
Alma Mater Studiorum · Università di
Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Informatica per il Management

REST SERVER

IN JOLIE

a Practical Case

Relatore:

Chiar.mo Prof.

DAVIDE SANGIORGI

Correlatore:

Dott.

SAVERIO

GIALLORENZO

Presentata da:

RICCARDO SIBANI

Sessione

Anno Accademico 2015/2016

This thesis is dedicated to my parents.

For their endless love, support and encouragement . . .

Introduzione

In questa tesi si è cercato di unire due dei paradigmi emergenti nell’ambito

web: RESTful web development e Service-Oriented Programming.

Da un lato, REST è il principale paradigma architetturale delle appli-

cazioni web, le applicazioni REST hanno una struttura procedurale il che

evita l’utilizzo di meccanismi di handshaking.

Benchè REST dia una struttura standard per l’accesso alle risorse delle

applicazioni web, la programmazione web lato server è spesso poco modulare

e per questo complicata.

Il Service-Oriented Programming invece ha come uno dei principi fonda-

mentali la modularizzazione dei componenti.

Applicazioni Service-Oriented sono caratterizzate da moduli indipendenti

che consentono di semplificare sensibilmente lo sviluppo di applicazioni web.

Purtroppo, ad oggi, ci sono pochi esempi di integrazione delle due tec-

nologie: pare pertanto sensato provare ad unirle.

In questa tesi si esplorano i metodi per conseguire tale risultato con

un’applicazione di un server che permetta la gestione di documenti e di note

da parte di differenti utenti registrati, chiamato MergeFly.

La autenticazione viene implementata attraverso la gestione di token di

accesso e scartato un meccanismo di gestione delle sessioni che sarebbe stato

fuori dalla ”pure RESTness”, anzichè molto spesso utilizzato, mediante login.

i

MegeFly, una volta definitene le caratteristiche, sarà preso come base per

la realizzazione dei verbi HTTP attraverso una programmazione SOA.

Nel documento verranno innanzitutto definiti 1. i limiti e le caratteristiche

dell’applicazione, 2. la tecnologia SOA, con nello specifico 3. le caratteristiche

di Jolie, 4. la tecnologia REST ed infine verrà proposta una 5. implemen-

tazione Jolie-REST attraverso l’applicazione MergeFly. Nella conclusione

si valuterà l’effettiva validità e funzionalità dei risultati ottenuti dall’ipotesi

riguardo il binomio Jolie-REST.

Introduction

The aim of this thesis is to merge two of the emerging paradigms about

web programming: RESTful Web Development and Service-Oriented Pro-

gramming.

REST is the main architectural paradigm about web applications, they

are characterised by procedural structure which avoid the use of handshaking

mechanisms.

Even though REST has a standard structure to access the resources of

the web applications, the backend side is usually not very modular if not

complicated.

Service-Oriented Programming, instead, has as one of the fundamental

principles, the modularisation of the components. Service-Oriented Applica-

tions are characterised by separate modules that allow to simplify the devel-

opment of the web applications.

There are very few example of integration between these two technologies:

it seems therefore reasonable to merge them.

In this thesis the methodologies studied to reach this results are explored

through an application that helps to handle documents and notes among

several users, called MergeFly.

The MergeFly practical case, once that all the specifics had been set, will

iii

iv INTRODUCTION

be utilised in order to develop and handle HTTP requests through SOAP.

In this document will be first defined the 1. characteristics of the ap-

plication, 2. SOAP technology, partially introduced the 3. Jolie Language,

4. REST and finally a 5. Jolie-REST implementation will be offered through

the MergeFly case.

It is indeed implemented a token mechanism for authentication: it has

been first discarded sessions and cookies algorithm of authentication in so

far not into the pure RESTness theory, even if often used).

In the final part the functionality and effectiveness of the results will be

evaluated, judging the Jolie-REST duo.

Contents

Introduzione iii

Introduzione iii

1 MergeFly, what is it? 1

1.1 The problem . 1

1.2 The idea . 1

1.3 Concept of Document . 2

1.4 Concept of nodes and notes 3

1.5 The Platform . 4

1.6 Monetisation . 5

1.7 Competitors . 5

1.8 Specifications . 6

2 Service Oriented Architecture and Microservices 11

2.1 Service Oriented Architecture 11

2.2 Web Service Approach . 12

2.2.1 Service Provider . 12

2.2.2 Service Consumer . 12

2.3 WSDL . 13

2.4 Characteristics . 13

v

vi INTRODUCTION

2.5 Pros . 14

3 Jolie 17

3.1 From a simple service . 17

3.2 Behaviour . 17

3.3 To a link of services . 20

3.4 Basic Structure & Error Handling 21

3.5 Sessions . 21

3.6 Cookies . 24

4 REST 25

4.1 What is REST . 25

4.2 Principles . 26

4.3 CRUD with REST . 28

5 MergeFly - REST 31

5.1 Why Jolie . 31

5.2 Architecture . 32

5.3 Structure of the Server . 32

5.3.1 Routing . 32

5.3.2 Call and Set Up the Routing Service 38

5.3.3 Services Implementation 40

5.4 Database . 52

5.4.1 Jolie and MySQL . 52

5.4.2 Database Structure . 55

5.4.3 Database specifications 58

5.4.4 Application Functionalities 59

Conclusion 68

INDEX vii

A Database MySQL 69

Bibliography 73

List of Figures

1.1 MergeFly Logo . 2

1.2 Concept Diagram . 4

5.1 listoffigures . 56

5.2 listoffigures . 58

ix

List of Tables

5.1 Entity - Relationship Dictionary 55

xi

Chapter 1

MergeFly, what is it?

MergeFly is a web application that allows people to create and dynami-

cally compose their documents during an event.

1.1 The problem

Many times students cannot attend lessons because they are ill, working

or they just need to go out of the class for a short time; for sure many of

them just do not pay attention at an important concept. When they take

notes they might miss some important parts.

1.2 The idea

The idea is to develop a platform to manage events. Like lessons, working

meetings or any kind of occurrence with a group of people and some notes

that must be taken. In such a platform, joining an event gives the possibility

to create the related document and to start taking notes. Whenever another

user writes a note in the same event, we import it in our document in the

1

2 1. MergeFly, what is it?

correct chronological position.

To guarantee an easy and dynamic experience to the user, the platform

structures the import process in this way: the user sees the document as

a page at the center of the window and the notes ready to be imported as

blocks on one side of the layout. In this way it is easy to read and import

them with a single click (or bt drop-dragging them inside the document).

It is possible to import notes from different users and create a documents

were to study once the lessons are finished and students need to revise the

lectures, it will indeed be possibile to download the written document into a

PDF file and print it or use it in many different ways.

The platform is also useful for those people who cannot attend the lesson

or to participate to a meeting.

Figure 1.1: MergeFly’s Logo

1.3 Concept of Document

The document belongs to an event and, of course, every note is displayed

in chronological order. This fact is important in order to understand the

concept of document flow: when somebody imports notes from others, these

pieces of document will be shown one after the other based on thei creation

date.

REST SERVER IN JOLIE 3

The total flow of an event is respected by notes taken by the users. Indeed,

the information comes from a physical speaker in the room where the event

takes place. We can consider the speaker as the trigger of all the notes, when

he will explore a topic, this will be quoted by users generating a certain

amount of notes. These notes are going to be more recent than the previous

topic and older than the next topic that the speaker discussed about. This

method guarantees time-flow/accuracy into the document.

1.4 Concept of nodes and notes

Since this is a platform that allows users to write, read, share and im-

port notes, it seems obvious to optimise the space into both the database

that stores them and the server that handles them. The concept of note as

described above is a container of a single type of information and with only

one information in it. We can image the document as a flow of informa-

tion chronologically ordered, each information is a piece of document and it

can be independent. Examples of type of information are: text (usually a

paragraph), snippets of code, images, and links. Each of this piece can be

stand alone (even though it is meaningless without a context). This gives us

the opportunity to store the information (which is characterised by a large

amount of data) in different records. When someone imports one specific

note, we can avoid to copy all the information contained into it and copy

only the reference (node) of that note.

The document is a list of ordered nodes, referenced to the notes stored

into the database.

4 1. MergeFly, what is it?

