
Alma Mater Studiorum · Università di Bologna

CAMPUS DI CESENA
SCUOLA DI INGEGNERIA E ARCHITETTURA

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

DESIGN, IMPLEMENTATION AND
PERFORMANCE EVALUATION

OF AN ANONYMOUS DISTRIBUTED
SIMULATOR

Tesi di Laurea in Sicurezza delle Reti

Relatore:
GABRIELE D’ANGELO

Presentata da:
ANTONIO MAGNANI

Sessione III
Anno Accademico 2014-2015

Sommario (Italian)

La simulazione è definita come la rappresentazione del comportamento di
un sistema o di un processo per mezzo del funzionamento di un altro o, al-
ternativamente, dall’etimologia del verbo “simulare”, come la riproduzione di
qualcosa di fittizio, irreale, come se in realtà, lo fosse. Le origini della simula-
zione sono piuttosto recenti e, lo sviluppo di essa, ha seguito parallelamente
il percorso di diffusione dell’informatica. La capacità di riprodurre model-
li in grado di rappresentare in maniera estremamente minuziosa la realtà o
il comportamento di un sistema immaginario, sono oggigiorno fondamentali
in molteplici ambiti (e.g., dalle comuni previsioni meteo financhè a simula-
re l’attività cerebrale di un essere umano). Ma perché è così importante la
simulazione? Innanzitutto ci permette di modellare la realtà ed esplorare
soluzioni differenti e valutare sistemi che non possono essere realizzati per
varie ragioni. Inoltre, come verrà esposto in questo lavoro, è fondamenta-
le l’approccio simulativo per effettuare differenti valutazioni, dinamiche per
quanto concerne la variabilità delle condizioni, con un risparmio temporale
ed economico considerevole rispetto alla realizzazione di test reali.

I modelli di simulazione possono raggiungere un grado di espressività e
realismo estremamente elevato, pertanto difficilmente un solo calcolatore po-
trà soddisfare in tempi accettabili i risultati attesi. Una possibile soluzione,
estremamente attuale viste le tendenze tecnologiche dei nostri giorni, è in-
crementare la capacità computazionale tramite un’architettura distribuita
(sfruttando, ad esempio, le possibilità offerte dal cloud computing). Questa
tesi si concentrerà su questo ambito, correlandolo ad un altro argomento che

i

ii SOMMARIO (Italian)

sta guadagnando, giorno dopo giorno, sempre più rilevanza: l’anonimato on-
line. I recenti fatti di cronaca [1, 2, 3] hanno dimostrato quanto una rete
pubblica, intrinsecamente insicura come l’attuale Internet, non sia adatta a
mantenere il rispetto di confidenzialità, integrità ed, in alcuni, disponibilità
degli asset da noi utilizzati: nell’ambito della distribuzione di risorse compu-
tazionali interagenti tra loro, non possiamo ignorare i concreti e molteplici
rischi; in alcuni sensibili contesti di simulazione (e.g., simulazione militare,
ricerca scientifica, etc.) non possiamo permetterci la diffusione non control-
lata dei nostri dati o, ancor peggio, la possibilità di subire un attacco alla
disponibilità delle risorse coinvolte. Essere anonimi implica un aspetto estre-
mamente rilevante: essere meno attaccabili, in quanto non identificabili.

Scopo di questo studio sarà dunque la progettazione, l’implementazione e
la successiva valutazione di meccanismi di anonimato che rendano possibile
l’esecuzione di simulazioni distribuite in cui gli host partecipanti non possano
essere identificabili nemmeno dagli stessi partecipanti e, conseguentemente,
difficilmente attaccabili da un agente esterno.

A tal fine verranno approfonditamente studiati e adottati gli strumenti
ed i protocolli forniti dall’unico sistema di comunicazione anonima che ha,
nel tempo, dimostrato la propria efficacia e, soprattutto, un sufficiente grado
di diffusione (requisito fondamentalmente per l’ottenimento dell’anonimato):
Tor [4].

Chiaramente la possibilità di essere anonimi ha un elevato costo dal punto
di vista dei tempi di computazione, pertanto lo studio delle performance del
simulatore anonimo realizzato sarà di fondamentale importanza per quanti-
ficare l’efficienza della soluzione anonima prodotta e dei relativi protocolli
adottati.

