.17): the volume occupied by the clouds must be smaller than the

region considered.

It is currently impossible to resolve individual clouds in extragalactic sources. Telescopes,

such as Herschel (whose beam size varies from 17�-42�for NGC 34 observed CO transitions, i.e.

≈ 7 − 20 Kpc, taking into account a DL ' 85.7 Mpc), measure the combined emission from a

large ensemble of MCs. ALMA resolution is far higher instead (0.22�for CO(6-5), i.e. ≈ 100

pc), and allows to constrain the region of the emission of the observed transition, but cannot

resolve individual clouds anyway. As a consequence, it is impossible to use a single model cloud

solution to describe the observed molecular lines, which means that more complicated solutions

involving two or more model clouds, with different densities and incident radiation fields, are

needed (Meijerink et al., 2007).
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4.3.1 Low-J transitions

As discussed in Sec. 4.1.1, low-J CO transitions are generally produced in the coldest and

more diffuse molecular gas. The observation of the transition CO(1-0) in NGC 34, reported by

Fernández et al. 2014, reveals an extended disk of molecular gas in the central region of the galaxy

with a diameter of 2.1 kpc (see Sec. 4.1). Moreover, in diffuse clouds (n ' 102−103 cm−3), even at

the point furthest from the cloud edge, the low density causes a small decline in temperature (see

Fig. 4.8). Consequently, in case of a high incident radiation (e.g., r = 125 pc), the gas reaches

very high temperatures and a highly ionized state throughout. Under these conditions warm CO

gas is present, but only in small amounts, resulting in very weak line emission (Meijerink et al.,

2007). This is the reason why we focused our attention on PDR models reproducing MCs at

r = 500 pc (low radiation field) from the radiation source and with low densities n = 102.5 cm−3.

We chose a distance of r = 500 pc also because, as we have shown in Sec. 4.2.1, as the distance

increases, the CO SLED peak moves to lower J.

At constant n, the column density N increases with the depth. The depth of the gas slab is

essentially the radius of the cloud responsible for the emission. Fig. 4.13 shows four models of

PDR, that represent clouds located at 500 pc from the source, with density n = 102.5 cm−3, at

four different values of depth (l ' 4.5−6.6−10.4−16.4×1019 cm, i.e. l ' 14.7−21.4−33.7−53.1

pc) and column density N ' 1.7− 2.5− 3.9− 6.2× 1022 cm−2). In the solar neighborhood, the

mean radius of a GMC is ≈ 23 pc (Blitz, 1993). This means that column densities with values

N & 3× 1022 cm−2 are unlikely.

Figure 4.13: PDR models as a function of the depth and column density. The four models describe
a gas located at 500 pc from the source, with a density of 102.5 cm−3, at four different values of
depth (l ' 4.5− 16.4× 1019 cm) and column density (N ' 1.7− 6.2× 1022 cm−2), showed in red,
blue, green and cyan, respectively.
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4.3.2 Mid- and high-J transitions

Mid- and high-J transitions, instead, are associated to a warmer and denser gas. A challenge is

presented by the highest CO lines, at Jup = 13 and Jup = 12, arising from levels 503 and 461

K above the ground state (see Sec. 4.1.1). Generally, PDR models fails at reproducing these

transitions, since the resulting gas temperatures are too low enough for significant population of

the J > 10 levels. (van der Werf et al., 2010). Consequently, these lines require the presence of

another excitation component, which can be either a high excitation PDR (with high density,

e.g., n = 105 cm−3) or an XDR. Therefore, we tried two different approaches:

� we take into account only the starburst component, using a high density PDR model

(hereafter Model 1 );

� we consider also the X-ray radiation generated by the AGN, using a high density XDR

model (hereafter Model 2 ).

Model 1

Unlike Herschel, whose beam is too large to resolve the emission region, ALMA allows to constrain

it: CO(6-5) line emission comes from a central region of 200 × 200 pc2 (see Ch. 2). Therefore,

among the available PDR models, we chose the one that represents clouds located at 125 pc from

the source3. As explained in Sec. 4.1.1, CO SLED peak moves to higher J values, as the density

increases. In order to reproduce the observed data, a high density PDR with n = 105 cm−3 is

needed (Fig. 4.14), since the observed CO SLED peaks at Jup = 8 (Fig. 4.1). To verify that this

model agrees to the observed data, we compared the observed line ratios CO(8-7)/CO(7-6)= 1.19

and CO(12-11)/CO(9-8)= 0.58 with the corresponding ratios of PDR models with r = 125 pc,

making the contours as a function of the density n and the column density N , showed in Fig.

