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Introduction

The aim of this thesis is to provide a systematic analysis of the condi-

tions required for the existence of Fourier transform valuation formulas in

a general framework: i.e. when the underlying variable can depend on the

path of the price process and the payoff function can be discontinuous. For

example when considering a one-touch option on a Lévy-driven asset, both

assumptions fail: the payoff function is clearly discontinuous, while a priori

not much is known about the existence of a density for the distribution of

the supremum of a Lévy process. The key idea in Fourier transform meth-

ods for option pricing lies in the separation of the underlying process and the

payoff function. In this paper there are conditions on the moment generating

function of the underlying random variable and the Fourier transform of the

payoff function such that Fourier based valuation formulas hold true.

An interesting interplay between the continuity conditions imposed on the

payoff function and the random variable arises naturally. The results of our

analysis can be briefly summarized as follows: for general continuous pay-

off functions or for variables, whose distribution has a Lebesgue density, the

valuation formulas using Fourier transforms are valid as Lebesgue integrals.

When the payoff function is discontinuous and the random variable might

not possess a Lebesgue density then we get pointwise convergence of the val-

uation formulas under additional assumptions, that are typically satisfied.

The valuation formulas allow to compute prices of European options very

fast, hence they allow the efficient calibration of the model to market data

for a large variety of driving processes, such as Lévy processes. Indeed, for
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ii Introduction

lévy and affine processes the moment generating function is usually known

explicitly, hence these models are tailor-made for Fourier transform pricing

formulas. This thesis is organized as follows:

in Chapter 1 we present valuation formulas in the single asset case.

In Chapter 2 we review examples of commonly used payoff functions in di-

mension one.

In Chapter 3 we review example of characteristic function.

Finally, in Chapter4 we provide numerical examples for the valuation of op-

tions and the difference between this model and Black-Sholes model.

Introduzione in Italiano

Lo scopo di questa tesi è di fornire una analisi sistematica delle con-

dizioni necessarie per l’esistenza delle formule di valutazione che impiegano la

trasformata di Fourier in un quadro generale: vale a dire quando la variabile

sottostante può dipendere dal percorso del processo del prezzo del sottostante

e la funzione di payoff può essere discontinua. Per esempio, quando consid-

eriamo una opzione one-touch, entrambe le ipotesi falliscono: la funzione

di payoff è chiaramente discontinua, mentre a priori non è molto noto circa

l’esistenza di una densità per la distribuzione del massimo di un processo

di Lévy. L’idea chiave dei metodi con trasformata di fourier per prezzare

le opzioni si trova nella separazione del processo sottostante e della fun-

zione di payoff. Il risultato di questa analisi può essere brevemente riassunto

come segue: in generale per funzioni payoff continue o per le variabili, la

cui distribuzione ha un densità di Lebesgue le formule di valutazione che

utilizzano le trasformata di Fourier sono un integrale di Lebesgue. Quando,

la funzione di payoff è discontinua e la variabile casuale puó non avere una

densità di Lebesgue, ci serviamo di una convergenza puntuale delle formule

di valutazione, in presenza di ulteriori ipotesi, che in genere sono soddisfatte.

Questa tesi è organizzata come segue:
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Nel Capitolo 1 si presentano le formule nel caso di un singolo sottostante.

Nel Capitolo 2 abbiamo esempi di comuni funzioni di payoff.

Nel Capitolo 3 abbiamo esempi di funzioni caratteristiche.

Infine, nel Capitolo 4 forniamo esempi numerici: per la valutazione delle

opzioni e per la differenza tra questo modello e il modello di Black-Sholes.
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Chapter 1

Option valuation: single asset

In this paper I will analize the work of Eberlein, Glau and Papapantoleon

on the valuation of option with Fourier transform methods.

1.1 Underlying process

We model the price process of a financial asset as an exponential Lévy

process S = (St)0≤t≤T , i.e. a stochastic process with representation

St = S0eHt 0 ≤ t ≤ T (1.1)

(shortly: S = S0eH), where H = (Ht)0≤t≤T is a Lévy process with H0 = 0.

Throughout this work, we assume that P is an (equivalent) martingale mea-

sure for the asset S ; moreover, for simplicity we assume that the dividend

yield are zero.

By no-arbitrage theory the price of an option on S is calculated as its dis-

counted expected payoff.

We will analyze and prove valuation formulas for options on an asset S = S0eH

with a payoff at maturity T that may depend on the whole path of S up to

time T .

In order to incorporate both plain vanilla options and exotic options in a sin-

gle framework we separate the payoff function from the underlying process,

where:

1



2 1. Option valuation: single asset

1. the underlying process can be the log-asset price process or the supre-

mum/infimum of the log-asset price process. This process will always

be denoted by X i.e. X = H or X = H or X = H, where H or H are

the supremum/infimum of the log-asset price process.

2. the payoff function is an arbitrary function f : ℝ → ℝ+ ∪ {0}, for

example f(x) = (ex −K)+ or f(x) = 1{ex>B}, for K,B ∈ ℝ+ ∪ {0}.

