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Abstract

Nella tesi viene studiata la dinamica stocastica di particelle non interagenti
su network con capacita di trasporto finita.

L’argomento viene affrontato introducendo un formalismo operatoriale
per il sistema.

Dopo averne verificato la consistenza su modelli risolvibili analiticamente,
tale formalismo viene impiegato per dimostrare I’emergere di una forza en-
tropica agente sulle particelle, dovuta alle limitazioni dinamiche del network.

Inoltre viene proposta una spiegazione qualitativa dell’effetto di attrazione
reciproca tra nodi vuoti nel caso di processi sincroni.
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Chapter 1

Introduction

The validity of a physical theory is measured on one hand with its capability
to predict the behaviour of the studied system, ultimately based on the in-
dividuation of the proper quantities to characterize it and of the interaction
retained relevant to model their evolution; on the other hand with its gener-
ality, that is the abstraction of the theory from the particular features of the
model it comes from individuating universal properties to classify it.

The traditional environment of physics is the description of natural phe-
nomena, being its elements more easily understood as following objective
rules rather than rational (thus in a certain sense non predictable) behaviours;
the final aim is the comprehension of fundamental laws of nature.

Nonetheless physicists have always applied their knowledge to other fields
of interest, from natural to human sciences. This is the case of complex system
physics, that moves from the purpose of a comprehension of the structural
universal properties of the interaction occurring among the elements of a sys-
tem, rather than the nature of these interactions (that are usually completely
different).

A great contribution of physics is the introduction of the statistical me-
chanics point of view to study the behaviour of systems with very large
numbers of elements.

Although the idea of a statistical approach to such a kind of problems
was already used (in social science for example), statistical mechanics intro-
duces a way to model the dynamic evolution of the macro variables of the
system, providing a connection between the microscopic and the macroscopic
dynamics.

The price to obtain handable (i.e. useful) equations can be the unavoid-
able (over?) simplification of the problems at stake, therefore the comparison
with empirical datas remains a fundamental point; but the advantage is the



effectiveness in find and explain large scale and collective phenomena [18§],
[19].

This kind of phenomena, due to the simplification procedure they come
from, reveals universal features depending on the topology and dimension-
ality of the system, rather than on the specific nature of the microscopic
processes occurring in it.

In light of these considerations results clear the progress constituted by
the introduction of graph theory to represent the network of interaction oc-
curring in the systems.

The origin of graph theory has to be dated back to a real world network,
with the Konigsberg bridges problem solved by Euler (1735).

Although studied in the early years of its history as a branch of mathe-
matics, the concept of network began to be applied with success in almost
all the natural and human sciences, providing a way to represent real world
systems that entails the emergence of otherwise unaccountable effects (by
means of trivial topologies such as lattices). Complex networks became in
the 90’s a large-scale studied topic [10].

The taxonomy of network theory is nowadays impressive and continuously
growing, under many approaches.

One of the principal approaches is focused on the network itself and its
structures.

The introduction of the concept of random graphs and the idea of net-
works as dynamical systems themselves, established a first connection with
statistical mechanics and ensembles theory. It provides fruitful applications
that range from biology (metabolic reaction in cellular networks are modeled
by means on directed sparse graph [17]), to genetics (weighted graph [10]),
epidemiology (a great improvement in models was achieved by Vespignani
using uncorrelated random networks [10]), and many others.

This thesis can be framed in a different approach to connect physics and
graph theory: the placement of dynamical systems, free particles or interact-
ing agents, on networks.

The underlying network can be variably relegated to assume a background
role, for example in many traffic models or percolation on porous media [16],
or a primary one (many models indeed consider agents co-evolving with the
network|10]).

It is worth stressing that the distinction of these approaches is far from
being sharp, since random walk and graph theory are deeply related already
at an abstract level. Fictitious random walks can be employed to explore the



structural properties of a graph, but can equally well represent one-particle
processes of real world physical entities.

In this thesis we study the stationary states of random walks on network
with a finite transportation capacity of the nodes.

Our main result is to develop an operatorial formalism to describe this
kind of classical systems. The operatorial formalism is applied to give a direct
proof of the inequality of synchronous and subsequent particle exchanges on
the network, and a qualitatively estimate of the effects arising from this
inequality.

We work with undirected networks, taken for simplicity connected. The
network is given once and does not change during the evolution of the system:;
in this sense it doesn’t have a proper dynamics and acts like a background.

Our focus is on the effects over the stationary distribution determined by
changes in dynamics rules: how many particles can move per node and how
many particles can move per time-step. In particular we study the steady
states of a infinite transport capacity network and of a finite transport ca-
pacity network.

This work is based on the definition of a second quantization like formal-
ism.

We take advantages of the operatorial commutation rules provided by the
formalism to account of the non-commutativity of particle exchanges on the
network.

In the presented models we assume particles conservation; however the
extension of the theory to non conservative processes is straightforward and
the Fock formalism, in order to work with variable number of particles, seems
to be even more convenient.

In the first part of the thesis we define the operatorial formalism defining
the network states and the dynamical operators.

We apply the latter to the case of IV identical particles performing in-
dependent random walks on an infinite transport capacity network. The dy-
namics is approximated with a single particle exchange among nodes, and
the well known steady distribution is correctly recovered.

The same model is then applied to a more realistic finite (one particle)
transport capacity network. Again we succeed in recovering the expected
steady state; furthermore we understand the shape of the distribution as the
effect of an entropic force.

In the second part of the thesis we compare the differences occurring in
a dynamics based on subsequent double exchanges of particles among nodes



and in a dynamics based on synchronous double exchanges of particles among
nodes, studying the steady states.

In the infinite transport capacity case we find that the steady distribu-
tion remains unaltered in both situations, and equal to the single-exchange
dynamics.

In the finite transport capacity case we prove that a synchronous dy-
namics modifies the stationary distribution of the network, as indicated by
numerical simulations [1]. In order to pertubatively study the steady state we
relate the evolution operator of the synchronous dynamics to the evolution
operator of the subsequent dynamics, by means of two operators representing
the corrections.

Finally we show that an estimate of the correction effects can explain the
over-expression of network states with empty couples of node reported by
numerical simulations.

The study developed in the thesis is quite abstract and we do not propose
a specific application example.

The initial assumption of non-interacting particles could seem an over
simplification proper of a toy model, but many chaotic processes can be well
represented as random walks (e.g. routing packets in internet traffic [10]).

The random walks on network may simulate some universal properties
of transportation systems from biology [17] to social systems [18], in order
to understand the stationary solutions or the rising of critical states like
congestion.

In particular, since one of the principal results obtained concernes the
enhancement of stationary probabilities for boundary states (i.e. with empty
nodes), this suggests an application in traffic models.

Traffic models indeed are interested in the optimization of flows minimiz-
ing disutilities (congestion). This kind of systems are naturally implemented
on networks, in particular with finite transport capacity limitations [15].

The obtained results for a single step and a double step dynamics is
understood as an entropic force acting among empty nodes, and seems to be
related to the number of synchronous events occurred in the system.

The extension of the mechanism to more involved models should generate
interesting consequences if the number of coupled empty nodes is related to
a phase transition (as congestion for example). In such a case the number of
synchronous events could be the order parameter of the system.



Chapter 2

Networks and random walks

In this section we introduce the topics that constitute the framework of the
thesis: random walk and networks.

We give a brief overview of the principal definitions and define the main
parameters of interest in dynamical models described by means of random
walk on graph.

In particular we relate this parameters to the spectral properties of the
underlying graph, providing in this way a method to perform algebraic cal-
culations to bound the parameters.

We shall prove the principal results that we will employ in the rest of the
thesis.

2.1 Markov chains, graphs and random walk on
network

A random walk can be represented as a Markov chain: a stochastic process
whose evolution depends solely on the present state and not on the past [9].

From a mathematical point of view, given a probability space £, a measur-
able space X', and a totally ordered set Z, a stochastic process is a collection
of X-valued random variables on £ labeled by Z:

P=Ax|x, € X, tel}

If the set X is finite the stochastic process is said to be finite and its
variable can take a finite number of values.

We refer to the index ¢ as the time of the process, that evolves assigning
different values to x; and x;,; from the set of the states X according to some
probability distribution.



The stochastic process assigns a transition probability to every possible
change of variable value. We write the transition probability to evolve from
the state s to the state k as P,. We have a Markov chain if:

Prob(xipn = k|ay = 8,001 = S4—1... T, = So)
= Prob(xi 1 =k|zy = 5) = Prs(t)

where k,s,s;-1,...,5 € X

The conditional probabilities Prob(z;+1 = k|x; = s) do not involve
So.-.S4_1, that represents the absence of memory of the process.

If transition probabilities do not depend on ¢ the Markov chain is said to
be homogeneous.

We can define a N x N (where N is the number of possible states in X')
matrix P, called transition matrix, understanding the indexes of P, as row
and column indexes.

Transition matrix P is a stochastic matrix:

> Pu=1 DP,>0 VksecX
k
We say that a state k is accessible from the state s if

In>1€eN : (P >0

Two states k, s are said to be equivalent iff :

Eln,mz 1eN : (Pn)ks >0 (Pm)ks >0

and have all their states in one equivalence class.
An irreducible Markov chain is a Markov chain whose transition matrix

is irreducible.
For the time evolution of the Markov chain described by the transition
matrix the Chapman-Kolmogorov equation holds

(P = > (P (P t=1,....n—1 (2.1.1)

In what follow we will use discrete state variables. However, for continuous
state variables, fundamental equations of the Markov process read:



PTOb(.ﬁEQ,tQ) = /dl'lp(l'g,tg‘l'l,tl)PT’Ob(l’l,TH)

P(xs,ts]x1,t1) = /d$2P(1337t3|$2,tz)P(b?tz\xl,h) , T <o <3

Proceeding with matrix notation we will employ now on the Dirac no-
tation, representing column vectors with the ket symbol |) and row vectors
with the bra symbol (|. The scalar product of the vector space is represented
by the contraction of bra-ket (||).

The probability distribution of z; can be arranged in a column vector (in
the literature it is sometimes used the convention of expressing the distribu-
tion as a row vector)

p(t)) : = {pi(t) = Prob(z; = ;) };cx
Ip(t+1)) = P |p(t)) = P [p(0))

We say that Markov chain is stationary iff it is time homogeneous and
has the same distribution p, for any ¢t € Z.

In matrix notation this is equivalent to say that the distribution p, is the
right eigenvector of transition matrix P with eigenvalue 1 :

Plps) =11|ps)  with (i|ps) > 0Vi

Since P is a stochastic matrix it always has an eigenvalue 1. Indeed con-
dition ), P;; = 1 in matrix notation reads

alp = (1

where (1| is a row vector of 1 entries.
Remark: the positivity of the right eigenvector is not guaranteed.

We proceed introducing networks as formally defined mathematical struc-
tures [9], using therefore the mathematical term "graph" instead of network.

Let G be a finite set , adjacency is a binary relation on G

V—u veV,uelU V,UCG



Adjacency defines a collection of ordered pairs £ C V x U.

We identify the graph as G(V, E), where V' C G is the set of identical
elements called vertices (nodes), and E C V x V is a collection of pairs of
elements called edges (links), defined by adjacency relation.

Graphs are usually represented by diagrams, drawing vertices as points
and edges as lines connecting the points related by adjacency.

It is worth to introduce some further notions and definitions.

The complement G of a graph G is the graph defined on the same set of
vertices with the set of edges defined as the edges not present in G.

The dual graph Lg of G is a graph created drawing a vertex for every
edge of (G, and connecting two vertices of L if the corresponding edges in
G are incident on the same vertex.

In this thesis we work with undirected graphs, that means relation (2.1)
is symmetric. Otherwise graphs are said to be oriented.

moreover we consider only simple graph, which means that no loops (a
vertex connected to itself) nor multiple edges are allowed.

A path is an alternating sequence of adjacent vertices and edges with no
repeated vertices [10].

Graphs are naturally represented by matrices, indeed to every graph can
be associated an adjacency operator A.

Let F(V): V — R the vector space of real functions on V, and {¢; }2,
its canonical orthonormal basis , where |V| = M is the number of vertices.

The inner product of f,g € F(V) is

(f,9) =D f@i)g(i)

2%

Ais a M x M square matrix representing, with respect to the canonical
basis, the adjacency operator defined by

(AN =D f)  f € FA), (i)ekE
(4,%)

Once the vertices of G are enumerated, A is uniquely defined - and so is
A - up to permutation of rows and columns.

The adjacency matrix of a simple graph is a symmetric matrix with en-
tries: A;; =1if i — j € E, 0 otherwise (including ¢ = j). In such a case we
will write A;; = 1;;.



The special case of a complete graph has an adjacency matrix with all 1
off diagonal.

The degree of a vertex ¢ is the number of edges attached to it, formally
defined as

di:ZAij:card{jE V’lvj}

J

For a regular graph d; = const Vi € V.

Let G(V, E) be a graph and create an ordered sequence of nodes as follows:
given a starting node 7, vy = ¢, choose at random one node adjacent to it and
assign v; = j , then choose at random a node adjacent to j, and so on.

This is a random walk on a graph. Clearly a random walk on a graph is a
finite Markov chain on the set of nodes of the graph. Moreover every Markov
chain can be viewed as a random walk on a graph [3].

