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Sommario

In questo studio, un multi-model ensemble è stato implementato e veri�cato,
seguendo una delle priorità di ricerca del Subseasonal to Seasonal Prediction
Project (S2S). Una regressione lineare è stata applicata ad un insieme di previ-
sioni di ensemble su date passate, prodotte dai centri di previsione mensile del
CNR-ISAC e ECMWF-IFS. Ognuna di queste contiene un membro di controllo
e quattro elementi perturbati. Le variabili scelte per l'analisi sono l'altezza
geopotenziale a 500 hPa, la temperatura a 850 hPa e la temperatura a 2 metri,
la griglia spaziale ha risoluzione 1◦× 1◦lat-lon e sono stati utilizzati gli inverni
dal 1990 al 2010. Le rianalisi di ERA-Interim sono utilizzate sia per realizzare la
regressione, sia nella validazione dei risultati, mediante stimatori nonprobabilis-
tici come lo scarto quadratico medio (RMSE) e la correlazione delle anomalie.

Successivamente, tecniche di Model Output Statistics (MOS) e Direct Model
Output (DMO) sono applicate al multi-model ensemble per ottenere previsioni
probabilistiche per la media settimanale delle anomalie di temperatura a 2 metri.
I metodi MOS utilizzati sono la regressione logistica e la regressione Gaussiana
non-omogenea, mentre quelli DMO sono il democratic voting e il Tukey plotting
position. Queste tecniche sono applicate anche ai singoli modelli in modo da
e�ettuare confronti basati su stimatori probabilistici, come il ranked probability
skill score, il discrete ranked probability skill score e il reliability diagram. En-
trambe le tipologie di stimatori mostrano come il multi-model abbia migliori
performance rispetto ai singoli modelli. Inoltre, i valori più alti di stimatori
probabilistici sono ottenuti usando una regressione logistica sulla sola media di
ensemble. Applicando la regressione a dataset di dimensione ridotta, abbiamo
realizzato una curva di apprendimento che mostra come un aumento del numero
di date nella fase di addestramento non produrrebbe ulteriori miglioramenti.
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Abstract

In this study, a multi-model ensemble is implemented and veri�ed pursuing
one of the research priorities of the Subseasonal to Seasonal Prediction Project
(S2S). The re-forecasts from the CNR-ISAC and the ECMWF IFS monthly
prediction systems, each including a control run and four perturbed members,
are linearly combined and regressed against the ERA-Interim reanalyses for the
winter season. The regression technique is applied on two meter and 850 hPa
temperature, and geopotential height at 500 hPa on a 1◦× 1◦lat-lon grid, for
the period ranging from 1990 to 2010. ERA-Interim reanalyses are also used
to verify the results through non-probabilistic scores, namely root mean square
error (RMSE) and anomaly correlation.

Model output statistics (MOS) techniques and direct model output (DMO)
are subsequently applied to the multi-model ensemble to obtain forecast proba-
bilities of weekly averaged 2-meter temperature anomalies. The MOS methods
tested are logistic regression and non-homogeneous Gaussian regression, the
DMO ones are democratic voting and the Tukey plotting position. The same
techniques are employed on the two models separately for comparison purposes
based on probabilistic scores, such as ranked probability skill score, discrete
ranked probability skill score and reliability diagram. Both probabilistic and
non-probabilistic veri�cation results show that the multi-model forecasts out-
perform the single-model counterparts. Moreover, the method that produces
the highest skill scores is logistic regression, when the ensemble mean was used
as the sole predictor. By applying the same technique to reduced datasets, we
computed a learning curve, which demonstrates that extending the number of
training dates will not likely lead to further improvements.
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Chapter 1

The subseasonal timescale

The predictability on the sub-seasonal timescale is, nowadays, an active and
challenging �eld of study. Forecasts over this time range represent a funda-
mental tool for their impact on management decisions in agriculture and food
security, water, disaster risk reduction and health. An in-depth analysis of all
the practical applications of this products, together with an evaluation of the
possible social and economical advantages, can be found in the S2S Research
Implementation Plan [2013].

Historically, the scienti�c community focused mostly on the medium-range
forecasts and the seasonsal ones, while the sub-seasonal time range received con-
siderably less attention, being often considered a �predictability desert�. How-
ever, recent studies (such as van den Hurk et al. [2012], Sobolowski et al. [2010],
Lin and Wu [2011], Baldwin et al. [2003], Woolnough et al. [2007], Fu et al.
[2007]) and books (like Lau and Waliser [2011]) suggested the existence of some
important sources of predictabilityin the monthly timescale, too. In addition to
the improvements in the model development and the availability of more pow-
erful computing resources, these factors led to a growing interest toward the
subject, which resulted also in the implementation of a Subseasonal to Seasonal
Prediction (S2S) Project by the World Meteorological Organization (WMO),
started in 20131.

1.1 Objective of the thesis

The focus of this thesis is on a particular case of the subseasonal time range:
we analyze the products of two monthly forecasting systems (the ECMWF-IFS
and the CNR-ISAC ones) trying to improve, through some statistical techniques,
their performances in predicting some probabilistic and non-probabilistic quan-
tities. The whole analysis can be split in two main parts.

In the �rst one, we implement a multi-model combination of the ECMWF-
IFS and the CNR-ISAC ensemble forecasts through linear regression. Then,
we evaluate the resulting �elds against the ERA-Interim reanalysis using non-
probabilistic scores. This procedure ideally aims to extract from the two fore-

1Additional information on the background of the S2S Project, together with its objectives
and research priorities can be found on the o�cial website:
http://s2sprediction.net/static/about#objectives

1



2 CHAPTER 1. THE SUBSEASONAL TIMESCALE

casts all the available information, assigning to the two models the optimal
weight for predicting the desired anomalies. The idea behind it is that some
complementarity exists between the two prediction systems, in order to produce
an output �eld based (locally) on the most skillful model, and contemporarily
�ltering out some noise not correlated to the observed anomalies.

The second part focus on the realization and veri�cation of probabilistic
forecasts. In summary, we extract the terciles of the temperature at 2 meter
from the ERA-Interim reanalysis and compute the probability that the predicted
temperature falls above or below each of these two quantiles. For the task, we
apply both �direct model output� techniques and regression methods. The latter
require a training phase and are more computationally demanding, therefore
we expect some improvements in the probabilistic skills in order to justify the
added complexity. All the methods are tested on both the multi-model and
the two single models, in order to check if improvements can be seen also in
the probabilistic scores. In the best-case scenario, di�erent sources of skill from
the ECMWF-IFS and the CNR-ISAC ensembles will be combined in a unique
product, from which the Model Output Statistics (MOS) will produce more
skillful forecasts than the one obtainable from the single models.

Before diving into the statistical description of the various methods, in this
chapter we summarize the major sources of predictability on the timescale con-
sidered: these are the physical reasons why long-range forecasts are possible
in the �rst place. In order to provide a more complete exposition, we do not
focus only on the features used in our analysis, but we give a brief overview of
the phenomena commonly studied in the scienti�c literature and regarded as
important factors for enhancing forecast skill on the subseasonal scale. So, in
the following sections, we describe both the impact of modelling certain com-
ponents of the Earth system and the e�ect of some circulation patterns over
this particular window of predictability. Of all the elements in the list, some
are indeed present in the prediction systems from which our analysis begins: for
example the ECWF-IFS model contains an ocean-atmosphere coupling that can
a�ect the forecast skills, as described later. On the other hand, we did neither
checked the presence of the discussed circulation patterns, nor evaluated their
impact of the forecast skill. This is partially due to the lack of some funda-
mental variables from the �elds analyzed, but also to the large amount of time
required for such computation. We considered more important to use this time
in testing di�erent algorithms, trying to identify the one best suited for our task.
However, in an hypothetical extension of this study, it would be interesting to
include such analysis.

1.2 Atmospheric predictability

The underlying assumption behind our analysis is that some atmospheric, land
or oceanic process act as a source of predictability over this time range. Without
such sources, even the best statistical techniques are useless: we cannot extract
information from the data if there is none. In this section, we brie�y analyze
why a predictability limit exists in the �rst place, and then we focus on the
speci�c reasons why, over the subseasonal timescale, some skill remain even
after the two-weeks range, commonly considered the limit for skillful weather
forecast at the mid-latitudes.
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(a) Stable (b) Unstable

Figure 1.1: Two integration of the Lorenz system for di�erent choices of parameters
and initial conditions. The equations are:

dx
dt

= σ(y − x)
dy
dt

= ρx− y − xz
dz
dt

= xy − βz

We used a 4th order Runge Kutta method for the numerical integration of the system.
In (a) the initial condition chosen are (x0, y0, z0) = (−0.01,−0.01, 10), slightly closer
to the negative equilibrium point, while in (b) we chose randomly the initial condition
(x0, y0, z0) = (−7.4,−8.7, 14.4). The values of the parameters are shown at the top of
the two panels.

1.2.1 Predictability limit

Weather forecasts for short or medium ranges is normally regarded as a problem
depending mainly on the atmospheric initial conditions [Bjerknes, 1904]. Nor-
mally, the numerical models used in predicting future states of the atmosphere
contain some set of di�erential equation, with the exact nature of the set and the
approximation used depending on an extremely high number of factors. Due to
the non-linearity in these equations, it is possible for two initial conditions very
similar to result in totally di�erent forecast, if the numerical integration covers
a su�ciently large time range [Lorenz, 1969]. This behavior makes us consider
the atmosphere an unstable system. Note that this existence of a �nite limit
of predictability is an intrinsic property of some non-linear sets of di�erential
equations, as shown in Lorenz [1963].

In order to illustrate the concept, he used a simpli�ed 3-variable model,
characterized by some nonlinearities in the set of equations and time-indipendent
coe�cients (autonomous system)2. The most interesting feature of this system
is the existence, for some choice of coe�cients, of a chaotic behavior that, in
the end, leads to unpredictability.

Naturally, this does not happen always. For example, we show in Figure 1.1
the result of two di�erent integration of the system, performed changing one of
the parameters (ρ). Without focusing on the details, the trajectory in (a) is

2A complete explanation of the Lorenz System can be found in [Kalnay, 2003, Chapter 6].
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Figure 1.2: Comparison of �ve di�erent solutions of the Lorenz system, using the
parameters (σ, β, ρ) = (10.0, 2.7, 28.0). In the top panel we show their x-component
as a function of the time of integration. We de�ne the reference solution as the one
starting from the initial condition (x0, y0, z0) = (10.0, 10.0, 10.0), shown in light blue
in this �rst plot. The other curves are obtained by perturbing the initial y-component
by adding to it the following quantities: ε1 = 10−5 (shown in red in the top panel),
ε2 = 10−4 (in green), ε3 = 10−3 (in blue), ε4 = 10−2 (in black). The di�erence between
each of these curves and the control one along the x-component (εx) is shown in the
bottom panel, where the color assigned to each curve this time are: green for ε4, red
for ε3, yellow for ε2 and violet for ε1. Note that, after t = 6, signi�cant di�erences start
to appear and at t = 8 the curve corresponding to ε4 is already on a di�erent orbit
(the negative one). Time is measured in arbitrary units, like x, y and z components.

clearly stable, and spirals toward an equilibrium point. The other curve, in (b),
shows a more complex behavior. However, simply by looking at the �gure we
cannot say if the behavior is chaotic or not, we need at least a second integration
starting from slightly di�erent initial condition. An example of the results from
this kind of test are shown in Figure 1.2, where we show the x-component of the
system from 5 di�erent integration. Such test reveals that, after an initial period
in which the curves are close together, they will start to follow di�erent paths
depending on how close they started. In the end, for some of them the gap grows
to the point in which the curves complete di�erent number of orbits around the
two equilibrium points. So, in this case, two initial conditions di�ering for an
arbitrarily small displacement will eventually result in totally di�erent trajec-
tories after some time. This kind of behavior is the reason for unpredictability:
in order to know exactly the evolution of the system, we also need a perfect
knowledge of the initial condition. Lorenz [1993] identi�ed in the ampli�cation
of the small di�erences the cause of the lack of periodicity or stationarity in the
solution, and therefore the existence of this limit of predictability.

Obviously, the atmosphere is an extremely more complex system, modeled
by a signi�cantly higher number of di�erential equation. Nevertheless, even
in this case a predictability limit exists and Lorenz himself proposed some ap-
proximated values. He identi�ed in about three days the range in which small
errors in the coarser structure (the one resolved by current observing networks)
of the atmosphere double. More recent estimates for this doubling time are
equal to two days, as seen in Simmons et al. [1995]. So, in presence of this sole
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contribute, some hope for predictability after some weeks of forecast can exist.
The second factor considered is the presence of error in the �ner structure (like
the position of the clouds), and he evaluated in hour or less the doubling time
for this kind of error. This does not forbid skillful long-range forecast, because
usually we do not make prediction for these small features. However, the �ner
structure has an impact on the coarser one, and this is where a great limitation
for the predictability range comes from. So, due to this e�ect, after about one
day, some error start to appear in the coarser structure and then they behave
as the ones present from the beginning. Because it is nearly impossible to make
complete observation of the �ner structure, cutting in half the error on this kind
of initial conditions is nearly impossible and the result would be disappointing,
due to its short doubling time.

However, he proposed that some quantities, such as weekly averages of tem-
perature and total precipitation, can be predictable on longer timescales: this
kind of predictability is indeed the focus of the thesis.

1.2.2 Sources of predictability in the subseasonal timescale

A legitimate question arises when dealing with long time ranges, like in our
case: �given the predictability limit of two weeks, how can a monthly forecast
be skillful?�

The answer lies in both the kind of products we seek and in some phenomena
playing a signi�cant role in this timescale. First of all, when dealing with such
forecasts, it is always fundamental to distinguish between what can be skillfully
predicted and what is unpredictable. For example, daily details of sinoptic-
scale features are not a valid candidate for a monthly forecasting system, while
a shifts in the probabilities regarding �elds averaged over several days may be
a more reasonable choice [Hamill et al., 2004]. So, like in many application over
similar time ranges, we perform a weekly average of the �elds, that removes
part of the unpredictable signal from the data. In addition, the second part of
the thesis focus on probabilistic forecasts: instead of assigning a precise value
for each grid point and time step, we output the probability that the anomaly
of the variable considered is above or below some thresholds. This is also a
common practice when dealing with this extended range, as underlined in the
S2S Research Implementation Plan [2013]. However, in this chapter we do not
focus on the statistical techniques for extracting the useful information from
the forecasts: the exact procedure will be discussed in details in the following
chapters. For now, it is important to emphasize that our forecast products are
not the same as the usual medium-range forecast.

In the following paragraphs we describe the physical sources of predictabil-
ity for sub-seasonal predictions. The �rst noticeable feature of many of these
forecast is the presence of information from the ocean, land and cryosphere, in
addition to the atmospheric initial conditions. It can be argued that, unlike
what happens for seasonal forecasts, the time range is too short so the variabil-
ity of the ocean does not bring enough additional information, and as a result
it is often di�cult to beat persistence [Vitart, 2004]. Nevertheless, an oceanic
model and some information regarding sea ice initial conditions is part of many
prediction systems and we will later give a brief description of their role.

In addition, there are some patterns of variability that, due to their low-
frequency, can contribute to extend the limits of skillful forecast. Depending
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Figure 1.3: Schematized representation of the anomaly pattern of the MJO. The four
panels show the time evolution. The time gap between two consecutive ones is equal to
10 days. On the x-axis of each �gure there is the longitude, while the y-axis represents
the height. The upper line represents the height of the tropopause, while the bottom
line shows the surface pressure (areas with negative anomalies of surface pressure
highlighted in gray) and �nally the streamlines show the zonal-vertical circulation.
The �gure is directly taken from [Holton et al., 2013, p. 386].

on these, it is possible the presence of windows of enhanced predictability, even
if how to determine their presence and especially how to take advantage of
their presence is still unclear. They are some of the scienti�c issues of the S2S
Project. We describe, in the following paragraphs, three fundamental patterns
and how each of them can a�ect the prediction of the timescale considered,
especially through their interactions. Obviously, this is not an exhaustive list.
The persistence of many other patterns can a�ect predictability, like the Paci�c-
North American pattern (PNA), the East Atlantic (EA), the West Paci�c (WP)
and the tropical/Northern Hemisphere (TNH). All of them are mentioned in the
S2S Research Implementation Plan [2013]. However, we focus on a subset of
all the possible phenomena, and in particular on those considered the more
in�uential or the most interesting ones from a scienti�c viewpoint. So, we begin
by giving a brief overview of all the patterns and processes involved, and then
we will discuss their importance in a separate paragraph.
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Madden-Julian Oscillation

A particular attention has been given in the scienti�c literature to the Mad-
den Julian Oscillation (MJO), due to the improvements expected in forecast
over the subseasonal timescale resulting from a more skillful prediction of this
phenomenon3.

The phenomenon can be categorized as an important intraseasonal oscilla-
tion in the equatorial circulation, on the timescale of 30 to 60 days. A schema-
tized description of its structure can be seen in Figure 1.3, in which each of
the panels show a longitude-height section (over the equator) at 10 days in-
terval, containing information about the anomalies from the mean equatorial
circulation.

MJO consists in an eastward propagation of a pattern of enhanced and sup-
pressed precipitation, mainly on the Indian and Paci�c Oceans. Generally, the
anomalous rainfall starts over the Indian Ocean. Looking at some metheorolog-
ical variables, a negative sea-level pressure can be seen over the region, together
with an increase in the convergence of boundary layer moisture, a rise of the
temperatures in the troposphere and an increase in height of the tropopause.
This pattern propagates eastward, at about 5 m/s, reaching its maximum inten-
sity over the western Paci�c and �nally weakening when it pass over the central
Paci�c. However, sometimes the patterns does not disappear completely and
traces can be found also over other regions of the Globe [Holton et al., 2013,
Chapter 11].

Arctic Oscillation and North Atlantic Oscillation

The weather in the extratropical regions is frequently characterized by recurring
circulation patterns. Among them there is the Arctic Oscillation (AO), also
called the Northern Hemisphere annular mode.

Its index is de�ned by projecting the daily 1000 mb anomalies over a loading
pattern. This pattern is the leading mode of the Empirical Orthogonal Func-
tion (EOF) obtained by the analysis of the monthly mean the 1000 mb height
anomaly during the period 1979-2000, in the region between 20◦and 90◦N.4 We
show in Figure 1.4-(a) the loading pattern as de�ned by the NOAA website.

From a more meteorological point of view, it can be generally described as a
pattern of zonal wind circulation around the Arctic, near the 55◦N of latitude: in
the positive phase strong winds create a �ring� around the Arctic, con�ning the
colder air at the Pole, while in the negative phase this belt weakens and deviates
from the ring-shape, allowing southward movement of colder airmasses.

Another interesting pattern over the Northern Extratropics is the North At-
lantic Oscillation (NAO). There is not a unique de�nition of its spatial structure
and therefore there is not a universally accepted index. However, many mod-
ern de�nitions are based on the PCA applied to sea level pressure over some

3Due to its importance, inside the S2S Project already exists a task force focused on the
phenomenon. As for all the information regarding the S2S Project, additional information
can be found on the website or in the S2S Research Implementation Plan [2013].

4The source of this de�nition is the NOAA website, and in particular the pages focused on
the Arctic Oscillaton and its loading patterns:
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
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(a) AO (b) NAO

Figure 1.4: Loading patterns for the Arctic Oscillation, (a), and North Atlantic
Oscillation, (a). The �rst(AO) is the leading mode of EOF analysis of monthly mean
1000mb height over the period 1979-2000, while the second (NAO) is de�ned as the
�rst leading mode of REOF (see text) analysis of monthly mean 500mb height over
the period 1950-2000. Both pictures, together with their de�nition, are taken from
the NOAA website.
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao_loading.html,
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/loading.html.

region in the Northern Hemisphere, taking the leading EOF.5 Alternative de�ni-
tions are possible, like the one underlying the loading pattern in Figure 1.4-(b),
directly taken from the NOAA website6. The procedure for computing their
index is based on the application of Rotated Principal Component Analysis
(RPCA) 7 to monthly standardized 500-mb height in the region between 20◦N
and 90◦N, over the period 1950-2000. Standardized anomalies are obtained
using the 1950-2000 climatological daily mean and standard deviation, and a
linear interpolation operation of the monthly pattern is applied for computing
daily values.

Looking again at the meteorological implication of the pattern, NAO de-
scribes the behavior of a pressure dipole. One of the centers is an area of low
pressure near Iceland, while the other is a high pressure region located near the
Azores. The pressure di�erence between these two point has historically been
used for measuring NAO, although nowadays this simple index has been dis-
carded due to the movements of the pressure centers on a seasonal basis. During
a positive NAO, the pressure di�erece between the two centers rises, while it
weakens during the negative phase.

5The de�nition of some indexes, with their advantages and disadvantages, can be found
on the NCAR website, in the dedicated section:
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-
pc-based.

6See http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml.
7For additional information on the procedure, see Barnston and Livezey [1987].
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Predictability from circulation patterns

Many studies tried to detect how knowledge of the state (or phase) of the
patterns just described can in�uence the predictability over the subseasonal
timescale. So, in this section we brei�y report some examples from the scienti�c
literature.

We begin with the links between MJO and NAO: in Vitart and Molteni [2010]
there is evidence that the MJO produced by the model has a signi�cant impact
on the weekly mean probabilistic skill scores over the extratropical region in the
Northern Hemisphere, in particular between the 19th and the 25th day of the
forecast. Their model was able to show the increased probability of the positive
and negative NAO after some speci�c phases of MJO. In addition, Lin et al.
[2010] showed that the skill in predicting NAO over a range up to one month
is in�uenced by the presence of MJO in the initial conditions. This examples
show how more accurate initial conditions in the tropics and in particular of
the MJO can positively in�uences forecast over the subseasonal timescale in the
extratropical region of the Northern Hemisphere, and in particular of the NAO
pattern.

Naturally, this interaction between tropics and extratropics is not limited
to a one-way in�uence. In fact, as suggested again in the S2S Research Imple-
mentation Plan [2013], understanding the link in both directions can improve
the representation and prediction of the patterns of low-frequency variability in
the tropics. This knowledge can, in turn, be used to further improve forecasts
in the extratropical regions. Examples of studies focusing on the in�uence of
extratropics on the tropical atmosphere are reported in Lin et al. [2007], Ray
and Zhang [2010] and Lin and Brunet [2011], while in Lin et al. [2009] there is
a study of the two-way interaction.

In summary, signi�cant potential improvements in subseasonal forecast skills
are possible if the models are capable to represent correctly these patterns and
their connections, being therefore able to make use of the windows of enhanced
predictability. However, these are not the only sources of skillful predictions
over the time range considered. In the following paragraphs, we analyze other
promising factors, giving for each of them a brief overview of the phenomenon,
followed by some examples taken from the scienti�c literature.

Stratospheric Processes

Stratospheric processes are sources of predictability over the subseasonal timescale.
As for the role of the circulation patterns, the importance of the modelization
of the stratosphere has not been fully understood, even if an increasing number
of studies shows its in�uence over the extratropical regions. The scienti�c lit-
erature suggests that its impact on averaged skill scores is rather limited, while
more signi�cant e�ects can be seen on the prediction of NAO and the southern
annular mode8, especially during a sudden stratospheric warming.

8The Antarctic Oscillation (AAO), also known as southern annular mode is a low-frequency
mode of atmospheric variability in the southern extratropics. Its index is obtained by pro-
jecting the daily height of the 700 mb surface over its loading pattern. The latter is de�ned
as the leading mode of the EOF for the 700 hPa height over the 1979-2000 period. Additional
information can be found on the NOAA website:
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/aao/aao.shtml
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For example, Baldwin and Dunkerton [2001] showed evidence of propaga-
tion, on the monthly timescale, of easterly and westerly anomalies from the
stratosphere to the troposphere, followed by negative NAO/AO conditions. In
addition, Jung et al. [2010] showed that relaxing the stratosphere to the ob-
served data, for the extratropical region, leads to a reduction of the forecast
errors over Europe and the high latitudes. Another interesting result can be
found in Hendon et al. [2000], which shows how a better resolution of the strato-
sphere produces a small reduction of the Root Mean Square Error (RMSE) in
the range between the 15th and the 20th day of the forecast. Regarding the
role of sudden stratospheric warming, Scaife et al. [2005] studied the impact of
this phenomenon on the winter 2005/2006, suggesting its in�uence on the NAO
and cold anomalies over Europe, but other studies produced con�icting results
(Jung et al. [2010]).

It is di�cult to quantify the improvements that can be expected from strato-
spheric processes into the extended range forecast models. The major contribu-
tion are expected in winter and during sudden stratospheric warming events.

Polar prediction

Historically, atmospheric teleconnections and some typical phenomena of the
tropical atmosphere (like MJO) have been regarded as the main sources of fore-
cast skill. This view has lead to a poor understanding of the predictability over
the polar region in the sub-seasonal timescale. In addition, many models lack
fundamental components for making accurate forecasts over these region, like
for example an adequate representation of sea ice9 , as remarked in the S2S
Research Implementation Plan [2013].

Many of the possible sources of forecast skill over these regions are local
features: sea ice, snow cover and land surface with the hydrological cycle. Sea
ice deserves a special attention: it can represent a source of memory absent
at the lower latitude, and Holland et al. [2011] showed that this can result in
an increased range of predictive skill. The role of sea ice on the mid-latitudes
is, however, uncertain. A similar e�ect can originate from widespread snow
cover anomalies that, due to their radiative and thermal e�ects, can in�uence
the forecasts over the sub-seasonal timescale, as described in Sobolowski et al.
[2010] and Lin and Wu [2011]. Another interesting factor is the dynamics of the
local troposphere, which can provide some sources of enhanced predictability
due to rather persistent �ow anomalies, as shown in Jung et al. [2011].

