
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

SCUOLA DI INGEGNERIA E ARCHITETTURA

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

From data to applications
in the Internet of Things

Tesi in Ingegneria dei Sistemi Software

Candidato:

Ing. Simone Norcini
Matricola 0000652524

Relatore:

Ch.mo Prof. Ing. Antonio Natali

Anno Accademico 2015-2016
Sessione: I

From data to applications
in the Internet of Things

Ing. Simone Norcini

July 6, 2016

ii

Contents

1 Introduction 1

2 Cloud Computing 5

2.1 Origin of the Cloud . 5

2.1.1 SOAP vs REST: final considerations 8

2.2 Infrastructure as a Service (IaaS) 9

2.3 Platform as a Service (PaaS) 10

2.4 Software as a Service (SaaS) 11

2.5 Cloud types . 11

2.5.1 Public Cloud . 11

2.5.2 Private Cloud . 12

2.5.3 Hybrid Cloud . 13

3 Cloud service providers and software development 15

3.1 Virtualization . 15

3.1.1 Openstack . 16

3.1.2 Cloud Foundry . 17

3.2 DevOps . 19

3.2.1 DevOps best practices 20

3.2.2 DevOps system components 21

3.3 Microservice Architecture 23

3.4 Code portability between providers 24

3.4.1 Unportable PaaS . 25

3.4.2 Portable PaaS . 26

3.5 Providers comparison . 30

iii

iv CONTENTS

4 Fog Computing 35

4.1 Fog systems features . 36

5 Internet of Things 39

5.1 IoT definitions . 40

5.2 Ubiquitous Computing . 41

5.3 Constituent elements of the IoT 42

5.4 IoT focused on the Cloud . 43

5.5 IoT focused on the Fog . 44

5.6 MQTT . 46

5.6.1 MQTT features . 46

5.6.2 MQTT methods . 47

6 Case Study 49

6.1 Product requirement specification

STEP 1 . 49

6.1.1 Business requirements 49

6.1.2 Architectural requirements 49

6.1.3 Scenario . 50

6.1.4 Functional requirements 50

6.1.5 Non functional requirements 51

6.2 Product requirement specification

STEP 2 . 51

6.3 Analysis - STEP 1 . 51

6.3.1 QActors . 53

6.3.2 Workflow for QActors - Phase 1 56

6.3.3 Workflow for QActors - Phase 2 56

6.3.4 Workflow for QActors - Phase 3 56

6.3.5 Workflow for QActors - Phase 4 57

6.3.6 Workflow for QActors - Phase 5 58

6.3.7 Workflow for QActors - Phase 6 61

6.4 The system running . 68

7 Conclusions 69

CONTENTS v

Bibliography 71

Chapter 1

Introduction

With the growth in complexity of the IT infrastructure, which every day

becomes more and more pervasive, there is a need of new computa-

tional models capable of supporting scenarios never faced before. The

pervasiveness and the geolocation are implicit in an Internet of things

[18] scenario leading to the need to rethink the placement of informa-

tion within the system components. The rapid growth of computational

capacity of System on a Chip (SoC) also suggests a redeployment of

system’s informations downward and the emergence of a multiplicity

of independent entities which can acquire the knowledge necessary to

accomplish their goals and make decisions that can lead to a change of

state of the world.

To support lots of heterogeneous and distributed entities comes the

need of new paradigms that may offer a geolocation support and data

management services near to the data source aiming at reducing the

data bandwidth demand as the Fog Computing [25] promises.

The exponential information increase generated by ubiquitous de-

vices with more and more sensors also leads to the need to rethink

policies for the data centers management and the need to support com-

plex analytics services the output of which may have to be viewed by

millions of users at a time. For this purpose Cloud Computing [13]

solutions have recently gained more and more attention, and several

1

2 CHAPTER 1. INTRODUCTION

vendors are considering with interest the feasible solutions in order to

optimize the use of their hardware infrastructure. In fact, among the

different benefits, these solutions provide the computational resources

as virtualized entity allowing to dramatically reduce the initial capital

investment and maintenance costs. So, the main force of the cloud is

to offer computational resources to third-party service providers who

have no intention of building and maintaining their own IT infrastruc-

ture.

It is a paradigm shift [7] understood as a change in the fundamental

chain of events. After the transition from mainframe to client-server

architecture, the next hop it leads to the Cloud. Thanks to this new

paradigm, users can abstract the technological details that relate to the

infrastructure hardware and no longer need the skills or control over

the technology infrastructure as the underlying cloud supports them.

This new scenario leads us to rethink the way in which the software

is designed and developed in an agile perspective. Cloud based soft-

ware development by Dev teams should be closely related to the activi-

ties of the Ops team that supports the Cloud creating a new philosophy

called DevOps [12]. Trying to achieve DevOps in an organization we

should address the structural implications because the past architec-

tures may be inadequate or incomplete to bridge the abstraction gap.

DevOps has implications with respect to both the overall structure of

the system and techniques that should be used in the system’s element

[19].

With the lack of an adequate abstraction supported at language level,

developers in the IoT field remain with the only possibility of making a

bottom-up construction with the aggravating factor of extreme hetero-

geneity. However, in order to help the developers, a new architectural

style is advocated first. The works are in progress trying to formal-

ize what microservices are [22] because, as a general perspective, the

monolithic applications of the past appear to be hardly scalable and

maintainable in a Cloud environment.

3

To manage and organize every model which arises from the IoT wide

scenario into a single framework, the chance to think about models as

a new form of source code would be invaluable. Also having generators

able to make executable code automatically from framework’s models

would be useful. In this case, modifying the models would be enough

to change the framework [21]. Model Driven Software Development

(MDSD) approach aims to reduce transformations complexity restrict-

ing changes to the "schematic" and repetitive part of a specific plat-

form. The starting point of this approach consists in defining a Domain

Specific Language (DSL) by the use of formal models that are processed

directly in the code or in the other artifacts provided by the platform.

The IoT experiment accomplished has been designed in such a way to

take meta concepts emerging from the Internet of Things environment

and injecting them in a Model Driven software factory in order to get

an automatic code generation and regaining the top-down approach.

In this thesis we will start by analyzing the Cloud Computing model

in chapter 2 and the concrete implications of this model on the world’s

providers in chapter 3. As a possible alternative to the cloud, or as

intermediate structure capable of providing support to highly geolo-

cated systems, it has been recognized the paradigm of Fog Computing

in chapter 4. To conclude the theoretical part and to introduce the

project was finally introduced in chapter 5 the concept of the Internet

of Things. In chapter 6 we get to the heart of the IoT project in which

we describe an experiment in an automated industrial warehouse sce-

nario.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Conceptual map of the subjects covered.

Chapter 2

Cloud Computing

“Computation may someday

be organized as a

public utility”.

John McCarthy

2.1 Origin of the Cloud

John McCarthy, the researcher who coined the term artificial intelli-

gence, spoke in 1961 of the possibility that the computation could have

been provided one day as a public-access service [17].

In the year 2000 Roy T. Fielding coined the term REST (Representa-

tional State Transfer) [16] in his doctoral thesis to identify a software

architecture particularly representative of the world wide web. Also he

identified the constraints and the essential characteristics inherent in

the network environment:

• Client-Server: separating the user interface from the data stor-

age mode, it enables the user interface portability across multi-

ple platforms and it improves scalability by simplifying the server

components.

• Statelessness: each request from client to server must contain

all information necessary to understand the request and can not

5

6 CHAPTER 2. CLOUD COMPUTING

take advantage of any stored context on the server. The session

state is then maintained entirely on the client. This constraint in-

duces the properties of visibility, reliability, and scalability at the

cost of a reduction in network performance, increasing the repet-

itive data (overhead for interaction) sent in a series of requests

from the time that the data can not be stored on the server in a

shared context.

• Cache: this constraint requires that the data within an answer

are implicitly or explicitly labelled as stored in the cache or not. If

a response contains the first label, the data may be introduced in

the client cache so that the latter can reuse this data in response

to the equivalent subsequent requests without the need to repeat

the request. This mechanism partially compensates the overhead

caused by the absence of state.

• Uniform interface: applying the principle of generality from soft-

ware engineering at components’ interface realization, the sys-

tem architecture is simplified. Also visibility of interactions is

improved. The implementations are decoupled from the services

they provide, encouraging the possibility of independent devel-

opment. The tradeoff is that a uniform interface decreases ef-

ficiency because informations are transferred in a standardized

form rather than in a specific representation tailored for the ap-

plication needs.

• Layered system: this stratification approach reveals an architec-

ture composed of hierarchical levels constraining the visibility of

the layer components immediately nearby with which they inter-

act. By limiting the knowledge of a single-level system, it puts a

limit to the overall complexity of the system and it promotes the in-

dependence of each substrate. The main disadvantage of layered

systems is that they add overhead and latency in data processing,

reducing user-perceived performance.

2.1. ORIGIN OF THE CLOUD 7

• Code on-demand: REST allows you to extend the capabilities

of the client by downloading and executing code in the form of

applets or scripts. This makes possible the simplification of the

client by reducing the number of elements that must be released

in advance. Allowing the code to be downloaded after deployment

improves the extensibility of the system. However, it reduces the

visibility.

Almost simultaneously began to spread concurrently around 2000

the web services paradigm [15], which proposed special attention to

the common question of interfaces uniformity and proposed as stan-

dard a new language derived from XML, WSDL (Web Services Descrip-

tion Language), which made it possible to semantically describe the

services provided to the client and everything you need to invoke them.

The protocol that allowed the whole system to work was SOAP which re-

flect a service-oriented architecture based on three classes of interact-

ing entities: service requestor, service provider and the discovery

agencies. The benefits of Web services were then due to decoupling

between services by the implementation of interfaces on every specific

platform, making it possible to dynamically link services. They also

helped achieving the interoperability between different languages and

platforms.

Access to services were finally made public but the one to the com-

putational resource not yet. In fact the computational resource was

bounded within the service providers’ server. Service providers was the

exclusive makers of those services and they alone could chose which

services to publish.

In this atmosphere of struggle between SOAP, service-oriented, and

REST, focused on resources, we come to 2005, when Amazon [27] had

already spent more than a decade and millions of dollars in building

and managing an IT infrastructure on a large scale, reliable, efficient

and that had supported one of the largest online sales platforms retail

worldwide. How to use all this equipment during the summer? It re-

8 CHAPTER 2. CLOUD COMPUTING

mained in almost total inactivity. Why not sublease these servers to try

to recover the investment costs?

In 2006 it was thus launched Amazon Web Services (AWS) so that other

organizations could benefit from Amazon’s experience in the manage-

ment of an IT infrastructure on a large scale, distributed and transac-

tional.

AWS and Azure Services Platform from Microsoft have generally adopted

the Web Service [17] based API in which, access to users, Cloud con-

figuration and services used the default API presented as Web services.

The selected protocol was thus SOAP.

However it is clear that the cloud computing, as currently understood

comes from more recent origin. The First International Conference

on Cloud Computing took place only in 2008 and another international

conference on cloud computing met in December 2009.

In general, the Cloud as commonly understood, provides services at

three different levels (IaaS, PaaS and SaaS) and some providers may

even choose to provide services to multiple levels.

2.1.1 SOAP vs REST: final considerations

In the early implementations of service-oriented architecture, standards

such as SOAP, XML-RPC, and WSDL were common for the structuring of

the data and in communication via API. These standards, however, were

heavy and inflexible [10] and were generally quite difficult to use. In

the re-emergence of services-oriented architecture today there are new

concepts, more agile and light as REST [1], which integrates agility and

speed, while maintaining the advantages of a distributed system with

weak coupling. According to these considerations Amazon has decided

to support either SOAP and REST API for public access to their cloud

and found that 85% of customers opted for the REST alternative. The

reasons for this preference can be explained by the fact that REST so-

lutions has already become pervasive. HTTP clients and servers are

available for all major programming languages and the default HTTP

2.2. INFRASTRUCTURE AS A SERVICE (IAAS) 9

port (80) is commonly left open as standard setting in most firewall

configurations. An infrastructure so light [23], where services can be

built with minimal tools, is cheap to acquire and therefore has a very

low barrier for adoption. The effort necessary to build a REST client

is very low, also the developers can begin to test these services from a

standard web browser, without the need to develop any specific client-

side software. Distribution of a RESTful Web service is very similar

to building a dynamic website. Moreover, thanks to URIs and hyper-

links, the REST architecture has demonstrated the ability to discover

web resources without a dependent approach implying a mandatory

registration to a central repository. From an operational point of view,

it knows how to scale up and down a RESTful Web service in order

to serve a very large number of customers with caching support, clus-

tering and load balancing implemented in REST. The REST adoption

removes the need to perform a number of additional architectural deci-

sions related to the various layers of the Web Service and make it seems

such a complexity superfluous. Although Web services based on SOAP

remain a feasible technology within the big industry when you have ad-

vanced QoS requirements, REST has become the tactical alternative for

systems and distributed services integration paving the way for public

access to computing invoked by John McCarty. We will see such an

architecture applied in the paragraph 3.4.2 about portable Cloud.