The case of interest for our work is the random walk on an undirected
graph.

The undirected feature of the graph is related to the time-reversibility of
the Markov chain: the random walk considered backwards is a random walks.
In terms of the stationary distribution this property corresponds to detailed
balance, as we will see in detail.

Most of the fundamental properties of a random walk are determined
by the properties of the underlying graph, therefore the spectral analysis of
the latter provides a useful tool to obtain quantity and bounds on the main
parameters of the walk. We discuss this point in more detail later, following
the work of Chung [4] and Lovasz |3].

The random walk induces on the nodes a probability distribution that we
represent as a column vector with components

pi(t) = Prob(v, = 1) i=1...M

The transition probabilities are the entries of the M x M matrix P where
M is the number of the nodes.

We will deal mostly with undirected and connected graphs. In such cases
at every time step the random walker chooses a link of the node to go through
with equal probability. Therefore

(2.1.2)



The transition matrix P is related to the adjacency matrix A of the
underlying graph by the relation

P=D"A
where D = diag(d; ...dy)

The graph theory provides also the concept of weighted graph, where
adjacency matrix is substituted with affinity matrix W that assign to every
edge a weight w;;.

Vertex degree of a weighted graph is

J
and the transition probabilities read

wij

T (2.1.5)

(P)iy = mj =

The introduction of the link weights provides a useful way to describe
systems where not all the path are equivalent for the random walker.

Thanks to Kolmogorov equation the evolution of the system is given by

Ip(t)) = P* |p(0))

The steady distribution of (2.1.2), induced by a random walk on the
undirected connected graph G(V, E), reads
d;

p°(i) = 5 |E| =m (2.1.6)

arranged in the column vector [p;) of components p; = (i |p)
Indeed it is immediate to see that

Ly d d,
— = 2.1.
Z Tij D) = d; 2m 2m (2..7)

Furthermore (2.1.6) is unique (belng the graph connected).
The system always converges to its steady state as we demonstrate in the
next section.
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The steady state satisfies a detailed balance condition

TPy = mpp;  Vij €V (2.1.8)

meaning the frequency of the step ¢ — j is equal to the j — ¢ one.

In terms of the Markov chain this is equivalent to the time-reversibility of
the stochastic process and in terms of the graph to the unweighted connected
nature of it.

In our work the latter consideration plays an important role to determine
the behaviour of an unknown steady state, and therefore we discuss detailed
balance in a section dedicated.

The quantitative study of random walks on graphs usually refers to mea-
sures defined as [3]:

e [;; hitting time, written as an M x M matrix such that its entries
represents the expected number of steps to go from 5 to ¢

® Kij = sz + Hjl commute time

e cover time, the expected number of steps to visit every node

o

o /1 = limy_, sup max;; |m;(t) — ps(j)|* , mixing rate

Mixing rate is a measure of the rate of convergence to the steady state in
the following sense: m;;(¢) is the probability to be at node i starting from an
arbitrary node j after ¢ steps, thus |m;(t) — ps(j)| is the "distance" of this
probability from the stationary distribution after ¢ steps.

Many applications of the theory of random walk on graph, in particular
in computer science and complex systems, are based on the bounds of these
parameters, that for this reason become topics of great interest [11], [12].

In the following section we study the spectral properties of the graph
underlying the random walk, reporting in this perspective some remarkable
expression for the above defined parameters.

2.2 Spectral properties
Spectral graph theory is a branch of graph theory that, studying the spectra

of a graph and its invariants, allows to determine many structural features
of the graph itself.
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Since its very beginning, this discipline has been developed by math-
ematicians studing adjacency matrices, in particular those of regular and
symmetric graphs, with algebraic methods.

The understanding of many possible interconnections of spectral graph
theory with other branches, not only within mathematics (in particular dif-
ferential geometry [4]), but also in theoretical physics (Hamiltonian systems),
chemistry (stability of molecules), computational theory and many other, has
been a great stimulus in the develop of this subject beyond its original area.

As sketched above, random walks and graph theory are deeply related
subjects, since many of the properties of the random walk can be expressed
and bounded using results of the spectral graph analysis applied to transition
matrix.

In order to study spectral properties of transition matrices we follow [4] in
what concerns the graph spectre, since it uses a "general and normalized form
of eigenvalues" suitable for stochastic processes, emphasizing the application
to relevant parameters of random walk.

Let G(V, E), with |V| = M and |E| = m, be a graph, and let P be the
transition matrix of a random walk on G.

As well known, P is in general non-symmetric, nonetheless we can say
that its M eigenvalues are all real.

To prove this statement it is useful to resort to the definition of laplacian
L matrix as

d1 0 11j dl _]-lj
L=D- A= _ : _ .
dM 1]\/[] 0 —1]\/[J dM
1 —

\/did;
L=D3LD 3 =]—D3AD 5 =
1ag; 1

- Vd;
(2.2.1)

D is a diagonal matrix and the connection matrix A is symmetric , so
clearly are L and £. Now since P = AD~! follow the relations :

1

P = D:(I — £)D 2

2.9.9
L=]—D32PD> (2:2.2)

13



The strategy is to work with the symmetric matrix £ and its eigenvalues,
applying then the obtained results to P.

Being £ symmetric it has M real eigenvalues. Taking an eigenvector |v)
with A eigenvalue:

(vIL]v) = Av|v)
(v|D"2 LDz |v) = A{v|v)
(fILIf) = MD2v|D7v)  where|f) = D~|v)
_ Zz’j{fi(diéij)fj - fl(lm)fj} Zz fi2di - Z(i,j) 2fz’fj

A Zz f;di - Z, fZde B
Z(i,j) 2f7di — Z(i,j)(fi — fi)? B E(i,j)(fi — f;)?
Zi fide' B ZZ fzzdi

(2.2.3)

Equation (2.2.3) proofs that A > 0. Furthermore is easy to see that A =0
is a solution of the equation, with f; = const. So we can label eigenvalues as
0=X < A1+ < Apy_q, and we write the spectral decomposition

L= MJoh)(vh| (2.2.4)
k
If the graph is connected it holds

It is immediate from the computation of £ trace to prove that
<M (2.2.6)
i

with the equality holding iff the graph has no isolated vertices.
From the latter and keeping in mind the labeling order of A\; and Ay =0
follows

M—1 Y
(M—1)A1§;AiSM¢A1§M_1 (2.2.7)

Furthermore equation (2.2.3) fixes the upper bound
A1 <2 (2.2.8)

14



indeed in general (f(z) — f(y))? < 2(f(z)*+ f(y)?, and properly treating
the sum over links

DA <2 () =23 ) g fi =2) fid;
(i:4) i ¢

(4,9)
(2
thus 20 2 A < Ayg < 2

>i(fF)d

(2.2.9)

We proceed employing relation (2.2.2) to obtain information about P
eigenvalues :

(O*|LJ0*) = M (0" ]0F)
(W*|I — D2 P D2|o*) = Ap(vF|o")
(WF| D72 P D2 [u*) = (1 — A) (0F[oF) (2.2.10)
(D~ 20%|P|D20v*) = (1 — \)(D 20" | D2o%)
OFIPI*) = (1= X)) (X 1®)
Thus P has M real eigenvalues
or=1—=X;
|or] <1 due to(2.2.8) (2.2.11)

with 1=¢¢ > ¢1-+- > gy

Since P is not symmetric its right and left eigenvalues are not just one
the transposed conjugated of the other, and the spectral decomposition reads

P =" o [t") (x"] (22.12)

Remark: in case of an isolated node we take (D);;' = 0 to avoid problems.

Of particular interest is the maximum eigenvalue 1 = ¢,, which corre-
sponds to the steady state for the random walk of a single particle. Indeed
¢p corresponds to A\g = 0 and:

O =const ) x\/d; ¢ oxd; x?=const (2.2.13)

When P acts on a M-dimensional vector space, that is the case of the

random walk of a single particle on the network, the entries ¥) = (i|¢)?)

15



are the probabilities of the steady distribution. In such a case we can use
normalization condition to write:

=1l =
- 2m

i

(2.2.14)

For an ergodic network any initial probability distribution converges to
the steady state, in the long time limit.

Necessary and sufficient conditions for ergodicity are to be connected and
non bipartite. These can be written for the laplacian eigenvalues as :

1. Ay >0
2. |AM,1‘ <2
and for the eigenvalues of transition matrix as:
max o] < 1 (2.2.15)

To proof the convergence to stationary distribution we employ the eigen-
vectors as a base of the M — dimensional vector space, I =, ér|v) (Xkl,
thus we have for any initial state |f(0)) :

If(t) = P'|f(0) Z ) (il £(0))
h=0 (2.2.16)
= Jtho)(xol £(0) +Z¢km Ol F0) E3 [vo)

k=1

where we have used that |¢; 0| < 1 and that (xo|f(0)) = Zi\il fi(0)=1
since it is a probability distribution.

This result is of great relevance in dynamical models on network, since it
guarantees the relaxation to steady state from the spectral properties of the
graph.

Moreover, we can relate the relaxing time scale to the second eigenvalue
of the transition matrix.

Writing the "distance" from the steady state as:

16



M-1

e = lps = FO)] = [l o) — ([0} (xol F(0)) + D Silew) ol FON I =

V-1 M-1
= || Z O o) [ 1| < ol || Z fOxw) ) |
k=1 k=1

< |¢1|t ~ e
(2.2.17)

where ¢1 = max {|¢1], |¢r|}. We can estimate the relaxing time scale as

T ~ —log ¢y.
From its very definition mixing rate is therefore ¢;.

An interesting result of stochastic matrices theory is that we are able to
write a matrix that transforms P into a symmetric P’ [1].
Indeed if we consider the transformation matrix D=2 we obtain

(2.2.18)

Remark: D~2 matrix is symmetric (diagonal) but not unitary, so what
we obtain on the scalar product is:

W'y = (v|Dv) = (v] x |v) (2.2.19)

It is clear that P’ has the same eigenvalues as P, and the same right
eigenvectors.

However P’ is symmetric and its left eigenvectors are just the transposed
of rights one.

Symmetry property of P’, that corresponds to symmetry property of L,
is connected to the satisfaction of detailed balance condition by P.

To see this let S be a generic stochastic matrix, we define the adjoint
operator S* of S respect the x scalar product as

S* = (D'SD)”

(ul * |Sw) = (S"ul * |o) (2:2.20)

and S self-adjoint means S = D ST D1

17



Then any random dynamics associated to stochastic matrix S satisfies
detailed balance condition iff S is self-adjoint.

Indeed S* has the same steady state |v) of S (this is true even if S not
self-adjoint), with v; = D;;, and

S,L“'Uj = Sji Vi s U;l Sij v = Sji (2221>

Back to the transition matrix of an unweighted network this transforma-
tion in explicit form reads

1 1 d 1

P/i': D_ipDii‘: i —J: Y

(P = (D2 2)ij = Tij d; 4d,
P ) = o = (IPIY (2222
1
mmvﬁx@ﬁ
and spectral decomposition of P’ reads
Pr=>" gp|o") (v (2.2.23)
k

Since P’ is symmetric can be written as a diagonal matrix with eigenvalues
as entries using a transformation matrix U built with eigenvectors:

Yo
1= =U'PU
(0
. (2.2.24)
vy v}
1 2

U= e @)= v v

Spectral decomposition of P’ is used by Lovasz to write a spectral version
of hitting and commute time, that is

M
1 (vF)? Rk
Hs — 9 t _ st
D D e T Ay
(2.2.25)
M 1 Uf vk 9
st = 2 - >
e m; 1 — ¢y <\/d_t ds)

18



First formula allows to simply demonstrate that "more distant target are
more difficult to reach" [3].

Furthermore using (2.2.11) to write 3 < ﬁ < ﬁ and (V"] |vP) = 6y,
the second spectral formula provides an upper and a lower bound for the
commute time

<1+1>< <2m(1+1)
m(— + — kst < — + —
ds " d) =N T =g 'd, 4

We recognize in the latter the quantity ¢g — ¢1 = 1 — @1, called spectral
gap, that is also related to relaxation time of the system ( log(¢1) ~ (1 —
#1)7') ) and therefore assumes a particular importance in spectral theory.

The bounds of the mixing rate with the spectral gap is one of the most
employed results of eigenvalue connection with the relevant parameters of
random walk on networks.

The advantage of this approach is the possibility to obtain quantitative
information on the dynamics by means of algebraic calculus.

Nonetheless, it is worth mentioning the difficulty in eigenvalue computa-
tion for exponential large graphs, a fact that shows the possible applicative
limits of this method and requires different approaches [3].
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Chapter 3

Non-interacting particles on
infinite transport capacity
networks

In this section we define the operatorial formalism that will be employed to
describe the system and its dynamics.

In order to prove its consistency we apply it to the analytically solvable
situation of N random walks on an infinite transport capacity networks,
recovering the expected steady state.

Finally, we see how the stationary distribution can also be obtained from
a maximal entropy principle (in the Gibbs sense).

We are interested in the stochastic dynamics on networks, where at this
stage we consider the underlying network as a good graph (connected and
undirected), thinking about applications to physical systems or other kinds
of applicative tasks.

From this point of view we prefer to speak of particles, understood as
random walkers, and to use terminology of network theory rather than the
graph one.

To our scopes we have to extend the theory of a single particle performing
a random walk on the network to N particles performing independent random
walks.