Moreover, the skill over the poles can be in�uenced by some elements outside
the region. For example, Lin et al. [2010] demonstrated that, over long time
ranges, phenomena from the lower latitude like the MJO can have some impact
on the polar regions due to the presence of Rossby propagation.

Ocean and SST anomalies

A fundamental element in sub-seasona forecasts is the ocean, and in particular
the anomalies in the sea surface temperature (SST).

This component plays di�erent roles depending on the forecast length. For
the �rst 15 days, the accuracy of atmospheric initial conditions are the dominant

9Although the presence of a sea-ice model/initialization is rather uncommon, some models
(for example the UK Met O�ce model) already include one of them.
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factor for a skillful forecast. Therefore, on the weather-scale, a realistic ocean-
atmospheric coupling is not a necessary element and often is not implemented.

On the other hand, seasonal prediction is less a�ected by the atmospheric
initial conditions, while the ocean needs longer timescales for varying signi�-
cantly its state and this imply that it plays a more important role. So, models
for seasonal prediction normally include a realistic representation of the ocean
and its coupling with the atmosphere.

The subseasonal timescale lies in between these two extremes, with both
the atmosphere and the ocean representing possible sources of predictability.
The �rst reason for the importance of a realistic ocean-atmosphere coupling
lies in the di�erent timescales on which these two components a�ect the fore-
cast. While the atmospheric initial conditions dominate the �rst period, their
in�uence decreases with time, while the oceanic contribution follows an opposite
trend, reaching the maximum in�uence at the end of the period. In addition, its
presence can help the representation of some particular phenomena, for exam-
ple the MJO, which in turn can result in an enhanced forecast skill. Although
these behaviors have not been exactly quanti�ed in the scienti�c literature, it is
reported as one of the important reason for the presence of this coupling in the
S2S Research Implementation Plan [2013].

Currently, there are some operational monthly forecasts prediction systems
in which atmosphere and ocean are uncoupled while in others they are coupled10.
The contributions of such features are addressed as part of the Subseasonal to
Seasonal Project.

The presence of an ocean-atmosphere coupling can also a�ect the prediction
of SST over the monthly timescale. In medium-range forecasts, due to the slow
evolution of the ocean, using a �xed anomaly leads to an high skill of the forecast
[Jung and Vitart, 2006]. On the subseasonal range it is unclear if this assertion
remains true, or if the coupling signi�cantly enhances the predictability [Kumar
et al., 2011]. Moreover, the improvements due to a better predictions of the SST
need to be clearly quanti�ed [Chen et al., 2012]. Finally, another e�ect is shown
in Fu et al. [2007] and Woolnough et al. [2007], where the skill in predicting the
tropical intraseasonal variability improves due to the usage of a coupled model.

10For example, the ECMWF-IFS prediction systems model is coupled to an oceanic one,
while sea ice initial conditions are persisted up to the 15th day of the forecast and then relaxed
toward climatology. On th other hand, the CNR-ISAC model uses a slab ocean where sea ice
is �xes in certain conditions and relaxed toward the climatology in others. Both models are
used in the following analysis, and more detailed information on them can be found on the
S2S Model Archive page: https://software.ecmwf.int/wiki/display/S2S/Models.
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Chapter 2

Multi-model ensemble

In the �rst part of the thesis we combine through linear regression a set of refore-
casts from the CNR-ISAC and the ECMWF IFS monthly prediction systems.
This procedure is applied to temperature at two meter (T2M), temperature at
850 hPa (T850), and geopotential height at 500 hPa (Z500) �elds.

This multi-model implementation serves two di�erent purposes. First of
all we want to verify, using non-probabilistic scores, potential improvements in
the output �elds. The veri�cation, alongside the computation of the regression
coe�cients, is described in this chapter. Then, we want to provide a suitable
basis for extracting probabilities. This procedure, however, will be discussed
later in the thesis.

Normally, an ensemble forecast is produced by extracting a �nite sample of
initial condition, theoretically representing the uncertainty on the initial state
of the atmosphere, and then integrating these values for the desired time range.
The procedure tries to compensate for the lack of knowledge about the evolution
of all the initial-state distributions, by approximating it using only a limited set
of trajectories. [Wilks, 2011]

In reality, there are di�erent sources of errors, both in the initial condition
distribution and in the model itself. The latter often result in the ensembles
produced by a single model being unable to truly represent the evolution of
the probability distribution. This can let the ensemble forecast become over-
con�dent. Therefore, multi-model ensembles have been used in the scienti�c
literature [Whitaker et al., 2006] in order to improve the skill of probability
forecast. This explain why we implement a linear combination of the reforecast
before extracting the probabilities. In addition to this objective, with the aid
of non-probabilistic scores, we want to check if improvements exist also in the
deterministic �elds. Each of the initial ensembles is characterized by its own
sources of errors, and a compensation of the two biases is, in theory, possible.

In this chapter, we describe all the steps leading form the single-model en-
sembles to the multi-model. ERA-Interim reanalyses are used both for comput-
ing the regression coe�cients and for the veri�cation procedures. In addition,
to quantify potential imrpovements, we perform a comparison between these
scores and those obtained separately from the two single models.

13
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2.1 Dataset

The dataset used is composed of 268 reforecasts initialized in the winter season
(December, January and February) for the years between 1990 and 2010.

The reforecasts of the CNR-ISAC monthly prediction system are part of a
larger set (originally created for calibration purposes) that covers the 30-year
period from 1981 to 2010. For each year, the initialization date is the 1st of
January and the last is the 27th of December, with the time interval between
two adjacent entries in the dataset �xed and equal to 5 days. The only exception
to this rule is in the leap years, when there is a 6-days gap between the 25th of
February and the 2nd of March.

On the other hand, the ECMWF-IFS monthly forecasting system performs
twice a week a set of reforecasts covering the past twenty years. [Vitart, 2014]
The ones used in this analysis were downloaded from the MARS archive. 1

Due to the di�erences in the initialization rules, the �nal dataset contains
only the 268 dates in common between the two systems. Therefore, the refore-
casts are not evenly distributed in the time period considered.

Another di�erence concerns the variables of the two kind of reforecasts: both
the CNR-ISAC and the ECMWF-IFS provide data for the temperature at two
meter and temperature at 850 hPa, but the geopotential height at 500 hPa �eld
is supplied directly from the CNR-ISAC, while it has to be derived from the
geopotential at 500 hPa (Gh500) �eld provided by the ECMWF-IFS. However,
this is not a di�cult task. From the de�nition of geopotential height:

Z500 =
Gh500

g∗
,

where g∗ is the constant used in the conversion, close to the standard gravity
at mean sea level 2.

2.1.1 Ensemble structure and weekly ensemble mean

From now on, all the analyses will be performed on weekly ensemble means.
In this section there is a brief description of all the steps leading from the
two ensembles to the two values that will be combined later with the linear
regression.

First of all, a brief description of the structure of the reforecasts is pre-
sented. The ECMWF-IFS reforecasts are composed of one control member and

1We downloaded the dataset containing the ECMWF-IFS reforecast from the Meteorologi-
cal Archival and Retrieval System (MARS), that is the main repository of meteorological data
at ECMWF: https://software.ecmwf.int/wiki/display/WEBAPI/Access+MARS.

2The geopotential height �eld produced by Globo is measured in geopotential meters, fol-
lowing the standard for the Subseasonal to Seasonal model archive:
https://software.ecmwf.int/wiki/display/S2S/S2S+geopotential+height.
The conversion from geopotential to geopotential height, when the latter is measured in geopo-
tential meters, is performed by dividing the �rst �eld by the value 9.8, which throught the
thesis we call g∗. Further information on that conversion can be found on the American Me-
teorological Society: http://glossary.ametsoc.org/wiki/Geopotential_height
Note that, when converting to the standard meter, the conversion constant is g0 =
9.80665m/s2 instead of g∗ [Holton et al., 2013]. This value is the standard acceleration
due to gravity as de�ned in The International System of Units (SI): Conversion Factors for
General Use [Butcher et al., 2006, p. 10] and The international system of units (SI) [2001,
p. 52].
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CNR-ISAC
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Perturbed -6h

Perturbed -12h

Perturbed -18h

Perturbed -24h
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ECMWF-IFS

Control
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Perturbed n◦2
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Perturbed n◦4
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Figure 2.1: Schematized representation of the structure of the two ensembles: on the
left the lagged CNR-ISAC ensemble, while on the right the ECMWF-IFS one. Each
tick on the lines represent a 12-hour step, which is the resolution of the reforecast.

4 perturbed members, initialized twice a week (on Monday and Thursday) at
00:00UTC. 3 An interesting feature of these reforecast is the variable horizontal
resolution of the model. Originally, when a monthly forecasting system was
introduced at ECMWF (October 2004), the system and the medium range en-
semble prediction system (EPS) were run separately. With the introduction
of the Variable Resolution Prediction System (VarEPS) [Buizza et al., 2007],
it became possible to change the atmospheric horizontal resolution during the
model integration. So, the ECMWF reforecast are run at an higher resolution
for the �rst ten days, and then downgraded until the end of the forecatst (32th

day) [Vitart et al., 2008].
The CNR-ISAC Institute produces monthly ensemble forecasts using the

atmospheric general circulation model GLOBO. On an operational basis, 40
forecast lagged 4 members are produced, starting from the analyses of GEFS of
NOAA-NCEP by using 10 members for each synoptic time of the initialization
day. A �xed set of reforecast initialized every 5 days and covering the 30-
year period between 1981 and 2010, is used for recalibration. However, this
reforecast set contain only a single member, and this represents a rather strong
limitation for our analysis. 5 Therefore, in this study we used a di�erent

3The model description is provided by the �Model� page on the �Subseasonal to Seasonal
Prediction Project� website: https://software.ecmwf.int/wiki/display/S2S/Models.
Additional information regarding horizontal and vertical resolution, time step and all the
technical details can also be found on the same page. A more complete presentation of the
ECMWF monthly prediction system and its evolution can be found in the scienti�c literature,
like Vitart [2014], Vitart et al. [2008] and Vitart [2004].

4A �lagged ensemble� can be brie�y described as an ensemble in which the members are
initialized at di�erent times, usually with gaps of 6, 12 or 24 hours so that older forecast can
be used to cover the interval before the initialization date. A more detailed description of the
procedure known as �lagged ensemble� can be found on [Kalnay, 2003, pp. 231�].

5A brief model description can be found on the �GLOBO monthly forecast� page on the
CNR-ISAC webpage:
http://www.isac.cnr.it/dinamica/projects/forecasts/monthly/monthly.htm.

Like for the ECMWF monthly prediction system, additional information are on the �Model�
page on the �Subseasonal to Seasonal Prediction Project� website:
https://software.ecmwf.int/wiki/display/S2S/ISAC-CNR+Model+Description.

Both model are, in fact, part of the Subseasonal to Seasonal archive:
https://software.ecmwf.int/wiki/display/S2S/Models.
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(a)

Control

Perturbed n◦1

Perturbed n◦2

Perturbed n◦3

Perturbed n◦4

+12h +24h +660h +672h

ensemble mean

(b)

+12h +24h +660h +672h

weekly mean

(c)
week 1 week 2 week 3 week 4

+168h +336h +504h +672h

Figure 2.2: Schematized representation of the ensemble mean (from (a) to (b), green
arrow) and weekly mean (from (b) to (c), purple arrow). The diagram is divided in
three phases: (a) exemplify the structure after the imposition of common bounds for
the reforecast, (b) is the ensemble mean of (a) and (c) is the weekly mean of (b).
While in (a) and (b) the ticks represent 12 hours step, in (c) the gap between two
ticks is equal to 168h hour.

dataset, containing, for each date, 12 perturbed members, besides the control
one. This reforecast dataset was produced for the winter season only before the
beginning of this study for the purpose of veri�cation of the CNR-ISAC monthly
veri�cation system. Like the operational forecasts, it is a lagged ensemble:
the control member is initialized at 00:00 UTC, while the integration for the
perturbed ones starts at a diferent time for each member (six of them before and
the other six after the control). The time gap between two consecutive members
is always of 6 hour, so there are six perturbed members starting between −36
and −6 hours from the time of the control and six members between +6 and
+36 hours. The forecast length is 31 days.

Of all this components of the ensemble, only 5 of them have been chosen for
the study: the control one and the four perturbed members starting at −24,
−18, −12 and −6 hours, The time resolution of the reforecast is of 12 hours in
order to have a direct equivalent of the ECMWF-IFS system. The structure of
the two ensembles is schematized in Figure 2.1.

The di�erences just described have to be leveled out before proceeding with
the analysis. So, the �rst step is the decision of a common 1◦ lat-lon grid.
This is achieved by a bilinear interpolation of the CNR-ISAC reforecasts on the
desired grid. The ECMWF-IFS ones are already downloaded at the common
resolution. + Then, common bounds are imposed on the reforecasts: for each
entry in the dataset, the �rst value is at 12:00 of the initialization date and the
last is 660 hours afterwards, at 00:00 UTC of the 29th day of the reforecast. So,
for example, for the 1th of January, the forecast starts at 12:00 UTC of that
date and ends at 00:00 UTC of the 29th of the same month. In Figure 2.2, a
schematic representation of the result is shown in (a).

With this new dataset containing data sharing the same structure, the calcu-
lation of the regression input can begin. The starting operation is an ensemble
mean performed on the members of each of the two forecasting systems. This is
followed by a weekly mean achieved by averaging the reforecast over the closed
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intervals [+12h,+168h], [+180h,+336h], [+348h,+504h] and [+516h,+672h],
where the hours are computed from the 00:00 of the initialization date.

Thus every reforecast now contains only four values, each one referring to
the ensemble mean value for one week. The two steps are shown in Figure 2.2
in (b) and (c).

2.1.2 The reanalysis

The �nal ingredients for the realization of the multi-model ensemble are the
ERA-Interim re-analyses. 6 For each date covered by the reforecasts in the
dataset, the value of the reanalyses for the 00:00 and 12:00 UTC of each day has
been downloaded from the MARS archive. This values are combined into �les
with the same structure of the corresponding reforecast. Obviously, a weekly
mean is performed on the elements of the resulting dataset. Naturally, during
the download the values have been chosen in such a way that there is no need
for adjust the forecast time limits.

Like the ECMWF-IFS monthly forecasting system, ERA-Interim provides
the geoponential �elds at 500hPa. So, following the same procedure described
for the reforecasts, the values are converted to geopotential height dividing by
the usual constant, g∗.

2.2 Linear regression

Finally, the multi-model is computed through linear regression. 7

Some notation is introduced to simplify the discussion: ME(w, i, j, d) and
MC(w, i, j, d) are respectively the ECMWF-IFS and the CNR-ISAC weekly en-
semble mean, and O(w, i, j, d) are the weekly averaged verifying reanalysis. All
of them are functions of the week w = 1, 2, 3, 4, the latitude i = −90, ..., 90, the
longitude j = 0, ..., 360 and the date d.

From these values, the multi-model prediction for the weekly mean of the
�eld (MM(w, i, j, d)) can be obtained through:

MM(w, i, j, d) = C∗
0 (w, i, j)+C∗

1 (w, i, j)ME(w, i, j, d)+C∗
2 (w, i, j)MC(w, i, j, d)

However, this is not the formula actually used in the computation. An equiv-
alent version, involving the anomaly �eld instead of the �eld itself is preferred,
because it needs only two coe�cients.

Thus, another small step is required: in order to obtain the anomaly, the
mean over the training period has to be subtracted from the instantaneous �eld.
Note that �training period� has been used rather than �the full dataset�. This
choice is due to the need of cross validation, that reduces the set in which the
algorithm is trained each time. It will be all explained later in the result section,
in order to avoid confusion with the current explanation of the regression.

6Aditional information of ERA-Interim reanalysis are on the dedicated ECMWF website:
http://www.ecmwf.int/en/research/climate-reanalysis/era-interim.
A detailed description can be found in Dee et al. [2011].

7A similar approach is used in Whitaker et al. [2006], where linear regression is used to
combine ECMWF and NCEP reforecasts.
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So, naming withME(w, i, j),MC(w, i, j) andO(w, i, j) the time mean (over
the reference period) of ME(w, i, j, d), MC(w, i, j, d) and O(w, i, j, d) respec-
tively, the anomalies are given by:

X1(w, i, j, d) = ME(w, i, j, d)−ME(w, i, j),

X2(w, i, j, d) = MC(w, i, j, d)−MC(w, i, j),

Y (w, i, j, d) = O(w, i, j, d)−O(w, i, j).

Using these values, the formula for the multi-model anomaly is:

XMM(w, i, j, d) = C1(w, i, j)X1(w, i, j, d) +C2(w, i, j)X2(w, i, j, d). (2.1)

It can be proved that C1(w, i, j) = C∗
1 (w, i, j) and C2(w, i, j) = C∗

2 (w, i, j). In
addition, the third coe�cient of the original regression can be obtained using:

C∗
0 (w, i, j) = O(w, i, j)−C1(w, i, j)ME(w, i, j)−C2(w, i, j)MC(w, i, j).

2.2.1 Minimization of the cost function

The weighting factors (C1 and C2) chosen are the ones that minimize the cost-
function

J(w, i, j) =

m∑
d=1

(
XMM(w, i, j, d)− Y (w, i, j, d)

)2
.

In the previous formula (and in the following ones), m stands for the dimension
of the training set.

As an intermediate step, some auxiliary quantities are de�ned:

P11(w, i, j) =

m∑
d=1

(
X1(w, i, j, d)

)2
,

P22(w, i, j) =

m∑
d=1

(
X2(w, i, j, d)

)2
,

P12(w, i, j) =

m∑
d=1

(
X1(w, i, j, d)X2(w, i, j, d)

)
,

PY1(w, i, j) =

m∑
d=1

(
Y (w, i, j, d)X1(w, i, j, d)

)
,

PY2(w, i, j) =

m∑
d=1

(
Y (w, i, j, d)X2(w, i, j, d)

)
,

∆(w, i, j) = P11(w, i, j)P22(w, i, j)− (P12(w, i, j))2.

Then, using some algebra, it can be proven that the solution is:

C1(w, i, j) =
PY1(w, i, j)P11(w, i, j)− P12(w, i, j)PY1(w, i, j)

∆(w, i, j)

C2(w, i, j) =
PY2(w, i, j)P22(w, i, j)− P12(w, i, j)PY2(w, i, j)

∆(w, i, j)
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Figure 2.3: Regression coe�cients for the 500 hPa Geopotential height anomalies.
Values on the left refer to the ECMWF-IFS model (C1(w, i, j)), on the right to GLOBO
(C2(w, i, j)).

2.3 Results

Initially, the linear regression is applied using all the winters for the training.
Presuming that the performances of the algorithm theoretically improve with
larger datasets, the weighting coe�cients obtained in this way are probably the
best estimate that can be made with the data available.

The result are shown in three di�erent �gures, one for each variable: Fig-
ure 2.3 shows the geopotential height at 500 hPa, Figure 2.4 the temperature
at two meter, Figure 2.5 the temperature at 850 hPa.

In all of them the major role that X1 (the ECMWF-IFS system) plays in
de�ning the �nal multi-model �eld is evident. The contribution is more obvious
in the �rst two weeks, probably due to the higher resolution of the ECMWF-IFS
model in the �rst 10 days of the forecast. However, the geographical distribution
of the local maxima is rather di�erent between the two models . There is not a
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Figure 2.4: As in Figure 2.3, but for the temperature at 850hPa.
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Figure 2.5: As in Figure 2.3, but for the temperature at 2m.
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Figure 2.6: Sum of the regression coe�cients for the 500 hPa Geopotential height
anomalies (C1(w, i, j) +C2(w, i, j)). Each week is shown in a di�erent panel.

Figure 2.7: As in Figure 2.6, but for the temperature at 850hPa.
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Figure 2.8: As in Figure 2.6, but for the temperature at 2m.

single model that weights more than the other sistematically in aa grid points.
On the contrary, there are some regions where the multimodel is more similar
to one of its components.

In addition, Figures 2.6 - 2.7 and 2.8 report the quantity C1 +C2 for Z500,
T850 and T2M, respectively. There is not a speci�c physical or statistical mean-
ing linked to these values, but a rule of thumb can be derived from their de�-
nition: when the sum is near zero, the climatology is the best possible forecast
given the data.

Some interesting features can be seen in the maps. Considering Z500, one of
the most evident feature is a region near the equator where C1 +C2 is close to
one for all weeks. A similar phenomenon (with smaller maxima) can be observed
near the center of the Antarctic. In the fourth week, there are some areas where
the sum of the coe�cients is almost null or even negative: the northen part of
Europe (also visible in the third week), in some of the ocean slighlty north of the
Anctartic and north of Siberia. This behaviour hints the lack of predictability
over these regions: C1 + C2 = 0 imply that the multi-model anomaly is also
equal to zero, therefore the climatology represents the best prediction accordig
to the linear regression.

The pattern for T850 is rather similar, even if the coordinates of the local
maxima and minima are slightly shifted and their shape is di�erent. In partic-
ular, over the Antacrctic the sum is signi�cantly greater, while over the equator
the areas greater or equal to one are more sparsely distributed.

For T2M (Figure 2.8) the pattern is signi�cantly di�erent. The two more no-
ticeable features are the maxima over part of Asia and the Antactica, where the
sum reach values greater than 1.5 (unseen for the other variables) and increases
with the week number. Besides high values, close to one, over the equator, there
are no patterns as marked as for Z500 T850.

Note that this �rst analysis is purely qualitative: C1 and C2 presented are
not tested on an indipendent dataset and the performance of the algorithm is
not evaluated. The focus of the section is on the geographical distribution of
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the weights of each model in the �nal product. A discussion about the (non-
probabilistic) statistical scores is presented in the next section.

2.4 Veri�cation

The results cannot be divided from the statistical evaluation of the perfor-
mances. The latter requires that we split the dataset into �training� and �val-
idation� sets. This �cross-validation� approach is chosen because it gives an
estimation of how well the algorithm generalizes on data that it has not seen
previously. (Wilks [2011], Efron and Gong [1983], Elsner and Schmertmann
[1994])

First of all, the dataset is split into single winter seasons, each of them
including December from one year and January and February from the next
one. In the winters 1990-1991, 1991-1992 and 2010-2011 there are only a few
dates and they are excluded from the subsequent analysis.8

The remaining 18 winters are used for the �k-fold cross-validation�. The
original version of this algorithm expects a random partition of the dataset in k
subsets. Then, one of them is chosen as validation set while the remaining k-1
constitute the training set, on which the regression coe�cients are computed.
This procedure is repeated k times, choosing a di�erent validation winter each
time. (Wilks [2011], Zhang [1993])

However, in this study a di�erent approach to the partition of the dataset is
chosen: each of the 18 winters is used as a subset for the k-fold cross-validation,
with k = 18.

Although this choice implies that the number of dates in each set is not con-
stant, this subdivision resembles rather closely what the system would encounter
in a operational situation.

Hypothetically, two consecutive reforecast can be slightly correlated with
each other. In this situation, a set coe�cient trained on the �rst reforecast
can perform excessively well on the second, and the performance would not
resemble the behaviour of the algorithm with unseen data. The decision of
dividing the dataset in winters tries to prevent that. There are several months
between reforecast from di�erent winters, this assures us that the probability of
a systematic correlation between any data from the training set and the ones
used for validation is neglegible.9

In summary, the linear regression is performed on the 17 training winters,
the resulting C1 and C2 are the used for computing the multi-model �elds for
the validation winter. This �elds are the used with the ERA-Interim reanaly-
sis for the calculation of two non-probabilistic scores: root mean square error
(RMSE) and anomaly correlation (AC) [Wilks, 2011]. The same scores are also
computed for the two model separately, for comparison purposes. The proce-
dure is repeated 18 times, using always a di�erent winter for validation, and

8The number of dates for the winters 1990-1991, 1991-1992 and 2010-2011 are respectively
2, 5 and 3. For comparison, the winters from 1993-1994 to 2007-2008 contain 15 dates each, the
winter 2008-2009 contain 13 dates and the each of remaining two (1992-1993 and 2009-2010)
contain 10 dates.

9This approach is vaguely similar to the one described in Wilks [2011] when dealing with
serially correlated data. However, instead of choosing a number of consecutive observation L
to leave out each repetition of the algorithm, we can directly split the dataset in winters and,
between elements of di�erent winters, a gap of several months already exists.
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�nally all the results are averaged, therefore producing a single value for each
score.

2.4.1 RMSE

The �rst of the non-probabilistic scores is the root mean square error. It is
commonly used as measure of accuracy, having the desirable property of retain
the units of the forecast variable and therefore being simply interpretable [Wilks,
2011].

Altought it is the simplest and most commonly used one, in this speci�c case
there is a little di�erence in how the mean is performed. Due to the nature of the
lat-lon grid, each point has to be weighted with the area associated with it before
the average. In fact, the nearest to the poles a point is, the smaller the area
under a unit-degree square on the grid is. In other words, the actual distance
on the sphere between two meridians reaches its maximum on the equator and
the minimum in the poles.

In order to compensate this e�ect, the weights matrix is set to:

W (i, j) = cos
(
φ(i)

)
,

where φ(i) is the latitude of the grid point (i, j), in radiants.
The quantity averaged using these weights is the square error between the

reforecast �eld (X, it can be the multi-model or one of the two models) and the
reanalysis one, and it is given by:

SE(w, i, j, dV) =
(
X(w, i, j, dV)− Y (w, i, j, dV)

)2
,

So, the root mean square error for a speci�c validation winter is computed
using:

rmse(w) =
1

mV

mV∑
dV =1

√√√√∑imax

i=imin

∑jmax

j=jmin
W (i, j)SE(w, i, j, dV)∑imax

i=imin

∑jmax

j=jmin
W (i, j)

At the end of the procedure, for each of the 18 possible choice of the valida-

tion winter, there are three vectors: rmse
(k)
MM, rmse

(k)
E and rmse

(k)
C , repre-

senting respectively the scores for the multimodel, the ECMWF-IFS model and
the CNR-ISAC one. The superscript k = 1, ..., 18 indicates wich winter is used
for validation, with k = 0 representing the �rst (1992-1993) and k = 18 the last
(2009-2010). From these triplets of vector, the three �nal scores are derived by
averaging over all the 18 values:

rmseMM =
1

18

18∑
k=0

rmse
(k)
MM,

rmseE =
1

18

18∑
k=0

rmse
(k)
E and rmseC =

1

18

18∑
k=0

rmse
(k)
C .

