
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze
Dipartimento di Fisica e Astronomia

Corso di Laurea Magistrale in Fisica

Performance Studies of CMS workflows
using Big Data technologies

Relatore:

Prof. Daniele Bonacorsi

Correlatore:

Dott. Claudio Grandi

Presentata da:

Luca Ambroz

Sessione I

Anno Accademico 2015/2016



Abstract

At the Large Hadron Collider (LHC), more than 30 petabytes of data are pro-
duced from particle collisions every year of data taking. The data processing
requires large volumes of simulated events through Monte Carlo techniques. Fur-
thermore, physics analysis implies daily access to derived data formats by hundreds
of users. The Worldwide LHC Computing Grid (WLCG) - an international col-
laboration involving personnel and computing centers worldwide - is successfully
coping with these challenges, enabling the LHC physics program. With the con-
tinuation of LHC data taking and the approval of ambitious projects such as the
High-Luminosity LHC, such challenges will reach the edge of current computing
capacity and performance. One of the keys to success in the next decades - also
under severe financial resource constraints - is to optimize the efficiency in exploit-
ing the computing resources.

This thesis focuses on performance studies of CMS workflows, namely centrally-
scheduled production activities and unpredictable distributed analysis. The work
aims at developing and evaluating tools to improve the understanding of the mon-
itoring data in both production and analysis. For this reason, the work comprises
two parts. Firstly, on the distributed analysis side, the development of tools to
quickly analyze the logs of previous Grid job submissions can enable a user to
tune the next round of submissions and better exploit the computing resources.
Secondly, concerning the monitoring of both analysis and production jobs, com-
mercial Big Data technologies can be used to obtain more efficient and flexible
monitoring systems. One aspect of such improvement is the possibility to avoid
major aggregations at an early stage and to collect much finer granularity moni-
toring data which can be further processed at a later stage, just upon request.

In this thesis, a work towards both directions is presented. Firstly, a lightweight
tool to perform rapid studies on distributed analysis performances is presented as a
way to enable physics users to smoothly match the job submission tasks to chang-
ing conditions of the overall environment. Secondly, a set of performance studies
on the CMS Workflow Management and Data Management sectors are performed
exploiting a CMS Metrics Service prototype, based on ElasticSearch/Jupyter Note-
book/Kibana technologies, that contains high granularity information on CMS
production and analysis jobs, exploiting the HTCondor ClassAdds.

Chapter 1 provides an overview of the Standard Model. Chapter 2 discusses the
LHC accelerator complex and experiments with main focus on CMS. Chapter 3
introduces Computing in High Energy Physics and describes the CMS Computing
Model. Chapter 4 presents the development of an original tool for evaluating the
performances of local analysis jobs. Chapter 5 describes how data from the CMS
Metrics Service can be analyzed to provide insights on the CMS global activities.



Sommario

Al Large Hadron Collider (LHC) ogni anno di acquisizione dati vengono raccolti
piú di 30 petabyte di dati dalle collisioni. Per processare questi dati è necessario
produrre un grande volume di eventi simulati attraverso tecniche Monte Carlo.
Inoltre l’analisi fisica richiede accesso giornaliero a formati di dati derivati per
centinaia di utenti. La Worldwide LHC Computing GRID (WLCG) è una colla-
borazione interazionale di scienziati e centri di calcolo che ha affrontato le sfide
tecnologiche di LHC, rendendone possibile il programma scientifico. Con il pro-
sieguo dell’acquisizione dati e la recente approvazione di progetti ambiziosi come
l’High-Luminosity LHC, si raggiungerá presto il limite delle attuali capacitá di
calcolo. Una delle chiavi per superare queste sfide nel prossimo decennio, anche
alla luce delle ristrettezze economiche dalle varie funding agency nazionali, consi-
ste nell’ottimizzare efficientemente l’uso delle risorse di calcolo a disposizione.

Il lavoro mira a sviluppare e valutare strumenti per migliorare la comprensione
di come vengono monitorati i dati sia di produzione che di analisi in CMS. Per
questa ragione il lavoro è comprensivo di due parti. La prima, per quanto riguar-
da l’analisi distribuita, consiste nello sviluppo di uno strumento che consenta di
analizzare velocemente i log file derivanti dalle sottomissioni di job terminati per
consentire all’utente, alla sottomissione successiva, di sfruttare meglio le risorse di
calcolo. La seconda parte, che riguarda il monitoring di jobs sia di produzione che
di analisi, sfrutta tecnologie nel campo dei Big Data per un servizio di monito-
ring piú efficiente e flessibile. Un aspetto degno di nota di tali miglioramenti è la
possibilitá di evitare un’elevato livello di aggregazione dei dati giá in uno stadio
iniziale, nonché di raccogliere dati di monitoring con una granularitá elevata che
tuttavia consenta riprocessamento successivo e aggregazione “on-demand”.

In questa tesi viene presentato un lavoro che riflette queste due visioni. In primo
luogo, viene sviluppato un strumento leggero per effettuare veloci studi di per-
formance per analisi distribuite al fine di coniugare, nel miglior modo possibile,
le sottomissioni di job da effettuare con le strutture di calcolo a disposizione. In
secondo luogo, sono stati effettuati una serie di studi di performance sui setto-
ri di CMS Workload Management e Data Management, sfruttando un prototipo
chiamato “CMS Metrics Service” basato su tecnologie ElasticSearch/Jupyter No-
tebook/Kibana, il quale contiene informazioni ad alta granularitá sui job di analisi
e produzione di CMS (mediante HTCondor ClassAdd).

Il Capitolo 1 fornisce una visione generale del Modello Standard delle particelle
elementari. Il Capitolo 2 presenta l’acceleratore LHC e i principali esperimen-
ti all’acceleratore, focalizzandosi in particolare su CMS. Il Capitolo 3 discute le
problematiche legate al Computing nella settore della fisica delle alte energie, in
particolare in CMS. Il Capitolo 4 presenta lo sviluppo di uno strumento originale
per valutare, localmente, le performance di job di analisi. Il Capitolo 5 descrive in
dettaglio come i dati presenti nel CMS Metrics Service possano essere analizzati
per fornire informazioni preziose sulle performance delle attivitá globali di CMS,
e guidare scelte future.



Contents

1 The Standard Model 8
1.1 Particles of the Standard Model . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 The fundamental interactions . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 The electromagnetic interaction . . . . . . . . . . . . . . . . . . . 11
1.2.2 The strong interaction . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 The electroweak interaction . . . . . . . . . . . . . . . . . . . . . 15

2 High Energy Physics at the LHC 17
2.1 The LHC accelerator at CERN . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 The experiments at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 ALICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 ATLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 CMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.4 LHCb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.5 Other experiments at LHC . . . . . . . . . . . . . . . . . . . . . . 25

2.3 The CMS detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Hadron Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.5 Muon detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.6 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Computing in High Energy Physics 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Grid technologies and WLCG . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 The CMS Computing model . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 CMS computing services . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 CMS Distributed Analysis with CRAB . . . . . . . . . . . . . . . . . . . 41

1



4 Analysis performances:
a CRAB-based tool 44
4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Single task analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Multiple Task Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Job submissions for benchmarking . . . . . . . . . . . . . . . . . . . . . . 53

5 Performance studies of CMS workflows using ElasticSearch, Jupyter
Notebook and Kibana 54
5.1 Big Data Analytics in CMS . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 ElasticSearch and Kibana . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 The CMS Metrics Service from University of Nebraska . . . . . . . . . . 57
5.5 Workload Management view . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.1 Use-case: jobs count across production and analysis . . . . . . . . 61
5.5.2 Use-case: total core hours per production campaign . . . . . . . . 65
5.5.3 Use-case: jobs count on many computing centers . . . . . . . . . . 66
5.5.4 Use-case: campaign-based job failure modes . . . . . . . . . . . . 72
5.5.5 Use-case: campaign-based CPU efficiency . . . . . . . . . . . . . . 76
5.5.6 Performance comparison of two Tier-2: CERN HLT and IT Legnaro 82

5.6 Data Management view . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.7 Quasi real-time monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A Important ElasticSearch attributes for the CMS implementation 93

B Example of Elasticsearch query 97

2



List of Figures

1.1 Fundamental vertex of the QED. . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Screening mechanism in Quantum ElectroDynamics for an electron (top)

and αEM as a function of probe energy (bottom). . . . . . . . . . . . . . 12
1.3 Fundamental vertexes of the QCD. . . . . . . . . . . . . . . . . . . . . . 13
1.4 Coupling constants αQCD ≡ αs and αQED as a function of the quadratic

transferred four-momentum Q2 [5]. . . . . . . . . . . . . . . . . . . . . . 14
1.5 Examples of fundamental vertexes of the weak interation. . . . . . . . . . 15
1.6 Production of the Higgs boson at a hadron accelerator. . . . . . . . . . . 16

2.1 The LHC collider inside the underground tunnel (copyright CERN). . . . 17
2.2 Scheme of the acceleration complex (copyright CERN). . . . . . . . . . . 18
2.3 Cross section of LHC dipole (copyright CERN). . . . . . . . . . . . . . . 19
2.4 Experiments at the LHC (copyright CERN). . . . . . . . . . . . . . . . . 21
2.5 Picture of the ALICE detector under maintenance (copyright CERN). . . 22
2.6 Picture of the ATLAS detector under construction (copyright CERN). . . 23
2.7 Picture of the CMS detector while open (copyright CERN). . . . . . . . 24
2.8 Picture of the CMS detector while open (copyright CERN). . . . . . . . 25
2.9 Section of the CMS detector (copyright CERN). . . . . . . . . . . . . . . 27
2.10 Left: CMS Tracker stand−alone pt resolution for muons, without beam

constraint. Right: Combined CMS Tracker and Muon Chamber p res-
olution, in the central and forward rapidity regions of the detector [27].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.11 Artistic representation of a 20◦ wedge. The ECAL is on the right and
HCAL on the left (copyright CERN). . . . . . . . . . . . . . . . . . . . . 31

2.12 A schematic view of a muon trajectory inside the detector (copyright
CERN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.13 A schematic representation of the dataflow in the CMS Trigger. The two
consecutive steps are highlighted: the L1 Trigger and the HLT (copyright
CERN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 The Tier structure of the WLCG sites [36] . . . . . . . . . . . . . . . . . 37
3.2 Data flow in the CMS computing model. . . . . . . . . . . . . . . . . . . 39

3



3.3 Overview of the CMS Computing Services [46]. . . . . . . . . . . . . . . 40
3.4 Overview of the CRAB architecture [58]. . . . . . . . . . . . . . . . . . . 43

4.1 Tool design. The tool performs two types of analysis on the CMS working
directory: a single task analysis for each task individually, and a multiple
task analysis which looks at each task as a whole. More details will be
provided in Sections 4.2 and 4.3. . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Number of jobs as a function of the CPU Time for a workflow that is
described in detail in the text. . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Number of jobs as a function of the Execution Time for a workflow that
is described in detail in the text. . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Number of jobs as a function of the CPU Efficiency for a workflow that is
described in detail in the text. . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Occurrences of the number of events for a workflow that is described in
detail in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Execution Time as a function of the CPU Time for a workflow that is
described in detail in the text. . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Execution Time as a function of the number of events for a workflow that
is described in detail in the text. . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 Averages of CPU Time for four related workflows (the error is the standard
deviation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9 Averages of Execution Time for four related workflows (the error is the
standard deviation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.10 Averages of CPU Efficiency for four related workflows (the error is the
standard deviation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.11 Averages of number of events for four related workflows (the error is the
standard deviation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Schematic representation of the structured and unstructured metadata in
CMS [64]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Diagram of the component architecture of Nebraska / CMS Metrics Service. 58
5.3 Daily sum of Core Hours for different Site WMS. . . . . . . . . . . . . . 60
5.4 Job count for the 10 most relevant “processing activities”. See text for

further explanations. Blue bars refer to user analysis activities and yellow
bars refer to different Monte Carlo production campaigns. . . . . . . . . 61

5.5 Total Core Hours for jobs of production and analysis in May 2016. . . . . 63
5.6 RunIISpring16DR80 campaign progress over time. . . . . . . . . . . . . . 64
5.7 RunIISummer15GS campaign progress over time. . . . . . . . . . . . . . 64
5.8 Total Core Hours for the major production campaigns ongoing in May 2016. 65

4



5.9 Fraction of jobs in the WLCG Sites that contributed the most to the
CMS experiment activities (both production and analysis) in the time
frame under study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.10 Total number of completed jobs, with breakdown on the computing sites. 69
5.11 Total Core Hours for the major computing centers, showing also the frac-

tion of the job succeeded and failed. . . . . . . . . . . . . . . . . . . . . . 69
5.12 Total number of completed jobs, with breakdown on the computing sites,

showing also the fraction of production versus analysis jobs. . . . . . . . 70
5.13 Relative fraction of production and analysis jobs at different Tier levels

over the time frame under study. . . . . . . . . . . . . . . . . . . . . . . 71
5.14 The five most frequent exit codes of CMSSW jobs belonging to the RunI-

ISpring16DR80 campaign, for jobs that ran on-site (note the log scale). . 73
5.15 The five most frequent exit codes of CMSSW jobs belonging to the RunI-

ISpring16DR80 campaign, for jobs that ran off-site (note the log scale). . 74
5.16 The five most frequent exit codes of CMSSW jobs belonging to the RunI-

ISummer15wmLHEGS campaign, for jobs that ran on-site (note the log
scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.17 Average CPU efficiency of various CMS workflows over the last 12 months
(source: CMS Dashboard). . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.18 Fraction of Wall Clock Hours for the different Task Type for the RunIIS-
pring16DR80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.19 CPU efficiency in intervals of 10% shown in terms of wall clock hours for
the RunIISpring16DR80 campaign. . . . . . . . . . . . . . . . . . . . . . 79

5.20 CPU efficiency in intervals of 10% shown in terms of wall clock hours for
the RunIISummer15wmLHEGS campaign. . . . . . . . . . . . . . . . . . 80

5.21 CPU efficiency in intervals of 10% shown in terms of wall clock hours. It is
also displayed whether the jobs where access on the desired DataLocations
(on-site: green) or not (off-site: yellow). . . . . . . . . . . . . . . . . . . . 81

5.22 Total Core Hours as function of time for the Tier-2 CERN HLT and Tier-2
It Legnaro in the time frame under study. . . . . . . . . . . . . . . . . . 82

5.23 Average daily CPU efficiency for the Tier-2 CERN HLT and Tier-2 It
Legnaro in the time frame under study. . . . . . . . . . . . . . . . . . . . 83

5.24 Total data volume in input to CMSSW jobs for the major production
campaigns over last 3 months. . . . . . . . . . . . . . . . . . . . . . . . . 84

5.25 Total data volume in input to CMSSW jobs, with breakdown on the coun-
tries (note the log scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.26 Total data volume in input to CMSSW jobs, with breakdown on the Tier
levels (note the log scale). . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.27 Total data volume in output to storage from CMSSW jobs, with break-
down on the countries (note the log scale). . . . . . . . . . . . . . . . . . 87

5



5.28 Total data volume in output to storage from CMSSW jobs, with break-
down on the Tiers level (note the log scale). . . . . . . . . . . . . . . . . 87

5.29 Total OutputGB as a function of the Total InputGB for different comput-
ing sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.30 Average CPU efficiency of different Tier resources over just few hours on
a random day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.31 Total core hours in different Tier resources over just few hours on a random
day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6



List of Tables

1.1 Charge and mass of elementary particles. . . . . . . . . . . . . . . . . . . 9
1.2 Quantum flavour numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Force-carrying bosons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Main technical characteristics of the LHC accelerator. . . . . . . . . . . . 20
2.2 Comparison of various scintillating crystals [28]. . . . . . . . . . . . . . . 30

5.1 Approximate time required for executing queries to obtain a few selected
plots presented in this thesis using the CMS Metrics Service with Jupyter
Notebook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7



Chapter 1

The Standard Model

1.1 Particles of the Standard Model

The Standard Model is a comprehensive theory, which describes the interactions among
elementary particles through the concept of quantum fields.

The particles of the SM can be split into two main classes according to their intrinsic
angular momentum: fermions, that have half-integer spin, and bosons, which have integer
spin. Furthermore, for every particle, its own antiparticle exists: a particle that has same
spin and mass, but opposite internal quantum numbers. There are twelve fermions that
can be divided in six leptons and six quarks. Moreover, quarks can have three different
“colors”. The color charge regulates the strong interaction among quarks. There are
three colors: blue, red and green.

Leptons have either unitary or null electric charge, where the charge is measured in
units of the module of the electron charge. They can be organized in three generations:

νe
e


νµ
µ


ντ
τ


In each generation the particles on the bottom are called, from left to right, electron,

muon and tau while the particles on the top are the respective neutrinos. Electron, muon
and tau interact via the electromagnetic and weak forces, whereas neutrinos only through
the weak force. The strong interaction does not affect leptons. The electron and the
neutrinos are stable particles, whereas the muon and the tau decay after a short period
of time (mean lifetime: τµ = 2.19 · 10−6 and ττ = 2.90 · 10−13s). The name “lepton”,
from the Greek “small”, originates from the fact that the first leptons discovered had a
mass significantly smaller than the other particles. Today, the masses of the electron,
the muon and the tau are known with great accuracy; however, for the masses of the
neutrinos, only the upper limits are known from the decay of the tritium (see Table 1.1).