Figure 1.2: Concept’s Diagram

1.5 The Platform

MergeFly should be available through a web platform as well as a desk-

top and tablet application. Event organisers are allowed to post events (e.g.

from Facebook or Eventbrite) and invite participants. Businesses and or-

ganisations have to pay a fee that could vary depending on the number of

participants and the budget.

Attendants, after a registration, can create their event-related documents

and see what other participants are writing. If someone fails to catch a

part or just wants to compare what has been typed, she can import notes

from other documents. The user interface is a critical part of the design: it

needs to be simple to understand and must advise the user if he is missing

some important arguments. Furthermore, it is essential to offer a desktop

application for the simple reason that a writer usually feels the document

as an intellectual property and wants to keep it secure inside a computer.

The user should think of the application as a simple text editor with few

additional and extremely useful features.

REST SERVER IN JOLIE 5

1.6 Monetisation

Fee on events the platform is completely free for event attendants and

would be accessible after a registration which would offer a series of

services. Companies and those who want to organise an event (e.g a

class or a workshop) have to pay a fee for each occurrence. This fee

can vary depending on the number of participants, the budget and the

number of required services.

Affiliate Marketing this source of income will come in a second moment,

after the number of registered users has reached a critical mass. The

platform will sponsors a series of event- related products and services

and retain a percentage for each purchase made through the sponsor-

ship.

Lead generation is quite similar to affiliate marketing, in this case it is not

necessary that the user buys something, what is necessary is to create

a list of users potentially interested in one product and sell this list to

businesses that require this service.

Analysis is the generalisation of the latter two points as the platform tracks

every user. Some personal data, such as private documents, will be

protected. In any case, the major part of data could be sold and, of

course, we have the opportunity to offer these data to the companies

which could be interested to know where and how to develop their

business.

1.7 Competitors

The market is quite empty, but there are possible competitors:

6 1. MergeFly, what is it?

Dropbox has recently introduced a service of annotations potentially simi-

lar, to some extents, to our service.

Evernote allows you to create documents and access to them from desktop

application, tablet and smartphone.

Google Docs similar to standards graphical word processing program on-

line with few features in order to share and modify other users’ docu-

ments.

1.8 Specifications

MergeFly is a platform that allows users to create and import notes of

users who join the same event.

Users are characterised by:

• Id

• First name

• Last name

• Date of Birth

• Subscription Date

• Type

– Administrator

– Premium

– Basic

• Profile Picture

REST SERVER IN JOLIE 7

• Last Latitude

• Last Longitude

• Password

• Mail

• Token

The user can create different events where he has the possibility to add

other users who might accept or refuse the invitation.

Events are characterised by:

• Name

• Place

• Creation Date

• Start Date

• End Date

• Creator Id

• Description

• Category Id

The relation between user and event is defined by the id of the event, the

id of the user and by the acceptance status (accepted, declined, not defined).

Each event is characterised by a physical place which will be shown on

map. About the place, these are the known informations:

• Latitude

8 1. MergeFly, what is it?

• Longitude

• Name

• Address

• Cap

• City

• Country

To each event is correlated one category, defined by:

• Name

• Description

• Colour

Users can register into several groups, each Group is characterised by:

• Id

• Name

• Creation Date

• Image

• Description

About the users subscribed into a Group it is required to know:

• User id

• Group id

REST SERVER IN JOLIE 9

• accepted status to an event

• role

– Admin

– Normal

• Subscription date

Each user can create one document per joined event. Within the docu-

ment it is required to know:

• Creator Id

• Name

• Event Id

• Creation Date

• Public / Private Document

Only premium users can create private documents. Basic users can only

create public documents.

Every user can create notes to insert inside documents. The note will be

responsible to memorise information such as

• Id

• Type

– Image

– Text

– Code

10 1. MergeFly, what is it?

– Link

• Title

• Content

• Description

Each note might be one image, snippet of code, text (usually one para-

graph) or link:It is the sum of notes that creates the Document.

Each note can be imported by several users. In order to perform it, it is

necessary to use the concept of node that allows to link one note to many

documents.

Each node is characterised by

• Document Id

• Note Id

• Creation Date

• Id

If, after having imported one note, the user decides to modify it, it will

be created a copy of it to preserve the original.

Chapter 2

Service Oriented Architecture

and Microservices

2.1 Service Oriented Architecture

A Service Oriented Architecture (SOA) is an architectural pattern that

provides functionalities of applications (called services) via a shared commu-

nication protocol and usually available over the network.

Service Oriented Architectures try to ease the development and mainte-

nance of big structures and services by logically separating them into smaller

pieces.

One single piece represents one problem which might be separated again

and again: each piece of the problem is solved through a single service. This

paradigm has been used over the years in order to solve problems not only

in IT fields, it can be considered as a reworked version of Divide et Impera

approach.

Service-orientation is not related to a specific language since it is a paradigm

and can be implemented in several ways.

11

12 2. Service Oriented Architecture and Microservices

One service can be connected to other services through protocols. SOAP

(Simple Object Access Protocol) is a recent technology for supporting the

creation of SOAs in charge to defining and communicating the parameters,

the modality, and the protocol which is going to be used during the commu-

nication.

2.2 Web Service Approach

According to OASIS standards [1] Web Services can implement service-

oriented architectures. They can collaborate between them like bricks in

a wall, independently from the used platforms and the programming lan-

guages. These services can collaborate among different platforms with dif-

ferent paradigms and can be extended or extend other web applications or

any kind of services.

Each Service-Oriented Architecture can be implement as server provider,

consumer or both, generating a sequence of services that communicates one

with the other.

2.2.1 Service Provider

It is Service Provider when a service is placed (delivered) on a Service

Consumer request. The Service provider, if able, takes in charge the request

and computes a response, possibly using other services. The Service Provider,

in addition, guarantees its services and their description.

2.2.2 Service Consumer

It is Service Consumer when the Service sends one request to a Service

Provider. When the request is satisfied (Request Response) or just sent (One

REST SERVER IN JOLIE 13

Way), the result can be computed.

2.3 WSDL

2.4 Characteristics

Service Discovery Services are designed in order to be reached by external

services through some discovery mechanisms. It can happen through a

service registry/catalogue or via universal resource locators (URL) and

be moved without conditioning any system.

Self Contained each service must be independent: it has to work alone

and it can be part of one or many systems. This, in fact, is the plus

of the service oriented architecture: one service does not have to be

implemented every time a platform needs it, it can be just reused since

it is modular. We can distinguish into several types of modularity:

Modular Decomposability breaking the application in different mod-

ules, creates the possibility to manage many little services that are

responsibile for one or a few operations. This is extremely smart

because it allows the programmer to reuse the code in multiple

situations.

Modular Composability it is possible to combine and join several

services and to compose new and more complex services. This

function requires the single services to be little pieces of indepen-

dent and reusable software, usable for completely different appli-

cations.

Modular Understandability lets the developer or the users under-

14 2. Service Oriented Architecture and Microservices

stand the service without knowing how other services or the plat-

form are implemented.

Modular Continuity the changes applied into a service (or replace

a service with another one) should not influence the other compo-

nents of the system.

Modular Protection is the module which is in charge of the secu-

rity of the other services and / or the whole application. It has

to handle cyber attacks and handle exceptional events unleashed

voluntarily or involuntarily.

Interoperability it is important that every service is able to communicate

with other services.These services can use different formats of com-

munication and are differently implemented, this is why protocols and

standardised languages, such as XML or JSON are used.

Loosely coupled the ability of the service to work knowing just the inter-

faces of the other services and to have very few dependencies between

the modules of the application.

Contract Based interfaces, polices, and contracts are described and ac-

cepted thanks to a Protocol that defines them.

2.5 Pros

Service Oriented Architecture is not related to any specific platforms (it

could be implemented with Java, .NET, Jolie, etc.) and, at the same time,

it is easily reusable since every component might stand alone.

It is easy to change the order and the parameters of one or several services,

since there can be services which coordinate other services: making it easy

REST SERVER IN JOLIE 15

to modify the interaction processes.

Each service can be easily replaced, since they are independent entities.

To replace a service it is enough to reconfigure the protocol.

16 2. Service Oriented Architecture and Microservices

Chapter 3

Jolie

It is an orchestration language

3.1 From a simple service

Jolie is a general purpose programming language. Here we consider the

characteristics that are relevant to the reader.

3.2 Behaviour

In Jolie, communications are possible thanks to inputPorts and output-

Ports. The first ones, when initialised, open a socket and waits for incoming

communications. OutputPorts instead are responsible for the delivery of the

communications to the selected server which is listening.

