
Alma Mater Studiorum · Università di Bologna
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Abstract

The aim of all my work has been to compute the fiducial production cross
sections of W± and Z0 bosons in their leptonic (e, µ) decays using the data
collected by the ATLAS detector at LHC with a center of mass energy of√
s = 13 TeV during summer 2015. The selected events are exactly the same

as the ones employed by the recently published article by the ATLAS Col-
laboration over the same topic, enabling us to compare the obtained results.
Necessary comparison, if I may, for the results were obtained with two dif-
ferent procedures: baseline (classical) for the article, bayesian in this thesis.
The bayesian approach allows for a natural combination among the many
channels and a straightforward treatment of the systematic uncertainties.
The obtained results are in excellent agreement with the Standard Model
predictions and those published by ATLAS.
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Abstract

L’obiettivo di tutto il mio lavoro è stato quello di misurare le sezioni d’urto
di produzione dei bosoni deboli W± e Z0 nei loro decadimenti leptonici (e,
µ) coi dati raccolti dal rivelatore ATLAS a LHC con un’energia del centro di
massa di

√
s = 13 TeV relativi all’estate 2015. Gli eventi selezionati sono gli

stessi di quelli del recente articolo della Collaborazione ATLAS sullo stesso
argomento, in modo anche da poter operare un confronto tra i risultati ot-
tenuti. Confronto peraltro necessario, poichè i risultati sono stati ottenuti con
due metodologie differenti: tradizionale (classica) per l’articolo, bayesiana in
questa tesi. L’approccio bayesiano permette di combinare i vari canali e di
trattare gli effetti sistematici in modo del tutto naturale. I risultati ottenuti
sono in ottimo accordo con le predizioni dello Standard Model e con quelli
pubblicati da ATLAS.
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Introduction

I have always been interested in particle physics, so when my supervisor
actually offered to me this thesis work I gladly accepted it.

The aim of this script of mine is to compute the production cross sections
for the weak bosons using the first proton-proton collisions data provided by
the Large Hadron Collider (LHC) at a center of mass energy

√
s = 13 TeV

and collected by the ATLAS detector in summer 2015. The ATLAS Collab-
oration has recently published the W and Z production cross section based
on the first

√
s = 13 TeV data provided by LHC after the energy upgrade.

In this thesis I follow the same approach employed in a recent published AT-
LAS paper for the event selection and the background evaluation but use a
complete different method for the extraction of the final cross-section results.
In particular, instead of a classical statistical procedure, implemented in the
HERAverager tool [2, 3], referenced in the following as baseline method, I
exploit the features of the bayesian approach which allows a natural combina-
tion of the different channels and a straightforward inclusion of the systematic
uncertainty effects.

It has been a long and hard work. At the very beginning, I had to study how
bayesian inference worked: did not know beans about it. Thankfully there
were online a few notes by prof. Giulio D’Agostini [1], they helped a lot.

The software my supervisor employed to perform bayesian analysis is a C++
code, BAT (Bayesian Analysis Toolkit), so the next step was to learn how
to use it (how to write codes, learn its hierarchy system, a few touches here
and there and we are good to go).

We wanted to make for BAT a new way to input data at runtime, without
having to actually put our hands into its code, so a function to read data
from the outside was necessary together with a way to present them inside
the external file. My supervisor saw inside the XML format a good way to go

1



2 ABSTRACT

around the problem, using its markup system, and I must say the XML files
that came from this work were actually really beautiful and user-friendly.
Still, I had to first study the XML language (at the ultra-novice level) and
think about a way to make XML and C++ interact. CMarkup, an XML
parser [6], descended from the sky to help the man in its adventure.

Finally I was at the starting point. After many trials the analysis was made,
but many questions arose from it, questions needing an answer. The solutions
to the many problems were found little by little, and yet a few things were
left in oblivion.

Again the way was sought into coding, specifically R [28] codes. My super-
visor often uses it in order to make statistical analysis over great amount of
data. After learning it I could actually make a few steps on my own.

One thing I noticed is that the analysis required to solve every problem was
really long. Sometimes it could take several days, before even checking that
everything done until that point was even right. So I told my supervisor that
something needed to be done about it. After some discussions also involving
the BAT authors we proposed a possible solution to improve the efficiency
and the performances of the code. We are still working over it, together with
the BAT management, but I guess that by the time of the discussion of this
thesis work we still won’t be done, still I wanted to convey to you all my
feelings of hardships, but even satisfactory ones.

I guess that it is time to pass over to the real part of the thesis. Running
over it you will eventually see that it represents everything I have done these
last months.

In the first part you will see an introduction to bayesian inference, after
that a description of LHC and the ATLAS detector, the fundamental tools
which provide the data for the analysis. The following sections are about the
selection of the data and the evaluation of the backgrounds for the different
channels, and finally the presentation and discussion of the results. There
are a few really technical parts, that were too heavy to be put inside the
main body of this script, and you will find them inside the appendices, one
on BAT and our codes, one on R, and another one over my work in summer
2015 at ATLAS about performance studies on the Insertable B-Layer (IBL),
a new layer of the pixel tracking detector installed during the LHC shutdown
for the energy upgrade.

Before leaving I want to express my great feelings of joy for this period of
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hard but fulfilling work, under the aegis of a caring and patient supervisor,
Dott. Lorenzo Bellagamba, all the ATLAS group (both Bologna and Cern
groups), surrounded by a loving family, that supported me in these long three
years away from home.
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Part I

Bayesian approach

5





Chapter 1

Bayes’ theorem

The basic concept of probability is measuring the degree of belief that an
event will occur. But this doesn’t tell us how to obtain the cherished numer-
ical value.

1.1 Subjective probability?

Let us toss a coin. If we want to compute the probability of obtaining head
or tails, we usually reason like:

A) the possible outcomes are head or tails (ideal coin with zero width), so
we expect to obtain tails half of the times;

B) calling head H and tails T, tossing many times the coin we obtain
HTHHHTTTHHTH... and if we go on like this we expect to obtain
tails roughly half of the times.

These are seemingly “two sides of the same coin”, but actually they represent
two different ways of thinking about probability. The former is called classical
definition of probability, where you compute the ratio of the wanted outcomes
out of all the possible, while the latter is usually called frequentist definition,
where you compute the actual frequency of an event happening and you
suppose that the event will continue to happen with the same law even in
the future.

7



8 CHAPTER 1. BAYES’ THEOREM

Until now all fine and dandy, but let us delve further in their actual meaning.
The former lacks the clause “if all the possible outcomes are equally proba-
ble”. That is rather peculiar, at least. That is because it employs probability
in the very definition of probability... So this approach actually only tell us
a useful way of qualitatively evaluate probability, without telling us how to
quantitatively to do.

The latter instead would need (to be picky) the condition of infinite repeti-
tions, but we can just skip on it. The actual point is, as the reader would
have already guessed, that no one actually tell us that the frequency of the
outcome in the future will be the same as until now [1].

So we have to really define what is probability. At the start of these lu-
cubrations, I have quoted the statement that probability is the measure of
the degree of belief that an event will occur. This represents the subjective
definition of probability, and the tool that allows us to develop computations
is the Bayes’ theorem.

1.2 Bayes’ theorem: discrete case

It is much more natural to always start talking about probability in the
discrete case, because it is the one we are most familiar with.

In the bayesian approach, it is of utmost importance to define the so called
“conditional probability”.

Let’s consider the following example:

In my university there are in all 1000 people. 400 of them are
males, the others women of every age. Half of the males have
to put on glasses, while only a hundred females have to do so.
Suppose that people have at most one pair of glasses each, and
none if they don’t need them. Suppose you spot an abandoned
pair of glasses far away and you ask yourself what is the gender
of the unlucky owner.

Then you think that there are 600 females, 100 with glasses, 400 males, 200
of which shortsighted. So you say that you expect to find a female owner
with a probability of 100/300 = 1

3
.



1.3. MONTY HALL’S PROBLEM 9

What you have done is actually:

P (Female|g) =
P (g|Female) · P (Female)

P (g|Female) · P (Female) + P (g|Male) · P (Male)

Where with the notation P (Female|g) we mean the conditional probability
and we read “the probability that a person wearing glasses is a female”. This
is an instance of the Bayes’ Theorem:

P (Hi|E) =
P (E|Hi) · P (Hi)∑
P (E|Hj) · P (Hj)

(1.1)

where E is an event and the Hi are a complete set of mutually excluding
hypothesis. This is the start of everything. In the following all the functions
in the form f(E|Hi) will be called likelihoods, because they represent the
way the event is influenced by the Hi, and the functions in the form f(Hi)
will be called priors, because they represent the probability distribution
that would express one’s beliefs about the quantity before some evidence is
taken into account.

1.3 Monty Hall’s problem

This is maybe the most famous example of bayesian reasoning. The first
instance of solution for the Monty Hall problem came from Steve Selvin,
solution that didn’t even nearly achieve the popularity it had after being
printed and solved by Marylin vos Savant in 1990.