8



Conversely, the six quarks also interact through the strong force. They can be orga-
nized in three generations:

u
d


c
s


t
b


Quarks are called according to their first letter: up, down, charm, strange, top and

bottom. Each quark is characterized by a flavour quantum number. Tables 1.1 and 1.2
summarize the main properties of leptons and quarks [1].

νe νµ ντ e µ τ
Charge (e) 0 0 0 -1 -1 -1

Mass (MeV ) < 2× 10−6 < 0.19× 10−6 < 18.2× 10−6 0.51 106 1770

u d c s t b
Charge (e) 2

3
−1

3
2
3

−1
3

2
3

−1
3

Mass (MeV ) 350 350 1500 500 180000 4500

Table 1.1: Charge and mass of elementary particles.

u d c s t b
I, I3 Isospin 1, 1

2
0 0 0 0 0

I, I3 Isospin 0 1, 1
2

0 0 0 0
C Charm 0 0 1 0 0 0
S Strangeness 0 0 0 -1 0 0
T Topness 0 0 0 0 1 0
B Bottomness 0 0 0 0 0 -1

Table 1.2: Quantum flavour numbers.

Until now, quarks have been observed only in composite states called hadrons. Two
types of hadrons are known precisely: mesons, constituted of a pair, quark and an
anti-quark; and baryons, constituted of three quarks or three anti-quarks. Moreover,
candidates of pentaquarks (hadrons made of five quarks) have been observed by several
experiments [2].

9



1.2 The fundamental interactions

In nature there are four fundamental forces that have been observed: gravity, strong
interaction, weak interaction, and electromagnetic interaction. The SM provides a quan-
titative description of only the last three through the same theory: the Gauge Theory [3].
This theory is based on the concept of symmetry. A symmetry of a physical system is
a mathematical or physical feature of the system, which remains unchanged under some
transformations. The mathematical description of symmetries uses group theory. Sym-
metries may be categorized as global or local. A global symmetry holds at all points of
space-time, whereas a local symmetry is one that has different symmetry transformations
at different points of spacetime. From a mathematical stand point, a local symmetry
transformation is parametrised by the space-time coordinates. Local symmetries play an
important role in physics as they form the basis for gauge theories.

A Gauge theory is a particular field theory in which a certain global, continuous
symmetry of the theory is transformed into a local symmetry. In this way, a new field
(the gauge field) is introduced that is characterized by its own dynamics and couples to
the particles and fields which are associated to the symmetry. In the SM, the Gauge
symmetric group is:

SU(3)c × [SU(2)L × U(1)Y ]

where SU(3)c is the symmetry group of the strong interaction and SU(2)L × U(1)Y
is the symmetry group of the electroweak interaction, a group that unifies the weak
and the electromagnetic interaction. The groups allow to introduce respectively 8, 3,
and 1 spin−1 gauge fields. These gauge fields are bosons that act as mediators for the
interactions. The photon (γ) is the responsible for the electromagnetic interaction, the
W± and Z carry the weak interaction and 8 gluons (g) mediate the strong interaction.
Some of their properties are summarized in Table 1.2.

The SU(3)c is an exact symmetry, whereas SU(2)L×U(1)Y is said to be spontaneously
broken. This means that the Lagrangian, which describes this symmetry, is not invariant
under the transformations of the group in its ground state. Indeed, the Higgs mechanism
consists of the spontaneous breaking of the gauge symmetry SU(2) × U(1), which give
mass to the bosons W± and Z. Lastly, the final fundamental constituent of the SM is
the Higgs boson. This boson is a neutral particle with zero spin which is the base of the
Higgs mechanism.

In the next sections, the electromagnetic interaction, the weak interaction and strong
interaction will be briefly discussed with the aid of Feynman diagrams. These are pow-
erful tools that help visualize the subatomic processes and calculate their probabilities.

10



Force Boson Electric charge Spin Mass (GeV ) Force range (fm)
Strong g1, .., g8 0 1 0 1
Weak W±, Z ±1, 0 1 80.4 , 91.2 10−3

Electromagnetic γ 0 1 0 ∞

Table 1.3: Force-carrying bosons.

1.2.1 The electromagnetic interaction

The Quantum ElectroDynamics, also known as QED, is a relativistic quantum field
theory that describes the electromagnetic interaction. Since this theory is based on the
abelian group U(1), it implies that the interaction, among charged particles, is carried
through a massless bosons known as photons. Indeed, the QED Lagrangian density for
a charged particle:

LQED = ψ̄(iγµDµ −m)ψ − 1

4
F µνFµν

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor and Aµ is the gauge field
of the photon; ψ and ψ̄ are the bispinor field and the adjoint bispinor field for a charge
particle of spin 1

2
; γµ are the Dirac matrices; Dµ = ∂µ + i e

h̄
Aµ is the covariant derivative;

e is the unitary electric charge; and m is the mass of the charged particle.
The fundamental Feynmann vertex in QED is:

Figure 1.1: Fundamental vertex of the QED.

where the probability of the interaction is proportional to the fine-structure constant:

αEM =
e2

4πε0h̄c

The coupling in QED varies according to the energy scale of the process (running cou-
pling). At low energies the coupling constant is αEM ≈ 1

137
, whereas at the energy scale

of mass of the Z boson (E ≈ 90GeV ) the coupling constant has a value of αEM ≈ 1
127

.
This is due to the fact that the vacuum polarizes creating virtual pairs electron−positron

11



for a very short period of time (from the time−energy Heisenberg’s uncertainty principle
∆t ≈ h̄

∆E
with E representing the energy scale). Since opposite charges attract each oth-

ers, the virtual positrons tend to be closer to a negatively charged particle (e.g electron
see Figure 1.2) and screen its electric charge from a probe.

Figure 1.2: Screening mechanism in Quantum ElectroDynamics for an electron (top) and
αEM as a function of probe energy (bottom).

1.2.2 The strong interaction

The theory that describes the strong interaction is Quantum ChromoDynamics, which is
also known as QCD. QCD has been developed in analogy to the QED. More specifically,
the abelian group U(1) of the QED has been substituted with the non-abelian group
SU(3)c that corresponds to the 3 color charges. The color states generate a basis in a
3−dimensional complex vector space; a generic color state of a quark is a vector belonging
to this vector space. The color state can be rotated by 3× 3 unitary matrices.

The QCD has been developed enlarging the Yang−Mills theory of isotropic SU(2)
symmetry to SU(3)c [4]. Yang and Mills extended the concept of global internal isotopic

12



symmetry to a local isotopic gauge theory, in which the gauge scale factor depends
explicitly on the space-time coordinates.

The color space forms a fundamental representation of SU(3)c. From group theory it
is known that the fundamental representation of SU(3)c has eight generators so a octet
of gauge bosons (gluons) will emerge. These particles are the force carriers of the strong
interaction and they carry color and anticolor in eight possible combinations:

rb̄, br̄, rḡ, gr̄, bḡ, gb̄, (rr̄ − bb̄), (rr̄ + bb̄− 2gḡ)

The “white” color combination is not admitted. Since the QCD is not abelian, the
interactions among glouns are allowed. Thus, the fundamental vertexes of the QCD are:

(a) Interaction quark-
quark-gluon.

(b) Interaction among
three glouns.

(c) Interaction
among four glouns.

Figure 1.3: Fundamental vertexes of the QCD.

where the coupling constant for the strong force is gs and αs is defined as

αs(Q
2) =

g2
s

4π
=

1
33−2nf

12π
ln(Q2/ΛQCD)

where nf is the number of different considered flavors, Q2 is the quadratic transferred
four-momentum, and ΛQCD ∼ 200 MeV . It is important to notice that αs depends
on the energy (Q2) at which the interaction takes place. ΛQCD specifies the energy
scale at which αs ∼ 1. At lower energies, αs increases (Landau pole), thus prohibiting
perturbative calculations. Lattice QCD is a non−perturbative approach that allows to
make QCD prediction of strongly interacting systems through numerical simulations.

The potential energy between two quarks can be written as:

Us = −4αSh̄c

3r
+ kr

This indicates that the interaction for small distances is repulsive while for big distances

13



is attractive. When two quarks are too far apart, the bond between them breaks, and the
energy stored in the bond is used to create a new couple quark-antiquark which combine
with the previous quarks to form two new mesons.

The QCD Lagrangian density is

L =
nf∑
j=1

q̄j(iDµγ
µ −mj)qj −

1

4

8∑
A=1

FAµνFA
µν

where FAµν are the kinetic terms associated to the gluon fields. Dµ is the covariant
derivative: Dµ = ∂µ − igGµ with Gµ =

∑8
A=1 t

AGA
µ in which GA

µ are the eight gluon
fields and tA are the generators of the group SU(3)c that are related to the Gell-Mann
matrices λA: tA = λA

2
[3].

QCD shows two different behaviors at high and low energies compared to Quantum
Electrodynamics (Figure 1.4):

• Confinement constrains colored particles in bound states of white color at low
energies.

• Asymptotic freedom is the property that causes bonds between particles to become
asymptotically weaker as energy increases and distance decreases.

Figure 1.4: Coupling constants αQCD ≡ αs and αQED as a function of the quadratic
transferred four-momentum Q2 [5].

14



1.2.3 The electroweak interaction

The first successful attempt of describing the weak interaction, in particular the β decay,
was carried on by Fermi in 1933 [6]. His theory was a phenomenological interpreta-
tion inspired by the electromagnetism. However, this theory had several limits among
which the fact that the interaction had to be point-like and that it did not include the
violation of parity. After few decades and several experimental evidences, this theory
was overcome by Glashow−Weinberg−Salam electroweak theory which included also
the electromagnetism [7]. In fact, above the unification energy (100GeV ), the electro-
magnetic force and weak force merge into a unique electroweak force. Furthermore,
this gauge theory also predicted the existence of the massive vector bosons W± and Z.
SU(2)L × U(1)Y is the group of the electroweak theory, where Y is the hypercharge
defined by the Gell−Mann−Nishijima relation Q = I3 + Y

2
with Q the electric charge

expressed in multiples of the electron charge, and I3 is the third component of the weak
isospin. This theory is non−abelian and allows the existences of vertexes among only
the vector bosons γ, W± and Z (see Figure 1.5).

(a) Interaction among a
lepton, a neutrino and a
W+.

(b) Interaction among
two fermions and a Z.

(c) Auto-interaction vertex
among vector bosons

Figure 1.5: Examples of fundamental vertexes of the weak interation.

The electroweak theory proposed by Glashow presented a substantial problem: it
was not able to take into account the fact that the photon was massless whereas the
Z and W± were not. This conundrum was solved independently by Englert, Brout [8],

15



Higgs [9], Guralnik, Hagen and Kibble [10]. They came up with a mechanism (often
called Higgs mechanism) that is responsible for generating the masses of the W± and Z
bosons in the SM through the spontaneous symmetry breaking of the gauge symmetry
SU(2) × U(1). Particles interact with the Higgs boson proportionally to their masses.
Thus the processes which include the quark top, which is the heaviest of all quarks, are
very valuable for investigating the nature of the Higgs boson. The Higgs boson can be
produced in a hadron accelerator (see Figure 1.6).

Figure 1.6: Production of the Higgs boson at a hadron accelerator.

16



Chapter 2

High Energy Physics at the LHC

2.1 The LHC accelerator at CERN

The Large Hadron Collider (LHC) [11, 12] is a particle collider (see Figure 2.1) built at
the European Organization for Nuclear Research (CERN), located beneath the Franco-
Swiss border near Geneva in Switzerland, where the Large Electron-Positron collider
(LEP) previously existed [13].

The purpose of the LHC is to provide scientists an experimental apparatus that would
allow them to test theories in high energy physics, such as the existence of the Higgs
boson, of supersymmetric particles, and beyond. As an example of one of its first results,
the discovery of a new particle was publicly announced on July 4th, 2012 compatible with
the Higgs boson predicted by the Standard Model [14, 15, 16].

Figure 2.1: The LHC collider inside the underground tunnel (copyright CERN).

Protons and heavy ions are accelerated at the LHC. The acceleration process for
protons is conducted in five stages (see Figure 2.2). At the beginning, hydrogen atoms are

17



ionized in order to produce protons and are injected in the LINAC 2, a linear accelerator.
When protons reach the end of LINAC 2, they have gained an energy of 50MeV and then
enter the Booster, where their energy increases up to 1.4GeV . Subsequently, they enter
the Proton Synchrotron (PS) where 277 conventional electromagnets push the protons
to 99.9% the speed of light; each proton has now an energy of 25GeV . Afterwards,
proton bunches are accelerated in the Super Proton Synchrotron (SPS), a circular particle
accelerator with a circumference of 7km. When protons have reached an energy of
450GeV , they are injected into the LHC in two separate pipes in which they move
in opposite directions. Here, through magnets, particles can be accelerated to their
maximum designed energy of 7TeV .

Figure 2.2: Scheme of the acceleration complex (copyright CERN).

The two pipes of the LHC intersect in four caverns, where the four detectors are
placed. Here protons collide and the products of the collisions can be detected.

A vacuum system is required so the particles do not lose energy in the acceleration
process due to impacts with air molecules. The LHC vacuum system is constituted of
three individual vacuum systems: the insulation vacuum for cryomagnets, the insulation

18



vacuum for helium distribution, and the beam vacuum.
To keep the path of the subatomic particles stable, the LHC exploits more than 1600

superconducting magnets constituted of an alloy based of NbTi. There are 1232 mag-
netic dipoles (see Figure 2.3) whose duty is to curve the beam along the circumference,
392 magnetic quadrupoles whose purpose is to focus the beam when it approaches the
four detectors, and various smaller correcting magnets. The magnets operates at a tem-
perature of 1.9K: this enables the magnets to generate a magnetic field up to 8.4T . The
temperature is kept constant thanks to a powerful cryogenic system which exploits the
properties of the superfluid helium.

Figure 2.3: Cross section of LHC dipole (copyright CERN).

Charged particles inside the LHC are accelerated through radio-frequency (RF) cav-
ities. They are metallic chambers in which an oscillating electromagnetic field is able to
to accelerate the particles to their maximum speed. The bunches of particles have to
arrive in synchronism with the electromagnetic field in order to receive a push forward.
When particles reach the designed velocity they will no longer feel accelerating voltage.
Conversely, the RF will try to keep all the particles as close as possible to the design
velocity. At these energies the main source of energy loss is synchrotron radiation. There

19



are 16 RF cavities (8 per beam) around the LHC and they all operate in a superconduct-
ing state. They contain high-power klystrons which are specialized linear-beam vacuum
tubes that work as amplifiers. Each cavity can deliver up to 2MV , resulting in 16MV
for each beam.

An important parameter that characterizes a particle accelerator is the machine lu-
minosity (L) defined as:

L =
frevnbN

2
b γr

4πεnβ∗
F

in which frev is the revolution frequency, nb is the number of bunches per beam, Nb is
the number of particles in each colliding beam, εn is the normalized transverse beam
emittance, β∗ is the beta function at the collision point, γr is a relativistic factor and
F the geometric luminosity reduction factor. Each second, the number of events that
occur is:

Nevent = Lσevent
The ATLAS and CMS experiments (see Section 2.2) run at high machine luminosity L =
1034cm−2s−1, whereas ALICE and LHCb operates, respectively, at a lower luminosity
L = 1027cm−2s−1 and L = 1032cm−2s−1.

Some of the main technical characteristics of the LHC are summarized in Table 2.1.

Particles accelerated Protons and heavy ions (Lead 82+)
Accelerator circumference 26659m
Injected beam energy 450GeV (protons)
Nominal beam energy for physics 7TeV (protons)
Magnetic field at 7TeV 8.4T
Operating temperature 1.9K
Number of magnets 1232
Number of quadrupoles 858
Number of correcting magnets 6208
Number of RF cavities 16
Frequency of RF cavities 400MHz
Maximum Voltage of a single RF 2MV
Maximum Luminosity L = 1034cm−2s−1

Power consumption ∼ 180MW

Table 2.1: Main technical characteristics of the LHC accelerator.

20



2.2 The experiments at the LHC

At the LHC there are four main experiments, each one located in its own cavern where
beams collide (see Figure 2.4).

Figure 2.4: Experiments at the LHC (copyright CERN).

In the next paragraphs, few introductory details about each experiment are provided.
A full description of each detector, its purpose, and its design features are out of the
scope of this work; references and further readings can be found in [17, 18, 19, 20, 21].

2.2.1 ALICE

A Large Ion Collider Experiment (Figure 2.5) [17] is a general-purpose, heavy-ion detec-
tor which studies the strong interaction at extreme values of energy density and tempera-
ture during the collision of heavy nuclei (Pb). The detector has been designed to identify
a great number of single events which happens during each collision of heavy nuclei. The
main purpose of this experiment is to study Quark Gluon Plasma and the restoration of
chiral symmetry [22, 23], in particular the whole detector has been designed to cope with
the extremely high multiplicity that characterises heavy ion collisions (from three to four
orders of magnitude higher than a proton-proton collision). Even though Quark Gluon

21



Plasma is predicted to be formed in only heavy-ion collision, proton-proton collisions
and proton-ion collision provide extremely valuable informations for calibrations.

Figure 2.5: Picture of the ALICE detector under maintenance (copyright CERN).