4.15 and 4.16, respectively. A closer look at these figures reveals that a model with density

n ' 105 cm−3 and a column density N ' 1023 cm−2 reproduce both the observed ratios.

Model 2

Fig. 4.17, 4.18 and 4.19 show the available XDR models. As explained before in Sec. 4.2, the

values of the radiation field considered in out models are:

� r = 125 pc, FX ' 3.91 erg s−1 cm−2;

� r = 250 pc, FX ' 0.97 erg s−1 cm−2;

� r = 500 pc, FX ' 0.24 erg s−1 cm−2.

3Among the three available distance values, only 125 pc is consistent with the information given by ALMA
observation.
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Figure 4.14: PDR models as a function of the density. The four models describe a gas located at
125 pc from the source, with a density of 102.5 cm−3 (in red), 103.5 cm−3 (in blue), 104.5 cm−3

(in green), 105 cm−3 (in cyan), respectively. The curve with density up to n = 104.5 cm−3 peak
at Jup < 8, while the cyan curve peak is around Jup ' 8.
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Figure 4.15: This figure shows the contours of the ratio CO(8-7)/CO(7-6) as a function of the
density n and the column density N for PDR models with r = 125 pc. We take into account
column densities up to the stopping criterium at N = 1023 cm−2.
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Figure 4.16: This figure shows the contours of the ratio CO(12-11)/CO(9-8) as a function of
the density n and the column density N for PDR models with r = 125 pc. We take into account
column densities up to the stopping criterium at N = 1023 cm−2.
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Comparing our FX values with those analyzed by Meijerink and Spaans (2005)4, when modeling

XDR in low radiation regimes (F lowX = 1.6 erg s−1 cm−2), we note that for r ≥ 250 pc, FX < F lowX .

Hence, we consider only models with r = 125 pc.

Figure 4.17: XDR models as a function of the density. The three models describe a gas located
at 125 pc from the source, with a density of 103.5 cm−3 (in red), 104.5 cm−3 (in blue), 105.5 cm−3

(in green), respectively and a column density of 1023 cm−2.

4The standard benchmark for PDR and XDR models.



112CHAPTER 4. INTERPRETING THE CO SPECTRAL LINE DISTRIBUTION OF NGC 34

Figure 4.18: XDR models as a function of the density. The three models describe a gas located
at 250 pc from the source, with a density of 103.5 cm−3 (in red), 104.5 cm−3 (in blue), 105.5 cm−3

(in green), respectively and a column density of 1023 cm−2.

Figure 4.19: XDR models as a function of the density. The three models describe a gas located
at 500 pc from the source, with a density of 103.5 cm−3 (in red), 104.5 cm−3 (in blue), 105.5 cm−3

(in green), respectively and a column density of 1023 cm−2.
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In Fig. 4.17 we show that the CO fluxes from XDR models are between 10−18−10−23 erg s−1 cm−2,

while the observed flux values are around 10−14 erg s−1 cm−2. This means that we need a nor-

malization factor in the range ≈ 104−109 to reproduce the observed CO SLED. Fig. 4.20 shows

XDR models that describe clouds at r = 125 pc from the source with density of n = 103.5 cm−3,

n = 104.5 cm−3 and n = 105.5 cm−3 multiplied by a normalization factor of ≈ 3.7 × 104,

≈ 4.5 × 106, and ≈ 2.5 × 108, respectively5. Although the red curve can fit well CO SLED

peak, it cannot reproduce the higher-J values, that correspond to the more energetic transitions.

The green curve is the one that best reproduce higher-J transitions6.

Figure 4.20: XDR models that describe clouds at r = 125 pc from the source with density of
n = 103.5 cm−3 (in red), n = 104.5 cm−3 (in green) and n = 105.5 cm−3 (in blue) multiplied for a
normalization factor of ≈ 3.7× 104, ≈ 4.5× 106, and ≈ 2.5× 108, respectively.

In addition, we note that neither the green, nor the blue curve can fit the mid-J transitions. That

is why, a mid-density PDR model must be added to reproduce them. There are two available

models to reproduce these mid-J:

(a) r = 125 pc and n = 103.5 cm−3;

(b) r = 125 pc and n = 104.5 cm−3.

In Tab. 4.4, we summarize the models discussed in this section.

5These normalization factors are chosen in order to reproduce the observed data.
6Here, we always take into account a column density of 1023 cm−2.



114CHAPTER 4. INTERPRETING THE CO SPECTRAL LINE DISTRIBUTION OF NGC 34

Table 4.4: Selected models that reproduce the observed CO SLED: Model 1 is characterized by
a low and a high density PDR, while Model 2 by a low and a mid (two possible values) density
PDR, and a XDR. The low density component has a column density N ≈ 1022 cm−2 and is
located at 500 pc from the central source, while the higher density components have both a
column density N ≈ 1023 cm−2 and are located at 125 pc from the central source.