Clearly, we regard options as dependent on the underlying process X, i.e. on

(some functional of) the logarithm of the asset price process S. The main

advantage is that the characteristic function of X is easier to handle than

that of (some functional of) S; for example, for a Lévy process H = X is

already known in advance.

Moreover, we consider exactly those options where we can incorporate the

path-dependence of the option payoff into the underlying process X. Euro-

pean vanilla options are a trivial example, as there is no path-dependence; a

non-trivial, example are options on the supremum. Other examples are the

geometric Asian option and forward-start options.

In addition, we will assume that the initial value of the underlying process

X is zero; this is the case in all natural examples in mathematical finance.

The initial value S0 of the asset price process S plays a particular role, be-

cause it is convenient to consider the option price as a function of it, or more

specifically as a function of s=logS0.

Hence, we express a general payoff as

Φ
(
S0eHt , 0 ≤ t ≤ T

)
= f(XT + s) , (1.2)

where f is a payoff function and X is the underlying process, i.e. an adapted

process, possibly depending on the full history of H, with

Xt := Ψ(Hs, 0 ≤ s ≤ t) for t ∈ [0, T ],

and Ψ a measurable functional. Therefore, the time-0 price of the option is

provided by the (discounted) expected payoff, i.e.

Vf (X; s) = E
[
Φ
(
St, 0 ≤ t ≤ T

)]
= E

[
f(XT + s)

]
. (1.3)
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Note that we consider ‘European style’ options, in the sense that the holder

or writer does not have the right to exercise or terminate the option before

maturity. In case the interest rate r is non-zero the option price is given by

Vf (X; s) = e−rTE
[
f(XT + s)

]
(1.4)

1.2 Option valuation

1.2.1 Option with continuous payoff function

The first result focuses on options with continuous payoff functions, such

as European plain vanilla options, but also lookback options.

Let PXT
denote the law and 'XT

the (extended) characteristic function of

the random variable XT ; that is

'XT
(�) = e−t (�) (1.5)

we allow � ∈ ℂ whenever the integral defining 'XT
(�) converges .

The characteristic function is the Fourier transform of the law:

'XT
(�) =

∫
R

ei�xPXT
(dx)

For any payoff function f let fR denote the dampened payoff function, defined

via

fR(x) =e−Rxf(x) (1.6)

for some R ∈ ℝ. Let f̂R denote the (extended) Fourier transform of a function

fR.

Definition 1.1. For extended Fourier transform we consider

f̂R(�) =

∫
ℝ

ei�xfR(x)dx (1.7)

we allow � ∈ ℂ whenever the integral defining above converges.



4 1. Option valuation: single asset

In order to derive a valuation formula for an option with an arbitrary

continuous payoff function f , we will impose the following conditions.

(C1) Assume that fR, f̂R ∈ L1(ℝ).

(C2) Assume that E
[
SRT
]

is finite.

Theorem 1.2.1. If the asset price process is modeled as an exponential Lévy

process and conditions (C1)–(C2) are in force, then the time-0 price function

is given by

E
[
f(XT + s)

]
=

eRs

2�

∫
ℝ

e−i�s−T (−(�+iR))f̂(iR + �)d� (1.8)

Proof. Using (1.3) and (1.6) we have

E
[
f(XT + s)

]
=

∫
Ω

f(XT + s)dP = eRs
∫
R

eRxfR(x+ s)PXT
(dx) (1.9)

By assumption (C1), fR ∈ L1(ℝ), and the Fourier transform

f̂R(�) =

∫
ℝ

ei�xf(x)dx,

is well defined for every � ∈ ℝ.

Now for (C1) f̂R ∈ L1(ℝ) so, using the Inversion Theorem (cf. [Theorem

A.37.]Pascucci07), f̂R can be inverted and fR can be represented, for all

x ∈ ℝ, as

fR(x) =
1

2�

∫
ℝ

e−ix�f̂R(u)d�. (1.10)

Now, returning to the valuation problem (1.9) we get that

E
[
f(XT + s)

]
= eRs

∫
ℝ

eRx

(
1

2�

∫
ℝ

e−i(x+s)�f̂R(�)d�

)
PXT

(dx)

=
eRs

2�

∫
ℝ

e−i�s

(∫
ℝ

e−i(�+iR)xPXT
(dx)

)
f̂R(�)d�

=
eRs

2�

∫
ℝ

e−i�s'XT
(−(� + iR)f̂(� + iR)d�

Now for(1.5) =
eRs

2�

∫
ℝ

e−i�s−T (−(�+iR))f̂(iR + �)d� (1.11)
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where for the second equality we have applied Fubini’s theorem; moreover,

for the Third equality we have

f̂R(�) =

∫
ℝ

ei�xfR(x)dx =

∫
ℝ

ei�xe−Rxf(x)dx

=

∫
ℝ

ei�xe−Rxf(x)dx = f̂(� + iR)

Finally, for the application of Fubini’s theorem we use again assumptions

(C1) and (C2): indeed the summability is guaranteed by∫
ℝ

eRx
∫
ℝ
∣e−i�(x+s)f̂R(�)∣d�PXT

(dx) = ∣∣f̂R∣∣L1E
[
eRXT

]

Remark 1 Theorem 1.2.1 can be straightforwardly generalized to the multi-

dimensional case.

