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Abstract

In this Bachelor Thesis I want to provide readers with tools and scripts for the control of
a 7DOF manipulator, backed up by some theory of Robotics and Computer Science, in
order to better contextualize the work done.
In practice, we will see most common software, and developing environments, used to
cope with our task: these include ROS, along with visual simulation by VREP and RVIZ,
and an almost "stand-alone" ROS extension called MoveIt!, a very complete program-
ming interface for trajectory planning and obstacle avoidance.
As we will better appreciate and understand in the introduction chapter, the capability of
detecting collision objects through a camera sensor, and re-plan to the desired end-effector
pose, are not enough. In fact, this work is implemented in a more complex system, where
recognition of particular objects is needed.
Through a package of ROS and customized scripts, a detailed procedure will be provided
on how to distinguish a particular object, retrieve its reference frame with respect to a
known one, and then allow navigation to that target.
Together with technical details, the aim is also to report working scripts and a specific
appendix (A) you can refer to, if desiring to put things together.

Keywords : SHERPA EU Project, 7DOF Manipulator, ROS, MoveIt!, OctoMap, Obsta-
cle Avoidance, Target Recognition
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A ROS-based Workspace Control and Trajectory Planner
for a Seven Degrees Of Freedom Robotic Arm

Software interfaces for Obstacle Avoidance, OctoMap Visual Sensing and
Target Recognition features.

Alessandro Santoni

University of Bologna - UniBO

Abstract (Italiano)

In questo lavoro di tesi verranno forniti tutti gli strumenti, e i codici funzionanti, per il
controllo di un manipolatore a 7 DOF, accompagnati da nozioni teoriche di Fondamenti
di Robotica ed Informatica.
Analizzeremo i programmi e gli ambienti di sviluppo comunemente usati in questo am-
bito, per ottenere un "Workspace Control" del robot in questione : passeremo da ROS,
con simulazione tramite VREP e RViz, fino a una "estensione" di ROS chiamata MoveIt!,
un’ interfaccia molto completa per il trajectory planning ed Obstacle Avoidance.
Tuttavia, sarà chiaro fin dal capitolo introduttivo, che non sarà sufficiente essere in grado
di modellizzare l’ambiente di collisione nei paraggi del robot ed evitare di conseguenza
gli ostacoli. Dovremmo infatti efficacemente riconoscere degli oggetti specifici.
Tramite personalizzazione di un pacchetto ROS, verrà mostrata una procedura dettagliata
su come distinguere oggetti particolari, recuperare il loro reference frame rispetto ad uno
già noto, e quindi permettere la navigazione verso questo obiettivo.
Oltre ai dettagli tecnici, l’appendice A, allegata alla tesi, servirà da guida per chiunque
volesse scaricare gli scripts e i files di questa tesi, e riprodurre le applicazioni riportate.

Keywords : SHERPA EU Project, 7DOF Manipulator, ROS, MoveIt!, OctoMap, Obsta-
cle Avoidance, Target Recognition
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Chapter 1

Thesis Introduction

1.1 Sherpa Project
The work presented in this document has to be contextualized in a more wide project the
University of Bologna, along with other European partners, is involved in: the Sherpa
Project [1]. This programme, started in 2013, aims at building a "fleet" of robots, either
aerial and grounded, able to enhance human rescue operations in hostile environments,
such as the alpine one. The many platforms, having the purpose to help humans in these
situations, are programmed to be collaborative, autonomous and self-aware.
In few words, every robot knows where it is in the space relatively to the "human leader",
its battery-life left, as well as positions and messages from the other units. Once a trigger-
ing command is sent, in this case represented by the effective localization of the stricken
area, every platform knows how to behave and act, without any need of further specifica-
tions by the operators.
Achieving this level of automation, via advanced controls and cognitive capabilities of the
robots, allows the system to require minimum supervision by the human team; In fact, this
project considers the rescuer as the "busy genius", meaning that is the one really in charge
of the operation, although in most cases not able to manage these many devices. Here lies
the importance of a smart implementation in terms of collaborative strategies towards the
achievement of a common goal among both the group of robots, and the rescuers.

Figure 1.1: The senseSoar, fixed-wing UAV

This group of devices includes a fixed-wing UAV and an RMax rotary-wing, with
cutting-edge technology for vision and detection of targets, however, due to their struc-
ture, constrained to fly at high altitudes. It includes also multiple quad-rotors UAVs,
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1.1. SHERPA PROJECT

characterized by agility and ability to reach most inhospitable places, although having as
a main drawback a short life in terms of batteries. Finally, this "robotic-team" includes a
ground rover with a multi-purpose arm mounted on it, that carries the main computational
unit, has high level of autonomy and a long battery life.
Hereafter some illustrations are reported.

(a) Representation of rescuer and ground
rover

(b) The quad-copter UAV

Figure 1.2: Drone and Rover Representations

This work is centred on the ground robot, which is the one physically following the
operator, able to plan its own path behind him, carrying the computational unit and the
drones that are going to be detached once around the critical zone. As previously said, in
order to set a certain level of autonomy, it has to be able to process gestural as well as vocal
commands given by its leader. This stand-alone capability includes also the management
and elaboration of the data flow coming from the devices, that use the Sherpa-BOX as a
central "common brain"; this is what practically makes the system so self-supporting.

In particular, I had the opportunity to work on the 7 DOFs rover arm, which has been
designed to pick up landed copters and place them in their respective slots on the rover.
The main features we are going to add to the system are: work-space control and motion
planning, given a desired end effector pose, an elaboration of joint trajectories takes place
to reach the final desired point; communication between camera data and planning core,
in order to detect collision objects, avoid obstacles and keep refreshing the always chang-
ing surrounding environment; Eventually, recognize the landed quad-copter, retrieve its
reference frame relative to the ground rover, essentially giving to it a target for the navi-
gation, until the UAV is reachable by the arm itself.
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CHAPTER 1. THESIS INTRODUCTION

1.2 ROS - Robot Operating System
The Robot Operating System [2], best known as ROS, is a very powerful collection of
libraries and tools aimed at configuring and writing robots’ software. In this work, ROS
Indigo, LTS version, has been installed on Ubuntu Trusty 14.

Figure 1.3: ROS concepts

The reason why this operating system is
spreading more and more, is because of its in-
novative way of describing and handling the
many parts that are going to characterize the
final behaviour of the intended robot: indus-
trial manipulators, drones as well as other mo-
bile platforms up to highly complex humanoids
with state-of-the-art AI capabilities. In prac-
tice, this result has been achieved with a mod-
ular programming method, stimulating collab-
orative work. As a matter of fact, ROS is or-
ganized mainly in nodes, topics and messages
(plus other many elements for the moment I
avoid telling for sake of explanation). What is being done, is that a programmer builds
a node, a mini-core of the overall structured software, that adds one or more particular
capabilities and is able to send and receive messages through channels called topics. To
keep communication organized, a master node handles the most basic functions such as
subscriptions and publications on topics.
In broad terms, our particular application requires to read mechanical values from the
arm, to elaborate suitable trajectories, to collect data from an RGB camera and eventually
to detect a specific object. All of these will be the main cores of the software, and they
will exchange information or services thanks to proper messages that the sender is able to
write and the listener is able to receive and process.
Due to the high readability of the nodes and topics graphs that we can extrapolate from
ROS, I will make use of them to show in a detailed manner how the pieces work together,
scope and features of each software block and the way in which a simulating engine fits
in the scheme, to give us the possibility to experiment and test functionalities of the intro-
duced "code-brick".
Finally, a GUI will be an additional node that listens to topics such as "joints trajectories"
and position of "collision objects", and graphically helps us in appreciating the actual
underneath software implementation.
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1.3. 7DOFS MANIPULATOR SPECIFICS

1.3 7DOFs Manipulator Specifics
Entering in the technicalities, a description of the arm must be done. Even though low-
level implementation is not our final purpose, it clearly is the starting point of a workspace
control. Indeed, physical components such as actuators, regulators and wiring (fieldbuses,
power cables), are the constraints we have to keep into account in planning the motion for
our end-effector.

Figure 1.4: Rover Manipulator

The mechanical structure is composed by a
3DOFs shoulder, a single DOF elbow and a 3DOFs
wrist. In particular, the elbow actually contains two
joints at a distance of about 15cm; Even if the DOF
is only one, because the two revolute connections
are dependent with a fixed gear ratio 1 : 1 , this lit-
tle separation allows reaching particular poses and,
when needed, rest in a folded-arm position. The
end-effector has three fingers, dependent on each
other since actuated with a single motor.
This design, allows determination of multiple solu-
tions in the joint-space for gripper poses in the reach
of the arm; Indeed, it is redundant (DOFs > 6)
leaving some margin for particular motion plan-
ning applications, such as obstacle avoidance and
replanning capability, when the desired pose is not
reached due to an obstacle, or not reached in the

most suitable way.

Figure 1.5: Gripper of the Arm

Communication is managed through CAN in-
terface and proper ROS configuration. More
in depth, what we are really interested in, is
the method the arm uses to process a given
trajectory, namely, how it handles joint-states
and joint-controllers commands. Each mo-
tor is equipped with an absolute plus an in-
cremental encoder in order to accurately per-
form our motion requests; The incremental one
is directly readable from the velocity regu-
lators, however, without an absolute encoder
it wouldn’t know its exact position with re-
spect to the TF tree of the arm’s kinematic
chain.

Knowing the very basics of actuation and commu-
nication between controllers and arm, we can enter
more in detail concerning the proper ROS program-
ming of the tasks we want it to accomplish.
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Chapter 2

Basics of Control Theory and Robotics

2.1 Structure of a Manipulator
Robot manipulators, from a physical point of view, are intended as a set of interconnected
link and joints, that, strongly depending on their design, are able to perform certain tasks
rather than others. For example, we may distinguish between manipulators that are re-
dundant or not, parallel or serial structures, or just characterize robotic arms depending
on the kind of joints used in their construction.