The syntax of outputPorts and inputPorts is showed below:

1 inputPort portName {

2 Location:

3 Protocol:

4 Interfaces:

17

18 3. Jolie

5 }

6

7 outputPort portName {

8 Location:

9 Protocol:

10 Interfaces:

11 }

The reader might notice that the syntax is similar. Indeed they have to

establish some common configuration to use in order to speak to each other.

Location: is the medium where the service is going to call or receive the

communication.

The syntax for TCP/IP sockets, used here to develop web services, is:

1 socket:// localhost:portNumber

The protocol is identified by the keyword socket. Jolie supports other

parameters like Bluetooth and local memory.

Protocol: it is the protocol used to format the messages. Jolie supported

protocols are:

• HTTP

• HTTPS

• JSON/RPC

• XML/RPC

• SOAP

• SODEP

• SODEPS

REST SERVER IN JOLIE 19

Interfaces: are the contract which the two services must attend. In Service

Oriented Architecture there is no handshake since both players know

how to send and receive data. An example of interface will be shown

further in this document.

In order to allow the exchange of information between services, we con-

sider two kinds of communication: Request Response and One Way.

One Way: it waits for the Service Consumer communication and compute

the service. It does not return anything, so we can consider it as an

utility to call when no results are expected.

Request Response: it waits for a message, it computes a response and

returns it. It is clearly possible that this operation requires time es-

pecially when several services are called, this means, strictly speaking,

that if only one service fails or has communication problems and the

fault is not handled properly: all the request responses will fail and

return a wrong result (or, dramatically, not even return anything).

Syntax declaration (in inputPort)

Request Response

requestResponseName(request)(response){

// CODE

}

One Way

oneWayName(request){

//CODE

}

20 3. Jolie

Call (in outputPort)

Solicit Response

requestResponseName@OutputPortName(request)(response)

It is a notification when a request response has been called.

onewayName@OutputPortName(request)

3.3 To a link of services

According to the thesis of Fabrizio Montesi on the Jolie Grammar [2] each

output and input Port needs interfaces that declare the supported Request

Response and One Way operations.

Below is reported an example of interface in Jolie.

interface interfaceName {

OneWay: onewayName(requestType)

RequestResponse: requestresponseName(requestType)(responseType)

}

Each parameter specified (both in the request or response parenthesis)

must have a type. The default types are:

• bool

• int

• long

• double

• string

REST SERVER IN JOLIE 21

• raw

• void

All of these can be combined and create other types in a tree.

Syntax:

1 type typeName: basicType \\

example of combined types are:

1 type Vote:void {

2 .name:string

3 .choice:string

4 }

5

6 type Poll:void {

7 .options *: string

8 .votes:void {

9 .href:int

10 .vote*:Vote

11 }

3.4 Basic Structure & Error Handling

We refer the interested reader to [3]. However, the previous introduc-

tion on the language should give the necessary knowledge to the reader to

understand and apply the examples showed forward.

3.5 Sessions

Jolie provides an automatised system to handle sessions through the cset

keyword, with the following syntax:

22 3. Jolie

1 cset {

2 nameVariable: typeName.anotherVariable

3 }

Where nameVariable is the name of the variable to initialise and type-

Name is the type of the variable itself.

nameVariable will reference to anotherVariable parameters which is stored

inside the type typeName, here an example.

1 execution{ concurrent }

2

3 type MessageType : void {

4 .sid : string

5 .message : string

6 }

7

8 type DeleteChat : void {

9 .sid: string

10 }

11

12 type setID : void {

13 .sid? : string

14 .data? : string

15 }

16

17 interface Message {

18 RequestResponse: start(MessageType)(setID)

19 }

20

21 inputPort Server {

22 Location: "socket :// localhost :8123"

23 Protocol: http

24 Interfaces: Message

REST SERVER IN JOLIE 23

25 }

26

27 cset {

28 session: MessageType.sid DeleteChat.sid

29 }

30

31 main

32 {

33 [start(request)(response){

34 csets.session = response.sid = new

35 println@Console(request.message)()

36 }]

37 }

In this short example, when the start service is called by the client, it

sets the cset.session variable equal to response.sid with a unique id (session

key) so, supposing that our server is executing concurrently, it will handle

different sessions from different clients.

Jolie also implements the session automatically, giving back the session

key within response.sid in the setID type and it stores it locally in the browser

of the user.

To unset the session id, it is sufficient to overwrite it with an empty value

1 [deleteChat(x)(response){

2 response.sid = ""

3 }] { nullProcess }

DeleteChart sets the .sid into the response variable to ”” (or null), cset

will change the stored variable on the client to ””.

24 3. Jolie

3.6 Cookies

Using cookies is similar to using sessions, it is enough to set properly few

parameters within the http protocol:

inputPort Server {

Location: "socket://localhost:nnnn"

Protocol: http{

.cookies.session = "sid";

// take all the values inside variable "sid"

.cookies.session.cookieConfig.expires -> date

}

Interfaces: SomeInterfaces

}

In this example, we are setting inside the http protocol the .cookies node

with the name of the cookie we are going to use (session) and then we assign

the name of the variable we want to store on the client inside a string (”sid”).

Of course, the type of the request should contain the .sid field as a pa-

rameter: and it must be into the response variable if we want to set it.

Chapter 4

REST

4.1 What is REST

REST [4] stands for REpresentational State Transfer. It relies on state-

less, client - server cacheable communication protocols which usually is the

HTTP protocol. The outstanding feature of REST is that every machine and

every human being can reach all the contents without knowing anything be-

forehand about the resources the server is hosting. By contacting the server

it is possible to receive the specific location of the resources and the required

files.

”A REST API should spend almost all of its descriptive effort

in defining the media type(s) used for representing resources and

driving application state, or in defining extended relation names

and/or hypertext-enabled mark-up for existing standard media

type.”

Roy Fielding [5]

25

26 4. REST

In fact, a simple get request (without any parameter specified in the URI)

should return the specification implementations and the available operations.

REST is composed of verbs and resources which are determined a priori,

the sum of the operations which can be executed from both other servers and

users, and create the so called Hypermedia Controls which allows other ser-

vices to know the possible commands they can run. In these case the REST

service becomes RESTful because every machine can explore it discovering

his structure through some commands.

4.2 Principles

There are basically 5 fundamental principles to follow in order to create

a REST server:

Principle one: Everything is a Resource in REST architectural style, they

are accessed through URI (Uniform Resources Identifiers) which is a

string of characters used to uniquely identify a resource which is allo-

cated into a server. Resources are typically links on the web as files,

images, videos, webpages, etc.

Principle two: Every resource is identified by a unique id, this means that

the same resource might be hosted on different URIs but different in-

formation cannot be hosted in the same URI. URI is composed by URL

and URN.

URL (Uniform Resource Locator) is the template address of the re-

source of the server and it is in charge to properly represent every

source data which will be asked (e.g., images, HTML sources, JSON

datas, XML datas, music files).

REST SERVER IN JOLIE 27

URN, instead, is the name of the variable that changes in the URI

depending on the specific item requested.

Principle three: Interfaces should be as easy and simple as possible in

order to be machine readable. Many times it is possible to access

the same resource in different formats such as XML, JSON, and most

common humane readable protocol like HTML: which shows results

graphically and not only as a string. This can be done using HTTP

protocol methods with verbs as GET, POST, PUT, and DELETE.

Combining HTTP methods and resource names it is possible to create

a uniform access to modify, create, update, and delete contents. An

example of request to a REST server could be:

1 The user wants to get all the information about user called

2

3 Philip: http:// serverhost.dom/Users/Philip

4

5 Users is part of the URL

6 Philip is part of the URN

Principle four: Communication is done by representation. Every request

and response we send or receive is done through a representation of

the sent object (or objects). When an object is sent in XML or JSON

format, the parameters should be written inside a string: that string is

a representation of the objects.

Principle five: Be Stateless. Every request the client makes to the server

has to be stateless, which means it has to be unique and independent

from each others.

If, for instance, an application needs to login in order to run a GET

request, first it sends the first HTTP request with the login parameters,

28 4. REST

then if the credentials are correct and a success message is received

(with a key in order to validate the get request), it is possible to go

ahead with requests which require authentication.