Models Low-J PDR Mid/High-J PDR High-J XDR
Model 1 n = 102.5 cm−3 n = 105 cm−3 -
Model 2a n = 102.5 cm−3 n = 103.5 cm−3 n = 104.5 cm−3

Model 2b n = 102.5 cm−3 n = 104.5 cm−3 n = 104.5 cm−3

4.3.3 Best-fit

The models so far discussed have been selected on the basis of physical considerations and anal-

ysis of key CO line ratios. Here, we present a statistical analysis aimed at finding the accurate

normalization factors and the best-fit to the observed data (Model 1 VS Model 2, see Tab. 4.4).

We have carried out a χ2 analysis, looking for the two or three normalization factors (for Model

1 and Model 2 introduced in Sec. 4.3.2, respectively) that minimize the χ2 value.

The general formula of the χ2 distribution is given by:

χ2 =

n∑
i=1

(
xobsi − xmodeli

σi

)2

(4.2)

where n is the number of observed values, xobsi are the observed values, xmodeli the expected

ones and σi their associated errors. χ2 is a statistic that characterizes the dispersion of the

observations from the expected values. If the observed values were to agree exactly with the

predictions, then we should find χ2 = 0. However, this is not a very likely outcome for an

experiment. The numerator of Eq. 4.2 is a measure of the spread of the observations, while the

denominator a measure of the expected spread. In case of good agreement, the average spread

of the data would correspond to the expected spread, thus we should get a contribution of about

one from each values, or χ2 = n for the entire distribution. Actually, the true expectation value

for χ2 is not the number of observations, but

〈χ2〉 = ν = n− nc (4.3)

where ν is the number of degrees of freedom and is equal to the number of observed values

minus the number nc of contraints, that in our case are the normalization factors (Bevington

and Robinson, 2003).

In our case, having rejected the CO(10-9) transition because its flux was lower than the others,

n = 10, so the number of degrees of freedom is ν1 = 10− 2 = 8 for Model 1 and ν2 = 10− 3 = 7

for Model 2.
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In order to compare Model 1 and Model 2, it is convenient to define the reduced χ-square as

χ̃2 ≡ χ2

ν
(4.4)

with expectation value 〈χ̃2 = 1〉.
Along with the best-fit model, all the acceptable solutions within 1σ confidence level have

been considered, by taking into account all the solutions with χ2 − χ2
min = ∆χ . 2.3 (3.5) for

Model 1 and Model 2, respectively (see Lampton et al. 1976 and Pozzi et al. 2010). In Tab. 4.5,

the minimum values χ2
min and χ̃2

min, and the normalization factors found for Model 1 and Model

2, with their corresponding uncertainties at 1 σ, are reported.

Table 4.5: χ2 analysis results for Model 1 and Model 2. The errors associated to the normalization
factors are reported at 1σ. The asterisk indicates the best-fit value found for norm2 in Model
2a.

Models χ2
min χ̃2

min norm1 norm2 norm3

Model 1 8.8 1.10 (1.3+0.1
−0.1)× 105 84+9

−5 -
Model 2a 6.2 0.9 (1.2+0.3

−0.5)× 105 < 146 (104)∗ (4.8+0.6
−0.7)× 106

Model 2b 5.2 0.7 (1.3+0.1
−0.2)× 105 44+46

−39 (4.61± 0.5)× 106

Fig. 4.21 shows Model 1 :

� a PDR that represents clouds with n = 102.5 cm−3 and at r = 500 pc from the source,

multiplied by the best-fit normalization factor, for the low-J transitions (blue curve);

� a PDR that represents clouds with n = 105 cm−3 and at r = 125 pc from the source, mul-

tiplied by the best-fit normalization factor, for the mid- and high-J transitions (red curve).

The black line represents the sum of the models used. Fig. 4.22 shows the contours of χ2 as

a function of the two normalization factors, norm1 and norm2, at 0.25σ, 1σ, 1.6σ and 2.6σ

confidence levels.
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Figure 4.21: Best-fit for Model 1. The blue curve represents the low density PDR and the red
curve the mid/high density PDR.

Figure 4.22: Model 1: Contours of χ2 with confidence levels corresponding to 0.25σ, 1σ, 1.6σ
and 2.6σ.
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Fig. 4.23 and 4.24, instead, show the best-fit for Model 2a and Model 2b, respectively:

� a PDR that represents clouds with n = 102.5 cm−3 and at r = 500 pc from the source,

multiplied by the best-fit normalization factor, for the low-J transitions (blue curve);

� a PDR that represents clouds with n = 103.5 cm−3 or n = 104.5 cm−3 and at r = 125 pc

from the source, multiplied by the best-fit normalization factor, for the mid-J transitions

(red curve);

� a XDR that represents clouds with n = 104.5 cm−3 and at r = 125 pc from the source,

multiplied by the best-fit normalization factor, for the high-J transitions (green curve).