2.2 Infrastructure as a Service (IaaS)

The paradigm "infrastructure as a service" (IaaS) offers hardware, soft-

ware and equipment to provide customers with application environ-

ments with a pricing model based on resources utilization. These infras-

tructures are able to scale in both directions dynamically as resource

are needed by applications, avoiding users to manually configure band-

width, memory and storage statically. Vendors may compete on per-

formance and prices offered for their dynamic services. The service

provider is the hardware owner and is responsible for the management

10 CHAPTER 2. CLOUD COMPUTING

and maintenance of the servers. The IaaS services are generally pur-

chased on a pay-as-you-go base because, the chance of paying only for

the resources required enables the possibility of converting capital ex-

penditures into operating expenses.

Using this technique [7], virtual machines are created on premise and

loaded with the software to run on the cloud. Then the virtual machine

must be managed by the customer and configured to the hosting envi-

ronment of the IaaS provider to use the storage services provided. It

is customer’s responsibility to also monitor all the software running on

vm including license management. IaaS use option is very flexible but

its adoption is only recommended if the application migration to the

cloud must be very fast and there is no time to re-engineer the code for

the new environment.

Typical examples are Amazon EC2 (Elastic Cloud Computing) [27] and

S3 (Simple Storage Service) [1, 27] in which the entire calculator and

the data storage infrastructure are accessible to customers.

2.3 Platform as a Service (PaaS)

The "Platform as a Service" (PaaS) provides an integrated environment

of high level to build, test and deploy ad hoc applications. In general,

developers will have to accept some restriction on the type of software

that they can write. In exchange for this sacrifice they can obtain scal-

ability for their applications managed as a built-in service offered by

the provider. An example is the Google App Engine [24], which allows

users to build web applications on the same scalable systems that sup-

port Google apps.

The PaaS allows you to take the best practices without thinking about

it [10]. From a developer’s point of view, shared web hosting is easy,

but it does not provide control and power, while the dedicated hosting

is quite powerful, but involves too many distractions and soft skills. Un-

til the advent of PaaS were never existed a middle ground that could

provide the power, the speed, reliability and scalability that you wanted

2.4. SOFTWARE AS A SERVICE (SAAS) 11

with the dedicated hosting nevertheless remaining simple to use as the

shared hosting. The reliability and scalability are made possible by

the N-levels architecture which is one of the fundamental principles of

REST.

We will enter in deployment’s details of this service model in chapter 3.

2.4 Software as a Service (SaaS)

The model "software as a service" (SaaS) offers a specific sw product

accessible to customers remotely through the internet with a pricing

model based on usage. SaaS helps organizations avoiding capital in-

vestments and lets them focus on their core business rather than on

support services such as IT, infrastructure management, software main-

tenance, etc. In addition, by removing the dependency on local product

installations, SaaS provides access to applications worldwide. To ac-

commodate a large number of cloud users, SaaS applications can have

multiple users simultaneously so any cloud machine may serve users

from different organizations.

Fit into this category Salesforce’s products. Salesforce is one of the

leading provider of on-line CRM (Customer Relationship Management).

Another example is Microsoft’s Live Mesh that allows you to share files

and folders in addition to the synchronization of multiple devices.

2.5 Cloud types

The cloud computing services previously described may be released in

different forms, each of which involves different levels of safety and

need for maintenance.

2.5.1 Public Cloud

A cloud is told public when services are made available through an

open network for public use. The cloud service providers such as Ama-

12 CHAPTER 2. CLOUD COMPUTING

zon AWS, Microsoft and Google, own and operate only the data centres.

The access is typically via the internet without direct connectivity pos-

sibility. From a safety point of view we must consider the substantial

scenario diversity for these services (applications, storage, etc.) be-

cause they are made available by a service provider through a public

net. In this scenario the communication is done through a not fully

reliable network which requires a deeper attention to security require-

ments.

Regarding specifically the public cloud Platform as a Service [10], usu-

ally you can find it on a public Infrastructure as a Service platform

(such as Amazon Web Services [27]). This is for example the case of

PaaS providers like Heroku, EngineYard and AppFog. In many PaaS

options you are not given the chance to choose exactly where the code

is executed. You do not have much control over what is happening

in the service, nor you are allowed to work on the operating system

mechanisms. The customer provides the code and PaaS runs it with the

disadvantage of loss of understanding of what actually happens in the

server.

2.5.2 Private Cloud

The term private cloud identifies a cloud infrastructure in which the

ownership is entirely recognizable in a single organization. Take a pri-

vate cloud project requires a high level of commitment by the organi-

zation to virtualize the environment in which it operates its business.

The enterprises are also required to check the allocation of existing

resources. A private cloud can increase their chances of business by

opening the offer to new markets, but every step of the project can

raise security issues that must be addressed to prevent serious vul-

nerabilities. The construction of autonomous data-centers generally

involves large capital investment and require the ability to manage a

large physical place for hardware allocation and rooms’ cooling. The

cloud infrastructure must also be updated periodically resulting in an

2.5. CLOUD TYPES 13

additional investment of capital. Following these considerations, we

can say that private cloud removes those economic benefits of cloud

computing that make it such an interesting alternative.

The private PaaS cloud is much less familiar to most developers than its

public counterpart [10] since it can take many different forms, but in a

nutshell it is PaaS running on proprietary hardware. It can be executed

on an on-premise IaaS platform type, such as OpenStack, vSphere,

CloudStack, Eucalyptus or even directly on unvirtualized hardware.

The difference is usually that in private cloud the owner/developer has

responsibility for code’s management. Those who run a private cloud,

as opposed to those who rely on public cloud PaaS, get similar func-

tionality and the same release mechanisms for the execution of applica-

tions, but are also responsible for code’s behavior on the PaaS and they

will have to worry about its running state. This way can offer more con-

trol over servers and the ability to use proprietary hardware without

the need of being tied to a particular service provider.

2.5.3 Hybrid Cloud

The hybrid cloud consists of an integration of different public and/or

private clouds which remain separate entities but are unified and al-

low the integration of services provided by different providers. Some

vendors, such as AppFog and OpenShift, provides the possibility for

a system to be extended over public and private clouds, in fact these

providers allow you to choose where do you want each application to

be hosted.

A promising frontier for the hybrid cloud contemplates its use by the

public administration. Consider a common scenario where you’re build-

ing an application that uses sensitive data with the limitation of having

to maintain them internally. This part of data with restrictions usually

is only a small portion of the total system but in a monolithic appli-

cation it forces the entire system to be executed internally due to the

constraints on sensitive data. However, if you design the software tak-

14 CHAPTER 2. CLOUD COMPUTING

ing in consideration a distributed execution, using a lot of API to allow

a lightweight frontend and decomposing the application into multiple

services, it is still possible to allocate most of the system safely on a

public cloud. All components that don’t interact with sensitive data can

be performed on external hardware lowering the costs of the ICT in-

frastructure. This approach, which involves the construction of many

small services works particularly well with the PaaS paradigm. The re-

alization of small independent services to be connected together is not

only a modern approach to the development of applications for both

smart devices and web, but it is also particularly suitable when you’re

considering how to build a PaaS strategy that combines the services of

multiple public clouds with a private cloud in which to keep sensitive

data.

Chapter 3

Cloud service providers and
software development

PaaS service providers can chose to adopt very different infrastruc-

tures, but in general they maintain the virtualization software that runs

on proprietary hardware, directly on the server they own or acquiring

the services of an external IaaS provider. In the first case the PaaS ser-

vice provider must also take care to maintain the IaaS level on-premise

using OpenStack, vSphere, CloudStack and Eucalyptus or even directly

if the hardware is not virtualized.

The number of new PaaS service providers is increasing rapidly. As

shown in chapter 2, the cloud can represent a unique opportunity for

software developers but, to ensure that the choice of the service provider

is prudent and conscientious, it is essential to investigate how the un-

derlying virtualization technologies work. We will also consider the

bounds between the application that must be developed and the provider’s

infrastructure. Finally, some general techniques for comparing differ-

ent service providers will be presented.

3.1 Virtualization

PaaS provider that operates on proprietary hardware will also have the

task of implementing an appropriate virtualization strategy otherwise

15

16CHAPTER 3. CLOUD SERVICE PROVIDERS AND SOFTWARE DEVELOPMENT

adopted by IaaS provider. The cloud architecture leverages virtualiza-

tion techniques that can provision multiple virtual machines (VM) on

the same physical host in order to make efficient use of available re-

sources [13], for example, allocating the VM in the minimum possible

number of physical servers reduces the energy consumption at runtime.

For example, we can have two physical servers running a VM each and

both are not using their full computing capacity. Therefore, the assign-

ment of both virtual machines at the same physical server can usefully

lead to the switching off of a machine. We should also remember that

the energy savings will always be more effective in large data centers.

Allocating VMs’ , however, we must think carefully about the aggre-

gated resource consumption of virtual machines co-allocated in order

to avoid a failure in providing the service level agreement (SLA) pur-

chased by the customer. Thus the VM allocation also leads to sev-

eral management problems because it requires an optimal usage of the

available resources in order to avoid performance degradations caused

by resource consumption of virtual machines co-allocated on the same

host. In order to better address the issue of physical resources opti-

mization (CPU, RAM and persistent storage systems) several algorithms

have been proposed to solve the problem of allocating VM in order to

improve load balancing among servers and minimizing the number of

switched on machines.

3.1.1 Openstack

The proliferation of cloud service providers to which we are witness-

ing has had its start when the project OpenStack were opened to the

public becoming open-source. This project provided a first implemen-

tation of a virtualization infrastructure that used the optimizing algo-

rithms described above. So OpenStack is an open-source solution for

the creation and management of cloud infrastructure (IaaS layer), origi-

nally developed by NASA and Rackspace. OpenStack also allowed small

businesses to deploy infrastructure in the cloud even if its adaptation

3.1. VIRTUALIZATION 17

to specific scenarios may require a deep infrastructure management

re-engineering. OpenStack uses open-source libraries and components

well known; It manages both the computing that the cloud storage re-

sources to enable dynamic allocation of virtual machines. OpenStack

is the result of the integration of two different important projects: the

first, made by NASA and called Nova, mainly manages computing and

network resources, while the second, provided by Rackspace, is called

Swift and it is responsible for archiving files on a cloud platform. Early

on, there were many criticisms about the immaturity of the software

[10]. However it has matured rapidly and is becoming every day more

and more stable and feature rich. In fact, the open-source nature of the

project has enabled hundreds of companies large and small to invest

time, money and resources to make OpenStack such a huge success

that there are now at least three large public cloud based on it: one

from Rackspace, IBM’s Bluemix and another one from HP. Countless

other initiatives are added each day proving the pervasiveness that this

software solution has now reached.

3.1.2 Cloud Foundry

From level IaaS, the abstraction gap to achieve the services to be made

available to the whole world is still high. To bridge this gap is essential

to establish a new layer equipping a PaaS platform like Cloud Foundry

that is releasable directly above OpenStack infrastructure described

above (or on AWS or vSphere). Cloud Foundry [2] is an open source

platform supported by a large community. The openness and extensi-

bility of the platform prevents its users to remain confined to certain

languages or at some set of application services. Cloud Foundry also

helps to reduce the cost and complexity of ICT infrastructure configu-

ration. Developers can distribute their applications on Cloud Foundry

using the most common tools and without having to change their code.