The procedure just described can be theoretically applied for an arbitrary
choice of the couples (imin, imax) and (jmin, jmax), the borders of the region on
which the spatial average is performed.
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w rmseMM rmseE rmseC

1 22.5 22.6 30.4
2 67.1 70.8 76.8
3 82.8 90.5 90.5
4 87.0 96.4 94.2

(a) Northern Hemisphere

w rmseMM rmseE rmseC

1 19.9 20.1 24.4
2 52.7 55.8 59.6
3 61.5 68.4 66.2
4 63.0 70.2 66.9

(b) Southern Hemishpere

w rmseMM rmseE rmseC

1 3.95 4.09 5.17
2 8.56 9.05 10.3
3 10.9 11.8 12.3
4 11.7 12.9 12.8

(c) Equatorial Belt

w rmseMM rmseE rmseC

1 25.2 25.4 35.1
2 81.3 85.7 91.1
3 97.1 105 106
4 100 111 108

(d) Europe

Table 2.1: Root mean square errors for the geopotential height at 500 hPa (Z500)
anomalies, averaged over the 18 validation winters. The four table present the spa-
tial average over the four di�erent regions de�ned during the description of the non-
probabilistic validation scores. The �rst column always shows, in blue, the week for the
entire row. Each of the remaining column refer to a di�erent model: in the �rst one the
are the values for the multi-model (rmseMM), in the second the ECMWF-IFS ones
(rmseE) and in the third the CNR-ISAC ones (rmseC). The value corresponding
to the best performances (the lowest ones) for each row is highlighted in red.

w rmseMM rmseE rmseC

1 1.08 1.11 1.45
2 2.70 2.85 3.06
3 3.29 3.59 3.52
4 3.49 3.84 3.71

(a) Northern Hemisphere

w rmseMM rmseE rmseC

1 0.88 0.91 1.13
2 1.83 1.94 2.09
3 2.09 2.32 2.27
4 2.12 2.37 2.27

(b) Southern Hemishpere

w rmseMM rmseE rmseC

1 0.51 0.54 0.75
2 0.84 0.90 1.07
3 0.99 1.08 1.14
4 1.02 1.12 1.13

(c) Equatorial Belt

w rmseMM rmseE rmseC

1 1.03 1.06 1.39
2 2.70 2.85 3.03
3 3.23 3.55 3.46
4 3.32 3.70 3.51

(d) Europe

Table 2.2: As in Table 2.1, but for the temperature at 850 hPa (T850).
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w rmseMM rmseE rmseC

1 1.35 1.45 2.01
2 2.79 2.90 3.20
3 3.35 3.59 3.60
4 3.52 3.78 3.77

(a) Northern Hemisphere

w rmseMM rmseE rmseC

1 0.59 0.65 0.89
2 1.08 1.16 1.36
3 1.25 1.39 1.48
4 1.31 1.47 1.54

(b) Southern Hemishpere

w rmseMM rmseE rmseC

1 0.41 0.48 0.52
2 0.62 0.69 0.73
3 0.72 0.81 0.80
4 0.75 0.85 0.81

(c) Equatorial Belt

w rmseMM rmseE rmseC

1 1.25 1.32 1.86
2 2.78 2.89 3.14
3 3.35 3.61 3.54
4 3.40 3.66 3.58

(d) Europe

Table 2.3: As in Table 2.1, but for the temperature at 2 metre (T2M).

In practice, in this study four di�erent regions have been chosen, each with
its own superscript:

• the Northern Hemisphere (NH), arbitrarily de�ned as the area ranging
from 20◦N to 90◦N in latitude (and naturally from 0 to 360 in longitude),

• the Southern Hemisphere (SH), from 20◦S to 90◦S in latitude,

• the Equatorial Belt (EB), 20◦S to 20◦N,

• the Europe (EU), whose limits are 30 - 80◦N and 20◦W - 60◦E.

The results are summarized in Table 2.1 - 2.2 - 2.3. The most evident
feature is that the multi-model outperforms the two models everywhere. This
is not surprising. First of all, in its calculation the cost function minimized
is the square error, which is an ingredient also of the RMSE. Obviously, the
minimization of square error is performed on the training set while the �nal score
is computed on the validation winter, but an improvement in the performance
compared to a single models is still expected. Another e�ect to consider is that
the multi-model contains the information from ten ensemble members, whileX1

andX2 are computed starting from �ve members each. It is, in fact, known that
an increase of the ensemble size can result in improvements in the performances,
depending on the speci�c measure used. [Buizza and Palmer, 1998]

Looking more closely, a rough dividing line can be drawn between the �rst
two weeks and the �nal ones. In the �rst period, the RMSE is naturally smaller,
with a clear increase from the �rst to the second week. The ECMWF model
outperforms always GLOBO, and its score are very similar to the multi-model
one. In the third and fourth week the pattern is di�erent. The �rst distinction is
in the relation between rmseE and rmseC. In the third week the two values are
close together and none of them is always below the other, unlike the previous
case. In the fourth week the situation is even di�erent: while the two scores
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are always similar, rmseC is lower than rmseE most of the time. Moreover,
the gap between rmseMM and rmseE is often more marked than in the �rst
two weeks. Finally, for all the models considered, the RMSE increase over the
�nal two weeks is less sharp than the one between the �rst and the second, or
between the second and the third.

This clear di�erence in behaviour between the two times ranges is expected.
The �rst two weeks cover a period that correspond almost entirely with the
medium range forecast, while the following ones (often referred as extended
range) are completely outside the deterministic timescale. Due to the loss of
the memory of the atmospheric initial condition, it is a di�cult time range for
realizing forecasts [Vitart, 2004]. So, a sharp drop in performances cannot be
avoided, and a direct comparison between perfromances from the two period
can be unfair.

2.4.2 Anomaly correlation

The second non-probabilistic score presented in this study is the anomaly cor-
relation. It is commonly used for measuring similarities in the patterns of the
anomalies between the forecast and the verifying values. In the scienti�c liter-
ature there are two di�erent scores sharing the name of �anomaly correlation�,
and this can lead to some confusion. In this study, the name refers to the �un-
centered anomaly correlation�, in which the �eld averaged over the region of
interest is not subtracted from the anomalies [Wilks, 2011]. This kind of AC
was �rst de�ned in Miyakoda et al. [1972], where the score was originally called
�correlation for the anomaly�10.

Because the �elds are again on a lat-lon grid, in the computation of the score
the spatial average is weighted using W (i, j).

The score is computed �rstly for each validation winter separately, like in
the previous case. As an intermediate step, three matrix are computed:

PXY(w, d) =

imax∑
i=imin

jmax∑
j=jmin

(
X(w, i, j, d)Y (w, i, j, d)

)
W (i, j),

PXX(w, d) =

imax∑
i=imin

jmax∑
j=jmin

(
X(w, i, j, d)

)2
W (i, j),

PYY(w, d) =

imax∑
i=imin

jmax∑
j=jmin

(
Y (w, i, j, d)

)2
W (i, j).

Naturally, the notation is the same of the previous section. Then, the anomaly
correlation is given by:

ac(w) =
1

mv

mv∑
d=1

PXY(w, d)

PXX(w, d)PYY(w, d)

10The other type of anomaly correlation, not used in this analysis, is called �centered
anomaly correlation�, where the mean over a given map of M gridpoints is subtracted from
the anomaly �elds of both the forecast and the verifying observation [Wilks, 2011]. This kind
of AC was �rst introduced in Namias [1952].
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For each of the model there are 18 anomlay correlation vector, distinguished by

the superscript (k): ac
(k)
MM, ac

(k)
E and ac

(k)
C , the subscript notation is equal to

the rmse vectors one.
These quantities are averaged over all winters, and the �nal products are:

acMM =
1

18

18∑
k=1

acMM, acE =
1

18

18∑
k=1

acE, acC =
1

18

18∑
k=1

acC

The same four region (NH, SH, EB, EU) are chosen for the computation of the
scores, and the results are shown in Table 2.4 - 2.5 and 2.6. Although the multi-
model does not always outperform the other models, it's scores are never lower
than the others either. Again, a rough division between the �rst two weks and
the second ones is evident. The most evident di�erence between the two periods
is in the variation of the score between the weeks: while initally the anomaly
correlation decreases sharply, the variation between the third and the fourth
week is less marked and occasionally remains constant. Often acE is closer
to acMM than acC, expecially in the �rst week. Finally, another interesting
comparison is the one between the ECMWF model and GLOBO. As in the
analysis concerning rmse vectors, the gap between their performance is more
evident for the �rst two weeks, where the acC is systematically lower than acE.
This characteristic is not present for the third and fourth week.

w acMM acE acC

1 0.97 0.97 0.94
2 0.65 0.63 0.55
3 0.35 0.32 0.28
4 0.23 0.21 0.18

(a) Northern Hemisphere

w acMM acE acC

1 0.95 0.95 0.92
2 0.58 0.56 0.47
3 0.31 0.27 0.25
4 0.25 0.21 0.21

(b) Southern Hemishpere

w acMM acE acC

1 0.95 0.95 0.92
2 0.75 0.74 0.65
3 0.56 0.54 0.47
4 0.48 0.45 0.40

(c) Equatorial Belt

w acMM acE acC

1 0.96 0.96 0.93
2 0.55 0.53 0.47
3 0.23 0.23 0.17
4 0.09 0.09 0.09

(d) Europe

Table 2.4: Anomaly correlation for the geopotential height anomalies at 500 hPa
(Z500), averaged over the 18 validation winters. The four tables present the spatial
average over the four di�erent regions de�ned in the text. The four rows show the
values for the di�erent weeks, as speci�ed by the �rst column, in blue. Each of the
remaining columns refer to a di�erent model: in the �rst one the are the values for the
multi-model (acMM), in the second the ECMWF-IFS ones (acE) and in the third the
CNR-ISAC ones (acC). The value corresponding to the best performances for each
row is highlighted in red.
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w acMM acE acC

1 0.95 0.95 0.91
2 0.65 0.63 0.56
3 0.40 0.35 0.35
4 0.32 0.27 0.27

(a) Northern Hemisphere

w acMM acE acC

1 0.92 0.92 0.87
2 0.63 0.60 0.53
3 0.49 0.41 0.42
4 0.49 0.40 0.42

(b) Southern Hemishpere

w acMM acE acC

1 0.90 0.89 0.78
2 0.68 0.67 0.54
3 0.55 0.51 0.45
4 0.53 0.48 0.46

(c) Equatorial Belt

w acMM acE acC

1 0.95 0.94 0.91
2 0.56 0.54 0.47
3 0.26 0.23 0.22
4 0.19 0.16 0.17

(d) Europe

Table 2.5: As in Table 2.4, but for the temperature at 850 hPa (T850).

w acMM acE acC

1 0.93 0.92 0.85
2 0.68 0.65 0.56
3 0.48 0.44 0.40
4 0.44 0.40 0.36

(a) Northern Hemisphere

w acMM acE acC

1 0.93 0.92 0.86
2 0.79 0.77 0.69
3 0.75 0.70 0.68
4 0.75 0.70 0.69

(b) Southern Hemishpere

w acMM acE acC

1 0.90 0.88 0.85
2 0.77 0.73 0.69
3 0.69 0.64 0.62
4 0.67 0.61 0.62

(c) Equatorial Belt

w acMM acE acC

1 0.93 0.93 0.85
2 0.62 0.60 0.52
3 0.38 0.34 0.34
4 0.37 0.33 0.32

(d) Europe

Table 2.6: As in Table 2.4, but for the temperature at 2 metre (T2M).



Chapter 3

Probabilistic Forecasts

Statistical methods are often used on long-range weather forecasts: the predi-
catbility of the atmosphere, in a deterministic sense, decrease with the forecast
time and statistics is useful, and sometimes necessary, when dealing with such
systems.

Before dynamical forecasts informations were widely available, some weather
forecasts (on timescales ranging from a day to a week) used to be produced
purely by statistical means, without information on the underlying dynamics.
This kind of application is known as �classical statistical forecasting�. However,
with the improvement in dynamical models, these methods became outdated
and nowadays they are limited only to some speci�c time ranges (the extremely
short or long ones). [Wilks, 2011].

In this thesis, we use statistics to analyze and postprocess the product of dy-
namical models. Naturally, statistics is already present in the ensemble forecast
used in the previous chapter, but the �nal values that we found were deter-
ministc �elds, containing a precise value for each grid point and forecast week.
In this chapter, we seek a di�erent kind of output: we test di�erent methods
for predicting probablities. Scpeci�cally, the probability that the anomaly falls
in one of three categories, the lower, middle and upper tercile of the distribu-
tion of the ERA-Interim reanalysis (the same used in the previous chapter) is
computed.

The results are therefore veri�ed using probabilistic scores such as the ranked
probability skill score (RPSS) and, in the end, reliability diagrams. Again, the
veri�cation is performed using ERA-Interim reanalyses. The multi-model results
are also compared to the probabilities obtained from the CNR-ISAC and the
ECMWF-IFS ensembles.

Many di�erent approach exists for dealing with this task. We, however, test
only three di�erent classes of algorithms:

• the Direct Model Output (DMO) which provides the �reference values�. Its
elements are the Democratic Voting (DV) method and the Tukey Plotting
Position (TPP);

• the Logistic Regression (LR), where di�erent choices of predictors are
tested,

• the Nonhomogeneous Gaussian Regression (NGR).

31
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These methods can be found in literature applied to similar task, like in Hamill
et al. [2004], Whitaker et al. [2006], Wilks [2006] and Wilks and Hamill [2007].
Naturally this list is not exhaustive and more sets of articles will be cited when
discussing each algorithm. Note that the scienti�c literature provides a wider
range of methods that can be applied to forecasting probabilities, many of them
based not on regressions but on totally di�erent approaches, like kernel dressing
methods [Wilks, 2011]. Although their usage could have lead to interesting re-
sults, we constrained the analysis to a limited set of techniques in order to better
analyze the possible variants, therefore increasing the chances of extracting the
best performances from each method.

While this brief introduction acts as an introduction to all the second section
of the thesis, in this chapter we focus solely on the DMO techniques. A complete
explanation of the remaining algorithms is presented in the following chapters,
alongside the exposition of the reasons behind their choice. The dataset used
throughout this chapter is the same of the previous one, although the analysis
is performed only for one variable (T2M). Also the notation remains the same:
XMM, XC and XE are the anomaly �elds for the multi-model and the two
ensemble means, while Y is the anomaly with respect to the corresponding
reanalyses.

3.1 Binary Veri�cation Data

Before proceeding with the analysis, we compute a fundamental quantity for
DMO as well as LR and NGR: the �binary veri�cation data�. This term refers
to a tensor, derived from the reanalises, used for training and veri�cation. As
the name suggests, its elements are either one or zero, depending on Y and the
terziles of its distribution over the training period.

For clarity purpose, in the following explanation one validation winter is
chosen (thus also the training set is �xed). Obviously, in the actual analysis
this set of operations is repeated for all the 18 possible combination.

The �rst operation is the computation of the terciles from the training set.
For every week w and grid point (i, j), the two terciles are extracted from the
slice Y (w, i, j, :)1. The results of this operation are two tensors, Y1/3(w, i, j)
and Y2/3(w, i, j), containing respectively the lower and the upper terciles.

1This operation is performed using the function percentile, from the numpy module (Python
2.7.9). More detailed information can be found on the package website, in the section dedicated
to this function:
http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.percentile.html.
Note that when the tercile (q) lies between two values (v and w), the optional parameter
interpolation of percentile is set to linear. This means that q is given by v+(w−v)∗f , where
f is the fractional part of the index surrounded by v and w.
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Then, the tensor containing the binary veri�cation data is given by:

B(w, i, j, d, 0) =

{
0 if Y (w, i, j, d) > Y1/3(w, i, j)

1 if Y (w, i, j, d) < Y1/3(w, i, j)

B(w, i, j, d, 1) =

{
0 if Y (w, i, j, d) < Y1/3(w, i, j) or Y (w, i, j, d) > Y2/3(w, i, j)

1 if Y2/3(w, i, j) ≤ Y (w, i, j, d) ≤ Y2/3(w, i, j)

B(w, i, j, d, 2) =

{
0 if Y (w, i, j, d) < Y2/3(w, i, j)

1 if Y (w, i, j, d) > Y2/3(w, i, j).

Note that, while the terciles are computed only in the training set, there are
two diferent B: one for the training set, with d = 1, ...,m, and the second for
the validation one and with d = 1, ...,mV.

2

It can be useful to explain the meaning of the last entry in B. Its index can
assume the values 0, 1 and 2 and the corresponding entry follows these rules:

• B(w, i, j, d, 0) contains information about which points are below the �rts
tercile. It's value is 1 when the reanalysis is below that threshold and 0
otherwise;

• B(w, i, j, d, 1) refers to the values between the two terciles. It is equal to
1 when the reanalysis lies in that interval and 0 otherwise;

• �nally, in B(w, i, j, d, 2) the last region is highlighted, with the tensor
entry equal to 1 when the corrsponding value in Y is greater than the
upper tercile and 0 otherwise.

3.2 Direct Model Output: Methodology

The �rst set of algorithms answers the question: �what are the simplest and
most direct way of computing probabilities from the ensembles or their linear
combination?�

The methods presented in this section are not MOS techniques [Wilks, 2006].
Their basic assumption is that the ensamble behave as a random sample from
the real cumulative distribution function (CDF), and then the cumulative prob-
abilities are estimated using a plotting position [Wilks, 2011]. As mentioned
before, these methods represent the baseline with which the other algorithms
will be compared. Because DMO is among the simplest techniques for extract-
ing probabilities from the forecast �eld, improvements are expected in using
more complex ones like LR and NGR. So, by measuring these improvements, an
estimate of the advantage of introducing such elaborate algorithms is obtained.

3.2.1 Implementation of the reduced multi-model ensem-

bles

Before starting with the description of the algorithms, there are some operations
concerning the multi-model that are fundamental for their applicability. All the

2m and mV are the dimensions of the two sets, like in the previous chapter.



34 CHAPTER 3. PROBABILISTIC FORECASTS

DMO methods need more than one ensemble member to be employed, because
all of them rely on the position of the quantile relative to those members.

For the initial ensembles, the ECMWF-IFS and the CNR-ISAC ones, there
are �ve members, so the algorithms ca be used directly. However, in the previous
chapter, only the multi-model ensemble mean has been computed. In order
to apply DMO methods also to the multi-model, its components need to be
computed. This can be achived through a linear combination of the initial
ensembles, using a smaller subset of members.

Before proceeding with the analysis, it can be useful to introduce some no-
tation. Again, tensors have been chosen to act as �containers� for all the data:

• EE(w, i, j, d, l) contains the anomaly �elds for all the members of the
ECMWF-IFS ensemble;

• EC(w, i, j, d, l) contains the anomaly �elds for all the members of the CNR-
ISAC one;

• EMM(w, i, j, d, l) is the tensor that will be computed in this section and
that contains the anomalies for all the multi-model members.

The index l is added to range between the ensemble members, with l = 0
corresponding to the control one (or their linear combinarion, for EMM), and
the other values for the perturbed ones (or a combination containing at least
one of them).

So, using C1 and C2 from the previous chapter, the multi-model members
are computed using:

EMM(w, i, j, d, l3) = C1(w, i, j)EE(w, i, j, d, l1) +C2(w, i, j)EC(w, i, j, d, l2).

with l1 = 0, ..., 4, l2 = 0, ..., 4 and l3 = l1 + 5l2 = 0, ..., 24. The multi-model
ensamble size is greater than the size of the original ones, due to the way in
which it is obtained. The procedure is schematized in Figure 3.1.

Naturally, it can be shown that average of EMM along the last dimension (l)
gives exactly XMM

3. This is fundamental for the consistency of the analysis:
LR and NGR need as one of the predictors the ensemble mean, and the values
presented in this section would not be coherent with the next algorithms ifXMM

was not the ensemble mean of EMM.

3.2.2 Democratic Voting

The simplest of the two methods in the DMO class is the Democratic Voting.
An example of its usage for predicting probabilities can be seen in the scienti�c
litearure in Wilks [2006], in addition to beeing the �rst of the methods presented
for producing such forecasts in [Wilks, 2011, Chapter 7].

Assigning the name Q(w, i, j, d) to a generic quantile (in this case the two
candidates are Y1/3 and Y2/3), the probability is given by:

Pr
(
Y (w, i, j, d) < Q(w, i, j, d)

)
=

1

lmax

lmax∑
l=0

I
(
E(w, i, j, d, l) ≤ Q(w, i, j, d)

)
=
rank

(
Q(w, i, j, d)

)
− 1

lmax
,

3Dimostrazione...
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CNR-ISAC

Control
l2 = 0

Perturbed
l2 = 1

l2 = 2

l2 = 3

l2 = 4

ECMWF-IFS

Control
l1 = 0

Perturbed
l1 = 1

l1 = 2

l1 = 3

l1 = 4

MULTI-MODEL

l3 = 0
(= l1 + 5l2)

l3 = 1

l3 = 2

l3 = 3

l3 = 4

l3 = 5

l3 = 6

l3 = 7

l3 = 8

l3 = 9

l3 = 10

l3 = 11

l3 = 12

l3 = 13

l3 = 14

l3 = 15

l3 = 16

l3 = 17

l3 = 18

l3 = 19

l3 = 20

l3 = 21

l3 = 22

l3 = 23

l3 = 24

Figure 3.1: Schematised representation of the multi-model ensemble computation.
On the left there are the CNR-ISAC ans ECMWF-IFS ensembles (weekly mean
anomaly �elds), respectively in dark red and blue. On the right there is the resulting
multi-model ensemble (in black). The arrows connect the original members with the
�nal ones, obtained from their linear combination. The red and blue arrows can be
seen respectively as the multiplication for the coe�cient C1 and C2, and the prod-
uct results are added together to compute the multi-model member indicated by the
arrows head. Only some of the connections are shown, the black dots in the middle
stand for the missing arrows. Finally, near each member there is its number inside the
ensemble (l1, l2 and l3).
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where I is a function with a boolean domain: it returns 1 when its argument is
true and 0 otherwise. The ensemble dimension is lmax and, from the de�nitions
in the previous section, lmax = 5 for EE and EC and lmax = 25 for EMM.
Finally, rank

(
Q(w, i, j, d)

)
is the rank of Q(w, i, j, d) inside a set containing the

quantile itself and all the ensemble members E(w, i, j, d, l = 0, ..., lmax).

From the formula it is evident that this estimator has a undesirable prop-
erty: every quantile that has a value lower than all the ensemble member has
probbability equal to zero, while if the quantile is greater than all the members,
its probability is one [Wilks, 2006, p. 282]. Nevertheless, this algorithm is in-
cluded in the analysis for its semplicity. In fact, it represent the optimal answer
to the question posed at the beginning of the DMO section. This make the DV
a good choiche for determine the comparison baseline for the other methods: in
each of them will be more elaborate, and if the additional compelxity does not
corrispond to an improvement in the performance, they are not worth the extra
computations needed for their implementation.

Now that the basics of the algorithm is clear, it can be useful to introduce
some notation regarding its prducts. It will be useful in the last part of the
chapter, where all the methos will be compared. So, three probability tensors
are introduced. The approach is similar to the one used for B, but instead of
creating a single tensors and using the last dimension to di�erentiate between
the three terciles, each of them is assigned to a separate tensor:

• PDV
inf (w, i, j, d) is the probability that the observation will be below the

lower tercile (for a given week, grid point ad date). It is simply equal to:

Pr
(
Y (w, i, j, d) < Y1/3(w, i, j, d)

)
;

• PDV
mid(w, i, j, d) is the probability for the region between the two terciles,

and it is given by:

Pr
(
Y (w, i, j, d) < Y2/3(w, i, j, d)

)
− Pr

(
Y (w, i, j, d) < Y1/3(w, i, j, d)

)
;

• PDV
sup (w, i, j, d) is the probability that the observation is above the upper

tercile and it is computed using:

1− Pr
(
Y (w, i, j, d) < Y2/3(w, i, j, d)

)
.

Needless to say, all this quantity are computed for both the training set
(d = 1, ...,m) and the validation set (d = 1, ...,mV). Due to the nature of DMO
techniques, there

Naturally, for each of the three models this triplet of tensors is computed.
Therefore, the notation is modi�ed one more time, introducing another super-
script (on the left hand corner). The resulting names are:

• MMPDV
inf ,

MMPDV
mid and MMPDV

sup for the multi-model derived probabilities,

• CPDV
inf ,

CPDV
mid and CPDV

sup for the CNR-ISAC ones,

• EPDV
inf ,

EPDV
mid and EPDV

sup for the ECMWF-IFS ones.
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3.2.3 Tukey Plotting Position

The second method is the Tukey Plotting Position. Like the previous technique,
its application to forecasting probabilities can be see in Wilks [2006] and it is
also one of the sugested methodd in [Wilks, 2011, Chapter 7]. It is similar to
the previous one, as can easily be seen from its formula:

Pr
(
Y (w, i, j, d) < Q(w, i, j, d)

)
=
rank

(
Q(w, i, j, d)

)
− 1/3

(lmax + 1)− 1/3
.

The choice of this algorithm is due to its lack of the problem a�ecting DV
[Wilks, 2011, p. 282]: if a quantile is lower (greater) than all the ensemble
members, its probability is not zero (one). Altough this is not the simplest
possible algorithm, at least at a conceptual level, it is included in the analysis
because it is as computational intensive as DV. This means that, with no added
computing time, it can provide better performance than the other, remaining
in the meantime almost of the same simplicity. In addition, except for DV,
all the other algorithms tested will introduce some extra complexity, and this
complexity needs to be justi�ed by an improvement in the results respecto what
can be achieved by a simple algorithm like TPP.