In both figures, the black line represents the sum of the models used. Fig. 4.25 and 4.27 show

Figure 4.23: Best-fit for Model 2a. The blue curve represents the low density PDR, the red curve
the mid density PDR and the green curve the XDR.

the contours of χ2 as a function of norm1 and norm3, holding norm2 fixed at its best-fit value,

for Model 2a and Model 2b, respectively. Fig. 4.26 and 4.28 illustrate the contours of χ2 as a

function of norm1 and norm2, holding norm3 fixed at its best-fit value, for Model 2a and Model

2b, respectively. All the contours are shown at 0.25σ, 1σ, 1.6σ and 2.6σ confidence levels.

Finally, Fig. 4.29, 4.30 and 4.31 show all the acceptable solutions within 1σ confidence level

for Model 1, Model 2a and Model 2b, respectively.
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Figure 4.24: Best-fit for Model 2b. The blue curve represents the low density PDR, the red curve
the mid density PDR and the green curve the XDR.

Figure 4.25: Model 2a: Contours of χ2 with confidence levels corresponding to 0.25σ, 1σ, 1.6σ
and 2.6σ.
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Figure 4.26: Model 2a: Contours of χ2 with confidence levels corresponding to 0.25σ, 1σ, 1.6σ
and 2.6σ.

Figure 4.27: Model 2b: Contours of χ2 with confidence levels corresponding to 0.25σ, 1σ, 1.6σ
and 2.6σ.
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Figure 4.28: Model 2b: Contours of χ2 with confidence levels corresponding to 0.25σ, 1σ, 1.6σ
and 2.6σ.
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Figure 4.29: Best-fit for Model 1: the blue and green shading indicates the ±1σ uncertainty range of the low (high) density PDR
normalizations, respectively. The black line indicates the sum of the two model best-fit.
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Figure 4.30: Best-fit for Model 2a: the blue and green shading indicates the ±1σ uncertainty range of the low (middle) density PDR
normalizations, respectively, whereas the red shading indicates the ±1σ uncertainty range of the the XDR normalization. The black line
indicates the sum of the three model best-fit.
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Figure 4.31: Best-fit for Model 2b: the blue and green shading indicates the ±1σ uncertainty range of the low (middle) density PDR
normalizations, respectively, whereas the red shading indicates the ±1σ uncertainty range of the XDR normalization. The black line
indicates the sum of the three model best-fit.
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4.3.4 The F-test

The F-test is often used to compare models, characterized by different numbers of parameters,

as Model 1 (2 parameters) and Model 2 (3 parameters). The F-test is based on the additive

nature of functions that obey the χ2: the difference of two functions that are distributed as χ2,

is still distributed as χ2. In particular, if we fit a set of data with a function having m terms,

the resulting χ2 has N −m degrees of freedom. If we add another term to the fitting function,

the new χ2 will have N −m− 1 degrees of freedom. Therefore, the difference between these two

cases must follow a χ2 distribution with 1 degree of freedom (Bevington and Robinson, 2003).

The ratio of the difference χ2(m)− χ2(m+ 1) and the new value χ2(m+ 1)/(N −m− 1) (i.e.,

χ̃2(m+ 1)) provides a statistic Fχ that follows the F distribution with ν1 = 1 (degree of freedom

of the numerator) and ν2 = N −m− 1 (degrees of freedom of the denominator):

Fχ =
χ2(m)− χ2(m+ 1)

χ2(m+ 1)/(N −m− 1)
= ∆χ2/χ̃2

ν (4.5)

This ratio measures how much the additional term has improved the value of the χ̃2: small

values mean that the additional term is not significant, while large values suggest that the added

component improves the fit. If Fχ exceeds the test value for F , we can be fairly confident that

the new component should be included (Bevington and Robinson, 2003).

More precisely, in our case:

� N = 10;

� in Model 1, m = 2;

� in Model 2, m = 3.