Figure 2.1: SHERPA Rover
Arm

The SHERPA Rover Arm has the following charac-
teristics:

• It is a serial chain, meaning that, moving from the
end-effector down to the base, higher torques mo-
tors have to be adopted, due to the fact that in a
serial structure each joint must support, and allow
the motion, of the following links.

• It is only formed by 1 DOF joints, that are way
simpler to manage in terms of computational
power needed and mathematical modelling, yet
not introducing any particular constraint on the
trajectories and motions we can achieve with that
arm.

• In particular, it only consists of revolute joints.
These kinds of manipulators are for this reason
called anthropomorphic, recalling their structural
similarity with human arms.

• Eventually, it is said to be redundant, having di-
mension of the joint-space (7DOF) greater than
the dimension of the work-space (imposed by our
physical world and equal to 6).

17



2.2. PHYSICAL INTERPRETATION

2.2 Physical Interpretation
Motion Control for such a robot is all about properly mapping Jointspace and Workspace,
so that either direct and inverse kinematics can be carried out.
We will see that our Software Tools are actually able to extrapolate such a map from the
model of our manipulator, however, for the sake of completeness, let’s go a bit through
these mathematical and geometric concepts.

Joint Space According to the number of independently actuated joints, we would define
a vector of joint values :

q = [θ1, θ2, · · · , θ7] so that q ∈ IR7

In our application it has dimension 7, coincident with the number of DOFs of the arm,
and contains angles due to the fact that it has an anthropomorphic structure.
In order to perform tasks with it, we can just act at the "low-level" that is the joint-space;
Indeed, giving values to the vector q (that is give setpoints to each joint) we would define
a position for our end-effector.

Work Space However, the most interesting (and most frequent) operation we want such
an arm to carry out, is to elaborate a proper set of joint values in order to place the end-
effector in a desired point in space: in our case, even with a certain orientation.
With the word Workspace we indicate the set of possible configurations the end-effector
may assume in our space that, for a rigid body, has dimension 6.
Hence, a vector x would contain 3 position parameters (e.g. Cartesian coordinates) and 3
orientation parameters (e.g. Euler angles):

x = [px, py, pz, φ, θ, ψ] where x ∈ IR6

Map Workspace↔ Jointspace At this point we want to find a mapping between this
two spaces. In other words, a function f that holds :

f : IR7 → IR6 , x = f(q)

Such a function would bond together the end-effector and the joint angles, with a
mathematical map.

2.3 Inverse Kinematics
The function f above, is in charge of the so-called "Direct Kinematics", that is the prob-
lem of defining the end-effector configuration-vector x, once known the joint parameters
q.
However, as pointed out before, in this thesis we face the task of solving Inverse Kine-
matics (IK), that is mapping :

g : IR6 → IR7 , q = g(x) hence g = f−1

18



CHAPTER 2. BASICS OF CONTROL THEORY AND ROBOTICS

Both maps are obviously non-linear functions. To solve the Inverse Kinematic prob-
lem, that is finding proper joint values known a desired x, we would definitely prefer a
linear relationship.
The Jacobian would be our "solving engine" exactly for this reason.

Jacobian Matrix If the functions above represent a "position mapping", we will the
define through the Jacobian, the derivative of that map, that would be a relationship at the
"velocity level", from a physical point of view.
We define the Jacobian Matrix as follows:

J(q) = ∂f(q)
∂q =


∂f1
∂q1

∂f1
∂q2
· · · ∂f1

∂q7... ... . . . ...
∂f6
∂q1

∂f6
∂q2
· · · ∂f6

∂q7


By exploiting this matrix we can now define :

d
dt
x = d

dt
f(q) ⇒ ẋ = J(q) · q̇

This equation is no more non-linear. In fact, now velocities of the joints and end-
effector’s linear and angular velocities are linearly correlated, thanks to the Jacobian Ma-
trix J(q).
Since it goes IR7 → IR6, then it would be not square, hence an inverse J−1(q) shouldn’t
exist.
For this purpose, our solving engines will instead make use of the pseudo-inverse that,
as an additional advantage, are mathematically proven to give the "best solution": techni-
cally speaking, the solution with the minimum norm.
Given the vector ẋ and called the pseudo-inverse with J+, we get:

q̇ = J+ · ẋ , the solution having minimum ‖q̇s‖

The fact that with this method we have the "optimal solution" is because, having a
redundant manipulator, whenever a solution for the inverse kinematics exists, then we
actually will have infinite solutions.
This is possible because we still have 1 dimension, that is 1 DOF (in practice nothing
but 1 joint variable) that we may still exploit to change the arm configuration but not the
gripper pose.
Having such a possibility will be key in our obstacle avoidance tasks : in these cases we
want the arm to re-plan its trajectory to the "goal pose"; If the solution had been unique,
it would have just been impossible to do so.

Singularities At the moment, we just overcame the problem of finding the inverse of a
non-square matrix by using the pseudo-inverse.
Still, if the matrix above wouldn’t be maximum rank, the procedure in the last equation,
that is deriving q̇ from ẋ, would not hold.
Due to the fact that J(q) is built with functions of the joints, there would exist particular
arm’s configuration that do not make rank(J) = min(6, 7) = 6.
Whenever the Jacobian Matrix has not maximum rank we are in a Singular Configuration
that, from a physical point of view, is translated in loosing one or more Degrees of Free-
dom.
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2.3. INVERSE KINEMATICS

These configurations are coincident, for example, with the alignment of 2 (or more) dif-
ferent joints. In fact, in that exact instant of time, and for an infinitesimal displacement
dx, the two joints that are independently actuated, would rather just define a motion (ro-
tating motion due to the revolute joints in our case) around coincident axes.
In our application, we will take particular care in avoiding Boundary singularities (done
via not working at the edge of the arm’s reaching space) and Internal singularities, more
difficult to detect and avoid (still doable via our software tools).

20



Chapter 3

VREP - Virtual Robot Experimentation
Platform

3.1 General Configuration

Figure 3.1: URDF model Configuration in VREP

VREP [3] is a simulation plat-
form developed by Coppelia
Robotics. It exploits LUA lan-
guage for its API functions and
makes use of threaded or non
threaded scripts to manage be-
haviour of the mechanical parts
under experimentation. The dif-
ference between threaded and
non-threaded is that the last one
is nothing but a script elsewhere
known as a function, that means,
executes the code and returns
control; Moreover, it is executed
in a cascade way, so we are going
to respect the TF tree hierarchy of
our system. It has to be preferred,
whenever possible, to a threaded script, that may induce in infinite loops and waste com-
putational power.
VREP has the capability to import URDF models, that we use to represent our arm in vir-
tual environments. Once uploaded the respective meshes, the program recognizes joints,
links, the overall children-parents structure and is ready for simulations, using powerful
physics engines (I have chosen BULLET). First of all, to make the system able to with-
stand its own weight, we set the joints’ actuators in torque/force mode with suitable max-
imum torque [N ·m] and a simple PID controller on position (since not looking for high
performances in this part of the configuration, a Proportional controller with Kp = 0.1
will be enough).
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3.2. INTERFACING VREP AND ROS

3.2 Interfacing VREP and ROS
This simulation environment has the intrinsic capability of connecting with ROS. In fact,
specific libraries (such as libv_repExtRos.so) add particular API functions for the in-
tercommunication between them. On the other side, ROS is able to manage VREP as a
node and interact with it through topics.
Hereafter, I want to show a simple publisher and subscriber between these two pro-
grammes; A node-topics graph will be reported as well.
At VREP’s side I want to enable subscription to ROS topic /setJointPosition that will
broadcast float64 messages containing position setpoints for a joint. The simulation envi-
ronment will be able to catch those messages through the command simros_strmcmd_set_joint_target_position.

if (sim_call_type == sim_childscriptcall_initialization) then

--testing if roscore is on

local moduleName =0

local moduleVersion =0

local index =0

local pluginNotFound=true

while moduleName do

moduleName ,moduleVersion=simGetModuleName(index)

if (moduleName =='Ros') then

pluginNotFound=false

end

index=index +1

end

if (pluginNotFound) then

-- Display an error message if the plugin was not found:

simDisplayDialog('Error ','ROS plugin was not found .&&

nSimulation will not run properly ',sim_dlgstyle_ok ,false ,nil

,{0.8,0,0,0,0,0},{0.5,0,0,1,1,1})

else

--handle of the elbow joint we want to control

elbowHandle = simGetObjectHandle('ElbowD_1 ')

subscriberID = simExtROS_enableSubscriber('/setJointPosition ',

1, simros_strmcmd_set_joint_target_position , elbowHandle , -1, ''

)

end

end

Listing 3.1: VREP subscriber to /setJointPosition ROS topic - (LUA)

On the counterpart, ROS must create a node publishing those desired positions on the
common chosen topic; In practice, we will send cyclic positions around the rotation axis
of the revolute joint. For this application we will use Python because, to experiment a
little bit, we are going to change often this setpoints, and a .py script doesn’t need to be
recompiled through commandline catkin_make each time a variation in the code occurs.