Remark 2 Assumption (C1) implies that f is a continuous function. Theo-

rem 1.2.3 below provides a pricing formula for discontinuous payoffs.

Moreover (C2) is an integrability condition equivalent to

E
[
SRT
]

= eRsE
[
eRXT

]
= eRs

∫
ℝ

eRxPXT
(dx) <∞

that is, the measure eRxPXT
(dx) is finite.

Remark 3 If we apply the Substitution of the variable � we can find that:

E
[
f(XT + s)

]
=

eRs

2�

∫
ℝ

eius−T (−(−u+iR))f̂(iR− u)du

where u = −�. This result derive since:

∙ The integral is on the whole real axis.

∙ E
[
f(XT + s)

]
is always positive.

We could also replace assumption (C1) with the following condition
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(C1′): fR ∈ L1(ℝ) and ˆeRxPXT
∈ L1(ℝ).

Proof. Using (1.3) and (1.6) we have

E
[
f(XT + s)

]
=

∫
Ω

f(XT + s)dP = eRs
∫
R

eRxfR(x+ s)PXT
(dx)

ˆeRxPXT
(dx) =

∫
ℝ

eiuxeRxPXT
(dx) =

∫
ℝ

ei(u−iR)xPXT
(dx) = 'XT

(u− iR)

Now we apply the inversion formula

eRxPXT
(dx) =

1

2�

∫
ℝ

e−ixu'XT
(u− iR)du.

Now returning to the evaluation problem we get that

E
[
f(XT + s)

]
= eRs

∫
ℝ

(
1

2�

∫
ℝ

e−ixu'XT
(u− iR)du

)
fR(x+ s)dx

=
eRs

2�

∫
ℝ
'XT

(u− iR)

(∫
ℝ

e−i(y−s)ufR(y)dy

)
du

=
eRs

2�

∫
ℝ

eius

(∫
ℝ

ei(−u)yfR(y)dy

)
'XT

(u− iR)du

=
eRs

2�

∫
ℝ

eius'XT
(u− iR)f̂(iR− u)du.

=
eRs

2�

∫
ℝ

eius−T (u−iR))f̂(iR− u)du

where for the second equality we have applied Fubini’s theorem and we have

changed the variable (x+s=y =⇒ dx = dy).

And∫
ℝ

ei(−u)yfR(y)dy =

∫
ℝ

ei(−u)ye(Ry)f(y)dy =

∫
ℝ

ei(−u+iℝ)yf(y)dy = f̂(iR− u)

Finally, the application of Fubini’s theorem is justified since∫
ℝ

∫
ℝ
∣e−iux∣∣'XT

(u− iR)∣du∣fR(x+ s)∣dx ≤
∫
ℝ

(∫
ℝ
∣'XT

(u− iR)∣du
)
∣fR(x+ s)∣dx

≤ KK ′ <∞,

where we have used Assumption (C1’)
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Apart from f̂R ∈ L1(ℝ), the prerequisites of Theorem 1.2.1 are quite easy

to check in specific cases. In general, it is also an interesting question to know

when the Fourier transform of an integrable function is integrable. The prob-

lem is well understood for smooth (C2 or C∞) functions, but the functions

we are dealing with are typically not smooth. Hence, we will provide below

an easy-to-check condition for a non-smooth function to have an integrable

Fourier transform.

Let us consider the Sobolev space W 1
2 (ℝ), with

W 1
2 (ℝ) =

{
g ∈ L2(ℝ)

∣∣∣ ∂g exists and ∂g ∈ L2(ℝ)
}
,

where ∂g denotes the weak derivative of a function g; .

Let g ∈ W 1
2 (ℝ), then we get that

∂̂g(u) = −iuĝ(u) (1.12)

and ĝ, ∂̂g ∈ L2(ℝ).

Lemma 1.2.2. Let fR ∈ W 1
2 (ℝ), then f̂R ∈ L1(ℝ).

Proof. Using the above results, we have that

∞ >

∫
ℝ

(∣∣f̂R(u)
∣∣2 +

∣∣∂̂fR(u)
∣∣2)du =

∫
ℝ

∣∣f̂R(u)
∣∣2(1 + ∣u∣2

)
du. (1.13)

Now, by the Hölder inequality and (1.13), we get that∫
ℝ

∣∣f̂R(u)
∣∣du =

∫
ℝ

∣∣f̂R(u)
∣∣1 + ∣u∣
1 + ∣u∣

du

≤
(∫

ℝ

∣∣f̂R(u)
∣∣2(1 + ∣u∣)2du

) 1
2
(∫

ℝ

1

(1 + ∣u∣)2
du

) 1
2

<∞

and the result is proved.