The ALICE detector is constituted of several subdetectors. Moving from the beam
pipe outwards, there are the following subdetectors: the Inner Tracking System, the Time
Projection Chamber, the Time Of Flight, the Ring Imaging Cherenkov HMPID, the
Transition Radiation Detector, the Electromagnetic Calorimeters and the Muon Spec-
trometer. The process of Particle Identification plays a crucial role in understanding
Quark Gluon Plasma. For this reason, ALICE exploits several different subdetectors to
perform Particle Identification: the Time Of Flight, which is able to separate π/K and
K/p for pt < Gev/c with a 3σ precision; the High Momentum Particle Identification,
which is exclusively dedicated to particle identification of hadrons with pt > 1GeV/c;
and the Transition Radiation Detctor, whose major purpose is to identify electrons of
pt > 1GeV/c. Furthermore, close to the beam pipe, the ALICE detector has Inner
Tracking System based on silicon pixels and microstrips. This subdetector is very useful
to reconstruct heavy flavours decays. The most complex subdetector in ALICE is the
Time Projection Chamber that provides informations both on the particles trajectories
and the energy deposited. An additional information of the energy deposited is provided
by two electromagnetic calorimeters, one is made of the scintillating crystal PbWO4 and

22



the other is Pb scintillator sampling calorimeter; the former provides a better energy res-
olution and granularity than the latter, however the latter cover a volume significantly
bigger than the former. The detector weights 10′000 tonnes and consists of a barrel
part, which measures hadrons, electrons, and photons, and a muon spectrometer in the
forward region.

2.2.2 ATLAS

A Toroidal LHC ApparatuS (Figure 2.6) [18] is an experiment whose main purpose is
to investigate new physics beyond the Standard Model exploiting the extremely high
energy at the LHC. It also searches the existence of dark matter and extra dimensions.

Figure 2.6: Picture of the ATLAS detector under construction (copyright CERN).

The detector is made of four main subdetectors (Inner Tracker, Electromagnetic
Calorimeter, Hadron Calorimeter, and the Muon Spectrometer) and a complex system
of solenoidal and toroidal magnets. The Inner Detector is responsible for tracking the
particles, its main components are the pixels and silicon microstrip trackers, which offer
high granularity, and the Transition Radiation Tracker, which also helps with particle
identification. The electromagnetic calorimeter is based on Liquid Argon and is placed
inside the solenoid of the detector which provides a 2T axial field. Outside the solenoid,
there is the hadronic calorimeter that is a sampling calorimeter, in which steel is used
as absorber and the active material is scintillating tiles. Moving outwards, the muon

23



spectrometer constituted of Resistive Plate Chamber and Drift Tubes allows to track
the muons escaping the detector. Finally, air-core toroids generate a magnetic field for
the muon chamber to reconstruct the muon momentum. The apparatus is 46m long with
a diameter of roughly 25m and weights approximately 7′000 tonnes.

2.2.3 CMS

The Compact Muon Solenoid (Figure 2.7) [19, 20] is a multi-purpose detector designed to
observe a wide variety of phenomena in proton-proton and heavy ion collisions. Its main
goal is to investigate the nature of electroweak symmetry breaking which is explained in
the Standard Model through to the Higgs mechanism. This experiment will be covered
in greater detail in section 2.3.

Figure 2.7: Picture of the CMS detector while open (copyright CERN).

2.2.4 LHCb

The Large Hadron Collider beauty [21] is a detector specialized in the study of the certain
rare decays of the B meson. In particular, the values of the Cabibbo Kobayashi Maskawa

24



Matrix are measured in order to better understand the CP violation, which is strictly
linked with the concentrations of matter and antimatter in the universe. At E = 14TeV
the cross section for the production of a pair bb̄ is σbb̄ ≈ 500µb. The LHCb operate at a
reduced luminosity of L = 1032cm−2s−1 by tuning the focusing of the beams before the
interaction point. This choice is due to limit the pile-up (two or more particle-particle
interaction for a single bunch crossing) in order to simplify the later analysis; incidentally,
this choice also reduce the radiation damages.

LHCb is a single-arm spectrometer with a forward angular covarage (Figure 2.8);
this design is due to the fact that b and b̄ hadrons are produced in the same forward
or backward cone. The main requirements for the detector are: optimum vertex and
momentum resolution to discriminate among the various final states.

Figure 2.8: Picture of the CMS detector while open (copyright CERN).

Moving from the interaction point outwards, the LHCb detector is made of the fol-
lowing subdetectors: the vertex locator VELO, a first aerogel Ring Imaging Cherenkov, a
silicon Trigger Tracker, the magnet followed by three tracking stations, a second aerogel
Ring Imaging Cherenkov, a Scintillator Pad Detector and Preshower, an Electromagnetic
Calorimeter, a Hadronic Calorimeter and lastly a series of muon chambers.

2.2.5 Other experiments at LHC

There are three other smaller experiments along the LHC tunnel:

25



• TOTEM: the goal of the TOTEM experiment is to measure total cross section,
elastic scattering, and diffractive processes in the very forward region [24]. TOTEM
detectors are placed on both sides of the interaction point at CMS over a distance
of hundred of meters.

• LHCf : the purpose of the LHCf experiment is to study the cross section of neutral
particles produced in the very forward region [25]. This studies are crucial for
understanding how the cosmic rays cascade develops through the atmosphere. The
LHCf consists of two detectors which are placed along the beamline, at 140m either
side from collision point of the ATLAS experiment.

• MOEDAL: the Monopole and Exotics Detector at the LHC is designed to search
for new highly ionizing particles, such as the predicted magnetic monopoles [26].
The MoEDAL detector is placed in the same cavern as the LHCb experiment.

2.3 The CMS detector

The CMS experiment [19, 20] is a multi−purpose detector designed to explore the Stan-
dard Model and investigate new physics beyond the SM. The discovery, together with
ATLAS, of a particle that fits the signature of the Higgs boson represents one of the
greatest successes of the CMS collaboration. When protons collide at their maximum
designed energy (

√
s = 14TeV ), 109 events/s will occur. The on−line selection process

has to trigger only 100 events/s to be saved. This high flux of particles needs custom
electronics capable of enduring a high flux of radiation while simultaneously being able
to make extremely challenging selections.

When the detector was designed, it had to meet the following general requirements:

• identify and track muons with high precision;

• have a high precision electromagnetic calorimeter for the measurements of elec-
trons, positrons and photons;

• have an effective tracker for the measurement of particles’ momenta;

• cover almost the whole solid angle, in order to be able to detect all the particles
produced during each collision.

To fulfill these criteria, the detector uses a powerful solenoid that bends the trajectory
of charged particles. Different particles release energy differently in each part of the
detector. Combining the knowledge of the particles’ path and momenta, it is possible to
trace back the particle involved in a certain event and determine other information such
as their masses. The detector (see Figure 2.9) is constituted of five concentric layers: the

26



tracker, the electromagnetic calorimeter (ECAL), the magnet, the hadronic calorimeter
(HCAL), and the muon system. Moreover, a Trigger and a Data Acquisition System is
required to collect and process the data exiting the detector. A few details about each
system is provided in the following paragraphs (Sections 2.3.1-2.3.6).

Figure 2.9: Section of the CMS detector (copyright CERN).

The detector can be divided in three main regions: the barrel, which consists of
the central region, made of five wheels and orthogonal to the beam axis; two endcaps
that seal the barrel, composed of three disks each; and the very forward regions, which
consists of a series of subdetectors placed near the beam axis.

To proper describe the detector itself and the physics quantities, a right-handed
cartesian reference frame must be defined as followed:

x axis is defined as the horizontal axis, which connects the interaction point inside CMS
to the center of the LHC ring.

y axis is defined vertical exiting from the interaction point.

z axis is defined tangent to the beam line.

27



Furthermore, since CMS is characterized by cylindrical symmetry, from the Cartesian
coordinates it is possible to define polar coordinates (r, φ, θ). The previous definitions
allow to introduce a series of quantities:

• Particle transverse momentum: pt =
√
p2
x + p2

y

• Transverse energy: Et = E sin(θ)

• Transverse mass: mt =
√
m2 + p2

t

• Missing Transverse Energy (MET): Emissing
t = −∑i ~p

i
t

• Rapidity (Lorenz invariant): y = 1
2

ln E+pz
E−pz

• Pseudo-rapidity: η = − ln( θ
2
)

2.3.1 Tracker

The tracker is able to detect muons, electrons, hadrons and tracks coming from the decay
of short-lived particles (e.g. b quarks). These events are of primary importance for the
physics at the LHC. Since it is the innermost element of the detector it has to interfere
the least with the particles produced. Most measurements are accurate to the 10µm
level. The tracker has been built exclusively using silicon-based technologies; this choice
allowed it to meet requirements such as radiation hardness and speed of acquisition. The
tracker covers a cylindrical region of 115cm of radius, and 540cm of length.

Isolated tracks of high pt particles are reconstructed with a resolution of δpt
pt
≈ (15·pt⊕

0.5)% with pt measured in TeV for |η| < 1.6 [27]. The resolution progressively degrades
as η increases (see Figure 2.10 Left). Moreover, the outer muon chamber system, provides
a second measurement for the transverse momentum of the muon which can be combined
with the measurement obtained by the tracker in order to improve the overall resolution
(see Figure 2.10 Right). This feature allows to reconstruct muons with an efficiency
above 98%. Charged hadrons with a pt > 10GeV are reconstructed with an efficiency
close to 95% whereas hadrons with 1GeV < pt < 10GeV are reconstructed with an
efficency higher than 85%. The efficiency for high energy electrons is better than 90%.

The tracker relies on two type of technologies for the detection of particles: pixels
and microstrips. The signals are then transmitted through optic fibers cables outside
the detectors.

Pixels are placed both on the barrel and the endcaps. On the barrel there are three
layers of pixels 4, 7, and 11cm away from the beam, whereas on the endcaps there are
two layers divided in 24 sections which are tilted to take into account the Lorenz drift
angle (Lorentz drift angle = 32◦ for electron in silicon with a magnetic field of 4T ). Each
layer is constituted of modular detector units. The modules (around 66 millions) contain

28



Figure 2.10: Left: CMS Tracker stand−alone pt resolution for muons, without beam
constraint. Right: Combined CMS Tracker and Muon Chamber p resolution, in the
central and forward rapidity regions of the detector [27].

a sensor plate attached to highly integrated readout chips. The active area of each pixels
is 150×100µm2. Each pixels generates around 50µW , thus an integrated cooling system
is needed.

The microstrip system contains 15200 sensitive modules clustered in 10 million de-
tector strips. The modules are attached to 80,000 red-out microelectronic chips. The
silicon microstrips, compared to the pixels, necessitate of a much lower quantity of read-
out electronics per unit area.

2.3.2 Electromagnetic Calorimeter

The electromagnetic calorimeter is designed to detect particles that interact according
to the QED such as photons and electrons [28]. The main components of the ECAL are
lead tungstate (PbWO4) crystals that cover the entire solid angle: when the crystals are
hit by a particle, scintillation occurs. The lead tungstate has several desirable properties
compared to other crystal scintillators used in other experiments: short radiation length,
relatively high critical energy, fast light emission (see Table 2.2). Furthermore, the
production techniques for this material have been mastered in the last decades, especially
in Russia and China. The main drawback of this material is the low light output emission
compared to other inorganic scintillators; for this reason, the electromagnetic calorimeter
necessitates very large photodiodes.

With the purpose of recording the light emitted by the crystals, Avalanche Photo-
Diodes (APDs) are placed around the calorimeter and Vacuum PhotoTriodes (VPTs)

29



NaI BGO CSI BaF2 CeF3 PbWO4

Density [g/cm3] 3.67 7.13 4.51 4.88 6.16 8.28
Radiation length [cm] 2.59 1.12 1.85 2.06 1.68 0.89
Interaction length [cm] 41.4 21.8 37.0 29.9 26.2 22.4
Molire radius [cm] 4.80 2.33 3.50 3.39 2.63 2.19
Light decay time [ns] 230 60 16 0.9 8 5 (39%)

300 630 25 15 (60%)
100 (1%)

Refractive index 1.85 2.15 1.80 1.49 1.62 2.30
Maximum of emission [nm] 410 480 315 210 300 440

310 340
Relative light output 110 18 20 20/4 8 1.3

Table 2.2: Comparison of various scintillating crystals [28].

are placed in the endcaps. A preshower detector is placed at the end of the ECAL to
distinguish single high-energy photons from pairs of low-energy photons. The preshower
detector consists of two planes of lead and several silicon sensors. A photon that hits
the lead generates an electromagnetic shower, made of electron-positron pairs, that is
detected accurately by the sensors. It is then possible to trace back the initial energy of
the photon.

The energy resolution of the electromagnetic calorimeter is described by the following
formula:

(
σ

E

)2

=

(
a√
E

)2

⊕
(
σn
E

)2

⊕ c2

where a accounts for the stochastic contribution, σn the noise and c2 is a constant. The
stochastic term describes the fluctuations in the shower development. The noise term
includes contributions from electronic noise (dominant at low energy) and energy pile-up
(dominant at high luminosity). For E expressed in GeV , the constants for the energy
resolution for electrons in beam tests are: a = 2.8%, σn = 12%, c2 = 0.3% [29].

2.3.3 Hadron Calorimeter

The hadron calorimeter measures mainly hadron jets, neutrinos (in the form of Missing
Energy Transverse) and exotic particles. It is able to detect particles up to |η| = 5 [30].

The HCAL is a sampling calorimeter which uses “absorbers” to allow the development
of the hadronic particle shower, and fluorescent scintillator materials to collect the light
when a particle passes through them. All the light measured by the sensors is then
added up to estimate the energy of the particles. HCAL consists of 20◦ wedges inside

30



the magnet (see Figure 2.11). The choice for the materials had to be quite unconventional
since the hadronic calorimeter is completely embedded in a 4T magnetic field generated
by the surrounding solenoid. Previous experiments showed that the light production from
scintillator increases when inserted in a magnetic field [31]. However this effect saturates
when above 2T for Kuraray SCSN81, which is the plastic scintillator used in the barrel.
This material can also sustain the high flux of radiation required and it characterized
of its long term stability. The scintillator are then connected to photodiodes through
wavelength shifting−fibers.

The absorbers are made of plates of brass and steal from 5 to 8cm thick and the
interaction length associated to them varies as a function of η with values ranging from
5.25λ0 to 10.5λ0. Also the energy resolutions vary in the different regions of the hadronic
calorimeter. Nonetheless, they are described by the same formula:(

σ

E

)
=

a√
E

+ c

where E is measured in GeV ; c is equal to 5%; and a to 65% in the barrel, 85% in the
endcap, and 100% in the forward hadronic calorimeter. The calibrations parameters and
the energy response of the hadronic calorimeter have been determined with cosmic rays
and beam tests [32].

Figure 2.11: Artistic representation of a 20◦ wedge. The ECAL is on the right and HCAL
on the left (copyright CERN).

2.3.4 Magnet

The magnet, which contains the tracker and the calorimeters (ECAL and HCAL), is
a superconducting solenoid in which a current of 19500A flows that generates a uni-

31



form magnetic field up to 4T . In order to maintain this magnetic field, the solenoid is
constantly kept at a temperature of 4K.

The solenoid cables are made of an alloy of Niobium and Titanium, which wind
around the hadronic calorimeter in four layers. The whole magnet is 12.5m long with an
inner diameter of 6m. The magnets also provides mechanical stability to the detector.

At more than 5m from the beam pipe there is an external iron yoke. This component
has two purposes: stopping all the particles except muons and neutrinos from reaching
the muon detector, and providing the return of the magnetic field.

2.3.5 Muon detector

The muon detector is placed on the outer layer of the detector, as muons are relatively
non-interacting particles; in fact, they are able to pass through several meters of iron
without loosing much energy. Needless to say, since they give their name to the detector,
they are extremely important in several process, such as the decay of the Higgs boson in
four muons. The paths of the muons are obtained by interpolating a curve through the
points of the detector hit by the particles (see Figure 2.12).

Figure 2.12: A schematic view of a muon trajectory inside the detector (copyright
CERN).

There are three types of subdetectors for muons’ identification and all of them mea-
sure the ionization of produced by the muon in a gas. There are 1400 muon chambers;

32



250 drift tubes (DT) and 540 cathode strip chambers (CSC) to identify particles’ position
and give a trigger. 610 resistive plate chambers (RPC) form a second trigger. DTs are
organized in cells of area 6.24cm2 and are filled with Ar (85%) and CO2 (15%). Consec-
utive DT layers are misaligned by half cell in order to improve coverage and reduce blind
spots. CSCs are multi−wire proportional chambers filled with Ar (30%), CO2 (50%)
and CF4 (20%). They provide a two−dimensional information of the position of the
muon. Lastly, RPCs are filled with C2H2F4 (96.5%) and C4H10 (3.5%). Since they are
very fast (response time 3ns), they are used for triggering. DTs and RPCs are displaced
around the beam line whereas CSCs and RPCs complete the endcaps disks at both ends
of the barrel.

2.3.6 Trigger

The LHC is designed to operate at L = 1034cm−2s−1 and there are on average over
twenty inelastic pp collisions per bunch crossing. Since the bunches are only 25ns apart,
the total data output is too big to be stored. However, the events of physical interest
are only a fraction of the total. The Trigger and Data Acquisition System operates a
first selection so that data can be stored at the archival storage capability of O(102)Hz
at data rates of O(102)MB/s. In order to be able to reject roughly 105 events for
every accepted event, the event selection in CMS is divided in two stages (see Figure
2.13): firstly, the Level-1 Trigger (L1 Trigger) reduces the rates of accepted events to
∼ 100kHz [33]; secondly, the High−Level Trigger (HLT) reduces the rates of accepted
events to ∼ 100Hz [34].