We approach the problem in an operatorial way, adopting many-body
quantum mechanical formalism to describe steps of the particle on the net-
work as annihilation-creation processes among nodes.

Our definition of Hilbert space and ladder operators coincide with the
Doi-Peliti formalism [6],[5].
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Doi developed the idea to describe birth-death processes in classical many-
body system using quantum mechanical Fock space, in particular applied
with perturbative techniques to molecular dynamics of chemical reaction.

Peliti proposed a rigorous mapping of stochastic processes with discrete
states space into a path integrals representation; the passage from a Master
equation to an effective action opens the possibility to treat perturbatively
a wide range of birth-death markovian processes, in particular those out of
equilibrium.

Doi-Peliti formalism in birth- death processes take advantage of the suit-
able description given by Fock space of states with different dimensions.

In this work we deal with conservative processes, i.e. with fixed particle
number. Therefore what we emphasize of the operatorial formalism are the
commutation rules of ladder operators, that accounts of the non-commutative
feature of processes depending on the degree of freedom of the particles in-
volved.

Furthermore the point view imposed by Fock formalism is focused on a
state of the whole network, and not on the particles, resulting the correct
approach to study the effects on the dynamics of network transport limita-
tions.

3.1 Network state

We study the case of N particles on a network G(V, E), |V| = M, |E| =m
using a second quantization formalism to describe a classical system.

This formalism automatically gives us the indistinguishable nature of par-
ticles, is strictly connected to matrix formulation of the problem and, due to
commutation rules of operators, allows to naturally point out the differences
arising in the synchronous movements of particles.

Ladder operators a;, aj are defined for every node i of the network with
usual commutation relation

[a;, a}] = 0 a;,a;] = 0 = [af, a;] (3.1.1)

These operators can be thought as acting on the vectors of an infinite
dimensional Fock space.
As usual we build it assuming the existence of an empty normalized state:

|0) =10...0) so that a;]0) =0 Vi (3.1.2)

and then iterating the application of creation operator to vacuum:
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(al)

1

0) = [ns) and  (0](a)™ = (ni| (3.1.3)

This is the canonical base , centered on the single nodes of the network and
on their occupation numbers.

For states representing independent particles and infinite transport ca-
pacity of the nodes the normalization is suitably defined to describe the
dynamics of the network, as explicit shown further.

The action of creation/destruction on basis vectors is:

a;|\n;) = n;ln; — 1 ajnizni—i—l
| 1 | ) i) = | ) (3.1.4)
(nila; = ni{n; — 1] (nila; = (n; + 1

Orthogonality of vectors is ensured by commutation relations. On the
other hand normalization requires a little digression.

Present definition of states leads to (n|n) = n!{0]0), and returns a clear
physical meaning. This is exactly the statistical weight of the network state,
which arises from the different microscopic ways to realize the state by iden-
tical independent particles.

This weight term is the one entering in the entropy definition.

When the features of the system change (interactions, queues in nodes,
etc.) this term must disappear.

Decomposition of identity reads

I=Y % (3.1.5)

n

where we read the normalized projector on the node occupation number
base.

One of the advantages of Fock base is the existence of a number operator
with number of particles as eigenvalue. To recover the correct meaning of such
an operator, normalization has to be considered in expectation values, and
we can use this as an example for consistency of our unusual normalization:
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(@ N|w) (7], alail) S

W G 4
- (nilalailng) — (nilallni = 1) —  (nilny)
indeed =n; =n;
(rins) (nilni) (nilni)
Aata:n. L An. Am.
or (nilajai|n;) —n, (ni — 1las|n;) = (ni|n:) (3.1.6)
(niln:) (niln:) (niln:)
or (nilalailn) (i —1ni—1)  ,(n;— 1)
or (nil(aia] = 1)|ni) _{itlni+ 1) (nifna) L1
(niln:) (niln:) (niln:) '

In general expectation value of observables will obtained using the pro-
jection on a bra vector written as

Wl L (3.1.7)

@@ Al

where we introduce the notation 77! = nqi!ns! ... n.l.

A generic network state can be expanded on the Fock base

|70) (7| state)
tate)
|state) Z A

|
= Z S(nl,..., Hn_zl

{n1..np}el’ =1 r =1

M
where F:{ﬁ:Zni:N}
i=1
(3.1.8)

Latter change in the range of the sum singles out the restriction of the
physical states space respect the entire Fock space, assuming conservation of
particles (at this stage).

The meaning we give to the state contraction with a base vector (m ... my/|
is the probability to observe m; particles in node 1, ms in 2 etc., in other
word to find the system in the |m) state.

From this interpretation we get further condition on coefficients for the
normalization of probability distribution:
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- (mlm) £ (i) () (3.1.9)
_S() o S@A)
2t iy = O Gl

Latter constraint is analogue to square-integrability condition for quan-
tum mechanical wave functions, and must be preserved by dynamics.

The functional form of S(77), that is the probability distribution up to the
statistical weight, depends on dynamics of particles.

In detailed balance condition S splits into product of S;(n;) = S}, that
is the product of single particle probability distribution on nodes. Indeed
S; = (1;|state) is the probability to find one particle in i-node.

A particular case is the independent particles dynamics on I'TC networks.
In such a case the probability distribution is the product of the steady dis-

tribution for a single particle on the network, that is p; = 2‘1—7; = 5;, with the
statistical weight of the configuration.
Thus
R B L (AN C A RT0
ny...ny) x = : 1.
A v (fli) il onyl 2202m

Condition (3.1.9) is then satisfied (after multiplication by N!) since
(1i|state) S(m) N! di di
zﬁ: () Zﬁ: (ilm)y zﬁ: n!...ny! 1:[<2m) = (Z Qm)

andzch; =1

(3.1.11)

We can give an explicit version of the steady multinomial distribution as
a ket vector in the occupation number representation by means of a function
generator

F(z) = eXi mmals
N (3.1.12)
lt1 al) = — F
|multinomial) e N (x) |0)



In this writing we have used the same trick known for the coherent state
(aa®)™

where is understood the formal develop e**' = Don o

3.2 Dynamics

We want to describe the dynamics of the random walks of N independent
particles on the network.

The dynamics will be approximated by single particle exchanges among
nodes and the conditional probabilities m;; will be used to build a transition
operator P.

Furthermore the correspondence between Chapman-Kolmogorov equation
and Master equation will be written down.

In order to properly describe the evolution of the network multiparticle
states we have to build the transition operator P(t) in such a way its matrix
elements return the conditional probability p(ﬁ’ Jt+ A1, t).

At this stage we restrict our discussion to stationary processes, that is
there is no dependence on t of the conditional probabilities.

As a matter of principles we should consider P as composed by the totality
of possible processes A1 ,

P * (A7, At)
An

I (3.2.1)

p(n!|it, At) = g(?f’l *(A7, At)|7)
Afi
where (A7, At) is the operator that performs the change 7 — 7', and
At is the characteristic time of the process.
We can think to write A7 as a sum of contributions An;;, movement of
particles from node j to 7. In such an operation we have to be careful : indeed
every term An;; must be compatible with the others, in such a way that

A =n'—i Y Angy— Any = Ang,
J
with the costraints An;; >0, (3.2.2)
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In some way the exchanges on the links are coupled with each others.
Neglecting this coupling we can write

P =) " #(Afi, At) ~ Y " #(Anyy, At) (3.2.3)
AR ]
The problem of this constraint will be overcome in the depression of
multiple exchanges due to continuous limit and in the detailed balance of
equilibrium states.

In order to achieve an usable form of 7;; we introduce a further simplifi-
cation.

At this stage 7;;(An;j, At) includes contributions of single particle move-
ments, double particle movements, etc. For identical and non interacting
particles we treat multiple, e.g. double, exchange as composed of two single
particle movements. Thus

mi(An =2) = 7 (An = 1, At)m;(An = 1,At) ~ O(A#?)
P=> %(Z mi(An = 1)) (At (3.2.4)

k

and in the continuous limit At — 0 we take care just of single particle
contributions neglecting other events.

This assumption is stronger than the request of regularity of the process,
that is the existence of the limit

A0 At (3:2:5)

and is what we will use to establish the correspondence between discrete
time evolution of Kolmogorov equation and continuous time evolution of
Master equation.

Remark: the problem of decomposing the dynamics into single particle
fundamental operations lies in the empty node case, when invariant order of
operations is broken.

Knowing the probability distribution of the system we can evaluate the
adequacy of this approximation, estimating the relevance of the empty node
case.

In the case of the multinomial distributions for example

pnk pZ n; s
P(”i:O):N!ZHnik,:(1—pi)N:(1—NN)N:(1—N)N2€ '
o k#i ’

(3.2.6)
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thus we can see that the latter is exponential vanishing as n; increases,

but when 7n; is small, as for % small, p(n; = 0) matters.

Under all these considerations we are finally ready to write down 7 ( An =
1 understood) using creation/destruction operators as the sum of one body
operators acting on single particle spaces, as usual in second quantization
notation.

T = Zﬁ-” == ijagaj (327)
i iJ

The 7;; component changes astate | ...n;...n;...)to|...(n+1)...(n;—
1)...), and the corresponding matrix element (proportional to m;;) can be
interpreted as probability of the process.

Writing the explicit correspondence with classical formalism:

14 J) x = -
_ (ooni+1ny— 1. 0%  Tomeal,an .. ning...)
D T Iy — Loy Ly, — 1)

<’fi+ 11 - 1]|ﬁ+ 11 - 1]>
= Z 7T’rnnnn5’rni5nj = TNy

mn

With this notation the matrix elements are not normalized as probabili-
ties, since

3 <7<Z!L %&) = myn; = N (3.2.9)

Therefore, in order to properly understand the process as a Markov one
a % normalization added by hand is required. Anyway until we work with
conservative processes this is not a big deal, since the number of particle is

fixed in the formulation of the problem.

Remark: now is clear the reason of chosen normalization of occupation
number states, since it gives the extra n; term above, expected from classi-
cal probability. This is the direct consequence of infinite transport capacity
feature: we understand the application of destruction operator a; as the de-
parture of a particle from the node; when we compute the probability of
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such a process every particle contributes to it since the nodes has unlimited
transportation capacity.

Conditions on the stochastic transition matrix are transferred on the tran-
sition matrix elements: ZZ miy =1, m; > 0.

Furtheremore we observe that we can write 7 as

ax
(a} ... dl,) (P) : (3.2.10)
apnr
and we recover the familiar P transition matrix for a one particle random

walk, establishing a correspondence between operatorial and matrix formal-
ism and allowing this way to use all the results demonstrated in 2.2.

In particular is interesting remark that resorting to (2.2.22) we could
write a self-adjoint evolution operator.

Indeed, since we know how to transform P into symmetric P’, we can
write a transformation matrix (it is (2.2.24)), say U, using the eigenvectors
of P, and U is a transformation to get new ladder operators

=" ¢blbs
k

by a (3.2.11)
. _ U—l .

bar ans

Is worth remarking that such a transformation would requires the com-
plete resolution of P spectre.

Occupation number representation is suitable to see that 7 conserves
particle number (i.e. it commutes with number operator)

[, N = mylalay, apar] = ) mij(aglal, arla; + allay, aj]ar) =
Lk ok (3.2.12)
= Wij(—éika,taj + a}éjkak) =0
0,9,k

As already said P rules the evolution of network states in the Schrodinger
representation
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[W(t + At)) = Ply(t)) = P'v(0)) (3.2.13)

where [¢(0)) is the initial condition.
Looking for probability distribution at the first order in the discrete time
develop we have the Kolmogorov equation

(my oyt +1)) (). oy |7ld(D)

n,t+1) = Vi = Ak
Pty (1) (1|17)
Z ”v|a a;v(t))
TN U (n|n’)
T d
(n}...n4lajajng ...ny) (7, t)

N ;; ! (n'|n') (7i|7)
—Zéﬁ’n 1,+1; Z ]]V]p(nat>zzj+p(n,_ll+1]7t)

nel’ ij

(3.2.14)

where this transition amplitude is non-null for states connected by ex-
change of one particle between connected nodes n’ = 7 — €; +¢;, according to
previous assumption of discard multiple exchanges in the limit of short time
step.

3.3 Steady eigenstate

Now we can write eigenvalue equation for the steady state (3.1.10) in order
to verify that it holds employing node occupation number representation.

We remark that the dual bra eigenvector can be written as a coherent
state with a; = 1 eigenvalue

1
(ol = 3 (il 5 = (O] =
L (3.3.1)

where we understand (0] e=i% = (e 2 0))f

Eigenvalue equation for the steady state in the occupation number rep-
resentation reads
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<X0|7AT|¢0> = N<X0|¢0>

= () (n'|n’) — (m|m)
Xo(7l n Tala;|n’ Qﬂo(_;) = m Yo(1m1)
=~ <ﬁ|ﬁ>< |%: 15 ]| ><—»/’—»,> N;XO( )<m|ﬂ7l>
523 o) ) = NS w7

Zzﬁij s Xo(7) 87, ' — 1; + 1;) ps(n') = NZXo(m)ps(m)

Anl m

inserting  ps(7 withp;, =¢; = and ;= %
j
ZXO Z”” (n + njpjr 11% : (];3! - N;XO(m) H };fb)i!
> xol#) = Y vt TT 22T
il J m i !
) S S IT = S [T
7 i j i m i
ZXo(ﬁ) an H(]j;—z),m = NZXo(m) H (]:;)T
(3.3.2)

We have an eigenvalue N for the steady state since Z* ”|m> = N.
When N =1 we recover the familiar result.