Introduction

The Merriam-Webster dictionary defines simulation as “the imitative rep-
resentation of the functioning of one system or process by means of the func-
tioning of another” or the “examination of a often not subject to direct exper-
imentation by means of a simulating device” [5]. These are just two possible
interpretations of the notion of simulation, but both focus on the idea of the
presence of an external entity (a system or a simulating device) capable of
reproducing the behavior or the operation of a system. In the context of this
thesis the “external entity” is a computer or, more precisely, a distributed set
of computers.

The simulation has its roots back in 1777 with the Buffon’s “Needle Ex-
periment” [6], but its birth and subsequent diffusion will coincide with the
formalization of the “Monte Carlo Method” proposed by Fermi, Ulam and
Von Heumann, which will take place only in the mid-40s as part of the Man-
hattan Project [7]. With the advent of computer science, simulation would
gradually gain more and more importance, first in the military field and then
crosswise in any field of science, engineering, medicine, economic, entertain-
ment (e.g., just think of simulation games) and so on. But why do we need
simulation and why it is so important? Some of the main pros of using
simulation than real test-bed are:

• Make an accurate depiction of reality and study new and different so-
lutions;

• Evaluate systems that simply cannot be built for many reasons (e.g.,
poor feasibility like testing situation of disaster recovery);

iii

iv INTRODUCTION

• Performance evaluation under different conditions in a practical way
(and in some cases faster) than real test-bed;

• Sometimes testing on an existing system can be very dangerous, or
more simply, some stress testing are impossible to perform;

• Often many different solutions have to be evaluated in order to choose
the best one;

• Money, most of the time perform a set of simulations is more economic
and faster than the realization of real tests.

There is another advantage of using simulation, but in some cases this
can be also a possible drawback: the level of detail that you can reach from
it. In fact you can model simulations at a very high level of detail but it
clearly has a price in terms of calculation and amount of time. A solution
for these kind of large and complex models is to distribute the computing
capability over a network instead of a single execution unit.
In this thesis, I will study, in particular, the concept of distributed simulation
correlated with another relevant argument that is gaining importance day by
day: anonymity. Suppose that we are using a network inherently insecure as
Internet for our distributed simulations: how can we ensure that our data has
not been altered or, at least, there has not been any kind of confidentiality
violation? Also, in some domain with an exchange of sensible data or infor-
mation, do we really want to share our identity (our IP adddress) over the
Internet? In this work, I will try to give an answer to these questions using
Tor [4], a free software and open network for enabling anonymous commu-
nication, and ARTÍS: Advanced RTI System [8, 9] a middleware for Parallel
and Distributed Simulation (PADS) supporting massively populated models.

Furthermore, we must underline the importance to be anonymous for all
of the distributed software. In the field of simulation, as we shall in the first
chapter, the actual tendency is to exploit the computational capabilities of-
fered by the new paradigms, like cloud computing. The possibility to take
advantage of services which allow the dynamic and rapid increase or decrease

INTRODUCTION v

of the calculating capacity is fundamental for the realization of simulation
models with a certain degree of complexity. However, the use of cloud plat-
forms implies the entrustment of our simulation data to entities which are
very distant from us, to the network which interconnects us with them (with
relative risks) and, most of all, to the technologies and protocols actually
used by the Internet which makes all of the participants identifiable. In some
cases, we have no idea where or how the computation resources are located by
the cloud providers: we only know that they will exchange information, and
the basic assumption from which it is necessary to start for our evaluations
is that these interactions will happen with a public network. The possibil-
ity to exchange data securely, respect to confidentiality and integrity , it
is also a fundamental requirement for the simulations, in a special way in
the case of particularly sensitive contexts (e.g., military, medical and science
research fields): it is always more evident how nowadays cyberwarfare is a
concrete activity [2, 3], common and dangerous, from which it is better to
protect ourselves in a preventive manner. Finally, being anonymous, implies
a very important aspect: we are unattackable. A malicious subject, which
we shall see in the second chapter, can not attack the availability of our
assets because he does not know where they are located or how to reach
them. Obviously, the instruments which we will study are not the “silver-
bullet” capable of resolving every aspect relative to the computer security:
the methods with which these are used is often more important than their
effectiveness. Being fully anonymous is a constant activity which does not
limit itself to the mere installation of a software; it is also important to un-
derline the price to pay in terms of performance for being anonymous: in
this thesis, after the implementation of the anonymity’s mechanisms we will
investigate and quantify this aspect.