Note : Remember to make the script executable through sudo chmod <users>+x <file.py>
command from terminal.
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#!/usr/bin/env python

#joint_position_publisher.py

import rospy

from std_msgs.msg import Float64

def joint_position_publisher ():

pub = rospy.Publisher('setJointPosition ', Float64 , queue_size =10)

rospy.init_node('joint_position_publisher ', anonymous=True)

#anonymous gives unique name to nodes in case of an homonymy

rate = rospy.Rate (1) #once per second , 1Hz

#init variables

count =4 #we start from a middle position

sign=1 #used to go back and forth with the arm

desired_joint_position = 0

while not rospy.is_shutdown ():

desired_joint_position += sign *(3.1415/12)

count += 1

if (count %6) == 1 :

sign = sign *(-1)

pub.publish(desired_joint_position)

rate.sleep() #keeps the desired 1Hz transmission frequency

if __name__ == '__main__ ':

try:

joint_position_publisher ()

except rospy.ROSInterruptException:

pass

Listing 3.2: ROS publisher to VREP - (Python)

To launch the application, once built and compiled a proper catkin_pkg with relative
CMakeLists.txt and Package.xml, we want to run the publishing node and then start the
simulation. The following steps will guide us into it. From terminal’s commandline
execute:

• Launch the master : roscore

• rosrun set_joint_position_vrep joint_position_publisher.py

• Monitor topic messages with rostopic echo /setJointPosition

• Open VREP scene previously created with the non-thread child script above

• Run the simulation either from VREP GUI or via ROS service : rosservice call

/vrep/simRosStartSimulation
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Clearly, depending on the joint’s constraints, the controller used and the torque of
the motor, the achieved result varies. Remember also to set the base link "not dynamic",
indeed, in the real case, it is fixed on the rover base.
As we said, through command rosrun rqt_graph rqt_graph we can get a map of
nodes and topics in our system. This time it turns out to be a very simple one, however,
we will have the opportunity to appreciate this tool later on in more complex applications
of our project.
Our scheme is :

Figure 3.2: RQT Graph in VREP - ROS communication

3.3 Limits of VREP
What we achieved is the control of a single joint, however, it’s easy to understand, that the
trajectory of a kinematic chain is something more complex. By trajectory (that we will
physically define and describe in the next section) we intend a stream, namely an array
float64[], containing velocities and accelerations of the specific joints in multiple instants
of time : as a result, we obtain the trajectory in terms of positions.

VREP, despite being very accurate and graphically elegant, would require unpacking
and assignment for each trajectory stream, to every single joint. That’s because, through
ROS, we elaborate JointTrajectory.msg types that VREP is not yet able to process.
The final choice as a Graphical Simulation Engine will be RVIZ (ROS-Visualization)
environment.
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Chapter 4

MoveIt! Interface

4.1 MoveIt! Architecture
The software MoveIt! [4] will be the central core of this thesis application, since gives
us tools that span from motion planning to 3D perception. The most fundamental point,
is that it is naturally linkable with ROS through methods explained in the Introduction
chapter (nodes, topics...).
MoveIt! has been originally developed by Willow Garage, becoming very soon of public
domain thanks to its open-source license. It has a very powerful system architecture, is
able to process scripts in either Python or C++ and it’s readily possible to interface it with
RVIZ.

Figure 4.1: MoveIt! System Architecture
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From the Fig. 4.1 it’s very easy to understand why and how this software will be
pivotal in our implementation.

4.1.1 Robot Model

In the very top section of the scheme, we notice that the node move_group reads 3 pa-
rameters : they represent the model of our robot, in a format that this software is able
to understand. The URDF (Unified Robot Description Format) lists all the details of the
kinematic chain (in our application with the rover arm), links and joints, TF tree hier-
archy and whichever constraint we may set (effort, position, velocity, acceleration). Its
correspondent SRDF (Semantic Robot Description Format) is generated after the first
configuration is completed, and contains the most useful information on our robot: joint
limits, pre-defined positions (I defined an home position, for example), planning groups,
end-effector structure and finally a list of links that are always or never in collision, in
order to slim computations.

4.1.2 Robot Feedback and Controllers

From the robot sensors, the central "high-level" node always keeps track of the overall
structure’s position and orientation. Indeed the TF tree is refreshed at high-frequencies to
cope with dynamic environments, with obstacles spawning in the arm’s workspace, and to
allow planning around them, respecting chain’s design limits and avoiding self-collisions.
Once a trajectory is successfully planned, we may execute it. The Robot Controllers are
interfaced with the move_group node to perform this task. By using rqt_plot, we can see
that they are actually transmitting commands for the motion of our arm.

Figure 4.2: Communication between move-group and Joint States

4.1.3 3D Perception

Another very useful capability of this MoveIt! structure is the one of reading real time
camera sensors’ data through point cloud topics. We will make use of this kind of com-
munication when configuring a kinect sensor for the arm. Essentially, the point cloud
updates the Occupancy Map in the World Geometry of the robot; Thus, is possible to
make a direct translation from depth and RGB data into collision objects. At this point,
we will be able either to plan around them and to keep "listening" to the point cloud topic
for updates of the surrounding environment.
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4.1.4 Moveit! User Interface
The way in which a programmer can interact with this Moveit! architecture is basically
described by the topics, actions or messages we can exploit to communicate with the
move_group node. There exist particular actions for a pick and place application, the user
may define collision object by script and place them in the map or attached to the robot:
in the latter case, the planner keeps that object into account in elaborating trajectories.
Moreover, we can exchange information on Inverse Kinematics calculations, generated
paths (planned and/or executed) and planning scene structures.

Note : A GUI (we choose RVIZ, as already said) has to be like a simple listener to
the TF tree, planning scene and path generation topics, so that it can graphically represent
what the move_group node has processed from our ROS script request.

4.2 Setup for the SHERPA Arm

4.2.1 MoveIt! Setup
The linkage between MoveIt! and the real robot, we said, is the URDF. Actually, due to
some peculiarities in our model, a couple of modifications have to be done.

1DOF elbow The elbow of our arm has one degree of freedom, however, it is built by
2 revolute joints. In general, they should add 2DOF but in this case they are linearly
dependent with a fixed gear ratio. This value is 1 : 1 so we want to insert in the model
a mimic function, with multiplier 1, between Jnt4 and Jnt4_2. Moveit! will be able to
read this information and plan accordingly.
<joint

name="Jnt4_2"

type="continuous">

<mimic

joint="Jnt4" />

Listing 4.1: Mimic function on the elbow

In addition, from the planner point of view, the joint Jnt4_2 is seen as non actuated;
To explain it better, in the real case as well as in the model, it follows movement of Jnt4
then MoveIt! must not take it into account in motion planning.
To implement this feature, Jnt4_2 is set to passive.
One last consideration is for the elbow constraints. Once determined in Laboratory the
range of positions it can assume due to its wiring, we must take action in setting joint
limits.
Note that the planner will take actions itself for position limits when auto-collision may
occur, but in this case we have an external constraints due only to the cables passing
through the arm. The planner wouldn’t know of these connections, so we need to "im-
pose" them in the URDF model. Code is reported in the following page.

27



4.2. SETUP FOR THE SHERPA ARM

<joint

name="Jnt4"

type="revolute">

<limit

lower="0.0"

upper="1.509" />

Listing 4.2: Jnt4 URDF constraints

Note : "Joint Type" is now revolute. This is the kind of joint that allows us to set position
limits (as well as velocity or effort ones). With type "continuous" we are not setting any
external constraint. Planning would be limited to avoiding obstalces and self-collisions.

Kinematic Solver As explained in Chapter 2.3, we are going to solve our IK problems
with the Jacobian. That’s because we saw that it makes possible to have a linear relation-
ship between Work-space and Joint-space velocities.
Upon completion of the initial set-up, we will have a configuration file, named kinematics.yaml,
containing the following information :
arm:

kinematics_solver: kdl_kinematics_plugin/KDLKinematicsPlugin

kinematics_solver_search_resolution: 0.005

kinematics_solver_timeout: 0.005

kinematics_solver_attempts: 3

Listing 4.3: MoveIt! Kinematic Solver

Let’s analyse the single parameters :

• The kinematic_solver chosen is the one provided by MoveIt! that works with the
jacobian principle

• The value for search_resolution is the resolution the solver uses to search over the
redundant space. In our application this is very important for obstacle avoidance,
hence an accurate resolution is needed.

• With timeout we mean the maximum time allotted to solve the IK problem once
started a certain solution cycle.

• The "complementary" parameter to the one above would be the attempts. With this
number we specify how many solution cycles we want the solver to go through.

The values given to those entries above have proven to be a good trade-off between
computational weight and speed in the determination of a solution.