3.4 Master equation
The definition of a continuous time limit for a Markov process entails the pas-

sage to a continuous time evolution of the probability distributions described
by a Master equation.
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Let consider a regular Markov chain with a Chapman-Kolmogorov equa-
tion

p(n+ An,t+ At) = Z p(n+ An,t + At|n,t) p(n,t) (3.4.1)

An

The condition of regular process means we can write

p(n+ An,t + At|n,t) = 7(An)At + o(At) (3.4.2)

where 7m(An)At is the transition rate, that satisfies

d wAn)=1 =nr0)=1-> m(An) (3.4.3)

An An##0

Inserting in (3.4.1)

p(n+ An,t+ At) = " m(An)Atp(n,t) + o(At) =

= > w(An)Atp(n,t) + (1= > 7(An)At)p(n — An,t) o(At)
Anz#0 Anz#0

(3.4.4)

Now we can perform the continuous time limit of the incremental ratio
defining the time derivative:

S Ai)t -l Z 7(An)p(n — An,t) — Z (An)p(n, t) "= 9yp(n, t)

An An
An#0 An#0

(3.4.5)

Aiming to write the continuous time evolution equation for the operatorial
formalism we begin remarking our decomposition of the dynamics into single
particle exchanges entails a regularity condition that reads

P =) #i;At +o(At) (3.4.6)
]
To repeat the procedure used below we have to use normalized operator
according to (3.2.9).

Defining
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7Tz'j XX 1ij

4.
7T]j = 1— Zﬂ'ij (3 7)

we have in occupation number representation

— Z 7sz . ” 1 _ Z’]‘(‘k] a [a; At —l—o(At) (3.4.8)
thus
0 (P=D)pt)y
5l = 5o = L£lo®) (3.4.9)

and we have introduced the Laplacian linear evolution operator (also
called Liouvillian for birth-death models [5])

L= {m— 0o, my)tala (3.4.10)
ij k

We can write the formal solution of (3.4.9)
[6(t)) = € |6(0)) (3.4.11)

Looking for the expectation values of the states (the probability distribu-
tion) what we recover is the Master equation

o, OW0) _ (A1 Ey(my = by Xy ) ara; [9(0)

(i)~ (i) )
i t) = 33w Snnoan G ‘;”’”%m
J
19(7.) = z“*";v* ! <n+1f@;;;;if_ - S
0, p° (7, 1) Zm] n] p? (i + 1,-1,) - Zﬁkj%p(b I
? (3.4.12)
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One of the very useful advantages of Master equation is that we do not
have to impose the normalization of operator & to a Markov operator, since
the two right hand terms balance each other.

Only when we ask to Master equation to return a number that we want
to represent a probability we have to recover proper normalization.

This feature will be fundamental in the finite transport case, when the
introduction of non linear interactions among particles unable us to properly
normalize the transition operator. Master equation allows us to bypass the
problem.

If we think about the meaning of expectation values in node occupation
representation we could also write a slightly different form of operatorial
Master equation.

Indeed the time variation of the probability of a state is determined by
the difference of incoming and outgoing fluxes of probability of the states.
This reads

) (3.4.13)

Assuming independence of the nodes, since we are dealing with indepen-
dent particles, we can consider the distribution for every node identifying the
incoming and outgoing fluxes of particles in it.

We proceed using the master equation to verify that (3.1.10) is the steady
solution of (3.4.12).

0= Z[Z k(g + 1)ps (7 — 15 + 1g, 1) — ijnjps(ﬁ, 1) (3.4.14)

J k

We can show that this holds for the multinomial distribution:

—| =

(7|7)

(i) _ M i (3.4.15)

Indeed
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(11— 15+ L D2 wiglvbo) (7] D24 Tnltho)

() (7]7i)
(n—1; —i—l]m—l—l 1) Ly (mi[m — 1+ 15) 1
ZZ it d] —=(my) (m]ehe) = ZZ (7i]7) dy

E E nz+1m1+15njlmj—1 H E E njm]—i—l(snkmk 1

¢k ]
Z Q% ng+ 1

:2m
1, N
(n;) - Lig
’ 4 dj; ’
djzzljk
k

(3.4.16)
Where we have introduced the explicit form for the probabilities 7;; = 1di
J

of a non weighted undirected network. 1;; are the entries of the adjacency
matrix.

It is easy to see that in the steady state a continuity equation holds for the
local fluxes of particles on each node, ensuring particle conservation without
the need of imposing a constraint by hand; we can see an analogy with a
canonical equilibrium system.

Furthermore we can also see that a detailed balance condition holds, as
we will treat in detail later.

3.5 Entropy

We can study the system from a statistical mechanics point of view to show
that, in the real free particles case, steady distribution can be derived from
a principle of maximal entropy in the Gibbs sense [1].

Provide a maximal entropy principle will be useful in order to explain the
mutual attraction of empty nodes in finite transport double step synchronous
dynamics.

Gibbs entropy reads
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Sclp) = =Y p(ii) log(p(i)) (3.5.1)

—

n

we introduce a set of Lagrange multipliers p; fixing the average number
of particle per node and we vary the functional in p to obtain the maximum

74!

5ol = = 3 80() 0s(p() ™) — S snin()
:—Z5p ){ log(p(7)(ny ..nM!)—Z,uini}:O

where we have used ) _p(7) =1 thus ). dp(n) = 0.

It is interesting to remark that the statistical weight associated to the
network state 77, that is the number of realization of such a state by identical
particles, is the multiplicity factor that results in the contraction of bra-ket
occupation representation states: (7| |77) = 7!

(3.5.2)

We see that the extremal condition reads

log(p(ii)) = —log H nl) = > i

(3.5.3)
p(7i) o Hi o~ exp(—Zumi)

identifying pu; = —log(v;) we recover (3.1.10).

In the equilibrium state of the system we can also approach the argument
using Boltzmann entropy.

We give to u; the meaning of a node potential, understanding an internal
system energy E = > n,.

It is straightforward to see that the configuration 77* that maximizes en-
tropy is

O_Za lognz)+nzﬂz)
(3.5.4)

= zl: on; (nilog(ni)) —mni + nipu;)
thus imposing that > . n; = N
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ni = N exp(—pu;) (3.5.5)

we find the maximum microstates configuration.

36



Chapter 4

Finite transport capacity

In this section we introduce the non-trivial case of a finite transport capacity
network.

We see that the stationary solution is the exponential distribution of a
system subjected to an entropic force.

The magnitude of the force depends on the number of empty nodes of
the states, and the effect is to promote network boundary states.

This is a first result of the thesis.

4.1 1-FTC

Until now we have dealt with networks with infinite transport capacity (ITC).

The practical effect of this feature is the presence of the particles number
of the departure node when we compute the transition probabilities among
nodes.

In real world networks is reasonable to expect finite transport capacity
(FTC), thus we have to adapt our theory to such a situation.

We study the case of a network where every node can send just one
particle per time step (1-FTC), that means we have to change the dynamics
on the network accordingly.

The transition probability now reads

p(i + j) = mi; 0(n;) (4.1.1)

where 6 is the Heaviside step functions which is 1 when its argument is
positive and 0 otherwise.

We introduce a new destruction operator b in such a way :
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bi ) = | —1;)

4.1.2
and b; |0) = ( )

|
o

thus

(7 + 1 — 1] myalb; |7)
We remark that the role of the step function is executed by the action of
b destruction operator, that returns a 0 when acts on the vacuum state.

As a matter of principle we can express b as a function of a: b = b(a),
even if we can’t give an explicit expression of this functional dependence.

Commutation rules with a' are understood with application to an occu-
pation number state and read

[biyal] 1)) = 6;5(0(ns +1) = 0(ny)) = 85 (1 = 0(ny) (4.1.4)
where n; >0

The new finite transport dynamics is implemented simply substituting a
destruction operators with b in all the dynamic operators.

Thus

7?(' = Z 7Tz'j Cl;rbj

ij

EA = Z 7Tz'j (Cl;rbj — a;bj)

ij

(4.1.5)

Does this new dynamics conserve particle number?

Le. [£,N] = 0.

To answer this question we evaluate separately incoming and outgoing
part of the Laplacian

38



[Lin, N] |71) = ZWU alb;,alay) |7) = Zwij {al [b;,al) ax + al [al,ax] b;} |7)

ijk ijk
= > mij {al ax 5(1 = 0(ny)) — al,b; 6 } |7)

= Z Wij{az a; (1 - g(nj)) - CL;-[ bj} |ﬁ>
= Z Ty {nj (1 - Q(TLJ)) - 9(”])} |ﬁ+ L — 1]>

[Low, N] |7) = ZT[‘Z] al b],akak] ) = Zﬂzj{a} b;,al]a + al, [a},ak] b;} |7)

ijk ijk
= > my{a)ar (1 —0(ny)) — afb; 6} |7)
ijk

= Z mi{aba; (1—0(n;)) — alb; } |7)
= Z mij{n; (1 —0(n;)) — 0(ny) } |77)

(4.1.6)

Thus we see that even if the incoming and outgoing components of the
dynamics don’t commute with number operator and their commutators are
different, when we evaluate their action on the vector their contributions
balance each other.

Therefore we can state that this dynamics conserves particles number.

Finite transport 7 produces a Markov process iff

(m| 7|
%: (ﬁz\ ZWU (n;) = (4.1.7)

that would require a normalization A(n) = number of non-empty nodes,
thus dependent on the state.

This impossibility to properly define 7 as a Markov process means we are
not able to find the steady state as the eigenvector of unitary eigenvalue.

Furthermore the non vanishing commutator with number operator sug-
gests that the occupation number representation is not the appropriate one
to express 7 eigenvector.

Our evolution equation in Schrodinger representation now is
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0

5 o) = Lo(t)) = {Z Tij — Oij ng Jalb; } |o(1)) (4.1.8)

with the usual formal solution (3.4.11).

Equation (4.1.8) encloses all the equation for the probability distribution
of the possible network states. By contraction with a vector basis we recover
classical master equation (see [1])

9 (ilo(t)) _ (Al 2oy(my — 0y >k ) alby |6(1))
ot (i) (ﬁ|ﬁ>

—

o(1m) (77)
- Zzwij9(mj)5ﬁ,m—1 L ) Z% (n;) ﬁ|ﬁ>
i om
— - 0(n. , B Bl
%:Thj O(n; +1)6(n;) (M+1; — 1;)|A+ 1, — 1;)) %:7% (n;)p

=Dyl + 1) 0m) (7 + 1~ 1)~ Zmﬂ(nj)p ()
? ’ (4.1.9)

atpd) (ﬁ) =

Remark: when we solve the Kronecker delta Zm 6ﬁ,m_1j+1i imposing 77 +
1, —1;, = m we write a 0(n;). If we extend the support of our probability
function on negative integers setting p(...n; < 0...) = 0 this is not strictly
necessary, but when we write p(ii — 1;) = ip(ﬁ) as we are going to do it is.

Thus p(7i — 1;) = %p(ﬁ)

This remark is valid also in the I'TC case, nonetheless the multinomial
distribution lead to p(i — 1;) = 7p(7i) due to the multinomial coefficients,
and the presence of n; makes 6(n;) redundant.

We try to write the stationary solution of (4.1.9) as ps(i7) o< [[, ¢*
where >, ny = N, and

> mgthy = v (4.0.10)

Imposing (3.1.9) we have
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(i) = Cy() " T

Ly . (4.1.11)
W) =2y T,
Inserting (4.1.11) in (4.1.9)
0= mf(n; + 1)ps(ii+1; - 1) — > m,0(ny) pa(id)
S bl + 10n) 2 @) = 3 masb(os) ()
” o Y (4.1.12)
D mijbln; +1)0(m:) L = > mib(ny)
1) ! kj
Z:QEZZ' 2]: T = Z”’w n;)

we see that given (4.1.10) in order to check last equality we have to be
careful in the evaluation of the boundary state effects where 6(n;) counts, i.e.
for {|7) : 3n; =0} .

With infinite transport dynamics we didn’t face this problem because
of the presence of the number of particle in the nodes instead of the step
function.

We can see that equality holds on the boundaries with an explicit example

ijp(nl,ng,(),—li +1;) = > my0(ny) p(ni,ns,0)

(m1ap(ny — 1 ,n2+1,0)

mizp(ny — 1,m, 1)

To1p(ny + 1,n9 — 1,0) B |

Z Tozp(ny, mg — 1 1) - Ze(na)p(”hnz,@)
map(ng + 1, ng, — J

[ T32p (11, N2 +1,-1)

Y 0
leﬁ + 7713% + 7 ¢ + 7T23w + My + T = M — (# of empty nodes)
U1 (e} Zﬁz (G W3 Y3

1+1=3-1

} forbidden

(4.1.13)
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In the latter we observe the problem of normalizing the process to a
Markov one, indeed ﬁ doesn’t work on the boundaries.

Nonetheless by working with Master equation we bypass this issue balanc-
ing it in the incoming and outgoing fluxes, and we obtain a correct description
of the evolution of the network state even on the boundaries.