Example 1 (Call option): For a Call option we have

C(T, S0, K) =
K1−RSR0

2�

∫
ℝ

e−i�log
S0
K
−T (−(�+iR))

(i� −R)(1 + i� −R)

Proof. By (1.8) and Section 2.1
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1.2.2 Option with discontinuous payoff function

Next, we deal with the valuation formula for options whose payoff function

can be discontinuous, while at the same time the measure PXT
does not

necessarily possess a Lebesgue density. Such a situation arises typically when

pricing one-touch options in purely discontinuous Lévy models. Hence, we

need to impose different conditions, and we derive the valuation formula as

a pointwise limit.

In this subsections we will make use of the following notation; we define

the function f̄R and the measure % as follows

f̄R(x) := fR(−x) and %(dx) := eRxPXT
(dx).

Moreover %(ℝ) =
∫
%(dx), while f̄R∗% denotes the convolution of the function

f̄R with the measure %. In this case we will use the following assumptions.

(D1) Assume that fR ∈ L1(ℝ).

(D2) Assume that E
[
SRT
]

exists (⇐⇒ %(ℝ) <∞).

(D3) Assume that the map x 7→ E
[
f(XT + x)

]
is continuous at −s and has

bounded variation in a neighborhood of −s.

Theorem 1.2.3. Let the asset price process be modeled as an exponential

Lévy process and conditions (D1)–(D2) be in force. The time-0 price function

is given by

E
[
f(XT + s)

]
=

eRs

2�
lim
A→∞

∫ A

−A
e−i�s−T (−(�+iR))f̂(iR + �)d� (1.14)

For the proof we use the following theorem:

Theorem 1.2.4. (Jordan) If f ∈ L1(ℝ) is of Bounded Variation in the

interval [a, b] then ∀x ∈]a, b[

1

2

(
f(x+) + f(x−)

)
=

1

2�
lim
A→∞

∫ A

−A
e−ixyf̂(y)dy
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Proof. Starting from (1.9), we can represent the option price function as a

convolution of f̄R and % as follows

E
[
f(XT + s)= eRs

∫
ℝ

eRxfR(x+ s)PXT
(dx)

= eRs
∫
ℝ
f̄R(−s− x)%(dx) = eRsf̄R ∗ %(−s). (1.15)

Using that fR ∈ L1(ℝ), hence also f̄S ∈ L1(ℝ), and %(ℝ) < ∞ we get that

f̄R ∗ % ∈ L1(ℝ), since

∥f̄R ∗ %∥L1(ℝ) ≤ %(ℝ) ∥f̄R∥L1(ℝ) <∞; (1.16)

compare with Young’s inequality, (cf. [IV.1.6]Katznelson04).

Therefore, the Fourier transform of the convolution is well defined and we

can deduce that, for all u ∈ ℝ,

ˆ̄fR ∗ %(u) = ˆ̄fs(u) ⋅ %̂(u);

By (1.16) we can apply the inversion theorem for the Fourier transform,

( cf.Teorema(Jordan) 2-6 B. Pini) and get

1

2

(
f̄R ∗ %(−s+) + f̄R ∗ %(−s−)

)
=

1

2�
lim
A→∞

∫ A

−A
e−i�s%̂(−�)ˆ̄fR(−�)d�, (1.17)

if there exists a neighborhood of −s where −s 7→ f̄R ∗ %(−s) is of bounded

variation.

We proceed as follows: first we show that the function s 7→ f̄R ∗ %(−s)
has bounded variation; then we show that this map is also continuous, which

yields that the left hand side of (1.17) equals f̄R ∗ %(−s).
For that purpose, we re-write (1.15) as

f̄R ∗ %(−s) = e−RsE
[
f(XT + s)

]
, ;

then, f̄R ∗ % is of bounded variation on a compact interval [a, b] if and only

if E
[
f(XT + s)

]
∈ BV ([a, b]); this holds because the map s 7→ e−Rs is of

bounded variation on any bounded interval on ℝ, and the fact that the space
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BV ([a, b]) forms an algebra.

Moreover, −s is a continuity point of f̄R ∗ % if and only if E
[
f(XT + ⋅)

]
is

continuous at −s.
In addition, we have that

ˆ̄fR(−�) =

∫
ℝ

e−i�xeRxf − (x)dx = f̂(iR + �) (1.18)

and

%̂(−�) =

∫
ℝ

e−i�xeRxPXT
(dx) = 'XT

(−� − iR) = e−T (−(�+iR)) (1.19)

Hence, (1.17) together with (1.18), (1.19) and the considerations regarding

the continuity and bounded variation properties of the value function yield

the required result.

Example 2 (digital option) The payoff of a digital call option with barrier

B ∈ ℝ+ is 1{ex>B} so

C(T, S0, K) =
B−RSR0

2pi
lim
A→∞

∫ A

−A
−e−i�log

S0
B
−T (−(�+iR))

i(� + iR)
d� (1.20)

Proof. Just use Theorem 1.2.4 with fourier transform of the payoff evaluate

in section 2.2



Chapter 2

Example of payoff functions

Here we list some representative examples of payoff functions used in

finance, together with their Fourier transforms and comment on whether

they satisfy some of the required assumptions for option pricing.