Figure 2.13: A schematic representation of the dataflow in the CMS Trigger. The two
consecutive steps are highlighted: the L1 Trigger and the HLT (copyright CERN).

33



• The L1 Trigger is made of custom electronics (ASICs and FPGAs) and performs a
first online rough particle identification based mainly on the information obtained
by the calorimeters and the muon system. It is constituted of three primary compo-
nents: the L1 calorimeter trigger, the L1 muon trigger, and the L1 global trigger.
They all have to decide whether to save the event or not within 3µs after each
collision. In fact, after this period of time, data temporally saved in the buffers are
overwritten.

• The HLT is implemented via software and takes a step farther the selection of the
L1 trigger. The hardware of the HLT consists of a farm of commercially available
processors and each event is assigned to only one of them. When the HLT evaluates
a L1 candidate, firstly it continues the L1 reconstruction, then, if the candidate is
not discarded, it reconstructs its tracks with also the information from the tracker.
In fact, the latter process is one of the most CPU−expensive process among all [35].
In order to minimize the time used by the CPUs for computations, the software
that runs on the HLT satisfies the following guidelines: it reconstructs certain parts
of the events only if it is strictly required and the reconstruction is interrupted if
more calculation would not modify the final outcome.

34



Chapter 3

Computing in High Energy Physics

3.1 Introduction

The LHC produces a huge amount of data that has to be stored and later analyzed by
scientists. During each collision, swarms of particles are produced and signals leaving the
detector are recorded. About 30 Petabytes (PB) of data are produced at the LHC every
year. Thus, efficient storage and data management systems are required. In order to
cope with all this information, a complex computing infrastructure has been designed and
deployed, characterized by computing centers distributed worldwide. This infrastructure
is known as the Grid.

3.2 Grid technologies and WLCG

The Worldwide LHC Computing Grid project (WLCG) [36, 37] is a global collaboration
responsible for building and maintaining a data-oriented infrastructure required by the
experiments at the LHC. The purpose of this infrastructure is to provide computing
resources to store, distribute and analyze the data produced by the LHC to the users
of the collaborations regardless of where they might be located. The idea of a shared
computing infrastructure constitutes the basis of the concept of the Grid. The WLCG
cooperates with several Grid projects such as the European Grid Infrastructure (EGI)
[38] and Open Science Grid (OSG) [39]. In the HEP context, the Grid has been cre-
ated with the intent to give a common middleware to all the experiments; then each
experiment can then run its specific applications on top of the middleware. This choice
has allowed to keep the costs of maintaining and upgrading the necessary computing
resources under control. The middleware projects provide the software layers on top of
which the experiments add their own different application layers. At the middleware
level, the logical elements, which constitute every Grid site, are:

35



• Computing Element (CE) manages the user’s requests for computational power
at a Grid site. This power is provided by using clusters of computers organized in
farms and managed by software tools. The CE manages the jobs submitted by the
user and the interactions with the services of the Grid.

• Worker Node (WN) is where the computation actually happens on a site farm.
Here, scripts can be used to configure the environment.

• Storage Element (SE) gives access to storage and data at a site. Data are stored
on tapes and disks. Tapes are used as long-term secure storage media whereas disks
are used for quick data access for analysis. The protocol SRM (Storage Resource
Manager) offers a common interface to access data remotely. The main types of
data stored are raw date generated by the detector, data produced by the analysis
of the users and simulation through Monte Carlo techniques.

• User Interface (UI) is the machine on which a user interacts with the Grid;
through the UI, a user can access remote computing resources.

• Central services to help users access computing resources. Some examples are
data catalogues, information systems, workload management systems, and data
transfer solutions.

The Storage Federation, which is a fairly new infrastructure developed in parallel to
the site SEs, provides read access to the same data, but it does not rely on a catalogue
to locate the files. Instead, it uses a set of “redirectors”: when the user searches a file,
the redirector first looks in the local storage. Then, if the redirector does not find the
data locally, it asks the SE in its federation whether it has the file. In case the file is
not found, the redirector can further ask a higher level redirector if it can find the file.
This process is iterated until either the file is found or the highest redirector does not
find anything.

The security on the Grid is based on X.509 certificates which provide authentication
for both the user and the services. The user is endowed with a Grid certificate which is
used to access the services he needs. A private key is assigned to each holder of a certifi-
cate and a public key is used to make requests to a certain service. The authorization is
based on the Virtual Organization Management System (VOMS) [40]. VOMS contains
all the users of the Grid and the tasks that they can execute on the Grid itself.

The computing centres around the world are categorized into four types of “Tiers”
[41] according on the kind of services they provide (see Figure 3.1):

Tier-0 There are two physical locations for a logical unique Tier-0 function: one is the
CERN Data Centre in Geneva (Switzerland) and the other is located at the Wigner

36



Figure 3.1: The Tier structure of the WLCG sites [36]

Research Centre for Physics in Budapest (Hungary). The Tier-0 is responsible for
keeping RAW data, for a first data reconstruction, for the distribution of the RAW
data and the reconstruction output to the Tier-1s, and lastly for data reprocessing
when the LHC is not acquiring data.

Tier-1 There are 13 LHC Tier-1 sites, of which 7 were available to CMS during Run-1.
They are exploited for large-scale, centrally-organized activities and can exchange
data among them and to/from all Tier-2 sites. They are responsible for storing
RAW and RECO data, for large-scale data reprocessing, and for safe-keeping of
the corresponding output. Moreover, a share of the simulated data are produced at
the Tier-2s. Lately, they have been commissioned as sites where users can perform
their analysis.

Tier-2 There are about 160 Tier-2s in LHC, displaced around the world (about 50 were
available to CMS during Run-1). They are usually universities or scientific insti-
tutes, and they often provide significant CPU resources for user analysis. Tier-2s do
not have tape archiving and do not provide long-term custodial storage. However,
they take care of data generation and simulation.

Tier-3 A Tier-3 can be, for example, a computer cluster of relatively small size, which is
connected to the Grid. There is no formal agreement between WLCG and Tier-3s
on their respective roles. This makes Tier-3s the most flexible Tier level.

37



3.3 The CMS Computing model

To carry out CMS physics analysis, scientists have to be able to access the huge amount
of data collected by the detector and stored in the Grid sites. Moreover, they need to be
granted a lot of computational power in order to run their analysis and generate Monte
Carlo simulations. To these requests, one has to add the difficulties originating from the
fact that CMS is an experiment with collaborators from several nations. To handle these
challenges CMS exploits the Grid. More specifically, the Tiers in the CMS Computing
model [42, 43] have the roles described in the following paragraphs.

Tier-0 The tasks of a CMS Tier-0 are:

1. accepting data from the Data Acquisition System [44];

2. storing RAW data on tapes;

3. performing a first reconstruction;

4. distributing the RAW data to the Tier-1s so there are two copies of all RAW
data.

Tier-1 The main functions of a Tier-1 for CMS are:

1. providing a great amount of CPU for data reprocessing and data analysis;

2. data storage of RAW and RECO data;

3. data distributions to/from Tier-2s;

Tier-2 The Tiers-2s of CMS provide:

1. data transfer from/to Tier-1s;

2. services for data analysis;

3. productions of Monte Carlo events;

Tier-3 CMS Tier-3s are not formally bound to WLCG even though they can offer flexible
computing capabilities.

Data in CMS are catalogued according to various characteristics. The Event is the
fundamental unit of the data, which corresponds to a single bunch crossing. LumiSections
are a collection of subsequent events in which the instantaneous luminosity is assumed to
be constant. The integrated luminosity of a data sample can be calculated from the single
LumiSections that constitutes it. Moreover, several LumiSections form the Run which
lasts approximately the time that the beam is stable in the accelerator. Furthermore,
Events originating from one or more Runs are grouped in Datasets. These Events share

38



Figure 3.2: Data flow in the CMS computing model.

some common specific traits. Lastly, there are file blocks which are an aggregation of
datasets.

There are various types of data that flow through the Grid for the CMS experiment.
Some of the most important (see Figure 3.2) are:

RAW The data as they are recorded by the detector. They include all the information
from the detector, a record of the trigger decisions and other low level data. RAW
data in general are not managed directly by the user and thus further processing
is needed before data analysis can occur.

RECO An elaborated (reconstructed) form of data that later could be used for analysis.
Specific detector reconstruction and compression algorithms are used to produce
high level physics objects such as tracks, vertices, jets and etc. RECO data are
not permanent: in fact they can be recalculated when newer calibration constants
of the detector are available.

AOD Analysis Object Data. This data type is a subset of RECO and contains informa-
tion suitable for most analyses. AODs contain high-level physics objects such as
tracks, particles, four-momentums, etc..

AODSIM AODSIM are events simulated through Monte Carlo methods. They contain high-
level information and are used for physics analyses.

MiniAOD MiniAOD is a new type of CMS data tier introduced in 2016, which is approx-
imately ten times lighter than a conventional Run-1 AOD. They will be able to

39



provide sufficient information for the majority (∼ 80%) of the analyses during
Run-2 [45].

Furthermore, the CMS collaboration necessitates other types of data that are not based
on the Event as a unit (Non-Event Data). There are four categories of non-event data:
construction data, which include information produced during the assembling of the
detector; equipment management data contain calibraton information of the CMS sub-
detectors; configuration data consists of calibration and alignment parameters; and con-
ditions data which describe the current operative condition of the detector [46]. Non-
events data are stored in several central databased. These data are generated both during
on-line data acquisition and off-line analysis.

3.4 CMS computing services

CMS offers a series of computing services to help the user to interact with the Grid. In
the next paragraphs, some of the most important services will be presented in the next
paragraphs (see Figure 3.3) [46]. Note that this is only a general high-level view, and
some satellite services which may too rapidly evolve over the years are not mentioned.

Figure 3.3: Overview of the CMS Computing Services [46].

Data management. The CMS collaboration needs services to catalogue, locate, access
CMS data. The Data Bookkeeping Service (DBS) is a data catalogue which tells

40



you which data exists. The Data Aggregation Service (DAS) is a service whose
purpose is to provide a data search through a query language. Physics Experiment
Data Export (PhEDEx) is a reliable and scalable dataset replication system in
production for CMS since 2004, and stands as one of the first developed Grid
based system for HEP that is still in production today [47, 48, 49].

Workload management. The analyses which run on the Grid are intrinsically inde-
pendent from each other. This fact allows the workload management to distribute
the workload according to the computing center capabilities and the location of the
data. Then, the actual execution of the tasks is performed by WMCore/WMAgent.
The Berkeley Database Information Index (BDII) [50] informs the workload man-
agement about how the various Grid sites are being exploited at the moment.
Furthermore, when the analysis has been assigned to a specific computing center,
a job wrapper performs the set up of the environment, then it runs the user analysis
on the local dataset and delivers the requested data to user. This procedure is fur-
ther supported by other various CMS tools, one in particular CRAB will be discuss
in details in the Section 3.5. Monte Carlo simulations are managed by a web-based
service: the Monte Carlo Management (McM). Up to now, CMS has simulated
over twelve billion events, organized in approximately sixty different campaigns
each one characterized by specific detector conditions and LHC running conditions
[51]. More details of the campaigns production will be provided in Section 5.5.1.

3.5 CMS Distributed Analysis with CRAB

The analysis in CMS, both of data and of simulated samples, is carried out on the
Grid using a toolkit called CRAB (CMS Remote Analysis Builder) [52, 53, 54]. CRAB
provides an interface for users to interact with the distributed computing infrastructure
(see Figure 3.4). In general, an analysis usually includes two main steps: first, the user
develops his analysis code and tests it locally on a small scale; second, the user prepares
and submits a large set of jobs to run on an actual large dataset using CRAB. Usually,
an analysis is constituted of hundreds of jobs that are created and managed by CRAB.
CRAB is a tool which is under continuous development, in this thesis the versions two
and three will be used, i.e. CRAB2 and CRAB3.

In CRAB2, to perform an analysis, the user has to write a configuration file in a
specific meta-language. This file has the default name crab.cfg. In CRAB3, the
configuration file is written in Python.

The crab.cfg in CRAB2 is divided in various sections: CRAB, USER, CMSSW
and GRID. The following parameters for the crab.cfg are mandatory:

• jobtype: the type of job that has to be executed;

41



• scheduler: the name of the scheduler that has to be used;

• datasetpath: the complete path and name of the dataset which has to be ana-
lyzed;

• pset: the name of the CMSSW configuration file;

• out file: the output file name generated by the pset file;

• return data: enables to retrieve the output in the local working area. The
options are 0 or 1;

• copy data: enables to copy the output to a remote SE. The options are 0 or 1.

Furthermore, it is necessary to specify whether the jobs are going to be split according
to the luminosity, which is mandatory for real data, or by the number of event, which is
possible only for Monte Carlo events. In both cases, two parameters have to be specified
out of a list of three. For job splitting by luminosity:

• total number of lumis: defines the number of luminosity blocks to be ana-
lyzed;

• lumis per job: specifies the number of luminosity blocks that a job can access;

• number of jobs: establishes the total number of jobs that are going to run.

For job splitting by event:

• total number of events: the total number of events to be analyzed;

• events per job: assigns to each job the number of events it can access;

• number of jobs: specifies the total number of jobs that are going to run.

Once the proper working environment has been set-up and both the crab.cfg and the
CMSSW configuration have been written, it is then possible to create the jobs via the
command [55] [56]:

crab -create

This command creates the jobs according to the CRAB configuration file. The fol-
lowing step is to submit the jobs to the Grid. This is done via the command:

crab -submit

42



Now, it is possible to check the status of the jobs via the command:

crab -status

The CMS Dashboard is a standard tool used for monitoring the status of the jobs.
The CMS Dashboard provides the user with a large set of monitoring metrics and useful
information. In particular, a task monitoring service is in place that offers monitoring
specifically targeted to help a user track the status of his jobs over time, including suc-
cesses versus failures, etc [57]. Moreover, further information is provided in the CRAB
log files that can be retrieved with the command:

crab -getoutput

The above command retrieves only log files of the jobs which are marked “Done”. For
the other jobs, either they have not completed yet (so the user must wait to recover the
output), or they have failed (and the user can debug their failure reasons, and possibly
re-submit them again via CRAB).

Figure 3.4: Overview of the CRAB architecture [58].

43



Chapter 4

Analysis performances:
a CRAB-based tool

Computing resources in CMS are used mainly for two types of activities: Monte Carlo
productions and data analysis. The former activity is centrally coordinated, while the
latter fulfills the local requests of the research groups in CMS. These two workflows
require that the computing resources are managed and monitored in ways tailored to the
use-cases. On one hand, Monte Carlo productions are monitored globally at high level
of details, and this approach will be discussed in Chapter 5. On the other hand, data
analysis -performed with CRAB- is monitored both centrally and by the scientists who
have submitted such jobs, regardless of the actual location of the resources.

This chapter presents the design and development of a tool capable of providing a
quick and intuitive analysis of the measured performances in CRAB job submissions, on
any Grid or Cloud resources.

The tool has been tested with job submissions on Grid and Cloud infrastructures
specifically designed for benchmarking.

4.1 Design

First of all, a quick evaluation of possible programming approaches to address the moni-
toring needs was performed. We considered commonly used scripting languages like Perl,
Python, go-lang, bash, etc. Given its wide adoption in CMS, we opted for Python. To be
as consistent as possible with the CMS code base, Python 2.7 was used. A quick overview
of the available monitoring systems in CMS for distributed analysis was performed, to
identify the actual needs and to avoid overlap with existing tools. The focus of this effort
has been to design a lightweight tool that any user can exploit with basically no learning
curve to optimize the sequence of creation, submission and monitoring of analysts jobs,
thus achieving a higher efficiency in physics analysis. A detailed description of the tool

44



can be found in the following paragraphs.
In order to operate it, a user that has carried his analysis in a specific working di-

rectory (specified in the crabcfg.py file) for several tasks should retrieved the logs
through the CRAB command:

crab getlog <working-directory>/<task-directory>

Then he simply needs to run the tool giving as argument the working directory:

python tasks analyzer.py <working-directory>

and, at the end, the program creates a directory called Tasks Analysis <working-
directory> containing both the information about the single tasks and on overall
analysis of the tasks (see Figure 4.1).

Figure 4.1: Tool design. The tool performs two types of analysis on the CMS working
directory: a single task analysis for each task individually, and a multiple task analysis
which looks at each task as a whole. More details will be provided in Sections 4.2 and
4.3.

The metrics that have been studied are very simple. The idea is indeed to start with
some simple observables and let the user express additional needs, or implement more
observables himself. Such metrics are:

• CPU Time: time the application spent on WN CPU.

45



• Execution Time: overall job execution time.

• CPU Efficiency: parameter which evaluates the CPU’s efficiency as follows:

CPU Efficiency =
CPU Time

Execution Time

• Number of events: total number of events per each task.

4.2 Single Task Analysis

For each task contained in the working directory the tool performs several actions:

1. It unpacks the log files and stores them as .xml and .log files.

2. It retrieves information from these files and produces a dump of them in a .csv
file which can be then use for a more sophisticated analysis using packages such as
R[59].

3. It produces plots in .png format, using the metrics described above. Moreover, the
graphs are stored in root files named <task-name>.root for further analysis
exploration with ROOT [60].