In the first chapter, I will start with an introduction to computer simu-
lation theory with a study of the state of the art of Parallel and Distributed
Simulation, I will also introduce ARTÍS, its architecture and its features.
After that, in the second chapter, I will explore the working principle of Tor

vi INTRODUCTION

and I will describe the concept of anonymization. I will then implement the
anonymity concepts provided by Tor in ARTÍS, and test the performance of
distributed anonymized simulation to observe how much Tor may affect the
computational time of a simulation run.

Contents

Introduction iii

List of Figures ix

List of Tables xi

1 Simulation Background 1

1.1 Computer simulation . 1

1.2 Simulation paradigms . 2

1.2.1 Monte Carlo simulation 2

1.2.2 System Dynamics (SD) 2

1.2.3 Agent-Based Simulation (ABS) 3

1.2.4 Discrete Event Simulation (DES) 3

1.3 PADS: Parallel And Distributed Simulation 7

1.3.1 Partitioning . 10

1.3.2 Data distribution . 11

1.3.3 Synchronization . 11

1.4 Cloud computing & PADS performance 15

1.4.1 Adaptivity . 17

1.5 ARTÍS/GAIA . 19

2 Anonymization background 23

2.1 The importance of being anonymous 23

2.2 Online identity . 25

vii

viii CONTENTS

2.3 The Tor Project . 27
2.3.1 Introduction to Tor . 28
2.3.2 Tor Design . 29
2.3.3 Rendezvous Points and Hidden Services 34

3 An anonymous simulator 37

3.1 ARTÍS logical architecture . 37
3.2 Communication architecture 39
3.3 Proxy server . 41

3.3.1 SOCKS4a Protocol . 42
3.4 Interaction in ARTÍS . 43
3.5 Implementation . 46

3.5.1 Hidden services creation 49

4 Performance evaluation 55

4.1 Simulation model . 55
4.2 Simulation architecture . 59
4.3 Introduction to Tor’s performances 60
4.4 Execution script . 65
4.5 Results . 67

Conclusions 77

A Distributed execution script 79

Bibliography 85

List of Figures

1.1 Example of DES representing a set of mobile wireless hosts . . 4

1.2 Example of possible PADS architecture 10

1.3 Time-stepped synchronization approach 13

1.4 Example of PADS dynamic partitioning 19

1.5 Structure of a simulator using ARTÍS/GAIA 20

2.1 Example of an onion data structure 28

2.2 Tor Cells: structures of control cell and relay cell 32

2.3 Constructions of a two-hop circuit and fetching a web page in
Tor . 33

2.4 Tor’s Hidden Service Protocol 36

3.1 Logical architecture of ARTÍS 38

3.2 Communication architecture of ARTÍS 40

3.3 Structure of a SOCKS4a Connection Request 42

3.4 Structure of a SOCKS4a Connection Response 43

3.5 Sequence diagram of communication initialization using ARTÍS
API . 45

3.6 Communication topology between 5 LPs 46

4.1 Simulation distribution of hosts used for the performance eval-
uation. 61

4.2 Distribution of frequency of 200 RTT of Tor’s packets between
EC2.dublin instance and Okeanos instance. 63

ix

x LIST OF FIGURES

4.3 Distribution of frequency of 200 RTT of Tor’s packets between
Okeanos and EC2.frankfurt. 64

4.4 Distribution of frequency of 200 RTT of Tor’s packets between
EC2.frankfurt and EC2.dublin. 64

4.5 WCTs for simulation with 3000 SEs 70
4.6 Example of simulation results report. 71
4.7 WCTs for simulation with 6000 SEs 73
4.8 WCTs for simulation with 9000 SEs 75

List of Tables

4.1 Performances of standard TCP/IP and Tor communications . 62
4.2 The Wall-Clock-Times taken for the executions of the simula-

tions with 3000 SEs . 70
4.3 The Wall-Clock-Times taken for the executions of the simula-

tions with 6000 SEs . 73
4.4 The Wall-Clock-Times taken for the executions of the simula-

tions with 9000 SEs . 75

xi

Chapter 1

Simulation Background

In this chapter, I will introduce the fundamental aspects concerning the
notions of computer simulation. It is a very wide matter so I will focus on
simulation paradigms, in particular Discrete Event Simulation (DES) and I
will introduce this argument with a general definition, after that I will explore
the concepts of sequential simulation and, above all, Parallel and Distributed
Simulation (PADS), its advantages and some key aspects.