Suppose you’re on a game show, and you’re given the choice of
three doors: Behind one door is a car; behind the others, goats.
You pick a door, say No. 1, and the host, who knows what’s
behind the doors, opens another door, say No. 3, which has a
goat. He then says to you, “Do you want to pick door No. 2?” Is
it to your advantage to switch your choice?1

Both Steve and Marylin stated it was for the best to always change, because
you would achieve a probability of 2

3
of winning the car. This statement was

1In the film “21” it is explained well enough. I highly recommend to watch it. The
solution of the Monty Hall problem by the protagonist, constitutes the turning point of
the film.
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considered preposterous by a lot of scholars so that the magazine Marylin
worked for was stormed by nearly 104 letters! Many Ph.D. wrote as well, but
their comments were as to say offensive:

Dear Marilyn, [...] Since you seem to enjoy coming straight to the
point, I’ll do the same. You blew it! Let me explain. If one door
is shown to be a loser, that information changes the probability
of either remaining choice, neither of which has any reason to be
more likely, to 1/2. As a professional mathematician, I’m very
concerned with the general public’s lack of mathematical skills.
Please help by confessing your error and in the future being more
careful.

Robert Sachs, Ph. D., Gorge Mason University [7]

The others were all along the lines of this one, we could even say that the
previous one was even polite...

I am sure you will receive many letters on this topic from high
school and college students. Perhaps you should keep a few ad-
dresses for help with future columns.

W. Robert Smith, Ph.D. Georgia State University

Needless to say that the solution stated by Steve and Marylin was the correct
one. The reasoning is the following: if you had chosen the door with the car,
the host will choose one of the other so that by switching you will have
obtained the goat. Instead by choosing one of the doors with the goat you
will force the host to choose the other with the goat. In the end, by switching
you would achieve a probability of 2

3
of winning the car.

I will try to write two equivalent ways of solving it (please note that in the
following h = door opened by the host, c = door with the car, p = door
chosen by the player).

a) You must switch and you have three possibilities: CAR⇒GOAT, GOAT1⇒CAR,
GOAT2⇒CAR, so the probability of winning is
0 · 1

3
+ 1 · 1

3
+ 1 · 1

3
= 2

3

b) Let’s suppose a flat prior for the car:

P (c|h, p) =
P (h|c, p) · P (c|p)

P (h|p)
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where P (h|c, p) is the probability of the host opening a certain door,
given that the car is behind door c and the player has chosen door p
(P (h|c, p) = 0(h = p, c),1

2
(p = c 6= h),1(p 6= c 6= h)) , always P (c|p) = 1

3

(position of the car given the choice of the player), and

P (h|p) =
∑3

c=1
P (h|c, p)·P (c|p)

so that we can write, without losing general validity [8]:

P (c = 2|p = 1, h = 3) =
1 · 1

3

1 · 1
3

+ 1
2
· 1

3
+ 0 · 1

3

=
2

3

Figure 1.1: Monty Hall’s problem.

You could even consider the version where you know that the host does
instead not know where the car is. In this way you have:
P (h|c, p) = 0(h = p, c),1

3
(h = c),1

2
(p = c 6= h),1

2
(p 6=c 6= h), so that

P (c = 2|p = 1, h = 3) =
1
2
· 1

3
1
2
· 1

3
+ 1

2
· 1

3
+ 0 · 1

3

=
2

3
=

1

2
.

And in the most general case where you don’t know whether the host knows
we just have to consider a new parameter k = 0(hostknows), 1(doesnot) and
giving to it a flat prior so that by Bayes’:

P (c = 2|p = 1, h = 3) =
1
2
· 1 · 1

3
+ 1

2
· 1

2
· 1

3
1
2
·[1 · 1

3
+ 1

2
· 1

3
+ 0 · 1

3
] + 1

2
·[1

2
· 1

3
+ 1

2
· 1

3
+ 0 · 1

3
]

=
3

5
.

So it is always for the best to switch to the other door.
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1.4 Bayes’ theorem: continuum case

It is fairly easy to generalize the theorem to the continuum case [1].

f(H|E) =
f(E|H) · f(H)∫
f(E|H) · f(H)dH

(1.2)

We just have to assume the set of different hypothesis to become continuous
values so that the sum may be replaced by an integral. This is the formula
we will use to measure the cross-sections. What we will do is to consider
~x = {x1, x2, ...} the vector of observables, ~µ = {µ1, µ2, ...} the vector of the

physical quantities we want to measure, ~h = {h1, h2, ...} the vector of all the
possible realizations of the influence factors (for instance the systematics and
all the other possible variables which could influence the result), so that you
may consider the ~x as the event in action and the ~µ as the hypothesis you
want to check.

The likelihood of the sample ~x being produced from ~µ and ~h and the prior
are respectively:

f(~x |~µ ,~h ) (1.3)

f0(~µ ,~h ). (1.4)

In the end we obtain:

f(~µ ,~h |~x ) =
f(~x |~µ ,~h ) · f0(~µ ,~h )∫
f(~x |~µ ,~h )·f0(~µ ,~h )d~µ d~h

. (1.5)

Most of the times we want to eliminate the dependence of the posterior from
~h , so what we need to do is to integrate the posterior with respect to d~h .
This process is called marginalization.

1.5 Monte Carlo Methods to solve the Bayes’

formula

In order to evaluate the posterior probability density function (p.d.f.) apply-
ing the Bayes’ theorem, we will employ Markov Chain Monte Carlo (MCMC)
technique, in particular Random Walk MCMC. A Markov Chain is a ran-
dom process that undergoes transitions from one state to another on a state
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space. It must possess a property that is usually characterized as “memory-
lessness”: the probability distribution of the next state depends only on the
current state and not on the sequence of events that preceded it.

When an MCMC method is used for approximating a multi-dimensional in-
tegral, an ensemble of walkers move around randomly. At each point where
a walker steps, the integrand value at that point is counted towards the in-
tegral. The walker then may make a number of tentative steps around the
area, looking for a place with a reasonably high contribution to the integral
to move into next.

We will focus on the Metropolis algorithm (Wikipedia does a decent job on
it [9]), an MCMC method for obtaining a sequence of random samples from
a probability distribution for which direct sampling is difficult. It works by
generating a sequence of sample values in such a way that, as more and more
sample values are produced, the distribution of values more closely approx-
imates the desired distribution, P (x). These sample values are produced
iteratively, with the distribution of the next sample being dependent only
on the current sample value (thus making the sequence of samples a Markov
chain). At each iteration, the algorithm picks a candidate for the next sample
value based on the current sample value. Then, with some probability, the
candidate is either accepted (in which case the candidate value is used in the
next iteration) or rejected (in which case the candidate value is discarded,
and current value is reused in the next iteration). Going a bit further the
procedure is as follows:

a) let f(x) be a function that is proportional to the desired probability
distribution P (x) (a.k.a. a target distribution);

b) initialization: choose an arbitrary point x0 to be the first sample, and
choose an arbitrary probability density Q(x|y) which suggests a candi-
date for the next sample value x, given the previous sample value y. A
powerful choice for the proposal function (Q) is the Breit-Wigner that
makes it possible to explore even the tails.

c) iteration t: generate a candidate xt+1 for the next sample by picking
from the distribution Q(xt+1|xt). Calculate the acceptance ratio α =
f(xt+1)/f(xt), which will be used to decide whether to accept or reject
the candidate. Because f is proportional to the density of P , we have
that α = f(xt+1)/f(xt) = P (xt+1)/P (xt). If α≥1, the candidate is
more likely than xt, and it is automatically accepted. Otherwise the
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candidate is accepted with probability α. If the candidate is rejected,
set xt+1 = xt, instead.

This algorithm proceeds by randomly attempting to move about the
sample space, sometimes accepting the moves and sometimes remain-
ing in place. Note that the acceptance ratio α indicates how probable
the new proposed sample is with respect to the current sample, accord-
ing to the distribution P (x). If we attempt to move to a point that is
more probable than the existing point (i.e. a point in a higher-density
region of P (x)), we will always accept the move. However, if we at-
tempt to move to a less probable point, we will sometimes reject the
move, and the more the relative drop in probability, the more likely
we are to reject the new point. Thus, we will tend to stay in (and
return large numbers of samples from) high-density regions of P (x),
while only occasionally visiting low-density regions. Intuitively, this is
why this algorithm works, and returns samples that follow the desired
distribution P (x).
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Chapter 2

LHC and the ATLAS detector

In this chapter we want to describe the LHC facility, and the ATLAS detector
which provides and analyzes the proton-proton collisions used in our analysis.