As a demonstration of the features of this tool, in Figure 4.2-4.11, the plots produced
by analyzing four tasks submitted to a Cloud infrastructure in Bologna are shown. These
tasks were used to compare the performance of a Cloud infrastructure to the Worldwide
LHC Computing Grid and provide a proof of concept of the elastic extension of the CMS-
Bologna Tier-3 Site on an external Cloud infrastructure, implemented on OpenStack
[61]. A newly designed LSF [62] configuration was used in what it can be considered a
“Cloud Bursting” of a traditional CMS Grid Site [63]. The project aimed to implement
an extension of the traditional” Grid resources to a Cloud infrastructure in the most
transparent manner for the user. However, there are small differences between the two
architectures and these can be detected thanks to this type of analysis tool.

46



Figure 4.2: Number of jobs as a function of the CPU Time for a workflow that is described
in detail in the text.

Figure 4.3: Number of jobs as a function of the Execution Time for a workflow that is
described in detail in the text.

The plots in Figure 4.2 and 4.3 provide a general overview of the time of execution of
the single jobs. With this type of information, an analyst can optimize his job submission

47



exploiting his computing resources without having moments in which there are no jobs
running. For example, take Figure 4.2 and consider this case. An analyst typically
will have to submit many tasks consisting of many jobs each, and would aim to see
them finished in the minimum amount of time. It is realistic that he submits some jobs
only, or a small task, first to figure out how much time it may take to run all tasks in
the work queue. Running a small task and/or only few jobs may not be statistically
significant, i.e. they may end up in underperforming Grid sites (thus overestimating
the overall work completion time), or only few of them may succeed (thus yielding a
not significant statistics of successful jobs to draw any conclusion). It is probably wiser
to submit a realistic, medium-size task and use the tool documented in this project
to analyze the actual CPU time and CPU efficiency patterns of all the jobs in such
task. Consider for example that this is done and the streamlined analysis of its results
allows to conclude that the vast majority of jobs in the test task complete in less than
8 hours running on 5 different (in performance, location, etc) computing centers. It will
hence be straightforward to presume that also all the other tasks may do the same: as a
consequence, having this insight at hand, a proper scheduling of the user’s submissions
in the next few days is possible, and ultimately the whole work completion time will
be largely reduced with respect to a “let’s submit randomly and see what happens”
approach.

Figure 4.4: Number of jobs as a function of the CPU Efficiency for a workflow that is
described in detail in the text.

The plot in Figure 4.4 shows if the computational resources are used efficiently or
whether there are problems for certain tasks. Furthermore, this metric is fundamental

48



to compare the performances of the Grid to any Cloud infrastructure. Indeed, in the
context of the comparison previously described, one expects to obtain different peaks of
CPU efficiency for the Tier-3 Cloud infrastructure in Bologna and the Grid. In the end,
it is a fast way to evaluate two completely different and unrelated architectures.

Figure 4.5: Occurrences of the number of events for a workflow that is described in detail
in the text.

It is also interesting to have a quick graphical way to monitor how many events
have been processed - as from the info in the logs - without actually looking at the logs
themselves but by just parsing them and filling an histograms, as shown in Figure 4.5.

A feature which is highly desirable in this kind of tools is to been able to plot corre-
lations between different observables. Thus, this tool can produce bi-dimensional plots
of all the metrics discussed above according to the user’s needs. The plot in Figure 4.6
shows how the execution time is correlated to the CPU time. The graph in Figure 4.7
looks for the degree of correlation between the Execution Time of each task and the
Number of Events contained in each task.

49



Figure 4.6: Execution Time as a function of the CPU Time for a workflow that is
described in detail in the text.

Figure 4.7: Execution Time as a function of the number of events for a workflow that is
described in detail in the text.

50



4.3 Multiple Task Analysis

So far, we discussed a per-task monitoring, in which all entries in a plot refer and belong
to just one task. Another useful aggregation in CRAB is per Working Directory. In fact,
typically, users need to submit plenty of tasks, some of which may become useless as
the analysis proceeds, but some other may be a reference for all the subsequent tasks
creation and submission. It is hence interesting, inside a unique working directory, to
graphically compare - for example - the average CPU time (or other observables) *per
task*, in a single *per working directory* plot.

Figure 4.8: Averages of CPU Time for four related workflows (the error is the standard
deviation).

In Figure 4.8, the averages of CPU time of different tasks are plotted. This may
help to spot the tasks that use more CPU time in their jobs’ execution. Similarly, in
Figure 4.9, the averages of Execution Time for different tasks are plotted. This could
help identify which tasks take overall more time to finish.

51



Figure 4.9: Averages of Execution Time for four related workflows (the error is the
standard deviation).

Figure 4.10: Averages of CPU Efficiency for four related workflows (the error is the
standard deviation).

52



Figure 4.11: Averages of number of events for four related workflows (the error is the
standard deviation).

From the combined analysis of these plots it is possible to extract even more valuable
informations. For example, let’s consider the plots in Figure 4.10 and 4.11. In Figure
4.10, Task1 has a lower CPU efficiency compared to other similar tasks. Now observing
the average number of events of the tasks in Figure 4.11, one can conclude that having
to access a larger number of events might be the cause of the lower CPU efficiency. This
has only been possible by observing the four tasks in parallel.

4.4 Job submissions for benchmarking

The tool has been tested with job submissions on Grid and Cloud specifically designed
for benchmarking. The first tests of the tool were performed on six small tasks in which it
was fixed the NJOBS to 10 whereas the unitsPerJob were progressively increased (1,
2, 5, 10, 20, 50). These tests were used to initially develop the tool. Once the reliability
of the tool was reassured, the tool was tested with log files coming from the analysis of
the Tier-3 Cloud infrastructure in Bologna containing up to 200 jobs. All the tests were
based on the same workflow: an analysis task in the context of the fully hadronic top
physics [63].

53



Chapter 5

Performance studies of CMS
workflows using ElasticSearch,
Jupyter Notebook and Kibana

5.1 Big Data Analytics in CMS

Big data analytics is a collection of newly developed techniques for evaluating large data
sets containing a multitude of data types to discover correlations, users preferences and
unknown patterns. Big data analytics has been exploited successfully in various busi-
ness areas to improve sales, revenue opportunities, operational efficiency, and customer
service.

Lately, these techniques have also been exploited in the CMS experiment. In fact,
beyond the data produced by the physics collisions or the Monte Carlo simulations, there
are plenty of metadata concerning the performances of the computing facilities, which
are seldom analyzed and big data analytics will help shed some light on it. Metadata
in CMS comprehend different types of non−physics heterogeneous data, which can be
divided in:

• Structured data is any data that resides in a fixed field within a record or file
and can be stored, for example, in a SQL database.

• Semi structured data is a type of information which is not located in a relational
database; however, since it has some organizational properties, it can be analyzed
without too much difficulties and could be farther process in order to be stored in
a database.

• Unstructured data is data which cannot be easily stored in a database.

54



Figure 5.1 provides a schematic representation of the structured and unstructured
metadata in CMS. These data includes machine data, monitoring logs, accounting infor-
mation, etc.

Figure 5.1: Schematic representation of the structured and unstructured metadata in
CMS [64].

Currently, CMS is carrying on the Data Analytics project to analyze metadata [64].
This project is divided in several sub−projects that have different scopes as well as
timelines. The Data Analytics project primary goal is to create adaptive data−driven
models of CMS Data Management (DM) and Workload Management (WM) activities.
This system aims at being capable of forecasting, for example, future behaviors of the
jobs’ submissions from the measurements of their performances in the recent past. How-
ever, as medium−term goal, the intent of the Data Analytics project is to improve the
efficiency with which the CMS computing resources are exploited, and to better under-
stand the metadata produced so far (“Run−1” and “Run−2”).

In this context, also adaptive computing model have to be developed in order to cope
with this metadata which may change and evolve in the future.

55



5.2 Hadoop

Hadoop is a software platform and framework for distributed storage and distributed
processing of big data on computer clusters: it is a platform because it is a long-running
system which executes tasks, and it is a framework because it gives a high layer of
abstraction to application developers [65]. Hadoop is written mainly in Java and it
is being developed under the Apache license. Cutting and Cafarella, the founders of
Hadoop, developed their idea based on two papers released by Google in 2003 and 2004
in which Google discusses how it organizes and manages its data [66]. Nowadays, Hadoop
represents a standard for Big Data analysis. This is the reason why, Yahoo! and several
other companies use Hadoop. The core Apache Hadoop project is constituted of three
major resources:

• HDFS (Hadoop Distribuited File System) is the place in Hadoop in which data
are stored. HDFS is designed to run on clusters of inexpensive commodity servers.
It is optimized for read intensive operations. The system makes several copies of
each data, thus it is improbable to lose data. However, failures are not completely
avoidable. Furthermore, HDFS is a WORM-ish (Write Once Read Many) file
system: files cannot be overwritten but only extended. The main task of HDFS is
the sequential read of large files, which are generally divided in large blocks in size
(64MB or more) distributed among the clusters.

• YARN is the management framework for exploiting Hadoop resources such as
CPU, RAM, and disk space. YARN operates in a space between the data and
where MapReduce runs.

• MapReduce is the framework for analyzing the distributed data. MapReduce is
made of Java applications called mappers and reducers. Mappers convert a first
set of data into a second set of data in which the single elements are tuples (key /
value pairs). Then, reducers analyze the output produced by the mappers.

For the advantages described in the previous paragraphs, HDFS has been imple-
mented in several Tier-2 CMS. It has shown to be a viable alternative to the standard
Grid Storage Element especially for what concerns scalability, reliability, and manage-
ability [67].

The work performed in this thesis is based on a prototype , non-production in-
stallation set up for test and commissioning purposes by collaborators in the CMS
Software/Computing team. At the current deployment stage and utilization level, this
set-up (described in more details in Section 5.4) is considered to be largely sufficient
for this study. In view of an upgrade to a CMS production service and an extension
to more complex usage patterns by a large users base, an inclusion of technologies from
the Hadoop ecosystem is being considered. In particular, at the moment of writing

56



this thesis, a complete duplication of the system onto CERN resources (Hadoop based
installation) is being planned.

5.3 ElasticSearch and Kibana

ElasticSearch is a open source search server developed in Java with an HTTP web inter-
face for searching text [68]; it is powered by Lucene, which is an open source full−text
search library.

The primary data−type that ElasticSearch uses is JSON. However, internally, the
JSON is converted to fields for Lucene’s key or value API. Complex JSON types are also
supported, with the aid of both arrays and object notation. Furthermore, ElasticSearch
documents are able to manage more complex relations, for example, parent−child re-
lationships and nested documents. A Google Chrome plugin, Sense, provides a JSON
aware interface for ElasticSearch.

In ElasticSearch data organized in Indexes, which represent the single largest unit of
data. Although ElasticSearch allows cross−index searches, it is preferable to organize
related data inside the same index. Indexes can be thought as analogous to databases
from a relational perspective. The CRUD commands (create, read, update and delete)
are the four basic functions in databases. In ElasticSearch, they are performed through:
PUT, GET, POST, DELETE.

Moreover, ElasticSearch is endowed of a Python library to support queries also
through Python code. One way to display ElasticSearch queries and aggregations is
through an open source tool called Kibana [69].

Through this thesis, the queries that have been submitted to ElasticSearch have been
designed in Python and managed using Jupyter Notebook [70]. This choice has allowed
a higher flexibility in the code development. A Kibana interface (see Section 5.4) has
been used at the beginning to familiarize with the context of the ElasticSearch instance
studied (see Section 5.4) and to validate some of the first results obtained.

All the Python code base is open to the CMS community and it has been commented
thoroughly.

5.4 The CMS Metrics Service from University of

Nebraska

The CMS Metrics Service is a comprehensive database of all production and analysis
jobs run in the CMS Global Pool (based on Condor [71]). For this section, input from
colleagues in the CMS management and in the CMS team of University of Nebraska was
crucial [72]. Special acknowledgments for the technical work should go to Brian Bock-
elman. The main purpose of this infrastructure is to reuse modern, scalable database

57



technology (ElasticSearch) and integrate it directly with HTCondor via the Python bind-
ing API.

The goal of this database is to enable job-level analytics involving many different job
attributes; some attributes are specific to the CMS ecosystem (such as number of events
processed, bytes read by CMSSW, dataset processed, task name) while others are basic
attributes recorded by HTCondor (such as CPU, memory, and disk usage). A list of the
attributes that have been used in this work can be found in Appendix A.

This service exploits the expressivity of HTCondor ClassAds - which allows CMS to
keep CMS-specific, schema-free data as part of the job description - and the NoSQL na-
ture of the ElasticSearch database. This service has been active since mid-February 2016.
Between one and two million new job records are collected each day. The component
architecture of this service is diagrammed in Fig. 5.2.

Figure 5.2: Diagram of the component architecture of Nebraska / CMS Metrics Service.

As stated above, the CMS Metrics Service is based on an ElasticSearch database.
A CMS-custom script, spider cms, runs approximately every 15 minutes to do the
following:

1. Query the condor collector on the CMS Global Pool for a list of active
condor schedd services.

2. For each active schedd, query all the active jobs in the queue and recently completed
jobs.

58



3. For each job, we convert the HTCondor ClassAd to a JSON document. This often
involves unit conversion, attribute name normalization (some CMS applications
use slightly different names), and aggregating multiple attributes as appropriate.

4. Each jobs JSON-based description is uploaded to the ElasticSearch database.

To perform analytics on the database contents, it is also provided an Kibana-based
interface.

This service was initially deployed as a prototype and is awaiting upgrade to a more
traditional production deployment of ElasticSearch.

Right now, it is powered by a single virtual machine on the “Anvil” OpenStack service
at the Holland Computing Center at the University of Nebraska-Lincoln that has 8 cores
and 64GB of memory. The database is located on a 1TB Ceph-backed block device. All
services run on the same VM. CMS planned to roughly quadruple the available hardware
in July 2016.

The ElasticSearch version is currently 2.2.0 and Kibana is version 4.4.1. The only
custom software for this service is spider cms [73].

5.5 Workload Management view

In the CMS WM sector, plenty of useful information resides in the log of the jobs
submitted to Grids and Clouds. Production jobs and analysis jobs represent different
families of CMS workflows, and the tools used to deal with production and analysis
needs are different, thus also the log files are different. Despite such diversity, plenty of
knowledge on CMS computing operations lies in them, and in principle they represent
the most important source of high granularity details any performance study may hope
to access.

On the other hand, in some cases there are quicker and more effective ways to store
for future access at least a set of such information, which is perceived as sufficient to
perform most of the a-posteriori analysis, without needing to access the full set of log
files.

CMS is exploring both approaches. In the former case, there is a development project
called WMArchive which aims at collecting and archiving at CERN all logs from all jobs
belonging to Monte Carlo production activities. This is in progress and is not focus of
the current work. The latter approach is the one described in 5.4, and we will focus on
this in the rest of the thesis.

Since almost 2 years, CMS jobs are submitted via a condor Global Pool (see Sec-
tion 5.4). HTCondor is nowadays one of the most adopted site Workload Management
systems at Grid sites, see e.g. Figure 5.3 for its usage in CMS. As explained in 5.4,
HTCondor ClassAds provide us an impressive (despite not complete, i.e. no full logs)

59



amount of information on which we can base all the explorations presented in the fol-
lowing sections. A selected list of attributes available on such resource can be found in
Appendix A.

In this study, we focus on a few selected monitoring use-cases and we demonstrate that
it is possible to fulfill the monitoring need by exploiting the CMS Metrics Service, while
it would be impossible to do so through official CMS or WLCG monitoring mechanisms.

Note that the CMS Metrics Service set-up is relatively recent, so the plots in the
following sections have been produced only over the time window covered by the database
so far, i.e. from mid February 2015 to mid June 2016. The date of mid June is indeed
the date in which the plots in this thesis have been updated for the last time before
including them in the thesis. In the following we will refer to the mid February - mid
June period as the “time frame under study”.

Figure 5.3: Daily sum of Core Hours for different Site WMS.

60



5.5.1 Use-case: jobs count across production and analysis

The first metric of interest is the number of completed CMS jobs belonging to different
CMS activities. In particular, we can focus only on two categories: centrally-submitted
simulation jobs and distributed analysis jobs. The number of completed jobs is a very
simple metric to extract, and the CMS Dashboard can be used for it. On the other
hand, the CMS Dashboard does not have the concept of campaign, so it is particularly
interested to explore this metric in the CMS Metrics Service.

Figure 5.4: Job count for the 10 most relevant “processing activities”. See text for
further explanations. Blue bars refer to user analysis activities and yellow bars refer to
different Monte Carlo production campaigns.

61



In Figure 5.4 the number of jobs (job count) for the 10 most relevant CMS “activities”
in the time frame under study is shown. The visualization includes both production and
analysis jobs. By “analysis activities” in this context we mean jobs submitted by single
analysis users via the CRAB3 tool. By “production activities” in this context we mean
major Monte Carlo production efforts that focus on a specific processing step and produce
in output a specific data tier. The latter entity is called production “campaign” in the
CMS jargon: e.g., “GS” indicates a Monte Carlo campaign that produces GEN-SIM
outputs, “DR” indicates a Monte Carlo campaign that reads GEN-SIM inputs and PU
events and produces Digi-Reco outputs, etc).

In general, it can be observed that most CPU resources in CMS are allocated to
production campaigns (green bars in Figure 5.4) and only a couple of power users manage
to get into the top 10 list of jobs count (yellow bars in Figure 5.4). The relative fraction
of production versus analysis jobs is roughly constant over time, as can be seen for
example in Figure 5.5 where this is displayed for May 2016: apart from the end May
period (when a monitoring glitch occurred in Nebraska and no data filled the plot), the
fraction of analysis never was beyond 25− 30% of the total of core hours used by CMS.