The main components that constitute Cloud Foundry are:

• BOSH: creates and distributes virtual machines (VM) on top of

18CHAPTER 3. CLOUD SERVICE PROVIDERS AND SOFTWARE DEVELOPMENT

a physical computing infrastructure. It implements and manages

Cloud Foundry on IaaS infrastructure. To configure distribution,

BOSH follows the configured instructions written in a manifest.

• Cloud Controller: it manages applications and other processes

on the cloud’s VM. It cares about the resource balance according

to the demand and manages the application life cycle.

• (Go)router: it establishes the traffic routes incoming from the

wide area network (WAN) to the virtual machines that run the

applications required from outside. Usually it works together with

a load-balancing system provided by the customer.

These Cloud Foundry’s components communicate among themselves

posting internal messages and using transmission protocols as HTTP

and HTTPS, in addition to sending NATS messages between themselves

in a direct manner. Cloud Foundry distinguishes two types of virtual

machines: the VMs that form the platform’s infrastructure and the

VMs running applications as a host for the outside world. Within Cloud

Foundry, a component called Diego distributes the hosted applications

load on all virtual machines available, keeps running them and it man-

ages balance issues for peak demand. Diego also manages interrup-

tions or other changes in the network topology using an auction algo-

rithm. Cloud Foundry uses the GitHub git system for the management

of code version control and documentation. Developers working on the

platform can also use GitHub for their applications, custom configu-

rations and to manage other resources. To store large files in binary

form, Cloud Foundry maintains an internal Blob archive. For storing

and sharing temporary information, such as the states of the internal

components, Cloud Foundry uses "Consul" and "etcd" distribution of

values storage systems.

In general we can say that PaaS is the place of Software Engineering

because at that right level of abstraction you can easily manage issues

relating to the systems scale. At PaaS level you can accomplish and

3.2. DEVOPS 19

solve problems that, if taken directly into production as in the past,

lead to considerable efforts in order to support migration that lasted

for months.

3.2 DevOps

We have so far discussed about the operational tools that allow you to

build in a short amount of time a functioning cloud infrastructure us-

ing OpenStack, described in subsection 3.1.1, and Cloud Foundry in

subsection 3.1.2, but how to integrate the operational management of

these systems with the process of agile software development?

The most advanced software development team are trying to adopt

semi-autonomous technologies to help manage the multitude of data

and communication activities required to support the phases of the clas-

sical software life cycle. These tools send messages and collect/process

data and they are able to show the important informations to the inter-

ested developers involved in the project so that they can take part to

the appropriate stage of the software life cycle. These tools can per-

form complex tasks ideal for the automation, thus reducing the burden

of distraction and the number of activities which affect humans.

The process of software development requires a large number of tools

and information systems to manage data and processes. As the agile au-

tomation technologies become more capable and essential to the devel-

opment process, their management and maintenance becomes increas-

ingly complex for many teams. In many organizations, while the devel-

opment team involved in the software production process, other oper-

ations teams manage the assistance tools and technologies required.

This separation between different kind of specialists groups has re-

sulted in a difficulty of communication between those involved in de-

velopment and those that supports the operations. These issues were

traditionally addressed by organizations that imposed priorities and di-

rection of efforts for the maintenance and observance of the software

engineering best practices.

20CHAPTER 3. CLOUD SERVICE PROVIDERS AND SOFTWARE DEVELOPMENT

The current practice of development has led to a new concept, called

DevOps [12], describing the conceptual and operational fusion of soft-

ware development (Dev) with operations (Ops) needed for the technolo-

gies to work properly. The key point of this philosophy is the integration

of the operations teams, which support the development process and of-

ten the testing and release of software products, with the development

teams who design and implement products. This fusion has the aim to

maximize the utility of the essential development tools and, at the same

time, align the priorities of the development team with those of the op-

erations staff in order to promote a successful cooperation and to work

towards the shared goal that the project provides. The organizational

conceptual unity inherent in DevOps paradigm is naturally extended to

the interoperability among operational and development tools with the

aim of ensure maximum access to the data, the dissemination of knowl-

edge and automation. DevOps achieves its goals partially replacing

explicit coordination with implicit mechanism [19].

3.2.1 DevOps best practices

Trying to achieve DevOps in an organization there are some best prac-

tices that could arise minor or major architectural refactoring in the

software design [19]:

• Treat Ops as firs-class citizens from the requirements point of

view. Adding requirements to a system from Ops may need some

minor architectural change. The Ops requirements are likely to

be in the area of logging, monitoring and information to support

accident handling.

• Make Dev more responsible for relevant accident handling. By

itself, this change is just a process change and should require no

architectural modifications. However once Dev becomes aware of

the requirements some architectural modifications may result.

3.2. DEVOPS 21

• Enforce deployment process used by all, including Dev and Ops

personnel. In general, when a process becomes enforced, some

individuals may be required to change their normal operating pro-

cedures and, possibly, the structure of the systems on which they

work. One point where a deployment process could be enforced is

in the initiation phase of each system.

• Use continuous deployment. Continuous deployment is the prac-

tice that leads to the most far-reaching architectural modifica-

tions. In order for an organization to maintain continuous deploy-

ment practices with little effort, a major architectural refactoring

is required and that we will bring us to deepen such an architec-

ture in the next section 3.3 about microservices.

• Develop infrastructure code with the same set of practices as ap-

plication code. These practices will not affect the application code

but may affect architecture of the infrastructure code.

3.2.2 DevOps system components

When an automatic system is inserted in the process of software devel-

opment communication activities to be carried out increase in complex-

ity. The data and relevant information are stored both by human actors

and the system. Since the man-machine communication does not occur

through the natural language expressions, the use of previously de-

fined software interfaces is needed. Furthermore the effectiveness of

the whole operation requires that humans do not exchange messages

between the system entities. The entities should be designed and ar-

ranged as to be able to pass information between themselves and as to

present to humans the priority knowledge only when it is necessary, if

possible, within the normal flow of work, reducing the effort needed to

extract new knowledge from the system.

A DevOps system therefore will need the following components [12]:

• Source control system: the storage system and the file version

22CHAPTER 3. CLOUD SERVICE PROVIDERS AND SOFTWARE DEVELOPMENT

control sources and other artifacts necessary for running the soft-

ware system such as the file with the configuration parameters

and media files.

• Tracking system for errors and activities: a system to manage

project activities with their status.

• Build continuous integration systems: systems able to com-

pile, build and test the source code to produce a working appli-

cation. The continuous building process with the ability to test

the application each time you make changes to the source code is

represented by the acronym CI which stands for Continuous Inte-

gration.

• Documentation systems: systems used to create, store, transfer

and display the documentation relating to the project software.

They are often manual systems that require the use of a text editor

and e-mail to create and transfer documents among human actors.

• Code’s revision systems: systems which review the software

source code to ensure the accuracy and quality. Alternatively,

these tools can also be used to help rewriting and making changes

to sources by qualified human actors.

• Monitoring systems: systems that monitor the status and func-

tionality of all the other systems to ensure proper operation and

quickly inform the appropriate subjects in case of need.

• Integration environment: this is the environment in which all

systems operate, both DevOps and the others systems made by

the software artifacts produced during the projects development.

Often it is a virtual infrastructure that allows the creation of vir-

tual machines and their dynamic management.

• Communication systems: systems responsible for the commu-

nication of knowledge to human beings, both from other humans

that from system software entities.

3.3. MICROSERVICE ARCHITECTURE 23

3.3 Microservice Architecture

A microservice [26] is a small application that can be deployed inde-

pendently, scaled independently, and tested independently and that has

a single responsibility. It is a single responsibility in the original sense

that it’s got a single reason to change and/or a single reason to be re-

placed. But the other axis is a single responsibility in the sense that it

does only one thing and one thing alone and can be easily understood.

Most of the organizations have actually started with some big mono-

lithic system and have split that big thing up after migrating to Cloud.

That’s the case for most organizations that are adopting a microservice

architecture as, for example, Netflix.

So Microservice Architecture is an architectural style that satisfies three

Cloud’s requirements [19]:

• Deploying without the necessity of explicit coordination with other

teams reduces the time required to place a component into pro-

duction.

• Allowing for different versions of the same service to be simulta-

neously in production leads to different team members deploying

without coordination with other members of their team.

• Rolling back a deployment in the event of errors allows for various

forms of live testing.

Using this architecture, an application can now be seen as a compo-

sition of multiple services where each service provides a small amount

of functionality that could even be a single functional requirement. The

reason for this architecture to be so popular in DevOps ruled organiza-

tions is that a small team could be accounted for the entire lifecycle of a

service. Each team has the ability to deploy their service independently

from other teams, to have multiple versions of a service in production

simultaneously and to roll back to a prior version relatively easily.

24CHAPTER 3. CLOUD SERVICE PROVIDERS AND SOFTWARE DEVELOPMENT

3.4 Code portability between providers

The possibility to move your application from a PaaS service provider

to another is a variable to be examined carefully. The reasons affect-

ing such a choice may arise from changes in economic conditions that

affect the pricing of services provided, or the availability of a new best

rated provider for costs and / or services. Portability or interoperability

of systems across multiple cloud, is also a strategically important prop-

erty to ensure the availability of software products released on PaaS.

This is particularly evident by examining [4] what happened to an on-

line storage service called The LinkUp ended August 8, 2008 after los-

ing 45% of the customers data. The Linkup, in turn, had taken advan-

tage of another on-line storage service called Nirvanix to store data.

This led to a conflict for the allocation of responsibilities between the

two organizations trying to explain why customer’s data had been lost.

Meanwhile, 20,000 users of LinkUp was told that the service were no

longer available and they have been asked to find a different provider.

Another story that shows us the importance of implementing systems

not strictly tied to a single service provider concerns Amazon and is

inherent to the transfer of legal liability. The cloud computing services

providers would like the legal liabilities associated with the customers

who deploy applications on their systems introducing a separation of

liabilities between applications running and Amazon’s infrastructure.

In fact in 2009, FBI raided a Dallas data center because a company

whose services had been hosted by Amazon was being investigated for

spam. However a number of systems housed in the same structure have

suffered days of unexpected downtime and some have been forced to

withdraw from the market.

From these stories we can learn how the release of systems on multiple

cloud platforms simultaneously is a winning strategy that ensures the

continuity of the business in the form of availability of services in ad-

dition to providing the ability to obtain an accurate comparison of the

costs relating to the various providers.

3.4. CODE PORTABILITY BETWEEN PROVIDERS 25

The first providers of PaaS services were very restrictive with regard

to the aspect of portability. The limitation was derived, as in the case

of Google App Engine [24], from restrictions imposed on development

languages. Such limitations, as the inability to create a new file or to

use java socket in Google’s cloud, were mitigated by the availability of

APIs that allow a developer application to interact with the services

of Google App Engine. In addition to the rapid learning curve that

these APIs imply, the application that uses them is closely tied to the

provider. Thus we can distinguish two categories of service providers:

[10] portable and unportable.

3.4.1 Unportable PaaS

When a PaaS is not portable, you must create an application by writing

code around specific platform APIs. This means that the code’s struc-

ture must strictly embrace a specific model. The APIs may be centered

on the database service, the storage mechanisms or search tools. In

other cases, the APIs involve lower level issues related to the code.

Sometimes you must also use specific languages specifically built for

that platform.

Currently fall within the category of unportable PaaS the following

providers [10]:

• Force.com: developed by Salesforce and launched in 2008. De-

signed to extend the services and improve the access to the corpo-

rate data. It is one of the first PaaS examples and was considered

an inspiration for subsequent infrastructures.

• Google App Engine: also released in 2008, promises its users the

opportunity to draw upon the potential of Google’s infrastructures

in addition to their experience in the filed of systems management.

To enable scalability, the application must strictly adhere to cer-

tain standards that have been identified taking into account the

specific way in which Google’s infrastructure operates and runs.

26CHAPTER 3. CLOUD SERVICE PROVIDERS AND SOFTWARE DEVELOPMENT

The application, being built around this agreement, it is guaran-

teed to operate at Google’s horizontal scale, thus being able to

handle a variable number of requests. But on the other side the

standard imposes limitations on the file system access in addi-

tion to the time in which the application must respond. The latter

limitation may arises vertical scaling problems, that is when the

requests complexity growths.