Semantic Robot Description Format - SRDF Once brought to an end the initial con-
figuration of our robotic platform in MoveIt!, a very useful SRDF file will be created,
containing the most important information on the arm. MoveIt! will deal just with it,
from now on.
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<robot name="SHERPA_ARM_1 .4">

<!--GROUPS: Representation of a set of joints and links. This can

be useful to specify the DOFs considered in planning tasks ,

defining arms , end effectors , etc -->

<group name="arm">

<joint name="virtual_joint"/>

<joint name="Jnt1"/>

<joint name="Jnt2"/>

<joint name="Jnt3"/>

<joint name="Jnt4"/>

<joint name="Jnt4_2"/>

<joint name="Jnt5"/>

<joint name="Jnt6"/>

<joint name="Jnt7"/>

</group>

<!--GROUP STATES: Purpose: Define a named state for a particular

group , in terms of joints values.-->

<group_state name="home" group="arm">

<joint name="Jnt1" value="0.0353"/>

<joint name="Jnt2" value="0.0353"/>

<joint name="Jnt3" value="0.2118"/>

<joint name="Jnt4" value="0.15"/>

<joint name="Jnt4_2" value="0.15"/>

<joint name="Jnt5" value="0.0353"/>

<joint name="Jnt6" value="0.1765"/>

<joint name="Jnt7" value="0.2118"/>

</group_state >

<!--END EFFECTOR: Purpose: Represent information about an end

effector.-->

<end_effector name="end_eff" parent_link="Gripper" group="arm"/>

<!--VIRTUAL JOINT: Purpose: this element defines a virtual joint

between a robot link and an external frame of reference (

considered fixed with respect to the robot) we need this joint

to fix the arm to the simulation environment map in RVIZ.-->

<virtual_joint name="virtual_joint" type="fixed" parent_frame="

odom_combined" child_link="base_link"/>

<!--PASSIVE JOINT: Purpose: this statement is used to mark joints

that are not actuated. Jnt4_2 mimics Jnt4 , hence ... -->

<passive_joint name="Jnt4_2"/>

<!--For the sake of easing readability , I avoid reporting all the

list of joints always or never in collision , that , as said in

the previous chapter , are an indication to the motion planner to

save computational power and time -->

</robot>

Listing 4.4: SHERPA arm SRDF model

Let’s now move to the simulation environment RVIZ and understand more in detail
how we can use our model there.
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4.2.2 RVIZ Setup

Figure 4.3: Arm’s TF tree in RVIZ

RVIZ [5] is a powerful GUI used to have graph-
ical feedback of our ROS - MoveIt! applica-
tions.
It listens to various topics in order to vi-
sualize results coming from motion planning
algorithms. The most basic ones are the
topics shown in Fig: 4.2, that allow send-
ing commands as well as retrieve informa-
tion on the overall structure of the robot, that
means, kinematic chain parent-children rela-
tionships and reference frames from all the
rigid bodies. This last one is the TF tree,
that RVIZ shows in the Fig:4.3 here on the
side.
Eventually, the trajectory is reported by
MoveIt! through a topic readily un-
derstandable by RVIZ, that is named "/move_group/display_planned_path".
It is transmitted as a series of "waypoints" (in
Fig : 4.4 are shown only some points to keep
the image quickly to glance at) that are veloc-

ity and acceleration values for some given intervals of time measured in [ns].
From the figure we can appreciate the ability of this simulation engine to read Float64[]
arrays, that were the inability and limit of VREP environment.
In practice, they are transmitted via a custom MoveIt! message called
moveit_msgs::DisplayTrajectory.

Figure 4.4: Display Planned Path topic

Other two fundamental aspects of RVIZ have to be cited : The OMPL and the Oc-
toMap.
The former is the acronym of Open Motion Planning Library [6] , a collection of algo-
rithms used in planning: in other terms, is the main tool in our arm obstacle avoidance
feature, that may even require multiple solving attempts, through the kinematic solver we
chose and explained in a couple of paragraphs back.
On the other hand, the latter is a schematic representation of a pointcloud topic. In fact,
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we will need to superpose to the "world" of RVIZ, what our kinetic sensor will be able to
detect in following chapters’ applications. This is done via this OctoMap [7] service that
places collision objects in the space according to the camera data-stream.
In the next pages we will effectively exploit this functionality.

4.3 Scripts and Applications in MoveIt!
In this section I report the actual work done concerning the use of MoveIt! on the rover
arm, still without camera kinect sensor. I will bring two examples : a simple joint space
control sending setpoints, testing if the communication through robot state and joint pub-
lisher works fine; And an obstacle avoidance piece of software, where at first I set an end-
effector desired pose, than I insert collision objects in its trajectory, and the arm smartly
re-plans its path to the same point in space (with the same orientation too) as before.

4.3.1 Joint-Space Goal
The code is reported hereafter :

#include <moveit/move_group_interface/move_group.h>

#include <moveit/planning_scene_interface/planning_scene_interface.

h>

#include <moveit_msgs/DisplayRobotState.h>

#include <moveit_msgs/DisplayTrajectory.h>

#include <moveit_msgs/AttachedCollisionObject.h>

#include <moveit_msgs/CollisionObject.h>

int main(int argc , char **argv)

{

ros::init(argc , argv , "rover_arm_joint_space_goal");

ros:: NodeHandle node_handle;

ros:: AsyncSpinner spinner (1);

spinner.start ();

//wait some time to load RVIZ

sleep (15.0);

moveit :: planning_interface :: MoveGroup group("arm");

moveit :: planning_interface :: PlanningSceneInterface

planning_scene_interface;

// publisher for RVIZ

ros:: Publisher display_publisher = node_handle.advertise <

moveit_msgs :: DisplayTrajectory >("/move_group/

display_planned_path", 1, true);

moveit_msgs :: DisplayTrajectory display_trajectory;

ROS_INFO("Reference frame for the robot: %s", group.

getPlanningFrame ().c_str ());
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ROS_INFO("Ref. frame for the End Effector : %s", group.

getEndEffectorLink ().c_str());

// planning to a joint space GOAL

std::vector <double > group_variable_values;

//I'm writing in the new array defined above the current values

of the robot's joints

group.getCurrentState ()->copyJointGroupPositions(group.

getCurrentState ()->getRobotModel ()->getJointModelGroup(group.

getName ()), group_variable_values);

//now I change some values

group_variable_values [1] = -0.8;

group_variable_values [2] = 1.2;

group_variable_values [3] = 0.7;

group_variable_values [6] = -1.2;

group.setJointValueTarget(group_variable_values);

//Plan with the new setpoints in group_variable_values []

moveit :: planning_interface :: MoveGroup ::Plan my_plan;

bool success = group.plan (my_plan);

ROS_INFO("Visualizing plan (joint space goal ... %s)", success ?

"":"== FAILED ==");

sleep (10.0); //give time to RVIZ to plan

if(success) // making use of moveit_msgs :: DisplayTrajectory to

display trajectory

{

ROS_INFO("let's see it once again");

display_trajectory.trajectory_start = my_plan.start_state_;

display_trajectory.trajectory.push_back(my_plan.trajectory_

);

display_publisher.publish(display_trajectory);

sleep (10.0);

}

ros:: shutdown ();

return 0;

}

Listing 4.5: Joint Space Goal - (C++)

Breaking down the code :

• Definition of a ROS node rover_arm_joint_space_goal and its handle.

• Instantiation of the planning group "arm", registered in the SRDF, and of a planning-
scene object.

• A proper message moveit_msgs::DisplayTrajectory is the mean of communi-
cation between MoveIt! and RViz. The publisher broadcasts this kind of messages
to the topic /move_group/display_planned_path, of which our simulator is a
subscriber.

32



CHAPTER 4. MOVEIT! INTERFACE

• A vector group_variable_values customized as a double one, collects all joint
names and values. (Note that this is done through topics shown in Fig: 4.2)

• User desired values are substituted in this array and a plan object my_plan is created.

• The group.plan method is used, that either plans and shows the trajectory. For
sake of completeness, this path is also displayed through the display_trajectory
msg created above.

4.3.2 End-Effector Pose with Obstacles

The script reported here, has the purpose of showing the capability of MoveIt! to do ex-
actly what we desire : Obstacle Avoidance.
Through code and figures we will be able to better appreciate this feature.

#include <moveit/move_group_interface/move_group.h>

#include <moveit/planning_scene_interface/planning_scene_interface.

h>

#include <moveit_msgs/DisplayRobotState.h>

#include <moveit_msgs/DisplayTrajectory.h>

#include <moveit_msgs/AttachedCollisionObject.h>

#include <moveit_msgs/CollisionObject.h>

int main (int argc , char **argv)

{

ros::init(argc , argv , "rover_arm_obstacle_avoidance");

ros:: NodeHandle node_handle;

ros:: AsyncSpinner spinner (1);

spinner.start ();

// sleeping to load rviz

sleep (15.0);

//the move group interface allows me to control and plan only

for the desired group , in my case the group "arm" defined in the

SRDF

moveit :: planning_interface :: MoveGroup group("arm");

group.allowReplanning(true);

//now the planning scene interface deals with the world

// coordinates , objects ..

moveit :: planning_interface :: PlanningSceneInterface

planning_scene_interface;

// hereafter we create a publisher in order to display

trajectories on rviz.

ros:: Publisher display_publisher = node_handle.advertise <

moveit_msgs :: DisplayTrajectory >("/move_group/

display_planned_path", 1, true);

moveit_msgs :: DisplayTrajectory display_trajectory;

// printing out ref.frame for the robot and end -eff name
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ROS_INFO("Reference frame: %s", group.getPlanningFrame ().c_str

());

ROS_INFO("Reference frame: %s", group.getEndEffectorLink ().

c_str ());

//I use the home position designed in the SRDF

group.setNamedTarget("home");

moveit :: planning_interface :: MoveGroup ::Plan my_plan;

bool success = group.plan(my_plan);

if (success)

group.execute(my_plan);

else ROS_INFO("Was impossible to plan for the home position ,

keep planning from singular position")

//we plan now from this position. if(success) the current state

is NON -SINGULAR

group.setStartStateToCurrentState ();

// ==================================

// ===== Planning to a pose goal ======

// ==================================

// Desired position and orientation for the eef

geometry_msgs ::Pose target_pose1;

//here I define the message

target_pose1.orientation.w = 1.0;

target_pose1.position.x = 0.132;

target_pose1.position.y = 0.545;

target_pose1.position.z = 0.647;

//now i give this setpoint to my group object

group.setPoseTarget(target_pose1);

//let's call the planner to compute and visualize this plan

success = group.plan(my_plan);

ROS_INFO("Visualizing plan 1 (pose goal for the eef) %s",

success? "":"FAILED");

//give time to rviz to visualize

sleep (10.0);