Concerning the analysis jobs in Figure 5.4 also a couple of analysis users activities
can be seen (i.e. yellow bars). These are due to individuals submitting massive amounts
of CRAB3 jobs to the Grid in the time frame under study: this is not unknown, i.e. the
largest of these bins, the sixth bin in Figure 5.4, correspond to the Grid certificate of a
CMS expert that is used in an automatic submission mechanism of lightweight test jobs
on a regular basis to verify the status of the overall WLCG Tiered infrastructure. It
is interesting to note that these jobs count is more than actual Prompt Reconstruction
jobs and Release Validation jobs, both important categories of CMS Grid jobs - and
the relative contribution of each category to the overall CPU utilization is matter of
discussion now in CMS. These pieces of information at this level of granularity could not
have been extracted without the set-up described in this thesis.

The breakdown into campaigns deserves further discussion. Figure 5.4 - with respect
to plots doable from the CMS Dashboard - is able to disentangle where most of the
CMS users spent CPU hours, i.e. in which specific CMS activity. In the time frame
under study, CPU time was mostly spent in 3 major campaigns: RunIISpring16DR80,
RunIIFall15DR76, RunIISummer15GS. They alone represent the 71% of the total jobs
submitted by CMS in this time window, the first two heaviest campaign being both DR
ones. Specifically on each:

• RunIISpring16DR80 is a massive Digi-Reco campaign requested by the CMS Physics
coordination team for the analyses in view of the ICHEP 2016 conference in Chicago
in Summer 2016 [74]; this campaign started in the Spring 2016, and is now in the
tails, producing already more than 5.6 billion of events.

• RunIIFall15DR76 is a Digi-Reco campaign similar to the previous one, with a less
recent CMSSW version (CMSSW 7.6 instead of the current CMSSW 8.0) requested

62



Figure 5.5: Total Core Hours for jobs of production and analysis in May 2016.

by CMS Physics coordination in view of the analyses to be presented at the Moriond
conference in Spring 2016 [75]; this campaign started in late 2015 and continued
through early 2016, producing close to 9 billion of events.

• RunIISummer15GS is instead a campaign aimed at populating the library of GEN-
SIM events for DR campaigns afterwards, among which the 2 quoted above; this
campaign started in Summer 2015 and is still open, now at more than 10 billions
of events produced.

Taking as DR and GS examples the RunIISpring16DR80 campaign and the RunI-
ISummer15GS campaign respectively, their event throughput over time is shown
in Figure 5.6 and Figure 5.7, based on plots from the CMS Physics Data and MC
Validation (PdmV) team [76] under the CMS Physics Performances and Dataset
(PPD) project [77]. Note that these 2 campaigns are ranked first and third in
5.4, and the DR campaign corresponds to roughly twice as many jobs as the GS
campaign. This correctly indicates that the load associated to DR is higher than

63



the one associated to GS, but fails in quantitatively assess it. A best metric to
do so is the total number of core hours per campaigns, as discussed in the next
section.

Figure 5.6: RunIISpring16DR80 campaign progress over time.

Figure 5.7: RunIISummer15GS campaign progress over time.

64



5.5.2 Use-case: total core hours per production campaign

The breakdown into the total number of core hours per Monte Carlo campaigns in May
2016 is shown in Figure 5.8. The choice to display May 2016 is motivated by the fact
that this is a full month in which this production went at full steam, as: i) it started
only on April 6th, so April is not a complete month of production; ii) it began to slow
down and even plateau in June.

Figure 5.8: Total Core Hours for the major production campaigns ongoing in May 2016.

During the selected month, details on a daily basis can be observed, which is par-
ticularly valuable as a piece of information. In fact, CMS production proceeds on a
constant basis: operations experts check on a hourly basis progresses and issues, while
managers overview the situation with a daily or even weekly resolution only. A useful
way to monitor how a production campaign is going on is to use information from the
Global Pool, clean them from analysis jobs information, and monitor the progress - per
campaign - on a daily basis for a relatively long period of time - exactly what is done

65



in plots like Figure 5.8. Doing so, it was clearly visible that RunIISpring16DR80 have
been using most of the CMS CPU power almost every day in May 2016, while other
campaigns have been using their share at the level of up to 10− 20% each.

Another interesting observation is that - despite the Run-II data taking period - the
fraction of CPU power used by PromptReco is relatively low compared to the massive
DR campaign going on. One can also observe that the presence of RelVal (CMSSW
release validation) jobs is intermittent - basically these jobs are submitted in connection
to needs in the CMSSW release deployment plans. One last observation is that later
in the month the CPU usage decreased - due to the fact that in early June 2016 the
RunIISpring16DR80 campaign moved towards the completion of its bulk and work con-
tinued only in dealing with the tails of the campaign itself (i.e. resubmission of failed
jobs, troubleshooting, etc). This decrease is partially hidden by a monitoring glitch that
blinded the plot for few days, but it could be confirmed by external checks. As for the
Figure 5.4, also the information in Figure 5.8 would not be available for plotting via the
standard existing monitoring tools in CMS or WLCG, and it has been possible only via
the CMS Metrics Service set-up discussed in this thesis.

As a partial conclusion of this part, it is worth commenting that metrics like “core hrs”
tend to be more practically useful than “number of jobs” plots: the latter is frequently
used in monitoring and accounting system, but as a matter of fact the complexity and
load of an experiment activity lies in the complexity of the workflow, on which better
observables are e.g. core hrs indeed, or memory usage, or even fraction of failed jobs due
to infrastructure load, etc. On the other hand, a metric as simple as the job count could
still be useful for some general overview needs, as discussed in the following section.

5.5.3 Use-case: jobs count on many computing centers

If ones wants to directly compare how much work a computing site is doing to fulfill his
share of the global work load in both large, distributed Monte Carlo production for CMS
and also distributed analysis over few months, monitoring the number of jobs on WLCG
Tiers could be a simple but valid starting point.

First of all, at any given time each computing Tier may have a variable mix of
completed, running, removed or failed jobs (both production and analysis). Integrating
over wide time windows, the number of running jobs may become less relevant indeed,
but the fraction of e.g. removed or failed jobs may sum up to relatively high value,
comparable to completed ones. As a consequence, the first metric to consider is to just
sum them all up. Figure 5.9 shows the fraction of jobs in each of the WLCG Tiers
that contributed to the CMS experiment activities (both production and analysis) in
the whole time frame under study, cutting at 15 sites. Starting from the top right part
and moving anti-clockwise, one can see that the US Tier-1 in Fermilab was the major
contributor, with about 14% of the total jobs, followed by the CERN Tier-2 center, a
bunch of US Tier-2 sites, the CERN Tier-0 (that often contributes to the Monte Carlo

66



production activities when data taking is off), the largest German Tier-2 in DESY, and
so on.

Figure 5.9: Fraction of jobs in the WLCG Sites that contributed the most to the CMS
experiment activities (both production and analysis) in the time frame under study.

As different job statuses are actually mixed up in Figure 5.9, it may be misleading
to use such plot to imply which are the sites contributing the most to CMS production
and analysis. In order to overcome such limitation, one could consider to plot only the
total number of completed jobs by site - thus excluding all other statuses - as in Figure
5.10. This plot yields a proper site ordering, in the sense discussed in the following.

67



The Fermilab (FNAL) contribution - in terms of completed jobs - to CMS produc-
tion and analysis is about twice (or more) as much as the contribution from any other
individual computing centre in CMS. This is known and explained by FNAL volume of
resources and quantity and maturity of computing manpower and expertise on-site. This
plot also shows that, FNAL apart, the rest of the sites do not differ of large factors: they
contribute similarly, at least in terms of number of completed jobs in the same time win-
dow, but it can be observed that such contributions are not necessarily ordered according
the Tier level as from the MONARC hierarchy. It is indeed visible that some Tier-2 sites
(e.g. the large US Tiers) contribute more than each of the European Tier-1 sites. It is
not uncommon to observe this in CMS operations: this is an evolution of the CMS com-
puting model through LHC Run-I and Long Shutdown I (happening also for other LHC
experiments), and Tier-2 sites are becoming large computing centers capable of running
services and sustaining job loads comparable to those that were originally foreseen to
be sustainable only by Tier-1 centers. The boundaries among Tiers is becoming more
blurry over recent years, and the trend is continuing.

One question still remains open: in this mix of Tier-1 and Tier-2 that contribute
similarly to CMS production and analysis, a proper ranking in terms of actual events
throughput cannot be extracted from Figure 5.9: as discussed in the previous section,
the total core hours would be a more appropriate metric for this purpose. The number of
both successful and failed jobs, for production and analysis, for the 25 sites contributing
the most, displaying only the completed jobs is shown in Figure 5.11. The resulting plot
is - not unexpectedly - very similar to the previous one, but the site ranking in terms of
contribution to CMS activities is now more precise and useful.

68



Figure 5.10: Total number of completed jobs, with breakdown on the computing sites.

Figure 5.11: Total Core Hours for the major computing centers, showing also the fraction
of the job succeeded and failed.

69



Additionally, the fraction of analysis versus production could be shown. Figure 5.12
shows the total number of completed jobs, with breakdown on the computing sites,
together with the fraction of production versus analysis jobs on each site. All sites (Tier-
1 and Tier-2) also run a fraction of analysis jobs: this fraction seems around 50% for
Tier-2 centers, and much smaller for Tier-1 centers: both aspects are as foreseen by the
CMS Computing model. I is interesting to note that the Tier-0 and the offline usage of
the High Level Trigger farm at CERN are both contributing to production only: indeed,
they are closed for CRAB3 analysis jobs submissions. This kind of plots is of interest
to the CMS Computing operations team, in babysitting both the distributed analysis
efforts and the production campaigns, and needing to regularly check how much each site
contributed to which activity, in order to plot misbehaviors, unbalanced or operational
mistakes: this information at this level of granularity is available only in the CMS Metrics
Service set-up discussed in this thesis.

Figure 5.12: Total number of completed jobs, with breakdown on the computing sites,
showing also the fraction of production versus analysis jobs.

70



Furthermore, a coarser granularity of the previous plot would be more interesting for
a different monitoring customer, i.e. the CMS management. While the CMS Computing
operations team in interested in the site breakdown for their daily work on the technical
side, the CMS management may be interested in less details on the sites breakdown,
e.g. for their work on the planning side. A metric as simple as the relative fraction of
production versus analysis jobs at different Tier levels over the time frame under study
is shown in Figure 5.13. This plot visually confirms and strengthens what was argued
above, i.e.:

Figure 5.13: Relative fraction of production and analysis jobs at different Tier levels over
the time frame under study.

• Tier-2s are the most important source of CPU power for CMS, and they process
production and analysis jobs at a relative share of approximately 50%− 50%;

• Tier-1 sites host large resources than most Tier-2s but are fewer in number (and
the Tier-2 sites are growing in size over the years), so the Tier-1 sites contribute
less in production and definitely - as per design - much less in analysis (despite it
is possible to run analysis jobs at Tier-1s);

71



• Tier-0 is sometimes used to expand the global production pool but at a controlled
level, as its primary activity is connected to data taking and must be protected;

• The aggregate contribution from Tier-3 centers to production is smaller but still
visible.

It is worth observing that Figures 5.9 to 5.13 are not uniquely obtainable via the
CMS Metrics Service set-up used in this thesis, but can also be extracted via the CMS
Dashboard. But it is worth reminding that in case a breakdown by campaign is needed,
it can be done for all these plots in the CMS Metrics Service while it cannot in the CMS
Dashboard.

The time requested to perform the queries in Figures 5.9 to 5.13 are displayed in
Table 5.5.3, as provided by the Kibana internal statistics service. For a preliminary eval-
uation of the viability of the CMS Metrics Service for what concerns time performances.
In case this prototype becomes a production service for CMS, such performances will be
subjected to ad-hoc optimization work. Nevertheless as of now, those times are com-
parable to the ones that can be obtained from producing similar plots using the CMS
Dashboard.

Task CMS Metrics Service
Query to obtain Figure 5.9 7± 3s
Query to obtain Figure 5.10 3± 2s
Query to obtain Figure 5.12 4± 2s
Query to obtain Figure 5.13 4± 2s

Table 5.1: Approximate time required for executing queries to obtain a few selected plots
presented in this thesis using the CMS Metrics Service with Jupyter Notebook.

5.5.4 Use-case: campaign-based job failure modes

The ratio of successful versus submitted jobs is an obvious success metrics for any pro-
cessing task. This information is as easy to collect as potentially incomplete to plan
and execute concrete actions that may mitigate the impact of job failure to the overall
activity. The root causes of the job failures vary a lot, and largely depend on two classes
of factors, namely the stability of the underlying infrastructure and the solidity (or lack
of) of the workflows being submitted.

As stated in the previous sections, the standard monitoring tools like the CMS Dash-
board do not allow investigations of any metric at the campaign level: the failure modes
per campaign may actually be quite instructive, and are being quickly explored in this
section using the CMS Metrics Service. Focus is on the same Monte Carlo production

72



campaigns discussed previously in some details, i.e. RunIISpring16DR80 and RunIISum-
mer15wmLHEGS 1.

Figure 5.14: The five most frequent exit codes of CMSSW jobs belonging to the RunI-
ISpring16DR80 campaign, for jobs that ran on-site (note the log scale).

For the RunIISpring16DR80 campaign, so far 86.3% of the CMS jobs ran on-site,
while 13.7% ran off-site: this means that the majority of jobs were submitted on sites
where the input (GS) data where resident and (potentially) accessible, while the rest had
to access the file remotely via WAN access. Figure 5.14 shows the 5 most frequent exit
codes of CMSSW jobs belonging to the RunIISpring16DR80 campaign, for jobs that ran
on-site, i.e. the majority of them. In general, the vast majority of jobs are successful,
i.e. exit code 0 (note also the logarithmic scale), only 7% of the jobs fail due to various
reasons. Among the main failure modes, the dominant ones are exit code 65 (end of job
from user application - CMSSW), exit code 85 and exit code 92 (both related to a job
that failed to open local and fallback files) [78].

1RunIISummer15wmLHEGS is similar to RunIISummer15GS - described in Section 5.5.1 - with the
respect of the metrics analyzed in this Section.

73



Figure 5.15: The five most frequent exit codes of CMSSW jobs belonging to the RunI-
ISpring16DR80 campaign, for jobs that ran off-site (note the log scale).

Figure 5.15 shows instead the 5 most frequent exit codes of CMSSW jobs belonging to
the RunIISpring16DR80 campaign - i.e. same as Figure 5.14 - but for jobs that instead
ran off-site. As before, most jobs are successful, and the fraction of failed jobs increases
to 19%, thus higher than jobs that ran locally. The main failure modes for off-site jobs
are reported to be exit code 85, exit code 92 and exit code 65 i.e. same as above, but
with different relevance: a bigger fraction of exit codes 92 and 85 is observed, indicating
that jobs that are forced to access input data from remote location are more prone to
data access errors.

It is instructive to compare what is observed for a DR campaign in terms of failure
modes frequencies with what is observed with a GS campaign instead.

74



Figure 5.16: The five most frequent exit codes of CMSSW jobs belonging to the RunI-
ISummer15wmLHEGS campaign, for jobs that ran on-site (note the log scale).

In Figure 5.16 the 5 most frequent exit codes of CMSSW jobs belonging to the
RunIISummer15wmLHEGS campaign, for jobs that ran on-site, are shown. We focus
here only on on-site jobs as the GS workload is much lighter - i.e. reading small files in
input (if any) but no PU files, and writing out GEN-SIM files - thus showing no major
complexity in terms of PU serving and consequently no need to off-load such input
loading to WAN access techniques. Apart from the vast majority of successful jobs, 11%
are failed jobs, with exit code 65 (end of job from user application (CMSSW)), exit code
2 (interrupt (ANSI)) and exit code 134 (IOT trap (4.2 BSD)). Regardless of the details
of the failures, it is evident that the data access (local or remote) is less dominant as a
root cause of errors wth respect to jobs belonging to a DR campaign: this is explained
by the fact that a DR campaign has indeed a higher IO load profile with respect to a
GS campaign.

It has been showed through a couple of examples that the CMS Metrics Service is able
to offer failure modes information per campaign. The characteristics of each campaign

75



are well known since the preparation phase, before the first job submission occurs. The
load of a campaign (e.g. in terms of I/O) is known, and it represents its fingerprint: one
can expect specific failure modes and - on a relatively stable infrastructure - one is also
able to predict their frequency of occurrence: by being able to stably monitor the rates
of such failure modes per campaign (and not only in general for all jobs) one can actually
closely monitor if such rates are increasing with respect to expected values during the
evolution of a campaign, and thus promptly spot problems in the computing system as a
whole (e.g. network problems, storage problems, site problems, etc) and take mitigation
actions or use this information to potentially build a more adaptive submission system.
Of course, all this would be impossible without such monitoring information which are
available only in the CMS Metrics Service prototype.

5.5.5 Use-case: campaign-based CPU efficiency

Another very relevant information to look at in order to properly monitor the way com-
puting resources are utilized in massive processing activities is the CPU efficiency (defined
in section 4.2). Ideally, one would like to have a very high CPU efficiency regardless of
the kind of job that is being submitted: this is obviously unrealistic. Several factor may
contribute to decrease the actual measured CPU efficiency of an experiment workflow,
e.g. high I/O production workflows, peculiarities in the job scheduling process by the
pilot resource provisioning system, remote data reads on the WAN (Wide Area Network)
through storage federations, bottlenecks in a site data serving system, etc.