As in the previous case, some probability tensors are introduced:

PTPP
inf (w, i, j, d), PTPP

mid (w, i, j, d), PTPP
sup (w, i, j, d),

computed again from the probability, using the same formulas as for DV. Once
more, the calculation is performed on both the training and validation set and
for each of the three models (MMPTPP, CPTPP and EPTPP).

3.3 Direct Model Output: Validation

Using the two methods just described, we compute the tercile probabilities on
all the winters in which the dataset has been split4 . Both DM and TPP are not
based on regression, so there is no need of a training set. However, we retain
the cross validation approach with the same validation winters in order to make
comparison with the next algorithms. So, after computing probabilities, these
are used for evaluate the preformances of the methos using some probabilistic
score.

Unlike the previous chapter, in this case there are no coe�cient maps to
show before proceeding with the validation. Also showing directly the results is
impossible, due to the large number of entries in the dataset. Nevertheless, at
the end of the section we show an example output. Some interesting features
can be seen, and it will serve as a comparison term for the following chapter.

3.3.1 Probabilistic Scores

The �st of the probabilistic scores we use in the thesis is the Ranked Probability
Score (RPS), a common measure used for evaluating probability forecasts for
Multiple-category events. It is simply an extension of the Brier Score to a

4Additional information on the division of the dataset in validation winters can be found
in the previous chapter, where the cross-validation approach was introduced.
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situation in which multiple outcomes are possible5: it measures the squared error
respect to the verifying reanalysis, using the cumulative probabilities (unlike
the Brier Score) [Wilks, 2011]. Due to the simplicity of its computation and its
beeing sensitive to distance, it is widely used in the scienti�c literature when
dealing with probabilistic forecast. Examples of its application are countless, a
small and surely not exhaustive list includes Hamill et al. [2004], Wilks [2006]
and Wilks and Hamill [2007], other than beeing cited as one of the scores in
[Wilks, 2011, Chapter 8].

Using the binary veri�cation tensors previously de�ned we �rst de�ne the
cumulative proabbilities as:

Bcml(w, i, j, d, 0) = B(w, i, j, d, 0)

Bcml(w, i, j, d, 1) = B(w, i, j, d, 0) +B(w, i, j, d, 1)

Bcml(w, i, j, d, 2) = B(w, i, j, d, 0) +B(w, i, j, d, 1) +B(w, i, j, d, 2)

Then, we compute the same quantitym but for the probabilities obtained from
the two algorithm. For the moment, we discard the superscript, and we refer
gerenically with Pinf , Pmid and Psup to the prediction for each of the three
sectors of the distribution. The cumulative prediction are giveb by:

Pcml(w, i, j, d, 0) = Pinf(w, i, j, d)

Pcml(w, i, j, d, 1) = Pinf(w, i, j, d) + Pmid(w, i, j, d)

Pcml(w, i, j, d, 2) = Pinf(w, i, j, d) + Pmid(w, i, j, d) + Psup(w, i, j, d)

From them we derive the Ranked Probability Score:

RPS(w, i, j, d) =

3∑
c=1

(
Bcml(w, i, j, d, c)Pcml(w, i, j, d, c)

)2
.

As can be seen from the formula, it is simly the sum over the categories c in which
the distribution has been split (in our case 3) of the squared di�erence between
the corresponding cumulative probabilites of the forecast and of the verifying
veri�cation tensor. Like with the Brier Score, the less accurate a forecast, the
higher the score, with the perfect prediction having RPS = 0. Note also
that Bcml(w, i, j, d, 2) and Pcml(w, i, j, d, 2) are the sum over all the probability
categories and therefore both equal to one. This impy that the maximum value
that RPS can assume is equal to the number of categories minus one, that is 2
in our case.

Naturally, RPS(w, i, j, d) contains the score for each of the date (of the
validation set, in our case). So, we perform an average on the set:

RPS(w, i, j) =
1

mV

mV∑
d=1

RPS(w, i, j, d).

5Brier score (BS) is a scalar measure for the accuracy of probabilistic forecast in which
only two outomes are possible. If we assign the name ok to the verifying observation (with
the possible outcomes beeing ok = 0 and ok = 1) and the name yk to the prediction, the Brier
Score is given by:

BS =
1

n

n∑
k=1

(yk − ok)
2,

where n represent the number of examples in the dataset. Bs is negatively oriented, the best
possible values obtainable is 0 and higher values corespond to less accurate forecasts. It can
assume only values between and including 0 and 1. [Wilks, 2011]
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The second score we computed is directly linked to RPS: it is the Ranked
Probability Skill Score. As the name suggest, it compares the skill of our fore-
cast to some reference values. These values are the RPS computed from the
climatology. Like the previous one, also this score is widely used trought the
literature (the example list is the same as above), and a complete description
can be foud in [Wilks, 2006, Chapter 8].

We �rst de�ne the climaytological probability for the T2M anomaly fallin in
each of the three section, that from the de�nition of terciles is simply:

P
(clim)
inf (w, i, j, d) = 1/3,

P
(clim)
mid (w, i, j, d) = 1/3,

P (clim)
sup (w, i, j, d) = 1/3.

These quantities are used for computing RPS
(clim)

(w, i, j), that is simply the
average of the ranked probability score over the validation set, computed using

P
(clim)
inf , P

(clim)
mid and P

(clim)
sup as predictions. Then, the skill score is de�ned by:

RPSS(w, i, j) = 1− RPS(w, i, j)

RPS
(clim)

(w, i, j)
. (3.1)

Naturally, the values represent already the average over the validation set, be-

cause its computed starting from RPS and RPS
(clim)

.ù As can be easily
deduced from the formula, a perfect forecast would have RPS(w, i, j) = 0 and,

if RPS
(clim)

(w, i, j) 6= 0, the skill score would be RPSS(w, i, j) = 1. A lower
value indicates that a less skillfull forecast.

The last score is a modi�cation of RPSS: it is the Discrete Ranked Proba-
bility Skill Score (DRPSS). As underlined in Müller et al. [2005], Weigel et al.
[2007a], Weigel et al. [2007b] and Weigel et al. [2008], RPSS is biased negatively
for small ensembles. For removing this bias, the climatological term in Equa-
tion 3.1 need to be substituted with the expectation of RPS(ran) averaged over
the validation winters, where RPS(ran) represent the ranked probability score
produced by repeatedly resampling from the climatology a number of samples
equal to the ensemble size. In Weigel et al. [2007a] however, we found an ale-
trantive formulation. The term D was introduced, it represent the di�erence

between RPS
(clim)

and teh averaged expectation value of RPS(ran). For our
case, where the three categories are all equiprobable, this term can be modelized
and it is given by:

D =
1

lmax

(cmax)2 − 1

6 cmax
=

4

9 lmax
,

where cmax is the number of categories in which the probability distribution is
divided (in our case, cmax = 3) and lmax represent the ensemble size, as in the
previous sections. Note that, an increas in lmax result in a smaller correction
term D, thereforeDRPSS converges toward RPSS for extremely high values
of lmax. On the contrary, increasing the number of categories leads to higher
values of D. Thus, the score is computed from the formula:

DRPSS(w, i, j) = 1− RPS(w, i, j)

RPS
(clim)

(w, i, j) +D
.
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The reason behind the introduction of this additional score is in the dimension of
the CNR-ISAC and the ECMWF-IFS ensemble used in this analysis. Both are
composed of only 5 members and we wanted a score less sensitive to the size for a
fairer comparison between the multi-model and the two single models. Anyway,
we keep all three scores, for a more complete overview of the performances.

3.3.2 Reliability Diagram

Another powerful tool used for evaluating performances is the Reliabilty Dia-
gram. Like the score presented in the previous sections, its usage is common
in the scienti�c literature and examples of its application can be seen in Hamill
et al. [2004], Wilks and Hamill [2007] and Wilks [2009]. A complete explanation
of the procedure is also presented in [Wilks, 2011, Chapter 8].

Unlike the scores previously presented, which provided a summary of the
performances through a single value, the reliability diagram shows the full joint
distribution of the forecast and the verifying reanalyses. It refers to a binary
predictand, so di�erent diagrams have to be created for the two quantiles.

The structure of such plots can be divided in two main parts, the �rst of
which is the calibration function. In Figure 3.2 we show some hypotetical ex-
amples, with four curves corresponding to di�erent problems that can a�ect the
forecasts.

The �rst step in making such plots is the division of the possible outcomes
of our forecast (considering the two terciles threshold separately) in I probabil-
ity intervals. Each category corresponds to possible output value, that we will
generally call p(i). From the binary verifying oservation o, we compute the prob-
ability of o = 1 given the forecast outcome p(i). They consitute the conditional
probabilities Pr(o = 1|p(i)), and plotting all the values i = 1, ..., I we �nally
obtain the calibration curve. As can be seen in Figure 3.2, this curves allow
an immediate visualization of some kind of errors. We start by noticing that a
dashed line connect the lower-left corner to the upper-right one. An hypotetical
calibrtaion curve lying on this line would represent the best case scenario: the
output probabilities are equal to the frequency of o beeing equal to one given
p(i). Dispacements from this ideal cases can result in various kinds of biases.
In (a) we see an example of undeforecasting, that is the forecast probabilities
beeing regularly lower than the frequencies Pr(o|p(i)). On the other hand, (b)
shows the opposit problem, called overforecasting and consisting in the prob-
abilities being higher than the frequencies. These kind of problems are often
referred as unconditional biases.

A di�erent kind of biases are the conditional ones, in a certain sense they are
the ones in which the bias depends on the forecast itself. They are shown in the
bottom panels of Figure 3.2. In (c) we see an example of an undercon�dent or
poor resolution forecast. In this situation, the frequencies depends only weakly
on the forecast, and they are closer to the climatological distribution. Panel (d)
shows the opposit situation, called overcon�dence or good resolution, consisting
in Pr(o|p(i)) depending strongly on p(i).

The second part of the reliability diagram is the re�nement distribution. It
shows the frequency Pr(p(i)) with which each of the I categories appears in the
forecasts. Again, we use some example plot in Figure 3.3 for describing how the
curves can be interpreted.
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Figure 3.2: Four examples of calibration functions. Each of them represents an hy-
pothetical forecast a�ected by the problem described below the plot. With the symbol
p(i) we denote the forecast probability, while Pr(o=1|p(i)) represents the conditional
probabilities of the very�ng observation (or reanalysis) for each value of the forecast.
Together, the conditional probabilities consititute the calibration function, shown in
red. Note that undercon�dent and overcon�dent forecasts are sometimes referred as
good relolution and poor resolution, respectively. The values shown in red are cho-
sen manually for giving the correct shape for each cure. The plot is inspired by an
analogous one in [Wilks, 2011, p. 335].

These kind of plot are used for evaluating the con�dence of the algorithm. If
the values are ralely far from the mean value, as in panel (a), then the forecast
is undercon�dent. The opposit case can be seen in (c), where the forecast is
overcon�dent and often outputs extreme values. An intermediate con�dence
situation is shown in panel (b).

In order to apply this veri�cantion technique to our result, we need to adapt
the notation. Naturally, we start from the binary veri�cation tensors B and
the output probabilities Pinf and Psup. We �rst de�ned the tresholds for the
output probabilities. Altought the reliability diagrams for the single models are
not shown in this analyisis, we decided to keep the veri�cation fully compatible
with them and so we contrained the number of probability categories to �ve.

Obviously, the choice of this number need to be discussed. A DMO technique
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Figure 3.3: Three examples of re�nement distribution. With the letter y we denote
again the forecast probability, while Pr(p(i)) represent the frequency with which each
of the categories p(i) appears. On the x-axis, p represent the mean value of the
probability forecasts. The values shown in red are chosen manually for giving the
correct shape for each curve. Also this plot is inspired by an analogou one in [Wilks,
2011, p. 335].

applied to 5-memmber ensembles (such as the ECMWF-IFS and the CNR-ISAC
re-forecast used), can output only a set of 6 values, which is the number of
possible position of the tercile respect to the members. However, dividing the
interval between 0 and 1 (the domain of the calibration function) in six parts
gives a lenght of 0.16, that is not very comfortable to use, so we reduced the
number to �ve. The resulting probability intervals p(c) are: [0.0, 0.2], (0.2, 0.4],
(0.4, 0.6], (0.6, 0.8] and (0.8, 1.0], note that only the �rst is closed on both sides.
DMO techniques applied to a 25 memeber ensemble like the multi-mdoel one,
produces 26 probability categories. So, four of the previous intervals contains
5 of these values while the remaining one contains six of them. For example,
when using DV, six of the possible outcomes are inside the interval [0.0, 0.2],
due to DV assigning probability 0 to a forecast entirely above (below) the lower
(upper) tercile. However, this problem does not arise in the folloeing chapter,
beacuse the regression as a contiuous output.

For simply�ng the notation, we refer to each of the intervals using its central
value, so we de�ne:

p(c) = 0.1 + 0.2(c− 1),

with c = 1, ..., 5 beeing the category index.

So, once the intervals have been de�ned, we counted how many elements
from Pinf and Psup fall in each of them. Dividing this quantity by the number
of dates of the validation set gives us the frequancy of each of the forecast
categories:

Prinf(p
(c))(w, i, j) =

1

mV

mV∑
d=1

CTRP
(c)
inf (w, i, j, d),

Prsup(p(c))(w, i, j) =
1

mV

mV∑
d=1

CTRP (c)
sup(w, i, j, d).
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The quantity inside the sum acts as a counter for each category and tercile, and
it is de�ned by:

CTRP
(c)
inf (w, i, j, d) =

{
1 if Pinf(w, i, j, d) ∈ p(c)
0 otehrwise,

CTRP (c)
sup(w, i, j, d) =

{
1 if Psup(w, i, j, d) ∈ p(c)
0 otehrwise.

The conditional probabilities are obtained from the tensors B(w, i, j, d, 0)
and B(w, i, j, d, 2) counting how many times their elements are equal to one
when the corresponding prediction falls in each interval and dividing the results
by the total number of times Pinf and Psup are inside that interval. The formula
used for their computation is:

Prinf(o|p(c))(w, i, j) =
1∑

d = 1mvCTRP (w, i, j, d)

mV∑
d=1

CTRB
(c)
inf (w, i, j, d),

Prsup(o|p(c))(w, i, j) =
1∑

d = 1mvCTRP (w, i, j, d)

mV∑
d=1

CTRB(c)
sup(w, i, j, d).

This times there are two counters. The one inside the sum at the denominator
is the same as in the previous formula, while the other is given by:

CTRB
(c)
inf (w, i, j, d) =

{
1 if Pinf(w, i, j, d) ∈ p(c) and B(w, i, j, d, 0) = 1

0 otehrwise,

CTRB(c)
sup(w, i, j, d) =

{
1 if Psup(w, i, j, d) ∈ p(c) and B(w, i, j, d, 2) = 1

0 otehrwise.

Note that the quantities described above are computed for each of the val-
idation sets. So we �rst perform an average on all the 18 winters, the result-
ing values are Prinf(p

(c))(w, i, j), Prsup(p(c))(w, i, j), Prinf(o|p(c))(w, i, j) and
Prsup(o|p(c))(w, i, j).

3.3.3 Spatial averages

As in the previous chapter, all the scores are computed on a lat-lon grid and
the spatial average has to be performed using some weights.

We reintroduce the weights matrix:

W (i, j) = cos
(
φ(i)

)
,

from the previous chapter. For each of the scores we perform the spatial average
on �ve spatial regions: Northern Hemisphere (NH), Southern Hemisphere (SH),
Equatorial Belt (EB) and Europe (EU)6 and the whole Globe (ALL).

The results of these operation retain the same name assigned previously, at
which we add the superscript provided in parenthesis near each name.

6The de�nition of each of these region in terms of lat-lon boundaries can be found in the
Result section of the previous chapter.
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3.4 Results

In the following tables we expose the scores for the two DMO algorithms tested
in this chapter.

First of all, we look at the dependence of the scores from the forecast week.
Like for the non-probabilistic scores of the previous chapter, we see a degra-
dation of the performances with time. Focusing on the DV method, we see a
signi�cant di�erence between the multi-model and the single model, expecially
for the RPSS, shown in Table 3.1. The skill score for the multi-model is al-
ways more than double the other two, and this is particularly noticeable in the
Equatorial Belt. If we look at the RPS in that region (not shown here, for
avoiding redundancy due to the similarity with RPSS), it may seem strange
to discover that the value is not particularly high if compared to the ones rel-
ative to the remaining regions. We conclude that this score particularly low

is due to RPS
(clim)

beeing particularly good in comparison to the same value
over the other regions. So, the same ranked probability score for the forecast
result in di�erent skill scores depending on how good is the prediction based
only on the climatology. Note that, using DRPSS instead of RPSS, the gap
between the multi-model and the two single model is reduced. This is probably
due to their di�erence in the ensemble dimension. The multi-model contains 25
members, so its correction term D is approximately equal to 0.018, while the
other two contain 5 member each and, for them, D is �ve times greater, that
is D ' 0.09. The consequence is that the discrete skill score for the smallest
ensembles increase (respect to the non-discrete one) more than for the largest
ensemble. Another interesting features is the almost compleye lack of predicting
skill for the third and fourth weeks. On the contrary, for both DV and TPP,
we observe particularly high values for the �rst week, often more than double
te ones for the second week. For the multi-model, expecially for TPP and when
usingDRPSS, we can see values above 0.65 and sometimes close to 0.7. About
this split between the �rst two weeks and the remaining two we discussed in the
previous chapter, so we will not repeat the same set of reasons.

Tukey Plotting Position seems more promising: its values are generally bet-
ter than the DV counterparts. One of the most desirable features is that negative
values for RPSS and DRPSS are less common. The simplicity of the algo-
rithm, together with its capability of providing better results than DV, make
TPP the optimal candidate for comparison with the more complex method
tested in the following chapters.

Finally, we brie�y discuss the dependence of the score from the region over
which it is computed. The northern and the southern hemispheres seems to
follow a common trend, with the �rst two weeks beeing rather predictable and
the second one carachterized by values smaller but, for RPSS and DRPSS,
almost always positive. On the equatorial belt the behaviour is rather di�erent.
While the �rst week results signi�cantly less predictable with respect to the other
regions (expecially for the single models), the decrease in the third and fourth
weeks is less marked and, for the multi-model, the scores remain particularly
high. In Europe we see the opposite trend. Except for the �rst week, the values
are often lower than their counterpars on the other regions. The last two weeks
are almost totally unpredictable, with an RPSS always lower than zero, which
means that the forecast has less skill than climatology. The DRPSS con�rms
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w RPSS
(DV)
MM RPSS

(DV)
E RPSS

(DV)
C

1 0.64 0.33 0.23
2 0.27 0.11 -0.02
3 0.09 -0.02 -0.09
4 0.05 -0.03 -0.08

(a) Northern Hemisphere

w RPSS
(DV)
MM RPSS

(DV)
E RPSS

(DV)
C

1 0.63 0.33 0.24
2 0.30 0.11 -0.02
3 0.15 0.00 -0.09
4 0.08 -0.06 -0.14

(b) Southern Hemishpere

w RPSS
(DV)
MM RPSS

(DV)
E RPSS

(DV)
C

1 0.47 0.09 -0.06
2 0.29 -0.01 -0.13
3 0.22 -0.05 -0.12
4 0.19 -0.06 -0.11

(c) Equatorial Belt

w RPSS
(DV)
MM RPSS

(DV)
E RPSS

(DV)
C

1 0.66 0.31 0.22
2 0.19 0.03 -0.10
3 -0.06 -0.10 -0.18
4 -0.07 -0.10 -0.14

(d) Europe

Table 3.1: Ranked probability skill score for the Democratic Voting (DV) method,
averaged over the 18 validation winters. The four table present the spatial average
over the four di�erent regions de�ned in the previous chapter and the �rst column
shows, in blue, the week. The remaining column refer to the three models: in the �rst
one the are the values for the multi-model (RPSS

(DV)
MM ), in the second the ECMWF-

IFS ones (RPSS
(DV)
E ) and in the third the CNR-ISAC ones (RPSS

(DV)
C ). The value

corresponding to the best performances (the highest ones) for each row is highlighted
in red.
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w RPSS
(TPP)
MM RPSS

(TPP)
E RPSS

(TPP)
C

1 0.65 0.39 0.32
2 0.29 0.17 0.08
3 0.11 0.05 0.00
4 0.07 0.03 0.00

(a) Northern Hemisphere

w RPSS
(TPP)
MM RPSS

(TPP)
E RPSS

(TPP)
C

1 0.64 0.40 0.33
2 0.32 0.18 0.09
3 0.17 0.07 0.01
4 0.11 0.02 -0.03

(b) Southern Hemishpere

w RPSS
(TPP)
MM RPSS

(TPP)
E RPSS

(TPP)
C

1 0.49 0.19 0.09
2 0.31 0.09 0.01
3 0.24 0.04 0.00
4 0.21 0.03 0.00

(c) Equatorial Belt

w RPSS
(TPP)
MM RPSS

(TPP)
E RPSS

(TPP)
C

1 0.67 0.38 0.31
2 0.21 0.10 0.02
3 -0.02 -0.02 -0.08
4 -0.04 -0.03 -0.05

(d) Europe

Table 3.2: As in Table 3.1, but for the Tukey Plotting Position.
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w DRPSS
(DV)
MM DRPSS

(DV)
E DRPSS

(DV)
C

1 0.68 0.39 0.30
2 0.34 0.19 0.07
3 0.17 0.07 0.01
4 0.14 0.06 0.02

(a) Northern Hemisphere

w DRPSS
(DV)
MM DRPSS

(DV)
E DRPSS

(DV)
C

1 0.67 0.39 0.31
2 0.37 0.20 0.07
3 0.23 0.09 0.01
4 0.17 0.04 -0.03

(b) Southern Hemishpere

w DRPSS
(DV)
MM DRPSS

(DV)
E DRPSS

(DV)
C

1 0.52 0.17 0.04
2 0.36 0.08 -0.03
3 0.29 0.04 -0.02
4 0.27 0.04 -0.01

(c) Equatorial Belt

w DRPSS
(DV)
MM DRPSS

(DV)
E DRPSS

(DV)
C

1 0.69 0.37 0.29
2 0.27 0.11 0.00
3 0.04 0.00 -0.08
4 0.03 0.00 -0.04

(d) Europe

Table 3.3: Discrete ranked probability skill score for the Democratic Voting (DV)
method, averaged over the 18 validation winters. The divion in the four spatial region
and in weeks is done as in Table 3.1, as well as the color highlighting. As for RPSS,
the best values are the highest ones. Each of the remaining column refer to a di�erent
model: in the �rst one the are the values for the multi-model (DRPSS

(DV)
MM ), in the

second the ECMWF-IFS ones (DRPSS
(DV)
E ) and in the third the CNR-ISAC ones

(DRPSS
(DV)
C ). The value corresponding to the best performances (the lowest ones).
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w DRPSS
(TPP)
MM DRPSS

(TPP)
E DRPSS

(TPP)
C

1 0.69 0.45 0.38
2 0.36 0.25 0.17
3 0.19 0.14 0.10
4 0.16 0.12 0.09

(a) Northern Hemisphere

w DRPSS
(TPP)
MM DRPSS

(TPP)
E DRPSS

(TPP)
C

1 0.68 0.45 0.39
2 0.38 0.26 0.17
3 0.25 0.16 0.10
4 0.19 0.11 0.06

(b) Southern Hemishpere

w DRPSS
(TPP)
MM DRPSS

(TPP)
E DRPSS

(TPP)
C

1 0.53 0.27 0.18
2 0.38 0.18 0.10
3 0.31 0.13 0.09
4 0.29 0.12 0.09

(c) Equatorial Belt

w DRPSS
(TPP)
MM DRPSS

(TPP)
E DRPSS

(TPP)
C

1 0.70 0.43 0.38
2 0.29 0.18 0.11
3 0.07 0.07 0.02
4 0.06 0.07 0.04

(d) Europe

Table 3.4: As for Table 3.3, but for the Tukey Plotting Position.



3.4. RESULTS 49

this lack of skill, altought for themulti-model the score is slightly positive (but
very close to zero).

3.4.1 Reliability Diagram: DMO results

In this section, we provide the reliability diagrams obtained for the DMO tec-
niques applied to the multi-model.

Unlike for the other three scores, DV and TPP obtain rather similar results:
most of the time the di�erence between the correspondig values in di�erent
plot show changes only starting from the second decimal place. So, we can
present a general discussion that can be considered valid for both algorithms.
Recall that the reliability diagram can be used only for binary outcomes, so we
need to treat separately the two terciles. However, the di�erences between the
two sets of plot are again very limited, like for the comparison between di�erent
algorithms. Therefore we further reduce the description of the results, analyzing
the common trends.

As expected, the �rst week presents the calibration funcition (the red one)
closer to the ideal case (the dashed line), in all the four plots (Figures 3.4-3.5-3.6-
3.7). While the values for the �rst and last intervals are closer to the bisector of
the �rst quadrant, the performances in the other are poorer. In general, all the
curve falls below the dashed line, and as described previously when discussinf
Figure 3.2-(b), we are in presence of an overforecasting problem. Our algo-
rithms produces probabilities higher than the verifying frequencies, expecially
in the middle of the output range. In addition, an analysis of the re�nement
distribution reveals an high con�dence problem, with the two extremes of the
distribution having a aprticularly high frequenct respect to the central values.

In the following week the slope of the curve decreases, with the �nal week
presenting an almost horizontal calibration function. This means that the algo-
rithm becomes increasingly similar to the climatology, with the �ve categories
becoming approximately equiprobable. The high con�dence seen in the re�ne-
ment distribution persists during the second week of the forecast, but the column
corresponding to p(5) decreases in height. In the following weeks all categories
except the �rst converge to a common value.