• Windows Azure: this PaaS system was developed by Microsoft

around the .NET framework and also released in 2008. Azure

provides the developer with some libraries to access the services.

Through these libraries Azure can operate the application scal-

ability in a manner transparent to the developer’s point of view.

Other standard services provided by the cloud scale independently

instead. With Windows Azure are provided basic systems, as a bus

of messages and a queue system, in addition to a variety of differ-

ent options based on the specific application needs, thus providing

developers the patterns that help them in the construction of dis-

tributed applications that can interact with each other through the

network.

Even if all these PaaS were initially classified as unportable, many

of them are adding features that will make them more portable. GAE

has recently taken steps to support the PHP, requiring fewer changes

to the software to be integrated with Google’s systems. Windows Azure

also has released support for PHP developers leaving more and more

autonomy to operate without the Microsoft API.

3.4.2 Portable PaaS

A portable PaaS is a platform built in such a way that it can run the code

without requiring significant changes. For developers who have cre-

ated the code for a shared or dedicated hosting environment, move the

code in a portable Platform-as-a-Service shouldn’t be difficult. There

3.4. CODE PORTABILITY BETWEEN PROVIDERS 27

are no services or API that must be absolutely used in order to make

applications executable. The cloud services, if any, may be used freely.

Portability expands the amount and type of code that you can write

in the Platform-as-a-Service paradigm. With the extension of support

for different languages, greater flexibility is allowed. If you want to

move an application between different portable PaaS platforms, you

only need to change little aspects of the application, but in general,

these changes will not involve a complete rewrite of the system.

Currently fall into this category, the following providers [3, 10]:

• Heroku: it is one of the first portable PaaS services. Launched in

2007, it has been able to evaluate the projects that were carried

out by Google and Microsoft and its developers have decided to

diversify their system in order to become more open and suitable

to host general purpose code that does’t have the need to accede

to specific APIs. It uses a git based code release mechanism.

• AppFog: entirely built on top of AWS (Amazon Web Services), it

is a PaaS managed service. This means that users do not have to

worry about configuring the platform. The main focus of AppFog

is interoperability among different clouds. Application launched

on AppFog can safely make use of services from other cloud in-

frastructure providers.

• dotCloud: it is an example of Platform-as-a-Service that has inno-

vated to be the first supporter of multiple languages and technolo-

gies. It has made popular the idea of Linux containers making use

of an open source project called Docker. This very popular PaaS

is focused on creating a system that work from command line.

Therefore it has a Unix shell and an API to interact with it, thus

providing the ability to deploy applications in different languages.

• CloudBees: is a Platform-as-a-Service that focuses in particular

on Java technology. It was built around the Java toolsets, and in-

corporates the most common components used within Java plat-

28CHAPTER 3. CLOUD SERVICE PROVIDERS AND SOFTWARE DEVELOPMENT

forms. One aspect that separates CloudBees from other cloud is

its integration with tools like Jenkins to support continuous inte-

gration. In fact, CloudBees has assumed some of the people who

maintained Jenkins and has thus become a leader in the devel-

opment of continuous integration spaces. This PaaS provided a

new breakthrough since it enables systems to extend the vision of

PaaS. With other platforms, the common idea is to take the code

and deploy it into production. CloudBees instead integrates mul-

tiple development tools to extend the knowledge it provides. In-

stead of just take the code and put it into production, CloudBees

provides a system that allows you to test the code continuously,

making sure that it works before going into production. It pro-

vides a very long pipeline before the code is deployed.

• Cloud Foundry: tt is a recent technology developed by VMware

to support the PaaS and enable its users to create their own pri-

vate PaaS platform. It is an open source project very different

from other cloud saw before as it leaves the PaaS configuration

in the user’s hands. Paradoxically it may even be run on a lap-

top. A major innovation is the generalization of the concept of

service because, with its elevation at first-level abstraction, it sim-

plifies connection and disconnection of services with the applica-

tions that use them. Cloud Foundry libraries provide many of the

features you would expect with PaaS: to be able to deploy appli-

cations with a command line through REST API, scaling and load

balancing tied to an application without having to configure any-

thing manually and adding caching and database services such as

MySQL and Redis. Cloud Foundry can instantiate and configure

these components quickly and easily, but in case of failure, you

must be operatively informed on how to debug Cloud Foundry to

find the problem. The manager of the infrastructure also has the

task of managing and scaling MySQL in order to meet the appli-

cation requirements. The main components of Cloud Foundry are

3.4. CODE PORTABILITY BETWEEN PROVIDERS 29

described in section 3.1.

• IBM’s Bluemix: [3] it is the Platform-as-a-Service solution from

IBM that is based on Cloud Foundry and Docker. It uses a com-

ponent called Devops as a tool with which the platform aims to

make easy the development and release of both web and mo-

bile applications using the abstraction layer of the infrastructure

which is managed by SoftLayer. Bluemix allows you to develop,

run, release into the environment and manage Cloud applications

quickly, without having to deal with the creation and maintenance

of the physical or virtual machines, network management, mainte-

nance on the machines, the installation or update of the operating

system, the database manager to store information, etc. More-

over, thanks to Devops, it allows the quick release of software

solutions with new features in each machine where this cloud is

running. Bluemix supports various programming languages (Java,

Node.js, Go, PHP, Python, Ruby on Rails) and offers ready to use

services for database management, reporting, Internet of Things,

mobile applications etc. If you use any of the programming lan-

guages supported, Bluemix also provides its buildpacks, which is

a set of scripts needed to prepare the code to run on the cloud.

If you are interested in writing code in some other programming

languages, Bluemix makes it possible through the creation and

use of a specific buildpack.

With a portable system of Platform-as-a-Service, the great advan-

tage is that you can take the existing code and distribute it more easily,

without major rewrites. It can iterate faster. If you have the need to

move an application from a particular system in another environment,

usually it requires little effort. The advantages of a unportable platform

instead rely heavily on the services that the cloud provides. For exam-

ple, Google App Engine, the advantage is to connect your application to

Google’s infrastructure and operations. In the case of Windows Azure,

the advantage inherent in the connection to the Microsoft operations.

30CHAPTER 3. CLOUD SERVICE PROVIDERS AND SOFTWARE DEVELOPMENT

The trade-off depends on the type of application you want to develop.

For example, if you need to run an application in Node.js, you will not

be able to do it on Google App Engine. But if you want to try Google ser-

vices you will not be able to do it on Heroku and AppFog. The choosing

of a portable or unportable PaaS depends on the needs of the project

and the feature set that you need.

3.5 Providers comparison

The variety of cloud providers leads to a practical dilemma: what are

the performance of a cloud provider compared to other suppliers? For

a potential customer, the answer can help in choosing a provider that

best suits his needs in terms of performance and cost. For example,

you might choose a provider for applications that require heavy mem-

ory usage and another for applications with high computational require-

ments. The challenge is that each vendor has its own idiosyncratic ways

to implement systems, in order to find a common ground between the

various providers we must first conduct an analysis to characterize the

performance of an IaaS provider. A cost / performance analysis among

PaaS service providers is more difficult because of the increased com-

plexity due to the elevation of abstraction. The elements of comparison,

that is the most common services, which let us make a cost comparison

are [20]:

• Elasticity of the computing cluster: a computing cluster in-

cludes virtual instances that host and manage the customer’s ap-

plication code. Between different suppliers, virtual instances are

differentiated by the underlying server hardware, the adopted vir-

tualization technology and hosting environment. Even within the

infrastructure of the same provider there are a variety of levels

of virtual instances available, each of them with a different con-

figuration. The computing cluster is also "elastic," in the sense

that a customer can dynamically scale in both directions for each

3.5. PROVIDERS COMPARISON 31

of the instances uses in order to cope with the variable workload

of its application. Currently there are two mechanisms that can

be used: the opaque method and the transparent one. The first

requires that the customer in person to manually change the num-

ber of instances specifying a resize policy (AWS [27], Azure, and

CloudServers), such as creating a new instance when the aver-

age CPU usage exceeds 60% . The second method instead au-

tomatically compensates for the number of instances without the

intervention of the customer (GoogleAppEngine [24]). The main

parameters adoptable to make a comparison between providers

are: time to complete a same operation, cost and latency measure

introduced by changing the scale.

• Persistent data storage service: in order to improve the scala-

bility and the availability of a system, the cloud providers offer

persistent storage to maintain the state of the application and

data. Today there are three kinds of services for storage needs:

table, blob and messages queue. The use of tables, similar to

hash or a set of key value pairs, is designed for storing small files

but whose access has to be very quick. The blob is designed to

store large unstructured multimedia files as binary objects. Fi-

nally, the messages queue implements a global communications

infrastructure that connects all the different instances. Currently

there are two pricing models for its storage: one based on CPU

cycles needed to perform an operation, where the most expensive

queries are the complex ones rather than the simple ones (AWS

[27], GoogleAppEngine [24]); the other consists of a fixed fee per

request regardless of the complexity of the request itself (Azure,

CloudServers). The parameters useful to operate the comparison

in this category are: the requests response time, time to the con-

sistency and the cost for each operation.

• Cloud internal network: the cloud’s internal network connects

all instances purchased by a customer and the services together.

32CHAPTER 3. CLOUD SERVICE PROVIDERS AND SOFTWARE DEVELOPMENT

The network performance is vital for applications in a distributed

system. The internal network of the data center often has very

different properties than the external one. To compare the perfor-

mance of the internal networks we can measure bandwidth and

latency of the channels, using the TCP throughput as a measure

of capacity since the TCP is the main type of traffic for applica-

tions. None of the providers currently rate the internal traffic of

their data-center.

• Wide-area network: the WAN is defined as the collection of net-

work paths between cloud’s data center and external hosts on the

internet. Many providers offer different physical places to host

customer’s applications. Requests from an end user can be served

by an instance that run close to that position to reduce latency. As

a metric we can compare the latency obtained from the WAN to

a provider with the optimal value that we could get to reach that

same position.

Whit these measurement methods is possible to obtain quantitative

comparisons of different providers but you should always keep in mind

also a qualitative classification of the cloud [10]:

• Private/Public: if it’s working behind a firewall or on proprietary

hardware are private but not otherwise, as discussed in section

2.5.

• Portable/Unportable: this classification is only for PaaS cloud.

If you can easily move an application from a PaaS provider to an-

other means that both providers are allowing code portability. A

PaaS that can execute code at most unchanged from the original

is portable. For example, if the PaaS supports PHP and WordPress

can load an application without changing the code this will be a

PaaS that allows portability otherwise, if a PaaS is bound to pro-

prietary APIs that make it difficult to switch to other suppliers, it

3.5. PROVIDERS COMPARISON 33

is defined unportable. The current service providers according to

this feature have been described in section 3.4.

• Managed/Unmanaged: the cloud falls in the first case if does

not need to be maintained by the customer and is therefore used

as a service. In the second case will be customer’s responsibility

the following topics: configuration, security management, main-

tenance, ordinary conduction and updates.

34CHAPTER 3. CLOUD SERVICE PROVIDERS AND SOFTWARE DEVELOPMENT

Chapter 4

Fog Computing

The paradigm of Cloud Computing is progressively replacing the old

concepts of mainframe and back-end server, but how to extend the ser-

vices offered by cloud at network’s edges? Similar in some ways to the

cloud thus comes the paradigm of Fog Computing [25] to provide data

processing, storage capacity and application services to end users. Be-

cause of its unique proximity to the end-user, this paradigm is presented

as a natural solution to the problem of the large bandwidth that would

be necessary to connect a distributed sensor network (DSN) directly to

the cloud. Another interesting application scenario comes from the ge-

olocation support, which makes the Fog computing very attractive for

IoT systems (Internet of Things), which we will investigate in detail in

Chapter 5.

When the techniques and IoT devices will become increasingly in-

tegrated into people’s lives, the current cloud paradigm is unlikely to

meet the needs for the support of mobility, the location tracking and low

latency. For these reasons the Fog arises as a model for the edge of the

network in order to improve the quality of service (QoS) in an industrial

automation scenarios, transport and networks of sensors / actuators. In

addition, this new infrastructure natively supports the heterogeneity of

the devices since it includes the user’s device with their access points,

routers and switches.