A first interesting check is to use a general monitoring system like the CMS Dashboard
to check the CPU efficiency of various CMS workflows over e.g. last 12 months, in order
to get a feeling of major offenders. This is shown in Figure 5.17. Excluding jobs of
categories like “test” or “hctest” - as well as the “unknown” ones which are known issues
in associating jobs to precise job types (ans assuming ignoring them would not impact
much the general considerations), it is interesting to observe that i) production jobs
have among the highest CPU efficiency; ii) analysis jobs has a lower CPU efficiency with
respect to production jobs (well known due to the variability of non optimizations that
may occur in user-driven processing with respect to centralized expert processing), and
iii) the most inefficient (despite massive in terms of core hours needed) workflow is the
digitization - labeled as “reprocessing” (digi-reco) in the plot. This is related to the PU
reading, i.e. plenty of WCT spent in reading input data instead of spending it as CPT,
thus contributing to a low CPU efficiency: this needs to be carefully monitored, and in
the short term CMS plans to mitigate it via pre-mixing solutions (not yet in production).

76



Figure 5.17: Average CPU efficiency of various CMS workflows over the last 12 months
(source: CMS Dashboard).

Also, concerning the possible other causes of low CPU efficiency, an interesting one
is the remote data reads on the WAN. The average CPU efficiency of jobs reading input
data locally/remotely over 12 months - regardless of the job type - has been measured to
be about 82%/76% respectively: so, it seems that the negative impact on CPU efficiency
of remote data access is not large, only of the order of 5% compared to jobs reading data
locally. Despite the variability across sites, one of the smoking gun on this topic seems
indeed to be the high-I/O profile of DR workflows due to PU-reading.

It is interesting to evaluate over a relatively long time period (one month may suffice),
the difference in CPU efficiency among production jobs and analysis jobs: over last
months (approximately June 2016), production jobs used about 53M core hours and
yielded a CPU efficiency of 75%, whereas analysis jobs used about 29M core hours and
yielded a CPU efficiency of 69%. The figures are relatively close, but analysis is indeed
more prone to low CPU efficiencies.

Restricting to production jobs only, in view of the discussions done in previous sec-
tions, it is of interest to explore how CPU efficiency looks like per Monte Carlo campaign.

77



Starting from RunIISpring16DR80, the total clock hours spent is more than 20 million
and it is shared among different task types as shown in Figure 5.18, with the digi work-
flow clearly dominant. The CPU efficiency for the RunIISpring16DR80 campaign, in
intervals of 10% and shown in terms of wall clock hours (and not job count) is shown in
Figure 5.19. It can be observed that a good fraction of the jobs have high CPU efficiency,
but the distribution definitely has a long tail at all values of lower CPU efficiencies. This
is indeed related to the heavy workload under study: every job in this DR campaign
requires reading PU information from local or remote storage, thus causing very wide
variations of CPU time (CPT) and thus of CPU efficiency.

Figure 5.18: Fraction of Wall Clock Hours for the different Task Type for the RunIIS-
pring16DR80.

78



Figure 5.19: CPU efficiency in intervals of 10% shown in terms of wall clock hours for
the RunIISpring16DR80 campaign.

The CPU efficiency, in intervals of 10%, in terms of wall clock hours for the RunI-
ISummer15wmLHEGS campaign insetad is shown in Figure 5.20. With respect to the
RunIISpring16DR80 campaign, the CPU efficiency in this case is much higher, with the
majority of jobs showing values as high as > 80− 90% and definitely less low CPU effi-
ciency jobs (note that the large quantity of jobs at null CPU efficiency are jobs failing - or
being killed for some reason - soon after being submitted). This behavior is as expected:
it originates from the very different nature of the input data needed for processing jobs
of the two campaigns, and can now be measured properly measured by campaign.

This information at the campaign level is extremely relevant for CMS planning pur-
poses, when new campaign start to be submitted and new CPU efficiency profiles start
to be seen. The load of CMS processing in a specific campaign - if monitored - allows
to choose the most appropriate computing resources to target for such campaign: this
information is being used to e.g. include more IO-performing sites into the resources pool
for a given campaign and to exclude less IO-performing sites. As there is a wide plethora
of Monte Carlo campaigns on which a site can contribute, such tuning allows CMS to
achieve the highest production throughput while permitting all sites to contribute at
their best, based on their resources and IO serving capacity.

79



Figure 5.20: CPU efficiency in intervals of 10% shown in terms of wall clock hours for
the RunIISummer15wmLHEGS campaign.

As a final comment on CPU efficiency, its value for different job types can be explored
for all the jobs collected in the time frame under study (see Figure 5.21). RECO jobs
are among the most efficient, while Analysis and Cleanup jobs are quite inefficient.
Furthermore, it is quite remarkable to notice that the CPU efficiency of a particular task
is independent from whether the jobs access the data on a desired site or they had to
look for the data elsewhere.

80



(a) Analysis (b) Cleanup

(c) DIGI (d) DIGI-RECO

(e) RECO

Figure 5.21: CPU efficiency in intervals of 10% shown in terms of wall clock hours. It
is also displayed whether the jobs where access on the desired DataLocations (on-site:
green) or not (off-site: yellow).

81



5.5.6 Performance comparison of two Tier-2: CERN HLT and
IT Legnaro

The CERN HLT is a Cloud infrastructure which is very different from the other Tier-2.
When the LHC is running, the HLT computational power is used as a first offline trigger,
whereas, when the LHC is not running, the HLT is used for Monte Carlo production (see
Section 2.3.6). From Figure 5.9, it seems reasonable to compare the CERN HLT to the
Italian Tier-2 at Legnaro because the two infrastructures have handled roughly the same
amount of jobs in the time frame under study. However, if we analyze how the Total
Core Hours varies each day, we see some remarkable differences (Figure 5.22). In fact,
the HLT infrastructure had several periods of time in which it did not work, even though
it had more CPUs than Legnaro. The overall result is that it handled about the same
amount of jobs. Similarly, the measurement of the CPU efficiency in the same period
of time confirms this hypothesis (Figure 5.23). The complete Elasticsearch query and
analysis is reported in Appendix B.

Figure 5.22: Total Core Hours as function of time for the Tier-2 CERN HLT and Tier-2
It Legnaro in the time frame under study.

82



Figure 5.23: Average daily CPU efficiency for the Tier-2 CERN HLT and Tier-2 It
Legnaro in the time frame under study.

83



5.6 Data Management view

In the previous section we focused on dealing with information on Workload Man-
agement in CMS. The performance analysis presented in this thesis is in fact com-
plete only when data from the WM sector are indeed completed with data from
the DM sector: despite several aspects lie across the two areas, the investigations
are presented separately and in this section we will focus on Data Management as-
pects specifically. Before starting, it must be underlined that a complete coverage
of all DM aspects (e.g. all details of data transfers, etc) would be much beyond
the scope of this work. Still, some insights on information on volume and diversity
of data accessed in input to the jobs and data written in output from the jobs is
worth to be considered. We will focus on this in the following.

As stated earlier, the CMS Monte Carlo campaigns have (among others) a
distinctive signature in the amount of I/O operations necessary to the workflow
completion. So, first metrics to look at are just the quantity of input data and
the quantity of output data (i.e. the data read from and written to Grid sites
storage during the job execution). The amount of data read by the CMSSW
process (expressed in GB) will be referred to as InputGB in the following, while
the amount of data written by the CMSSW process to some Grid storage (expressed
in GB) will be referred to as OutputGB (see Appendix A for more details).

Figure 5.24: Total data volume in input to CMSSW jobs for the major production
campaigns over last 3 months.

84



In Figure 5.24, the data in input to CMSSW application (i.e. InputGB) is shown,
with breakdown per campaign, in its evolution over time over the last 3 months. It can
be observed that the RunIISpring16DR80 campaign is so dominant over other secondary
campaigns that the latter ones are hardly visible 2. The input volumes to the DR
campaign is as high as hundreds of GB per day for extended times. As a cumulative
value, this ends up being quite impressively high, and it can interestingly be explored
grouped by country, as done in Figure 5.25 (note the log scale). It can be inferred
that all the most relevant regions contributing to Computing in CMS (US, IT, DE, UK,
CH, RU, SP, FR) hosted over last 90 days CMSSW applications that ingested in total
more than 107 GB, i.e. 10 PB of data, each - peaking in the US region where the data
ingestion volume is even greater than 108 GB, i.e. 100 PB of data. As we know that the
dominating activity is the DR campaign, this impressive number reflects an extraordinary
load on the overall infrastructure caused by RunIISpring16DR80 itself (mostly), and a
huge data serving effort shared by all CMS Tier levels. This can be seen also in Fig 5.26:
aggregating over Tier-1 and Tier-2 levels - i.e. regardless of the regional domain - both
levels contribute by ingesting more than 108 GB: this offers a metric to re-state that Tier-
1 and Tier-2 resources approximately contribute in similar manner to the overall CMS
processing effort: indeed, Tier-2 sites have more CPU power than Tier-1 but they also
perform more analysis and only about 50% of them contribute to DR efforts, while the
Tier-1 sites have less CPUs but they all contribute to DR, so the two may compensate,
with potentially Tier-2 digesting more jobs (i.e. more analysis as well as more other
production which have less IO load). This confirms the direction the computing model
is evolving towards, i.e. decrease the differences among Tiers of different levels, and this
is an important information to be monitored regularly, in order to make sure that the
resources exploitation is appropriate to efficiently serve the experiment needs.

The total data volume in output to storage from CMSSW jobs, instead, with break-
down on the countries, is shown in Figure 5.27. It can be seen that the shape of the
distribution is roughly the same as InputGB, but it is scaled down by an order of magni-
tude, as expected from the workflows characteristics (i.e. we know that data volume in
input is larger than data volume in output by that approximate amount, due to pile-up
serving). The breakdown on Tier levels for OutputGB is shown in Figure 5.28. Again,
the ratio among the two is similar, as discussed above.

The results indicate the need to review the CMS mechanism for pile-up serving to
jobs, in view of alternative solutions which are less heavy on computing resources.

2The same plot in logarithmic scale could be showed, but the focus of the observation in the next is
not to disentangle the different minor contributions in their relative shares, but instead to focus on the
dominance of the DR campaign in data input

85



Figure 5.25: Total data volume in input to CMSSW jobs, with breakdown on the coun-
tries (note the log scale).

Figure 5.26: Total data volume in input to CMSSW jobs, with breakdown on the Tier
levels (note the log scale).

86



Figure 5.27: Total data volume in output to storage from CMSSW jobs, with breakdown
on the countries (note the log scale).

Figure 5.28: Total data volume in output to storage from CMSSW jobs, with breakdown
on the Tiers level (note the log scale).

87



As discussed, OutputGB and InputGB should be correlated, and this is (only visually)
checked in 5.29. It can be seen that all sites behave as expected, apart from T1 DE KIT.
The German Tier-1 center seems to have a larger fraction of input data read in over
output data written out: as the workflows are the same as other Tier-1 centers, this plot
may indicate to the CMS Computing operations team that the set-up at KIT needs to
be verified, to e.g. check for possible “lazy download” remnant implementations from
the past (when all input data files - and not only the fraction needed in input - were
loaded locally on the worker nodes). This is being investigated, and represent an example
of how useful this kind of data gathering and immediate visualization may be to avoid
unnecessarily wasting computing resources (either CPU or storage).

Figure 5.29: Total OutputGB as a function of the Total InputGB for different computing
sites.

88



5.7 Quasi real-time monitoring

The presence of CMS-specific details into the monitoring data is one of the key points of
CMS Metrics Service, thanks to the expressiveness of HTCondor ClassAdds. This was
exploited in the previous section to demonstrate how the CMS Metrics Service can be
useful to monitor, investigate and understand in details various observables over large
time windows. An additional asset may come from the fact that this data are also
recorded at a very fine time granularity, so also daily or hourly plots can be produced.

Figures 5.30 and 5.31 are a couple of examples of this: critical observables like CPU
efficiency or total core hours can be plotted with hourly granularity, and can help to spot
misbehaviors in a quasi real-time manner.

Potentially, CMS Metrics Service may hence be considered also as a precious tool
for operational choices based on quasi real-time monitoring, i.e. could be considered to
be used by CMS Computing shifters to monitor sites performances and immediately (in
principle, even automatically) notify site admins with tickets in case misbehaviors are
observed.

Figure 5.30: Average CPU efficiency of different Tier resources over just few hours on a
random day.

89



Figure 5.31: Total core hours in different Tier resources over just few hours on a random
day.

90



Conclusions

The purpose of this thesis was to make performance studies of CMS workflows, namely
centrally-scheduled production activities and unpredictable distributed analysis.

In order to monitor analysis jobs, a lightweight tool has been developed to provide easy
access to the metrics contained in the logs to end users. The tool has been tested with
job submissions of increasing complexity on Grid and Cloud infrastructures specifically
designed for benchmarking: from logs of a toy-analysis personally conducted on Grid,
to logs of a real physics analysis in the fully hadronic top research on a newly deployed
Cloud infrastructure. In the top analysis sector, no major inefficiencies and misbehaviors
were found: the developed tool has demonstrated to work on a real physics analysis, and
is ready to be applied to other sectors (Higgs analyses, SUSY analyses, etc). Moreover,
the tool emerged as a versatile and light mechanism for any physics analysis team to tune
the Grid/Cloud job submissions and target the best performing sites. In conclusion, the
tool has shown to have a potentially wide usage in CMS; the code is public and ready
to be exploited by all collaboration members.

In order to improve the monitoring of both analysis and production jobs, commercial Big
Data technologies have been exploited. The analysis of the data of the newly deployed
ElasticSearch installation, known in CMS as the CMS Metrics Service, highlighted a few
major directions of improvement in the CMS Computing Model:

• Workload Management. An extensive comparison of total core hours and total
job count showed that the former, currently less used, provides a more accurate
assessment of the actual CMS work loads, especially with regards to different pro-
duction campaigns. An exhaustive investigation of workload splitting across Tiers
in different regions (e.g. US, Italy,..) and Tier levels (e.g. Tier-1, Tier-2,..) showed
the evolution paths of the CMS computing model. One of the results is the quanti-
tative evidence of Tier-2 centers evolving to be the most important source of CPU
power for CMS. Another result is the observation of high Tier-2 reliability, and the
capability to run massive production campaigns with low failure rates comparable
to Tier-1 centers. Furthermore, two very different campaigns have been chosen and
closely studied in terms of failure modes, average CPU efficiencies, total wall clock

91



time. Their fingerprints (in terms of e.g. CPU efficiency) allows to build better
matching of CMS workloads to resources: it is important to note that this type of
study at the campaign level can be performed only now with the new CMS Metrics
Service. Lastly, the performance of two Tier-2 centers - CERN HLT and Legnaro
Tier-2 - with different CPU capacity but equal production throughput delivered
to CMS, has been studied. CPU efficiency and core hours showed again to be the
most relevant metric to use. Thanks to the high granularity of the monitoring data
in the CMS Metrics Service, a CPU efficiency profile lower than expected in certain
days was measured for the HLT offline processing resource.

• Data Management. The amount of I/O operations necessary for the workflows
completion was the core of the investigations. Data volume in input to (and output
from) the processing CPUs at Tiers in different regions and for different Tier levels
has been measured and studied over time. The main result is the measurement of
the total aggregate I/O needed to be supported by Tier-2s. The results indicate
the need to review the CMS mechanism for pile-up serving to jobs, which is a work
in progress now in CMS.

• Infrastructure management. The possibility of performing quasi real-time moni-
toring has been briefly explored. In fact, all the queries performed through this
work could be rerun over much shorter periods of time (e.g. ∼ 1h). This direction
of work is promising: for example, CMS Computing shifters may be equipped with
a new powerful tool to make quick choices, and in general future work on more
automated and proactive monitoring tools is envisioned.

A set of plots obtained in the studies performed in this thesis has been presented in
the plenary session of the CMS Week in June 2016 by the coordinators of the CMS
Software/Computing and PPD projects.

92



Appendix A

Important ElasticSearch attributes
for the CMS implementation

This section documents the most commonly used and most useful attributes for doing
queries over the CMS implementation of Hadoop through ElasticSearch [73].

Generic attributes:

• RecordTime: It is either the time when the job exited the queue or when the
JSON document was last updated, depending on which event occurred first.

• CoreHr: It is the number of core-hours utilized by the job. The core-hours is
the product of the number of CPU cores available for the job times the number of
hours it takes.

• CpuTimeHr: It is the total amount of CPU time in hours.

• QueueHrs: It is the number of hours the job spent in queue before running.

• WallClockHr: It is the number of hours the job spent running. This is invariant
of the number of cores.

• CpuEff: It is the total scheduled CPU time (user and system CPU) divided by
core hours, in percentage. An example is the following: the job lasted for 24 hours,
utilized 4 cores, and used 72 hours of CPU time. In conclusion, the CpuEff is
75%.

• CpuBadput: It is the badput associated with a job expressed in hours. It is the
sum of all unsuccessful job attempts.

• MemoryMB: It is the total amount of RAM used by the job.

93



• RequestCpus: It is the number of cores used by the job.

• RequestMemory: It is the amount of memory requested by the job expressed in
MB.

• ScheddName: It is the name of HTCondor scheduler where the job ran.

• Status: It is the status of the job: Completed, Running, Idle, or Held.

• x509userproxysubject: It is the DN of the grid certificate associated with
the job; however, for CMS jobs, this is not the best attribute to use to identify a
user. In fact, it is preferable: CRAB UserHN.