2.1 Call and Put Option

The payoff of the standard call option with strike K ∈ ℝ+ is f(x) =

(ex −K)+. Let z ∈ ℂ with ℑz ∈ (1,∞), then the Fourier transform of the

payoff function of the call option is

f̂(z) =

∫
ℝ

eizx(ex −K)+dx =

∫ lnK

−∞
0(eizx)dx+

∫ ∞
lnK

(ex −K)eizxdx

=

∫ ∞
lnK

e(1+iz)xdx−K
∫ ∞

lnK

eizxdx

Now∫ ∞
lnK

e(1+iz)xdx =
1

1 + iz

∫ ∞
lnK

e(1+iz)x(1 + iz)dx =
1

1 + iz

[
e(iz+1)x

]∞
lnK

11



12 2. Example of payoff functions

Now we use ℑz ∈ (1,∞) so

= 1 + iz

[
0− e(iz+1)lnK

]
= −K

iz+1

iz + 1

and

−K
∫ ∞

lnK

eizxdx = −K
iz

∫ ∞
lnK

iz(eizx)dx = −K
iz

[
eizx
]∞
lnK

Now we use ℑz ∈ (1,∞) so

= −K
iz

[
0−Kiz

]
= KizK

iz

Finally

f̂(z) = −K
iz+1

iz + 1
+KizK

iz
=

K1+iz

iz(1 + iz)
. (2.1)

Now, regarding the dampened payoff function of the call option, we easily

get for R ∈ (1,∞) that fR ∈ L1
bc(ℝ) ∩ L2(ℝ) (where L1

bc(ℝ) is the space of

bounded and continuous function in L1). The weak derivative of fR is

∂fR(x) =

{
0, if x < lnK,

e−Rx(ex −Rex +RK), if x > lnK.
(2.2)

Again, we have that ∂fR ∈ L2(ℝ). Therefore, fR ∈ W 1
2 (ℝ) and using Lemma

1.2.2 we can conclude that f̂R ∈ L1(ℝ). Summarizing, condition (C1) of

Theorem 1.2.1 is fulfilled for the payoff function of the call option.

Similarly, for a put option, where f(x) = (K − ex)+, we have that

f̂(z) =
K1+iz

iz(1 + iz)
, ℑz ∈ (−∞, 0). (2.3)

Analogously to the case of the call option, we can conclude for the dampened

payoff function of the put option that fR ∈ L1
bc(ℝ) and fR ∈ W 1

2 (ℝ) for

R < 0, yielding f̂R ∈ L1(ℝ). Hence, condition (C1) Theorem 1.2.1 is also

fulfilled for the payoff function of the put option.
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2.2 Digital Option

The payoff of a digital call option with barrier B ∈ ℝ+ is 1{ex>B}. Let

z ∈ ℂ with ℑz ∈ (0,∞), then the Fourier transform of the payoff function of

the digital call option is

f̂(z) =

∫
ℝ

eizx1{ex>B}dx =

∫ lnB

−∞
0eizxdx+

∫ ∞
lnB

eizxdx

=
1

iz

∫ ∞
lnB

izeizxdx =
1

iz

[
eizx
]∞
lnB

Now we use ℑz ∈ (0,∞) so

=
1

iz

[
0−Biz

]
= −B

iz

iz
(2.4)

Similarly, for a digital put option, where f(x) = 1{ex<B}, we have that

f̂(z) =
Biz

iz
, ℑz ∈ (−∞, 0). (2.5)

For the dampened payoff function of the digital call and put option, we can

easily check that fR ∈ L1(ℝ) for R ∈ (0,∞) and R ∈ (−∞, 0).
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2.3 Asset-or-Nothing Digital Option

A variant of the digital option is the so-called asset-or-nothing digital,

where the option holder receives one unit of the asset, instead of currency,

depending on whether the underlying reaches some barrier or not. The payoff

of the asset-or-nothing digital call option with barrier B ∈ ℝ+ is f(x) =

ex1{ex>B}, and the Fourier transform, for z ∈ ℂ with ℑz ∈ (1,∞), is

f̂(z) =

∫
ℝ

eizx1{ex>B}dx =

∫ lnB

−∞
0eizxexdx+

∫ ∞
lnB

eizxexdx

=
1

1 + iz

∫ ∞
lnB

(1 + iz)e(1+iz)xdx =
1

1 + iz

[
e(1+iz)x

]∞
lnB

Now we use ℑz ∈ (1,∞) so

=
1

1 + iz

[
0−B1+iz

]
= −B

1+iz

1 + iz
(2.6)

Similarly, for a asset-or-nothing digital put option, where f(x) = ex1{ex<B},

we have that

f̂(z) =
B1+iz

1 + iz
, ℑz ∈ (−∞, 0). (2.7)
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2.4 Double Digital Option

The payoff of the double digital call option with barriers B,B > 0 is

1{B<ex<B}. Let z ∈ ℂ∖{0}, then the Fourier transform of the payoff function

is

f̂(z) =

∫ lnB

lnB

eizxdx =
1

iz

[
eizx
]lnB
lnB

=
1

iz

(
B
iz −Biz

)
(2.8)

The dampened payoff function of the double digital option satisfies g ∈ L1(ℝ)

for all R ∈ ℝ.