/* ************************************************************ */

//now we are going to introduce collision objects and see how

trajectory changes

//I define a collision object message first

moveit_msgs :: CollisionObject collision_object1;

collision_object1.header.frame_id = group.getPlanningFrame ();

collision_object1.id = "obstacle1";

shape_msgs :: SolidPrimitive primitive1;

primitive1.type = primitive1.BOX;

primitive1.dimensions.resize (3);

primitive1.dimensions [0] = 0.3;
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primitive1.dimensions [1] = 0.1;

primitive1.dimensions [2] = 0.3;

//I place the box in the space , relatively to frame_id selected

above

geometry_msgs ::Pose obstacle1_pose;

obstacle1_pose.orientation.w = 1.0;

obstacle1_pose.position.x = 0.0;

obstacle1_pose.position.y = 0.3;

obstacle1_pose.position.z = 0.75;

//my shape message

collision_object1.primitives.push_back(primitive1);

collision_object1.primitive_poses.push_back(obstacle1_pose);

collision_object1.operation = collision_object1.ADD;

moveit_msgs :: CollisionObject collision_object2;

collision_object2.header.frame_id = group.getPlanningFrame ();

collision_object2.id = "obstacle2";

shape_msgs :: SolidPrimitive primitive2;

primitive2.type = primitive2.BOX;

primitive2.dimensions.resize (3);

primitive2.dimensions [0] = 0.3;

primitive2.dimensions [1] = 0.3;

primitive2.dimensions [2] = 0.1;

geometry_msgs ::Pose obstacle2_pose;

obstacle2_pose.orientation.w = 1.0;

obstacle2_pose.position.x = 0.0;

obstacle2_pose.position.y = 0.5;

obstacle2_pose.position.z = 0.2;

collision_object2.primitives.push_back(primitive2);

collision_object2.primitive_poses.push_back(obstacle2_pose);

collision_object2.operation = collision_object2.ADD;

//now i customize a vector , making it of type moveit_msgs ::

CollisionObject

//I push back in it the two messages I created for the

collision objs

std::vector <moveit_msgs :: CollisionObject > collision_objects;

collision_objects.push_back(collision_object1);

collision_objects.push_back(collision_object2);

//now we effectively add the objects into the world

ROS_INFO("Obstacles spawn in the world");

planning_scene_interface.addCollisionObjects(collision_objects)

;

// sleep to see the obstacles in rviz

sleep (5.0);

//let's increase allotted time for planning when obstacles are

present
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group.setPlanningTime (8.0);

//now we give THE SAME pose setpoint and the arm avoids the

obstacle

group.setPoseTarget(target_pose1);

success = group.plan(my_plan);

ROS_INFO("Visualizing same target pose avoiding obstacles ...%s"

, success ? "" : "FAILED");

sleep (20.0);

return 0;

}

Listing 4.6: Obstacle Avoidance given End-Eff desired pose - (C++)

(a) Original Path to Goal Pose (b) Collision Objects added

(c) The Plan around obstacles

Figure 4.5: Obstacle Avoidance

Breaking down the code (skipping parts already seen, such as #include < .h>, def-
inition of nodes...) :

• Since the original position of the arm is singular, we plan to the home position
we defined in the SRDF. The arm simply slightly moves into a more favorable
configuration. We do it through group.setNamedTarget("home") that if doesn’t
find an "home" in the script above, looks into the SRDF.

• Through a geometry message we define a desired pose for the end-effector.

• Plan takes place, as already seen in the joint-space goal application.

• MoveIt! has particular message types for the definition of collision objects. I exploit
them and define two obstacles and their relative positions.

• Once a vector incorporating the two object is created, we make use of methods of
the planning scene interface to add them in the world.
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• After having increases a little bit the planning time, we re-plan with the same
target_pose1. The trajectory is now around those obstacles.

However, in real cases, we are not able to set "a priori" obstacles in the rover world,
thus we need to make use of the on board depth and RGB kinect sensor.
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Chapter 5

Interfacing a Kinetic Sensor with our
System

5.1 Camera Sensor Setup
Among the whole range of kinetic sensors available, the choice for our rover system was
an ASUS Xtion PRO Live. This camera is inherently built to be used in software program-
ming and it is easy to connect thanks to drivers available on-line (PrimeSense.com).

Figure 5.1: ASUS Xtion PRO Camera

Most important, openni package [8]
allows the communication of this visual-
data stream with ROS.
It has both Depth and RGB Sensors;
Through ROS, we are able to register de-
tection points. Due to the fact that this two
streams come from different cameras with
some offset,they will give slightly impre-
cise information on the same point. In fact,
a depth point wouldn’t have its actual RGB
color, and vice versa. That "points regis-
tration", through the driver of the camera,
compensates for the little displacement be-
tween the camera "eyes" and actually bonds the color of a point with its respective depth
point in space.
Although depth sensing could be enough for obstacle detection, our system will be asked
to recognize a certain target; Therefore an RGB detection, along with the depth one, is
the best option.
A proper configuration, has to deal with :

• Setting camera parameters to make MoveIt! aware of its implementation

• Subscribe RViz to the same PointCloud topic

• Subscribe the OctoMap Updater to a PointCloud topic to let it work

• Compose a proper .launch file, including frames’ transformations between rover
arm and camera link
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5.1.1 Kinect Parameters
MoveIt! can be made aware of the connection of a sensor through a file called "<robot-
model-name>_moveit_sensor_manager.launch.xml". In here we define a call to a .yaml
configuration file (that we are analyzing in Listing 5.1), the link that the OctoMap takes as
a reference, the resolution of the map and the max range of the sensor, that will coincide
with the far clipping plane of our camera.

The file (referred to my packages) is attached:

<launch >

<rosparam command="load" file="$(find rover_arm_moveit_config)/

config/sensors_kinect.yaml"/>

<param name="octomap_frame" type="string" value="camera_link"/>

<param name="octomap_resolution" type="double" value="0.025"/>

<param name="max_range" type="double" value="1.5"/>

</launch >

Listing 5.1: Sensor Manager file

Note : Parameter octomap_resolution value represents the dimension of the basic
collision units that will combine together to create a proper collision scene based on the
kinect’s data; The value chose is, once again, a good trade-off between details and com-
putational speed.
The other one, max_range, is set to 1.5 m, just some more with respect to the actual reach
of the arm, taking into account motion of the rover structure and giving a little bit more
feedback from the scene. An higher value, although allowed by the far clipping plane
of the camera, would result being too heavy on the computational unit (above being not
useful).

5.1.2 PointCloud for RViz
The new standard adopted in ROS programs is the use of PointCloud2 type. PointCloud
is deprecated because it cannot represent n-dimensional arrays (just 3D) and handles only
floats. Once said that, in our RViz environment we are going to add a PointCloud 2 Panel,
subscribing it to /camera/depth_registered/points. A proper base frame switch
to the camera_link frame (if not already done) is needed to have the image displayed
correctly.
Figures are reported in the next paragraph.

5.1.3 OctoMap Updater
This feature allows the "conversion" of kinect sensor data into collision objects. We could
either use the point clouds or images as a source topic for our OctoMap Updater to work,
however, each one has a main advantage as well as a drawback.
A kinect sensor inherently reconstructs the image coming from a point stream, indeed,
each pixel is basically one single ray emitted from the camera, that is able to give back
information on depth of the pointed object and its color spectrum. Said that, an Image,
being the reconstruction of a point cloud, results in a more complete and "fluid" stream,
however takes more time due to the optimization of a stream of points into an Image.
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On the counter part, a pure PointCloud is surely less "visually smooth", however is a very
quick input that will produce, clearly, a quicker output with respect to the Image topic
OctoMap Updater.
The reason why I chose to supply this Updater with the PointCloud topic, is because I
really need the most quick response; In fact the OctoMap is also able to output another
topic (That I arbitrarily called filtered_cloud) containing the original PointCloud from
the camera sensor excluded the robot arm structure itself.
This is extremely important, we don’t want the arm to act like if it sees itself as an ob-
stacle. Thus, to have this filtering action, a rapid exchange of information between robot
state and camera point cloud data is very much needed. That’s why I selected a point
cloud OctoMap Updater.
The following images, show its principle of action :

sensors:

- sensor_plugin: occupancy_map_monitor/PointCloudOctomapUpdater

point_cloud_topic: /camera/depth_registered/points

queue_size: 10

max_range: 1.5

shadow_threshold: 0.2

padding_scale: 1.0 #info on the camera support

padding_offset: 0.02

filtered_cloud_topic: filtered_cloud

Listing 5.2: Kinect Sensor yaml file

(a) Original scene in RViz (b) OctoMap Updater working on the same
scene

Figure 5.2: OctoMap Updater on RViz

41



5.1. CAMERA SENSOR SETUP

It can be seen that, despite the image being displayed in the full range allowed by the
particular sensor used, the OctoMap Update takes place only in the reduced space of 1.5
meters defined in the sensor_manager file.