CMS-specific attributes:

• Campaign: It is the campaign associated to the job; derived from the WMAgent
workflow name. This attribute is only present for production jobs.

• Workflow: It is the human-readable workflow name. Example: HIG-RunIISpring
16DR80-01026 0

• WMAgent RequestName: It is the WMAgent request name. This attribute is only
present for production jobs; example: pdmvserv task HIG-RunIISpring16
DR80-01026 v1 T 160530 083522 4482.

• WMAgent SubTaskName: It is the WMAgent subtask name. This attribute is
only present for production jobs. An example: /pdmvserv task HIG-RunII
Spring16DR80-01026 v1 T 160530 083522 4482/HIG-RunIISpring
16DR80-01026 0

• CMSGroups: It is the name of the CMS group associated with the request. This
attribute is only present for production jobs. Example: HIG.

• Type: It is the type of the job: analysis or production.

• TaskType: It is a more detailed task type classification, based on the CMSSW
configuration. Values are analysis, DIGI, RECO, DIGI-RECO, GEN-SIM,
and Cleanup.

• MegaEvents: It is the number of events processed by the job expressed in millions.

• KEvents: It is the number of events processed by the job expressed in thousands.

• CMSSWKLumis: It is the number of lumi sections processed by the job expressed
in thousands.

94



• ChirpCMSSWMaxEvents, ChirpCMSSWMaxFiles, ChirpCMSSWMaxLumis:
They are respectively the maximum number of events, files, and lumis a job will
process before exiting. These values may not be known for all jobs; in that case,
−1 is reported.

• ExitCode: It is the exit code of the job. If available, this is the exit code of the
last CMSSW step.

• CRAB AsyncDest: It is the output destination CMS site name for a CRAB3 job.

• DESIRED CMSDataset: It is the primary input dataset name.

• CRAB DataBlock: It is the primary input block name. It is available for CRAB3
jobs only.

• DESIRED Sites: It is the list of sites where the job could run on.

• DataLocations: It is the list of known primary input dataset locations.

• CMSSWWallHrs: It is the number of wall hours reported by cmsRun.

• StageOutHrs: It is an estimate of the stageout time, in hours. Calculated from
WallClockHr-CMSSWWallHrs.

• InputData: Values are Onsite if Site is in the DataLocations list; Offsite
otherwise.

• OutputGB: It is the total amount of output written by the CMSSW process ex-
pressed in gigabytes.

• InputGB: It is the total amount of data read by the CMSSW process expressed
in gigabytes.

• ReadTimeHrs and ReadTimeMins: They are the total amount of time CMSSW
spent in its IO subsystem for reads expressed respectively in hours and minutes.

• ReadOpPercent: It is the percentage of reads done via a single read operation.
This reading method is opposed to a vectored readv operation.

• ReadOpSegmentPercent: percentage of read segments done via a single read
operation.

• ChirpCMSSWReadOps: It is the number of read operations performed (this
excludes readv activity).

• Site: It is the CMS site where the job ran. For example: T2 CH CSCS.

95



• Country: It is the country where the job ran. For example: CH.

• Tier: It is the Tier type where the job ran. For example: T2.

• CRAB UserHN: It is CMS username of user that submitted the task. This attribute
is only present for analysis jobs.

96



Appendix B

Example of Elasticsearch query

Below it is reported an example of Elasticsearch query, written using Jupyter Note-
book, to compare to computing sites: t2 ch cern hlt and t2 it legnaro.

97



98



99



100



Bibliography

[1] K.A. Olive et al. “Particle Data Group”, Chin. Phys. C, 38, 090001 (2014).

[2] LHCb Collaboration “Observation of J/ψp resonances consistent with pentaquark
states in Λ0

b → J/ψKp decays”, Phys. Rev. Lett. 115, 072001 (2015).

[3] C. Quigg “Gauge Theories of the Strong, Weak, and Electromagnetic Interactions:
Second Edition”, Princeton University Press (2013).

[4] C. N. Yang and R. L. Mills “Conservation of Isotopic Spin and Isotopic Gauge In-
variance”, Phys. Rev. Volume 96, 1 (1954).

[5] R. Craig Group “Measurement of the Inclusive Jet Cross Section Using the Midpoint
Algorithm in Run II at CDF”, Dissertation presented to the graduate School of the
University of Florida in partial fulfillment of the requirements for the degree of doctor
of philosophy (2006).

[6] E. Fermi “Tentativo di una teoria dei raggi β La Ricerca Scientifica 2 (1933).

[7] S. L. Glashow, “Partial-symmetries of weak interactions”, Nucl.Phys. 22 579 (1961).

[8] F. Englert and R. Brout “Broken Symmetry and the Mass of Gauge Vector Mesons”,
Phys. Rev. Lett. 13 321 (1964).

[9] P. Higgs “Spontaneous Symmetry Breakdown without Massless Bosons”, Phys.Rev.
145 1156 (1966).

[10] G. S. Guralnik, C. R. Hagen, T. W. B. Kibble, “Global Conservation Laws and
Massless Particles”, Phys. Rev. Lett. 13 585 (1964).

[11] The Large Hadron Collider, http://home.web.cern.ch/topics/
large-hadron-collider

[12] “The CERN Large Hadron Collider”, http://jinst.sissa.it/LHC/,
IOP/Sissa

101

http://home.web.cern.ch/topics/large-hadron-collider
http://home.web.cern.ch/topics/large-hadron-collider
http://jinst.sissa.it/LHC/


[13] R. Aßmann, M. Lamont, S. Myers, “A Brief History of the LEP Collider”, Nucl.
Phys. B, Proc. Suppl. 109 (2002) 17-31.

[14] The CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with
the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30.

[15] S. Chatrchyan et al. [CMS Collaboration], “A New Boson with a Mass of 125 GeV
Observed with the CMS Experiment at the Large Hadron Collider”, Science 338 (2012)
1569.

[16] The ATLAS Collaboration, “Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B,
716 (2012) 1.

[17] ALICE experiment web page, http://aliceinfo.cern.ch/Public/
Welcome.html

[18] ATLAS experiment web page, http://www.atlas.ch/

[19] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 S08004
(2008).

[20] CMS experiment web page, http://cms.web.cern.ch/

[21] LHCb experiment web page, http://lhcb-public.web.cern.ch/
lhcb-public/

[22] M. Procura, et al. “Nucleon mass: from lattice QCD to the chiral limit”, Phys. Rev.
D, 73, 114510 (2006).

[23] U. Heinz “Concepts of heavy-ion physics”, 2002 European School of high-energy
physics, Pylos, Greece, 25 Aug-7 Sep 2002: Proceedings (2004).

[24] The TOTEM Collaboration, http://totem.web.cern.ch/Totem/

[25] The LHCf Experiment, http://hep.fi.infn.it/LHCf/

[26] The MOEDAL Collaboration, http://home.web.cern.ch/about/
experiments/moedal

[27] CMS Collaboration “The CMS tracker system project : Technical Design Report”,
CERN-LHCC-98-006, CMS-TDR-5 - Geneva CERN, (1997).

[28] CMS Collaboration “The CMS electromagnetic calorimeter project : Technical De-
sign Report”, CERN-LHCC-97-033, CMS-TDR-4 - Geneva CERN, (1997).

102

http://aliceinfo.cern.ch/Public/Welcome.html
http://aliceinfo.cern.ch/Public/Welcome.html
http://www.atlas.ch/
http://cms.web.cern.ch/
http://lhcb-public.web.cern.ch/lhcb-public/
http://lhcb-public.web.cern.ch/lhcb-public/
http://totem.web.cern.ch/Totem/
http://hep.fi.infn.it/LHCf/
http://home.web.cern.ch/about/experiments/moedal
http://home.web.cern.ch/about/experiments/moedal


[29] P. Adzic et al. “Energy resolution of the barrel of the CMS electromagnetic calorime-
ter”, JINST 2 (2007) P04004, doi:10.1088/1748-0221/2/04/P04004.

[30] CMS Collaboration “The CMS hadron calorimeter project: Technical Design Re-
port”, CERN-LHCC-97-031 ; CMS-TDR-2 - Geneva CERN, (1997).

[31] S. Bertolucci, M. Cordelli, M. Curatolo, et al. “Influence of Magnetic Fields on the
Response of Acrylic Scintillators”, Nucl. Instr. and Meth. A254 (1987) 561.

[32] CMS Collaboration “Performance of the CMS Hadron Calorimeter with Cosmic
Ray Muons and LHC Beam Data”, physics.ins−det, (2010).

[33] CMS Collaboration, “The TriDAS Project Technical Design Report, Volume 1: The
Trigger Systems”, CERN/LHCC 2000/38, CMS Technical Report 6.1, (2000).

[34] CMS Collaboration, “The TriDAS Project Technical Design Report, Volume 2: Data
Acquisition and High-Level Trigger”, CERN/LHCC 2002/26, CMS Technical Report
6.2, (2002).

[35] V. Gori “The CMS High Level Trigger)”, International Journal of Modern Physics:
Conference Serie (2014).

[36] J. D. Shiers, “The Worldwide LHC Computing Grid (worldwide LCG)”, Computer
Physics Communications 177 (2007) 219–223.

[37] WLCG, http://lcg.web.cern.ch/lcg/

[38] European Grid Infrastructure, http://www.egi.eu/

[39] Open Science Grid, http://www.opensciencegrid.org

[40] Virtual Organization Membership Service, http://toolkit.globus.org/
grid_software/security/voms.php

[41] D. Bonacorsi, “WLCG Service Challenges and Tiered architecture in the LHC era”,
IFAE, Pavia, April (2006).

[42] CMS Collaboration, “The CMS Computing Model”, CERN LHCC 2004-035.

[43] CMS Collaboration, “The CMS Computing Project Technical Design Report”,
CERN-LHCC-2005-023.

[44] G. Bauer et al., “The data-acquisition system of the CMS experiment at the LHC”,
Journal of Physics, Conference Series 331 (2011) 02202.

103

http://lcg.web.cern.ch/lcg/
http://www.egi.eu/
http://www.opensciencegrid.org
http://toolkit.globus.org/grid_software/security/voms.php
http://toolkit.globus.org/grid_software/security/voms.php


[45] G. Petrucciani, A. Rizzi and C. Vuosalo, on behalf of the CMS Collaboration, “Mini-
AOD: A New Analysis Data Format for CMS”, Journal of Physics: Conference Series
664 (2015) 072052.

[46] A. Breskin, R. Voss “The CERN Large Hadron Collider: Accelerator and Experi-
ments Volume 2: CMS, LHCb, LHCf, and TOTEM” (2009).

[47] T. Barrass et al, “Software agents in data and workflow management”, Proc.
CHEP04, Interlaken, (2004). See also http://www.fipa.org

[48] D. Bonacorsi, T. Barrass, J. Hernandez, J. Rehn, L. Tuura, J. Wu, I. Semeniouk,
“PhEDEx high-throughput data transfer management system”, CHEP06, Computing
in High Energy and Nuclear Physics, T.I.F.R. Bombay, India, (2006).

[49] L. Tuura et al., “Scaling CMS data transfer system for LHC start-up”,
J. Phys.: Conf. Ser. 119 072030 (2008).

[50] Berkeley Database Information Index, https://twiki.cern.ch/twiki/bin/
view/EGEE/BDII

[51] G. Boudoul et al., “Monte Carlo Production Management at CMS”, J. Phys.: Conf.
Ser. 664 072018 (2015).

[52] CRAB online manual http://cmsdoc.cern.ch/cms/ccs/wm/www/Crab/
Docs/crab-online-manual.html

[53] D. Spiga et al., “The CMS Remote Analysis Builder (CRAB)”, Lect. Notes Comput.
Sci. 4873 580-586 (2007).

[54] G. Codispoti et al., “CRAB: A CMS Application for Distributed Analysis”, Nuclear
Science Symposium Conference Record N02.79 (2008).

[55] Software Guide on CRAB, https://twiki.cern.ch/twiki/bin/view/
CMSPublic/SWGuideCrab

[56] CRAB3 online tutorial, https://twiki.cern.ch/twiki/bin/view/
CMSPublic/WorkBookCRAB3Tutorial

[57] The CMS Dashboard, http://dashboard.cern.ch/cms/

[58] A. Tanasijczuk, “CRAB3 architecture and task workow” (2014) https://twiki.
cern.ch/twiki/bin/view/CMSPublic/CRAB3TaskFlow

[59] The R Project for Statistical Computing, https://www.r-project.org/

[60] ROOT Data Analysis Framework, https://root.cern.ch/

104

http://www.fipa.org
https://twiki.cern.ch/twiki/bin/view/EGEE/BDII
https://twiki.cern.ch/twiki/bin/view/EGEE/BDII
http://cmsdoc.cern.ch/cms/ccs/wm/www/Crab/Docs/crab-online-manual.html
http://cmsdoc.cern.ch/cms/ccs/wm/www/Crab/Docs/crab-online-manual.html
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideCrab
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideCrab
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCRAB3Tutorial
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCRAB3Tutorial
http://dashboard.cern.ch/cms/
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CRAB3TaskFlow
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CRAB3TaskFlow
https://www.r-project.org/
https://root.cern.ch/


[61] OpenStack, http://www.openstack.org/

[62] S. Zhou, J. Wang, X. Zheng, P. Delisle, “Utopia: A load sharing facility for large,
heterogeneous distributed computing systems”, TechnicalReportCSRI-257, Computer
Systems Research Institute, University of Toronto (1992).

[63] R. Di Maria, “Elastic Computing on Cloud Resources for the CMS Experiment”,
Master thesis (2015).

[64] D. Bonacorsi, V. Kuznetsov, et al., “Exploring patterns and correlations in CMS
Computing operations data with Big Data analytics techniques” PoS ISGC2015 008
(2015).

[65] D. Miner, “Hadoop: what you need to know” O’Reilly Media (2016).

[66] K. Sitto and M. Presser, “A Field Guide to Hadoop: An Introduction to Hadoop,
Its Ecosystem, and Aligned Technologies” O’Reilly Media (2015).

[67] B. Bockelman, “Using Hadoop as a Grid Storage Element” CSE Conference
and Workshop Papers, Paper 157, (2009), http://digitalcommons.unl.edu/
cseconfwork/157

[68] ElasticSearch, https://www.elastic.co/products/elasticsearch

[69] Kibana, https://www.elastic.co/products/kibana

[70] Jupyter Notebook, http://jupyter.org/

[71] HTCondor, https://research.cs.wisc.edu/htcondor/

[72] B. Bockelman, D. Bonacorsi: personal communication.

[73] ElasticSearch upload for CMS and HTCondor data, https://github.com/
bbockelm/cms-htcondor-es/

[74] 38th International Conference On High Energy Physic, https://www.
ichep2016.org/

[75] Rencontres de Moriond, http://moriond.in2p3.fr/

[76] Physics Data and MC Validation (PdmV), https://twiki.cern.ch/twiki/
bin/viewauth/CMS/PdmV

[77] Physics Performances and Dataset (PPD) project, https://twiki.cern.ch/
twiki/bin/view/CMS/PhysicsPerfomanceDatasetHome

[78] Error codes currently sent from CMS jobs to the dashboard, https://twiki.
cern.ch/twiki/bin/view/CMSPublic/JobExitCodes

105

http://www.openstack.org/
http://digitalcommons.unl.edu/cseconfwork/157
http://digitalcommons.unl.edu/cseconfwork/157
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
http://jupyter.org/
https://research.cs.wisc.edu/htcondor/
https://github.com/bbockelm/cms-htcondor-es/
https://github.com/bbockelm/cms-htcondor-es/
https://www.ichep2016.org/
https://www.ichep2016.org/
http://moriond.in2p3.fr/
https://twiki.cern.ch/twiki/bin/viewauth/CMS/PdmV
https://twiki.cern.ch/twiki/bin/viewauth/CMS/PdmV
https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsPerfomanceDatasetHome
https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsPerfomanceDatasetHome
https://twiki.cern.ch/twiki/bin/view/CMSPublic/JobExitCodes
https://twiki.cern.ch/twiki/bin/view/CMSPublic/JobExitCodes

	The Standard Model
	Particles of the Standard Model
	The fundamental interactions
	The electromagnetic interaction
	The strong interaction
	The electroweak interaction


	High Energy Physics at the LHC
	The LHC accelerator at CERN
	The experiments at the LHC
	ALICE
	ATLAS
	CMS
	LHCb
	Other experiments at LHC

	The CMS detector
	Tracker
	Electromagnetic Calorimeter
	Hadron Calorimeter
	Magnet
	Muon detector
	Trigger


	Computing in High Energy Physics
	Introduction
	Grid technologies and WLCG
	The CMS Computing model
	CMS computing services
	CMS Distributed Analysis with CRAB

	Analysis performances:  a CRAB-based tool
	Design
	Single task analysis
	Multiple Task Analysis
	Job submissions for benchmarking

	Performance studies of CMS workflows using ElasticSearch, Jupyter Notebook and Kibana
	Big Data Analytics in CMS
	Hadoop
	ElasticSearch and Kibana
	The CMS Metrics Service from University of Nebraska
	Workload Management view
	Use-case: jobs count across production and analysis
	Use-case: total core hours per production campaign
	Use-case: jobs count on many computing centers
	Use-case: campaign-based job failure modes
	Use-case: campaign-based CPU efficiency
	Performance comparison of two Tier-2: CERN HLT and IT Legnaro

	Data Management view
	Quasi real-time monitoring

	Important ElasticSearch attributes for the CMS implementation
	Example of Elasticsearch query