2.1 LHC

If we go from Geneva (CH, Switzerland) towards the northern French border,
we come across the CERN (European Organization for Nuclear Research),
the largest research centre in the world, with the greatest and most powerful
collider of all times, LHC (figure 2.1). Most people tend to think that LHC
is the whole accelerating apparatus. It is actually only its final component.
By “only”, we mean a 27 km ring, 100 m underground, kept at the coldest
temperature achieved at a so large scale of something like 2 K. This is already
amazing. But you have to think that its actual planned center of mass energy
(
√
s) for the colliding beams is 14 TeV, where until now we have just hit 13

TeV with an instant peak luminosity of 1034 cm−2s−1. We define as luminosity
L the quantity that multiplied by the cross-section σ gives the event rate as
in:

dN

dt
= σ·L.

17
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Figure 2.1: Aerial view of the area where the LHC ring is located.

We can even define the integrated luminosity Lint as1:

Lint =

∫
Ldt.

If we walk alongside LHC, we find four caverns, containing the four detec-
tors operating at LHC: LHCb (its main aim is to study the problem of CP
violation), CMS (Compact Muon Solenoid, multipurpose detector with same
goals of ATLAS but different technologies), ALICE (A Large Ion Collider
Experiment, whose focus lies in the study of quark-gluon plasma formed in
heavy nucleons collisions), and finally ATLAS (A Toroidal LHC Apparatus),
whose data will be later used to study the W and Z boson production in pp
interactions.

1All collider experiments aim to maximize their integrated luminosities, as the higher
the integrated luminosity, the more data is available to analyze. It is useful to note that
L is explicitly given by geometrical factors of the proton bunches.
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2.2 The ATLAS detector

ATLAS is a multipurpose detector [10] which works mainly at high luminosity
to discover signature of new physics and provides precise measurements of
Standard Model particles’ features. With its total length of 42 m, 11 m
radius and weighing 7000 tons, it is the largest LHC experiment (figure 2.2).
Its main organization is, from inside out:

• Inner Detector;

• Calorimetric system;

• Muon Spectrometer.

The particle trajectory and the momentum of the charged particles are eval-
uated by the inner detector, through the bending given by the magnetic
field of roughly 2 T generated by a superconducting solenoid, while the en-
ergy and the particle identification are provided by the calorimeters and the
momentum of the muons is measured in the muon spectrometer.

The ATLAS standard coordinate system is right-handed, the beam direction
corresponds to the z axis while the x-y plane is on the plane transverse to
the beam pipe with x pointing towards the center of LHC and the origin
is located at the nominal interaction point. It is useful to employ polar
coordinates: the azimuth angle (φ) is measured around the beam axis while
the polar angle (θ) is the angle a particle forms with respect to the beam
axis. The θ coordinate is usually substituted with the pseudorapidity defined
as:

η = − ln (tan
θ

2
).

2.2.1 The inner detector

The inner detector (figure 2.3) is embedded within a 2 T thin superconducting
solenoid magnet of 2.5 m diameter and it is composed by a silicon pixel,
a micro-strip detector (SCT) and a straw-tube transition radiation tracker
(TRT). The precision tracking detector, formed by the pixel detector and
SCT, is arranged on concentric cylinders around the beam axis while in the
end-cap regions consists of disks perpendicular to the beam axis. The inner
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Figure 2.2: The ATLAS detector with its main components.

Figure 2.3: ATLAS inner detector.
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Figure 2.4: ATLAS old pixel detector. The recently installed IBL is missing
in this layout.

detector provides tracking and vertexing capabilities within |η| < 2.5, as well
as electron identification thanks to the TRT within |η| < 2.0.

The pixel detector (figure 2.4) is the nearest to the collision point and mea-
sures the particle impact parameters and the decay vertexes of short living
particles. In the old days it consisted of merely three layers (b-layer, layer
1, layer 2), but it has recently been updated with the new IBL2 (Insertable
B-layer, figure 2.5), comprised of two different type of sensors: Planar and
3D (see fig. 2.6).

During summer 2015, I have spent a period of roughly 2 months working
in ATLAS for the pixel detector group, doing performance studies over the
Lorentz Angle (for further informations Appendix B).

The SCT (Semi Conductor Tracker) system is designed to provide track
precision measurements and contribute to the measurement of momentum,
impact parameter and vertex position in the intermediate radial range.

The TRT combines drift tube chamber tracking capabilities with transition

2The performance of the b-layer is in constant decline because of radiation damage. The
IBL was designed and installed in order to prevent a decrease in efficiency and performances
of the inner detector with the increase of the integrated luminosity.
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Figure 2.5: IBL design.

Figure 2.6: (a) Stave layout with the organization of planar and 3D sensor
modules. (b) Layout of the IBL detector with the 14 staves around the IBL
positioning tube (IPT) and (c) zoom of one stave side where a 3D sensor
module is visibile.
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Figure 2.7: Magnetic system design.

radiation detector features in electron/pion discrimination.

2.2.2 The magnet

ATLAS has a system of four large superconducting magnets that provide
the magnetic field required for the momentum reconstruction of the many
particles that are produced in the collision process. The system (figure 2.7)
is made up by:

• the solenoid, aligned with the beam axis, providing a 2T axial magnetic
field for the inner detector;
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• the large super-conducting air-core toroid system, constituted by eight
Barrel Toroids 25m long, and two End-Cap Toroids (5m long).

Such system provides the toroidal magnetic field for the muon spectrometer.

2.2.3 Calorimetric System

The calorimeter is designed to trigger and to provide precision measurements
of electrons, photons, hadron jets, and missing transverse energy. It is com-
prised of an electromagnetic (EM) and a hadronic calorimeter. The system
covers the range |η| < 4.9 using different techniques, suited to the widely
varying requirements of the physics processes of interest and of the radiation
environment. The finer granularity is reached in the EM, over the region
matched to the inner detector, and is ideally suited for precision measure-
ments of electrons and photons. The jet measurements are performed in the
hadronic calorimeter with less granularity.

The foremost design feature of the calorimeters is their depth (they must both
provide good containment for particles showers and limit punch-through in
the muon system).

2.2.4 Muon Spectrometer

The outer part of the ATLAS detector constitutes the muon spectrometer,
designed to detect muons going out of the calorimeters and to measure their
momentum in the pseudorapidity range |η| < 2.7. It even triggers on said
particles in the range |η| < 2.4. The momentum is measured thanks to the
deflection provided by the barrel and end-cap magnet toroid. In the barrel
region,tracks are measured in chambers arranged in three cylindrical layers
around the beam axis; in the transition and end-cap regions, the chambers
are installed in planes perpendicular to the beam, in three layers yet again.
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Chapter 3

Analysis setup, statistical
procedure

Our aim is to measure the production cross-sections for W± and Z0 in pp
collisions at

√
s = 13 TeV. These results represent the first measurements of

SM processes performed by the ATLAS Collaboration at 13 TeV.

3.1 Channels and fiducial phase spaces

Measurements of the W± → l±ν and Z → l+l− production cross-sections
(where l± = e±, µ±) in pp collisions at

√
s = 13 TeV are presented using

data recorded by ATLAS corresponding to a total integrated luminosity of
81 pb−1. Measurements of electroweak bosons’ production provide a bench-
mark for the understanding of quantum chromodynamics (QCD) and elec-
troweak (EW) processes. All the data were collected during the period of
June 13 to July 16, 2015. The results have been recently published [15] us-
ing a classical statistical approach to evaluate the production cross-sections.
In this chapter, after summarizing the event selection, the main sources of
backgrounds and the systematic uncertainties, we’ll describe the alternative
statistical analysis we used to process the data.

The total cross-section for the W± boson times the branching ratio for the
decays into a single-lepton may be expressed as a ratio of the numbers of
background subtracted data events N to the product of the integrated lu-
minosity of the data Lint, an acceptance factor A and a correction factor

27
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C:

σtotW± =
N

L·A·C
. (3.1)

The cross-sections are defined similarly for the Z boson in the dilepton in-
variant mass range 66 < mll < 116 GeV (σtotZ ). The production cross-section
can be measured in the whole phase space or in a fiducial part of the total
phase space defined in such a way to be as similar as possible to the detector
acceptance. The correction factor C is the ratio of the total number of gen-
erated events which pass the final selection requirements after reconstruction
to the total number of generated events within the fiducial acceptance and
is used to define the fiducial cross-section. This factor, defined before the
decay leptons emit photons via final-state radiation, includes the efficien-
cies for triggering on, reconstructing, and identifying the W± and Z decay
products within the acceptance, and also accounts for the slight difference
between the fiducial and reconstructed phase spaces. The acceptance factor
A is expressed as the fraction of events satisfying the fiducial acceptance
(geometric and kinematic requirements) at the Monte Carlo generator level
and it is used to extrapolate the fiducial cross section to the full phase-
space. The production cross-sections defined without the acceptance factors
(σtot·A) are referred to as the fiducial cross-sections (σfidW± and σfidZ ). For the
W± measurements, the fiducial phase space is defined by the lepton trans-
verse momentum plT > 25 GeV, the lepton pseudorapidity |ηl| < 2.5, the
neutrino transverse momentum pνT > 25 GeV and the W± transverse mass1

mT > 50 GeV. For the Z production the definition is based on plT > 25 GeV,
|ηl| < 2.5, and 66 < mll < 116 GeV [15].