Moreover, we can decompose the value function of the double digital

option as

E
[
f(XT + s)

]
= E

[
f1(XT + s)

]
− E

[
f2(XT + s)

]
where f1(x) = 1{ex<B} and f2(x) = 1{B≤ex}.
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2.5 Self-Quanto Option

The payoff of a self-quanto call option with strike K ∈ ℝ+ is f(x) =

ex(ex −K)+. Let z ∈ ℂ with ℑz ∈ (2,∞), then the Fourier transform of the

payoff function of the self-quanto call option is

f̂(z) =

∫ ∞
lnK

eizxex(ex −K)dx =

∫ ∞
lnK

e(2+iz)xdx+

∫ ∞
lnK

−Ke(iz+1)xdx

Now if ℑz ∈ (2,∞) the first integral is

1

2 + iz
Kiz+2

and the second integral is

1

1 + iz
Kiz+1

so

f̂(z) =
K2+iz

(1 + iz)(2 + iz)
. (2.9)

Similarly, for a self-quanto put option, where f(x) = ex(K − ex)+, we get

f̂(z) =
K2+iz

(1 + iz)(2 + iz)
, ℑz ∈ (−∞, 1).

Analogously to the case of the call and put option, we can conclude for the

dampened payoff function of the self-quanto option that fR ∈ L1
bc(ℝ)∩W 1

2 (ℝ)

for R ∈ (2,∞) and R ∈ (−∞, 1) respectively; hence f̂R ∈ L1(ℝ) in both

cases. Summarizing, condition (C1) of Theorem 1.2.1 is fulfilled for the

payoff function of the self-quanto option.
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2.6 Power Option

The payoff of a power call option with strike K ∈ ℝ+ and power 2 is

f(x) = [(ex−K)+]2. Let z ∈ ℂ with ℑz ∈ (2,∞), then the Fourier transform

of the payoff function of the power call option is

f̂(z) =

∫ ∞
lnK

eizx(ex +K)2dx =

∫ ∞
lnK

e(iz+2)x +K2eizx − 2Ke(iz+1)xdx

=
1

iz + 2

[
e(iz+2)x

]∞
lnK

+
K2

iz

[
eizx
]∞
lnK

− 2K

iz + 1

[
e(iz+1)x

]∞
lnK

Now we use ℑz ∈ (2,∞) so

=
1

iz + 2
Kiz+2 +

K2

iz
Kiz − 2K

iz + 1
Kiz+1 =

2K2+iz

iz(1 + iz)(2 + iz)
(2.10)

Similarly, for a power put option, where f(x) = [(K − ex)+]2, we get

f̂(z) = − 2K2+iz

iz(1 + iz)(2 + iz)
, ℑz ∈ (−∞, 0). (2.11)

Once again, we can easily conclude for the dampened payoff function of the

power option that fR ∈ L1
bc(ℝ) ∩W 1

2 (ℝ) for R ∈ (2,∞) and R ∈ (−∞, 0)

respectively; hence f̂R ∈ L1(ℝ) in both cases. Summarizing, condition (C1)

of Theorem 1.2.1 is fulfilled for the payoff function of the power call and put

option.
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Chapter 3

Example of characteristic

function

In probability theory and statistics, the characteristic function of any ran-

dom variable completely defines its probability distribution. Thus it provides

the basis of an alternative route to analytical results compared with working

directly with probability density functions or cumulative distribution func-

tions.

In addition to univariate distributions, characteristic functions can be defined

for vector- or matrix-valued random variables, and can even be extended to

more generic cases.

The characteristic function always exists when treated as a function of a

real-valued argument, unlike the moment-generating function. There are re-

lations between the behavior of the characteristic function of a distribution

and properties of the distribution, such as the existence of moments and the

existence of a density function. The characteristic function provides an al-

ternative way for describing a random variable. Similarly to the cumulative

distribution function

FX(x) = E 1{X≤x}

19
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which completely determines behavior and properties of the probability dis-

tribution of the random variable X, the characteristic function

'X(t) = E[eitX ]

also completely determines behavior and properties of the probability distri-

bution of the random variable X. The two approaches are equivalent in the

sense that knowledge of one of the functions can always be used in order to

find the other one, yet they both provide different insight for understanding

the features of our random variable. However, in particular cases, there can

be differences in whether these functions can be represented as expressions

involving simple standard functions.

If a random variable admits a density function, then the characteristic func-

tion is its dual, in the sense that each of them is a Fourier transform of

the other. If a random variable has a moment-generating function, then the

characteristic function can be extended to the complex domain so that

'X(−it) = MX(t).