4.3 CRUD with REST

CRUD stands for Create, Remove, Update and Delete; these are the op-

erations (or verbs) that MergeFly allows the client to use and it is possible

thanks to the HTTP protocol and its implemented verbs.

According to W3C there are 7 HTTP verbs [6].

OPTIONS

GET

HEAD

POST

PUT

DELETE

TRACE

CONNECT

To the purposes of MergeFly, only 4 of them are used: 1. GET 2. POST

3. PUT 4. DELETE,

Here below is the description of each verb:

Create: in order to create, the HTTP POST verb is needed and, by sending

the proper information, it is possible to create new records of a partic-

ular resource. In the URI it is specified the type of resource to create

REST SERVER IN JOLIE 29

and in the body all the properties and the information are written in

order to assign them to that specific object.

1 POST http://www.serverhost.dom/users

Read: in order to read, the HTTP GET verb is needed, it is probably the

most used method since it allows clients to receive any resource infor-

mation. When the GET succeed, it returns information with XML or

JSON representation and code 200 (OK). According to HTTP specifi-

cation GET requests are used only to send and display data and any

update or delete operation is not possible.

1 GET http://www.serverhost.dom/users

Update: in order to update, the HTTP PUT verb is needed, knowing the

resource URI we want to update, giving in the body the updated rep-

resentation of it, in order to proceed. This is usually used to replace a

specific resource rather than modify one single characterisation because

in the body all the information of the resource are needed.

1 PUT http://www.serverhost.dom/users /1234

Another verb used to update is PATCH which work pretty similar to

PUT, but in the body is specified the single information to update

rather than all the content.

1 PATCH http://www.serverhost.dom/users /1234

Delete: in order to delete, the HTTP DELETE verb is needed, with the

URI of the specific resource to delete permanently.

1 DELETE http://www.serverhost.dom/user /1234

30 4. REST

Chapter 5

MergeFly - REST

5.1 Why Jolie

Jolie eases the use of microservices and distributed computing. These are

key features in the designing of a REST server: merging these two technolo-

gies seems an interesting challenge, which is one of the contributions of this

thesis.

It is indeed clear that if it is required to add one resource to a REST

server with Jolie (thanks to its modularity) it will be enough to call a proper

service developed ad hoc. With a single interface, it is possible to overcome

the limits of the server.

Supposing that it is required to change the server or to implement new

distributed systems, it is enough to change the port of the interface and the

system can easily scale.

31

32 5. MergeFly - REST

5.2 Architecture

The main problem is that Jolie is a Service Oriented programming lan-

guage and in order to user REST we need to accept the communication and

translate the HTTP request in Jolie.

It has indeed been possible thank to routing mechanisms which allow to

read the header and body of the HTTP communication and, translating it in

a Service Oriented Paradigm: the message is sent to the main service which

will handle and send it to the others appropriate Services.

Therefore in the next pages it will be implemented a Jolie - REST Server.

5.3 Structure of the Server

5.3.1 Routing

The routing service developed by Fabrizio Montesi for REST Servers [7]

is a good example of the power and the versatility of Jolie Language. It is

indeed extremely easy to set up a routing mechanism based on the url that

has been given by the client.

Here below, the interface that will be introduced shortly (In this paper I

will refer to ”main service” or main.ol as the service which is launched from

terminal, and that will embed the router):

1 type MakeLinkRequest:void {

2 .operation:string

3 .params:undefined

4 .method ?: string // default: get

5 }

6

7 type Route:void {

REST SERVER IN JOLIE 33

8 .method:string

9 .template:string

10 .operation:string

11 }

12

13 type Resource:void {

14 .name:string

15 .id:string

16 .template:string

17 }

18

19 type Config:void {

20 .host:string

21 .routes *:Route

22 .resources *: Resource

23 }

24

25 interface RouterIface {

26 RequestResponse:

27 config(Config)(void),

28 makeLink(MakeLinkRequest)(string) throws BindingNotFound(

void)

29 }

The two operations that are going to be implemented are config and

makeLink: they are both Request-Responses.

The first one Config has the following parameters:

host: with the URI path information

routes: an array (*) with all the information about the paths that the router

is going to handle: one for every http verb to implement. In this server

the verbs will be GET, POST, PUT and DELETE.

34 5. MergeFly - REST

resources: it is the link between the routes and the host. It has all the

necessary information in order to build the router. Fetching the uri

we can find the objects to represent and their variables surrounded by

brackets {}.

Below, is reported the logic of the router:

1 define addResourceRoutes

2 {

3 routes [# routes] << {

4 .method = "get",

5 .template = resource.template ,

6 .operation = resource.name + "_index"

7 };

8 routes [# routes] << {

9 .method = "get",

10 .template = resource.template + "/{" + resource.id + "}"

,

11 .operation = resource.name + "_show"

12 };

13 routes [# routes] << {

14 .method = "post",

15 .template = resource.template ,

16 .operation = resource.name + "_create"

17 };

18 routes [# routes] << {

19 .method = "put",

20 .template = resource.template + "/{" + resource.id + "}"

,

21 .operation = resource.name + "_update"

22 };

23 routes [# routes] << {

24 .method = "delete",

REST SERVER IN JOLIE 35

25 .template = resource.template + "/{" + resource.id + "}"

,

26 .operation = resource.name + "_destroy"

27 }

28 }

29

30 init

31 {

32 config(config)() {

33 routes -> config.routes;

34 resource -> config.resources[i];

35 for(i = 0, i < #config.resources , i++) {

36 addResourceRoutes

37 }

38 }

39 }

Jolie provides a procedure, called init, that encloses instructions that are

going to be executed when the service starts. This is particularly useful in

Servers that are listening for connections because it allows to first compute

some instructions, set all the variables and load all the other services, and

external procedures that will be required by the invoked service. When the

init procedure config is called, it builds the paths with the resources set

by the invoker and it sets the host address through config.host.

The cycle will call addResourceRoutes for every defined resource and

it memorises for each one all the routes for the verbs GET, POST, PUT

and DELETE. In order to call the right procedure from the service which

actually created them and runs the router, we need a standard and specific

nomenclature.

In the following example, is important to highlight that the name in

typeResource must be unique for all the verbs implemented as services since

36 5. MergeFly - REST

is required in the config procedure.

GET: get method can be distinguished into 2 particular species: with data

and without data. We refer to data as the params of the URI (URN).

(e.g. 2 in /document/2)

If the data is set, then we are looking for a specific record, other-

wise we just want to send back a bouquet of possible options of the

specific object requested. The procedure name for the first will be

someName show()() and for the latter someName index()()

POST: post method is in charge to create a new instance of the object so

it will be characterised by someName create()().

PUT: put method is the same to POST but a semantics and logic distinguo

is needed, since the PUT modifies a record and post creates it. The

put is characterised by someName update()().

DELETE: delete method is in charge to delete one instance (from the

database). It is characterised by someName delete()().

Another procedure defined in router service is the Request-Response

makeLink()()

1 [makeLink(request)(response) {

2 if (!is_defined(request.method)) {

3 request.method = "get"

4 };

5 makeLink

6 }]

If the request method is not set, it proceeds with the standard GET

method, let us say this is the most conservative behaviour since it does not

create nor change or delete any record in our database.

REST SERVER IN JOLIE 37

Then the makeLink procedure is called

1 define findRoute

2 {

3 for(i = 0, i < #routes && !found , i++) {

4 if (routes[i]. method == method) {

5 match@UriTemplates({

6 .uri = request.requestUri ,

7 .template = routes[i]. template

8 })(found);

9 op = routes[i]. operation

10 }

11 }

12 }

13

14 define route

15 {

16 findRoute;

17 if (!found) {

18 statusCode = 404

19 } else {

20 statusCode = 200;

21 with(invokeReq) {

22 .operation = op;

23 .outputPort = "App"

24 };

25 foreach(n : found) {

26 invokeReq.data.(n) << found.(n)

27 };

28 foreach(n : request.data) {

29 invokeReq.data.(n) << request.data.(n)

30 };

31 invoke@Reflection(invokeReq)(response)

32 }

38 5. MergeFly - REST

33 }

34

35 define makeLink

36 {

37 for(i = 0, i < #routes && !found , i++) {

38 if (routes[i]. method == request.method && routes[i].

operation == request.operation) {

39 with(expand) {

40 .template = routes[i]. template;

41 .params -> request.params

42 };

43 expand@UriTemplates(expand)(response);

44 response = "http ://" + config.host + response

45 }

46 }

47 }

What the procedure does, is to find if the URI route is set by the client

in the HTTP request and to compare the method request itself with the ones

defined in its variables. If the URI matches one of the routes saved in the

router, it will set the status code to 200 (OK) and proceed otherwise to 404

(Not Found) and quit. Now that the request can be accommodated, it looks

for data both in the header and the body of our http request and it calls the

appropriate service hosted in our main service.