3.2 Event selection

Electron and muon candidate events are selected using triggers which require
at least one electron or muon with transverse momentum thresholds pT = 24
GeV or 20 GeV, respectively, with loose isolation requirements [15]. To
recover possible efficiency losses at high momenta, additional electron and
muon triggers which do not make any isolation requirements are included
with thresholds of pT = 60 GeV and 50 GeV, respectively.

Electron candidates are required to have pT < 25 GeV and to pass medium
likelihood-based identification requirements [20, 21] optimized for the 2015

1We define mT =
√

2plT p
ν
T [1− cos(φl − φν)] with azimuthal angle of the charged lepton

φl and azimuthal angle of the neutrino φν .
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operating conditions, within the fiducial region of |η| < 2.47, excluding candi-
dates in the transition region between the barrel and endcap electromagnetic
calorimeters so with 1.37 < |η| < 1.52 . Muons are reconstructed for |η| < 2.4
with pT > 25 GeV and must pass medium requirements again optimized for
2015 operating conditions [22]. At least one of the lepton candidates is re-
quired to match the lepton that triggered the event. The electrons and muons
must also satisfy pT -dependent cone-based isolation requirements, using both
tracking detector and calorimeter informations. The isolation requirements
are tuned so that the lepton isolation efficiency is at least 90% for all pT > 25
GeV, increasing to 99% at 60 GeV.

Jets are reconstructed from energy deposits in the calorimeter using the anti-
kt algorithm [23] with radius parameter R = 0.4. All jets with energies
calibrated at the electromagnetic scale, must have pT > 20 GeV and |η| < 4.5.
The missing transverse momentum, which in the the W± analysis acts as a
proxy for the transverse momentum of the neutrino, is defined as the negative
of the global sum of all identified physics objects (electrons, muons, jets) as
well as soft terms accounting for soft tracks and calorimeter energy clusters
not matched to any object.

The event selection for the W± signature requires exactly one identified elec-
tron or muon. The event is required to have Emiss

T > 25 GeV, and the
transverse mass of the W± calculated using the missing transverse momen-
tum is required to satisfy mT > 50 GeV. In order for the W± selection to be
consistent with the missing transverse momentum reconstruction methodol-
ogy, an overlap removal algorithm is applied to the selection for the events
with jets and leptons found at a distance of ∆R =

√
(∆η)2 + (∆φ)2 < 0.4

of each other, removing either one or the other object. After the full W→lν
selection, a total of 463063 W± candidates (256923 W+ and 206140 W−)
pass all requirements in the electron channel, and 487090 candidates (272841
W+ and 214249 W−) in the muon channel.

Events containing a Z candidate are selected by requiring exactly two selected
leptons of the same flavour but of opposite charge with invariant mass of
66 < mll < 116 GeV. No overlap removal is applied in the Z analysis as
missing transverse momentum is not required in the selection. A total of
34955 candidates pass all requirements in the electron channel and 44899
candidates in the muon channel.

The numbers of W and Z candidate events surviving the selection for the
different channels, denoted as Nobs, are also listed in the first column of
table 3.2.
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3.3 Simulation samples, background evalua-

tion

Monte Carlo simulations are used to evaluate the selection efficiency for signal
events and the contribution of several background processes to the analyzed
dataset (see [15] for details on the employed Monte Carlo generators and their
settings). All of the simulated samples are processed with the Geant4-based
simulation [16] of the ATLAS detector [17].

The background contributions from the electroweak (single-boson and dibo-
son) and top-quark (single-top and top-quark pair) production processes have
been estimated via simulated samples. The W→τν and Z→ττ processes
with the subsequent leptonic decay of the τ are treated as background. The
dominant contributions, given as percentages of the total number of sim-
ulated events passing the signal selection in each analysis, are as follows:
the W→τν and top-quark production contribute approximately 2% and 1%,
respectively, in the W± analysis, the Z→e+e− and Z→µ+µ− processes con-
tribute 1% and 5% respectively in W→eν and W→µν, while the total back-
ground in Z→l+l− is approximately 0.5%, dominated by tt̄ production (the
sum of all electroweak background is 0.2%). The expected backgrounds es-
timations from EW and tt̄ processes in the different channels, denoted as
NEW
bkg , are listed in the second column of table 3.2 .

Events involving semileptonic decays of heavy quarks, hadrons misidentified
as leptons, and in the case of the electron channel, electrons from photons
conversions (all referred to collectively as multijets events) are a fairly large
source of background in the W± analysis. The multijet background in the Z
analysis is estimated from simulation to be less than 0.1% and is therefore
neglected.

The multijet contribution to the electron and muon channels of the W± anal-
ysis is estimated with a data driven approach, performing maximum likeli-
hood fits on the data with template distributions to exploit the discriminating
power between signal and background in certain kinematic distributions. The
discriminant variables used in the multijet evaluations are mT , Emiss

T , plT and
∆φ between the lepton and transverse missing momentum. Two fit regions
are used to extract the multijet normalization. The first fit region is defined
as the full event selection but removing the mT requirement, and the second
one is defined as the full event selection but removing the Emiss

T require-
ment. Several multijet-enriched data samples (multijet templates) are built
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from events passing all selection requirements in each fit region except lepton
isolation. Mutually exclusive requirements (intervals) in either tracking (or
calorimeter) based isolation variables are chosen to create statistically inde-
pendent multijet templates. These samples are designed to be progressively
closer to the signal-candidate selection by fixing one of the isolation criteria
to that of the signal region and varying the other one; four such samples are
built for each isolation type in the electron channel and four (for tracking
based isolation) or six (for calorimeter based isolation) in the muon chan-
nel. Templates are similarly constructed from simulation for W± signal and
electroweak and top backgrounds, in order to account for potential contami-
nations in the multijet template. For each isolation interval the normalization
of the multijet template is extracted with a maximum likelihood fit to the
data in the two fit regions and separately for each one of the discriminant
variables and charged lepton samples. In each fit region, the normalization
of the signal template derived from simulation is left free to float while the
remaining background luminosity and the predicted cross sections are fixed
(but are permitted to vary within the integrated luminosity uncertainty of
2.1%). It was verified that the value of the signal normalization extracted
from this fit has no significant impact on the multijet estimate. The multijet
background event yield in each region is then estimated from this normaliza-
tion together with the signal region requirement of either mT > 50 GeV, or
Emiss
T > 25 GeV. For each discriminant variable and separately for calorime-

ter and track based isolation and for each fit region, the estimates obtained in
the isolation intervals are used to build a linear extrapolation to the isolation
selection used in the signal region. The extrapolation is performed assuming
that the individual estimates are uncorrelated.

Separately for the calorimeter based isolation variables and for each fit region,
an estimate of the background yield is obtained from a weighted average of
the extrapolations obtained with the individual discriminant variables and
their uncertainties. The average of the four multijet background estimated
fractions found from the track and calorimeter isolation requirements in each
fit region is then taken as the nominal multijet background yield in each chan-
nel. The uncertainties derived from the linear extrapolations are propagated
as systematic uncertainties of the method. A systematic uncertainty for the
choice of isolation variable is obtained from half the difference between the
averages of the calorimeter based isolation estimated fractions in the two fit
regions, and the track based averages. Similarly, a systematic uncertainty
due to the use of different fit regions is evaluated as half the difference of the
averages obtained from the different types of isolation in the two separate fit
regions.
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The estimated multijet background fractions with respect to the total num-
ber of observed candidate events are 8% and 10% for the electron selection
and 4% and 5% for the muon selection in the W+ and W− channels, respec-
tively. The corresponding relative uncertainties range from approximately
20% to 30% for the muon and electron channels, and are similar for both the
positively and negatively charged samples.

The expected background estimations for the multijet events for the different
channels, denoted as NQCD

bkg , are reported in the third column of table 3.2 .

3.4 Evaluation of systematic uncertainties

The experimental systematic uncertainties in the measurements of the fidu-
cial cross sections, that we are going to estimate in the next chapter, enter
via the evaluation of the correction factor C, the acceptance A (only for the
total cross-sections), the integrated luminosity L in the denominator of eq.
(3.1), and through the estimation of the background subtracted from the
candidate events in its numerator.

Table 3.1: Relative systematic uncertainties (%) for the correction factors C
in the different channels.