The steady state as a vector of the Hilbert space can be explicit written
in the occupation number representation as

|tho) = ZCN H ial)™

and it is straightforward recover (4.1.11) contracting with %

In (4.1.14) the sum runs over all {7 : |7i| = N}, because we are working
with conservative random walks.

Another option would be to write the ket states as expanded on the whole
infinite dimensional occupation number base, implementing then by-hand in
the bra projector the selection of physical N-particle states.

0) (4.1.14)

As sketched before we expect that (4.1.14) is eigenstate of (4.1.8) only in
the approximation of neglecting the boundary states effects.

Under this condition we find the M eigenvalue of L, 1) = 7 |1,
that corresponds to eigenstate of the normalized markovian operator with 1
eigenvalue.

Indeed

7o) = M |ibo)

> migalb; > COn() [ Jwral)™ 10) = MY On(w) ™ [ ] wi™ 1)
7 m k m k
nj—l
S ot K nbin) ZJ’?“ TT vl 1 — 1) = a0 S Ol T 0 1y
il ! m k

i k#i,j

ZJZ%’%Q(%‘) > On(¥) Hw ) = My Cn(e) ' [T e
i vy i m k

Z o Zmﬂ/h‘@("y‘) ~ M
S (4.1.15)

Example of the boundary problem

42

[771)



S migalb; [p(n1, 2,0, —1i + 1)) = M) [p(ns, n2,0))
]
(ngaibg Ip(ny — 1,n9 + 1,0))
7Tl3(1,1b3 \p(nl —1 ,Na, )>
Z< Wzl%bl [p(n1 +1,n2 —1,0)) = M(7) |p(n1,n2,0))
7T23agb3 Ip(ny,ng — 1, )) , T2,
m31asby [p(ny + 1, na,
T3oalbs [p(n1, ne + 1, —1))

(W) Wo
i + ngw?’ Ty gy = M — (# empty nodes)

o Y3 Y3
(4.1.16)

} forbidden

\

7712— + 7T13— + o1 —

(00 (0 ¥y

With the same approximation we can write

Aout ’w0> ~ M ‘w0>

zwb 50} Za*b 2 Cn() [T el 0) =
ZCN(WAZ (n;) HIPZ'“ i) = 29 n;) ZCN Hwn’“ |77)
7 J 7t
= Ze nj |¢0
j

(4.1.17)

Thus we see that just like the classical case the master equation approach
allows to safely drop the boundary states effects, since the incoming fluxes
balances the outgoing ones.

4.2 Comparison of infinite and finite transport
capacity

The network states space is formed by physical and non-physical (with neg-
ative occupation number) states, and these parts of the space can’t talk each
other.

Every state is connected to others following the rules of particles dynam-
ics, when we give to it the operatorial formalism operatorials rules have to
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reflect constraints that avoid connection among physical and non-physical
states.

This is exactly the advantage of employ Fock base and ladder (with mod-
ified normalization) operators.

Thanks to ergodic principle the system, waiting a sufficient long time,
explores all the connected states of the space, that are all physical states for
a good network and a single step dynamics of particle; the temporal average
gives the probability weights for the steady state.

As shown the steady state for infinite transport capacity networks is a
multinomial distribution: we are in the true free particles case and all distri-
bution on single nodes are independent, centered in 7; = ¢; N.

The transition from infinite to finite transport capacity of the network
results ultimately in a passage to non-free particle case, although particles
remains non-interacting.

The particles of the system are still indistinguishable, indeed ladder oper-
ators are still bosonic. Nonetheless network nodes label them in the moment
they decide which one moves, and this explains the necessity to define new
destruction operators to describe dynamics and the change of multiplicity
weights of states.

The steady distribution on the nodes changes from the multinomial to an
exponential, as we lost the multinomial factor.

This transition can be thought as due to the introduction of a friction
that pushes the distributions on single nodes to zero.

From the operatorial formalism point of view the core of the issue lies
in the impossibility to normalize the transition oparator to unity. Indeed we
have seen that natural normalization % fails on boundary states where we

find Y, %) — Mon(@),

We can explain this situation remarking that in the true free particle case
the point of view centered on the particles or on the nodes is the same, since
every particle gives its contribution of probability to move. In other words,
we normalize the Markov process with the total number of particles.

Finite transport dynamics consists in the possibility for every node to
send only one particle, therefore the point of view is necessary centered on
the nodes, and that is why the normalization of Markov process requires
the number of nodes and is independent on the number of particles on the
network.

This is true unless the network is in a boundary state, with an empty
node.
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The empty state of a node is reflected in a leak of possible moves of the
network slowing down its exploration of states space.

Furthermore formal passage from Markov process to continuous time evo-
lution is based on the subtraction of identity; when normalization fails we
should change it, that means change time scales.

The net effect is like the introduction of a friction term that slows down
the dynamics of the system in such states, and the permanence for a longer
time in the state means an enhancement of the probability associated to it.
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Chapter 5

Detailed balance

In this section we introduce detailed balance remarking its utility to study
equilibrium systems. Then we give an explicit check of the satisfaction of
detailed balance condition of the already studied systems.

Detailed balance in statistical mechanics is a powerful tool for the study
of equilibrium systems, since it allows to study directly stationary proper-
ties even without a complete solution of the dynamics. A detailed balance
condition requires not only a macroscopic equilibrium of the system, but an
equilibrium at microscopic level of the processes occurring in it.

Ultimately detailed balance can be understood as the symmetry for time
reversal of the dynamics, since in equilibrium condition every process should
not be sensitive to the forward or backward evolution of time [7]. This indeed
is the case of a configuration of the system of extremal entropy, where only
reversible processes occur.

When the steady state of a system provides internal currents, although
its master equation vanishes, detailed balance is not satisfied since the inter-
nal currents, although constant in time, break the time reversibility of the
dynamics. This is the case of non equilibrium statistical mechanics, where
we are no more able to apply a principle of maximal entropy to study the
steady state of the system, and new approaches are required [20)].

The simple case of single particle random walk on a network (fully con-
nected and non-directed) assigns to every link of a given node an equal prob-
ability to be passed through, dependent only on the connection degree of the
departure node.

Such a situation provides a first example of detailed balance, since when
steady state is achieved we have:

TigPj = T Pi (5-0-1)
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that means an equilibrium condition for every link; i.e. sitting on a link we
have the same probability to see the particle passing in a direction or in the
other, and we are therefore not able to distinguish a forward time-directed
process from a backwards one.

5.1 ITC

Extending the theory to N identical non interacting particles if we work
with ideal infinite transport capacity networks we expect nothing change,
since independence of particles (not affected by network limitations) ensures
independence of the N random walks and therefore detailed balance on links.

The point of view of second quantization formalism lead us to consider
network state and transition among network states as the sum of all possible
exchanges configuration allowed among nodes.

Therefore when we speak of detailed balance condition now we refer to
a balance term by term in the links among two states, and no more among
two nodes.

Detailed balance condition in the network states space reads
< T >an ps(M) =< T >pm ps(m) (5.1.1)

We verify that (5.1.1) holds in the steady sate of the single step dynamics,
that is for (3.2.7) and (3.1.10).

Transition amplitudes are non-vanishing for connected states, in this case
for states that differs in the exchange of a particle among adjacent nodes.

(4 1o — 1p| 324 mij asay |7)
i+ 1, — L7+ 1, — 1)

~ (] Y mg aiay [T+ 1g — 1y) .
ps(n) - ;Y d ps<n + 1a - 1b)

(7| 77)
(5.1.2)

Right-hand side reads

<ﬁ+ 1a_ 1b| Zijﬁijaiaj |ﬁ> _,) . Zﬂ"n <ﬁ+1a— 1b|ﬁ+12— 1j> (_,)
1, L+ 1, -1, T G T = L L 1)

= Zﬂzj Nj0qi0b; Ps(1) = Tap 1y Ps(77)
]
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Left-hand side

(11 D2 mig aiay |7+ 1o — 1)

ps<ﬁ+ 1a - 1b> =

(1] 77)
(Mli+1l,—1L,+1,—-1;)
- a7 TUg Ery— s 1a_1
;W]nj ) ps( + b)
= Zﬂi'nﬁbiéa-ps(ﬁ—k lo —1p) = Mg (ng + 1) Va @ps(ﬁ)
7 ! Ng + 1y

ij

Thus for m;; = L—J and thanks to the symmetry of 1,;, (5.1.1) holds as we
J
recover the detailed balance at the network links level.

We remark that detailed balance is a stricter requirement than the global
balance of fluxes entailed in the vanishing condition of Master equation, since
it does not allow internal currents.

Its satisfaction is deeply related with the non-directed nature of links
(resulting in the symmetry of adjacency matrix ) and topological nature of
link weights.

5.2 1-FTC

Dealing with FTC networks we lost the real independence of particles, since
the possibility of a particle to move is conditioned by the presence of other
particles in the nodes, anyway we have independence of nodes and we were
able to find a real steady solution of master equation holding even on bound-
ary states.

We verify that (5.1.1) holds in the steady sate of a 1-FTC network and a
single step dynamics, that is for (4.1.5) and (4.1.14).

Transition amplitude are non-vanishing for connected states, in this case
for states that differs in the exchange of a particle among adjacent nodes.

(1t Lo — Lol Doy mig aiby ) (] Dy iy @iby |7+ Lo — 1)
At e LA+ 1,—1, @ )

(5.2.1)

Right-hand side reads
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<ﬁ—|— 1a_1b| Zz‘jﬂ—ija’ibj |7_i ﬁ+1a_1b|ﬁ+1i_1j>

>ps(ﬁ) = Zﬂij 0(n;) é ps(17)

T+ 1y — L| i+ 1 — 1)

= Z i) 9(7”&]')5(“'(51,]' Ds (ﬁ) = Tab 0<nb) Ds (ﬁ)

ij

Left-hand side

T+ lg— Ly 7+ 1, — 1)

n i.m-aib- ﬁ—Fla—lb .

(7] 73)
B oA+ L, L+ L - 1) B
— z]: i 0(nj) A ps(7t 4+ 1, — 1p)
o 0 R . G(nb) 5
= Zwij (1)00i0a; Ds (T + 14 — 1) = mpe O(ng + 1) ¢QT ps(1)

ij

Thus for m;; = L and thanks to the symmetry of 1,5, (5.1.1) holds.

49



Chapter 6

Double exchange dynamics

In this section we discuss the inequality in performing subsequent exchanges
of particles among network nodes or synchronous exchanges, obtaining the
main results of our work.

The transport limitation of the nodes introduces a non-linear interaction
among particles.

We give an explicit proof in the case of a double exchange.

In the model with infinite transport capacity we see that the difference
does not change the stationary distribution.

In the model with finite transport capacity the differences introduced by
the synchronous implementation of the double exchange modify the station-
ary distribution and a perturbative approach seems to be necessary.

An estimate of the corrective term introduced shows a promotion in the
unknown stationary distribution of states with empty adjacent nodes, differ-
entiating it from the single exchange stationary distribution.

6.1 Double exchange dynamics on I'TC networks

In the previous we have written the dynamics as a sequence of elementary
single particle exchanges, imposing the rule that just one single particle is
allowed to move every time step.

A diametrically opposed picture would be to let all the particles move
every updating of the network state.

Since we are working with non interacting particles every single particle
random walk should not be sensitive to other particle walks, and we could
think that multiparticle synchronous exchange are equivalent to subsequent
single particle exchanges.
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Ultimately this equivalence is based on the invariance of the order of
fundamental single particle processes, and turns out to be not true.

Indeed a particle exchange process is weighted depending on the state
of the network. In a synchronous scenario all the exchanges performed per
time step are weighted with the same network state. On the other hand a
sequence of exchanges upgrade the network state after every process and
therefore weights these processes on different network configurations.

In order to show this non equivalence we study the case of double particle
synchronous exchange comparing it with a two subsequent single exchange
process.

When the exchange of particles concerns different couples of nodes the
two dynamics are equivalent. The order invariance is broken when one node
both sends and receives a particle in the same process, and this can result in
a different probability to observe a network state.

Comparing the two approaches to the dynamics we will find this term of
double exchanges on subsequent nodes as a natural consequence of commu-
tation rules.

We can try to visualise this situation as

ng  (n;+1)

Nﬂ'ﬂ N 7le
(6.1.1)
i J n; n;
e —>eo Nﬂ-ﬁﬁﬂ-lj
J l
[ J [ ]

We can already remark that in the particular case of node j empty state
the difference is stressed, since we have a process that is completely forbidden
in the synchronous scenario, but not in the other one.

Similarly when we work with finite transport capacity , e.g. every node
can send just one particle per time step, we expect a difference arising just
in empty node case.

Let 7(]A7 = 2|) be the operator that performs double particle exchanges
among network couples of nodes. We compare it with the second term of the
whole operator written as a develop of single exchange operators 7(Af) =

(54 )t
Zk Jk! : '
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In the first case we have an operator 7(|A7i = 2|) that first destroys
a couple of particles, then creates a couple of particles. In the second case
the operator (#(|A7 = 1]))? destroys a particle, creates a particle and then
repeats the operation.

Second quantization formalism allows to point out the difference of these
two dynamics using commutation relation.

We write 7(|An = 2|) as a two-body operator in the node-occupation
number base.

7(|An =2|) = Z VikﬂaZaEajal = ijﬁklagalajal (6.1.2)
ijkl ijkl
where we use the independence of particles to write Vi = 7.