5.3.2 Call and Set Up the Routing Service

The first thing to do is to include the router file (router.iol) and create

the InputPort.

1 include "router.iol"

2

3 outputPort Router {

REST SERVER IN JOLIE 39

4 Interfaces: RouterIface

5 }

And then embed the router in main.ol file:

1 embedded {

2 Jolie:

3 "Router/router.ol" in Router

4 }

Embedding the service Jolie simply starts to run the router.ol file from

Jolie (the same way it is possible from command line).

The first thing we have to do in our server is to configure the host that

will be used in order to listen and catch new communications. Then the

array where to save all the URI to implement can be configured.

1 config.resources [0] << {

2 .name = "user",

3 .id = "id",

4 .template = "/user"

5 };

The array resource is used to define every representational object in our

server: if the client wants to call something it has to be defined it here.

Inside the variable config.resource there is the parameter .name that sets

the name of the services the router will call depending on the HTTP request’s

method invoked. In the example the assigned value for name is user therefore

the callable procedures will be:

• user index

• user show

• user create

40 5. MergeFly - REST

• user update

• user destroy

It is important to emphasise that none of the procedures must be imple-

mented if, for instance, during the process of requirements analysis it has

been defined to not let the client to create users: it is enough to not declare

the service user create inside the protocol and go ahead with all the others.

Template parameter is the identifier of the URI: the URI ”/user” will be

caught and handled according to the proper service. Id is the value that will

follow the template, it must be defined but it might be optionally assigned

by the client (e.g. general GET).

Once that all the resources are defined, the config procedure might be

called giving all the parameters stored in config.

1 config@Router(config)();

5.3.3 Services Implementation

After having set up the router, it is now possible to start developing the

applications itself.

Here, it is presented the standard method that has been used by the

writer using the example of document to perform the following operations:

1. general show 2. item show 3. create 4. update 5. delete.

General Show

Assuming that the resource has been configured in init with something

similar to:

1 config.resources [3] << {

2 .name = "document",

REST SERVER IN JOLIE 41

3 .id = "did",

4 .template = "/document"

5 };

It is possible to create the index()() service: since it is a Request Response

and it will be characterised by the following syntax:

1 [document_index()(response) {

2 nullProcess

3 }]

Inside the service there must be provided the list of all the available doc-

uments, in order to perform it, once service Document.ol has been created.

Document.iol interface:

1 type DocumentsList: void {

2 .docs* : int

3 }

4

5 interface DocumentIface {

6 RequestResponse:

7 getAllDocuments(void)(undefined),

8 }

Document.ol file:

1 include "console.iol"

2 include "document.iol"

3 include "../ Database/DatabaseService.iol"

4 include "string_utils.iol"

5

6 inputPort Main {

7 Location: "local"

8 Interfaces: DocumentIface

9 }

10

42 5. MergeFly - REST

11 outputPort DatabasePort {

12 Location: "socket :// localhost :8887"

13 Protocol: http

14 Interfaces: DatabaseIface

15 }

16

17 execution{ concurrent }

18

19 main

20 {

21 [getAllDocuments(request)(response) {

22 q = "SELECT id FROM Documents";

23 query@DatabasePort(q)(list);

24

25 for (i=0, i<#list.row , i++) {

26 response.docs[i] = int(list.row[i].id[0])

27 }

28 }]

29 }

About the use of DatabasePort, please read below in the Database Section

of this Chapter. Once the call procedure is set and the Service Provider is

called, list variable should contain a list of id showed with the following

format:

1 type returnFromDB: void {

2 .row* : void {

3 .paramName: undefined

4 }

5 }

Where paramName is the name of the field (or fields) of all the columns

returned and row is the number of the record[i].

The result is handled and passed back to the Service Consumer.

REST SERVER IN JOLIE 43

Main.ol document index()()

1 [document_index()(response) {

2 getAllDocuments@Document()(documents);

3 for(i = 0, i < #documents.docs , i++){

4 makeLink@Router({

5 .operation = "document_show",

6 .params.did = documents.docs[i]

7 })(response.href[i])

8 }

9 }]

Main.ol file will compute the result and show it within the href json object:

When the URL requested is ”http://localhost:8080/document” the output

is the following

1 /* Example */

2 {

3 "href": [

4 "http :// localhost :8080/ document /1",

5 "http :// localhost :8080/ document /9",

6 "http :// localhost :8080/ document /11",

7 "http :// localhost :8080/ document /13",

8 "http :// localhost :8080/ document /14",

9 "http :// localhost :8080/ document /17",

10 "http :// localhost :8080/ document /2",

11 "http :// localhost :8080/ document /3",

12 "http :// localhost :8080/ document /6",

13 "http :// localhost :8080/ document /7",

14 "http :// localhost :8080/ document /10",

15 "http :// localhost :8080/ document /12",

16 "http :// localhost :8080/ document /16",

17 "http :// localhost :8080/ document /15",

18 "http :// localhost :8080/ document /8",

44 5. MergeFly - REST

19 "http :// localhost :8080/ document /19",

20 "http :// localhost :8080/ document /20",

21 "http :// localhost :8080/ document /21"

22]

23 }

Show

When a HTTP GET request is performed, there might be one parameter

specified in the URL which is memorized into the did variable. What the

service document show()() does, is to show all the information about that

specific document.

main.ol

1 [document_show(request)(response){

2 getDocument@Document(int(request.did))(response.doc);

3 makeLink@Router({

4 .operation = "documentNote_index",

5 .params.did = request.did

6 })(response.href)

7 }]

document.ol

1 [getDocument(request)(response) {

2 q = "getDoc(:doc_id)";

3 q.doc_id = request;

4 call@DatabasePort(q)(doc);

5 handleDoc << doc.row [0];

6 doc.row [0]. event_id = int(handleDoc.event_id [0]);

7 doc.row [0]. public = int(handleDoc.public [0]);

8 doc.row [0]. creator_id = int(handleDoc.creator_id [0]);

9 doc.row [0].id = int(handleDoc.id[0]);

10

REST SERVER IN JOLIE 45

11 response << doc.row[0]

12 }]

First the getDocument()() service is called, passing the did variable. Once

the request to the database has been accomplished and the response sent to

main.ol, the service recreates the path for the next available options (sup-

posing to have the REST object Note):

For example, when the URL requested is "http://localhost:8080/document/20",

the output is the following:

1 {

2 "doc": {

3 "creator_lastname": "Sibani",

4 "creationdate": "2016 -06 -12 23:26:57.0",

5 "event_id": 13,

6 "public": 0,

7 "creator_id": 54,

8 "name": "Doc Title",

9 "creator_name": "Riccardo",

10 "id": 20

11 },

12 "info": "http :// localhost :8080/ document /20/ note"

13 }

Create

When a HTTP POST request is performed, there might be parameters

specified into the body of the HTTP Request. What the service docu-

ment create()() does, is to insert a new document inside the MySQL Database.

HTTP Request

1 POST /document HTTP /1.1

2 Host: localhost :8080

46 5. MergeFly - REST

3 Cache -Control: no-cache

4 Postman -Token: 41ec1529 -5fc1 -f0c0 -0cd7 -909 e5b6cf831

5 Content -Type: application/x-www -form -urlencoded

6

7 creator_id =54& name=docProva2&event_id =12& visibility_type =1& token

=10

main.ol

1 define loginProcedure

2 {

3 q = "SELECT id FROM USERS WHERE token = :token";

4 q.token = int(token);

5 query@DatabasePortToCall(q)(loginResponse);

6 if(is_defined(loginResponse.row [0].id[0])) {

7 login = loginResponse.row [0].id[0]

8 } else {

9 login = false

10 };

11 println@Console("login " + login)()

12 }

13

14 /*

15 * // CODE

16 */

17

18 [document_create(request)(response) {

19 token = request.token;

20 loginProcedure;

21 if(login!= false && login == request.creator_id) {

22 undef(request.token);

23 createDocument@Document(request)(response.doc)

24 } else {

25 response.document = "You are not allowed"

REST SERVER IN JOLIE 47

26 };

27 makeLink@Router({

28 .operation = "document_index",

29 .params.id = request.id

30 })(response.info)

31

32 }]

document.ol

1 [createDocument(q)(response) {

2 q.creator_id [0] = int(q.creator_id [0]);

3 q.event_id [0] = int(q.event_id [0]);

4 q.visibility_type [0] = int(q.visibility_type [0]);

5 q = "createDoc(:creator_id , :name , :event_id , :

visibility_type) ";

6 call@DatabasePort(q)(doc);

7 response = doc.row [0]. returned_id [0]

8 }]

Since the creation of a new document requires some authentication mech-

anisms, loginProcedure has been defined. What this procedure does is to

simply check the accuracy of the token with the id of the creator (of course

all the application is supposed to run under SSL [11]).