These results will serve as reference values for the regression algorithms,
from which we expect some improvements.
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Figure 3.4: Reliability diagrams for the democratic voting algorithm, computed for
teh lower tercile tresholds. The four panel refer to the forecast weeks, as suggested
by the label below them. Each of the panel has the same structure: the plot outside
shows the calibration function (in red), while the smoller plot in the corner contains
the re�nement distribution (in blue).
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Figure 3.5: As in Figure 3.4, but for the upper tercile. Note the similarities between
the two plots: most of the values di�er only on the second decimal place.
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Figure 3.6: As in Figure 3.4, but for the Tukey plotting position method applied to
the lower tercile and TPP method.
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Figure 3.7: As in Figure 3.6, but for the upper tercile.
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Chapter 4

Logistic Regression

Due to the presence of bias and dispersion errors, DMO methods can lead to
unreliable resuslts. In our case, the 2-metre temperature provided by the model
can be, on average, higher or lower than the real one, or the dispersion of the
ensemble members cannot truly represent the real forecast uncertainty. Using
a regression technique can help to minimize the impact of these imperfections
on the results. [Wilks, 2011]

Being one of the most widely used algrtihms in literature (some examples
are Hamill et al. [2004], Whitaker et al. [2006], Wilks [2006], Wilks and Hamill
[2007], Wilks [2009]) we decided to use LR as the �rst MOS technique for
forecasting tercile probabilities. As mentioned before, LR can be implemented in
slightly di�erent ways, depending on the choice of the input features. However,
before discussing these details, it can be useful to give a small overview on the
general functioning of the algorithm.

4.1 The basic algorithm

Logistic regression is one of the basic machine learning techniques1. In this
analysis, it is used to predict the probability of a binary event (the temperature
anomaly being above or below each tercile) given a set of features. In order to
describe how it works, we can use a simple theoretical example: predicting the
probability of the (dependent) variable a being above the threshold a∗, given
the values of the indipendent variable (the predictor or feature) b.

1In this and in the following sections, we describe logistic regresson in its basic form and
then we provide the methodology for applying it to our speci�c task. All the information
contained in this description derive from the online course (often referred as Massively Open
Online Course, or MOOC) of Machine Learning from Coursera, provided by Standford Uni-
versity and taught by Professor Andrew Ng:
https://www.coursera.org/learn/machine-learning.
Logistic regression is a rather old algorithm and it is used for a wide range of application,
so this specialized course on machine learning gives to the student the knowledge for imple-
menting such techniques in an e�cient way. In order to manage wisely our computational
resources, we applied LR following the suggestions from the online class, from which we also
took the notation of the chapter, when possible. So, if not stated otherwise, the sources of
the description is always the online course. Naturally, a teoretical explanation of the algo-
rithm can be also found in Wilks [2011], where additional references to the scienti�c literature
(such as Applequist et al. [2002], Watson and Colucci [2002], Lehmiller et al. [1997] and Wilks
[2009]) regarding some application to the atmospheric forecasts are given.

55
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For the task, we have a training dataset of m examples, in which we know
both a and b. The value of each variable at the i-th example is given respectively
by a(i) and b(i), with i = 1, ...,m.

First of all, we de�ne a binary veri�cation vector y following the rule:

y =



y(1)

...
y(i)

...
y(m)

 , with y(i) =

{
1 if a(i) > a∗

0 otherwise.

Then, we create two feature vectors. The �rst is f0, its entries are all equal to
one and it is often called the �bias unit�, while the other is f1 and contains the
values of b:

f0 =



f
(1)
0
...

f
(i)
0
...

f
(m)
0


=



1
...
1
...
1

 , f1 =



f
(1)
1
...

f
(i)
1
...

f
(m)
1


=



b(1)

...
b(i)

...
b(m)

 .

From these vectors we obtain the feature matrix:

X =

[
(f0)T

(f1)T

]
=

[
1 . . . 1 . . . 1
b(1) . . . b(i) . . . b(m)

]
.

Each column inX represents the value of all the features for a given example (i)
and constitute a vector that, in order to simplify the notation in the following
discussion, we call f (i):

f (i) =

[
f
(i)
0

f
(i)
1

]
=

[
1
b(i)

]
In addition, for each of the feature we introduduce a coe�cient: θ0 and θ1.

Similarly to the procedure just described, these two values are gathered in a
single vector:

θ =

[
θ0
θ1

]
.

Obviously, the coe�cients do not vary across the dataset, therefore there is not
the superscript (i). Note that, unlike all the matrices and vectors previously
described, θ contains unknown values.

Finally, for a given example, the probability of a(i) being above a∗ is mod-
eled using the logistic function, which acts as the �hypothesis function� for this
particular alogirithm:

hθ(f
(i)) =

1

1 + exp(−θTf (i))

As a mean for keeping the example more concrete, we assign actual values to
a(i), b(i) and a∗, creating a dataset with m = 15 entries. I Figure 4.1 we show on
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Figure 4.1: Dataset for the example of the basic version of logistic regression. On the
left, the scatter plot showing on the x-axis the indipendent variable b (the predictor)
and on the y-axis the dependent one, b. The dashed line represent the threshold a∗.
On the right we show the binary veri�cation vector y as a function of the feature
vector f1, obtained respectively from a and b.

the left a scatter plot of a(i) and b(i), with the threshold a∗ represented by the
black dashed line. On the right there are the vectors f1 and y obtained from
these values. The pattern is rather clear: higher values of f i1 often correspond
to an higher probability of ai being greater than a∗. This is the rule that, in
the current exampole, LR has to learn.

For completing this task, we start with some random initialized coe�cients
θini. It is likely that the hypothesis function cannot model the desired probabil-
ity using this random vector. So, it is necessary a way to determine the optimal
values for θ: the aloìgorithm needs to be trained.

The �rst step is the decision of a �cost function�. Its role is to estimate
how much hθ(f

(i)) di�ers from y(i). The general form of such a function is the
following:

J(θ) =
1

m

m∑
i=1

cost(i),

where cost(i) is simply �cost� for the i-th example. It is the measure of how
much we want to penalize the algorithm if the outcome is hθ(f

(i)) while the
desired value is y(i). A possible candidate is the squared di�erence between
these two values, that happens to be the same function minimized in the linear
regression of the previous chapter:

J(θ) =
1

m

m∑
i=1

(
hθ(f

(i))− y(i)
)2
.

However, while in the previous chapter the hypothesis function was linear, in the
current algorithm it is not. This choice for J(θ) is a non-convex function and
this leads to some possible problems during the optimization. If we use the non-
linear hθ in this J , we may �nd that there are multiple local optima, therefore
not a desirable quality for a cost function. The problem arises when we want to
perform a numerical minimization: the optimization algorithm could �nd one
of those local minima and stay in it, without converging to the global minimum.
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Figure 4.2: Behaviour of the two possible choices for the term cost(i) in J(θ). We
show the cost as a function of the feature vector f , for a �xed example (i). The
veri�cation vector is also constant in each panel: in (a) its value is 0, while it is equal
to 1 in (b). As the legend suggests, the blue curve represent the logarithmic cost
function while the red one shows the other possibility, based on the squared di�erence.

To avoid this problem, we decide an alternative (convex) cost function:

cost(i) =

{
− log

(
hθ(f

(i))
)

if y(i) = 1

− log
(
1− hθ(f (i))

)
if y(i) = 0.

With some simple algebra, it can be shown that this is equivalent to:

J(θ) =
1

m

m∑
i=1

(
y(i) log

(
hθ(f

(i))
)

+ (1− y(i)) log
(
1− hθ(f (i))

))
. (4.1)

To better understand how the cost function works, in Figure 4.2 we show
the value of cost(i) for a single example in the dataset. The two cases y(i) = 0
and y(i) = 1 are treated respectively in (a) and (b). The similarity between the
two possible choices for cost(i) is evident: both of them increase whith the rise
in the di�erence between the hypothesis function and y(i). The blue curve (the
one using the logarithms) has a sharper increase (in (a)) and decrease (in (b))
than the red one. This results in a slightly contrasting behaviour when treating
the two extreme cases: in the logarithmic case, hθ is more penalized when it
is particularly far from the real value y(i), while the contrary happens when
these two values are closer. Note that what matters in deciding how much hθ
is penalized is the relative value of cost(i) at the two extremes of the codomain
of hθ, not its absolute value. This is a consequence of the freedom in the choice
of the �cost� and, of course, of the consistent use of the same cost function
troughout the regression, without switching between various possibilities.

Due to its nature of convex function, we chose for the following analysis to
use always the �logarithmic� cost function (4.1). Of this function, we also know
the gradient:

∂J(θ)

∂θj
=

1

m

m∑
i=1

(
hθ(f

(i))− y(i)
)
f
(i)
j ,
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Figure 4.3: Hypothesis function (in blue) for the simple example described in the
�rst section of the chapter, together with the binary veri�cation vector (in red). The
scale of the two axis is the same, however a larger number of ticks are shown on the
right one due to hθ being a continuous function while y can assume only the values
0 and 1. On the x-axis there is the feature vector f1, the whole dataset is the same
as in Figure 4.1. The value θ∗ used for the hypothesis function is obtained through a
real minimization of the cost function over the examples, using BFGS.

with j = 0, 1 in our example. The gradient plays an important role in the mini-
mization algorithm. Normally, d�erent methods can be used to �nd the optimal
θ: all of them require the knowledge of the cost function, but only a subset also
needs ∂J(θ)/∂θj (and there are algorithms with higher degree of complexity
that make use of the Hessian matrix or other additional informations).

We, after some performance test using the real dataset (the 2-metre tem-
perature anomaly �elds) for computing the tercile probabilities, decided to use
as minimization method the quasi-Newton method of Broyden, Fletcher, Gold-
farb, and Shanno (BFGS) [Jeorge Nocedal, 2006] as provided by the function
minimize from the optimize module of the scipy package (Python 2.7)2.

Going back to our simple example, we now possess all the ingredients for
applying LR. We give to the minimization routine the cost function J(θ), its
gradient ∂J(θ)/∂θj and the initial guess for the coe�cient θini previously de-
�ned. The output is the set of coe�cients θ∗ that achieve the lowest cost. Using
them, we obtain the plot shown in Figure 4.3, in which the curve in blue rep-
resents hθ∗ as a continuous function of f while the binary veri�cation data are
reported in red.

As expected, LR has learnt to predict an high probability of y being equal
to one (or, in other terms, of a being above the threshold a∗) when f1 (or anal-
ogously b) is su�cently greater than zero. This example can be seen as the
basic implementation of this machine learning algorithm, useful for understand-
ing how the fundamental components work and what roles they play. However,
before apllying the procedure to our real dataset, there are some additional
terms that need to be introduced and discussed, in order to achieve adequate
performances.

2More information about the function can be found on the scipy website:
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html .
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4.2 More advanced concepts

In this section we summarize all the modi�cations to the basic algorithm in-
troduced before. The description has been split in subsections, to keep the
discussion clear and understendable.

4.2.1 Feature space with higher dimensionality

The �rst modi�cation introduced is the possibility of applying LR using more
than a single feature. The vector notation already introduced can help with this
task, as we show in the following example. Instead of having only one predictor
b, suppose that there are n values, b1, ..., bn. Starting from them, we create the
features vectors:

f0 =



f
(1)
0
...

f
(i)
0
...

f
(m)
0


=



1
...
1
...
1

 , f1 =



f
(1)
1
...

f
(i)
1
...

f
(m)
1


=



b
(1)
1
...

b
(i)
1
...

b
(m)
1


, . . . , fn =



f
(1)
n

...

f
(i)
n

...

f
(m)
n


=



b
(1)
n

...

b
(i)
n

...

b
(m)
n


.

Analogously to the previous case, from these vectors we create the feature ma-
trix:

X =


(f0)T

(f1)T

...
...

...
(fn)T

 =


1 . . . 1 . . . 1

b
(1)
(1) . . . b

(i)
(1) . . . b

(m)
(1)

...
...

...

b
(1)
(n) . . . b

(i)
(n) . . . b

(m)
(n)

 .
A larger number of features also requires an adequate number of coe�cients:

θ =


θ0
θ1
...
θn

 .
Naturally, the binary veri�cation vector y remains the same.

Now that all the basic matices have been rede�ned, the vector notation
demonstrates its usefulness: the hypothesis function, the cost function and its
gradient preserves exactly the shape described in the previous section. In or-
der to actually see what logistic regression does when used with more than one
feature, we modify the previous example introducing a second feature b2, re-
naming b as b1. Without repeating all the steps, we show directly the results
in Figure 4.4. The plot is three dimensional, with the two vector features on
the x and y axis, while on the z axis hθ is reported. Note that the projection
of the surface representing the hypothesis function on a vertical plane has the
same shape seen in the one dimensional case, which is exactly what we would
expect from a generalization on more dimensions. The view �from above� (b) is
particularly intersting: it shows us that on the feature space (that is the plane
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Figure 4.4: Hypothesis function for the 2-dimensional case presented as an exstension
of the example from the previous chapter. The panel on the left shows a 3-dimensional
view of the surface corresponding to hθ, whose values are on the z-axis, while the x
and y axis shows the two features f1 and f2. On the right, the same plot but seen
from above, therefore looking at the plane generated by f1 and f2. The black circles
correspond to y(i) = 0, while the white one represent the examples for which y(i) = 1.
Note that as f1 we chose the same vector as in Figure 4.3, while f2 contains some
new values. Again, the coe�cient vector θ∗ used in hθ has been obtained through
numerical minimization of the cost function over the dataset.

de�ned by the two features f1 and f2), the curves of equiprobability (the couples
(f1,f2) sharing the same value of hθ(X)) are straight lines. This generalizes
to an arbitrary number of dimension in the following way: in a three dimen-
sional feature space we �nd planes of equiprobability and, in the most general
form, for an n-dimensional space there are (n − 1)-dimensonal hyper-planes of
equiprobability.

This is a fundamental feature of logistic regression and it imposes some
constraints on which rule the algorithm can learn. Without modifying the fea-
tures, LR cannot represent non-linear equiprobability curves. Of course, we can
always add new feature that are non-linear modi�cation of the original ones

(like (f
(i)
1 )2, for example), but it is an operation performed manually and it is

not always clear which non-linear function is the optimal representation of the
function we want to learn.

4.2.2 Unde�tting and over�tting

Logistic regression, like most of the regression methods, can su�er from unde�t-
ting or over�tting. These problems arise when the algorithm learns a function
that does not �t the data correctly. In particular, they represent the two possible
extreme cases:

• under�tting occur when the regression is not able to represent the com-
plexity underlying the data;

• over�tting happens when a function with a too high degree of complexity
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Figure 4.5: Three di�erent �t of the same dataset (the black triangles), obtained
through random perturbation on both x and y coordinates of a parabola. Panel (a)
shows a linear regression of the points, that we use as an example of under�t. In
(b) we use a octic �t (polynomial of degree 8), a clear example of over�t. Finally, in
(c) we use a quadratic curve that, as expected, follows approximately the shape of
the parabola from which the points have been generated. The determination of the
coe�cient has been performed using the poly�t function from Matlab.
(Documentation: http://www.mathworks.com/help/matlab/ref/poly�t.html .)

is used for the regression, therfore it is not able to generalize well on data
outside the training dataset.

They can be more easily understood through a simple example, like the one
in Figure 4.5. We generated some points (the training set), �rst using the rule
y = b2x

2+b1x+b0 and then adding some random perturbations on both x and y,
so that they follow what approximately seems a parabola. We test three possible
�ts: f(x) = a1x+a0 in (a), f(x) =

∑8
i=0 aix

i in (b) and f(x) = a2x
2+a1x+a0

in (c). Ideally, we want these function to learn from the data the initial rule,
so that, if we extract some extra data (the test set) from the original function,
they would be near the curve obtained from the �t.

In (a), nearly all the points at the two extremes of the domain are below
the red line, while the ones in the middle are above it. This is an hint that
probably a linear �t is not the best one for this set of data, because of the
excessive simplicity of the functions that it can generate. In addition, knowing
the initial rule, (a) tells us that in an hypothetical test set, elements with x
particularly small or high will probabily be far from the red curve. In (b) we
see the opposite situation. At a �rts glance, the �t seems almost perfect: the
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Figure 4.6: Ideal example of the behaviour of the error over the training (teal curve)
and the validation (orange curve) sets, as a function of the complexity, cmpx, of the
algorithm. All the quantity have not been clearly de�ned because we are discussing a
general trend, valid for di�eren algorithms and their speci�c choice of the error function
or their measure of complexity. Naturally, such a plot is useful as a conceptual tool
more than as a concrete one, due to the di�culty (or impossibility) of varying cmpx.

violet curve is very close to nearly all the training data. However, looking again
at the extremes of the x-axis, this function will not perform well on the test set.
The function generated by the �t tries to pass through all the points, reaching
an high degree of complexity that is far from the original function. We can
imagine that on the test set, expecially near x = 0 (where the violet curve has
extremely high values) or x = 15 (where the function decreases sharply), this �t
will have low performance. Obviously, the right �t is the one shown in (c): it
is nearer to the training points than the red curve and less close than the violet
one, but it has the right shape to perform relatively well also on the test set.
Naturally, this is only a qualitative discussion, we did not introduce error bars
to quantify the performances. The aim of these plots is only to give an intuitive
idea of the two terms just introduced.

Now that we have an intuitive idea of these two problems, we can ask ourself:
�how can we identify such problems in our logistic regression? And how can we
deal with them?�

To answer the �rst question, we normally have to look at the preformance
of the algorithm on both a training and a validation set of data. In fact, it
is not always possible to look at the hypothesis function (the analogous of the
f(x) of the previous example), because the feature space can have an high
dimensionality. So, a visual analysis like the one just presented is a very limited
approach, useful only when we have one or two features and a small dataset.

A more general approach is looking at the error (the speci�c function chosen
for this role can vary depending on the problem, so we name it err) on the two
datasets. Imagine that we can summarize the complexity of the algorithm using
a single variable, that we will call cmpx. Ideally, plotting err as a function of
cmpx would result in a plot similar to the one in Figure 4.6. There we can see
errtrain in teal and errval in orange: the �rst one in theory falls with the increase
in complexity, while the second has an initial decline followed by a rise. In re-
ality, a pattern like that is never so well de�ned, due to the presence of spikes
and random �uctuations. In addition, changing the model complexity is often
a di�cult operation that requires redifying the features set and, consequently,
writing entirely new programs, which need to run again on the whole dataset.
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Figure 4.7: Learning curves for two hypotetical cases in which the error over the
validation set (orange curve) is considered too high. In panel (a) we see an under�tting
example, with the errors over the training set (teal curve) and the validation one being
rather close for high values of m (the dimension of the training set). In (b) we see the
opposit scenario, over�tting, where the gap between the curves is signi�cantly wider.

So, normally we do not possess such a plot, but only the values corresponding
to the actual level of complexity of the algorithm used in the analysis. Never-
theless, it is an useful conceptual model for understanding how we can diagnose
under�tting or over�tting. The �rst quantity that we usually evaluate is errval,
on which is often based our level of satisfaction with the method. However, an
high value of this estimator cannot decrete by itself of which problem su�ers
our regression. So, it can be useful to compute also the error on the validation
set. Normally, when the degree of complexity is excessively low, the algorithm
performs relatively bad in both sets (with probably slightly better performances
on the training one), this means that we are not using a tool capable of extract-
ing all the information contained in our data. On the other hand, an algorithm
capable of representing function too elaborate (and kept free to do so) can try to
�t perfectly the training data, resulting in errtrain particularly low. Nonetheless,
when the same function is tested on another set, its performance are disappoint-
ing, like in the simple example shown before. The method is �too powerful� and
its atempt to modelize also the random �uctuation (that inevitably a�ect the
data) leads to an output rule that overlay with the real one only in some speci�c
points, that are indeed the elements of the training set.

Another useful tool for checking eventual problems in out algoritm is the
learning curve. Unlike the previous plot, this curve can be obtained rather
simply. It shows the error, again on both training and validation set, as a
function of the dimesnion of the training set, m. Normally, m is a �xed quantity
that depends on how much data we possess, so increasing it is non always
straightforward. Decreasing it, on the other hand, is often e�ortless. Therefore,
we can choose some values mi < m, for which we repeat the calculation, which
hopefully needs less computational resources that the complete one, due to the
lower amount of examples involved. Then, we plot the results and, ideally, the
two extreme cases that we can obtain are the ones shown in Figure 4.7. In both
of them, the validation error is too high (it is the same curve in (a) and (b))
and we want to understand what is the cause, so we compare it to errtrain for
all the mi. In a realistic scenario, we would not have two continuous curves, but



4.2. MORE ADVANCED CONCEPTS 65

only some points, nevertheless in this theoretical discussion we wanted to keep
the plots as simple as possible. At a �rst glance the two plot seems to show
the same trend: errtrain increases as a larger number of examples is used for
the training (when using few data, even a simple algorithm can output a curve
close to all of them, when the number rises the task become more di�cult), while
errval decreases (due to the better training of the method, which had a larger
amount data for extracting information on the underlying function). However,
a closer look reveals a fundamental di�erence for high values of mi. In (a),
the two errors are rather close and this is a classical example of under�tting.
Recalling the �rst example, this behaviour can be easily understood imagining
what would happen when we �t a straight line through some data generated by
a quadratic funcrtion. In this case, adding more example would not improve the
�t, because the function simply cannot represent the complexity of the original
one. In (b) there is a more signi�cant gap between the teal and the orange curve.
This means that the algorithm is �tting quite well the training examples, while
it is not generalizing well on the validation ones. This means that we are in
presence of an over�tting problem.

Note that these learning curves are not only a duplicate of what we can
discover just comparing the errors on the two set. First of all, the information
that they brings is more complete than what we can extrapolate from a single
couple of values. In addition, they give us useful information on how to solve
these problem. This bring us back to the original questions, in particular to
the second one. Normally, there are di�erent options for dealing with these
unwanted low performances. A small (and not exaustive) list include:

• obtaining more example to expand the training set,

• choosing a smaller set of features to use as input of the algorithm,

• increasing the number of features by adding di�erent predictors or by cre-
ating new features starting from the original ones (like adding polinomial
terms).

The �rst solution can help with over�tting. An intuitive idea for why this
happens came from the learning curve. If we imagine to expand the x-axis,
probably errval will continue to decrease, until it arrives near the other curve,
which in turn will rise. This kind of solution, however, does not work well
with under�tting. Again, the learning curve helps with the intuition. Normally,
errval cannot be lower than errtrain (except for some random �uctuation). In
Figure 4.7 (a) the two values are already close together, the gap can decrease
only by a small amount by increasing m.

Reducing the number of features can also help with over�tting but not with
under�tting. This is rather evident looking at their de�nition and at the exam-
ples shown in Figure 4.5. The opposit operation can solve unde�tting, as we
can reasonably expect. In both operations, is implied that the choosing of the
features is done evaluating each time which predictand brings more information
and which, instead, is redundant.

Finally, the last solution that we propose is regularization. This introduces
some signi�cant changes in the algorithm, and deserves a separate subsection.
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4.2.3 Regularization

Regularization starts as a method for adressing over�tting without having to
decrease the number of features. It works by reducing the value of the param-
eters in the regression. Instead of focusing on a teoretical description, like in
the previous section, we prefer to show directly its implementation on logistic
regression. This is due to the notable modi�cation it brings to the algorithm,
in particular to the cost function.

When we initally discussed the basics of LR, we introduced the feature ma-
trix X and the coe�cent vector θ. Each member in the latter refer to one
speci�c fetaure, which in turn constitutes a row in X. With regularization, we
want to keep the value of each coe�cient relatively low. So, we introduce the
vector λ:

λ =



λ0
...
λi
...
λn

 =



0
...
λ
...
λ

 ,

where n is the number of features (we are treating now the general case of a
n-dimensional feature space). Note that λ has the same shape of θ, with n+ 1
entries, of which the �rst has the subscript 0 and refers to the bias unit f0. As
a general rule, we do not apply regularization to f0, even if there is nothing
that forbid such an operation. This is a standard practice in machine learning.
Also, in all the cases we used the same value λ for all the features.

Using this notation, the cost function become:

J(θ) =

(
1

m

m∑
i=1

(
y(i) log

(
hθ(f

(i))
)

+ (1− y(i)) log
(
1− hθ(f (i))

)))
+

+
1

2m

n∑
j=0

λjθ
2
j , (4.2)

and the new gradient is given by:

∂J(θ)

∂θj
=

(
1

m

m∑
i=1

(
hθ(f

(i))− y(i)
)
f
(i)
j

)
+

1

m
λjθj . (4.3)

The hypothesis function is not a�ected by regularization and remain the same
as shown in the previous sections.

Since we �nished the exposition of all the math behind the procedure, we
can brie�y explain intuitively what role does λ play. Normally, when there is
over�tting, the regression is trying to pass as close as possible to all the training
example. For doing so, the function needs to be sensitive to small changes in
the inoput variables, and this transaltes in high values for the coe�cients. The
regularization term

Jreg =
1

2m

n∑
j=0

λjθ
2
j
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has the speci�c role of targeting these high values. Inserting Jreg in the cost
function is a way to equiparate an excessively high coe�cient to the error as-
sociated with a bad �t (that usually depends on how much the examples are
far from the curve). So, the minimization algorithm has to �nd a compromise
between these two kind of error and is less prone to output extremely high
coe�cients, with the exception of these θs being really necessary for a good �t.

Finally, we can discuss how the parameter λ is chosen. Normally, we use a
cross-validation approach, trying di�erent versions of the algorithm each with a
di�eren value for the regularization term (included λ = 0, that is the same of no-
regularization). Then, the one that gives the best output is chosen as the �nal
value. Sometimes, regularization is not needed. In these cases, cross-validation
will give the best performances for λ = 0 or for some extremely low values of
the parameter. However, its uselfuness often cannot be determined a priori,
so a test with a small set of parameter is useful in most cases and it is worth
the computational time spent. Note that, if not used correctly, regularization
can lead to under�tting, preventing the algorithm to represent compelx enough
functions. In this case, the solution is obviously to reduce λ.