δC/C [%] Z→e+e− W+→e+ν W−→e−ν̄ Z→µ+µ− W+→µ+ν W−→µ−ν̄

Lepton trigger 0.1 0.3 0.3 0.2 0.6 0.6
Lepton recon, ident 0.9 0.5 0.6 0.9 0.4 0.4
Lepton isolation 0.3 0.1 0.1 0.5 0.3 0.3
Lepton scale & resol 0.2 0.4 0.4 0.1 0.1 0.1
Charge identification 0.1 0.1 0.1 - - -
JES and JER - 1.7 1.7 - 1.6 1.7
Emiss

T - 0.1 0.1 - 0.1 0.1
Pileup modeling <0.1 0.4 0.3 <0.1 0.2 0.2
PDF 0.1 0.1 0.1 <0.1 0.1 0.1
Total 1.0 1.9 1.9 1.1 1.8 1.8

The sources of systematic uncertainties for the correction factors C are sum-
marized in table 3.1, and listed below:

• Lepton trigger: the lepton trigger efficiency is estimated in simulation,
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with a dedicated data driven analysis performed to obtain the simu-
lation to data trigger correction factors and the corresponding uncer-
tainties;

• Lepton reconstruction, identification and isolation: the lepton selec-
tion efficiencies as determined from simulations are corrected with the
simulation to data correction factors and their associated uncertainties
[18, 19];

• Lepton energy and momentum scale and resolution: uncertainties in
the lepton calibrations are applied as they can cause a change of accep-
tance because of migration of events across the pT threshold and mll

boundaries;

• Charge identification: electron charge misidentification may occur when
electrons radiate early in the detector and the resulting photons sub-
sequently convert and are reconstructed as high pT tracks. A particle
with reconstructed charge opposite to the parent electron may then
accidentally be associated with the calorimeter cluster. The effect of
electrons having their charge reconstructed wrongly is studied using
a control sample of Z→ee events in which both electrons are recon-
structed with the same charge and is found to be well described by
the Monte Carlo simulations, within the statistical uncertainty of the
control sample. An uncertainty is assessed to cover any small resid-
ual differences between data and simulation. the probability of charge
misidentification is negligible in the muon channel;

• Jet Energy Scale/Resolution (JES & JER): the corresponding uncer-
tainties [24] are propagated to the calculation of the missing transverse
momentum;

• Emiss
T : uncertainties in the soft component of the Emiss

T scale and res-
olution (evaluated as described in [25]) are included;

• pileup: incorrect modeling of pileup effects can lead to acceptance
changes and is accounted for with dedicated studies [15];

• PDF: the impact of the parton density functions (PDF) eigenvector
variations is propagated to the correction factor and to the acceptance
(see [15] for details).

The many sources of systematic uncertainties for the factor C have been
categorized in common items. A detailed lists will be presented in the next
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section where the statistical method used is described. Indeed in the statis-
tical analysis every single source has been treated individually in order to
minimize possible correlation effects.

In the Z channel, the systematic uncertainties from the background eval-
uation contribute negligibly to the experimental cross section uncertainty.
This is not the case for the W± channel: the multijet background evaluation
results in uncertainties of up to 3.4% on the cross section measurements in
the electron channel and up to 1.4% in the muon channel.

For clarity’s sake we may want to describe the uncertainties on the elec-
troweak backgrounds and on the acceptance factor A. They may be found
inside table 3.3: for the electroweak background we have a ±2% from the
experimental uncertainties’ propagation and a ±5% from the theoretical un-
certainty on the cross-sections’ computation (both W± and Z). For the
acceptance A the uncertainty comes from the PDFs and is +1.5%

−1.1% for the Z
and ±1.8% for the W±.

The cross sections have a further 2.1% uncertainty in the measurement of
the integrated luminosity, which is derived, following a methodology similar
to that detailed in [26], from a calibration of the luminosity scale using a
pair of x− y beam separation scans performed in August 2015. Apart from
the determination of the luminosity, the dominant sources of experimental
systematic uncertainties in the cross section evaluations are the jet energy
scale and resolution and the multijet background for the W± measurements
while they are lepton reconstruction and identification efficiencies for the Z
measurements.

3.5 Cross section estimation

The production cross-sections have been estimated using a bayesian approach
to process the experimental informations presented in the previous sections.
The standard Bayes formula:

p(x|data) =
p(data|x)·p0(x)∫
p(data|x′)·p0(x′)dx′

(3.2)

where x is the variable of interest and data a generic set of experimental infor-
mations, can be expressed in terms of the relevant parameters and systematic
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uncertainties as:

p(σi|N i
obs, N

i
bkg, C

i, Ai, L) =

=

∫
p(N i

obs|σi, N i
bkg(χk), C

i(χk), A
i(χk), L(χk))·p0(σi)·

∏
kp0(χk)·dχk∫ ∫

p(N i
obs|σ′i, N i

bkg(χk), C
i(χk), Ai(χk), L(χk))·p0(σ′i)·

∏
kp0(χk)·dχk·dσ′i

(3.3)

where i is an index running over the different production and decay chan-
nels, σi is the cross section to be estimated, N i

obs the number of observed
events, N i

bkg the number of predicted background events, Ci the selection
efficiency defining the fiducial phase space, Ai the geometrical acceptance
used for the extrapolation to the full phase space, L the integrated lumi-
nosity, χk the sources of systematic uncertainties treated as nuisance pa-
rameters, p0(σi) and p0(χk) the prior density probabilities for the cross sec-
tions and systematic uncertainties, respectively. The denominator of the
formula is the factor required by the normalization condition. The dif-
ferent cross sections are evaluated all together at the same time and the
global likelihood is the product of the individual likelihoods. The likeli-
hoods p(N i

obs|σi, N i
bkg(χk), C

i(χk), A
i(χk), L(χk)) are poissonian with mean

value µ = σi·L(χk)·Ci(χk)·Ai(χk) +N i
bkg(χk) so that we have:

p(N i
obs|σi, N i

bkg(χk), C
i(χk), A

i(χk), L(χk)) =
e−µ·µN i

obs

N i
obs!

(3.4)

A flat prior has been employed for the cross section while normal priors
N(0, 1) have been assumed for the sources of systematic uncertainties:

x = x0·

(
1 +

Nsyst∑
k=1

εk·
1√
2π
exp

(
−χ

2
k

2

))

where x is a generic parameter, x0 its nominal value, Nsyst the number of the
sources of systematic uncertainties, εk the relative variation of the parameter
when the source k is shifted by one standard deviation and χk the shift of
the source k.

The input parameters used in the Bayes formula are summarized in table
3.2 for the different channels while the list of systematic uncertainties are
presented in table 3.3 for the predicted background events, the acceptance
and the luminosity and in tables 3.4, 3.5, 3.6 for the correction factor C.
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Table 3.2: Input parameters for the different channels.

channel [%] Nobs NEW
bkg NQCD

bkg C A Lumi(pb−1)

W+→µ+ν 272841 19310±760 12200±3500 0.653±0.012 0.383±0.007 81.0±1.7

W+→e+ν 256923 9620±520 15220±6700 0.602±0.012 0.398±0.007 81.0±1.7

W−→µ−ν 214249 17340±680 11500±3100 0.650±0.012 0.383±0.007 81.0±1.7

W−→e−ν 206140 8670±470 15640±6900 0.614±0.012 0.398±0.007 81.0±1.7

Z→µ+µ− 44899 191±10 - 0.711±0.008 0.393±0.007 81.0±1.7

Z→e+e− 34955 144±8 - 0.552±0.006 0.393±0.007 81.0±1.7

Table 3.3: Relative systematic uncertainties (%) for the predicted back-
ground events, acceptance and luminosity.

par/syst [%] EWµ EWe EWtheoretical QCDµ QCDe PDFe/µ Lumi

NZ
EW ±2 ±2 ±5 - - - ±2.1

AZ - - - - - +1.5
−1.1/

+1.5
−1.1 -

NW+
EW ±2 ±2 ±5 - - - ±2.1

NW+
QCD - - - ±22 ±26 - -

AW+ - - - - - ±1.8/±1.8 -
NW−

EW ±2 ±2 ±5 - - - ±2.1
NW−

QCD - - - ±30 ±31 - -
AW− - - - - - ±1.8/±1.8 -
Lumi - - - - - - ±2.1
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Table 3.5: Summary of the different terms contributing to the uncertainty on
CZ for electron final state. We note that the systematic uncertainties related
to the electron object have been assumed to be not correlated between W and
Z channels. This is denoted by the presence of the 1 in the corresponding
labels.

Parameter Up[%] Down[%]

Statistics 0.05 -0.05
EG RESOLUTION ALL 1 -0.02 0.01
EG SCALE ALL 1 0.22 -0.23
EL EFF ID COMBMCTOY 1 0.48 -0.48
EL EFF Iso COMBMCTOY 1 0.29 -0.29
EL EFF Reco TotalCorrUcertainty 1 0.77 -0.76
EL EFF Trig COMBMCTOY 1 0.05 -0.05
Pileup 0.01 -0.01
Opposite charge requirement -0.15 0.15
PDF 0.14 -0.08
Total 1.00 -0.99

Table 3.6: Summary of the different terms contributing to the uncertainty on
CZ for muon final state. We note that the systematic uncertainties related
to the muon object have been assumed to be not correlated between W and
Z channels. This is denoted by the presence of the 1 in the corresponding
labels.