35

36 CHAPTER 4. FOG COMPUTING

Figure 4.1: Fog between Cloud and network edge [25].

4.1 Fog systems features

Processing, storage and network resources are building blocks of both

the Cloud and the Fog Computing. However, being at the network’s

edge involves a number of features that make the Fog a nontrivial ex-

tension of the Cloud [8]:

• Heterogeneity:it’s a central element of the Fog model because

nodes will be deployed in environments with very specific charac-

teristics.

• Positioning on the edge, location awareness e low latency:

the Fog origins can be traced back to the first proposals to support

clients at the ends of the network with high information content

services, including applications with low latency requirements.

• Geografical distribution: differently from Cloud centralism, ser-

vices and applications, to which the Fog aims to support, operate

in environments widely distributed as high-quality streaming for

vehicles moving through proxy and access points located along

4.1. FOG SYSTEMS FEATURES 37

highways and race tracks. This brings as a consequence a high

nodes cardinality and the predilection for wireless access.

• Sensors networks on large-scale : the Fog is ideal for environ-

mental monitoring systems and for the Smart-Grid.

• Support for mobility: for many applications in the Fog field is es-

sential the direct communication with mobile devices. Therefore

it’s important to provide mobility techniques that decouple the

host’s identity from its position. It is also required a distributed

naming system.

• Real Time interaction: typical cases of Fog Computing involve

the use of this paradigm in systems of autonomous vehicles.

• Interoperability and federation: full support to some services

that require collaboration between different vendors. Consequently,

the components of the Fog need to interoperate with services that

are realized by connecting different domains.

• Interconnection with the Cloud: the Fog is well positioned to

play a significant role in the acquisition and processing of data

close to the source but you can easily make use of on-line analyti-

cal services that Cloud offers as outlined in section 3.

38 CHAPTER 4. FOG COMPUTING

Chapter 5

Internet of Things

Thanks to the Internet of Things (IoT) paradigm [18] , many of the ob-

jects that surround us will be connected to the network in one form

or another. Using technologies such as Radio Frequency Identification

(RFID) and sensor networks, will be possible to respond to this new

challenge through which ICT systems will be transformed by integrat-

ing the environment around us invisibly.

An indispensable component of IoT systems is the smart connectivity

that will be made possible by context-aware networks such as those

described in chapter 4. With the growing possibility of internet con-

nection, mediated by wireless technologies WiFi and 4G -LTE, the ac-

cess and the evolution to the obiquitous information is already evident.

However, in order for the IoT paradigm to emerge successfully, the to-

day computing techniques must go beyond the traditional scenarios of

mobile computing used by smartphones and laptops.

The cloud, as described in sections 2 and 3, remains the most promising

alternative that can provide the backend infrastructure to support the

most complex computations, for storing data and for the analysis tools.

The cloud pricing model allows you to support end-to-end services for

both businesses and users so that you can access required applications

from anywhere.

In the IoT, the goal remains the connection of everyday objects so that

intelligence can emerge from the environment around us.

39

40 CHAPTER 5. INTERNET OF THINGS

5.1 IoT definitions

The term Internet of Things was coined by Kevin Ashton in 1999 within

the framework of the customer-supplier chain management [5]. How-

ever, in recent years, the definition has been changed in order to achieve

a more inclusive coverage that concern an extensive range of applica-

tions in health care, services and transports. Following this attempt to

enlarge the concept of IoT in multidisciplinary environments we have

seen the emergence of different definitions from many distant fields

[11]:

• IETF: a wide global network of uniquely addressable intercon-

nected objects based on standard communication protocols.

• ITU-T: a global infrastructure for the information society that en-

ables advanced services through the interconnection (physical or

virtual) of things based on existing and evolving information and

communication technologies in an interoperable manner.

• EU FP7 CASAGRAS: a comprehensive infrastructure network

that connects physical and virtual objects through the use of data

acquisition and communication possibility.

• CCSA: a network that can collect information from the physical

world, or control the objects of the physical world through vari-

ous devices released with the ability of perception, computation,

execution and communication. This network supports communi-

cation from human to "thing" or between things through the trans-

mission, classification and processing of information.

Even if the definition of ’things’ has changed and the technology

has evolved, the main objective remains the same. In fact, the IoT is

proposed to be able to automate the emergence of knowledge from the

data received by a computer without human involved in the process. It

is a radical evolution of the present Internet in a network that inter-

connects objects for gathering data from the environment, through the

5.2. UBIQUITOUS COMPUTING 41

sensing activities, and to interact with the physical world. It is intended

to organize everything by using existing Internet standards.

5.2 Ubiquitous Computing

The Ubiquitous Computing is a discipline born in the’ 80s with the aim

of creating an interface from human being to human being [18] in every

day life through the use technology. The invention of the Internet has

marked a first milestone realizing the vision of ubiquitous computing

by allowing devices to communicate with any other device in the world.

Since Mark Weiser [28] made explicit the ubicomp vision, a large re-

search community able to address multidisciplinary aspects was founded.

Several successful prototypes were built and evaluated showing the

utility of Ubicomp systems in different fields. At the same time ICT tech-

nologies diffusion have made great progress by introducing low-cost so-

lutions and enabling services that fulfill the ubicomp vision. Probably

the biggest success of these products is the smartphone that has be-

come part of the daily lives of billions of people. Smartphone diffusion

is building an environment with increasing amounts of computational

capabilities, detection and communication.

Caceres and Friday [9], discussing the progress, opportunities and chal-

lenges during the anniversary of the 20 years since the introduction of

this discipline, identify the building blocks of the Ubiquitous Comput-

ing and the features necessary to to maintain the discipline up with the

times. In their analysis they identified two basic technologies for the

growth of the Ubiquitous Computing: Cloud Computing infrastructure

and the Internet of things. The cloud computing services for people

constitute themselves as natural companions for personal mobile de-

vices and for the future of ubicomp applications. The utility computing

on the cloud can provide important back-end resources for ubicomp ap-

plications to be integrated with sensors networks and actuators in your

environment as expected from the paradigm Internet of Things (IoT).

Unlike Ubiquitous Computing, the IoT focuses on interaction between

42 CHAPTER 5. INTERNET OF THINGS

real world objects instead and not among humans.

5.3 Constituent elements of the IoT

There are three components of the Internet of Things that also support

ubicomp requirements [18]:

• Hardware: RFID technology is a major step forward in integrated

communications systems because it allows the design of microchips

equipped with wireless communication capabilities making possi-

ble the automatic identification as if the objects were equipped

with an electronic bar code. Passive RFID tags are not powered

by battery and use the power of the reader’s interrogation signal

to communicate their ID. In contrast, active RFID tags have their

own battery power and can create a communication instance.

Recent technological advances in low power integrated circuits

and in wireless communications have made available miniaturized

devices for the remote sensing applications that are efficient and

low-cost. The combination of these factors has made it possible

to use sensor networks formed by a large number of intelligent

detectors that allow the collection, processing, analysis and dis-

semination of valuable information gathered in a variety of envi-

ronments. Typically, a node of a wireless sensor network, contains

interfaces for sensors, processing units, transmitter-receiver units

and the power supply. Almost always they include also multiple

A / D converters for the sensor interfacing. The most advanced

models have the ability to communicate using an entire frequency

band that makes them more versatile.

• Middleware: one of the most important consequences of this

emerging field is the creation of an unprecedented amount of data.

Storage, property and the expiry of the data becomes critical. In-

ternet currently consumes about 5% of the total energy produced

in one day and with the types of planned scenarios is sure that

5.4. IOT FOCUSED ON THE CLOUD 43

the demand will rise even more. Therefore, it is strategic the use

of energy-efficient data centers to ensure efficiency and reliabil-

ity. The data must also be stored and used in an intelligent way

so it is important the development of artificial intelligence algo-

rithms that may be released in a centralized way, making use of

cloud computing infrastructures described in chapters 2 and 3, or

distributed, following the principles shown by Fog computing in

chapter 4.

• Presentation: visualization and information interpretation through

tools that can be widely available on different platforms and can

be designed for different applications. Visualization is critical in a

IoT application as it allows the users interaction with the environ-

ment. Thanks to the touch screen technology the use of tablets

and smartphones has become very intuitive. So the average user

can fully benefit from the IoT revolution only if the display is at-

tractive and easy to understand. This can be accomplished by pro-

moting the adoption of data conversion policies into knowledge

(fundamental in faster decision making).

5.4 IoT focused on the Cloud

The concept of IoT can be seen from two different perspectives: a vision

centered on the ’Internet’ and one centered on the ’things’ [18]. The

architecture that unfolds starting from the Internet provides as main

objective the connection of Internet services while data are provided by

objects. Otherwise, in the architecture centered on the ’things’ smart

objects take the center of the stage. Focusing on the first vision, in

order to realize ubicomp full potential, a picture that shows the cloud

at the center appears to be the most practicable not only to promote

the necessary flexibility to the subdivision of related costs in an optimal

manner, but also to be supported by a highly scalable infrastructure.

This scenario includes:

44 CHAPTER 5. INTERNET OF THINGS

• Detection services providers able to connect to the network and

upload their data using a cloud-based storage system.

• Analytical tools developers that can supply their products.

• Artificial intelligence experts that can provide data mining tools

and machine learning useful in data processing into information

and information into knowledge.

• Computer graphics developers able to offer a wide range of

visualization instruments.

Cloud computing can offer these services on IaaS, PaaS or SaaS

levels. Thanks to the Cloud the full potential of human creativity can

be provided "as a service", as explained in chapter 2, remaining in

agreement with the paradigm of Ubiquitous Computing by Weiser [28].

Reaching the full potential of the Internet of Things in various applica-

tion domains, the generated data, the tools used and the visualization

issues are made in overshadowed since the Cloud embodies all ubicomp

purposes by providing scalable storage services, computation time and

other tools to create new economic opportunities. In chapter ?? we will

describe the development of a case study that take a simple IoT sys-

tem as a data source generator that needs a cloud platform like IBM

bluemix for analytical purposes.

5.5 IoT focused on the Fog

Systems based on the Fog Computing [25] are becoming an important

class of IoT and CPS (Cyber-phisical Systems) systems . The CPS sys-

tems have a close correlation between computational and physical el-

ements as well as coordinating the integration of computers and high

information density systems. Both IoT and CPS promise to transform

our world by setting up new connections between control and commu-

nication computer systems integrated with the physical reality. The

Fog Computing, besides bringing benefits as described in chapter 4, in

5.5. IOT FOCUSED ON THE FOG 45

this scenario is built around the concept of embedded system in which

software applications and computational capabilities are built into the

devices for a different reasons than the computational one. Examples

of this type include toys, cars, medical devices and equipment aiming

to integrate the abstractions and software accuracy with the dynamics,

uncertainty and the noise of the physical environment. Using the knowl-

edge, principles and methods that arise from the CPS, we will be able

to develop new generations of devices and intelligent systems in the

medical field, highways, buildings, factories, agricultural and robotic

systems.

An application case which will become prominent in the near future is

the one of the connected vehicles [8]. This scenario is rich in connec-

tivity and in car to car interactions, between cars and access points

and among the same access points. The Fog, as seen in section 4.1,

shows a number of features that make this the ideal paradigm for pro-

viding services such as those required for street traffic management.

For example an intelligent traffic light system may interact locally with

a number of sensors capable of detecting the presence of pedestrians

and cyclists in addition to measuring the distance and speed of vehicles

approaching. In addition, an intelligent traffic junction will also inter-

act with the traffic light neighboring nodes to coordinate the lighting

of a green wave. Based on this information the traffic light can send

warning signals to approaching vehicles as well as change its stroke

to prevent accidents. Coordination with neighboring nodes will be me-

diated by the layer of Fog through which you can make any changes

to the cycle of a traffic light on the network. The data collected by the

sensors are processed to make real-time analysis and to change accord-

ingly the timing of the cycles in response to traffic conditions. Grouped

data from intelligent traffic lights will eventually be sent to the cloud

for more complex analytical analysis on the long-term.

46 CHAPTER 5. INTERNET OF THINGS

5.6 MQTT

To support communication in IoT environments is becoming more and

more relevant the use of MQTT protocol [6], born in 1999 at Cirrus links

and today the maintained by the OASIS consortium for open standards

for which IBM is part.