1.1 Computer simulation

A more useful definition for this work than the ones mentioned in the in-
troduction of this document is the concept of computer simulation intended
as “a software program that models the evolution of some real or abstract
system over time” [10]. We have already seen some advantages of using
simulation in the introduction of this thesis, but a question still remains:
if we want to evaluate large and complex simulation models (e.g., forecast-
ing weather or simulate brain activity [11]) how can this be achieved in a
reasonable period of time? Or, at least, how can we reduce the necessary
computational time (known as Wall-Clock-Time, WCT)? Or even, how long
are we willing to wait for an outcome? Before attempting to answer these
questions I must necessarily introduce some concepts.

1

2 1. Simulation Background

1.2 Simulation paradigms

Computer simulation and simulation tools following various paradigms,
as stated earlier in this work, I will focus on Discrete Event Simulation (DES)
but I would also introduce the most important approaches presented in sci-
entific literature over the years. Each one of these paradigms has its benefits
and drawbacks and it must be emphasized that there are many ways of doing
simulations: it is usually a case-by-case evaluation.

1.2.1 Monte Carlo simulation

The name of this simulation paradigm derives from the casino in the
Principality of Monaco: this choice is not properly casual in fact the objec-
tive of this simulation is to model risk in an environment where the output
is subject to probability. The method is used to derive estimates through
simulations: it is based on an algorithm that generates a series of numbers
uncorrelated with each other, following the probability distribution that is
supposed to have the phenomenon to be investigated. It is considered the
father of the simulation, with the needle experiment already mentioned in
the introduction of this thesis [7]. The Monte Carlo method is used, for
example, in financial services. With this method it is possible to model the
future of investment portfolios: the stocks are the inputs of the simulation,
each one has its own distribution of possible output in terms of share price in
prospective. The result of the simulation is the equivalent amount of money
(derived from the stock’s values) of the portfolio at a certain time in the
future [12].

1.2.2 System Dynamics (SD)

System dynamics is a continuous simulation paradigm that represents
the environment as a set of stocks and flows. Stocks are an aggregation
quantity (e.g., money or items) and flows regulate level of a stock with inflows
increasing the stock and outflows decreasing it. Stocks change in a continuous

1.2 Simulation paradigms 3

manner in response to the correspondence of the inflows and outflows from
the stock [13, 12]. It is especially suited to investigating strategic issues:
[14] gives examples that include modeling supply chains, forecasting energy
consumptions and analysing business cycles.

1.2.3 Agent-Based Simulation (ABS)

The basic idea is to build systems with a bottom-up approach: the model
is constituted by a set of active entities (agents), with an individual and
independent behavior, that communicate particular events or reactions to
received messages over time. The main aim of modeling systems in this way
is to evaluate the evolution of the behaviors, the communication patterns and
structures that emerge [15]. A possible example of agent based simulation
was given by [16] where it is modeled the diffusion of an epidemic: that
model is able to represent the explosion of an epidemic in a population with
different billion of independent agents.

1.2.4 Discrete Event Simulation (DES)

A Discrete Event Simulation models the activities of a systems as a dis-
crete progression of events in time, in other words the model evolution hap-
pens at discrete moments in time by means of simulation events. The sim-
ulation evolves through the creation, distribution and evaluation of events
[10, 17] and marks a change of state in the system [12]. DES is a hugely
flexible approach: almost any aspect can be represented by who develops the
model, allowing to reach an incredible level of detail [18].

The key concept is the “event” which represents a change in the system
state that has occurred at a particular moment in time (each event contains
a timestamp, indicates when this change occurs in the actual system). Hence
the computation of an event can alter some parts of the state and eventually
lead to the creation of new events [9]. In Figure 1.1, it is possible to observe

4 1. Simulation Background

a simple DES example.

(a) (b)

(c) (d)

Figure 1.1: A simple example of DES representing a set of mobile wireless

hosts. In (a) at time t the red node opens its transmission. In

(b) at time t+α the green node starts receiving. In (c) at time

t+β the dark violet node starts receiving. In (d) at time t+γ the

red node concludes transmitting [19].

A simple implementation of a DES includes these data structures [20]:

• a set of variables: also called state variables that describe the state
of the system (e.g., in a classical example, to simulate an airport these
variables can indicate the counts of the number of aircraft that are flying
and the ones who are on the ground. We can also model the boolean
state of the runways: busy - due to a take-off or a landing - or free);

• an event list: containing events that are to occur some time in the
simulated future (e.g., in our airport, the list of arrivals and departure

1.2 Simulation paradigms 5

is a clearly example of an event list);

• a global clock: a global clock variable with the purpose of indicate the
instant at which the simulation now resides (e.g., the airport clock).