A straightforward calculation of the square of single exchange operator
gives, using commutation relations to write it in normal form:

(R8T =10 = (3 )" = (3wl (3 mar) =

T T
g TijThIQ,} a]aka,l TijThi G (akaJ + Opj)a =
ijkl ijkl

(6.1.3)
E T TR aka]al+ g a a; E i1
ijkl
= E i Th1C; aka]al—i- E Alla a
ijkl

In the previous we have defined ) T = A, that is the product of
two stochastic matrix, so a stochastic matrix itself.

A comparison of the these two operators reads:

7(|An =2|) =
A = ZAijajaj
ij

In (6.1.3) we see that A it is due to the contribution to all possible double
exchanges of those among subsequent nodes ( this is the meaning of 1), i.e. it
represents the contribution of processes with different weights in subsequents
dynamics respect the synchronous one.

(6.1.4)
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To properly understand the matrix elements of #(|A7 = 1|)? as the con-
ditioned probabilities of a Markov process we have to check normalization.
For 7(An = 1) normalization is % By squaring it we expect to have

A= and it holds. Indeed

N2’

1— AZ Tﬁ 7AT An 1|)2 ‘n> _ 4 Z (T?L| Zz‘jkl Wijﬁklazalajal +Zil Ailagal |n>
B (m|m) - (m|m)

m n+11+1 —1. -1
:AZ{(Z njnl—i-z nj(nj—l))ijml< || <T77/‘T7IZ> J l> +
" ’ "
(] In+ 1, — 1)
anZA” kD } =
Zn]nl—kz% + N =

J#l
= Al N> => n+> n—N+N}=AN
l J

BN

(6.1.5)

In the same way we have to take care of the normalization of |A7 = 2|
to have ) . (72)ms = 1, and since

. 1., 1 . 1,
;<7T2>mn = ;5((77—1) >mn - zm:§<A>mn = §N - N (6.1.6)
we find
A2 = S

One of the advantages of master equation is that we don’t have to care
about normalization to unity since it allows to individuate incoming and
outgoing fluxes of states probability, and this two pieces compensate normal-
ization each other.

Working in Schrodinger representation we came to the formal solution of
evolution equation (3.4.9) with the definition of the evolution operator

U(t) = e (6.1.7)
We can formally expand the exponential
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) = 3 %ﬁktk ) = 0 (6.1.8)
k=0

Going back to our derivation of single exchange dynamics it was ulti-
mately based on the individuation of the characteristic time At of a single
particle exchange, realized by ﬁ; therefore we can understand the Laplacian
k-power as the evolution of the state due to £ multiple subsequent exchanges
of particles (we are using the same argument exposed in (3.2.4)).

It is straightforward to see that the steady state, that has 0 eigenvalue,
remains steady at every power of the development.

Double exchange subsequent Laplacian operator reads

(L) = QG+ Q)" =23 fui

ij ijk

_ } : Tt T.T 7T
= T TRl Ay QG + Wijﬂklajalajal -2 T TE1A; A GGy

ijkl ijkl ijkl
E : T T
+ 7rij7rkl5jkaial + 7rij7rkl5ﬂajal
ijkl ijkl
= Lg + LA
where ﬁ = T35 T CLTQTCL'CE + 7T aTaTa-a — 2 W--aTaTaa
d — i WElW; W W0 i Ml Gy G5 a5 Wy G g Q]
ijkl ijkl ijl
and La = TuTaala + ata;
A — ig g1y G ]
ijl J

(6.1.9)

L represent the contribution to the dynamics of those double exchanges
on subsequent nodes, indeed it is generated by the commutation rules of
creation destruction operators in normal ordering of (L)

We give an explicit check of the master equation generated by (6.1.9) for
the steady state:

(@10 ) _ 5~ Gl 221

(11| ) ~ (A7) (m|m)

m

Indeed:
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(71| )

(7] O |tho) _ S (@ La |m) | (il éA ﬁ>}<m|¢o>

Performing an explicit calculation of the addenda we get

(] 7)

-y (71| 30 i TrRalabajay ()
m

N (ii] 3= alajaja; |im)

)
9 (7] Zijl a;-ralTajal |71)
(ri| )
N (71| Yooy migmpalay |m)
(ri] )
(Al ¥, ajay ) J 7 [vo)
(1] 1) (| )

95

(6.1.10)

(6.1.11)

(6.1.12)

(6.1.13)

(6.1.14)

(6.1.15)



(6.1.11) = (> miymu my my Sagr,—1,+1,-1, + D i (m)(

mo gkl ijk
J#
= myma(ng + 1) (g + Dps(ii — L+ 1; — 1, + 1))
ijkl
J#1
+ ) mimri(ng 4 2)(ng + Dpa(il — 1; + 25 — 1)
ijk
1’Lj 1kl ¢ wl n; Ng
1)+ 1 —
(;Wm“ A )n]—i-lnl‘f‘lwzwk
J#l
i#£k
11 1kl wj 1/11 n; n; — 1
+ ’ n+1 —
%wz MR T P T
J#1
11] ]-k] 1/}2 ng Ny
i +2)(n; +1) J ——
Vi 77Z)J T g+ 2)(ng 1) iy
ik

Z Y; % (s 2)(n; + 1)(nj +2)(n; + 1)% (0

BN S 11— 6y)
§¢¢kz zl:kz !

J

_{_an d Z zgz]—k’ll_ ]l
+Z%zk:% (1— 63 zj:lijuj
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+ Z”z mi lelw
_ (Z (ning — Z ZZ S 1Ly) + Zn ni—1) — Z” (n: = Z 1;15)

j i
i;ék

+Z% ;JZ Xj:liﬂkj
2 |
Y lelw - Z”—; Zlijlzj)P(ﬁ)
_ (Z ne Y g (1= 6) ZZ % S 1ty + Z% S 11
i i

k J
i Yok k J i L

=(N2 — N) p(7)

(6.1.12) Z{ijml o Zm] 1) 8,5t } p(i7h)
" J#l
= {an D om(l=dy) + an — an}p(ﬁ) (6.1.16)

= {N? — N}p(7)

(6.1.13) = " 203" iy mym e, 1, +Z7mm] — 1) } p()

m ijl

J#l
= —Q{Zm] nj+ 1)n; + Zm]n] n;+1)}p(i—1,+1,)

ijl
J#l

z ¢ % —
:_Q{Z J+1wl Z D ot P

a5l
J#l

_ _2{2 —nz an (1—-10;) + Zlijnj%}p(ﬁ)
:—2{27%27114-2%2%;‘”; 21ZJRJ¢}pn
i I R ’

= —2N*p(7)

(6.1.17)
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(6 1. 14 Z Zﬂ-ljﬂ-ﬂl my 5ﬁm+1 -1, P (ﬁ@) = Zﬂ'ijﬂ'ﬂ (nl + 1)p(ﬁ — 11 + 1[)

m ijl ijl

- zl:ﬂ—’uwjl nl+1 wl nl _) Z Z Z] lelp
ij

= Np(7)

(6.1.18)
(6.1.15) ZZm] Np(ii) = N p(ii) (6.1.19)

Putting all together we see that (6.1.10) vanishes.

In order to study the synchronous dynamics we have two ways: we can
try to derive it from a continuous time limit using (6.1.2), or we can proceed
as follows.

Master equation allows to individuate the incoming and outgoing fluxes
of states probability, that is

$71] Howt |77)
([ ) (6.1.20)

In case of single step dynamics as we have already seen

— § ’ T
= T, Qg out (Z (1]
ij

atp Z Uryi n] + ]- ]-j - 11) - Z Wklnlp<ﬁ)
kl
= Zﬂ'ij nj + 1)p(ﬁ+ 1j — 11)
out Z Wklnlp
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For the double step synchronous dynamics we move from the operator
that performs double exchanges, that is #(|A7 = 2[) = 3., T TRaLalazar,
and in analogy with the single step case we write

Ly = Zm’jﬂkl{&lal%al - a;@;ajal} (6.1.21)
ijkl

Applying (6.1.21) to a network state |p) and taking expectation value we
recover the Master equation with the incoming and outgoing fluxes.

. (i1 Yoiju 375 mmal akaga [im) (7] Y0 3T TRa Al aza |7T)
Ip(1t) = Z o Z

a () P = 2 Gl )
S B () - ®2,00)
(6.1.22)

It is immediate to compute the equation for the steady state (3.1.10),
indeed it is sufficient to observe that the incoming flux coincides with (6.1.11)
and the outgoing (up to the sign) with (6.1.12).

The result is that the double exchange synchronous dynamics has the
same steady state than the subsequent and the single exchange one:

=N (6.1.23)

Although the synchronous and the subsequent dynamics admit the same
steady state they are conceptually different.

If we think about the states space of the network a one step process,
single or repeated, connects all the physical states of the space.

The double exchange dynamics conversely realizes connections among
states that differs for a double exchange of particles, indeed ®?(77) sums over
all contributions of states that differs for two particle exchanges from 7, and
therefore, depending on the initial state, accesses only to a half of the whole
space, dividing it in an even and in an odd subsets.

Anyway Master equation accounts for probability distribution, and the
average on the initial states hides this issue leaving the steady state un-
changed.

We observe that the synchronous dynamics essentially differs from the
subsequent one in the processes described by L£a. We can recognise in it
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the transition operator (6.1.4), and studying the dynamics generated by this
operator we find that it admits the usual steady state (3.1.10).
Indeed

1 _ 1 =
%l §Ail(nl +p(n+1; —1;) = %l §Ailnlp<n)
E Azl (n;+1) d ZlnzZAu

Z d—dlAZ'l - N
0 i (6.1.24)
n; 1 1
Zid =N
> ;" d d,

il

Z%Zﬁzw
> -

This not surprising since is easy to see that it is a one step dynamics ruled
by the stochastic matrix A associated to an adjacency matrix A’ = A2.

The difference of the two dynamics ultimately lies in assigned probabilities
to the situation of a double exchange on subsequent nodes, so it modifies the
fluxes in the Master equation and modifies the probability to go from a
network state to another.

The unnormalized weight of this contribution is % .

Nonetheless this is true both for the incoming and outgoing fluxes, and
a the two terms balance out. In other words we have a complete time re-
versibility of the process and the probability that it happens in a verse is

equal to the one of the other verse.

Since we have built the subsequent and the synchronous dynamics in two
slightly different ways this effect is accounted in different ways as well.

At the operatorial level this difference is reflected in the use of 7;; or n; in
the definition of operators that generate incoming and outgoing fluxes, Ain
and A;ut.

In £, we have the contribution of £ divided in the incoming and outgoing
fluxes.

Furthermore we can have an idea of what happens also studying normal-
izations.

60



The double exchange synchronous dynamics allows less possible exchanges
than the subsequent one, and this is accounted by A.

Being a one step process A would require a normalization %, but as it
comes from the square of a single step process it has a ﬁ resulting in a
normalized eigenvalue %

With the same argumentation followed for the normalization of the 1-FTC
single exchange dynamics we understand it as a slow down of the dynamics
due to the reduction of possible movements of the network.

This kind of effect is exasperated in the 1 — F'T'C' model, where in general
we do not see a difference in the weights of subsequent nodes processes but
only an inhibition of these when the intermediate node is empty.

Steady state of double step subsequent dynamics is the same than single
step, therefore we can check that detailed balance condition for 72 holds.

Now in the states space the connected states are those with a double
particle exchange difference.

(1 + 1o = 1y + Lo = Lo 30 mymmataagar + 30 mymwdsmalay |7)
M+1,— L+ 1. —1a+1,— 1L, + 1. — 1y)
(i1 Yosjm mimmalatajar + 30 mymadpalar, 174 1o — 1y + 1o — 1)
(| 1)

ps(7)

ps(f 4 1o — 1y + 1c — 1g)
(6.1.25)
Before we proceed, we observe that the first addendum between the bra-
ket connects states with two exchanges of difference, whereas the second
connects states with a single exchange of difference between nodes 2 links far

(this is the net effect of a double step process on subsequent nodes).
Therefore we have to compare this two kind of terms separately.

We compare

(i + 1o — Ly + Lo — Lg| 3 mmmalaaay |7)
At 1y — L+ 1, — L+ 1, 1+ 1, — 1)

ps(77)
= Z Tig Tkl TV Ty 5ﬁ+1a—1b+1c—1dﬁ+1i—1j+1k—1l Ps (ﬁ)

ijkl (6.1.26)
= Z 3Tkt 705 T Oai Obj Ock O Ps(70)

ijkl

= TabTed T Tl ps(ﬁ)
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with

(7] Zijkl mﬂmagal%az T+ 1, — 1+ 1. — 14)
(1] 1)
= Z T TRl T4 T 5ﬁﬁ+1a71b+1671d+1i71j+1k711 Ps(ﬁ +1, -1y +1.— 1d>
ijkl

= Zﬂ'z‘jﬂ'kl 15 M Oi O Ok Ot Ps (T + 1g — 1y + 1o — 1g)
ijkl

ps(ﬁ—i- 1a — 1b+1c_ 1d)

% wc (nb) (nd)

= TpaTae (Mg + 1) (ne + 1) ot D) ot D) o ps(7)

(6.1.27)

finding

Lac g, ) (1) iy (6.1.28)

Lap Lea 7) = Lia (g
% Q/Jc % ¢d

—— —— Ny NgPs\N
Uy g (

Then we compare

(i 4 1o — 1y + Lo — La| 3o mijmje alay |ii) .
SN P Py p - i g yoris pen e L)
= Z T3 T4 T 5ﬁ+1a—1b+lc—1dﬁ+1i—ll ps(ﬁ)

ijl
= Z i1 Ogb Oci Ot Ps(T0)
ijl

- 6ab Z TejTjd Nd Ps (ﬁ)

J

(6.1.29)

with
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(1] D i i alby |41, — 1, + 1. — 1)
(7] 1)
- Z T 1 T O la—1y+1e—1a+1i—1, Ps (7 + 1o — 1y 4+ 1. — 14)
ijl

= Zm’ﬂjl M Oab Ogi Ot Ps (T + 1o — 1p + 1. — 14)
il

ps<ﬁ+ 1(1 — 1b+ 1c_ ld)

=0 e (o4 ) L )
(6.1.30)
finding
1dj jC nd) —
Z i % Z b . Ve —— ps(n) (6.1.31)

We see that under the same considerations of one step dynamics detailed
balance is verified.