Parameter Up[%] Down[%]

Statistics 0.05 -0.05
MUONS ID 1 -0.05 -0.01
MUONS MS 1 -0.01 0.00
MUONS SCALE 1 -0.07 0.06
MUON EFF STAT 1 0.61 -0.61
MUON EFF SYS 1 0.64 -0.64
MUON EFF TrigSystUncertainty 1 0.17 -0.17
MUON EFF TrigStatTOYUncertainty 1 0.10 -0.10
MUON ISO STAT 1 0.49 -0.48
MUON ISO SYS 1 0.22 -0.21
Pileup -0.01 -0.03
Opposite charge requirement 0.00 0.00
PDF 0.02 -0.01
Total 1.05 -1.05



Chapter 4

Results

We employed a dedicated code, BAT (Bayesian Analysis Toolkit [5], for fur-
ther details Appendix A), entirely written in C++, finely tuned for our
purpose. Thanks to BAT our analysis went almost smoothly. And yet, a few
things must be pointed out. For instance luminosity. This is a troublesome
systematic, since it is the dominant source of systematic uncertainty, fully
correlated among all the channels and with a large impact on the measure-
ment. The convergence of the Markov Chain is then in peril, because by
using Gelman-Rubin diagnostics (see Appendix C) we observe difficulties for
the chains to reach a well defined convergence. The only thing we can do is
to run the chain for as long as we can.

It has been noticed the convergence got sped up by reducing the uncertainty
on the luminosity. Recently the ATLAS collaboration, thanks to detailed
studies performed with the fundamental contribution of the Bologna group,
was able to considerably reduce the uncertainty on the luminosity measure-
ment from 5% to 2.1% thus helping our work a great deal.

All the results presented here have been obtained using this new reduced
uncertainty for the integrated luminosity.
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Figure 4.1: Z cross-section, the y-axis is normalized.
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Figure 4.2: W+ cross-section, the y-axis is normalized.
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Figure 4.4: Marginalized integrated luminosity, the y-axis is normalized. We
note that even the problematic luminosity is in the posterior bound by ±1σ.
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Table 4.1: Correlation coefficients among W− , W+ , and Z boson produc-
tion combined fiducial cross-section measurements excluding the common
normalization uncertainty due to the luminosity calibration.

W+ W− Z

W+ 1 0.98 0.71

W− 1 0.68

Z 1

Figure 4.7: Running mean plots on xsecZ, xsecW+, xsecW− against the
iteration number.

The MCMC technique allows us to sample the parameter space and to eval-
uate the probability density function for each parameter using a marginal-
ization with respect to the others so that any function of the parameter can
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Table 4.2: Ratios of the W+ to W− and W± to Z boson fiducial cross sections
for the electron, muon and combined measurements. We even compared them
to the baseline method’s results actually published a few weeks ago.

σfidW+/σ
fid
W− σfidW±/σ

fid
Z

our
(bayesian 1.296±0.007 10.44±0.22
approach)
article’s
baseline 1.295±0.013 10.31±0.24
method

also be easily determined during the sampling. The marginalized probabil-
ity density functions (PDF) for the three cross sections (Z, W+ and W−)
are shown in figures 4.1, 4.2 and 4.3 . We note that the distributions do
not present strange features and are approximately gaussian with a slight
larger tail towards high cross section values. Since the distributions are not
perfectly gaussian we chose to characterize them using the median and the
smallest interval containing the 68.3% area of the probability density distri-
bution (68.3% credibility level, CL, interval). The 68.3% (1σ), 95.5% (2σs)
and 99.7% (3σs) credibility level intervals are also shown in the plots in
green, yellow and red respectively. The results for all the channels are sum-
marized in table 4.3 together with a comparison with the baseline method
of the ATLAS paper [15]. Figure 4.4 shows the pdf of the luminosity which
represents the dominant uncertainty, fully correlated among all the channels.
Also in this case no strange features are observed, the posterior distribution
is approximately gaussian with mean close to zero and σ close to 1. Two
other very important observables are the cross section ratios σW+/σW− and
σW±/σZ which are presented in figs.4.5 and 4.6 respectively. these observ-
ables allow for stringent tests of the SM predictions since all the correlated
uncertainties, including the luminosity related one, cancel in the ratio. The
results are also summarized in table 4.2 along with a comparison with the
results obtained with the baseline method [15].
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Figure 4.8: Parameter space sampling for σZ , σW+ , σW− against the iter-
ation number for one of the five chains used in the sampling (left). The
corresponding density plots are shown on the right side.
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Figure 4.9: Shrink scale factor analysis for the parameters describing the Z,
W+ and W− production cross sections against the iteration number.

The last set of plots present the checks we made in order to assess the con-
vergence of the set of Markov Chains used to sample the parameter space.
The results presented above have been obtained using 5 independent chains
with a pre-run of maximum 106 iterations per chain to assess the convergence
of the chains using the Gelman-Rubin convergence diagnostic (see Appendix
C) and a sampling run of 106 iterations per chain.

By looking at fig. 4.8 we can ascertain the good mixing of the chains. This
is clearly visible in the left side plots showing the path of one of the Markov
Chains along the iteration number. The chain explores the whole space
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and does not get stuck in any part of the parameter space. The shrink
scale factors are presented in fig. 4.9, indicate the convergence status of the
chains according to the Gelman-Rubin criterion and BAT checks its value
for each parameter during the pre-run assuming that the convergence has
been reached when all the factors for every parameter is below 1.1 . We can
observe that all the parameters reach a shrink scale factor of almost 1.0 in
the long run (thankfully the only thing that matters).

Table 4.3: Summary of the fiducial production cross section results for the
Z, W+, W− and W± processes. The results of this analysis are presented in
the first column and are compared to the public ATLAS results in the second
column.

bayesian [nb] baseline [nb]

σprodZ 0.781±0.017 0.780±0.017

σprodW+ 4.61±0.13 4.53±0.13

σprodW− 3.55±0.10 3.50±0.10

σprodW± 8.17±0.23 8.03±0.23

Finally fig. 4.10 shows a summary of the mean and the root mean square
of every systematic uncertainties, the so called Nuisance Parameters (NPs)
which are integrated out to obtain the posterior pdf of the parameters of
interest (the Z, W+ and W− production cross sections). As may be noted
from the plot no strange features are observed, all the NPs do not show large
departures from the prior which is a normal distribution with mean 0 and
sigma 1. The only exception is the source of the systematic uncertainty n.46,
the uncertainty on the multijet electron background, which exhibits a root
mean square significantly smaller than 1. This deviation is probably due to
an overestimation of this peculiar uncertainty.
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Figure 4.10: Summary for the systematics.

In order to make a complete comparison between our results and the ar-
ticle’s the total production cross sections were computed as well using the
same method and including in the likelihood also the acceptance A and its
uncertainty in order to extrapolate the cross-sections to the full-phase space.
These last results are shown in table 4.4 .

The results for the W+, W− and Z cross sections obtained using a bayesian
approach which accounts for the correlations among the different channels
introduced by the common source of systematic uncertainties, are in very
good agreement with the SM predictions and the public ATLAS results [15]
obtained using a classical approach. Figs. 4.11 and 4.12 show the level of the
agreement for the fiducial and the full phase space cross-sections respectively,
while fig. 4.13 the comparisons made for the ratios.
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Table 4.4: Summary of the total production cross section results for the Z,
W+, W− and W± processes. To obtain them it was necessary to consider
the acceptance factor A. The results of this analysis are presented in the first
column and are compared to the public data results in the second column.

bayesian [nb] baseline [nb]

σTOTZ 1.993+0.059
−0.057 1.981±0.087

σTOTW+ 12.07+0.42
−0.40 11.83±0.59

σTOTW− 8.96+0.32
−0.31 8.79±0.44

σTOTW± 21.03+0.74
−0.71 20.64±1.00



Conclusions

In this thesis we have computed the production cross sections for W± and
Z bosons using their leptonic decays. The analysis was performed using
pp collision data provided by LHC at a center of mass energy of

√
s = 13

TeV and recorded by the ATLAS detector on summer 2015 for an integrated
luminosity of L = 81 pb−1. The analysis have been carried on using the same
event selections reported in the recent ATLAS paper [15] but exploiting the
features of the bayesian approach for the statistical treatment of the data and
the evaluation of the probability density function for the the cross-sections
of interest. The results are in very good agreement with the SM predictions
and the ATLAS results, as witnessed by the summary of figs. 4.11 and 4.12
for the fiducial and the full phase space cross sections, respectively. The
uncertainty of the measurements is dominated by the luminosity uncertainty
which is fully correlated among the different channels. The ratios of the
different cross-sections can hence be determined with a much better precision
then the cross-sections themselves and constitute a powerful test of the SM
predictions. Also the ratios σW+/σW− and σW±/σZ have been evaluated and
found again in good agreement with the ATLAS published results and SM
predictions as shown in fig. 4.13 .