MQTT is a messaging transport protocol Client / Server based on the

pattern publish / subscribe. It is lightweight, open, simple and designed

to be easy to implement. These features make it ideal for the many sit-

uations, including environments with constraints, as in the Machine to

Machine communication (M2M) and in the Internet of Things (IoT) or

contexts in which it is required the use of minimal overhead because

the network bandwidth is a rare resource. The protocol runs over the

TCP / IP or other network protocols provided that enable messages dis-

semination sorted, lossless and bidirectional.

The most popular use of this protocol currently is in the application

Facebook Messenger, released for all mobile platforms. Facebook Mes-

senger is an application for instant messaging services to communicate

text and voice integrated with the web-based Facebook chat function-

ality.

5.6.1 MQTT features

The features of MQTT include:

• The use of the messaging pattern publish / subscribe that sup-

ports one-to-many distribution and allows the decoupling of appli-

cations.

• MQTT is a transport protocol for messaging that has no knowl-

edge regarding the payload content.

• Three different levels of quality of service (QoS):

– At most once, in which messages are delivered according to

the best efforts of the operating environment. The message

5.6. MQTT 47

loss can occur. This level could be used, for example, with the

environmental sensor data when it does not matter if a single

reading is lost.

– At least once, where it is ensured that the messages arrive

but duplicates may occur.

– Exactly once, where it is assured that the message gets ex-

actly once. This level could be used, for example, with a coun-

ters in which the duplicates or lost messages can result in a

divergence from the true value.

• A small transport overhead and exchange of messages for the pro-

tocol minimized to reduce network traffic.

• A mechanism to notify interested entities in the event of anoma-

lous disconnection.

• MQTT makes use of the broker pattern for the dissemination of

messages. The solutions available for this component are the fol-

lowing: ActiveMQ, Apollo, HiveMQ, IBM MessageSight, JoramMQ,

Mosquitto, RabbitMQ, Solace Message Routers, and VerneMQ.

5.6.2 MQTT methods

MQTT defines methods or verbs the desired actions to be performed

on the identified resource. What this resource represents and whether

the data is dynamically generated or not, depends on the specific im-

plementation and the IoT context. The methods, which recall the REST

style and are fully compatible with this network architecture are:

• Connect: it waits until a connection is established with the server.

• Disconnect: waits for the MQTT client to stop all work currently

undertaken and that the TCP / IP session is finished.

• Subscribe: wait for completion of the method that allows a client

to subscribe to one or more topics.

48 CHAPTER 5. INTERNET OF THINGS

• UnSubscribe: it asks the server for the elimination of the client

from one or more topics.

• Publish: it returns to the application thread immediately after it

submits the request to the MQTT client.

Chapter 6

Case Study

Taking the goal to prove that the above theories are well grounded

into reality, we proceed illustrating a case study linking all the previous

models. A common scenario of industrial warehouse will be here seen

as the place in which to apply IoT concepts whit the perspective of

extend the system with the support of microservices hosted onto a PaaS

Cloud infrastructure.

6.1 Product requirement specification

STEP 1

6.1.1 Business requirements

Develop a system able to manage a warehouse using autonomous tools

and to run without oversaw of human operators.

6.1.2 Architectural requirements

Design and build a prototype of a software system that can catches

interactions between two kind of entities in an industrial warehouse

scenario:

• Robot: is the autonomous active entity whose job is to move sup-

plies among rooms.

49

50 CHAPTER 6. CASE STUDY

• Room: is the smart-environment in which is possible to store sup-

plies.

6.1.3 Scenario

The robot, moving along a corridor, is carrying a pallet. Each room

can host up to two pallets. When engaging a room, the robot must

understand the situation and chooses to deposit the pallet or move to

the next room.

Figure 6.1: Environment map view from above.

6.1.4 Functional requirements

• A robot must be able to move through a differential drive system.

• Only one robot at the time is allowed to enter in a room.

• At boot time a room must retrieves his previous saved state over

the net.

• A room can host up to two pallets.

6.2. PRODUCT REQUIREMENT SPECIFICATION STEP 2 51

6.1.5 Non functional requirements

Remember to express in explicit way the technological hypothesis as-

sumed during the problem analysis phase, to define the abstraction gap

(if any) and to explain how the software project can overcome (in a re-

producible way) such a gap.

6.2 Product requirement specification

STEP 2

Data analytics on the Cloud.

6.3 Analysis - STEP 1

To handle the complexity inherent in the analysis phase we will use a

custom framework named QActors. We also operate under the techno-

logical assumption that we have a MQTT broker running outside the

modelled system. Two different brokers have been used and tested:

Mosquitto and Paho in its Eclipse implementation. These solutions are

interchangeable at will. Every MQTT broker can only retain one mes-

sage so it’s important to take trace in a MQTT message of every previ-

ous transition of state occurred to the room.

When a robot enters in a room, many scenarios may occur. A precedent

failure of the MQTT infrastructure could have lead to an inconsistency.

So it’s important to take in consideration every possible state of the

world.

Position of failure:

52 CHAPTER 6. CASE STUDY

Robot MQTT Broker

case A Ok Ok

case B Ok Fail

case C Fail Ok

case D Fail Fail

According to a different docking politic the results may diverge:

• First a robot deposits its load then it sends the MQTT mes-

sage: in case A we have no inconsistency. In case B a fail has

occurred in the server side and three scenarios now open accord-

ing to the three levels of Quality of Service that MQTT offers. Whit

level 1 (fire and forget) a robot has no chance to sense the fail. At

level 2 (at least once) and level 3 (exactly once) the robot won’t

see any ACK coming from the server and will be stopped trying

to contact the broker until a time out expired releasing the robot

from its current task. In this scenario we have a divergence of "-1"

in the IT model of the world. In case C and in case D the fail has

occurred in the robot right after it has unloaded. Robot’s inability

to account the change lead to another divergence of "-1".

• First a robot sends the MQTT message then it deposits its

load: in case A we have no inconsistency yet. In case B a fail

has occurred in the server side and three scenarios now open ac-

cording to the three levels of Quality of Service that MQTT offers.

Whit level 1 (fire and forget) a robot has no chance to sense the

fail so it will go on unloading the pallet and causing an inconsis-

tency of "+1". At level 2 (at least once) and level 3 (exactly once)

the robot won’t see any ACK coming from the server and will be

stopped trying to contact the broker until a time out expired re-

leasing the robot from its current task. Meanwhile, with QoS level

2 and 3, the robot has not unloaded the pallet yet and can now

6.3. ANALYSIS - STEP 1 53

chose to abort the operation, move away with its pallet without

harming the base of knowledge. In case C and in case D the fail

has occurred in the robot right after it has sent the message to the

MQTT broker. In case C we will have a divergence of "-1" while

in case D we are relatively lucky and the faulty change won’t be

accounted due to the error state of the broker.

The probability of fails previously underlined lead to the best prac-

tice of checking the state of a room every time a robot step in taking a

photo and comparing it with the value obtained from the broker. Pos-

sibility of casting an alarm should be taken into consideration at this

point.

6.3.1 QActors

QActors (Quasi-Actors) is the name given to a custom framework built

by Antonio Natali for the course Engineering of Software Systems to

show how application designers can face the analysis, the design and

the implementation of (distributed etherogeneous) software systems

whose components interact by adopting a message-passing, an event-

driven or an event-based style rather than a traditional object-based

style. The QActor framework is inspired (with modifications) to the Ac-

tor model (Akka) and to the event-driven programming paradigm.

So, why using QActors?

QActors arise to tackle the issue of executable models definition help-

ing designers and developers in contexts of distributed and etherogene-

hous systems such as the Internet of Things. QActors support the pro-

cess of software production since from the problem’s analysis phase

and allow the rapid prototyping. This last feature is made possible

through the technology XText [14]. Xtext is a framework that dramati-

cally reduces the effort of building good tooling for a language. From a

grammar, Xtext can generate a parser, a serializer and a smart editor.

All concerns of Xtext itself and of the code generated by Xtext can be

54 CHAPTER 6. CASE STUDY

customized via dependency injection. The kind of language that we are

able to define can range from small Domain-Specific Languages (DSL)

to full-blown General Purpose Languages (GPL).

A designers team defines a meta-model that XText can use to build

a software factory. Then, models submitted to the software factory

are made executables in a pure Model Driven Software Development

(MDSD) fashion. The meta-model could be expressed in such a way to

catch emerging IoT concepts like Microservices so that the software

factory can automate the implementation even for different PaaS plat-

forms allowing the deployment on multiple providers. Otherwise, the

software factory product could be intended for the integration with an

ensemble of DevOps tools.

6.3. ANALYSIS - STEP 1 55

The specific meta-model that gave birth to QActors is summarized

in the following Ecore diagram:

Figure 6.2: QActors DSL diagram.

56 CHAPTER 6. CASE STUDY

The QActors framework promotes a precise process workflow based

on a proper problem analysis.

6.3.2 Workflow for QActors - Phase 1

Find the main subsystems and define the System Contexts:

System contexts identified

context(ctxRobot, "localhost", "MQTT", "81").

context(ctxRoomA, "localhost", "MQTT", "82").

context(ctxRoomB, "localhost", "MQTT", "83").

context(ctxRoomC, "localhost", "MQTT", "84").

6.3.3 Workflow for QActors - Phase 2

Find the main applicative actors working in each context:

Applicative actors identified

qactor(robot001, ctxRobot).

qactor(rooma, ctxRoomA).

qactor(roomb, ctxRoomB).

qactor(roomc, ctxRoomC).

6.3.4 Workflow for QActors - Phase 3

Define the type of the logical interaction between actors by using the

custom high-level interaction-vocabulary.

• rooma and every other room connects to the iot broker specifying

the MQTT topic:

connect("rooma", "tcp://m2m.eclipse.org:1883", "rooma")

6.3. ANALYSIS - STEP 1 57

• Then, every room saves its own state publishing to the iot broker

with QoS level 2 and the retain option enabled:

solve publish("rooma", "tcp://m2m.eclipse.org:1883", "rooma", status(A,X) ,2,true)

• robot001, moving along a corridor, detects the presence of rooma

through a rfid sensor and reacts.

solve actorOp(scanningforrooms)time(7000) react event roomdetected -> connecttoroom or event obstacledetected -> obstacleavoidance

• After having acquired the specific topic of the room through the

active RFID info, robot001 connects to the iot broker as a sub-

scriber of room’s topic:

solve connect("robot001", "tcp://m2m.eclipse.org:1883", TOPIC) time(0)

solve subscribe("robot001", "tcp://m2m.eclipse.org:1883", TOPIC) time(0)

• robot001 receives the iot broker’s reply and analyses the dispatch

named mqttmsg discovering if the room is full or empty:

receiveTheMsg m (MSGID,MSGTIPE, SENDER ,robot001,mqttmsg(TOPIC,PAYLOAD), MSGNUM)time(9000);

6.3.5 Workflow for QActors - Phase 4

We define the structure of the application messages exchanged by the

actors:

Dispatch mqttmsg : mqttmsg(TOPIC, PAYLOAD)

PAYLOAD : status(TOPIC, X)

The PAYLOAD should be structured in such a way to carry the history

of transitions happened.

Furthermore this is the very place in which to introduce security poli-

cies. Sending the PAYLOAD as plain-text exposes the system to security

58 CHAPTER 6. CASE STUDY

vulnerabilities. To mitigate risks in an extremely open scenario, like the

IoT one, we should consider encryption with asymmetrical keys kept

privately by the publisher and the subscriber.