Therefore, the F distribution is defined by the parameters ν1 = 1 and ν2 = 7. The first column of

Tab. 4.6 shows the values obtained from the F-test, calculated thanks to Eq. 1.5. Looking at the

F distribution tables (see Bevington and Robinson 2003) where the test values of F are reported,

it can be seen that Fχ values lie between the probability PF (F, ν1, ν2) = 0.25 of exceeding F (test

value F = 1.57) and PF (F, ν1, ν2) = 0.10 (test value F = 3.59). Consequently, our confidence

range lies between 75% and 90%. In particular, we calculated the cumulative probabilities that

a F statistic will be less than or equal to Fχ obtained (see the second column of Tab. 4.6),

thanks to the F Distribution Calculator (http://stattrek.com/online-calculator). Overall,

we are ≈ 90% confident that Model 2, characterized by an additional component, is significantly

improved with respect to Model 1.
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Table 4.6: The first column reports the Fχ values found by comparing Model 1 with Model
2a (Model 2b). The second column reports the cumulative probability P (F ≤ Fχ), calculated
thanks to the F Distribution Calculator (http://stattrek.com/online-calculator).

Models Fχ P (F ≤ Fχ)
Model 1 -Model 2a 2.97 87 %
Model 1 -Model 2b 3.53 90 %

4.4 Molecular mass

The low-J transitions are produced by an extended low excitation PDR component that accounts

for the majority of the mass. This component is made up by ≈ 3.1× 105 clouds with a radius of

≈ 7.2 pc (normalization factor and depth from the best-fit model), a density of n = 102.5 cm−3,

and located at 500 pc from the source. Assuming that these clouds are approximately spherical,

their molecular mass can be calculated as:

Mcloud = 2mp
4π

3
nl3 [g] (4.6)

where mp ' 1.7 × 10−24 g is the proton mass and l the radius of the cloud in cm. Considering

l = 2.3 × 1019 cm and n = 102.5 cm−3, Mcloud ' 2.7 × 104 M�. Then, Mcloud is multiplied

by the normalization factor ≈ 3.1 × 105, resulting in a total mass of Mtot ' 3.4 × 109 M�.

This value is obtained by modelling the molecular gas responsible for the CO emission, but

is consistent with the total molecular mass found by Fernández et al. 2014, who estimated

Mtot = (2.1 ± 0.2) × 109 M�, by multiplying the CO(1-0) luminosity (obtained thanks to Eq.

3.11) by the standard conversion factor for starbursting systems αCO = 0.8 M�/(K km s−1 pc2)

(see Sec. 3.3.1).

According to Model 1, a very dense, high illumination PDR can account for the highest CO

lines. The small surface area (given by the depth squared, where the depth is 1.3 × 10−2 pc)

indicates a number of small high density clumps in a very strong UV field. Considering l =

4.1×1016 cm and n = 105 cm−3, Mcloud ' 4.9×10−2M�. Since the best-fit normalization factor

is 84, these small and dense clouds account for a total mass of Mtot ' 4M�. Therefore, their

contribution is negligible with respect to the diffuse component.

On the other hand, Model 2 predicts a less extended and denser central XDR region, composed

by clouds with radius ≈ 2.4× 10−1 pc and a low number of dense small clouds close to massive

stars (dense PDR component), with a radius of ≈ 4.1 pc and ≈ 9.7× 10−2 pc, for case a and b,

respectively. Even in this case, their mass contribution is negligible with respect to the diffuse

component.

More precisely, for the XDR component we found: Mcloud ' 93.2 M� and Mtot ' 4.3× 108 M�

or Mtot ' 4.5 × 108 M�, considering a normalization factor of 4.6 × 106 or 4.8 × 106, in case a

and b, respectively.

For the dense PDR with n=103.5 cm−3 (Model 2a): Mcloud ' 4.3 × 104 M� and Mtot ' 4.5 ×
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106 M�, considering a normalization factor of 104. While, for the dense PDR with n=104.5 cm−3

(Model 2b): Mcloud ' 5.9M� and Mtot ' 2.6 × 102 M�, considering a normalization factor of

44.

These two components are probably embedded in a more diffuse component, that cannot be

the one used to explain the low-J radiation, because produced by more distant clouds (500 pc).

The addition of an extra diffuse component at r = 125 pc (with a normation factor of ≈ 1500)

gives a negligible contribution in terms of the total mass, but can supply the diffuse high mass

MCs within which the small and dense clumps reside.

In Tab. 4.7, the total molecular masses with their associated errors, found for each component

by considering the normalization uncertainties at 1σ, are reported. In addition, also the typical

temperature values of the three components are reported, estimated by looking at Fig. 4.7, 4.8,

4.12, respectively.

Table 4.7: Total molecular masses (in M�) calculated and typical temperature (K) for Model 1,
Model 2a and Model 2b. The temperature values have been obtained by looking at Fig. 4.7, 4.8,
4.12, respectively.