5.1.4 The Launch File
In wrapping up all these features together, we need a .launch file that includes running
Rviz and camera driver nodes, that states a transformation between link sherpa_arm_base
and camera_link (this last one will be our reference frame, as explained before), and
contain basic info, such as the robot model, for the simulation to work.
The launch file is attached :

<launch >

<!-- By default , the database db is not started -->

<arg name="db" default="false" />

<!-- Allow user to specify database location -->

<arg name="db_path" default="$(find rover_arm_moveit_config)/

default_warehouse_mongo_db" />

<!-- By default , debug mode is switched off -->

<arg name="debug" default="false" />

<!-- Load the URDF , SRDF and other .yaml configuration files on

the param server -->

<include file="$(find rover_arm_moveit_config)/launch/

planning_context.launch">

<arg name="load_robot_description" value="true"/>

</include >

<!-- Including openni launch to get camera streams (really

depends on the driver we want to use) -->

<include file="$(find openni_launch)/launch/openni.launch">

<arg name="depth_registration" value="true" />

</include >

<!-- static_transform_publisher x y z qx qy qz qw frame_id

child_frame_id period_in_ms -->

<node pkg="tf"

type="static_transform_publisher"

name="camera_link_tf_broadcaster"

args="0.3 0.2 0 0 0 0 1 camera_link sherpa_arm_base 100" />

<!-- In simulation , we are going to need the FAKE controller to

execute trajectories -->

<node name="joint_state_publisher" pkg="joint_state_publisher"

type="joint_state_publisher">

<param name="/use_gui" value="false"/>

<rosparam param="/source_list">[/ move_group/

fake_controller_joint_states]</rosparam >

</node>

<!-- Given the published joint states , publish tf for the robot

links -->

<node name="robot_state_publisher" pkg="robot_state_publisher"

type="robot_state_publisher" respawn="true" output="screen" />
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<!-- Run the main MoveIt executable -->

<include file="$(find rover_arm_moveit_config)/launch/move_group.

launch">

<arg name="allow_trajectory_execution" value="true"/>

<arg name="fake_execution" value="true"/>

<arg name="info" value="true"/>

<arg name="debug" value="$(arg debug)"/>

</include >

<!-- Run Rviz and load the default config to see the state of the

move_group node -->

<include file="$(find rover_arm_moveit_config)/launch/moveit_rviz

.launch">

<arg name="config" value="true"/>

<arg name="debug" value="$(arg debug)"/>

</include >

</launch >

Listing 5.3: RViz simulation with OctoMap Updater - (Launch file)

Note : When adopting an RGB-depth camera, is very useful to activate depth_registration
to obtain an optimized camera stream (explained at the beginning of the chapter).
From the package tf coming with ROS-desktop installation, we include in the lauch file
the static transformation that is nothing but the position of the camera with respect to the
arm base (and thus the rover structure).
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5.2 Applications and scripts

With the GUI itself, we are already able to experiment the OctoMap Updater feature that
comes from the implementation of a kinect sensor in our system. Still, our purpose is to
give the arm commands through a script.
This one, speaking of pure code, wouldn’t be so complex. What we are going to do is
set a geometry_msgs::Pose message with the desired end-effector pose. MoveIt! will
plan a trajectory around the obstacles that, this time, are real time updated with the visual
camera data stream (formerly we had to define a collision objects vector and add it into
the planning scene).
Code of the application "rover_arm_obstacles_on_camera.cpp" :

#include <moveit/move_group_interface/move_group.h>

#include <moveit/planning_scene_interface/planning_scene_interface.

h>

#include <moveit_msgs/DisplayRobotState.h>

#include <moveit_msgs/DisplayTrajectory.h>

#include <moveit_msgs/AttachedCollisionObject.h>

#include <moveit_msgs/CollisionObject.h>

int main (int argc , char **argv)

{

ros::init(argc , argv , "obstacle_camera_detection");

ros:: NodeHandle node_handle;

ros:: AsyncSpinner spinner (1);

spinner.start ();

// sleeping to load rviz

sleep (15.0);

//the move group interface allows me to control and plan only

//for the desired group , in my case the group "arm" defined

//in the moveit setup config files

moveit :: planning_interface :: MoveGroup group("arm");

group.allowReplanning(true);

group.setPlanningTime (10.0); // incremented a little due to

obstacles presence

//now the planning scene interface allows us to deal with the

world

// coordinates , objects ..

moveit :: planning_interface :: PlanningSceneInterface

planning_scene_interface;

// hereafter we create a publisher in order to display

trajectories on RViz

ros:: Publisher display_publisher = node_handle.advertise <

moveit_msgs :: DisplayTrajectory >("/move_group/

display_planned_path", 1, true);

moveit_msgs :: DisplayTrajectory display_trajectory;

// printing out ref.frame for the robot and end -effector name
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ROS_INFO("Reference frame: %s", group.getPlanningFrame ().c_str

());

ROS_INFO("Reference frame: %s", group.getEndEffectorLink ().

c_str ());

//I use the home position defined in the SRDF

group.setNamedTarget("home");

moveit :: planning_interface :: MoveGroup ::Plan my_plan;

bool success = group.plan(my_plan);

if (success)

{

group.execute(my_plan);

//now we plan from this NON -SINGULAR config

group.setStartStateToCurrentState ();

}

// ==================================

// ===== Planning to a pose goal ======

// ==================================

//we plan now for a desired motion for the eef

geometry_msgs ::Pose target_pose;

//here i define the message

target_pose.orientation.w = 1.0;

target_pose.position.x = 0.565;

target_pose.position.y = -0.0745;

target_pose.position.z = 0.143;

//now i give this setpoint to my group object

group.setPoseTarget(target_pose);

//let's call the planner to compute and visualize this plan

success = group.plan(my_plan);

ROS_INFO("Visualizing plan (pose goal for the eef) %s", success

? "":"FAILED");

sleep (10.0); //give time to RViz to visualize

return 0;

}

Listing 5.4: Obstacle avoidance with a configured kinetic sensor - (C++)

Assuming that the setpoint given is appropriate (not inside an obstacle, not out the
reach of the arm) MoveIt! will give us in /move_group/result topic the desired trajec-
tory. Clearly, thanks to this way of detecting obstacles, each time the trajectory is allowed
to change although given the same target_pose.
Moreover, if an object is suddenly inserted in the planned path of the arm, MoveIt! would
block the execution and prevent an hit. Last but not least, another launch file has to be

crafted for this application. Luckily, the one in section 5.1 will do most of the things
(launch RViz, camera, configurations and OctoMap), this last one is only need to launch
the node we just wrote.
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A launch file may be:

<launch >

<!-- I gave to the launch file in section 5.1 the name

RViz_camera_OctoMapUpdater -->

<include file="$(find rover_arm_moveit_config)/launch/

RViz_camera_OctoMapUpdater.launch"/>

<node name="rover_arm_obstacles_on_camera" pkg="

rover_arm_moveit_applications" type="

rover_arm_obstacles_on_camera" respawn="false" output="screen">

</node>

</launch >

Listing 5.5: Obstacle avoidance for an End-Effector setpoint - (Launch file)

(a) Start state and Goal state, given
through "target pose"

(b) Trail of the arm trajectory,
avoiding collision objects repre-
sented by the OctoMap

Figure 5.3: Obstacle Avoidance with Camera Sensor Configuration
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Chapter 6

Visual Detection and Identification

The final step, in order to give the system full autonomy from human rescuers, is to im-
plement detection and navigation to a quadrotor landed somewhere, with empty battery.
The aim is to pick it up through a ring placed on the top: our arm’s end-effector has a
three-finger system able to do it. More in details, the fingers are inter-dependent since
actuated by just one motor, as it’s shown in Fig. 1.5 . The rest position of the gripper
is with closed fingers, in fact, it is going to pick quadrotors "unconventionally" with re-
spect to the way we imagine and actually grab objects: The fingers would go all inside
the quadcopter’s ring, the motor would be actuated and the "hand" would grasp the object
from the inner part of the ring. In this way, the fingers are basically behaving as hooks.
In practice, even if present, it is not enough a GPS sensing (even though extremely pre-
cise) because we need to know either the position and the orientation of the small UAV.
That’s because, in a real scenario, although the quadrotors have the ability to estimate
their battery-life left and plan a controlled landing flight to the most suitable spot nearby,
it can hit a bush, could sink a little bit laterally on the snow, or whatever other situation,
just to say that the orientation is not always the one we expected it to be.

6.1 Find Object Package

One more esteem of ROS is its community. In the vast sea of packages either created and
uploaded by ROS creators and developers, or by users like us, I found a very suitable one
for our particular application, called "Find-Object" [9].
Once did a git clone of it, I added this package in my catkin workspace and started
analyzing it. It works with camera streams and is able to memorize an object once shown
it to the camera for a first time. Its principle of action is keeping track of a finite number
of characterizing points of that particular object in order to recognize it.
To achieve the best performance, I first registered the PointCloud stream (as already done
in previous applications) and then set the refresh and detection rate to 100Hz. Once again,
the choice I made was the best trade-off, in my opinion, between computational weight
and smoothness of the images.
Consider that with this object recognition we want to retrieve the frame of the landed
copter, that means its position and orientation with respect to another known frame. For
this purpose, an high frequency rate is very much desired too.
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6.2 Customization and Configuration

6.2.1 Pattern Detection
As one can understand, the capability of a camera to recognize an object has a limitation
on the spatial range, mostly due to the dimension of the object to detect.
Directly, we cannot detect a quadcopter: it has too few peculiarities, has a general black
color and simple structure that may be easily confused with something else. For this
reason, a characterizing pattern is applied to every quadrotor. With a dimension of the
symbol of 20cm x 15cm, our detection system is able to properly work in a radial dis-
tance of up to 2 meters from the camera, which is satisfying.
As a matter of fact, the first "rough" localization of the landed UAV is done by the rover
through a GPS sensing. This kind of operation, given the sensors chosen by the rover
designers, feeds back the position of the rotor in the space with an error up to 10 meters.
Now the rover can navigate to that spot and start the search.
In the very worst case, the rover is 10 meters away from the copter, clearly out of the
camera detection feature. Working in collaboration with the rover navigation developers,
it will be able to scan the nearby area having 10m radius from the fed back position; while
doing this, the camera will detect the object. However, with a bit of luck it may also hap-
pen that the quadrotor is readily in the range of the rover, or that it is detected on the path
of the rover to the GPS position spot.
In any case, note that this retrieval procedure is completely human-commands free.

6.2.2 Scripts and Files
Mainly, we are going to need a node that is in charge of scanning and detecting the de-
sired object and a node having the purpose of retrieving the object’s frame with respect to
a desired one. Obviously, the first step is to have the object’s TF linked with the camera
link but, at the end, to ease navigation, I’m going to send coordinates with respect to the
/rover_structure.