6.3.6 Workflow for QActors - Phase 5

Filling the gap between analysis and design steps, we specify the logical

behaviour of each actor.
Robot logical behaviour

QActor robot001 context ctxRobot -g yellow {
Rules{

loadTheory(File) :- actorPrintln(loadTheory(File)),consult(File).
}

Plan init normal
println(robot001(starts)) ;
solve loadTheory("./pahoTheory.pl") time(0) onFailSwitchTo prologFailure;

addRule pallet;
delay time (7000);

//switchToPlan testConnection;
switchToPlan search;
switchToPlan roomInteraction;
println(robot001(ends))

Plan search
println(robot001(searching));
solve actorOp(scanningforrooms)time(7000) react event roomdetected

-> connecttoroom or event obstacledetected -> obstacleavoidance

Plan connecttoroom
println(robot001("room detected")) ;
println(robot001("acquiring room info")) ;
[!? room(RFIDNAME,NAME,IP,TOPIC)] solve connect("robot001",

"tcp://m2m.eclipse.org:1883", TOPIC) time(0) onFailSwitchTo
prologFailure;

[!? room(RFIDNAME,NAME,IP,TOPIC)] solve subscribe("robot001",
"tcp://m2m.eclipse.org:1883", TOPIC) time(0) onFailSwitchTo
prologFailure;

println(robot001("waiting for mqttmsg"));
removeRule tout(X,Y);
receiveTheMsg m (MSGID,MSGTIPE, SENDER ,robot001,mqttmsg(TOPIC,PAYLOAD)

, MSGNUM)time(9000);
[!? tout(X,Y)] switchToPlan toutExpired;

memoCurrentMessage;
[?? status(X)] removeRule status(X);
[!? msg(MSGID,TYPE, SENDER ,REC, mqttmsg(TOPIC,PAYLOAD), MSGNUM)]

println (robot001(value_received(PAYLOAD)));
[?? msg(MSGID,TYPE, SENDER ,REC, mqttmsg(TOPIC,PAYLOAD), MSGNUM)]

addRule PAYLOAD;
[?? status(_,’2’)]switchToPlan roomFull;

6.3. ANALYSIS - STEP 1 59

switchToPlan roomInteraction

Plan roomFull
[?? room(RFIDNAME,NAME,IP,TOPIC)]println(robot001(room_full_(NAME)));
solve disconnect time (0) onFailSwitchTo prologFailure;
println(robot001("searching for another room"));
switchToPlan search

Plan obstacleavoidance
println(robot001("avoiding obstacle"));
println(robot001("end of the road"))

Plan roomInteraction
println(robot001("interacting with the room"));

solve actorOp(checkConsistency) time (0) onFailSwitchTo prologFailure;
[!? actorOpResult(R)]println(robot001(consistency_check_opresult(R)));
[!? actorOpResult(false)] switchToPlan alarm;
[!? room(W,X,Y,Z)] println(robot001(unloading_pallet_in_(X)));

[!? room(W,X,Y,Z)] solve actorOp(unloading(X)) time (0)
onFailSwitchTo prologFailure;

[!? status(_,’0’)] switchToPlan halfinc;
[!? status(_,’1’)] switchToPlan totalinc

Plan halfinc
[?? status(A,X)] solve publish("robot001", "tcp://m2m.eclipse.org:1883",

A , status(A,’1’),2,true)time(0) onFailSwitchTo prologFailure;
switchToPlan reloading

Plan totalinc

[?? status(A,X)] solve publish("robot001", "tcp://m2m.eclipse.org:1883",
A , status(A,’2’),2,true)time(0)onFailSwitchTo prologFailure;

switchToPlan reloading

Plan reloading
println(robot001("Exit from the room"));
solve disconnect time (0);
[?? room(RFIDNAME,NAME,IP,TOPIC)] println("garbage collection");
println(robot001("Loading the next pallet"));
solve actorOp(loading)time (0);
println(robot001("Delivering phase"));
switchToPlan search

Plan alarm
println(robot001(alarm))

Plan testConnection resumeLastPlan
solve connect("robot001", "tcp://m2m.eclipse.org:1883", "unibo/paho/qa")

time(0) onFailSwitchTo prologFailure;
solve consult("./pahoTheory.pl") time(0) onFailSwitchTo prologFailure ;
println(robot001(publish)) ;
solve publish("robot001", "tcp://m2m.eclipse.org:1883", "unibo/paho/qa",

"hello1(robot_001,world)")time(0)onFailSwitchTo prologFailure;
println(robot001(publish)) ;
solve publish("robot001", "tcp://m2m.eclipse.org:1883", "unibo/paho/qa",

"hello2(robot_001,world)")time(0)onFailSwitchTo prologFailure;

60 CHAPTER 6. CASE STUDY

solve disconnect time(0)

Plan prologFailure
println(failure(prolog))

Plan toutExpired
[?? tout(X,Y)] println(timeout(X,Y));
println("Restarting from the beginning...");
solve actorOp(unloading) time (0)onFailSwitchTo prologFailure;
solve actorOp(loading) time (0)onFailSwitchTo prologFailure;
switchToPlan search

}

Room logical behaviour

QActor rooma context ctxRoomA -g gray {
Rules{

loadTheory(File) :- actorPrintln(loadTheory(File)),consult(File).
}

Plan init normal
println(rooma(starts)) ;
solve loadTheory("./pahoTheory.pl") time(0) onFailSwitchTo prologFailure;
addRule rfidName("rfididRoomA");
addRule roomName("rooma");
addRule host("localhost");
addRule port(82);
addRule info("rfididRoomA","rooma","localhost","rooma");
addRule iotBrokerAddr("tcp://m2m.eclipse.org:1883");
addRule status("rooma",’0’);

//Eclipse MQTT Broker tcp://m2m.eclipse.org:1883
//Mosquitto Broker tcp://localhost:1883
switchToPlan testConnection;
switchToPlan loadStatus;
switchToPlan updatelocalinfo;
println(rooma(ends))

Plan testConnection resumeLastPlan

solve connect("rooma", "tcp://m2m.eclipse.org:1883", "rooma")
time(0) onFailSwitchTo prologFailure;

println(rooma(saving_state));
[!? status(A,X)] solve publish("rooma", "tcp://m2m.eclipse.org:1883",

"rooma", status(A,X) ,2,true)time(0)onFailSwitchTo prologFailure

Plan loadStatus resumeLastPlan

println(rooma("asking for previous saved state"));
solve subscribe("rooma", "tcp://m2m.eclipse.org:1883", "rooma")

time(0) onFailSwitchTo prologFailure;
receiveTheMsg m (MSGID,MSGTIPE,rooma,rooma,MSGCONTENT, MSGNUM)time(1000);
printCurrentMessage;
memoCurrentMessage;

[?? status(_,X)] removeRule status(A,_,X);
[?? msg(MSGID,TYPE, SENDER ,REC, mqttmsg(TOPIC,PAYLOAD), MSGNUM)]

addRule PAYLOAD;

6.3. ANALYSIS - STEP 1 61

[!? status(_,X)]println(rooma(status(X)))

Plan updatelocalinfo
println(rooma("waiting for any change")) ;
receiveTheMsg m (MSGID,MSGTIPE,SENDER,RECEIVER,mqttmsg(TOPIC,PAYLOAD),

MSGNUM)time(7000);
memoCurrentMessage;
[?? status(X)] removeRule status(X);
[!? msg(MSGID,TYPE, SENDER ,REC, mqttmsg(TOPIC,PAYLOAD), MSGNUM)]

println (rooma(value_received(PAYLOAD)));
[?? msg(MSGID,TYPE, SENDER ,REC, mqttmsg(TOPIC,PAYLOAD), MSGNUM)]

addRule PAYLOAD;
repeatPlan

Plan rfidSig
println(rooma("emmitting rfid signal"));
receiveMsg time (3000) react event palletunloaded -> accountingPallet ;
[!? info(RFIDNAME,NAME,IP,TOPIC)]onMsg getRoomInfo : X -> replyToCaller

-m roomInfo : info(RFIDNAME,NAME,IP,TOPIC)
repeatPlan

Plan toutExpired
[?? tout(X,Y)] println(timeout(X,Y))

Plan prologFailure
println(failure(prolog))

}

6.3.7 Workflow for QActors - Phase 6

Taking another step between analysis and design, we specify the logical

architecture of the system in java and we build the first prototype by

selecting a working environment.

Robot’s Context

package it.unibo.ctxRobot;
import it.unibo.qactors.ActorContext;
import java.io.InputStream;
import it.unibo.is.interfaces.IOutputEnvView;
import it.unibo.system.SituatedSysKb;
public class MainCtxRobot extends ActorContext{
//private IBasicEnvAwt env;

public MainCtxRobot(String name, IOutputEnvView outEnvView,
InputStream sysKbStream, InputStream sysRulesStream) throws Exception {
super(name, outEnvView, sysKbStream, sysRulesStream);
this.outEnvView = outEnvView;
env = outEnvView.getEnv();

}
@Override
public void configure() {

62 CHAPTER 6. CASE STUDY

try {
SituatedSysKb.init(); //Init the schedulers
println("Starting the actors ");

new it.unibo.robot001.Robot001("robot001", this, outEnvView);

} catch (Exception e) {
e.printStackTrace();

}
}

/*
* --

* MAIN

* --

*/

public static void main(String[] args) throws Exception{
IOutputEnvView outEnvView = SituatedSysKb.standardOutEnvView;

InputStream sysKbStream =
new java.io.FileInputStream("./srcMore/it/unibo/ctxRobot/modeliot.pl");

InputStream sysRulesStream=MainCtxRobot.class.getResourceAsStream("sysRules.pl");
new MainCtxRobot("ctxRobot",outEnvView,sysKbStream,sysRulesStream).configure();
}

}

Room’s Context

package it.unibo.ctxRoomA;
import it.unibo.qactors.ActorContext;
import java.io.InputStream;
import it.unibo.is.interfaces.IOutputEnvView;
import it.unibo.system.SituatedSysKb;
public class MainCtxRoomA extends ActorContext{
//private IBasicEnvAwt env;

public MainCtxRoomA(String name, IOutputEnvView outEnvView,
InputStream sysKbStream, InputStream sysRulesStream) throws Exception {
super(name, outEnvView, sysKbStream, sysRulesStream);
this.outEnvView = outEnvView;
env = outEnvView.getEnv();

}
@Override
public void configure() {

try {
SituatedSysKb.init(); //Init the schedulers
println("Starting the actors ");

new it.unibo.rooma.Rooma("rooma", this, outEnvView);

} catch (Exception e) {
e.printStackTrace();

}
}

/*
* --

* MAIN

* --

6.3. ANALYSIS - STEP 1 63

*/

public static void main(String[] args) throws Exception{
IOutputEnvView outEnvView = SituatedSysKb.standardOutEnvView;

InputStream sysKbStream =
new java.io.FileInputStream("./srcMore/it/unibo/ctxRoomA/modeliot.pl");

InputStream sysRulesStream=MainCtxRoomA.class.getResourceAsStream("sysRules.pl");
new MainCtxRoomA("ctxRoomA",outEnvView,sysKbStream,sysRulesStream).configure();
}

}

Robot’s Class

package it.unibo.robot001;
import it.unibo.is.interfaces.IOutputEnvView;
import it.unibo.qactors.ActorContext;

public class Robot001 extends AbstractRobot001 {
int counter = 0;
//int pallet = 1;
public Robot001(String actorId, ActorContext myCtx, IOutputEnvView outEnvView)

throws Exception{

super(actorId, myCtx, outEnvView);
}
public boolean checkconsistency(){

return true;

}
public void unloading(String room){

this.removeRule("pallet");

//this.platform.raiseEvent(room, "palletunloaded", "X");
}
public void loading(){

//pallet++;
counter = 0;
this.addRule("pallet");

}

public void scanningforrooms(){
counter++;
switch(counter){
//iniezione tupla contenente nome della stanza es:
//room(RFIDNAME,NAME,IP,TOPIC)
case 1:

this.addRule("room(rfididRoomA,rooma,localhost,rooma)");
break;

case 2:
this.addRule("room(rfididRoomB,roomb,localhost,roomb)");
break;

case 3:
this.addRule("room(rfididRoomC,roomc,localhost,roomc)");
break;

case 4:

64 CHAPTER 6. CASE STUDY

counter = 0;
this.platform.raiseEvent("robot001", "obstacledetected", "X");

default :
break;

}
try {

sleep(2000);

this.platform.raiseEvent("robot001", "roomdetected", "X");

} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

}
public void endevent(){

//this.platform.unregisterForEvent(, "roomdetected");
this.platform.unregisterForAllEvents("robot001");