4.2.4 Multi-class logistic regression

Analogously to what we did with the expansion of the feature space to n di-
mension, we can do the same operation to the output space. Using the example
at the beginning of the section, instead of learning to predict if a variable a is
above a threshold a∗, we can apply the algorithm to an arbitrary number of
variables a1, ..., ak (each with its threshold a∗i , but this is a detail not important
to understand the concept).

The �rst modi�cation introduced is in the binary veri�cation vector. Now
we have k vectors:

y1 =



y
(1)
1
...

y
(i)
1
...

y
(m)
1


, . . . , yj =



y
(1)
j
...

y
(i)
j
...

y
(m)
j


, . . . , yk =



y
(1)
k
...

y
(i)
k
...

y
(m)
k


,

each of them de�ned by:

y
(i)
j =

{
1 if a

(i)
j > a∗j

0 otherwise.

with j = 1, ..., k being the index for the actual output predicted and i = 1, ...,m
the one for counting the examples in the dataset.

The simplest approach is to split the problem in k di�eren regression, using
each time one of the yj as the veri�cation vector and following the same pro-
cedure explained in the previous section. When LR is used as a classi�cation
technique, this method is often called the �one vs. all classi�cation�. Altough
this can be used in our speci�c case, we will follow a slightly di�erent approach.
This, however, requires at least a little introduction about the speci�c task at
which we will apply LR. Even if the same procedure can be extended to a wider
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variety of problems, we think that it will be more easily understandable ap-
plied directly to the computation of tercile probabilities. So, we postpone the
descpription to one of the following sections.

With the extension to more than just one class, we end the exposition of the
slightly less basic versions of LR. Therfore, we proceed with the application of
the algorithm to our analysis.

4.3 Computing tercile probabilities

In this section, we give a brief overview of how logistic regression is used for
computing the probabilities that 2-metre temperature anomalies are in each one
of the three terciles of the reanalysis distribution (over the training period).

For this section only, in order to simplify the discussion, we introduce a
new notation for some quantities concerning the ensembles. While the tensors
introduced when treating DMO was useful when working with all the forecast
weeks and the grid points, during a more teorethical discussion it can resutl
distracting, due to the high number of indexes, subscripts and superscripts. So,
imagining to apply LR for predicting the probabilities for a �xed region referring
to a single forecast time, we de�ne:

• x(i), the ensemble mean of the i-th example,

• σ(i), the ensemble standard deviation of the i-th example,

• q1/3 and q2/3, respectively the value of the �rst and second tercile of the
reanalysis distribution,

• t(i)2m, the value of the 2-metre temperature anomaly of the i-th example.

As always, m is the number of example in the training set.

Using these quantities, we �rst de�ne the feature vectors:

f0 =



1
...
1
...
1

 , fx =



x(1)

...

x(i)

...

x(m)

 , fσ =



σ(1)

...
σ(i)

...
σ(m)

 , fxσ =



x(1)σ(1)

...

x(i)σ(i)

...

x(m)σ(m)

 ,

from which we create three di�erent feature matrices:

X(α) =

[
(f0)T

(fx)T

]
,

X(β) =

 (f0)T

(fx)T

(fσ)T

 ,
X(γ) =

 (f0)T

(fx)T

(fxσ)T

 .
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They give us the shape of the three coe�cient vectors:

θ(α) =

θ(α)0

θ
(α)
x

 , θ(β) =


θ
(β)
0

θ
(β)
x

θ
(β)
σ

 , θ(γ) =


θ
(γ)
0

θ
(γ)
x

θ
(γ)
xσ

 .

Finally, we de�ne the veri�cation vectors for the two quantiles:

y1/3 =



y
(1)
1/3

...

y
(i)
1/3

...

y
(m)
1/3


with y

(i)
1/3 =

{
1 if t

(i)
2m < q1/3

0 otherwise,

y2/3 =



y
(1)
2/3

...

y
(i)
2/3

...

y
(m)
2/3


with y

(i)
2/3 =

{
1 if t

(i)
2m < q2/3

0 otherwise.

Naturally, three sets of features and coe�cients imply that each of them is
used in a slightly di�erent implementation of the hypothesis function:

h
(α)
θ

(
X(α)

)
=

1

1 + exp
(
−(θ(α))TX(α)

)
h
(β)
θ

(
X(β)

)
=

1

1 + exp
(
−(θ(β))TX(β)

)
h
(γ)
θ

(
X(γ)

)
=

1

1 + exp
(
−(θ(γ))TX(γ)

)
From these values we extract directly the probabilities. The coe�cients obtained
using y1/3 and y2/3 result in hθ being the probability that the temperature

anomaly is respectively below the �rst and second tercile (Pr(t
(i)
2m < q1/3) and

Pr(t
(i)
2m < q2/3)) for the i-th example.
Before proceeding, it can be useful a brief explanation of why we have decided

to implement these three version of the algorithm. They di�er only for the
predictors, so we focus on the reason behind their choice. The �rst matrix,
X(α), contains only the ensemble mean. This is the most basic set of features
we tried: knowing the the terciles and value of the anomaly predicted (averaged
on all the ensemble members), LR extrapolates the probability that the latter is
above or below the threshold. The other two matrices, X(β) and X(γ), contain
also the ensemble spread. Altough in some studies [Hamill et al., 2004] the
introduction of this predictor did not improve the �nal outcome, we tried these
two implementation with the hope that the standard deviation would bring
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some useful infomation. Intuitively, the same distance between x(i) and q1/3 or

q2/3 can result in di�erent probabilities of t
(i)
2m being in one tercile or another

depending on how scattered are the ensemble members. The reason for using
the product xσ lies in the possibility of interpreting algorithm as a regression
using only x as input feature, but with the coe�cient associated to it depending
linearly on σ [Wilks, 2011]:

θ
(γ)
0 + θ

(γ)
x x+ θ

(γ)
xσ xσ = θ

(γ)
0 + θ∗x(σ)x with θ∗x(σ) = θ

(γ)
x + θ

(γ)
xσ σ

However, in literature [Wilks, 2006] the use of only σ as the second predictor
has lead to slightly better forecast, on some arti�cial dataset. This is the reason
why we tested both versions on our dataset.

4.3.1 Uni�ed Logistic Regression

Until now, we have simply de�ned some sets of predictors and applied the pro-
cedure described in the previous sections. From this point, we can consider the
two veri�cation vectors separately and repeat for each choice of features the
entire procedure, one for each tercile. A closer look to the hypothesis function,
however, reveals a speci�c problem in this methodology.

We temporarly focus on the �rst variant of the algorithm, because it is the

simplest one. First, we write h
(α)
θ explicitly as a function of fx and then, using

some simple algebra, we obtain the following relationship, linear in x:

log

(
h
(α)
θ

(
X(α)

)(
1− h(α)θ (X(α)

)) = θ
(α)
0 + θ

(α)
1 x.

Naturally, a di�erent set of coe�cients is obtained for the �rst and second
tercile. So, if we plot in a single graph the two straight lines corresponding to
those sets of coe�cients we obtain something similar to the example shown in
Figure 4.8-(a).

The problem arises when we want to derive probabilities from the hypoth-
esis function. In fact, the coe�cients obtained using y1/3 and y2/3 are totally
indipendent from each other, so the two straigh lines can cross. This means
can result in Pr

(
t2m < q2/3

)
being lower than Pr

(
t2m < q1/3

)
, for some values

of x. This is an inconsistency: for such a relationship to be possible, we need
either Pr

(
q1/3 < t2m < q2/3

)
to be negative (that is against the basic rules of

probability) or q1/3 > q2/3 (that is against their de�nition).

To solve this kind of problem, we follow the methodology explained in Wilks
[2009]. So, we �t all the quantiles contemporarely using a procedure normally
called �uni�ed logistic regression�. We introduece a function g(q) as an addi-
tional term into the hypothesis function, that become:

h
(α)
θ

(
X(α)

)
=

1

1 + exp
(
−(θ(α))TX(α) − g(q)

) .
Naturally, this methodology can be extended for the other two variants of the
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(b) Uni�ed LR

Figure 4.8: Comparison between the probabilities obtained for the two terciles using
the standard logistic regression (panel (a)) and the uni�ed version (panel (b)). The

left y-axis of each panel shows the quantity log
(
h
(α)
θ /(1 − h(α)

θ )
)
, which has a linear

relationship with the feature (in this case the ensemble mean x, measured in Kelvin).
The right y-axis, instead, shows the probabilities that the anomaly lies below the
tercile, Pr

(
t2m < q

)
, obtained directly from the hypothesis function. The �gure is

inspired by the analogous plots from [Wilks, 2011, p. 288] and Wilks [2009].

algorithm:

h
(β)
θ

(
X(β)

)
=

1

1 + exp
(
−(θ(β))TX(β) − g(q)

) ,
h
(γ)
θ

(
X(γ)

)
=

1

1 + exp
(
−(θ(γ))TX(γ) − g(q)

) .
As g(q) we use:

g(q) = θqq,

one of the three functions proposed in Wilks [2009]. To see how this new vari-
ant solves the inconistency problem in the result, we return brie�y to the simple
example in Figure 4.8. Now, because all the training examples are �t simulta-

neously, the coe�cient θ
(α)
x (that represents the slope of the curve) is the same

for both the terciles. The intercept is di�erent, because it is given by the sum

of θ
(α)
0 (constant in the two cases) and g(q) (that obviously varies dependig on

the tercile). Therfore, the two lines are parallel and cannot cross, so there is no
inconsistency in the probability for any value of x. This behaviour can be seen
in Figure 4.8-(b). Naturally, all this discussion can be extended to the other two
choices of predictands, but in those cases the feature space is two dimensional
and the visualization can be a little less clear.

Finally, we can discuss how this change a�ects the cost function and its
numerical minimization. Altough this new term has a di�erent origin than the
other components of the algorithm, we can incorporate q into the feature matrix
X, while the new coe�cient θq becomes an element of the vector θ. In this way,
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all the formulas become formally identical to the basic LR and we can follow
the same procedure explained in the previous sections.

So, we �rst rede�ne the veri�cation vector y. Note that, because the �t
is done at the same time for the two terciles, we now have one single vector.
Di�erently from the previous case it contains 2m elements instead of m:

y =



y(1)

...
y(i)

...
y(m)

y(m+1)

...
y(m+i)

...
y(2m)



(4.4)

with:

y(i) =

{
1 if t

(i)
2m < q1/3

0 otherwise,
for i = 1, ...,m (4.5)

y(i) =

{
1 if t

(i)
2m < q2/3

0 otherwise,
for i = m+ 1, ..., 2m (4.6)

Then, we rede�ne f0, fx, fσ and fxσ duplicating their elements in order to
be compatible with y.

f0 =



1
...
1
1
...
1


, fx =



x(1)

...

x(m)

x(1)

...

x(m)


, fσ =



σ(1)

...
σ(m)

σ(1)

...
σ(m)


, fxσ =



x(1)σ(1)

...

x(m)σ(m)

x(1)σ(1)

...

x(m)σ(m)


. (4.7)

In addition, we introduce the new feature vector:

fq =



q1/3
...

q1/3
q2/3
...

q2/3




2m elements. (4.8)
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These vectors are combined in the �nal three feature matrices:

X(α) =

 (f0)T

(fx)T

(fq)
T

 , (4.9)

X(β) =


(f0)T

(fx)T

(fσ)T

(fq)
T

 , (4.10)

X(γ) =


(f0)T

(fx)T

(fxσ)T

(fq)
T

 . (4.11)

The modi�ed coe�cients vectors are:

θ(α) =


θ
(α)
0

θ
(α)
x

θ
(α)
q

 , θ(β) =



θ
(β)
0

θ
(β)
x

θ
(β)
σ

θ
(β)
q


, θ(γ) =



θ
(γ)
0

θ
(γ)
x

θ
(γ)
xσ

θ
(γ)
q


. (4.12)

With this new notation, the hypothesis function is always in the form:

hθ(X) =
1

1 + exp
(
−(θ)TX

) ,
where X and θ are each time substituted with one of the nine possibilities.
The same is true for the cost function and its gradient, which remain as in
Equation 4.2-4.3. For the regularization term we try the following values:
λ = 0.0, 0.001, 0.01, 0.1, 1. The minimization algorithm is BFGS, as in the �rst
example of this chapter.

4.3.2 Application to the re-forecasts

As we mentioned in the previous section, the notation in which the di�erent
versions of LR have been presented imply that the analysis is performed on a
single grid point and forecast time. This is not our case: the dataset that we
want to analyze is on a lat-lon grid of 1◦resolution covering the whole globe and
it is split in four forecast weeks. For this reason, we re-introduce the tensor
notation from the previous chapter. In addition, in order to compare the multi-
model performance with the ones obtained from its two components, we repeat
the computation three times, for the multi-model and for each model. It can be
useful to brie�y recall all the symbols assigned to the various quantities. First
of all we have EE(w, i, j, d, l), EC(w, i, j, d, l) and EMM(w, i, j, d, l), containing
all the members of each ensemble. The ensemble mean is in XMM(w, i, j, d),
XE(w, i, j, d) and XC(w, i, j, d). Then, there are the reanalysis, all in one
tensor Y (w, i, j, d). From them we obtained �rst the terciles on the training
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set, Y1/3(w, i, j) and Y2/3(w, i, j), followed by the binary veri�cation tensors
B(w, i, j, d, 0), B(w, i, j, d, 1) and B(w, i, j, d, 2), respectively for the �rst, sec-
ond and third interval in which the distribution is split by the terciles. Recall
that their element are equal to 1 when the correspondig reanalysis falls in the
tercile considered, 0 otherwise.

Finally, we introduce three new tensors, containing the ensemble standard
deviation. For the ECMWF-IFS and the CNR-ISAC models the procedure
is rather straightforward. Starting from EE and EC, the standard deviation
is computed along the last dimension of these tensors, following the formulas
below:

SE(w, i, j, d) =

√√√√1

5

4∑
l=0

(
EE(w, i, j, d, l)−XE(w, i, j, d)

)2
,

SC(w, i, j, d) =

√√√√1

5

4∑
l=0

(
EC(w, i, j, d, l)−XC(w, i, j, d)

)2
.

On the contrary, for the multi-model there are di�erent options. Starting
from EMM, we can use a formula analogous to the previous case, :

SMM(w, i, j, d) =

√√√√ 1

25

24∑
l=0

(
EMM(w, i, j, d, l)−XMM(w, i, j, d)

)2
.

The problem is that EMM is an artifact created only for the DMO methods and
not a real ensemble. In an operationa situation, if only LR is used for predicting
probabilities, the computation of EMM requires additional resources. In fact,
the linear regression of XE and XC gives directly XMM, without the need of
computing all the members of the multi-model.

These resources can maybe be spared using the alternative version proposed
below. In this version, SE and SC are used as predictands in place of a single
value representing the multi-model standard deviation. This is analogous to
imposing that SMM is a linear combination of SE and SC, with the logistic
regression coe�cients acting also as coe�cients for this combination. Obviously,
this is only a rough approximation. Its performances will be compared with the
one obtained using SMM before deciding if it is reasonable.

4.3.3 Adjusting the notation

We use the notation presented in the previous section as basis. We introduce
the dependence from the grid point (i, j) and from the week w. The �rst to be
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re-de�ned is the veri�cation vector, that becomes a tensor and is given by:

Ylr(w, i, j, :) =



B(w, i, j, 0, 0)
...

B(w, i, j, d, 0)
...

B(w, i, j,m, 0)
1−B(w, i, j, 0, 2)

...
1−B(w, i, j, d, 2)

...
1−B(w, i, j,m, 2)



,

where the subscript �lr� stands for logistic regression (to distinguish it from
the reanalysis tensor Y ). The tensor is four-dimensional, but for �xed (w, i, j)
the remaining slice is a vector that behave exactly as in the algorithms already
described.

The composition of Ylr(w, i, j, :) implies that we are using LR for predicting
simultaneously Pr(t2m < q1/3) and Pr(t2m < q2/3). In fact, the �rst half of
the vector contains the binary veri�cation data for the �rst quantiles, already
with the right values (equal to 1 when Y (w, i, j, d) < Y1/3(w, i, j)). Instead,
the elements of the second half are equal to 1 when Y (w, i, j, d) < Y2/3(w, i, j).
B(w, i, j,m, 2) = 1 for the opposit inequality, that is Y (w, i, j, d) > Y2/3(w, i, j).
So, in Ylr(w, i, j, d) (d = m + 1, ..., 2m), we insert the di�erence between 1 and
B(w, i, j,m, 2), which gives us the wanted values.

For the feature vectors, we have to distinguish between the two initial models
and the multimodel. Three di�erent versions of LR are tested for the ECMWF-
IFS and the CNR-ISAC models. They are simply the application of Equa-
tion 4.4-4.12 substituing x with XE(w, i, j, d) or XC(w, i, j, d) and σ with SE
or SC, depending on the model considered. For the multimodel, in addition to
these tests, we analize also the case in which SE and SC are used in place of
SMM.

Naturally, due to the spatial and temporal dependence, all these vectors be-
come tensors, which in turn will be combined in tensors with an higher dimes-
nionality that will serve as input for the hypothesis function. To remove any
ambiguity, we write them explicitly. Note that, as for Ylr, for �xed (w, i, j) the
remaining slice is a vector as in Equation 4.7. The following ones refer to the
multi-model, but the ECMWF-IFS and the CNR-ISAC cases can be obtained
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simply by substituing the subscrit �MM� with �E� or �C�:

FMM,x(w, i, j, :) =



XMM(w, i, j, 1)
...

XMM(w, i, j, d)
...

XMM(w, i, j,m)
XMM(w, i, j, 1)

...
XMM(w, i, j, d)

...
XMM(w, i, j,m)



, FMM,σ(w, i, j, :) =



SMM(w, i, j, 1)
...

SMM(w, i, j, d)
...

SMM(w, i, j,m)
SMM(w, i, j, 1)

...
SMM(w, i, j, d)

...
SMM(w, i, j,m)



,

FMM,xσ(w, i, j, :) =



XMM(w, i, j, 1)SMM(w, i, j, 1)
...

XMM(w, i, j, d)SMM(w, i, j, d)
...

XMM(w, i, j,m)SMM(w, i, j,m)
XMM(w, i, j, 1)SMM(w, i, j, 1)

...
XMM(w, i, j, d)SMM(w, i, j, d)

...
XMM(w, i, j,m)SMM(w, i, j,m)



.

The feature tensor containing the terciles is the same for the three models:

Fq(w, i, j, :) =



Y1/3(w, i, j)
...

Y1/3(w, i, j)
Y2/3(w, i, j)

...
Y2/3(w, i, j)



Also the bias unit (F0(w, i, j, :)) remains constant and its elements are always
equal to 1, as in Equation 4.7. Naturally the slices F0(w, i, j, :) and Fa(w, i, j, :)
are vectors of length 2m. Finally, we introduce two tensor that combine the
multimodel mean with the standard deviation of the single models, they are
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useful for the approximation previously described:

FMM,xσ−E(w, i, j, :) =



XMM(w, i, j, 1)SE(w, i, j, 1)
...

XMM(w, i, j, d)SE(w, i, j, d)
...

XMM(w, i, j,m)SE(w, i, j,m)
XMM(w, i, j, 1)SE(w, i, j, 1)

...
XMM(w, i, j, d)SE(w, i, j, d)

...
XMM(w, i, j,m)SE(w, i, j,m)



.

FMM,xσ−C(w, i, j, :) =



XMM(w, i, j, 1)SC(w, i, j, 1)
...

XMM(w, i, j, d)SC(w, i, j, d)
...

XMM(w, i, j,m)SC(w, i, j,m)
XMM(w, i, j, 1)SC(w, i, j, 1)

...
XMM(w, i, j, d)SC(w, i, j, d)

...
XMM(w, i, j,m)SC(w, i, j,m)



.

Using the newly de�ned tensors, the feature matrices that were presented
in Equation 4.11 become tensors, which dimension is higher by one unity with
respect to the ones just re-de�ned. This arises because we are now constructing
sets of features, while the tensors above contained each a single feature. This
is analogous to what happened in the standard algorithm, the only di�erence is
the dimensionality of the dataset, not in the underlying concept. Note that, as
before, each of the quantity below de�nes a variant of the algorithm. The three
basic version, tested for both the initial model and the multi-model, are:

XMM,(α) (w, i, j, :, :) =


(
F0 (w, i, j, :)

)T(
FMM,x (w, i, j, :)

)T(
Fq (w, i, j, :)

)T
 , (4.13)

XMM,(β) (w, i, j, :, :) =


(
F0 (w, i, j, :)

)T(
FMM,x (w, i, j, :)

)T(
FMM,σ (w, i, j, :)

)T(
Fq (w, i, j, :)

)T
 , (4.14)

XMM,(γ) (w, i, j, :, :) =


(
F0 (w, i, j, :)

)T(
FMM,x (w, i, j, :)

)T(
FMM,xσ (w, i, j, :)

)T(
Fq (w, i, j, :)

)T
 . (4.15)
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The ones here presented are the one referring to the multi-model, but, as always,
substituing �MM� with �E� or �C� give us the version for the other two models.

The two additional variants, applied for the sole multi-model, are:

XMM,(β−EC) (w, i, j, :, :) =



(
F0 (w, i, j, :)

)T(
FMM,x (w, i, j, :)

)T(
FE,σ (w, i, j, :)

)T(
FC,σ (w, i, j, :)

)T(
Fq (w, i, j, :)

)T

 , (4.16)

XMM,(γ−EC) (w, i, j, :, :) =



(
F0 (w, i, j, :)

)T(
FMM,x (w, i, j, :)

)T(
FE,xσ (w, i, j, :)

)T(
FC,xσ (w, i, j, :)

)T(
Fq (w, i, j, :)

)T

 , (4.17)

To avoid confusion, we explicitally de�ne the order of the index in the slices as
the �rst referring to the rows of the matrix and the second to the columns. So,
for example XMM,(α) (w, i, j, 0, :) is a row vector referring to the feature having
index 0:

XMM,(α) (w, i, j, 0, :) =
[ (

F0 (w, i, j, :)
)T ]

,

while XMM,(α) (w, i, j, :, d) is a column vector, containing the example d-th for
all the feature used in that speci�c version of the algorithm:

XMM,(α) (w, i, j, :, d) =


(
F0 (w, i, j, d)

)T(
FMM,x (w, i, j, d)

)T(
Fq (w, i, j, d)

)T
 .

The next step is the re-de�nition of the coe�cients. For the three standard
algorithms they are:

ΘMM,(α) (w, i, j, :) =


(
Θ

(α)
MM,0 (w, i, j)

)
(
Θ

(α)
MM,x (w, i, j)

)
(
Θ

(α)
MM,q (w, i, j)

)
 ,

ΘMM,(β) (w, i, j, :) =



(
Θ

(β)
MM,0 (w, i, j)

)
(
Θ

(β)
MM,x (w, i, j)

)
(
Θ

(β)
MM,σ (w, i, j)

)
(
Θ

(β)
MM,q (w, i, j)

)

 ,

ΘMM,(γ) (w, i, j, :) =



(
Θ

(γ)
MM,0 (w, i, j)

)
(
Θ

(γ)
MM,x (w, i, j)

)
(
Θ

(γ)
MM,xσ (w, i, j)

)
(
Θ

(γ)
MM,q (w, i, j)

)

 .
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In addition, the two variants for the multi-model are given by:

ΘMM,(β−EC) (w, i, j, :) =



(
Θ

(β−EC)
MM,0 (w, i, j)

)
(
Θ

(β−EC)
MM,x (w, i, j)

)
(
Θ

(β−EC)
E,σ (w, i, j)

)
(
Θ

(β−EC)
C,σ (w, i, j)

)
(
Θ

(β−EC)
MM,q (w, i, j)

)


,

ΘMM,(γ−EC) (w, i, j, :) =



(
Θ

(γ−EC)
MM,0 (w, i, j)

)
(
Θ

(γ−EC)
MM,x (w, i, j)

)
(
Θ

(γ−EC)
E,xσ (w, i, j)

)
(
Θ

(γ−EC)
C,xσ (w, i, j)

)
(
Θ

(γ−EC)
MM,q (w, i, j)

)


.

From this point, we proceed with a loop over all tripletw (w, i, j), for each
of them we follow the same steps exposed when treating the regularized version
of LR. For simplicity, we will omit the subscripts referring to which algorithm
is actually used. All the procedure described can be applied to each of the
choice of features and coe�cients presented just by adding the corresponding
subscript. We �rst write explicitly the new hypothesis function:

h
(
X(w, i, j, :, d);Θ(w, i, j, :)

)
=

1

1 + exp
(
−(Θ(w, i, j, :))TX(w, i, j, :, d)

) .
The decision of moving the parameters from the subscript into the parenthesis is
for typographical reason (the multiple indexes in the subscript would not have
been easily readable), the semicolon underlines the role of Θ as a parameter
and not as a variable. Then, given a vector λ whose lenght is equal to the
number of featueres nf (that is also the number of rows in the tensors from
Equation 4.13-4.17), the cost function is given by:

J(Θ(w, i, j, :)) =

(
1

2m

2m∑
d=1

(
Ylr(w, i, j, d) log

(
h(X(w, i, j, :, d);Θ(w, i, j, :))

)
+

+ (1− Ylr(w, i, j, d)) log
(
1− h(X(w, i, j, :, d);Θ(w, i, j, :))

)))
+

+
1

4m

nf∑
f=0

λ(f)(Θ(w, i, j, f))2,

and the new gradient is given by:

∂J(Θ(w, i, j, :)))

∂Θ(w, i, j, f)
=

=

(
1

2m

2m∑
i=1

(
h(X(w, i, j, :, d);Θ(w, i, j, :))− Ylr(w, i, j, d))

)
X(w, i, j, f, d)

)
+

+
1

2m
λ(f)Θ(w, i, j, f).
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Finally, using BFGS we �nd the values Θ∗(w, i, j, f) that minimize the cost
function.