Find Object Node I attach the script here after:

#include "CameraROS.h"

#include "FindObjectROS.h"

#include <QApplication >

#include <QDir >

#include "find_object/MainWindow.h"

#include "ParametersToolBox.h"

#include "find_object/Settings.h"

#include <signal.h>

using namespace find_object;

bool gui;

std:: string settingsPath;

void my_handler_gui(int s){

QApplication :: closeAllWindows ();

QApplication ::quit();
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}

void my_handler(int s){

QCoreApplication ::quit();

}

void setupQuitSignal(bool gui)

{

// Catch ctrl -c to close the gui

struct sigaction sigIntHandler;

if(gui)

{

sigIntHandler.sa_handler = my_handler_gui;

}

else

{

sigIntHandler.sa_handler = my_handler;

}

sigemptyset (& sigIntHandler.sa_mask);

sigIntHandler.sa_flags = 0;

sigaction(SIGINT , &sigIntHandler , NULL);

}

int main(int argc , char** argv)

{

ros::init(argc , argv , "find_object_2d");

gui = true;

std:: string objectsPath;

std:: string sessionPath;

settingsPath = QDir:: homePath ().append("/.ros/find_object_2d.ini"

).toStdString ();

bool subscribeDepth = true;

std:: string objFramePrefix = "quadrotor";

ros:: NodeHandle nh("~");

nh.param("gui", gui , gui);

nh.param("objects_path", objectsPath , objectsPath);

nh.param("session_path", sessionPath , sessionPath);

nh.param("settings_path", settingsPath , settingsPath);

nh.param("subscribe_depth", subscribeDepth , subscribeDepth);

nh.param("obj_frame_prefix", objFramePrefix , objFramePrefix);

ROS_INFO("gui=%d", (int)gui);

ROS_INFO("objects_path =%s", objectsPath.c_str ());

ROS_INFO("session_path =%s", sessionPath.c_str ());

ROS_INFO("settings_path =%s", settingsPath.c_str ());

ROS_INFO("subscribe_depth = %s", subscribeDepth ? "true":"false")

;

ROS_INFO("obj_frame_prefix = %s", objFramePrefix.c_str ());

if(settingsPath.empty ())

{

settingsPath = QDir:: homePath ().append("/.ros/find_object_2d.

ini").toStdString ();

}

else

{

if(! sessionPath.empty ())
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{

ROS_WARN("\" settings_path \" parameter is ignored when \"

session_path \" is set.");

}

QString path = settingsPath.c_str ();

if(path.contains('~'))

{

path.replace('~', QDir:: homePath ());

settingsPath = path.toStdString ();

}

}

// Load settings , should be loaded before creating other objects

Settings ::init(settingsPath.c_str ());

FindObjectROS * findObjectROS = new FindObjectROS(objFramePrefix)

;

if(! sessionPath.empty ())

{

if(! objectsPath.empty ())

{

ROS_WARN("\" objects_path \" parameter is ignored when \"

session_path \" is set.");

}

if(! findObjectROS ->loadSession(sessionPath.c_str()))

{

ROS_ERROR("Failed to load session \"%s\"", sessionPath.c_str

());

}

}

else if(! objectsPath.empty ())

{

QString path = objectsPath.c_str ();

if(path.contains('~'))

{

path.replace('~', QDir:: homePath ());

}

if(! findObjectROS ->loadObjects(path))

{

ROS_ERROR("No objects loaded from path \"%s\"", path.

toStdString ().c_str());

}

}

CameraROS * camera = new CameraROS(subscribeDepth);

QObject :: connect(

camera ,

SIGNAL(rosDataReceived(const std:: string &, const ros::Time

&, const cv::Mat &, float)),

findObjectROS ,

SLOT(setDepthData(const std:: string &, const ros::Time &,

const cv::Mat &, float)));

// Catch ctrl -c to close the gui

setupQuitSignal(gui);
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if(gui)

{

QApplication app(argc , argv);

MainWindow mainWindow(findObjectROS , camera); // take ownership

QObject :: connect(

&mainWindow ,

SIGNAL(objectsFound(const find_object :: DetectionInfo &)),

findObjectROS ,

SLOT(publish(const find_object :: DetectionInfo &)));

QStringList topics = camera ->subscribedTopics ();

if(topics.size() == 1)

{

mainWindow.setSourceImageText(mainWindow.tr(

"<qt>Find -Object subscribed to <b>%1</b> topic.<br/>"

"You can remap the topic when starting the node: <br/>\"

rosrun find_object_2d find_object_2d image :=your/image/topic\".<

br/>"

" </qt>").arg(topics.first()));

}

else if(topics.size() == 3)

{

mainWindow.setSourceImageText(mainWindow.tr(

"<qt>Find -Object subscribed to : <br/> <b>%1</b> <br/> <b

>%2</b> <br/> <b>%3</b><br/>"

" </qt>").arg(topics.at(0)).arg(topics.at(1)).arg(topics.

at(2)));

}

mainWindow.show();

app.connect( &app , SIGNAL( lastWindowClosed () ), &app , SLOT(

quit() ) );

// loop

mainWindow.startProcessing ();

app.exec();

Settings :: saveSettings ();

}

else

{

QCoreApplication app(argc , argv);

// connect stuff:

QObject :: connect(camera , SIGNAL(imageReceived(const cv::Mat &))

, findObjectROS , SLOT(detect(const cv::Mat &)));

//loop

camera ->start ();

app.exec();

delete camera; // deallocating

delete findObjectROS;

}

return 0;

}

Listing 6.1: Object Detection - (C++)
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A little code explanation to highlight central features:

• In the main, the find object node is defined and some parameters are made explicit
to allow modification through, for example, a launch file (which is what we are
going to do).

• Session and Settings paths are set to default values.

• Loading pre-saved objects giving their path. This is central, in fact once registered
an object, there’s no need of the GUI, and we are searching for it on the basis of the
picture stored in objectsPath.

• Then the core application runs without further modifications.

TF tree Once graphically recognized our object, the following code retrieves its frame
with respect to the one specified in mapFrameId_.

#include <ros/ros.h>

#include <tf/transform_listener.h>

#include <find_object_2d/ObjectsStamped.h>

#include <QtCore/QString >

class TfExample

{

public:

TfExample () :

mapFrameId_("/rover_structure"),

objFramePrefix_("quadrotor")

{

ros:: NodeHandle pnh("~");

pnh.param("map_frame_id", mapFrameId_ , mapFrameId_);

pnh.param("object_prefix", objFramePrefix_ , objFramePrefix_);

ros:: NodeHandle nh;

subs_ = nh.subscribe("objectsStamped", 1, &TfExample ::

objectsDetectedCallback , this);

}

// Here I synchronize with the ObjectsStamped topic to

// know when the TF is ready and for which objects

void objectsDetectedCallback(const find_object_2d ::

ObjectsStampedConstPtr & msg)

{

if(msg ->objects.data.size())

{

for(unsigned int i=0; i<msg ->objects.data.size(); i+=12)

{

// get data

int id = (int)msg ->objects.data[i];

std:: string objectFrameId = QString("%1_%2").arg(

objFramePrefix_.c_str()).arg(id).toStdString (); // "quadrotor_1

", "quadrotor_2"

tf:: StampedTransform pose;

tf:: StampedTransform poseCam;

try
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{

// Get transformation from "object_ #" frame to target

frame

// The timestamp matches the one sent over TF

tfListener_.lookupTransform(mapFrameId_ , objectFrameId ,

msg ->header.stamp , pose);

tfListener_.lookupTransform(msg ->header.frame_id ,

objectFrameId , msg ->header.stamp , poseCam);

}

catch(tf:: TransformException & ex)

{

ROS_WARN("%s",ex.what());

continue;

}

// Here "pose" is the position of the object "id" in "/

rover_structure" frame.

ROS_INFO("Quadrotor_%d [x,y,z] [x,y,z,w] in \"%s\" frame:

[%f,%f,%f] [%f,%f,%f,%f]",

id, mapFrameId_.c_str (),

pose.getOrigin ().x(), pose.getOrigin ().y(), pose.

getOrigin ().z(),

pose.getRotation ().x(), pose.getRotation ().y(), pose.

getRotation ().z(), pose.getRotation ().w());

}

}

}

private:

std:: string mapFrameId_;

std:: string objFramePrefix_;

ros:: Subscriber subs_;

tf:: TransformListener tfListener_;

};

int main(int argc , char * argv [])

{

ros::init(argc , argv , "tf_example_node");

TfExample sync;

ros::spin();

}

Listing 6.2: Retrieval of Object’s Frame - (C++)
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Breaking-down the code :

• In the constructor, we initialize mapFrameId_ and objFramePrefix_ to, respec-
tively, "/rover_structure" and "quadrotor". For a different application they could be
later on modified with the appropriate node parameters.

• Function objectsDetectedCallback is responsible of assigning a reference frame
to the detected object; Also, makes sure that timestamp matches. In order not to
have the error lookup in the future, a good choice is to select an high frequency
refresh rate. I selected 100Hz for this reason too.

• Posting desired information on terminal output (shown in Fig. 6.1)

Figure 6.1: Terminal Output, Object Recognition

• Eventually, we launch the node just built.

Launch File Just as done in previous chapters, the last step is the composition of a
launch file for this application. In here we are starting the nodes needed and we are
setting the desired parameters.