Once the identity of the client has been approved, the token is unset and

the document is created.

All the parameters which are specified into the body, are now available

as variables inside the request. If for instance, the server needs the token; it

will be reachable through response.token.

MakeLink, instead, refers to document index()() since it is reasonable

to return the list of all the documents (the document is empty and it would

not return an empty list of notes).

48 5. MergeFly - REST

Update

When a HTTP PUT request is performed, there might be parameters

specified both into the URL and into the body of the HTTP Request. What

the service document update()() does, is to insert a new document inside the

MySQL Database.

main.ol

1 [document_update(request)(response) {

2 token = request.token;

3 loginProcedure;

4 if(login!= false && login == request.user_id) {

5 undef(request.token);

6 request.doc_id = int(request.doc_id);

7 request.user_id = int(request.user_id);

8

9 updateDocument@Document(request)(response.doc)

10 } else {

11 response.document = "You are not allowed"

12 };

13 makeLink@Router({

14 .operation = "document_index",

15 .params.id = request.id

16 })(response.info)

1 document.iol

2 [updateDocument()(response) {

3 q = "call updateDoc(:doc_id , :user_id , :name , :public)";

4 call@DatabasePort(q)(doc)

5 }]

Update document is similar to the creation of a new document, inside the

document.ol file the service just calls the appropriate procedure.

MakeLink refers to document index()() since it is reasonable to return

REST SERVER IN JOLIE 49

the list of all the documents.

Delete

When an HTTP DELETE request is performed, there shouldn’t be any

parameters specified into the body of the HTTP Request but only into the

URL. Token might be inserted into the header, so it should be captured from

the http request which arrives to the router and append it to the response

to send it to the main.ol.

WebInputPort in router changes:

1 inputPort WebInput {

2 Location: "socket :// localhost :8080"

3 Protocol: http {

4 .default.get = "get";

5 .default.post = "post";

6 .default.put = "put";

7 .default.delete = "delete";

8 .method -> method;

9 .statusCode -> statusCode;

10 .headers.token = "token";

11 .format = "json"

12 }

13 Interfaces: WebIface

14 }

Delete (and all the verbs that need token):

1 [delete(request)(response) {

2 method = "post";

3 route;

4 response.token = request.token;

5 }]

50 5. MergeFly - REST

What the service document create()() does, is to delete a specific doc-

ument from the MySQL Database.

1 [document_delete(request)(response) {

2 token = request.token;

3 loginProcedure;

4 if(login!= false && login == request.user_id) {

5 undef(request.token);

6 deleteDocument@Document(request.did)(response)

7 } else {

8 response.document = "You are not allowed"

9 };

10 makeLink@Router({

11 .operation = "document_index",

12 .params.id = request.id

13 })(response.info)

14 }]

document.ol will delete the record through a stored procedure.

MakeLink refer to document index()() since it is reasonable to return the

list of all the documents.

Nested Requests

The content of a note inside a document can be displayed, for instance, the

GET request ”http://localhost:8080/document/7/note/18” works perfectly

with the only precaution to declare the resource properly:

1 config.resources [4] << {

2 .name = "documentNote",

3 .id = "nid",

4 .template = "/document /{did}/note"

5 };

REST SERVER IN JOLIE 51

Here the document is still reachable through .did thanks to the two brack-

ets {} in the URL. The note id, instead, will be nid.

Example of show is here available

1 [documentNote_show(request)(response) {

2 getDocumentNotes@Document(int(request.did))(notes);

3 for(i = 0, i < #notes.row , i++){

4 if(notes.row[i]. note_id == request.nid) {

5 response.note << notes.row[i]

6 } else {

7 response.note = "Not Found"

8 }

9 }

10 }]

An output exemple for the previous HTTP request could be:

1 {

2 "note": {

3 "note_id": "18",

4 "creationdate": "2016 -04 -19 13:13:49.0",

5 "description": "Finals 2016",

6 "id": "18",

7 "type": "text",

8 "title": "Intro",

9 "document_id": "7",

10 "content": "We are LIVE with Cleveland Cavaliers Coach

Tyronn Lue , Kyrie Irving and LeBron James at NBAFinals

Media Day"

11 }

12 }

52 5. MergeFly - REST

5.4 Database

5.4.1 Jolie and MySQL

MergeFly has been designed to work with MySQL [9] and, of course, Jolie

allows to use MySQL Database.

It is enough to download the appropriate library [10] and insert it in lib

folder in the root of the program: Jolie will automatically import it.

In order to use this library, it must be included the Jolie interface in our

main.ol file or embed the database service provided by Jolie within another

service.

1 include "../ Database/DatabaseService.iol"

2

3 /*

4 * // CODE

5 */

6

7 outputPort DatabasePort { // DatabasePort to Embed

8 Location: "socket :// localhost :8887"

9 Protocol: http

10 Interfaces: DatabaseIface

11 }

12

13 outputPort DatabasePortToCall { // Call DatabaseService within

main.ol

14 Location: "socket :// localhost :8887"

15 Protocol: http

16 Interfaces: DatabaseIface

17 }

18

19 embedded {

REST SERVER IN JOLIE 53

20 Jolie: "Database/database.ol" in DatabasePort

21 }

DatabaseService.ol

1 include "database.iol"

2 include "databaseService.iol"

3

4

5 inputPort Main {

6 Location: "socket :// localhost :8887"

7 Protocol: http

8 Interfaces: DatabaseIface

9 }

10

11 execution{ sequential }

12

13 init {

14 with (connectionInfo){

15 .host = "localhost";

16 .driver = "mysql";

17 .port = 8889;

18 .database = "polleg_it";

19 .username = "root";

20 .password = "root"

21 };

22

23 connect@Database(connectionInfo)();

24 println@Console("Connected to database .")()

25 }

26

27 main

28 {

29 [call(request)(response) {

54 5. MergeFly - REST

30 request = "call " + request;

31 query@Database(request)(response)

32 }]

33

34 [query(request)(response) {

35 query@Database(request)(response)

36 }]

37 }

Since the service is embedded in main.ol, call and query services can be

invoked. The first one allow the Service Consumer to perform SQL Store

Procedures calls, the latter to run simple queries.

The structure of the request in the call should be

1 q = "procedureName(:param1 , :param2 , :param3 , :param4) ";

2 q.param1 = value;

3 q.param2 = "value";

4 q.param3 = 4;

5 q.param4 = null;

6 call@DatabasePort(q)(doc);

The structure of the query in the call should be

1 q = "INSERT INTO TABLENAME VALUES (:param1 , :param2 , :param3 , :

param4) ";

2 q.param1 = value;

3 q.param2 = "value";

4 q.param3 = 4;

5 q.param4 = null;

6 call@DatabasePort(q)(doc);

Jolie, indeed, provides an automatised binding system.

REST SERVER IN JOLIE 55

5.4.2 Database Structure

E-R Diagram (Entity - Relationship Diagram) is a graphical and concep-

tual representation of a database.

There might be two kind of instances:

Entity: Is the instance which might be independent and exist even if is only

standing alone.

Relationship : Relationships instead need to refer to two or more entities.

For sure the argument deserves to be studied more in deep [8].