These coe�cient are used for computing probabilities. Using a notation
similar to the DMO case, we de�ne three new tensors. The �rst contain the
probability that the 2-metre temperature anomaly is below the �rst tercile:

PLR
inf (w, i, j, d) = h(X(w, i, j, :, d),Θ(w, i, j, :)),

withX(w, i, j, :, d) containing Fa(w, i, j, :) = Y1/3(w, i, j). This condition is due
to our choice of uni�ed variant of LR and correspond, on the training set, to
d = 1, ...,m.

The second contains the probability for the same variable being in the region
between the two terciles:

PLR
mid(w, i, j, d) = h(X(w, i, j, :, d1),Θ(w, i, j, :))− PLR

inf (w, i, j, d),

with X(w, i, j, :, d) containing Fa(w, i, j, :) = Y2/3(w, i, j). On the trainig set,
this is the same as imposing d = m+ 1, ..., 2m.

Finally, the probability for the region above the secon tercile,

PLR
sup(w, i, j, d) = 1− PLR

mid(w, i, j, d)− PLR
inf (w, i, j, d).

This de�nition assure that the sum of the probabilities on all the region of the
distribution is equal to one. Naturally, PLR

sup(w, i, j, d) can be computed without
using the other two probabilities, starting directly from the hypothesis function.
In this case,

PLR
sup(w, i, j, d) = 1− h(X(w, i, j, :, d1),Θ(w, i, j, :)),

if Fa(w, i, j, :) = Y2/3(w, i, j) in the feature tensor.

4.4 Results

Many variant of LR were introduced in the previous section: there are 3 dif-
ferent choices of predictands for the two models and 5 for the multimodel. In
addition, each of them has to be tested for all the �ve values of λ. If we ac-
count also for the cross-validation methodology, that imposes the application of
the same procedure on k = 18 di�erent training sets (if we split the dataset in
winters, as in the previous chapters), the number of times we have to perform
the computation is 990. If this number does not seem high enough, recall the
structure of the dataset: to each of the 4 week and 65,160 grid points corre-
spond an indipendent LR, with its set of coe�cient and, therefore, a separate
call of the minimization routine. If we count how many times this numerical
minimization is performed, we obtain the number 258,033,600. It is di�cult
to provide a precise estimation of the time required by one of those operation,
because it depends on various factors as the number of coe�cients, how close
to the �nal value is their random initial guess and the dimension of the dataset.
However, repeating the procedure a certain number of time gives us the order
of magnitude for this computational time: we obtain values close to 4ms with
the simplest versions of LR (that we use as a lower boundary) while an higher
degree of complexity result in more than double this time. Even using the most
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optimistic estimate, the total time required for performing all the minimization
is approximately 12 days of uninterrupted computation3. In addition, this value
does not account for all the preliminary operations, like loading the tensors, ad-
justing their shape, de�ning and �lling of the temporary matrices. Therefore,
we decide to reduce this time by introducing some modi�cation to the proce-
dure: for a quicker selection of the most promising variant, we perform the
analysis following a slightly reduced version of cross-validation. We keep the
division in winters introduced in the previous chapters but instead of trying all
the 18 combinations, we use only a subset containing six of them. They have
been chosen by extracting a random validation winter each three consecutive
ones. The resulting validation sets are the ones correspinding to the winters:
1993-1994, 1997-1998, 1998-1999, 2002-2003, 2005-2006, 2008-2009. From this
procedure we select simultaneously λ and the set of predictands. Then, on the
most promising variant, the complete cross validation procedure is performed,
from which we obtain our �nal estimate of the probablistic scores for logistic
regression.

Naturally, using a smaller number of validation sets for the comparison can
result in the output being more sensible to external �uctuations. For example,
if a particular winter is exeptionally predictable, the resulting scores will be
particularly good. Because the �nal value is obtained through an average on all
the validation sets, the e�ect of this outlayer grows as the number of winters
decreases. However, in our case the reduced dataset contains a considerable
number of dates: the six winters randomly selected contain a total of 88 dates4.
Nevertheless, we will compare, at the end of the analysis, the perfomances of the
most promising algorithm on the whole set of winters with the scores obtained
on the reduced ones. In this way, if for some unlikely chances the selected dates
are extremely predictable or unpredictable, we will probably notice signi�cant
di�erences between the two values. In conlcusion, performing a complete anal-
ysis on every one of the variants can be an unwise management of the available
resources: excluding the least promising techniques on a smaller dataset and
keeping some parameter �xed can spare us some resources, which can be later
applyed to broaden the set of algorithms tested.

4.4.1 Algorithm selection

In this subsection we focus on the selection of the most promising variant of
logistic regression. We choose contemporarly the regularization parameter and
the set of features, by comparing the ranked probability skill score5 (RPSS)
averaged over the whole globe. Values for each of the four regions previously
described (Northern Emisphere, Southern Emisphere, Equatorial Belt and Eu-
rope) have also been computed, but the trend is very similar to the global mean
and the information was therefore redundant. Naturally, other scores can be
used for the comaparison. We computed both RPS and DRPSS, but again they
did not provide a signi�cant amount of additional information, and we exluded
them from the analysis.

Due to the high number of values that have to be compared, we �rst show the

3On a �Intel(R) Xeon(R) CPU E5-2643 0 3.30GHz� CPU.
4The exact number of dates in each winter can be found in the second chapter.
5The de�ntion together with a brief description of the score can be found at the end of the

previous chapter.
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selection of λ for each variant, through some plots of the RPSS as a function
of λ. Then, we compare the di�erent sets of features, each with the chosen
regularization. Naturally, this division is only a way to simplify the exposition
of the results. In reality, the choice of predictors and λ are done simultaneously,
but presenting in a single plot an excessively high number of curves makes the
�gure unreadable, therefore useless.
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Figure 4.9: Ranked probability skill score as a function of the regularization param-
eter λ. The variant considered is denoted by α and uses only the ensemble mean as a
predictor. Each panel refer to a di�erent forecast week, as suggested by the label. The
blue curve shows the values obtained by applying the algorithm to the multi-model,
the red one refers to the ECMWF-IFS model and the green one to the CNR-ISAC
model. The legend is shown only n the last plot, but it is valid for all the panels.
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Figure 4.10: As in Figure 4.9, but for the variant β, that is the one using both
ensemble mean and standard devation.

So, we start by analyzing the behaviour of the set of features X(α), shown
in Figure 4.9, where the curve for each model is shown in a di�erent color: blue
for the multi-model, red for the ECMWF-IFS model and green for the CNR-
ISAC one. Substantially, we see a nearly total absence of dipendence of the



4.4. RESULTS 83

0 1
0
−
3

1
0
−
2

1
0
−
1

1
0
0

0.45

0.5

0.55

0.6

λ

R
P
S
S

(a) Week 1

0 1
0
−
3

1
0
−
2

1
0
−
1

1
0
0

0.2

0.25

0.3

0.35

λ

(b) Week 2

0 1
0
−
3

1
0
−
2

1
0
−
1

1
0
0

0.16

0.18

0.2

0.22

0.24

λ

(c) Week 3

0 1
0
−
3

1
0
−
2

1
0
−
1

1
0
0

0.16

0.18

0.2

0.22

0.24

λ

MM

E

C

(d) Week 4

Figure 4.11: As in Figure 4.9, but for the variant γ, that is the one using the ensemble
mean as �rst predictor and the second is the product of the ensemble eman with the
standard deviation.
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Figure 4.12: Ranked probability skill score for the variants of LR using a linear com-
bination of the standard deviation of the single models instead that the one computed
directly from its members. In the legend, β is an abbreviation for β −EC, that is the
subscript for the feature and coe�cient tensors of the algorithms, while γ stands for
γ − EC.
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result from λ. Only for the largest choice of regularization we start to see a
loss in performances, due to λ being too high. So, the algorithm is probably
not a�ected by over�tting in its basic form and we can omit the regularization
for this choice of predictors. Note that the choice of λ is dependant on the
dimension of the set: so, before using the same algorithm on smaller set, a good
practice would be to repeat this kind of analysis before deciding to avoid using
the regularization term.

In Figure 4.10 we compare the RPSS for X(β), again showing the di�erent
models simultaneously and keeping the choice of colors associated to each of
them. Again, the plot reveals a lack of dependece from λ, so we decide to omit
the regularization term when comparing the algorithms in the next analysis.
The same behaviour can be seen also in Figure 4.11, where the set of features
is X(γ), and as a consequence we keep λ = 0 also in this case.

Finally, in Figure 4.12, where the two variants for the multi-model ensemble
standard deviation are used as input features, we see a noiser curve, but the
�uctuations are on the third decimal place and we do not consider this variation
enough for chosing to use regularization.

In conclusion, in all the cases studied there was no need of using λ to avoid
over�tting. Probably this is due to the simplicity of the algorithms, combined
to the dimension of the dataseet that was enough for training adequately the
logistic regression.

Before proceeding with the comparison of the variants, we compare sepa-
rately the di�erent choices possible for the multi-model standard deviation, in
order to use a single value for the algorithms with the subscripts β and γ when
considering the multi-model. This comparison is shown in Table 4.1. We see
immediately that there is a marginal loss in performances in the algorithms us-
ing the linear combination of the satndard deviation of the single model instead
of the one computed starting from the 25 multi-model memebers. However, we
do not know if the small entity of this decrease is due to the two predictors
being su�ciently similar in terms of useful information, or if this derives from
the standard deviatio itself not being an useful predictor in our case. As can
be deduced from the plot shown before, the algorithms using have worst perfor-
mances compared to the ones using only the ensemble mean. We will discuss
this behaviour when comparing the three variants, but for now we notice that
in this situation we can not con�dently assume that the approximate standard
deviation in the β − EC and γ − EC algorithms is a good approximation. So,
in comparing the algorithms we use the other version, that is the one computed
starting from the multi-model members, denoted by the subscripts β and γ.

Finally, we show in Table 4.2 the comparison between the three choices of
features, X(α), X(β) and X(γ). Clearly, the simplest version (α) outperforms
the others all weeks. So, we deduce that in our case the standard deviation does
not introduce useful information and, on the contrary, leads to a deterioration
of the performances. Probably, the algorithm during the learning phase assigns
some coe�cients to the feature containing the standard-deviation, which does
not really correspond to a real prediction rule and therefore does not generalize
well on the validation set. We cannot deduce from this limited set of dates and
test if the standard deviation really does not bring useful information to the
prediction or if this lack of good performances is due to the dimension of the
training set that is not enough for the algorithm.

From the comparison, we chose the tensor X(α) as the de�nitive version of
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w RPSS
(ALL)
MM,(β) RPSS

(ALL)
MM,(β−EC) RPSS

(ALL)
MM,(γ) RPSS

(ALL)
MM,(γ−EC)

1 0.59 0.58 0.59 0.59
2 0.32 0.31 0.33 0.32
3 0.22 0.21 0.22 0.22
4 0.20 0.18 0.20 0.20

Table 4.1: Ranked probability skill score averaged over the whole globe for the
di�erent choice of multi-model standard deviation. The �rst column shows, in blue,
the week to which each row of the table refers. The remaining columns shows the
values for the four variants: the �rst shows the results for the feature tensor XMM,(β),
the second XMM,(β−EC), the third XMM,(γ) and the last XMM,(γ−EC).

LR for our analysis, and in the following section the detailed results obtained
from the complete cross validation technique refer to this variant.

4.4.2 Complete cross validation analysis

In this section we perform an analysis similar to the one presented at the end
of the pevious chapter. As decided during the alogorithm selection, the variant
analyzed is the one using the sole ensemble mean as a predictor (denoted by
the subscript α) and with the regression parameter set to zero. We begin by
showing in Table 4.3 the values of Ranked probability skill scores averaged over
the usual four regions, this is followed by the DRPSS in Table 4.4.

As for the DMO methods, the multi-model outperforms almost always the
other two models. However, the di�erence is less marked than in the previ-
ous case, with the ECMWF-IFS model rather close to the multi-model perfor-
mances.

Looking at the dependence of the score from the forecast time, we can again
distinguish between the behaviour in the �rst couple of weeks from the remaining
two. Expecially over the two hemishperes and over Europe, we see a sharp
decline in performances from the �rst week to the second followed by another
noticeable decrease in the third, while the scores remain almost constant between
the last two. Over the equatorial belt the �rst week is less predictable than in
the other regions, but the values over the remaining weeks are particularly high,
if compared to their counterpart for the hemispheres or Europe. Regarding
Europe, we want to emphasize the extremely low skill that all the algorithms
obtain over this region in the last two weeks. All the behaviours are similar to
the ones observed for DMO techniques, altought the values are rather di�erent,
expecially for the longer time ranges.

As in the previous chapter, we also use reliability diagrams6 for verifying
LR outputs. Naturally, the two terciles need to be analyzed separately because
this tool can deal only with binary predictions. We keep the same probability
thresholds p(c) de�ned in the previous chapter, for comparison purpouses. The
resulting plots are shown in Figure 4.13 (for the lower tercile) and Figure 4.14
(for the upper one).

The �rst week, as expected, is the one where the calibration fuction is nearer

6A detailed description of the tool is presented in the veri�cation section of previous chap-
ter.
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w RPSSMM,(α) RPSSMM,(β) RPSSMM,(γ)

1 0.64 0.59 0.59
2 0.36 0.32 0.33
3 0.25 0.22 0.22
4 0.23 0.20 0.20

(a) Multi-model

w RPSSE,(α) RPSSE,(β) RPSSE,(γ)

1 0.62 0.57 0.57
2 0.34 0.30 0.31
3 0.23 0.19 0.20
4 0.20 0.16 0.18

(b) ECMWF-IFS

w RPSSC,(α) RPSSC,(β) RPSSC,(γ)

1 0.54 0.49 0.50
2 0.28 0.25 0.25
3 0.21 0.17 0.18
4 0.19 0.16 0.17

(c) CNR-ISAC

Table 4.2: Comparison of the ranked probability skill score for the three variants of
LR, with the regularization parameter λ = 0. The three tables refer to the di�erent
models, as suggested by the label below. The �rst column, as always, show the week
for each of the rows. The values corresponding to the best performances have been
highlited in red.
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w RPSSMM,(α) RPSSE,(α) RPSSC,(α)

1 0.68 0.67 0.59
2 0.34 0.32 0.26
3 0.20 0.17 0.15
4 0.17 0.14 0.14

(a) Northern Hemisphere

w RPSSMM,(α) RPSSE,(α) RPSSC,(α)

1 0.68 0.67 0.59
2 0.37 0.36 0.29
3 0.25 0.22 0.20
4 0.20 0.18 0.17

(b) Southern Hemishpere

w RPSSMM,(α) RPSSE,(α) RPSSC,(α)

1 0.55 0.52 0.44
2 0.39 0.36 0.31
3 0.32 0.29 0.27
4 0.30 0.26 0.25

(c) Equatorial Belt

w RPSSMM,(α) RPSSE,(α) RPSSC,(α)

1 0.69 0.68 0.60
2 0.27 0.25 0.20
3 0.11 0.10 0.09
4 0.10 0.08 0.08

(d) Europe

Table 4.3: Ranked Probability Skill Score (RPSS) for the variant α of non-regularized
logistic regression (LR), averaged over the 18 validation winters. The four table present
the spatial average over the four di�erent regions de�ned in the second chapter. The
�rst column always shows, in blue, the week. Each of the remaining column re-
fer to a di�erent model: in the �rst one there are the values for the multi-model
(RPSSMM,(α)), in the second the ECMWF-IFS ones (RPSSE,(α)) and in the third
the CNR-ISAC ones (RPSSC,(α)). The value corresponding to the best performances
for each row is highlighted in red.
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w DRPSSMM,(α) DRPSSE,(α) DRPSSC,(α)

1 0.71 0.70 0.62
2 0.40 0.38 0.33
3 0.27 0.25 0.23
4 0.25 0.22 0.22

(a) Northern Hemisphere

w DRPSSMM,(α) DRPSSE,(α) DRPSSC,(α)

1 0.71 0.70 0.63
2 0.43 0.42 0.36
3 0.32 0.30 0.28
4 0.27 0.25 0.24

(b) Southern Hemishpere

w DRPSSMM,(α) DRPSSE,(α) DRPSSC,(α)

1 0.59 0.57 0.50
2 0.45 0.42 0.38
3 0.39 0.36 0.33
4 0.36 0.33 0.32

(c) Equatorial Belt

w DRPSSMM,(α) DRPSSE,(α) DRPSSC,(α)

1 0.72 0.71 0.64
2 0.34 0.32 0.28
3 0.20 0.18 0.17
4 0.18 0.16 0.17

(d) Europe

Table 4.4: As for Table 4.3, but the score presented is the Discrete Ranked Probability
Skill Score (DRPSS) instead of the RPSS.
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Figure 4.13: Reliability diagrams for the α variant of logistic regression using λ = 0
applied to the multi-model, computed for the lower tercile tresholds. The four panel
refer to the forecast weeks, as suggested by the label below them. Naturally, all the
values refer to an average over the whole globe and over the 18 validation winters. Each
of the panel has the same structure: the plot outside shows the calibration function
(in red), while the smoller plot in the corner contains the re�nement distribution (in
blue).
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Figure 4.14: As in Figure 4.13, but for the upper tercile.
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to the bisector of the quadrant. For the low probability intervals the red and
dashed curves are closer, while the gap increases for higher values. The same
behaviour was also present for the DMO techniques, but now the overall trend is
rather constant, with the central categories representing better the correspond-
ing frequency of the verifying renanalysis. The re�nement distribution resembles
the one seen for the DMO, with the extremes values being more frequent than
the central one, a symptom of a con�dent forecast.

From the second week we start to see an interesting (and rather strange)
behaviour. The bias becomes conditional and depends on the probability cate-
gory. The red curve starts very close to the ideal case, and deviates more as the
value on the x-axis increases. The trend is accentuated in the following weeks,
where the curve actually changes slopes in the middle of the probability range.
Also the re�nement distribution changes, with higher values of probability be-
coming more unlikely while the distribution shifts towards the �rst two values of
p(c). So, the cases in which the algorithm performs more badly (p(c) = 0.7 and
p(c) = 0.9) are also the cases that appears more + rarely and so the impacts
on the whole performances is limited. Nevertheless, we note that, expecially
for p(c) = 0.9, DMO presents a calibration function closer to the bisector. For
the other values, however, LR outperforms the previous methodologies, even
considering the strange shape of the curve.

This analysis can be considered valid for both terciles, due to the similarity of
their scores. Often, di�erences in corresponding values can be found only after
the second decimal place, it is in fact di�cult to notice such a small variation
in the two �gures.

In conlcusion, we consider logistic regression as a valid algorithm for improv-
ing the probabilistic forecast compared to the direct model techniques. In its
simplest form (the one involving the sole ensemble mean) it brings signi�cant
improvements over the extended range, with improvements more evident for
small enseble sizes, like the two single models.

4.4.3 Learning curve

One of the most useful tools in diagnosing over�tting and under�tting is the
learning curve. We previously described its implementation and how to under-
stand the results, showing also a theoretical example in Figure 4.7. We now
apply the technique to the chosen version of LR, limited to the multi-model
case. For computational reason, we perform the analysis again on the reduced
validation sets, composed of the same six winters used in the algorithm selection.

First of all, we decide eight values ms < m, with m representing the di-
mension of the full training set, as the dimensions of the reduced training sets.
Then, we repeat the full logistic regression for all the values ms, using each time
a subset of the full training set, containing only ms elements.

The procedure is obviously applied for all the weeks and grid points. Using
the resulting coe�cients, we compute the RPSS, wich is therefore averaged
over all the globe. We repeat the operation for the six choice of the validation
winters, and the six values are �nally averaged ending up in the scores shown
in Figure 4.15.

In the four panels of Figure 4.15 we see a similar trend: for small training
sets the algorithm performs exceptionally well in the training phase, while in the
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Figure 4.15: Learning curves for the variant α of LR applied to the multi-model.
Each of the four panels show the results for one of the forecast weeks. The score used
for the procedure is the ranked probability skill score averaged over the whole globe
and the 6 validation winters, and it is shown on the y-axis. On the x-axis there are the
eight values chosen for the reduced training sets. The scores obtained on the training
sets are shown in teal, while the ones for the validation set are in orange. The dashed
lines between the markers have been added for aiding the visualization. Note that, due
to the interpretation of the score, the relative position of the training and vaidation
curves is the opposite respect to the one presented in Figure 4.7.
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validation one shows poor results. the two values becomes closer for increasing
ms, and above the thershold ms = 100 the scores remain nearly constant.7

There are two di�erent interpretation for this kind of behaviour. One possi-
bility is that LR has extracted all the available information from the data and
therefore no further improvements are possible in this case. The second inter-
pretation is more interesting: there is some additional predictabilty inside our
dataset, but the algorithm is not capable of catching it. This means that our
LR is a�ected by under�tting: adding training examples do not improve the
result (as can be seen for ms > 100), and di�erent solution needs to be adopted,
like adding more features or combining the existent ones by creating polynomial
terms.

However, two of the most widely used choices for additional features (σ and
xσ, following the previous notation) did not result in iprovements in our case.
On the contrary, we saw a deterioration of the performances, as described in
the algorithm selection section (4.4.1).

7Note that we are keping λ = 0 during the analysis. The values shown for small ms are
therefore not representative of the optimal performances of LR on such reduced datset. In
fact, when a small number of examples is used for training, over�t can be reduced (or avoided)
using the reguilarization parameter. This imply that a complete analysis for each of the values
of ms would require the selection of the optimal λ for each of them. However, this is not the
scope of our analysis: we are studying the behaviour of the selected version of LR on reduced
datasets for identifying over�tting or under�tting problems, and for consistency puropouses
we keep all the parameters constant and equal to their de�nitive values.
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Chapter 5

Nonhomogeneous Gaussian

Regression

The last regression techique adopted in the analysis is the Nonhomogeneous
Gaussian Regression (NGR). This MOS method is an extension of linear re-
gression, �rst introduced by Gneiting et al. [2005]. The distinctive trait of the
algorithm is the possibility for the residual variance to depend (linearly) from
the ensemble variance. This result in the forecast having an higher uncetainty
when the ensemble members are more dispersed, and a lower one in the opposite
situation.

The algorithm is commonly used for predicting probabilities in the scienti�c
literature, examples can be found inWilks [2006], Wilks and Hamill [2007], Kann
et al. [2009] and Hagedorn et al. [2008] (in the last two NGR results particularly
promising when used on surface temperature). As always, a complete exposition
of the algorithm can be found in [Wilks, 2011, Chapter 8], which we use here as
the basis for the description presented in the following section.

5.1 Methodology

The basic implementation of NGR is rather simple and we begin the exposition
directly by applying the technique to the computation of tercile probabilities.
We introduce again the same simpli�ed notation used in the previous chapter
when we �rst applied LR to the same task. So, we use x(i) and σ(i) respectively

for the ensemble mean and standard deviation of the i-th example, t
(i)
2m for the

corresponding verifying 2-metre temperature, q1/3 and q2/3 for the two terciles,
q for a generic quantile and m for the dimension of the dataset.

The basic idea behind the algorithm is to perform a simple linear regression:

t
(i)
2m = θ0 + θx x

(i) + ε(i),

where ε(i) represent the residual for the i-th example. We assume that these
residuals follow a Gaussian distribution, whose variance is given by:(

σ(i)
ε

)2
= θ2 + θσ

(
σ(i)
)2
.

95
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The probability that the temperature anomaly is below q is then given by:

Pr
(
t
(i)
2m < q

)
= Φ

(
q − (θ0 + θx x

(i))

σ
(i)
ε

)
, (5.1)

where Φ is the cumulative distribution function (CDF) of the standard Gaussian
distribution. Naturally, the coe�cients θ0, θx, θ2 and θσ are computed by
minimizing the chosen cost function. Before proceeding with the exposition
of the procedure and its details, we vectorize the notation in order to explain
exactly what happens when NGR is actually applied.

We start by rede�ning a unique binary veri�cation vector for the two quan-
tiles, as for the uni�ed LR:

y =



y(1)

...
y(i)

...
y(m)

y(m+1)

...
y(m+i)

...
y(2m)



,

with:

y(i) =

{
1 if t

(i)
2m < q1/3

0 otherwise,
for i = 1, ...,m

y(i) =

{
1 if t

(i)
2m < q2/3

0 otherwise,
for i = m+ 1, ..., 2m

The feature vectors are:

f0 = f2



1
...
1
1
...
1


, fx =



x(1)

...

x(m)

x(1)

...

x(m)


, fσ =



σ(1)

...
σ(m)

σ(1)

...
σ(m)


, fq =



q1/3
...

q1/3
q2/3
...

q2/3




2m elements.

Unlike LR, in NGR there are two �bias units�: f0 and f2, both containings
all elements equal to one. They have been given di�erent subscripts in order
to distinguish between the correspoding coe�cients. The �rst four vector are
combined in two separate matrices:

Xnum =

[
(f0)T

(fx)T

]
, Xden =

[
(f2)T

(fσ)T

]
,
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note that fq is not part of them. The remaining vector necessary for the analysis
are the ones containing the coe�cients, whose shape is determined by the choice
of the features and therfore are given by:

θnum =

[
θ0
θx

]
, θden =

[
θ2
θσ

]
.

We can now de�ne the hypothesis function, obviously based on Equation 5.1:

h
(
Xnum,Xden; fq,θnum,θden

)
= Φ

(
fq − (θnum)TXnum

(θden)TXden

)
,

where the fraction inside the parenthesis is an elementwise operation. As seen
previously, the semicolon is used to distinguish between variables (the feature
matrcies) and parameters of the regression.