Models Low-J PDR Mid/High-J PDR High-J XDR

Model 1 (3.4+0.3
−0.4)× 109 4.0+0.4

−0.3 -
Model 2a (3.4+0.7

−1.2)× 109 < 6.3× 106 ' (4.3+0.6
−0.6)× 108

Model 2b (3.4+0.4
−0.4)× 109 2.6+2.7

−2.3 × 102 ' (4.5± 0.5)× 108



Chapter 5

Summary and conclusions

In this chapter, we summarize the results obtained, giving an insight into possible future per-

spectives.

In the last decades, many pieces of evidence in support of the AGN-starburst connection were

found (e.g., Magorrian et al. 1998, Ferrarese and Merritt 2000, Davies et al. 2007, Alexander and

Hickox 2012, Madau and Dickinson 2014), making it a key topic of the modern astrophysics.

As explained in Ch. 1, studying galaxies where the two phenomena co-exist, such as the galaxy

studied in detail in this work (NGC 34), is crucial to understand the tight AGN-starburst connec-

tion. NGC 34 is a local galaxy (z ≈ 0.0196) classified as a Seyfert 2 from optical BPT diagrams

and X-ray data (Brightman and Nandra 2011b, Ranalli et al. 2003), and as a LIRG, owing to its

large IR luminosity (Gruppioni et al., 2016).

The aim of this thesis is the study of the molecular component of NGC 34, since the molec-

ular gas plays a key role, providing material for star formation and fuelling a possible AGN.

In particular, we have investigated the molecular carbon monoxide (CO) as a function of the

rotational level (CO SLED), in order to probe the physical properties of the gas, such as density,

temperature and the main source that causes the emission (SF or AGN). Thanks to NGC 34

vicinity, many detailed multiwavelength data are available. In particular, we have reduced and

analyzed archival band 9 ALMA data (see Ch. 2), obtaining improved continuum and CO(6-5)

line images, thanks to the more reliable flux calibration (see Butler 2012). Then, taking into

account Herschel/SPIRE FTS data (from J=4-3 to J=13-12) and ground-based observations

for the lower-J transitions from the literature, we have modelled the CO SLED, using a grid

of PDR (Photo-dissociation Region) and XDR (X-ray Dominated Region) models that span

ranges in density, distance from the source and column density (see Ch. 4), obtained with the

photoionization code CLOUDY (Ferland, 2013).

127
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5.1 Main results

Our main results can be summarized as follows.

� We have started the ALMA data analysis from the raw data available in the archive,

calibrating them step by step, correcting for antenna positions, atmosphere effects and

electronics. We have applied a more reliable flux calibration, making use of the latest

model library releases, eventually obtaining an integrated flux (Moment 0) of the CO(6-

5) transition equal to (731 ± 110) Jy km s−1, with a peak flux of (213 ± 40) Jy km s−1,

and a continuum flux equal to (278 ± 42) mJy, with a peak flux of (98.6 ± 14.8) mJy.

Comparing these results with the data published by Xu et al. (2014), we noted that this

work calibration provides a Moment 0 ≈ 25% lower, while the rms, the peak flux and

the continuum flux values are consistent within 1 σ. We report in Fig. 5.1 the CO(6-5)

integrated flux obtained.

Figure 5.1: Integrated emission of the CO(6-5) line. The wedge on the right shows the color-scale
of the map in Jy beam−1 kms−1. The rms noise level is ≈ 1.3 Jy kms−1. The integrated flux
density results (731± 110) Jy kms−1.

� In the CO SLED analysis, we compared PDR and XDR models to the observed data. We

select PDR and XDR models that best reproduce the observation, on the basis of physical

considerations and analysis of observed CO line ratios (CO(8-7)/CO(2-1), CO(8-7)/CO(7-

6), CO(12-11)/CO(9-8)). We find that the low-J lines are reproduced by a low density
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PDR (n = 102.5 cm−3) with gas located 500 pc from the source. On the other hand,

the mid/high-J transitions can be explained by two different approaches (see Sec. 4.3),

that we called Model 1, that takes into account only the starburst component, and Model

2 (a and b), that considers also the X-ray radiation generated by the AGN. Model 1 is

characterized by a very dense, high illumination PDR (n = 105 cm−3, r = 125 pc), while

Model 2 predicts a concentrated and dense central XDR region ( n = 104.5 cm−3, r = 125

pc) to reproduce the higher-J transitions and mid-density PDR (n = 103.5 cm−3 in Model

2a and n = 104.5 cm−3 in Model 2b, r = 125pc), to account for the mid-J lines.

� For both Model 1 and Model 2, we presented a χ2 analysis aimed at finding the best-fit

normalization factors for each component (that represent the number of that particular

type of clouds). Along with the best-fit model, we have accepted all the solutions within

1σ confidence level, taking into account all the solutions with χ2−χ2
min = ∆χ . 2.3 (3.5)

for Model 1 and Model 2, respectively (see Lampton et al. 1976 and Pozzi et al. 2010).