Entity - Relationship Dictionary

Below the Entity - Relationship Dictionary

Entity Description Attributes Id

Users (E)
Informations about

registered users

id, name, lastname, born,

subscriptiondate, type(premium, basic, admin),

image profile, latitude, longitude, password, mail, deleted

id

Events (E)
Informations

about events

id, name, price id, creationdate,

startdate, stopdate, creator id,

type(public, private), description, category name

id

Categories (E)
Informations

about categories
name, description, colour name

Participations (R)
Users who

join an event
event id, user id, status event id, user id

Places (E)
Informations about

registered places
id, latitude, longitude, name, address, cap, city, country id

Groups (E)
Informations

about groups
id, name, creationdate, image, description id

Members (R)
Users inscribed

to one group
user id, group id, accepted, role, joindate user id, group id

Documents (E)
Informations

about documents
id, creator id, name, event id, creationdate, public id

Notes (R)
Informations about notes

and their contents

id, type(image, text,

code, link), title, content,

description, creation

id

Nodes (E)
informations about

notes (pieces of document)
id, document id, note id, creationdate id

Table 5.1: Entity - Relationship Dictionary

56 5. MergeFly - REST

Entity - Relationship diagram

Below the MergeFly E-R Diagram

Figure 5.1: MergeFly E-R Diagram, first implementation

REST SERVER IN JOLIE 57

Generalizations

Generalizations are presented in notes and user.

Users: Have been joined and, in one single entity, one enum field has been

added which specifies one of the following types:

– Basic

– Premium

– Admin

Notes: Notes have been joined as well, another field has been added which

specifies one of the following types:

– Code

– Link

– Text

– Image

Here below the updated E-R Diagram

58 5. MergeFly - REST

Figure 5.2: MergeFly E-R Diagram, final implementation

5.4.3 Database specifications

Business Rules

1. Password must contain more than 8 characters

2. Event Start date must be earlier then the Event Finish date

3. Information about groups can be modified only by Administrators

4. Users can join all the public events

5. Users can join private events only through an invitations

6. Only Premium users can create private events

7. There cannot be two places with same street, city, and Country

8. Users can delete their profile only after an explicit request

REST SERVER IN JOLIE 59

9. Private documents and their notes can be viewed only by its creator

(and invited persons)

10. Private notes of a private documents can be imported only by autho-

rized users

5.4.4 Application Functionalities

Functionalities are showed grouped by the concept where they will be

inserted into:

Login/Registration :

1. Take data from users who performed the access

2. Create new user

Home :

1. Show list of the currently live documents

2. Show list of invitations to groups

3. Show list of invitations to events

4. Accept or refuse invitations to groups

5. Accept or refuse invitations to events

Live Document :

1. Show Document

2. Show list of notes within a document

3. Update one note

4. Delete one note

60 5. MergeFly - REST

5. Add / Create one note

6. Show list of all the notes wrote by other users who participate to

the same events (and have public profile)

7. Import notes wrote by other users

Documents :

1. Show the list of documents of a user

Document :

1. Show the document content

2. Show the list of documents of a user

Events :

1. Show the list of events joined by the user

2. Show the position of the events the user joined or has been invi-

tated

3. Show list of the events inside an 100km radius

4. Show positions of the events inside an 100km radius

Event :

1. Show informations about one event

2. Show Event participatants

3. Create document about one event

4. Join an event

5. Change the participation status

REST SERVER IN JOLIE 61

Add Event :

1. Add one event

2. Add one place or select an existing one

3. Add participants inside one event

Groups :

1. Show list of groups

2. Create one group

3. Accept or refuse the participation to one event

Group :

1. Show list of memebers into one group

2. Show informations about one group

3. Update informations about one group

4. Leave one group

5. Show list of public events that have been created after the joining

of the user and in where the user participates.

6. Show list of public documents that have been created after the

joining of the user and in where the user participates.

Profile :

1. Show the data of the user

2. Update the data of the user

3. Show number of documents

4. Show number of groups

62 5. MergeFly - REST

Implemented Views

userInfo : in order to not let the password exposed to attacks

eventsInfo : in order to facilitate nested queries

Stored Procedures

Here below the list of all the stored procedures implemented, more about

their implementation can be found in Appendix A.

1. login

2. updatePosition

3. getUser

4. insertUser

5. userNearEvents

6. getUserEvents

7. searchEvents

8. searchPlaces

9. suggestedPlaces

10. updateUser

11. upgradeUser

12. changePassword

13. deleteUser

REST SERVER IN JOLIE 63

14. damnatioMemoriae

15. getEvents

16. getEvent

17. addPlace

18. similarPlaces

19. addEvent

20. updateEvent

21. createCategory

22. getCategories

23. updateCategory

24. getUserDocs

25. getUserDoc

26. createDoc

27. updateDocName

28. updateDocVisibility

29. getDoc

30. getDocContent

31. createNote

32. createNoteWithDate

64 5. MergeFly - REST

33. createNode

34. importNote

35. addNoteToDoc

36. modifyNode

37. deleteNode

38. getEventNodes

39. getEventNotes

40. getGroupMembers

41. getEventPartecipants

42. getEventWaitingPartecipants

43. getEventDeclinedPartecipants

44. getPartecipationStatus

45. createGroup

46. addMember

47. removeMember

48. acceptMembership

49. refuseMembership

50. getUserGroups

51. updateGroup

REST SERVER IN JOLIE 65

52. getGroupInfo

53. getPlace

54. addPartecipant

55. updatePartecipationStatus

56. addNote

57. getNote

58. updateNote

59. searchUser

60. searchGroup

61. addGroupToEvent

62. getNotifications

63. getGroupsRequest

64. getEventsGroupByUserId

65. getDocumentsGroupByUserId

66. getUserCurrentlyLiveDocs

Triggers

Here below the list of all the Triggers implemented, more about their

implementation can be found in Appendix B.

1. check user

66 5. MergeFly - REST

2. check event

3. check note

4. check group

Conclusion

The aim of the thesis is to create a RESTful server with the Jolie pro-

gramming language following the service oriented architecture standards.

REST, as used and tested architectural style was the perfect canditate

for our application, which is confirmed by our analysis. Jolie, on the other

hand, fully interpreted the REST principles and HTTP behaviours this laid

the foundations for expanding MergeFly server thanks to the principle of

modularity.

Indeed, it will be easy, once the router mechanisms has been set up as

previously demonstrated, to add and modify services.

This is a distinguishing feature of the Jolie Language.

The router mechanism proposed by Fabrizio Montesi has been explained

in deep and developed giving to the reader a practical case about how to built

a REST server without even knowing anything about REST architectures: it

is simply necessary to follow the instructions provided, and the programmer

will have a RESTful Server.

Jolie demonstrated to be a stable and mature language, able to support

the development of the features of the application (even the integration with

MySQL).

It is indeed demonstrated that all the server can run with an intuitive

language such as Jolie is, implementing a non-trivial RESTful Architecture.

67

68 First Appendix

Appendix A

Database MySQL

69

70 A First Appendix

Tabels and Views of MergeFly Database:

1 /∗ Database c r e a t i o n ∗/

2 CREATE DATABASE IF NOT EXISTS merge ;

3 −− USE p o l l e g i t ;

4 USE merge ;

5

6 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ TABLES ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

7

8 /∗ USERS ∗/

9 CREATE TABLE IF NOT EXISTS use r s (

10 id INT(11) AUTO INCREMENT,

11 name VARCHAR(100) NOT NULL,

12 lastname VARCHAR(100) NOT NULL,

13 born DATE,

14 sub s c r i p t i onda t e TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP,

15 type ENUM(’ ba s i c ’ , ’ premium ’ , ’ admin ’) DEFAULT ’ bas i c ’ ,

16 i m a g e p r o f i l e VARCHAR(300) ,

17 l a t i t u d e DECIMAL(11 ,8) , /∗ i t must be d e f i n e d ∗/

18 long i tude DECIMAL(11 ,8) , /∗ i t must be d e f i n e d ∗/

19 password VARCHAR(300) NOT NULL,

20 mail VARCHAR(150) NOT NULL,

21 de l e t ed ENUM(’ 0 ’ , ’ 1 ’) DEFAULT ’ 0 ’ ,

22 PRIMARY KEY (id)

23) engine=INNODB;

24

25 /∗ GROUPS ∗/

26 CREATE TABLE IF NOT EXISTS groups (

27 id INT(11) AUTO INCREMENT,

28 name VARCHAR(100) NOT NULL,

29 c r ea t i onda t e TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP,

30 image VARCHAR(300) ,

31 d e s c r i p t i o n VARCHAR(2000) NOT NULL DEFAULT ”No d e s c r i p t i o n . ” ,