Finally, we have di�erent possible choices for the cost function, some of which
are rather interesting. For example Gneiting et al. [2005] proposed to minimize
the continuous ranked probability score, that in our case is:

CRPS =
(
(θden)TXden

)(
z
(
2Φ(z)− 1

)
+ 2φ(z)− 1√

π

)
,

where φ is the Gaussian probability distribution function (PDF) and:

z =



z(1)

...
z(m)

z(1)

...
z(m)


. with: z(i) =

t
(i)
2m − θ0 − θx x(i)
θ2 + θσ σ(i)

.

However, we opted for a simpler choice, and we minimize numerically the average
squared error, wich becames our cost function:

J(θnum,θden) =
1

m

m∑
i=1

(
y(i) − Pr(t(i)2m < q)

)2
.

In order to perform the numerical minimization, we use again BFGS1.

5.1.1 Application to the re-forecasts

The analysis described in the previous section refers to a single application of
NGR, which in our case corresponds to keeping �xed both the forecast week
and the grid point. So, before applying the procedure to the real dataset, we
adjust the notation using the usual tensor notation.

To avoid beeing verbose, we do not repeat again the whole procedure from
the beginning, but when possible we use some tensors already de�ned when
describing LR (section �Application to the re-forecasts�). We start from the
features tensors FMM,x(w, i, j, d), FMM,σ(w, i, j, d) and Fq(w, i, j, d), containing

1In the previous chapter we provide information on the speci�c Python package used.
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respectively the multi-model enseble mean, the standard deviation of the same
model and the two quantiles. As always, changing the superscript with E or
C give the corresponding value for the ECMWF-IFS or the CNR-ISAC model.
The bias unit also became tensors: FMM,0(w, i, j, d) and FMM,2(w, i, j, d). As
expected, their elements are all equal to one and they have the exact same shape
as the other three tensor just introduced. Starting from B (introduced in the
DMO chapter), we also rede�ne the veri�cation tensor:

Yngr(w, i, j, :) =



B(w, i, j, 0, 0)
...

B(w, i, j, d, 0)
...

B(w, i, j,m, 0)

1−B(w, i, j, 0, 2)
...

1−B(w, i, j, d, 2)
...

1−B(w, i, j,m, 2)



,

where the subscript ngr stands for nonhomogeneous Gaussian regressiona and
is necessary for distinguish this tensor from the one containing the reanalysis.

Now the notation begins to di�er from the LR one. In fact, we distinguish
between the features at the numerator in the hypothesis function and the ones
at the denominator. So, the two feature matrices previously described become:

XMM,(num) (w, i, j, :, :) =

[ (
FMM,0 (w, i, j, :)

)T(
FMM,x (w, i, j, :)

)T
]
,

XM,(den) (w, i, j, :, :) =

[ (
FMM,2 (w, i, j, :)

)T(
FMM,σ (w, i, j, :)

)T
]
.

As for LR, we try two di�erent possibilities for the ensemble standard deviation
of the multi-model. InXM,(den), we use FMM,σ, based on SMM, which in turn is
computed directly from the 25 ensemble members. We propose an alternative
version in wich both the standard deviation from the ECMWF-IFS (SE) and
CNR-ISAC (SC) models are used istead of SMM. The resulting denominator
tensor is:

XM,(den - EC) (w, i, j, :, :) =


(
FMM,2 (w, i, j, :)

)T(
FE,σ (w, i, j, :)

)T(
FC,σ (w, i, j, :)

)T
 .

Again, this is equivalent to assuming that the standard deviation of the multi-
model is a linear combination of the same quantity computed for the two initial
models. The goodness of the approximation is evaluated by comparing the
scores for the two choice of features. Note that the numerator tensor is not
modi�ed in this alternative version.
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The next step is the rede�nition of the coe�cient tensors:

ΘMM,(num) (w, i, j, :) =

 (
Θ

(num)
MM,0 (w, i, j)

)
(
Θ

(num)
MM,x (w, i, j)

)
 ,

ΘMM,(den) (w, i, j, :) =

 (
Θ

(den)
MM,0 (w, i, j)

)
(
Θ

(den)
MM,σ (w, i, j)

)
 ,

ΘMM,(den - EC) (w, i, j, :) =


(
Θ

(den - EC)
MM,0 (w, i, j)

)
(
Θ

(den - EC)
E,σ (w, i, j)

)
(
Θ

(den - EC)
C,σ (w, i, j)

)
 ,

Finally, the hypothesis function is:

h
(
X(num)(w, i, j, :, :),X(den)(w, i, j, :, :);

Fq(w, i, j, :),Θ(num)(w, i, j, :),Θ(den)(w, i, j, :)
)

=

Φ

(
Fq(w, i, j)− (θ(num)(w, i, j, :))

TX(num)(w, i, j, :, :)

(θ(den)(w, i, j, :))TX(den)(w, i, j, :, :)

)
,

where the divisaion in parenthesis is performed elementwise, the result is a
vector (of lenght m) and Φ is computed for each of its element. An analogous
vectorization is applied to the cost function, which becomes:

J
(
Θ(num)(w, i, j, :),Θ(den)(w, i, j, :)

)
=

1

m

m∑
d=1

(
Yngr(w, i, j, d)−

h
(
X(num)(w, i, j, :, d),X(den)(w, i, j, :, d);

Fq(w, i, j),Θ(num)(w, i, j, :),Θ(den)(w, i, j, :)
))2

.

From its minimization over the training dataset we obtain the optimal coe�-
cients θ∗num and θ∗den. Once those values have been determined, we de�ne the
probabilities for the usual three categories as:

PNGR
inf (w, i, j, d) = h

(
X(num)(w, i, j, :, d),X(den)(w, i, j, :, d);

Y1/3(w, i, j),Θ(num)(w, i, j, :),Θ(den)(w, i, j, :)
)
,

PNGR
mid (w, i, j, d) = h

(
X(num)(w, i, j, :, d),X(den)(w, i, j, :, d);

Y2/3(w, i, j),Θ(num)(w, i, j, :),Θ(den)(w, i, j, :)
)
,

PNGR
sup (w, i, j, d) = 1− PLR

mid(w, i, j, d)− PLR
inf (w, i, j, d).

Naturally, these quantities are computed over all the validation sets and are
used in the following as the basis for the probabilistic scores.
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5.2 Results

Unlike the previous chapter, we can directly expose the NGR results, instead
of performing �rst the algorithm selection. We begin, as usual, with the proba-
bilistic scores: RPSS and DRPSS, averaged over the four regions and over the 18
validation winters (from the cross validation procedure). The results are shown
in Table 5.1-5.2 , with the same structure as in the previous chapters.

In this case, di�erent possibilities are tested for the sole multi-model, for
which we tried two choices of predictand for the standard deviation. The proce-
dure is analogous to the one seen fo LR and the underlying assumpion, togeteher
with the potential bene�t of one version over the other, are the same exposed
in the previos chapter.

The results are similar to what we saw with the other algorithms. The
multi-model shows the best performances nearly always, even if its value are
often close to the ECMWF-IFS one, expecially in the �rst week. The similarity
is even more evident when we look at the DRPSS. The score, in fact, is less
sensitive to the ensemble dimension and the values for the two single models are
closer to the multi-model ones. This behaviour is not surprising: if we recall
the coe�cients used for producing the multi-model �elds, we see that due to the
enhanced resolution of the ECMWF-IFS model in the �rst perdiod, its weights
for the �rst week are signi�cantly higher than the CNR-ISAC ones. As a result,
probably much of the skill of the multi-model over this periods comes indeed
from the ECMWF-IFS foreasts.

The comparison between the two variants for the choice of the ensemble
standard deviation is also interesting. Both of them result in su�ciently high
scores, with the approximate version (the one denoted by EC in the subscript)
resulting in generally better performances over the northern hemisphere and
Europe, while the standard version ouperform the other over the two remaining
regions. We therefore conclude that, for this speci�c algorithm, using a lin-
ear combination of the ensemble standard deviations of the two single models
instead of the multi-model is a reasonable choice.

Another noticeable information that can be extracted from the tables is the
di�erence in predictability between the four regions. We see another con�rma-
tion of what we noticed with the other techniques. In the northern and southern
hemisphere we �nd high scores for the �rst and second week, followed by two
nearly constant and rather low values over the remaining period. The equatorial
belt has lower performances at the beginning of the forecast, but higher score
over the �nal weeks. Finally, Europe results highly predictable in the �rst week,
but the sharp decrease in the successive period leads, at the end of the forecast,
to the lowest scores of all the regions. Naturally, the division between the �rts
two weeks and the extendend range is always evident, as for DMO and LR.

After this comparison, we show the reliability diagrams for the multi-model,
using the standard version of the algorithm (the one where the standard devia-
tion is computed from the 25 arti�cial members). Naturally, the �st week is the
one where the calibration function is closer to the black dashed line. The curve
remains rather straight also in the second week, altought the slope decreases.
Over the �nal two weeks we see again the peculiar behaviour noticed for LR:
the last probability cathegory shows frequecies lower than its neighbour on the
left. This is a conditional bias (because it depends strongly on the category c(i))
that, strangely, indicates low skill when the algorithm is more con�dent in its
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w RPSSMM RPSSMM, (EC) RPSSE RPSSC

1 0.62 0.60 0.61 0.54
2 0.31 0.31 0.29 0.24
3 0.16 0.17 0.15 0.14
4 0.14 0.15 0.13 0.12

(a) Northern Hemisphere

w RPSSMM RPSSMM, (EC) RPSSE RPSSC

1 0.60 0.55 0.59 0.53
2 0.34 0.32 0.31 0.26
3 0.22 0.20 0.19 0.17
4 0.18 0.16 0.15 0.14

(b) Southern Hemishpere

w RPSSMM RPSSMM, (EC) RPSSE RPSSC

1 0.44 0.39 0.41 0.34
2 0.31 0.28 0.27 0.24
3 0.25 0.21 0.21 0.19
4 0.23 0.18 0.18 0.17

(c) Equatorial Belt

w RPSSMM RPSSMM, (EC) RPSSE RPSSC

1 0.63 0.61 0.62 0.55
2 0.23 0.25 0.23 0.19
3 0.09 0.10 0.08 0.08
4 0.08 0.09 0.06 0.07

(d) Europe

Table 5.1: Ranked Probability Skill Score (RPSS) for the nonhomogeneous Gaussian
regression technique, averaged over the 18 validation winters. The four table present
the spatial average over the four di�erent regions de�ned in the second chapter. The
�rst column always shows, in blue, the week. The second and third columns contains
the scores for the two variants applied to the multi-model: the subscript MM refers
to the algorithm using SMM as the standard deviation, while in MM - EC we use a
linear combination of SE and SC. Finally, the last two columns refers respectively to
the ECMWF-IFS and CNR-ISAC models.The value corresponding to the best perfor-
mances (the lowest ones) for each row is highlighted in red.
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w DRPSSMM DRPSSMM, (EC) DRPSSE DRPSSC

1 0.66 0.64 0.64 0.58
2 0.37 0.37 0.36 0.31
3 0.24 0.25 0.23 0.22
4 0.22 0.23 0.21 0.20

(a) Northern Hemisphere

w DRPSSMM DRPSSMM, (EC) DRPSSE DRPSSC

1 0.64 0.60 0.63 0.57
2 0.40 0.38 0.38 0.33
3 0.29 0.27 0.27 0.25
4 0.26 0.24 0.23 0.22

(b) Southern Hemishpere

w DRPSSMM DRPSSMM, (EC) DRPSSE DRPSSC

1 0.49 0.45 0.47 0.40
2 0.38 0.35 0.34 0.31
3 0.32 0.28 0.28 0.27
4 0.30 0.26 0.25 0.25

(c) Equatorial Belt

w DRPSSMM DRPSSMM, (EC) DRPSSE DRPSSC

1 0.66 0.65 0.66 0.59
2 0.31 0.32 0.30 0.26
3 0.17 0.18 0.17 0.16
4 0.16 0.17 0.15 0.16

(d) Europe

Table 5.2: As for Table 5.1, but the score presented is the Discrete Ranked Probability
Skill Score (DRPSS).
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prediction. Looking at the distribution in the upper left corner of the plot, the
�rst two weeks behave similarly to LR, presenting some hints of overcon�dence.
Some di�erences can be seen in the extended range, where the freqeuncies of all
the categories are closer to one another respect to the LR case. Lower values of
probability are more likely to appear and it is interesting to notice that, for the
fourth week, we do not see p(c(2)) > p(c(1)) as for LR.

We conclude that nonhomogeneous Gaussian regression is a valid algorithm
for forecasting probabilities regarding the relative values of the 2-metre tem-
perature anomaly respect to the terciles of the reanalysis. Again, it produces
signi�cant improvements on the scores obtainable directly from the ensembles,
for both the multi-model combination and the single models, particularly over
the extended range of the forecast.
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(c) Week 2
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(d) Week 3

Figure 5.1: Reliability diagrams for the nonhomogeneous Gaussian regression applied
to the multi-model, computed for the lower tercile treshold. As always, the four panel
refer to the forecast weeks and all the values refer to an average over the whole globe
and over the 18 validation winters. Each of the panel has the usual structure: the red
curve represents the calibration function, while the smaller plot in the corner contains
the re�nement distribution (in blue).
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Figure 5.2: As in Figure 5.1, but for the upper tercile.
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Chapter 6

Summary and conclusions

The work done in this thesis is fundamentally the evaluation, from a probabilistic
and non-probabilistic point of view, of a multi-model combination of the re-
forecasts from the ECMWF-IFS and CNR-ISAC prediction systems. In this
chapter we summarize the results, focusing on the multi-model and following
the same order in which the various methods have been described in the previous
chapters. The exposition is divided in two parts: we �rst focus on the multi-
model implementation and the non-probabilistic scores directly obtainable from
it, while in the second part we analyze the MOS results, comparing the di�erent
techniques tested.

6.1 Multi-model and non-probabilistic scores

In Chapter 2 we computed the multi-model �elds for the 2-meter tempera-
ture, temperature at 850 hPa and geopotential height at 500 hPa anomalies,
using a linear regression of the re-forecast of the two prediction systems against
the ERA-Interim reanalysis. The �rst interesting results are the maps of the
regression coe�cients. For the �rst two weeks the ECMWF-IFS model has sig-
ni�cantly higher weights than the CNR-ISAC one, probably due to its enhanced
resolution over the �rst 10 days. However, the di�erence between the two mod-
els is less marked over the extended range. Some additional information can be
obtained by looking at the sum of these coe�cients: values close to 1 hints the
presence of some predictability in the region, while where the sum is close to 0
the climatology represents the best possible prediction. In the �rst week, the
maps are very homogeneous and the sum is close to one nearly everywere, while
in the following weeks, the pattern depends on the variable considered. For
the geopotential height at 500 hPa and the temperature at 850hPa, the equato-
rial belt seems particularly predictable over the extended range, while Europe
and some areas over the oceans in the southern extratropics show considerably
low values, sometimes even below zero. The 2-meter temperature shows, over
Siberia and the Antarctic, values signi�cantly greater than one, which suggests
an underestimate of the anomalies over these regions by the single models.

We then computed the RMSE and anomaly correlation, following a cross
validation procedure in which the dataset was split in 18 winters. Each winter
was used, in turn, for validation, while the others acted as training set. We

107
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rmse

(NH) (SH) (EB) (EU)
w MM BM MM BM MM BM MM BM

1 22.5 22.6 19.9 20.1 3.95 4.09 25.2 25.4
2 67.1 70.8 52.7 55.8 8.56 9.05 81.3 85.7
3 82.8 90.5 61.5 66.2 10.9 11.8 97.1 105
4 87.0 94.2 63.0 66.9 11.7 12.8 100 108

(a) Z500

rmse

(NH) (SH) (EB) (EU)
w MM BM MM BM MM BM MM BM

1 1.08 1.11 0.88 0.91 0.51 0.54 1.03 1.06
2 2.70 2.85 1.83 1.94 0.84 0.90 2.70 2.85
3 3.29 3.52 2.09 2.27 0.99 1.08 3.23 3.46
4 3.49 3.71 2.12 2.27 1.02 1.12 3.32 3.51

(b) T850

rmse

(NH) (SH) (EB) (EU)
w MM BM MM BM MM BM MM BM

1 1.35 1.45 0.59 0.65 0.41 0.48 1.25 1.32
2 2.79 2.90 1.08 1.16 0.62 0.69 2.78 2.89
3 3.35 3.59 1.25 1.39 0.72 0.80 3.35 3.54
4 3.52 3.77 1.31 1.47 0.75 0.81 3.40 3.58

(c) T2M

Table 6.1: Comparison of the root mean square error (rmse) between the multi-
model (MM) and the �best single model� (BM), chosen for each region and week as the
one with the best performances between the ECMWF-IFS model and the CNR-ISAC
one. The three panels show the values for week (w) 1 to 4 for the three variable, as
indicated by their labels. The remaining columns are grouped in pairs, which show
the values for the four spatial region over which the average has been performed. The
best performances for each week and region are highlighted in red.

de�ned four spatial regions over which we performed the spatial average: the
Northern Hemisphere (NH), the Southern Hemisphere (SH), the Equatorial Belt
(EB) and Europe (EU). The multi model outperforms the two single models
nearly always, especially when looking at the RMSE. The relevant results are
summarized in the Table 6.1 (for the RMSE) and in the Table 6.2 (for the AC),
where the multi-model is compared, for each week and region, with the best
between the two single models. Clearly, the multi-model outperforms the other
models nearly always.

The equatorial belt shows the lower values of RMSE for all the variables, due
to the low variability over the region. The highest values can be nearly always
found in the Northern Hemisphere or over Europe. The anomaly correlation
shows a similar behavior, although the best performances in this case corre-
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ac

(NH) (SH) (EB) (EU)
w MM BM MM BM MM BM MM BM

1 0.97 0.97 0.95 0.95 0.95 0.95 0.96 0.96
2 0.65 0.63 0.58 0.56 0.75 0.74 0.55 0.53
3 0.35 0.32 0.31 0.27 0.56 0.54 0.23 0.23
4 0.23 0.21 0.25 0.21 0.48 0.45 0.09 0.09

(a) Z500

ac

(NH) (SH) (EB) (EU)
w MM BM MM BM MM BM MM BM

1 0.95 0.95 0.92 0.92 0.90 0.89 0.95 0.94
2 0.65 0.63 0.63 0.60 0.68 0.67 0.56 0.54
3 0.40 0.35 0.49 0.42 0.55 0.51 0.26 0.23
4 0.32 0.27 0.49 0.42 0.53 0.48 0.19 0.17

(b) T850

ac

(NH) (SH) (EB) (EU)
w MM BM MM BM MM BM MM BM

1 0.93 0.92 0.93 0.92 0.90 0.88 0.93 0.93
2 0.68 0.65 0.79 0.77 0.77 0.73 0.62 0.60
3 0.48 0.44 0.75 0.70 0.69 0.64 0.38 0.34
4 0.44 0.40 0.75 0.70 0.67 0.62 0.37 0.33

(c) T2M

Table 6.2: As for Table 6.1, but for the anomaly correlation (ac).

spond to the highest values. For the temperature at 2 meter, the performances
over the Southern Hemisphere are noticeable, due to the extended range being
characterized by exceptionally high values.

For both scores, the di�erence between the �rst two weeks and the last two is
particularly evident. Such behavior is expected, given the di�erent predictability
sources for the two time ranges, as discussed in Chapter 1.

6.2 Probabilistic forecast

For both the multi-model and the single models we tested di�erent techniques
for predicting the probability that the 2-m temperature anomaly falls in each
of the three intervals in which the reanalysis distribution is split by its terciles.

First of all, we extracted these probabilities directly from the ensembles
using two di�erent techniques: democratic voting (DV) and the Tukey plotting
position (TPP). Then, we tested two di�erent regression techniques: logistic
regression (LR) and nonhomogeneous Gaussian regression (NGR). For both
techniques we tried some variants of the algorithm, selecting the one with the
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best performances. For LR, the chosen version is the one denoted by α in
Chapter 4, which uses only the ensemble mean as a predictor, while for NGR
we show the score obtained using the multi-model ensemble standard deviation
computed from the 25 members available in the multi-model.

All these methods have been veri�ed using three probabilistic scores: ranked
probability score (RPS), ranked probability skill score (RPSS) and discrete
ranked probability skill score (DRPSS).

In Table 6.3 we compare the performances of the four methods, using the
RPSS averaged over the usual four regions. This score has been chosen because
it provides the skill relative to the climatology and therefore it has a more imme-
diate interpretation than RPS. DRPSS is not used in this comparison because
we show here the scores for the sole multi-model (the ensemble dimension is
constant for all the elements of the table).

From Table 6.3 it can be clearly seen that logistic regression outperforms the
other methods. Also NGR shows good performances, especially in the extended
range over the two hemispheres and over Europe, where its scores are signi�-
cantly higher than the DMO methods (DV and TPP). It is interesting to notice
how Europe represents a di�cult area for making predictions over the third and
fourth weeks as evident from the scores of all the four methods. The Equato-
rial Belt, on the other hand, results particularly predictable over the same time
range.

The second tool used for analyzing the performances is the reliability di-
agram, shown in Figure 6.1 and Figure 6.2, for the lower and upper terciles
respectively. In the �rst week, the calibration function for LR (the red curve) is
the closest to the bisector of the quadrant, i.e. the probability predicted are the
closest to the verifying conditional frequencies. Even if the re�nement distribu-
tion for all the algorithms shows particularly high values of Pr(c(1)), for LR and
NGR the di�erence between this frequency and the others (Pr(c(2)), ..., P r(c(5)))
is slightly less marked. In the second week, LR is again the closest curve to the
bisector for all the intervals except c(5) = 0.9, where the slope of the red curve
decreases signi�cantly. The re�nement distribution shows the same behavior
seen for the previous week, but this time the di�erence between the �rst column
and the others for LR and NGR is even less marked. In the last two weeks LR
and NGR follow the same strange trend: the slope of the curve diminishes with
the increasing of c(i), hinting to the presence of a conditional bias. This behav-
ior is less marked for NGR. The DMO methods curves have a more constant
slope, and particularly in the last week they are closer to a horizontal line, being
therefore more similar to predictions based on climatology. It is interesting to
notice that, while the re�nement distribution for these DMO techniques keep
approximately the same shape across the four forecasts weeks, for the two re-
gressions we see a gradual shift of the maximum from c(1) to c(2). The behavior
just described can be considered valid for both terciles.

In conclusion, we can consider logistic regression the most promising algo-
rithm for extracting tercile probabilities for the 2-m temperature anomalies from
our dataset. In Chapter 4 we showed how LR applied to the multi-model out-
performs also the same algorithm used in the two single models separately. This
suggests that by combining the two �elds together we can obtain more skillful
probabilistic forecast.

We can ask ourselves the last question: �are further improvements possible?�
As shown with the learning curve (again in Chapter 4, Figure 4.15), the chosen
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w RPSS
(DV)
MM RPSS

(TPP)
MM RPSS

(LR)
MM RPSS

(NGR)
MM

1 0.64 0.65 0.68 0.62
2 0.27 0.29 0.34 0.31
3 0.09 0.11 0.20 0.16
4 0.05 0.07 0.17 0.14

(a) Northern Hemisphere

w RPSS
(DV)
MM RPSS

(TPP)
MM RPSS

(LR)
MM RPSS

(NGR)
MM

1 0.63 0.64 0.68 0.60
2 0.30 0.32 0.37 0.34
3 0.15 0.17 0.25 0.22
4 0.08 0.11 0.20 0.18

(b) Southern Hemishpere

w RPSS
(DV)
MM RPSS

(TPP)
MM RPSS

(LR)
MM RPSS

(NGR)
MM

1 0.47 0.49 0.55 0.44
2 0.29 0.31 0.39 0.31
3 0.22 0.24 0.32 0.25
4 0.19 0.21 0.30 0.23

(c) Equatorial Belt

w RPSS
(DV)
MM RPSS

(TPP)
MM RPSS

(LR)
MM RPSS

(NGR)
MM

1 0.66 0.67 0.69 0.63
2 0.19 0.21 0.27 0.23
3 -0.06 -0.02 0.11 0.09
4 -0.07 -0.04 0.10 0.08

(d) Europe

Table 6.3: Comparison of the ranked probability skill score for the four method
tested, averaged over the 18 validation winters. Again, the four table present the
spatial average over the four di�erent regions and the �rst column shows, in blue,
the week for the entire row. The value corresponding to the best performances (the
highest ones) for each row is highlighted in red.

variant (α) has probably reached its maximum performances: the scores will not
likely improve increasing the dimension of the dataset. The usage of additional
features such as the ensemble standard deviation or its product with the ensem-
ble mean does not solve the problem. Obviously, there are countless possibilities
that can be tried as input features for LR, therefore we cannot con�dently con-
clude that its results cannot be further improved. Nevertheless, the possibility
we tested are the most widely used in the scienti�c literature and we believe
that a reasonable choice for improving the scores is to use a more powerful algo-
rithm, capable of representing non-linear equiprobability hyper-surfaces in the
feature space. Such algorithm would require a careful choice of predictors and
it is not unlikely that our dataset is too small for avoiding over�tting problems.
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The choice of its implementation is not a trivial one. Although it will probably
requires greater computational resources and a signi�cant amount of work for
identifying the optimal version, it is not certain that additional predictability
exists in our data and, in the optimistic case, we do not know how much the
forecast skill can potentially be improved.
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Figure 6.1: Reliability diagrams for the four methods, applied to the multi-model
an computed for the lower tercile. The four panels refer to the forecast weeks. The
values refer to an average over the whole globe and over the 18 validation winters.
Each color refers to a di�erent algorithm, both in the calibration function and in
the re�nement distribution: green for the democratic voting (DV), cyan for Tukey
plotting position (TPP), red for logistic regression (LR), and blue for nonhomogeneous
Gaussian regression.
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Figure 6.2: As in Figure 6.1, but for the upper tercile.
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