}
}

Room’s Class

package it.unibo.rooma;
import it.unibo.is.interfaces.IOutputEnvView;
import it.unibo.qactors.ActorContext;

public class Rooma extends AbstractRooma {
public Rooma(String actorId, ActorContext myCtx, IOutputEnvView outEnvView)
throws Exception{

super(actorId, myCtx, outEnvView);
}

}

MQTT Utils

package it.unibo.paho.utils;
import it.unibo.contactEvent.interfaces.IContactEventPlatform;
import it.unibo.contactEvent.platform.ContactEventPlatform;
import it.unibo.qactors.QActor;
import org.eclipse.paho.client.mqttv3.IMqttDeliveryToken;
import org.eclipse.paho.client.mqttv3.MqttCallback;
import org.eclipse.paho.client.mqttv3.MqttClient;
import org.eclipse.paho.client.mqttv3.MqttConnectOptions;
import org.eclipse.paho.client.mqttv3.MqttException;
import org.eclipse.paho.client.mqttv3.MqttMessage;

public class MqttUtils implements MqttCallback{

private static String topic = "it/unibo/paho/iot/rooma";

6.3. ANALYSIS - STEP 1 65

private static String broker = "tcp://m2m.eclipse.org:1883";
//private static String broker = "tcp://localhost:1883";
private String broker = "tcp://m2m.eclipse.org:1883";
private static String clientid1 = "qa_unibo_1";
private static String clientid2 = "qa_unibo_2";

private static MqttUtils myself = null;

protected IContactEventPlatform platform ;
protected String clientid = null;
protected String eventId = "mqtt";
protected String eventMsg = "";
protected QActor actor = null;
protected MqttClient client = null;

public MqttUtils(){
try {

platform = ContactEventPlatform.getPlatform();
myself = this;

} catch (Exception e) {
e.printStackTrace();

}
}
protected void doTest() throws Exception{

publish(null,clientid1,broker,topic,"hello(world)",1,true);
subscribe(null,clientid2,broker,topic);

}

public static MqttUtils getMqttSupport(){
return myself ;

}

public void connect(QActor actor, String brokerAddr, String topic)
throws MqttException{
clientid = MqttClient.generateClientId();
connect(actor, clientid, brokerAddr, topic);

}
public void connect(QActor actor,String clientid,String brokerAddr,String topic)

throws MqttException{
System.out.println("connect "+ clientid);
this.actor = actor;
client = new MqttClient(brokerAddr, clientid);
MqttConnectOptions options = new MqttConnectOptions();
options.setWill("unibo/clienterrors", "crashed".getBytes(), 2, true);
client.connect(options);

}
public void disconnect() throws MqttException{

System.out.println("disconnect "+ client);
if(client != null) client.disconnect();

}

public void publish(QActor actor, String clientid, String brokerAddr,
String topic, String msg, int qos, boolean retain) throws MqttException{
MqttMessage message = new MqttMessage();
message.setRetained(retain);
if(qos == 0 || qos == 1 || qos == 2){

//qos=0 fire and forget; qos=1 at least once (default);
//qos=2 exactly once
message.setQos(0);

66 CHAPTER 6. CASE STUDY

}
message.setPayload(msg.getBytes());
client.publish(topic, message);
System.out.println("publish done by "+ clientid);

}

public void subscribe(QActor actor, String clientid, String brokerAddr,
String topic) throws Exception {
try{

System.out.println("subscribe "+ clientid + " on " + topic);
this.actor = actor;

// MqttClient client = new MqttClient(brokerAddr, clientid);
client.setCallback(this);
client.subscribe(topic);
}catch(Exception e){

System.out.println("subscribe error "+ e.getMessage());
// eventMsg = "mqtt("+topic +",\""+e.getMessage()+"\")";

eventMsg = "mqtt(" + eventId +", failure)";
System.out.println("subscribe error "+ eventMsg);
//sense in qa has not been yet executed: the event is
//lost platform.raiseEvent("mqttutil",eventId,eventMsg);
if(actor != null) actor.sendMsg("mqttmsg",

actor.getName(), "dispatch", "error");
throw e;

}
}

@Override
public void connectionLost(Throwable cause) {

System.out.println("connectionLost = "+ cause.getMessage());
}

@Override
public void deliveryComplete(IMqttDeliveryToken token) {

System.out.println("deliveryComplete token= "+ token);
}

@Override
public void messageArrived(String topic, MqttMessage msg) throws Exception {

System.out.println("messageArrived on "+ topic + "="+msg.toString());
String mqttmsg = "mqttmsg(" + topic +"," + msg.toString() +")";
System.out.println("messageArrived mqttmsg "+ mqttmsg);

// platform.raiseEvent("mqttutil", eventId, mqttmsg);
if(actor != null) actor.sendMsg("mqttmsg", actor.getName(),

"dispatch", mqttmsg);
}

public static void main(String[] args) throws Exception {
new MqttUtils().doTest();

}

}

MQTT operations have been implemented according to the prolog

syntax.

6.3. ANALYSIS - STEP 1 67

Paho Theory

/*
===
pahoTheory.pl
===

*/
connect(Name, BrokerAddr, Topic):-

java_object("it.unibo.paho.utils.MqttUtils", [], UMQTT),
actorobj(A),
actorPrintln(connect(UMQTT , A)),
UMQTT <- connect(A, Name, BrokerAddr, Topic).

disconnect :-
actorPrintln(disconnect),
class("it.unibo.paho.utils.MqttUtils") <- getMqttSupport returns UMQTT,
actorPrintln(disconnect(UMQTT)),
UMQTT <- disconnect.

publish(Name, BrokerAddr, Topic, Msg, Qos, Retain):-
actorPrintln(publish(BrokerAddr, Topic, Msgg, Qos, Retain)),
actorobj(A),
%% java_object("it.unibo.paho.utils.MqttUtils", [], UMQTT),
class("it.unibo.paho.utils.MqttUtils") <- getMqttSupport returns UMQTT,
actorPrintln(publish(UMQTT)),
UMQTT <- publish(A, Name, BrokerAddr, Topic, Msg, Qos, Retain).

subscribe(Name, BrokerAddr, Topic):-
actorPrintln(subscribe(BrokerAddr, Topic)),
actorobj(A),
%% java_object("it.unibo.paho.utils.MqttUtils", [], UMQTT),
class("it.unibo.paho.utils.MqttUtils") <- getMqttSupport returns UMQTT,
actorPrintln(subscribe(UMQTT)),
UMQTT <- subscribe(A, Name, BrokerAddr, Topic).

/*
--
initialize
--

*/
initialize :-

actorPrintln("pahoTheory started ...") .

:- initialization(initialize).

68 CHAPTER 6. CASE STUDY

6.4 The system running

Figure 6.3: Room’s log.

Figure 6.4: Robot’s log.

Chapter 7

Conclusions

The proliferation of entities with sensing capabilities is bringing closer

the vision of an Internet of Things which is expected to became main-

stream in the next 5-10 years. Thanks to IoT new capabilities are made

possible through the access of rich new information sources. The ex-

periment undertaken in chapter 6 is only one simple example among

the countless that shows us the way in which iot will enter into our

lives in the near future.

To support lots of heterogeneous and distributed entities new paradigms

has been recognized as the Fog Computing that arises as a structure

close to the data sources offering geolocation services.

Because of the expectations raised, different providers like Microsoft,

Netflix, Amazon and IBM, have begun the design, development and de-

ployment of Cloud solutions to optimize the utilization of their data cen-

ters. Some open-source solutions are being consolidated and among

them is becoming pervasive the use of OpenStack and Cloud Foundry.

This place between Iaas and PaaS level has been identified as the space

for DevOps philosophy to flourish allowing agile changes and contin-

uous integration by small teams which are responsible for the entire

lifecycle of a microservice.

Taking meta concepts, emerging from the Internet of Things and Cloud

environments, as microservices, and injecting them in a Model Driven

software factory enabled us to obtain an automatic code generation.

69

70 CHAPTER 7. CONCLUSIONS

This set of foundational technologies built on top of each other has en-

abled us with new ways of building and running technology. Thanks

to the Model Driven approach the lost top-down philosophy has been

regained.

In conclusion, not every question arisen has been closed. As a future

direction we will have to tackle the mapping issue between the ab-

stractions supported by today languages and the microservices. Should

agents and actors integrate microservices or contrarily should microser-

vices embody agents and actors? The abstraction gap identified is cer-

tainly not null. The answer lies somewhere and it will be strictly related

to the formalization process of microservices in the next future.

Bibliography

[1] Amazon simple storage service (amazon s3). Retrieved from

http://aws.amazon.com/s3/, pages 1–6, 2011.

[2] Cloud foundry. Retrieved from http://docs.cloudfoundry.org/,

2016.

[3] Eduardo A Patrocinio Henryk Gorski Manav Gupta Patrick M Ryan

Richard Osowski Ryan C Livesey Vasfi Gucer Ann Marie Fred,

Bhargav Perepa. IBM Bluemix Architecture Series: Web Appli-

cation Hosting on IBM Containers Leveraging best practice and

reference architectures for cloud. IBM Redbooks, 2015.

[4] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.

Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patter-

son, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud

computing. Commun. ACM, 53(4):50–58, April 2010.

[5] K. Ashton. That “internet of things” thing. RFiD Journal, 4986:17–

86, 2009.

[6] A. Banks and R. Gupta. Mqtt version 3.1.1. OASIS Stan-

dard. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-

os.html.

[7] S. Bhardwaj, L. Jain, and S. Jain. Cloud computing: A study of

infrastructure as a service (iaas). International Journal of Engi-

neering and Information Technology, 2(21):60–63, 2010.

71

72 BIBLIOGRAPHY

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and

its role in the internet of things. In Proceedings of the first edition

of the MCC workshop on Mobile cloud computing, pages 13–16,

2012.

[9] R. Caceres and A. Friday. Ubicomp systems at 20: Progress, op-

portunities, and challenges. IEEE Pervasive Computing, 2012.

[10] Lucas Carlson. Programming for PaaS. O’Reilly, 2013.

[11] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang. A vision of IoT: Applica-

tions, challenges, and opportunities with China Perspective. IEEE

Internet of Things Journal. Institute of Electrical and Electronics

Engineers Inc, 2014.

[12] C. A. Cois, J. Yankel, and A. Connell. Modern devops: Optimizing

software development through effective system interactions. IEEE

International Professional Communication Conference, 2015.

[13] A. Corradi, M. Fanelli, and L. Foschini. Vm consolidation: A real

case based on openstack cloud. Future Generation Computer Sys-

tems, 32(1):118–127, 2014.

[14] M. Eysholdt and H. Behrens.

[15] Christopher Ferris and Joel Farrell. What are web services? Com-

mun. ACM, 46(6):31–, June 2003.

[16] R. T. Fielding. Architectural styles and the design of network-

based software architectures. Building, 54:162, 2000.

[17] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid

computing 360-degree compared. Grid Computing Environments

Workshop, 2008:1–10, 2008.

[18] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of

things (iot): A vision, architectural elements, and future direc-

BIBLIOGRAPHY 73

tions. Future Generation Computer Systems, 29(7):1645–1660,

2013.

[19] Liming Zhu Len Bass, Ingo Weber. DevOps A Software Architect’s

Perspective. Addison-Wesley, 2015.

[20] Ang Li, Xiaowei Yan, Srikanth Kandula, and Ming Zhang. Cloud-

cmp: Comparing public cloud providers. pages 1–14, 2010.

[21] A. Natali and A. Molesini. La costruzione dei sistemi software: dai

modelli al codice. Progetto Leonardo, 2008.

[22] Sam Newman. Building Microservices designing fine-grained sys-

tems. O’Reilly, 2015.

[23] C. Pautasso, O. Zimmermann, and F. Leymann. Restful web ser-

vices vs " big " web services: Making the right architectural deci-

sion categories and subject descriptors. Technology, pages 805–

814, 2008.

[24] Dan Sanderson. Programming Google App Engine. O’Reilly, 2009.

[25] I. Stojmenovic and S. Wen. The fog computing paradigm: Scenar-

ios and security issues. 2:1–8, 2014.

[26] J. Thones. Microservices. 2015.

[27] J. Varia and S. Mathew. Overview of amazon web services. White

Paper, pages 1–18, 2012.

[28] M. Weiser. The Computer for the 21st Century. Scientific Ameri-

can, 1991.