32 PRIMARY KEY (id)

33) engine=INNODB;

34

35 /∗ PLACES ∗/

36 CREATE TABLE IF NOT EXISTS p la c e s (

37 id INT(11) AUTO INCREMENT,

38 l a t i t u d e DECIMAL(11 ,8) ,

39 l ong i tude DECIMAL(11 ,8) ,

40 name VARCHAR(100) NOT NULL,

41 address VARCHAR(200) NOT NULL,

42 cap VARCHAR(10) ,

43 c i t y VARCHAR(50) NOT NULL,

44 nat ion VARCHAR(50) NOT NULL DEFAULT ” I t a l y ” ,

45 PRIMARY KEY (id)

46) engine=INNODB;

47

48 /∗ CATEGORIES ∗/

49 CREATE TABLE IF NOT EXISTS c a t e g o r i e s (

50 name VARCHAR(100) NOT NULL,

51 d e s c r i p t i o n VARCHAR(3000) ,

52 co lour VARCHAR(7) ,

53 PRIMARY KEY (name)

54) engine=INNODB;

A Database MySQL 71

55

56 /∗ NOTES ∗/

57 CREATE TABLE IF NOT EXISTS notes (

58 id INT(11) AUTO INCREMENT,

59 type ENUM(’ code ’ , ’ t ext ’ , ’ image ’ , ’ l i n k ’) DEFAULT ’ text ’ ,

60 t i t l e VARCHAR(300) DEFAULT ”Note t i t l e ” ,

61 content TEXT,

62 d e s c r i p t i o n VARCHAR(200) ,

63 c r ea t i onda t e timestamp NOT NULL DEFAULT CURRENT TIMESTAMP,

64 PRIMARY KEY(id)

65) engine=INNODB;

66

67 /∗ MEMBERS ∗/

68 CREATE TABLE IF NOT EXISTS members (

69 u s e r i d INT(11) NOT NULL,

70 group id INT(11) NOT NULL,

71 accepted BOOLEAN DEFAULT 0 ,

72 r o l e ENUM(’ admin ’ , ’ normal ’) DEFAULT ’ normal ’ ,

73 j o i nda t e TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP,

74 PRIMARY KEY (use r id , group id) ,

75 FOREIGN KEY (u s e r i d) REFERENCES use r s (id) ON DELETE CASCADE,

76 FOREIGN KEY (group id) REFERENCES groups (id) ON DELETE CASCADE

77) engine=INNODB;

78

79 /∗ EVENTS ∗/

80 CREATE TABLE IF NOT EXISTS events (

81 id INT(11) AUTO INCREMENT,

82 name VARCHAR(100) NOT NULL,

83 p l a c e i d INT ,

84 c r ea t i onda t e TIMESTAMP DEFAULT CURRENT TIMESTAMP,

85 s t a r tda t e DATE,

86 stopdate DATE,

87 c r e a t o r i d INT ,

88 type ENUM(’ pub l i c ’ , ’ p r i va t e ’) DEFAULT ’ pub l i c ’ ,

89 d e s c r i p t i o n VARCHAR(2000) ,

90 category name VARCHAR(100) default ’ Meeting ’ ,

91 PRIMARY KEY (id) ,

92 FOREIGN KEY (p l a c e i d) REFERENCES p la c e s (id) ,

93 FOREIGN KEY (c r e a t o r i d) REFERENCES use r s (id) ON DELETE SET NULL,

94 FOREIGN KEY (category name) REFERENCES c a t e g o r i e s (name) ON DELETE SET NULL

95) engine=INNODB;

96

97 /∗ DOCUMENTS ∗/

98 CREATE TABLE IF NOT EXISTS documents (

99 id INT(11) AUTO INCREMENT,

100 c r e a t o r i d INT ,

101 name VARCHAR(100) DEFAULT ”unknown document” ,

102 even t id INT ,

103 c r ea t i onda t e TIMESTAMP DEFAULT CURRENT TIMESTAMP,

104 public ENUM(’ 0 ’ , ’ 1 ’) DEFAULT ’ 1 ’ ,

105 PRIMARY KEY (id) ,

106 FOREIGN KEY (c r e a t o r i d) REFERENCES use r s (id) ON DELETE CASCADE,

107 FOREIGN KEY (even t id) REFERENCES events (id) ON DELETE SET NULL

108

109) engine=INNODB;

110

72 A First Appendix

111 /∗ NODES ∗/

112 CREATE TABLE IF NOT EXISTS nodes (

113 document id INT(11) ,

114 no t e i d INT(11) ,

115 c r ea t i onda t e TIMESTAMP DEFAULT CURRENT TIMESTAMP,

116 PRIMARY KEY (note id , document id) ,

117 FOREIGN KEY (document id) REFERENCES documents (id) ON DELETE CASCADE,

118 FOREIGN KEY (not e id) REFERENCES notes (id) ON DELETE CASCADE

119) engine=INNODB;

120

121 /∗ PARTECIPATIONS ∗/

122 CREATE TABLE IF NOT EXISTS p a r t e c i p a t i o n s (

123 even t id INT(11) NOT NULL,

124 u s e r i d INT(11) NOT NULL,

125 s ta tu s ENUM(’ accepted ’ , ’ d e c l i n ed ’ , ’ wa i t ing ’) DEFAULT ’ wait ing ’ ,

126 PRIMARY KEY (event id , u s e r i d) ,

127 FOREIGN KEY(even t id) REFERENCES events (id) ON DELETE CASCADE,

128 FOREIGN KEY(u s e r i d) REFERENCES use r s (id) ON DELETE CASCADE

129) engine=INNODB;

130

131 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ VIEWS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

132

133 CREATE VIEW u s e r s I n f o (id , name , lastname , born , subsc r ip t i ondate , type , image p ro f i l e ,

mail) AS

134 SELECT id , name , lastname , born , subsc r ip t i ondate , type , image p ro f i l e , mail FROM

use r s WHERE de l e t ed=”0” ;

135

136 CREATE VIEW event s In f o (event id , event name , type , c reat iondate , s ta r tdate , stopdate ,

ev en t de s c r i p t i on , c r e a t o r i d ,

137 creator name , c reator la s tname , p l a c e id , place name , address , cap , c i ty , nation ,

l a t i tude , long i tude , category name , c a t e go ry de s c r i p t i on , c a t ego ry co l ou r) AS

138 SELECT evnt . id , evnt . name , evnt . type , evnt . c r eat iondate , evnt . s ta r tdate , evnt . stopdate

, evnt . d e s c r i p t i on ,

139 usr . id , usr . name , usr . lastname , p l c . id , p l c . name , p l c . address , p l c . cap , p l c .

c i ty , p l c . nation , p l c . l a t i t ude , p l c . long i tude ,

140 evnt . category name , cat . d e s c r i p t i on , cat . co l our

141 FROM events AS evnt , p l a c e s AS plc , u s e r s I n f o AS usr , c a t e g o r i e s AS cat

142 WHERE ((evnt . p l a c e i d = plc . id) AND (evnt . c r e a t o r i d = usr . id) AND (cat . name = evnt .

category name)) ;

Bibliography

[1] http://www.oasis-open.org/specs/#dpwsv1.1

[2] http://amslaurea.unibo.it/2372/1/pascali stefano tesi.pdf

[3] http://fabriziomontesi.com/files/mgz14.pdf

[4] https://www.ics.uci.edu/˜fielding/pubs/dissertation/fielding dissertation 2up.pdf

[5] http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-

driven

[6] http://www.w3.org/Protocols/rfc2616/rfc2616.txt

[7] http://arxiv.org/pdf/1410.3712v3.pdf

[8] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.123.1085

[9] http://www.mysql.com

[10] https://dev.mysql.com/downloads/connector/j/5.0.html

[11] https://tools.ietf.org/html/rfc5246

73

Acknowledgement

I wish to express my sincere thanks to my parents for all the support

during these 3 years of University, they always motivated me by hook or by

crook.

I am also grateful to Prof. Sangiorgi for giving me the opportunity of this

thesis and to Dott. Giallorenzo for standing me and always helping with all

my doubts and my English ”typos”. I am also thankful to them both for all

what they thought me in the stunning course about Operative Systems.

I take this opportunity to express my gratitude to Alisa for helping me

and correct all these papers, lo siento, without any knowledge about IT but

a great heart. And to Filippo, the one without I would still be stuck in some

projects.