Note: in (6.1.26) and (6.1.27) the particular cases of a double departure
from a node or a double arrival read slightly different when computed , with
a (n)(n £ 1) instead of (n)(n’').

Anyway an explicit calculation shows that nothing special happens and
therefore we avoid to treat this case apart.

As a final remark we observe that since the contribution of A is balanced
apart we can state that detailed balance holds also in the synchronous case.

6.2 Double exchange dynamics on 1-FTC net-
works

A proper definition of the double exchange dynamics is a hard task if we
move from the definition of a Markov operator, since normalization presents
difficulties even at the level of single step process. Therefore we bypass the
problem employing the Master equation approach to study the evolution of
the system. A

Like the finite transport case we have [1o(t)) = et |1)o), where 9; |1)o(t)) =

Llyo(t)) =
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We can formally expand the exponential understanding the Laplacian k-
power as the evolution of the state due to & multiple subsequent exchanges

of particles.
It is straightforward to see that the steady state remains steady.

) = 0 L4 ) = 0 (6.21)
k=0

We compute £2 using explicit representation (4.1.8) (the application on
the right to a |77) vector is understood):

ﬁ2 = (Zﬂ-ij(a;‘rbj — (l;[-bj>)2
]

= ijﬂklagbjazbl + Zwijwkla;bja;bl — ijﬁklajbja;bl — ijﬁkla}bjazbl

ijkl ijkl ijkl ijkl
= Zﬂz‘jﬂkla;{albjbz + ijwkléjk(l — H(nj))ajbl
ijkl ijkl
+ Zwijwkla;[a;rbjbl + Z?Tijﬂkl5jl(1 — H(nj))a;bl
ijkl ijkl
— Z Wijwklaja;bjbl — Z i 00 (1 — Q(nj))azbl
ijkl ijkl
— Y mmalatbib — Y wmad(l — 0(ng))alb
ijkl ijkl
= ijﬂklagazbjbl + Z’/Tijﬂ-kla;r-a;bjbl — Z27rij7rkla;rajbjbl
ijkl ijkl ijkl
+ ) mymadie(l = 0(ny)albe + Y mimudi(l = 0(n;))alb
ijkl ijkl
=Y mimdiu(1 = 0(ny))alby — Y mmrdi(1 - 0(ng))alb,
ijkl ikl
=Y mymu{ alafbb + alalbb — 2afafb;b }
ijkl

+ {Z Tblz (1 —0(n;)) mymj + Z (1—06(ny)) a; b ZWUW’W}
— {ij (1—6(n,) aibj + Z?le (1-06 nj))ajbl}
ij jl

= EAd + ﬁA - ﬁ5
(6.2.2)
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where L, = Z i T ajaLbjbl + a}azrbjbl - QGICL;bjbl}
ikl
LA = Z Tbl Z (1 —0(ny)) m;mj + Z (1 —0(ny))a; b ZW”W’W
j ik
Ls = Z?TU 0(n;))alb; + Zﬂ'ﬂ (1-— H(n]))a;r-bl
i
It is worth to spend some words tojanalyze what we have just found,

comparing it with the ITC case.

L, corresponds to (6.1.2) given the easy rule (@ — b).

We can read in the first two terms the two operators representing the
synchronous double particle exchange on a 1-FTC network. We remark the
problem to normalize them to a Markov process.

L and L represent the contributions of the commutation rules appeared
in the normal ordering operation.

La correspond to La of ITC, with the differences due to the different
dynamics property of the system.

The first addendum, that represent the contribution of double exchanges
among subsequent nodes, now entails a (1 — #(n;)) (it makes sense in the
application to a |7} vector) : therefore it gives a non-vanishing contribution
iff 3n; =0 € 7 (i.e. on boundary states), with a relevance proportional to
the number of empty nodes in the configuration.

The second addendum is the complementary for the outgoing flux.

We evaluate these terms on the steady state (4.1.14)

= Z{ Z Azl ml nm+1 -1, + Z m])éﬁﬁb }ps(ﬁi)

_ZAZ, — 1+ 1)0(n; + Dpy(it — 1; + 1)) +Z1— (n;))0(n;) ps (i)

{Z 7/’ ¢l9 n +1) Zﬁwﬁjl 0(n;) +Z )0(n;) } ps(7)
Z

wl Zﬂ-zgﬂ-ﬂ ))ps(ﬁ)
(6.2.3)
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where we used (1 — 6(n;))0(n;) = 0.

Inserting the explicit form m;; = 1;] we find
J

9<n2) T —0(n;)) = n -
375 S ~00n) Z Oy, Z% 5 @ )
DETEDBEUNED RVED D SD WIECNIE
:Z% le‘j_Z% ZQ(nj)lisz— Z Zen] v

(6.2.4)

where

Z Z 0(n ~ (# empty adjacent nodes of the state) = n(00)

Finally £ is interesting since it doesn’t have an analogous in ITC ( where
[7,n] =0).
We can recast this term in the form

Ly = Z mi;ai0;(2 — O(n;) — O(n;)) (6.2.5)

stressing that its contribution vanishes when two adjacent nodes are
empty, while it is maximum when they are both non-empty.
We evaluate the expectation value on the steady state (4.1.14)
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<ﬁ|<7§|67l1;/}0> - Z % {7l ZWU@I[’J@ —0(m;) — 0(m;)) |m) ps(m)
- Z{ ZWU@ 0(mi) — 0(m;)) 0(m;)dimt1,-1, ps (111)

= ij(z —0(n; — 1) = 0(n; + 1)) 0(n; + 1) ps(7 — 1; + 1)

o (6.2.6)
— %:mj(l —0(n; — 1)) m ¥;ps(7t)

and using (4.1.10)
Ze(ni)(l —0(n; — 1)) = (M = n(0)) = (M = n(0) — n(1))

= n(1)

Steady state of double step subsequent dynamics is the same than single
step, therefore we can check detailed balance condition for 72 holds.

Now in the states space the connected states are those with a double
particle exchange difference.

<ﬁ + 1a — 1b + 1C - 1d| Zijkl Wijﬂklajalbjbl + Zijkl Wijﬁkléjk(l — Q(n]))a;rbl |ﬁ>

<ﬁ+1a_1b+1c_1d|ﬁ+1a—1b+1c—1d> ps(n)
A g mmaalagbibe + 3 mmadin (1 — 0(ng))alby, i 4 1o — 1y + 1e — 1)
B i)

ps(ﬁ—i- 1a — 1b + 10 — 1d)
(6.2.7)

Before we proceed we remark that the first addendum between the bra-ket
connects states with two exchanges of difference, whereas the second connects
states with a single exchange of difference between nodes far 2 links (this is
the net effect of a double step process on subsequent nodes).

Therefore we have to compare this two kind of terms separately.

We compare
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(i + Ly = 1+ Lo — Lo| 3, mymualaib;bi |7i) )
(71
ity —Tptle—Tglitly,—Tpt+1, 17
= i 0(n5) () G111, 14741141, -1, Ps(7)
ijkl (6.2.8)

=3 im0 0(n;) 0(n1) Gai G5 Oer. O pi(77)
ijkl

= TapTed 0(1p) O(na) ps(7)

with

(7] Y miymralafbiby 7+ 1q — 1+ 1o — 1a)

R ps(ﬁ+1a_1b+1c_1d)
(1| )
= Zﬂ'ijﬂ'kl 9(“;’) 6(n;) 5ﬁﬁ+1a71b+1371d+1i71j+1k71, ps(M+ 1, — 1+ 1. — 14)
ijkl
= Z 7Tij77kl G(n]) (9(’/2,[) (5(,7; (5(1]' 5dk 601 ps(ﬁ -+ 1a — 1b + 1c — 1d)
ijkl
0 0
= TpaTde 9(”(1 + 1) e(nc + 1) wa (nb) waPS(fO
Uy g
(6.2.9)
finding
Lap 1eg . Lga 1ac O(ny) | O(ng)
——0(ny)0(ng)ps(n) = ——0(ng, +1)0(n. + 1) Yg———= .——= ps(7
wbwd(b)(d)p() wa%( ) 0( ) %@Z)wdp()
(6.2.10)
Then we compare
<ﬁ + ]-a - ].b + 10 - 1d| Zijl 7Tij7rjl(]- - Q(nj)) CLIbl |ﬁ> n)
it 1y -1y t1l, —dgitl, —1,+1, -1,
= mymi(1 = 0(n;)) 0(n) Si1,—1, 1,1 1+1,-1, Ps(77)
! (6.2.11)
= Z 7Tij7le(1 — Q(TZJ)) 9(711) (5,11, 552‘ 5dl ps(ﬁ)
ijl

= bab chﬂjd (1= 6(n;)) 8(na) ps(7)
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with

(7i] S iy (L= 0(ng)) alby |74 1, — 1y + 1. — 1g)
)

ps(ﬁ+ 1a - 1b‘|‘ 1c_ 1d)

— ‘

(
= mymu(l = 0(ny)) 0(ny

il

= mma(L = 0(n;)) 0(n) ap 0as 6t p (7 + 1o — 1y + 1o — 1a)
ijl

ST

~—

Ofifit1a—1p+1o—1g+1;—1; Ds(MT + 1o — 1y + 1. — 1)

— 5, deﬂje (1—6(n;))0(n,+1) @Z)C% ps (1)
’ (6.2.12)
finding
lej Lja o N 6(n = Lgj 1je n 0(na) 7
zj:%wd (1=0(ny)) O(nq) ps(ii) = Z% ™ (1=6(n;)) O(n.+1) ¥ Ve ps (1)
(6.2.13)

We see that under the same considerations of one step dynamics detailed
balance is verified.

Note: in (6.2.8) and (6.2.9) the particular cases of a double departure
from a node or a double arrival read slightly different when computed , with
a 0(n)f(n £+ 1) instead of O(n)0(n').

Anyway an explicit calculation shows that nothing special happens and
therefore we avoid to treat this case apart.

6.3 Synchronous dynamics on 1-FTC networks

We can write the Laplacian operator of the synchronous double exchange
dynamics proceeding as we have done for the ITC case.
Thus

Lsyne Z i (@) akb by — a;r-azrbjbl) (6.3.1)
ijkl
J#l

Expectation value of ﬁsym on the steady single step dynamics state (4.1.14)
reads
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(7]

7
= O |vo) = % Z Wijﬂkl(a;‘ralbjbl - a;a;bjbl) 1%0)

ijkl
J#
= > mimub(m)0(ma)ps (1), 1—1,-1, — Y 0(n;)0(n)ps (i) 67}
" 2

= {Z Wijwklﬁ(nj + 1)9(71[ + 1) ( )% Q/Jl (9 le nl }ps( )

o vi Tt
G i
(6.3.2)
using the explicit form m;; = %
MQ(TL}C) 11] 1l~cl
20 2, ww’ _%: . Zl’“
J?ﬁl
= (M —n(0))* - % ¢z ¢k Zlkllzl
and
> 0(n)0(m) = ZQ(W)Z(H(W) —d) = (M —n(0))* — (M —n(0))
(6.3.3)

and we see that (4.1.14) is no more the steady state.
This is not surprising since if

Z Tij Tt Q) akb b + {Z Tblz O(n;)) mymy = 7o — A,

ijkl

(6.3.4)
as in the ITC case but

n)? = Z a;a;bjbl + Z(l — G(n]))a;bj Zﬂ-ijﬂ-kj = ﬁQ — Aout (6 3. 5)
gl J ik

and its easy to see that (m| Ay |n) ~ (1 — 6(n;))0(n;) always vanishes,
thus Lo = Ay,
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Therefore we do not have the balance in the incoming and outgoing fluxes
of the Master equation.

On the other side now there is a new term as a correction for the outgoing
flux of £? that is £, that does not appear in Lsync, and we can write

1, 1, R
552 — §(£A — L) (6.3.6)

/Csync =

6.4 Empty nodes spatial correlation

What we are interested in are the probabilities to have empty adjacent nodes
in the different steady states of subsequent and synchronous double steps
dynamics.

Numerical simulations [1| indicate that synchronous steady state pro-
motes adjacency of empty nodes, therefore we expect to find a spatial corre-
lation in the probability of two nodes to be empty.