Note however that the characteristic function of a distribution always exists,

even when the probability density function or moment-generating function

does not.

Definition 3.1. For a scalar random variable X the characteristic function

is defined as the expected value of eitX , where i is the imaginary unit, and

t∈ ℝ is the argument of the characteristic function:

'X : ℝ→ ℂ; 'X(t) = E
[
eitX

]
=

∫ ∞
−∞

eitx dFX(x)

(
=

∫ ∞
−∞

eitxfX(x) dx

)
Here FX is the cumulative distribution function of X, and the integral is of

the Riemann-Stieltjes kind. If random variable X has a probability density

function fX , then the characteristic function is its Fourier transform, and the

last formula in parentheses is valid.
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3.1 CGMY Model

Let H = (Ht)0≤t≤T be a CGMY Lévy process, another name for this

process is (generalized) tempered stable process.

The characteristic function of Ht, t ∈ [0, T ], is

'Ht(u) = exp
(
tC Γ(−Y )

[
(M − iu)Y + (G+ iu)Y −MY −GY

])
(3.1)

for Y ∕= 0 where the parameter space is C,G,M > 0 and Y ∈ (−∞, 2). and

the moment generating function exists for R ∈ ℐ = [−G,M ]. The sample

paths of the CGMY process have unbounded variation if Y ∈ [1, 2), bounded

variation if Y ∈ (0, 1), and are of compound Poisson type if Y < 0.

3.2 Normal distribution

For the standard normal random variable, the characteristic function is

'(u) =

∫ ∞
−∞

eiux
1√
2�

e−
1
2
x2dx = e−

1
2
u2 . (3.2)

For a generic normal distribution with mean � and variance �2, the charac-

teristic function is

'(u; �, �2) = E[eiuN (�,�2)] = ei�u−
1
2
�2u2 . (3.3)
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Chapter 4

Application

Assume we are interested in pricing a European option on the asset

ST = S0eH , e.g. a call, a put or a digital option. Then, it is sufficient

to know the characteristic function of the random variable XT ≡ HT , and

HT must possess a moment generating function for R ∈ ℐ with ℐ ⊆ ℝ.

Examples of options that can be treated include plain vanilla call and put

options with payoff (ST −K)+ and (K − ST )+, digital cash-or-nothing and

asset-or-nothing options, with payoffs 1{ST>B} and ST1{ST>B}, double dig-

ital options, with payoff 1{B<ST<B}, self-quanto and power options. Below

we describe some characteristic examples of models used in mathematical

finance.

4.1 Numerical evaluation: CGMY model

As an illustration of the applicability of Fourier-based valuation formulas

we present a numerical example on the pricing of a call option. As driving

motion we consider CGMY model.

23
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4.1.1 C(K, t)

From Theorem 1.2.1 (with no-zero interest rate r) and from (2.1) we

obtain

C(t, S0, K) =
e−rTK1−RSR0

2�

∫
ℝ

e−i�log
S0
K
−T (−(�+iR))

(i� −R)(1 + i� −R)
(4.1)

where  is the characteristic exponent function (3.1)

 (�) =
(
− C Γ(−Y )

[
(M − i�)Y + (G+ i�)Y −MY −GY

])
The choice of parameters (CGMY) is based on Carr, Peter, Geman, Hélyette,

Madan, Dilip B., Yor, Marc (2002). ”The fine structure of asset returns: an

empirical investigation”.

The interest rate r=0.05.

For the implementation we use MATLAB

%%%%%%%%%%%%%CGMY_call_option.m%%%%%%%%%%%%%%

close all

clear all

% parametri

% Y in [-inf,2] (interessante in [1,2])

% scelta 1

Y = 1.50683;

C = 0.08;

G = 25.04;

M = 25.04;

% R in [-G,M]

R = 2;

r = 0.05;

S0 = 100;

% tempi
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t = linspace(0,1,20);

% strike

k = linspace(85,135,20);

% integrazione numerica

lt = length(t);

lk = length(k);

V = zeros(lt,lk);

for i=1:lt

for j=1:lk

V(i,j) = CGMY_value1(t(i),k(j),Y,C,G,M,R,r,S0);

end

end

[K,T] = meshgrid(k,t);

surf(K,T,Q)

xlabel(’k’)

ylabel(’t’)

zlabel(’V’)

where the function value(t(i), k(j), Y, C,G,M,R, r, S0) is

%%%%%%%%%%%%CGMY_value.m%%%%%%%%%%%%%

function [V] = CGMY_value1 (t,k,Y,C,G,M,R,r,S0)