I think that the bayesian method is a powerful tool which allows to treat data
correlations and systematic uncertainties in a very natural and straightfor-
ward way (meaning free of unclear recipes sometimes present in the classic
statistical approach). It is hence of interest to go on with both approaches
as one could be a check to the other.
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Appendix A

Why BAT and how to use it

BAT is a package which employs everything explained until now. It makes
easy performing bayesian analysis, and it is interfaced with ROOT. You can
find it at [4]. The release considered in all the following is the 0.9.4.1, one of
the latest.

A.1 How it works

By activating the bat-project script you first create a skeleton, comprised of
a few components.

The core of the skeleton is the part listed below which allows the evaluation
of the likelihood:

double TEST::LogLikelihood(const std::vector<double> & parameters) {

// This methods returns the logarithm of the conditional probability

// p(data|parameters). This is where you have to define your model.

// access parameters from vector by remembering their positions, e.g.

// double mu = parameters[0];

// or by looking up their indicies, e.g.

// double mu = parameters[fParameters.Index("mu")];

// Calculate your likelihood according to your model. You may find

// the built in functions such as BCMath::LogPoisson helpful.

// Return the logarithm of this likelood
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sig=parameters[0]; #not in the skeleton

Nsig=sig*eff*lumi; #same

mu=Nsig+Npredicted; #same

logprob += BCMath::LogPoisson(Nobs,mu); #same

}

return logprob; #you have to put it this way

//return -1; #if you want your code to run

}

In this last case we are interested in the actual posterior:

P (σ|Npred, Nobs, lumi, eff)

with the poissonian likelihood:

P (Nobs|σ,Npred, lumi, eff) =
µNobs · e−µ

Nobs!
,

where Npred is the predicted number of events, Nobs is the observed number
of events, lumi the luminosity and eff the efficiency.

This code will be explained better in the section A.5 when the example
about a signal beyond the Standard Model is analyzed, because it is the
code employed there.

A.2 XML: powerful labelling system

Extensible Markup Language (XML) is a markup language that defines a set
of rules for encoding documents in a format which is both human-readable
and machine-readable.

This labelling system proved to be very useful in providing easy to understand
data to BAT. What we wanted to do was to be able to give data from outside
the code. In other words, by using peculiar text files a.k.a. “control cards”,
we controlled the analysis. This is interesting for many reasons:

• if the core program is correct, small changes may be applied only to
the control cards;
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• using control cards, continuous acts of compiling for the program are
not required anymore, because we can perform different analysis by
modifying the input parameters in the control cards feeding it to our
program ⇒less bugs to worry about;

• if we want to change the function for the likelihood from outside we
just have to change the actual flag in the control cards, so we only have
to consider more types of likelihood once for all in the core program
coding phase;

• the labelling system allows us to produce a set of control cards easy to
understand;

Thankfully the workload was eased by employing XML syntax analyzers,
a.k.a. parsers , which translate our XML file in C++ code.

Our target parser is CMarkup [6], because we deemed it easiest to control
and understand.

A.3 CMarkup in BAT

The few tags we introduced are the ones needed to compute cross-sections,
so if need arises a few more would be no trouble at all to add.

First of all, XML needs a parent element (or root element) and the first
element we usually call it <ROOT>. It must be closed at the end (that is
true for every element) with the syntax < /ROOT> , but truth to be told,
the name of the parent element is up to everyone’s fantasy.

We added a channel system, so that an analysis may be made for many decay
ways (like Z → e+e− or Z → µ+µ−). How to name every channel is yet again
up to your will.

The system will find the following labels:

• Measure: by the syntax < Measure > thing < /Measure > and in
succession all the others, we add the quantities that we want to obtain
by the end of the analysis;

• Measure-prior: by the syntax < Measure − prior > number <
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/Measure− prior > in succession for the many Measure-s, we specify
their prior, 0 = flat, 1 = gauss;

• Measure-lim: by the syntax< Measure−lim > number1 < /Measure−
lim >, < Measure− lim > number2 < /Measure− lim >, we specify
the ranges of the Measure-s, again one after the other;

• Measure-par: by the syntax< Measure−par > number1 < /Measure−
par >, < Measure−par > number2 < /Measure−par >, we tell the
program the mean and the sigma for the gaussian, and it will only be
used in that instance;

• Likelihood: it is needed to determine the likelihood type 1 = poisson,
2 = gauss;

• Parameters: the parameters of the likelihood; again they must have
the syntax < Parameters > thing < /Parameters >;

• Parameters-values: the value of the parameters;

• Data: mainly employed for the Nobs;

• Data-value: its value:

• Syst: nuisance parameters (NP), same name for NP on different data
set means full correlation;

• Syst-lim: by the syntax < Syst − lim > number1 < /Syst − lim >,
< Syst − lim > number2 < /Syst − lim >, we specify the ranges of
the Syst-s, again one after the other;

• Syst-prior: it is the prior type for the systematic source and it needs to
be specified for all the Syst-s, 0 = cost, 1 = gauss, −1 = notconsidered;

• End-dataset: it needs to be present as well, before the channel element
everything belong to is closed;

• Syst-whateveryouwant: the system will check if whateveryouwant is
a label corresponding to anyone of the many Parameter-s. If a match is
found, it will enter the element and find the tag belonging to the Syst
it has dependence from (concatenated dependance must be employed).
It sounds tricky but an example in the following will certainly clear the
way.
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A.4 Example: the XML input data

This is how the input data, let’s say example.xml, should be written:

<ROOT>

<Channel>

<Measure>xsecWplus</Measure>

<Measure-prior>0</Measure-prior>

<Measure-lim>0.6</Measure-lim>

<Measure-lim>0.9</Measure-lim>

<Likelihood>1</Likelihood>

<Parameters>NbgEW_Wplus</Parameters>

<Parameters-values>9625</Parameters-values>

<Parameters>Lumi</Parameters>

<Parameters-values>85000</Parameters-values>

<Data>Nobs</Data>

<Data-value>256858</Data-value>

<Syst>BKG_EW_EL</Syst>

<Syst>BKG_EW_TH</Syst>

<Syst>LUMI</Syst>

<Syst-lim>-5</Syst-lim>

<Syst-lim>5</Syst-lim>

<Syst-lim>-5</Syst-lim>

<Syst-lim>5</Syst-lim>

<Syst-lim>-5</Syst-lim>

<Syst-lim>5</Syst-lim>

<Syst-NbgEW_Wplus>

<BKG_EW_EL>0.02</BKG_EW_EL> #if the second value

<BKG_EW_EL>0</BKG_EW_EL> #is 0, the first

<BKG_EW_TH>0.05</BKG_EW_TH> #value is assumed

<BKG_EW_TH>0</BKG_EW_TH> #for the systematic

<LUMI>0.09</LUMI> #uncertainty

<LUMI>0</LUMI>

</Syst-NbgEW_Wplus>

<Syst-Prior>1</Syst-Prior>

<Syst-Prior>1</Syst-Prior>

<Syst-Prior>1</Syst-Prior>

<EndDataSet>0</EndDataSet>

</Channel>

</ROOT>
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And in the runTESTproject.cxx created by the BAT tools it is to be called
by:

TESTproject* m = new TESTproject("example.cards");

A.5 Example: BSM limit

Suppose you want to study the possibility of a signal beyond the Standard
Model (BSM). Let’s consider the following data:

• Nobs = 5

• Npred = 4

• lumi = 100pb−1

• eff = 0.5

where Npred is the predicted number of events, Nobs is the observed number
of events, lumi the integrated luminosity and eff the efficiency.

Let’s consider the following likelihood:

P (Nobs|σBSM , Npred, lumi, eff) = Poisson(Nobs, µ)

with µ computed as:

µ = Npred + σBSM · lumi · eff

We next impose a flat prior for σBSM , the cross section of a possible BSM
process.