We can give an explanation of the phenomena as follows.

The FTC dynamics doesn’t weight processes depending on the number of
particles in nodes, therefore double step synchronous dynamics shows only
the inhibition of the mixing mechanism in case of an empty node in the
middle of the path.

This feature joint with the enhancement of empty nodes probability, that
we have seen in the passage from infinite to finite transport capacity net-
works already at the one step level, leads to an effect of empty node mutual
attraction.

In order to see this effect from our model first of all we remark that the
analogous of number operator with b reads

alb; [n;) = {0‘ i; ns =0 (6.4.1)

and we define the "slacker inspector" operators

Sl = Z 1 — CLTb ZS'L
82 - le] - aiajbibj) = Z'éw

]

(6.4.2)

The action of these operators on a basis vector is:
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e 5; returns 1 if the node 7 is empty, 0 otherwise (counts boundaries)

e 5;; returns 0 if two adjacent nodes are occupied, whereas returns 1 if
one or both of the adjacent nodes are empty.

Consequently the expectation value of S, on a network state is the prob-
ability to have one or two adjacent nodes empty.

1 . 4
> (il S2 [6(1) =< Salt) >, (6.4.3)

The point is
< 8 >gyne ; < 8o > (6.4.4)

But this requires us to know steady state of subsequent (we almost do)
and synchronous (we do not) dynamics.
Equivalently we can study variance of &;

2

< 8} > e > <S> (6.4.5)

The lack of knowledge about the steady synchronous state moreover im-
pedes the evaluation of the detailed balance condition.

6.5 Empty nodes spatial correlation from de-
tailed balance

The difficulty in evaluation of the new steady state oblige us to try another
approach to overcome this problem.

The idea is to turn back to the Markov process point of view, ignoring the
inconsistency of normalization and keeping in mind that the properly defined
evolution of the system is given by the Laplacian (where normalizations are
balanced), to use detailed balance condition.

As already said for an equilibrium steady state of the network we can rea-
sonably guess detailed balance keeps holding if we switch from a subsequent
dynamics of particle to a synchronous one.

We assume that detailed balance is true for the subsequent (as we have
proved) and the synchronous (we guess) double step dynamics with the re-
spective steady states.
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(1) 7 25 (1) = (m1)3 ps(172)
_ - (6.5.1)
(7T2>7?Lﬁpss<n) = (7T2>ﬁmpss(m)
We know ()2, ps and o, but we don’t know p,,.
If we evaluate e.g.
(Wg)mﬁps(ﬁ) > (Wg)ﬁmps(ﬂ_i) (652)
we can write
— o 2_‘_’ —
pss(ril') _ (7T2)mn > <7T1)£nn _ ps(’rfl:) (653)
pss()  (m2)am ~ (M)zz  ps(7)

We state that, if the equilibrium is unbalanced in a direction by the ratio
of transition probabilities then the ratio of the probability distributions will
be pushed in the opposite direction to recover balance condition.

We know that the difference between the transition operators are the
contribution of the commutator in normal ordering procedure (i.e. exchange
among subsequent nodes) and the double sending from the same node

(7%1)2 = Zwijwklaga;ibjbl + Zﬂ'ijﬂ'kl(sj'k(l — G(HJ))CLIZ?[

ijkl ijkl
=Y mymualafbib + Y mymgalalbib; + Y mimdi(1 - 0(ng))alb,

ijkl ijk ijkl

pay

= 7y + 75 + A
(6.5.4)

inserting in the first of (6.5.1)

(g + s + A)mn (M) = (e + 75 + A)ﬁfﬁps<m)
(m (m

2)iim Ds(M) = (

(72) i ps(7) — s)am T (D)am ) ps(m) — ((T6)mm + (D)
(6.5.5)
and thus
((ms)mi + (A)ma ) ps(7i) < ((Ts)am + (A)am ) ps(m) (6.5.6)



is equivalent to (6.5.2).

Let consider two network states: 7(00) with a couple of empty adjacent
nodes and m without.

Numerical simulation [1] suggests the direction of the disequilibrium of
balance equation

(72)mi(00) Ps(7(00)) < (72)7(00ym Ps(111) (6.5.7)

that agree with our model iff

((78)mio0) + (A)maoy ) ps(7(00)) > ((75)aoym + (A)igoym ) ps(111)

(6.5.8)
We know all the terms of the latter, indeed
(53 oy pa(77) = (71(00)] 32,4 miymrsalatb;b; |m>p -
5)7(00)m Ds = — — s
(f(00) [ 7(00)) 659)
= Z T 0(m5)0(my — 1)6500ym+1,+1,—2, Ps(1711)
ijk
. (] 324 miymrgalalb;by [7(00)
(75 )mi(o0) Ps(7(00)) = ) ps(71(00))
= iy 0(n)0(n; — 1)6ms(00)+1,+1,—2, Ps(7(00))
ijk
(6.5.10)

L {A(00)] X i (1 — 0(my))alby )
(A)ziooym ps (1) = 2 00| 7(00)) ps(1)

= > i (1= 6(m;))0(m)drooyiie1,—1, ps (17)
ijl

(6.5.11)
m ikl Wijﬂkl(sj'k 1-46 n; azbl 72(00 .
() pii(on)) = = T 0D )
= > mymu (1= 0(19))8(m)Srisco0y+1,-1, s (73(00))
35l
(6.5.12)
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7s represents the double sending of a single node and therefore it depends
obviously on the occupation state of the node, but it doesn’t depend on the
occupation state of other nodes. Indeed the 6 function arguments of every
addendum depends only on one nodes index.

Thus (6.5.9) (6.5.10) are blind to the difference of a (00) couple instead
of (0...0) and are negligible to our purpose.

With a similar argumentation we can discard the terms of (6.5.11) and
(6.5.12) with only one 6.

Finally we have to verify the inequality

> i 6(n)0(n1) S0y +1,-1, s(7(00)) < Y i 0(m;)0(mu)so0ym+1, -1, Ps(170)
ijl ijl

(6.5.13)

m and 77(00) have to be network states that differ for the exchange of one
particle, and we can estimate

_ps(m) v
ps(i1(00)) ¥ 1 (6.5.14)
thus

> wimn 0(n)0(n)Smaoy1,-1, < D mii 0(m;)0(mu)Saooym1,-1,

ijl ijl
(6.5.15)
and a rude estimating reads
Zﬁijﬁjlg(nj)e(”l)ismﬁ(oo)ﬂfh ~ M — n(0) — n(00)
ks (6.5.16)
ijﬂjlg(mj)g(ml)(sﬁ(oo)rmlfh ~ M — n(0)
ijl
verifying (6.5.8).
Since inequality is proved we can use (6.5.3) to write

Pss (1) ps(m)

Latter comparison shows that in a 1-FTC network with synchronous dy-
namics the probability to observe a state with a couple of adjacent nodes
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empty (normalized with the probability of a generic connected state) is en-
hanced if compared to a subsequent dynamics system.

As we have shown the probability distribution can be derived from a
principle of maximum entropy, in the Gibbs sense.

The found result of enhancement of n(00) states should therefore corre-
spond to a major number of admissible realization of such a state respect
n(0...0)

We can try to explain this phenomenon as a problem of volumes exclusion.

In n(0...0) we exclude two volumes, in 1(00) we exclude a single volume,
and if the latter leaves a bigger volumes than the two volumes separated,
there are more possible configuration to realize n(00).

Since we observe this effect only in FTC case this differences in volumes
must be related to the multinomial coefficient of weights.
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Chapter 7

Conclusions

The random walks on network may simulate some universal properties of
transportation systems from biology to social systems. The application of
physical methods to study the dynamical and statistical properties of ran-
dom walks can shed light on universal features relevant to understand the
stationary solutions or the rising of critical states like congestion. In this the-
sis we studied the dynamics of N non-interacting particles on a connected
and undirected network using an operatorial approach.

The network state has been described by means of Fock-like states and
the dynamics has been represented using ladder operators.

The non-interacting condition for the particles corresponds to a free par-
ticles dynamics, as naively expected, only assuming an unlimited transport
capacity of the network.

In such a case we correctly recover well known results: the probability
distribution of a network state is the product of the probabilities distribu-
tions induced by the simple random walk of a single free particle, with the
statistical weight of the configuration.

But our formalism allows us to consider more general cases when non
linear interactions among particles are introduced through the dependence
of the transition probabilities from the network state.

A relevant case is when one introduces a limited transportation capacity,
that is a natural assumptions for real transportation systems.

Assuming a limited transport capacity of the network, for simplicity 1
particle per node, although particles are non-interacting the dynamics sub-
stantially changes, and we can no more speak of free particles.

The new dynamics is described defining unusual destruction operator b
and establishing the substitution rule a — b in transition operators.

The dynamical restriction imposed by the network limitations results in
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a differentiation of the particles by means of the node, in the moment it
decides which one moves. Therefore fails the equivalence between following
the particles or the states of the nodes, and we recognize an account of it in
the need to normalize the processes with the number of nodes, instead of the
particles.

Consequently the steady state changes, loosing the multinomial coefficient
representing the weight of the free particles network state. Nevertheless, for
a one-exchange evolution, it is still possible to analytically check that the
distribution is an exact solution of the Master equation.

The steady state of the system generates a distribution on the single nodes
pushed toward the 0 of occupation number.

From a physical point of view the lack of a universal normalization is
equivalent to a slowing down of the evolution time scale for the network
states with empty node. This implies an increase of the visiting probability
of such nodes that is equivalent to the existence of an entropic force which
favours these states.

We succeeded in proving that the stationary distribution is an exponential
distribution as expected for a random walk with friction, that can be related
to an Entropic principle.

Numerical simulations points out a significant difference from the analyt-
ical distribution when one considers synchronous movements in the network.
To analyze this problem we took profusely advantage of the defined second
quantization formalism, consolidated in the first part of the work, to define
a double step evolution of the network.

Our aim is to apply a perturbative approach to understand and quantify
the results of numerical simulations.

In particular we pointed out in an easy way the differences occurring
between a subsequent and a synchronous exchange process thanks to com-
mutation rules.

As a first general remark, independent from the transport limitation, a
slow down of the dynamics occurs in the synchronous scenario, due to the
inhibition of a certain number of processes (i.e. lowering the links in the
states space).

The difference between a subsequent or a synchronous realization of the
particle exchanges emerges in the probability assigned to subsequent nodes
processes.

In the infinite transport capacity network case we are able to recast it in a
one-step like operator, therefore admitting the steady state as an eigenvector.

To define synchronous Laplacian we followed a derivation based on the
individuation of incoming and outoing fluxes. In this way we can observe
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a balance of the process weight variations, with the result of an unchanged
steady state.

The finite transport network generates a much more involved situation.

The unusual network-state dependent commutation relations for b, the
destruction operator of finite capacity nodes, give a non symmetric contri-
bution to the incoming and outgoing fluxes. Therefore the steady solution of
the subsequent dynamics Master equation does not hold in the synchronous
scenario.

In order to perturbatively study the new steady state we relate the Lapla-
cian of the synchronous dynamics to the Laplacian of the single exchange
dynamics, by means of two operators representing corrective terms.

Finally we attempt to explain a feature that has been pointed out by
numerical simulations [1| in the finite transport case: i.e. the overexpression
of the state with couples of adjacent empty nodes.

To this purpose we employ the analytical results we have found for the
subsequent dynamics and the equation that relates it to the synchronous one.

Our assumptions is that this overexpression is a consequence of a change
of the visiting probability of such states with respect to the stationary dis-
tribution of the one step process.

In particular for the 1-FTC synchronous dynamics we recognize in the
Master equation a corrective term depending on the empty states of adjacent
nodes.

Considerations based on the detailed balance condition, assumed satisfied
by the unknown steady state, lead us to write an inequality. Under some
approximations the inequality suggests to understand the corrective term as
an enhancement for the probability of states with adjacent empty nodes.

In this way we succeeded in differentiating the synchronous steady dis-
tribution from the single step process one, since the latter is blind to the
adjacency of empty nodes.

An interesting perspective for a further development of the topic could
be the application of path integrals tools to the problem.

Starting from the work of Peliti the mapping of Master equations into
effective actions has been widely used and extended to many stochastic pro-
cesses.

The main advantage of this method is the possibility to study perturba-
tively hardly handable systems and, although out of equilibrium, to employ
techniques proper of equilibrium statistical mechanics (such as renormaliza-
tion group [13]).
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Peliti itself proposed a simple model of diffusion on a lattice [5]. Starting
from a Liouvillian very similar to (3.4.10) he obtained an effective action
exactly solved by means of the definition of the discrete version of derivative
operator. Ultimately this is based upon the regular topological feature of the
lattice, that fails in the passage to a network.

However, the extension of this kind of model to network backgrounds
seems to be at least fascinating.

The definition of discrete derivative on network proposed by Bazzani [1]
can be applied to attempt an exact solution of an effective action based on
(3.4.10), namely something like

Uii) = [ Dipijen(~ [ aY ini
- Zﬂ'kj(iﬁknj — ;) + Ziﬁj(T)nj(T)}

J

M N-1 dn
where D= ||Dn and Dn= lim T
H N—oo " \ 21

recovering in this way the single exchange on I'TC network case.

Then would be straightforward the extension to 1-FTC case, in order to
perturbatively study the steady solution of the synchronous dynamics.
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