We can consider a simulator like a collection of handlers, each one con-
trols and responds to a different event type [19, 20] (e.g., an Arrival Event
in our airport has its handler: in this case the handler increments the count
of aircraft that are flying overhead and checks if the runway is free or not: if
the runway is free the handler will schedule in the event list another event -
Landed Event - at “global clock time plus the necessary landing time”). It is
important to emphasize that events are produced on the basis of temporal
chains of conditions and circumstances that generate them but they have to
be executed in non-decreasing time order: this implies that the above men-
tioned event list is a priority queue usually implemented with heap-based
solution.

Furthermore a simulator must respect two relevant constraints:

1. Reproducibility: each simulation must always be reproducible so that
it is possible to repeat and analyze the sequence of events and the
outcomes of the simulations [21];

2. Causal ordering of the events must be respected. Two events are
defined in causal order if one of them depends on the other [22]. The
execution of events in non causal order leads to causality errors .

If all events and tasks are handled and accomplished by a single execution
unit (e.g., a single CPU core and some RAM), the simulator is then called a
sequential simulator , also know as monolithic. The simulation performed
by these simulators is called sequential : in this kind of simulations we are sure
that the events and updates of the state variables are processed by the execu-
tion unit in a “non-decreasing timestamp order”. Therefore the “event loop”
(also called main loop) of the simulator continuously removes the smallest
event (in consideration of its time stamp) from the event list, and processes

6 1. Simulation Background

that event. Thanks to the presence of a single execution unit this kind of
simulator respects the two above mentioned constraints: in fact the repro-
ducibility of a simulation is guaranteed by the presence of a single process,
therefore if the inputs are the same the sequence of events will always be the
same. Also the causal ordering is respected because all the events that hap-
pen in the simulation can be temporally placed without ambiguity, thanks to
the presence of a unique global clock shared by all the entities of the system.

As you can imagine, over the simulation clock, even the state is unique
and global. We can conclude that the main advantage of this approach is
its simplicity but we have to consider some significant limitations: first of
all, how fast is a single CPU? Are we sure that the simulation time is not
a priority for us? In some cases outcomes have to be in real-time or even
faster but large and complex models might generate a large number of events
putting relevant workload on the CPU. Moreover, the RAM available on a
single host may be not sufficient to store all state informations produced
at some point of the simulation [23]: it is technical not possible to model
some system and it is evident that this kind of simulation can not scale.
In addition to these considerations, during the writing of this thesis, the
Semiconductor Industry Association (SIA) has announced that the pursuit
ofMoore’s Law 1 will definitely abandoned soon [24]: this conclusion is due to
the extreme processors miniaturization that has now reached its limit. Even
this aspect clearly has an obvious impact having regard to above-mentioned
considerations: computing needs to be rethought, shifting the simulation
paradigm to other solutions.

1.2.4.1 Parallel Discrete Event Simulation (PDES)

A first answer to try to improve Discrete Event Simulation performance
is move to a parallel paradigm. Parallel Discrete Event Simulation (PDES)

1The Moore’s Law says that the complexity of a micro-processor, measured in consid-
eration of the number of transistors for chip, doubles every 18 months.

1.3 PADS: Parallel And Distributed Simulation 7

refers to the computation of a single DES program on a parallel computer,
with the purpose of generate outcomes faster than the monolithic solution.
With PDES it is possible to represent large and complex models using the
hardware resources composed from several interconnected execution units
(e.g., a single core), each unit has to handle a part of the simulation model
and its local event list. The events produced by a single core may have to be
transmitted to the other units and, clearly, all of this needs to be correctly
partitioned and synchronized [25].

1.3 PADS: Parallel And Distributed Simula-

tion

Parallel simulation and distributed simulation, refers to the methodolo-
gies that enable to perform a simulation on systems that contain multiple
processor, such as a notebook or even a cluster of computers, interconnected
by a wired or wireless network. More in general, we can consider a Parallel
And Distributed Simulation (PADS) like any simulation in which sev-
eral processors are utilized [26]. Hence, the common idea is to use multiple
processors but it is appropriate to differentiate between parallel and dis-

tributed simulation: in this work I will intend the term parallel simulation
as the use of architecture that adopts shared-memory processors or tightly
coupled parallel machines. The term Distributed simulation, on the other
hand, specifies simulation systems that use loosely coupled machines [26].