% integrazione numerica

% estremi di integrazione

a = -100000;

b = 100000;

h = exp(-r.*t)*kˆ(1-R).*S0ˆR./(2*pi);
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V = h*quad(@(u)CGMY_integrand1(u,t,k,C,G,M,Y,R,S0),a,b);

end

where CGMY integrand1 is

%%%%%%%%CGMY_integrand1.m%%%%%%%%%%%%

function [y] = CGMY_integrand1 (u,t,k,C,G,M,Y,R,S0)

psi = CGMY_characteristic_exp1(+u-1i*R,C,G,M,Y);

y = exp(+1i.*u.*log(S0./k)-t.*psi)./((-1i.*u-R).*(1-1i.*u-R));

where characteristic exp1 is

%%%%%%%%CGMY_charcteristic_exp1.m%%%%%%%%%%

function [psi] = CGMY_characteristic_exp (u,C,G,M,Y)

psi = -C*gamma(-Y).*((M-1i.*u).ˆY+(G+1i.*u).ˆY-MˆY-GˆY
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Figure 4.1: Call Price in the CGMY model

4.1.2 C(K,R)

With small changes in CGMY_call_option1.m we can see how, for fixed

t, the price of an option changes with respect to the dampening coefficent R

and the Strike K.

%%%%%%%%%%%%%CGMY_call_option_R.m%%%%%%%%%%%%%%

close all

clear all

% parametri

% Y in [-inf,2] (interessante in [1,2])
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Y = 1.50683;

C = 0.08;

G = 25.04;

M = 25.04;

% interest rate

r = 0.05;

%tempo

t = 0.5;

S0 = 100;

% coefficente di penalizzazione

R = linspace(1.1,25,20);

% strike

k = linspace(85,130,20);

% integrazione numerica

lR = length(R);

lk = length(k);

V = zeros(lR,lk);

for i=1:lR

for j=1:lk

V(i,j) = CGMY_value1(t,k(j),Y,C,G,M,R(i),r,S0);

end

end

[K,RR] = meshgrid(k,R);

surf(K,RR,V)

xlabel(’k’)

ylabel(’R’)

zlabel(’V’)
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Figure 4.2: Call Price changes respect to R

4.2 Fourier transform valuation Vs Black-Sholes

model

In this section we want to see the difference between the valuation of

the price of a call option using Black-Sholes formula and the valuation using

Fourier transform method. With a little modification of our implementation

we can see this difference.

First of all we change the characteristic_exp.m and we put inside the

characteristic function of a normal distribution:

'(u; �, �2) = E[eiuN (�,�2)] = ei�u−
1
2
�2u2
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In Black-Sholes model ST = S0eXT where XT ∼ N ((r − �2

2
)t, �2t).

So the characteristic function becomes

'HT
(u) = e−t (u)

Where

 (u) = −iu(r − �2

2
) +

1

2
�2u2 (4.2)

We choose r = 0.05 & � = 0.30

%%%%%%%%Characteristic _exp1.m%%%%%%%%%%

function [psi] = characteristic_exp (u,r,d)

psi = -1i*u.*(r-0.5*dˆ2)+0.5*dˆ2.*u.ˆ2;

Figure 4.3: Call price with characteristic function of a normal distribution
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With the same changes made in 4.1.2 we can see how, for fixed t, the

price of an option changes with respect to the dampening coefficent R and

the Strike K.

Figure 4.4: Call price with characteristic function of a normal distribution

changes respect to R
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Finally we want to see the Approximation error between V (Price of an

option with Fourier transform method) and price (Price of an option with

Black-Sholes formula) :

V − price
price

(4.3)

The value of a call option in terms of the Black-Scholes parameters is:

C(S, t) = SN(d1)−Ke−r(t)N(d2)

d1 =
ln( S

K
) + (r + �2

2
)(t)

�
√
t

d2 = d1 − �
√
t.

where:

N() is the cumulative distribution function of the standard normal distribu-

tion

t is the time to maturity

S is the spot price of the underlying asset

K is the strike price

r is the risk free rate (annual rate, expressed in terms of continuous com-

pounding)

� is the volatility in the log-returns of the underlying.

So we modify Call_option.m in following way:

%%%%%%%%%%call_option.m%%%%%%%%%%

close all

clear all

% parametri

r = 0.05;
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d = 0.3;

% R coefficente di penalizzazione

R = 2;

S0 = 100;

% tempi

t = linspace(0.1,2,60);

% strike

k = linspace(70,110,51);

% integrazione numerica

lt = length(t);

lk = length(k);

V = zeros(lt,lk);

d1 = zeros(lt,lk);

d2 = zeros(lt,lk);

price = zeros(lt,lk);

for i=1:lt

for j=1:lk

V(i,j) = real(value(t(i),k(j),r,d,R,S0));

d1(i,j)=(log(S0./k(j))+(r+(dˆ2)/2).*(t(i)))/(d.*sqrt(t(i)));

d2(i,j)=d1(i,j)-d.*sqrt(t(i));

price(i,j)=S0.*normcdf(d1(i,j))+

-k(j).*exp(-r*(t(i))).*normcdf(d2(i,j));

end

end

[K,T] = meshgrid(k,t);

surf(K,T,(V-price)./price)

xlabel(’k’)

ylabel(’t’)
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zlabel(’(V-price)/price’)

Figure 4.5: Approximation error
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