� In order to compare Model 1 and Model 2, we have calculated the χ̃2 and done the F-test

analysis. From the F-test analysis we conclude that we are ≈ 90% confident that Model 2,

that includes also the XDR, is significantly improved with respect to Model 1. We report

in Fig. 5.2 the observed CO SLED with the best-fit model (Model 2 ) obtained.

Figure 5.2: Model 2b: the blue and green shading indicates the ±1σ uncertainty range of the low
(middle) density PDR normalizations, respectively, whereas the red shading indicates the ±1σ
uncertainty range of the XDR normalization. The black line indicates the sum of the three model
best-fit.
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� Finally, we have calculated the molecular mass associated to the analyzed components,

assuming that clouds are approximately spherical. We noted that the contribution of the

PDRs/XDRs used to account for the mid/high-J lines is negligible with respect to the

diffuse component, necessary to explain the low-J transitions. In particular, we found a

total mass of Mtot = (3.4+0.3
−0.4)×109 M� associated to the diffuse component. This result is

consistent with the total molecular mass found by Fernández et al. (2014), who estimated

Mtot = (2.1 ± 0.2) × 109 M�, by multiplying the CO(1-0) luminosity by the standard

conversion factor for starbursting systems αCO = 0.8 M�/(K km s−1 pc2) (see Sec. 3.3.1).

5.2 Further considerations and future perspectives

In this thesis project, analysing the CO SLED, we have concluded that a model with a XDR

component (due to the AGN) better reproduce the data than a model with only PDRs (due to

SF), even though it is significant only at a 90% level.

In order to distinguish unanbiguosly between AGN-induced XDRs and SF-induced PDRs,

very high-J CO SLEDs (J ≥ 8−10) are needed (Sec. 4.1.1). Furthermore, unlike PDR/starburst,

XDR/AGN contribution is significant only on small angular scales (Meijerink et al., 2007), there-

fore high resolution observations of NGC 34 nuclear region are needed to determine the real

contribution of the AGN activity. A very useful tool is the intensity ratio of high rotational

transitions, such as the CO(16-15)/CO(1-0), CO(16-15)/CO(10-9), CO(10-9)/CO(7-6) and the

CO(7-6)/CO(3-2), which have much higher values in XDRs than in PDRs (Meijerink et al. 2007,

see App. A). Unfortunately, CO(16-15) and CO(3-2) transitions are not observed, while we

have rejected the CO(10-9) owing to its low flux. Therefore, other constraints are needed to

distinguish between PDRs and XDRs (i.e., between Model 1 and Model 2 ). Papadopoulos et al.

(2012) proposed that, in addition to CO rotational lines, a combination of low- to mid-J rota-

tional lines of heavy rotor molecules with high critical densities, such as HCO+, HCN, HNC and

CN, is necessary to probe the large range of physical properties within GMCs (Tkin ∼ 15−100 K,

n(H2) ∼ 102 − 106 cm−3). For instance, HCO+ lines appears to be stronger in XDRs than in

PDRs by a factor of at least three, while CN/HCN ratio is far higher in PDRs than in XDRs,

where it is expected to be ∼ 5−10 (see App. B). In light of these considerations, high resolution

observations of high critical density molecules with ALMA, characterized by a very high spatial

and spectral resolution, could provide new insights on physical properties of NGC 34, allowing

to separate the PDR and XDR contributions. Therefore, a proposal for the next ALMA cycle

(Cycle 5) to investigate HCN emission could be done.

In addition, in order to shed light on NGC 34 AGN activity, it would be interesting the

re-analysis of the X-ray spectra, including data from the Nuclear Spectroscopic Telescope Array

(NUSTAR), that focus light in the high energy X-ray range (3 - 79 keV), less affected from

obscuration.

Finally, we performed our analysis only on one galaxy, but we aim at enlarging our sample in
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the near future. We could search potential candidates of galaxies, where AGN and SF activities

co-exist, in the 12MGS sample, looking for their counterpart in the (sub)millimeter wavelengths

in the ALMA archive.
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Appendix A

High CO rotational transitions

CO(16-15)/CO(1-0), CO(16-15)/CO(10-9), CO(10-9)/CO(7-6) and the CO(7-6)/CO(3-2) have

much higher values in XDRs than in PDRs (Meijerink et al., 2007), as Fig. A.1 and A.2 show.