<launch >

<!-- Launching the camera. NOTE: using openni2 for our asus

camera -->

<include file="$(find openni_launch)/launch/openni.launch">

<arg name="depth_registration" value="true" />

</include >

<node name="find_object_3d" pkg="find_object_2d" type="

find_object_2d" output="screen">

<param name="gui" value="false" type="bool"/>

<param name="settings_path" value="~/. ros/find_object_2d.ini"

type="str"/>

<param name="subscribe_depth" value="true" type="bool"/>

<param name="objects_path" value="~/ roverARM_ws/src/

find_object_2d/saved_objs" type="str"/>

<param name="object_prefix" value="quadrotor" type="str"/>

<param name="obj_frame_prefix" value="quadrotor" type="str" />

<remap from="rgb/image_rect_color" to="camera/rgb/

image_rect_color"/>

<remap from="depth_registered/image_raw" to="camera/

depth_registered/image_raw"/>

<remap from="depth_registered/camera_info" to="camera/

depth_registered/camera_info"/>

</node>
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<!-- script to retrieve TF of the detected object -->

<node name="tf_example" pkg="find_object_2d" type="tf_example"

output="screen">

<param name="map_frame_id" value="/rover_structure" type="

string"/>

</node>

<!-- transformations for our system -->

<node pkg="tf" type="static_transform_publisher" name="

rover_base_to_camera_tf"

args="0.4 0.4 0.3 0.0 0.0 0.0 /rover_structure /camera_link 100

" />

</launch >

Listing 6.3: Find Quadrotors - (Launch file)

Main features launched with the file:

• Start the camera driver with RGB and Depth points registration.

• Launching and setting parameters of our detection node. "gui" is set to false be-
cause we are giving "�/roverARM_ws/src/find_object_2d/saved_objs"where
the image of the object to detect is stored. Object and Frame codes are set identical
to the ones in the original script, so their expression can be avoided.

• Remap to correct desired image topics. Openni2 package gives them in the form
/camera/<desired/image/topics>.

• Node for the detection of the frame is started, taking as a reference "/rover_structure".

• A static transform from camera link (objects would be detected with respect to
this frame obviously) to the main rover_structure frame eases the navigation as
explained at the beginning of this section.

Note: I made a variation to this launch file too, avoiding to include the camera driver.
In the real case, when we will be looking for a landed copter, the camera driver would
be already on and running due to previous launch files shown in section 5, needed for
obstacle avoidance and OctoMap Update.
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6.3 Testing Object Detection

In this section we test the actual functionality of this piece of software.
Thanks to our characteristic pattern attached to quadrotors, we are able to localize them;
In practice, as already said, we want the camera to recognize the image stored in the di-
rectory defined above.

6.3.1 Retrieval of the UAV’s Reference Frame

Figure 6.2: Obj Recognition, TF
tree retrieved

In broad terms, what we expect to achieve running
the scripts above, is to display the frame of the ob-
ject that carries "on board" (it will be attached on
the sides of the quadcopter) the same image as the
one in "objects_path". In fact, this is actually re-
ported in Fig. 6.2.
The relationships between the frames are repre-
sented by RViz just listening to the same stream of
data we can see in our terminal output in Fig. 6.1
when an object is correctly identified by the pro-
gram.
However, we want this application to work in sym-
biosis with the rest of our visual sensor data: now,
we want to combine object detection with point-
cloud stream, again with the OctoMap system. In
this way, we allow recognition of the copter, we
keep track of obstacles, and the actual drone to pick
up won’t just be seen as a rectangular image, in-
deed, its actual whole shape will be fed back to the

computational unit to elaborate the pick-and-place task.

6.3.2 Gathering up Data in the same RViz instance

As reported in Fig. 6.3, we are able to display all important information in a single
RViz window. In that figure, picture (a), I simply launched the file in section 6.2.2 and
I set RViz listening to a PointCloud2 topic coming out of the camera stream, (through
"openni" package).
In the second picture (b), I launch every piece of software we took care of describing in
the various chapters.
What appears in the last picture is :

• Robot arm model, used for motion planning tasks.

• The most important reference frames, including the one of the recognized copter
and the one used for navigation purposes ("rover structure").

• PointCloud2 stream with the OctoMap Update working.
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In practice, to combine those views, we want to launch the file described in the Listing
5.3 plus a second launch file for the Find-Object pkg, this one reported in Listing 6.3.

Note : I actually crafted a launch file, almost identical to Listing 6.3, where I avoid
calling the camera driver. I named this file find_quadrotors_online.launch, meaning
that the camera is assumed to be already "online", because launched with the previous file.

(a) PointCloud stream with Object Detec-
tion

(b) OctoMap working along the Recogni-
tion package

Figure 6.3: Complete Obstacle and specific Target Detection
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Chapter 7

Conclusion

To sum up, I want to make considerations and analyse what has been achieved in this
thesis work.
A presentation of the SHERPA-Rover Arm used, followed by a "Robotics Introduction",
has been reported, in order to define the scope of the project.
Concerning the Operative Section, the tools I made us of have been explained; After a
careful analysis, we opted for the combination of ROS with RViz as a simulator engine,
everything linked with MoveIt! application. Through this last one, we could appreciate
how motion planning tasks can be carried out and how foreseen obstacles can be avoided,
by placing in the script their model.
To go the extra mile, the aim was to effectively detect obstacles in the surrounding en-
vironment, make a collision model understandable by the MoveIt! planner, still keeping
human commands and GUI not used : to make it possible, proper configuration files have
been added to bond together camera data stream and OctoMap Update feature.
Lastly, it was key for the project not to mistake obstacles with the quadcopters; In fact, the
most important task the rover has to be able to execute, is the recovery of landed UAVs
in total autonomy. By attaching a specific image pattern to the quadrotors, through a cus-
tomized ROS Package, we defined an application capable of distinguishing the selected
target from the whole collection of visual data and output its reference frame with respect
to the "basic" one, used for navigation, called rover_structure.

Finally, I would like to point out that all the achievements above just required an
URDF model, and the addition of some physical constraints, to actually make feasible
the motion of the Robotic Arm out of the simulation environment. Hence, the software
produced is characterized by a very high portability, meaning that it could be proposed in
many other fields (in general, wherever obstacle-avoidance and target recognition may be
required), and still suitable with different arms’ structures; Indeed, by updating the URDF
model, along with its specific construction limits, this work can be made compatible in
other projects where, clearly, other hardware components have been used.
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Appendix A

Making it Work

Getting Started First of all, complete a proper configuration of ROS and MoveIt! (re-
spective websites available in the Bibliography).
Now, download my collection of files from :

https://github.com/AlessandroSantoni/SHERPA-Arm-MoveIt-Controller

and "catkin_make" them in the "src" folder where you installed MoveIt! too.
We’re now ready to make some tests.

Homing Procedure We will simply ask the arm to plan to the "home" pose, which has
been defined in the .srdf file. This would make easier the planning into more complex
configurations, since at the very beginning the arm stands in a singular position.
You can refer to the source file rover_arm_homing.cpp.
Execute in the command line:

roscore &

roslaunch rover_arm_moveit_applications rover_arm_homing.launch

Note : If the planner seems not to display the motion, tick the checkbox "loop animation".

Joint Space Goal With this script, a setpoint in terms of positions is given to some
joints.
Refer to the source file rover_arm_joint_space_goal.cpp and adjust the position val-
ues vector to the desired ones, if needed.
On a terminal, run:

roscore &

roslaunch rover_arm_moveit_applications rover_arm_joint_space_go-

al.launch
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Simple Obstacle Avoidance Hereafter, a simple application of obstacle detection and
avoidance is reported. This time, an end-effector pose setpoint is given; the trajectory will
be computed at first in an obstacles-free environment and then, keeping the same desired
pose for the gripper, obstacles will be introduced.
This is a "preliminary" script because, later on, we are going to implement obstacle de-
tection through the camera sensor.
Refer to source code in rover_arm_obstacle_avoidance.cpp.
To test this application, execute :

roscore &

roslaunch rover_arm_moveit_applications rover_arm_obstacle_avoid-

ance.launch

Obstacles Detection with Camera Sensor In order to launch this functionality, we will
need to set up a proper "collision scene" and give an end-effector pose that will make the
test meaningful.
In my script,the setpoint is given with respect to my "testing-room settings", and it’s a
point behind an object (as shown in Figure 5.2). You should try to do the same.
The script rover_arm_obstacle_on_camera.cpp is similar to the one above, the only
difference lies in the launching of demo_tf_modified_camera.launch rather than the
regular RViz demo.launch. In fact, the first one, will make calls to the camera drivers,
sensors configuration and OctoMap Update algorithm.
Launch this file:

roscore &

roslaunch rover_arm_moveit_applications rover_arm_obstacle_on_ca-

mera.launch

Target Recognition As explained in the appropriate chapter, we can also retrieve the
reference frame of a desired object, by including its distinctive image pattern in the de-
scribed path.
In verifying this application, we will practically put all things together. The recognition
of an object will be made on top of the collision scene updating and the motion planning
capabilities.
Here I list the commands to run the intended nodes:

roscore &

roslaunch rover_arm_moveit_config demo_tf_modified_camera.launch

After playing a little bit around with this "demo", in a second terminal execute:

roslaunch find_object_2d find_quadrotors_online.launch
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Notes :

• I launch the "online" version of this last script, because I assume the camera drivers
already running (those services are called by "demo_tf_modified.launch").

• To save your target image in the specified folder, follow the citation I made of the
ROS package "find_object_2d".

• The launch file "find_quadrotors_online.launch" can be obviously called in the pre-
vious applications too; I launched the demo just as a test.

• Remember to add the "TF" panel in RViz to display the reference frame of the
recognized object.
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Code License

BSD 2-Clause License

Copyright (c) 2016, Alessandro Santoni
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other mate-
rials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-
TRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LI-
ABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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