By putting together all this informations, our control cards should look like:

<ROOT>

<Channel>
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<Measure>sigmaBSM</Measure>

<Measure-prior>0</Measure-prior>

<Measure-lim>0.</Measure-lim>

<Measure-lim>0.5</Measure-lim>

<Measure-par>0.</Measure-par>

<Measure-par>0.</Measure-par>

<Likelihood>1</Likelihood>

<Parameters>Eff</Parameters>

<Parameters>Npred</Parameters>

<Parameters>Lumi</Parameters>

<Data>Nobs</Data>

<Data-value>5</Data-value>

<Parameters-values>0.5</Parameters-values>

<Parameters-values>4</Parameters-values>

<Parameters-values>100</Parameters-values>

<Syst>LUMI</Syst>

<Syst-lim>-5</Syst-lim>

<Syst-lim>5</Syst-lim>

<Syst-Lumi>

<LUMI>-0.05</LUMI>

<LUMI>0.05</LUMI>

</Syst-Lumi>

<Syst-Prior>1</Syst-Prior>

<EndDataSet>0</EndDataSet>

</Channel>

</ROOT>

where a single systematic uncertainty was added for clarity’s sake. Of course
we are not done yet. We have to modify the LogLikelihood. As explained in
the short introduction to BAT found on its website, we have to start editing
the TestProject.cxx file. In our skeleton this is done in the following way:

double TestProject::LogLikelihood(const std::vector<double> & parameters) {

const double pig=3.14159;

double logprob = 0.;

double par0, systdev;

double Nsig, mu, Nobs;

vector<double> parx;

map<string,map<string,vector<double> > >::iterator it1;

map<string,vector<double> >::iterator it2, itnobs;

map<string,double>::iterator it3;

map<string,vector<int> >::iterator it4;

double a,b,sig;

// loop over different datasets, ids represemts the number
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//of the channel you are working on

for (int ids=0; ids<m_parsyst.size(); ids++){

// loop on parameters

for(int ipar=0; ipar<likelihood_par.size(); ipar++){

if(debug>2)cout << " DEBUG ===> <=== " << ipar << " ";

cout << likelihood_par.size();

cout << " " << likelihood_par.at(ipar) << " " << endl;

it3=m_parcv.at(ids).find(likelihood_par.at(ipar));

par0=it3->second;

it1=m_parsyst.at(ids).find(it3->first);

systdev=0;

// loop on systematics

for(it2=it1->second.begin(); it2!=it1->second.end(); it2++){

if(it2->second.at(0) != 0){

it4=m_systtyp.find(it2->first);

if(it4 != m_systtyp.end()){

if(it2->second.at(1) == 0){

systdev += it2->second.at(0)*parameters[it4->second.at(0)+idm-1];

}

else{

parabola(it2->second,&a,&b);

systdev += a*pow(parameters[it4->second.at(0)+idm-1],2)+b*parameters[it4->second.at(0)+idm-1];

}

}

}

}

parx.push_back(par0*(1+systdev));

systdev=0;

}

itnobs=m_data.at(ids).begin();

Now starts your coding:

if(ids == 0){

sig=parameters[0];

Nsig=sig*parx.at(0)*parx.at(2);

mu=Nsig+parx.at(1);

parx.at(k) << endl;

}

Nobs=itnobs->second.at(0);

if(likelihood.at(0) == 1)

//IT IS:

logprob += BCMath::LogPoisson(Nobs,mu);

parx.clear();

}

return logprob;

}
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Figure A.1: Results for the BSM cross-section.

Fig. A.1 shows the BAT output for the posterior probability distribution
function of σBSM . Using the above probability distribution, a limit at 95%
credibility level may be evaluated as:∫ σ95

BSM

0

P (σBSM |DATA)dσBSM = 0.95⇒σ95
BSM=0.145 pb.
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Appendix B

Lorentz angle inside the Pixel
Detector

The ATLAS pixel tracking detector is located close to the interaction region
and exploits the drift of the charge carriers produced by the charged parti-
cles formed in the pp collisions to reconstruct the tracks of these particles.
Furthermore it is immersed in a strong, solenoidal magnetic field which is
used to bend the particle trajectories in order to estimate their momentum.

In the presence of an electric field E and a magnetic field B, with a compo-
nent orthogonal to E, the charge carriers move along a direction that forms
an angle (Lorentz angle) with the electric field. This angle affects the area
of collection of the charge carriers. Resolution and efficiency of the detector
depend on the track incidence angle and on the charge drift angle: the deter-
mination of this angle is therefore very important to define the mechanical
design and optimize the detector performances.

The distribution of charge produced by ionizing particles while drifting to the
read-out pixels can spread over more than one pixel. The spread depends
on the particle incidence angle and is minimum for an angle equal to the
Lorentz angle [13].

In order to evaluate the Lorentz angle inside the Pixel Detector I performed
a study on the mean cluster sizes in the transverse component with respect
to the azimuthal incidence angle.

Thankfully ROOT [27] comes in our aid, providing us with the TProfile class.
The peculiarity of this class is that is will give us the mean and the spread
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Figure B.1: IBL Planar, Lorentz angle. Incidence angle vs mean cluster size.

of the y-axis with respect to the same bin in the x-axis. So if we consider a
two-dimensional plot with the cluster sizes in the y-axis and the azimuthal
angle in the x-axis, it will give us exactly what we need.

The next step is to consider the quality cuts made in our analysis. Track
selection required at least 2 pixel hits, 6 SCT hits, 15 TRT hits. Given how
closely packed they are (we are reminded that IBL was exactly designed this
way), we expect the IBL 3D Lorentz angle, which is the p1 parameter of the
fit (all the fit parameters are listed in the plot legends), to be close to zero.

The results of this study were included in the pixel detector calibration.

Table B.1: Lorentz Angle Values, summary.

Lorentz Angle (rad)

IBL Planar 2.502e−1 ± 3.2e−3

IBL 3D 2.338e−2 ± 5.7e−3

Layer 1 1.725e−1 ± 2.5e−3

Layer 2 2.051e−1 ± 3.4e−3

Layer 3 2.025e−1 ±2.8e−3
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Figure B.2: IBL 3D, Lorentz angle. Incidence angle vs mean cluster size.

Figure B.3: Layer 1 (previously called B-layer), Lorentz angle. Incidence
angle vs mean cluster size.
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Figure B.4: Layer 2, Lorentz angle. Incidence angle vs mean cluster size.

Figure B.5: Layer 3, Lorentz angle. Incidence angle vs mean cluster size.



Appendix C

R: useful MCMC analyzer

It could be of interest to study the Markov Chain provided by BAT in an
another environment. Thanks to the CRAN [11] repository, R [28] proves to
be a good choice. So much already made open source code!!

C.1 Convergence diagnostics

We expect our Markov Chains to converge to the target distribution, but we
cannot be sure that they will converge after a certain number of draws. Just
to keep it safe we can run a series of diagnostics tests. Thankfully the actual
coding component of the problem is already no more. To put it bluntly, in
order to go on with our analysis inside the R environment we just have to
download from CRAN (Comprehensive R Archive Network, [11]) the CODA
package [12] and importing it inside our R script, together with the package
mcmcplots [29].

To see if a Markov Chain worked like we want it to do, it is useful to start
from a visual way. What I mean is to check if the chain mixed well, so as to
say, if it moved well inside the parameter space. It makes sense that if our
chain is inside an area longer than expected, than it will take much longer
to converge. This is possible to check through visual inspection thanks to
traceplots, where you plot the iteration number against the actual value of the
parameter you are checking. This needs to be done for every parameter. Let’s
consider fig.C.1, in the left side we see a good mixing, where the chain worked
efficiently, while on the right side we can see that it got stuck somewhere.
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Figure C.1: Mixing, example.

Figure C.2: Mixing through traceplots, example.

This is no good.

We can also use running mean plots, where we plot the iteration number
against the mean up to each iteration of the parameter, in order to check
how well did it go (figure C.2).

C.2 Gelman-Rubin convergence test

This is a more quantitative type of test. It is comprised of a few steps:
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a) start running a number m≥2 of chains, 2n steps long, starting from m
different and dispersed values;

b) discard the first n steps;

c) compute the within chain variance W ;

d) compute the between chain variance B;

e) compute the estimated variance of the parameter as a weighted sum of
the within-chain and between-chain variance;

f) compute the potential scale reduction factor.

We then define the variables involved:

W =
1

m
·
∑m

j=1
s2
j ,

s2
j =

1

n− 1
·
∑n

i=1
(ϑij − ϑj,mean)2,

where ϑij is the i-ish value of the j-ish chain and ϑj,mean its mean value, so
that s2

j is the variance!

B =
n

m− 1
·
∑m

j=1
(ϑj,mean − ϑALL,mean)2,

where

ϑALL,mean =
1

m
·
∑m

j=1
ϑj,mean

but this means that B is the variance of the chain means times n. We can now
define the estimated variance V (ϑ) of the chosen parameter as a weighted
sum of W and B with respect to the number of considered iterations:

V (ϑ) = (1− 1

n
) ·W +

1

n
·B.

The shrink scale factor R is defined as:

R =

√
V (ϑ)

W
. (C.1)

When R is high enough, perhaps greater than 1.1 or 1.2 (BAT check if R
is greater than 1.1), we should then run our chains longer to improve the
convergence.
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C.3 How to do the same in R

It should be fairly easy to do the same inside R. We want to have a script
looking like:

#install.packages("coda")

#library(coda)

#install.packages("mcmcplots")

#library(mcmcplots)

[...] Let’s suppose that here you have generated your Markov Chains or you
have fetched them from file, and you have named them mcNUMBER:

mc.list <- mcmc.list(list(mc1, mc2, mc3, mc4, mc5))

Now we employ the function for the Rubin-Gelman diagnostics:

gelman.diag(mc.list)

We obtain then a summary of what has happened inside. We may be in-
terested in a visual check. The function gelman.plot() spells out how the
potential scale reduction factor changes through the iterations.

gelman.plot(mc.list)

That should give something like Fig. C.3:
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Figure C.3: R scale factor against the number of iterations, example.
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