Figure A.1: CO(16-15)/CO(1-0) and CO(16-15)/CO(10-9) line intensity ratios for PDR (left)
and XDR (right) models at densities ranging from n = 104−106 cm−3 and incident fluxes between
G0 = 103 − 105 (FX = 1.6− 160 erg s−1 cm−2) (Meijerink et al., 2007).
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Figure A.2: CO(10-9)/CO(7-6) and CO(7-6)/CO(3-2) line intensity ratios for PDR (left) and
XDR (right) models at densities ranging from n = 104 − 106 cm−3 and incident fluxes between
G0 = 103 − 105 (FX = 1.6− 160 erg s−1 cm−2) (Meijerink et al., 2007).



Appendix B

High critical density molecules as

diagnostics

HCN (ncrit ∼ 4−10×106 cm−3 for J=1-0 and 3-2) and HCO+ (ncrit ∼ 1.5−30×105 cm−3 for J=1-

0 and J=3-2) molecules are the most abundant H2 mass tracers after CO and their much higher

dipole moments make their transitions excellent tracers of dense molecular gas in galaxies. The

HCN and HCO+ abundances partly determine the fraction of the dense gas that can be traced

by their luminous and optically thick J=1-0 line emissions within a given GMC. Generally, the

ratio HCN/HCO+ is expected to be & 1 for the dense gas because the abundance of the neutral

HCN can remain unchanged, while the amount of the ion HCO+ declines through recombination

with free electrons. Therefore, HCO+ is very sensitive to the ambient free electron abundance,

and even small increases of the latter can lead to its severe depletion (Papadopoulos, 2007). As

a result of the higher ionization degree in XDRs, typically, the HCO+ lines are stronger in XDRs

than in PDRs by a factor of at least three. Fig. B.1 shows that the HCN/HCO+ ratio can

discriminate between PDRs and in XDRs in the density range between n = 105 and 106.5 cm−3

(Meijerink et al., 2007).

HNC molecule is the isomer of (and chemically linked to) HCN and has almost the same

critical density, so the only difference in line ratio should be related to the abundances. At

high temperatures HNC can be transferred into HCN (HNC + H→ HCN + H) and thus, the

HCN/HNC ratio is predicted to increase with increasing temperature and gas density (Aalto

et al., 2002). For instance, Meijerink et al. 2007 studied HNC(1-0)/HCN(1-0). In PDRs, HCN

is more abundant at high depths, where the abundance ratio approaches unity. Consequently,

the HNC(1-0)/HCN(1-0) line intensity ratio is around one for the PDRs if the column density

is larger than 1022 cm−2, while is less than unity for N < 1022 cm−2 (see Fig. B.2). In XDRs,

HCN is more abundant in the highly ionized part of the cloud. Nevertheless, HNC is equally

or even more abundant than HCN deep into the cloud. XDR models show low ratios for the

low densities (e.g., 104 cm−3) and strong radiation fields (e.g., > 10 erg s−1 cm−2). The ratios
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Figure B.1: Line intensity ratio for PDR (left) and XDR (right) models at densities ranging from
n = 104 − 106 cm−3 and incident fluxes between G0 = 103 − 105 (FX = 1.6 − 160 erg s−1 cm−2)
(Meijerink et al., 2007).
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increase for lower incident radiation fields, and at highest densities (e.g., n = 106.5 cm−3) the

line ratios are always larger than one, whatever radiation field values (see Fig. B.2).

Figure B.2: Line intensity ratio for PDR (left) and XDR (right) models at densities ranging from
n = 104 − 106 cm−3 and incident fluxes between G0 = 103 − 105 (FX = 1.6 − 160 erg s−1 cm−2)
(Meijerink et al., 2007)

Rotational transitions of CN are also important dense gas mass tracers, even though its

critical density is by a factor of 5 lower than HCN. This molecule is an excellent tracer of

regions affected by UV radiation, therefore it is one of the most effective diagnostics of PDRs

(Rodriguez-Franco et al., 1998). Consequently, models of PDRs yield mostly very large CN/HCN

ratios (CN/HCN� 1), while in XDRs, CN/HCN is expected to be ∼ 5− 10. Nevertheless, this

ratio appears to be lower in LIRGs, suggesting a negligible contribution of XDRs to the bulk

of the large molecular gas reservoirs found in these galaxies. For instance, the well-studied

case of the molecular gas in the starburst/AGN Seyfert 2 galaxy NGC 1068 reveals that the

influence of XDRs is limited just to the small fraction of the total molecular gas located very

close to the AGN, where HCN intensity appears to be enhanced, while HCO+ intesity declines

(Papadopoulos, 2007). This is in line with what declared by Meijerink et al. 2007, who stressed

that the XDR/AGN contribution will typically be of a much smaller angular scale than that of

a PDR/starburst.
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