These two types of simulation can answer both questions introduced in
this document at 1.1, in fact there are many benefits to executing a simulation
program across multiple processors:

• Reduced execution time: the subdivision of a single complex execu-
tion into different sub-computations, and the concurrently execution of
these smaller parts across N processors, make possible to reduce the
total simulation time up to a factor of N.

8 1. Simulation Background

• Geographical distribution: performing the simulation on a set of dis-
tributed machines permits the creation of virtual environments with
many participants that are physically placed at distinct location. The
most common example is online gaming : the players, from different
countries around the world, are participating at a simulation and are
interacting with the others one as if they were situated in the same
place. In the case of multiplayer gaming, distributed simulation is not
only convenient but required.

• Fault tolerance: Another important benefit of using multiple processors
is the chance of gaining more tolerance to failures [26]. It is possible,
at a certain time of the simulation, that one processor falls or com-
munication to it collapse: the other machines that are participating at
the computation can acquire its state (or even the event list). As a
result of this recovery, the simulation can proceed regardless the fail-
ure. In a monolithic simulation a collapse of the unique execution unit
implies the anticipated end of the simulation (we can only introduce
temporal saving mechanism of the state, but this obviously generate a
considerable overhead).

• Scalability : We are able to increase (or decrease) the number of pro-
cessing units, this makes the simulator scalable in relation to the size
of the simulated system, making possible simulations of large and com-
plex systems composed by a very high number of entities. This would
not be achievable with a monolithic simulator because of time limits
[27].

• Composability of models : the capacity to choose and combine differ-
ent components in various configurations into a valid simulator to ac-
complish specific user requirements [28]. Hence, for example, we can
compose distinct models in a single simulator.

• Interoperability : it is a feature of a system to work with other com-
ponents, or also entire systems, with minimal changes or even without

1.3 PADS: Parallel And Distributed Simulation 9

altering the implementation. We need to know only the appropriate in-
terfaces and this property allows us, for example, to integrate between
various simulators components.

In PADS the model is split into numerous execution units, each of them
manages a subset of the state space and a portion of the events. In this
context is used a simulator composed by many processes executed in con-
currency on the same host or on several computers: each process, called
LP (Logical Process), has to handle the progression of a part of simula-
tion and must communicates with the other processes in order to perform a
global evolution; this interaction among processes implies several important
considerations about the consistency of the simulation due to the needed
synchronization and data distribution operation [26]. Each LP is executed
by a different Physical Execution Unit (PEU)2, the PEUs can be placed
on the same computer (case of multi-core or multi-CPU architecture) and in
this case they typically use shared memory to communicate, or they can be
located in several hosts and communicate through a network. It is more com-
mon to see heterogeneous systems that mix these communication types: the
architecture is usually an “hybrid”, for example a mix of local resources, that
are using a LAN or even shared memory, and remote resources that are using
network protocols like TCP/IP or Tor. In Figure 1.2, it is possible to observe
a possible example of a real world architecture for PADS. In conclusion, the
model is physical divided between all the PEUs, each PEU (through the run
of the relative LP) has to manage the execution of the assigned part of the
model. It is also evident that the method used for communication between
LPs can strongly influence the simulator’s performance.

Hence, we cannot rely on a shared global state and the separation of
the simulation bring out anything but simple issues like the partitioning of
the model, the synchronization of processes and the data distribution among
them.

2A PEU is essentially a core in a multi-core architecture or a CPU in a single-core
architecture.

10 1. Simulation Background

Figure 1.2: An example of possible PADS architecture with distributed and

heterogeneous computers. Each PEU (substantially a core) will

execute a LP. It should be noted that also the communication

channels are heterogeneous (e.g., a LAN, shared memory, Inter-

net).

1.3.1 Partitioning

As previously stated, the simulation model must be partitioned among
the LPs. This can be very difficult work because often there is not an easy

1.3 PADS: Parallel And Distributed Simulation 11

way to identify a possible partition of the model. Sometimes the domain of
the simulation allows a functional or semantic decomposition of the model
but usually this is not the general case. Another point to consider is that the
workload should be balanced across LPs (load balancing) and the commu-
nication between them should be minimized [29]. There are some relevant
factors to consider to define the partitioning criteria, one of them is certainly
the model of the simulation (e.g., maybe it is possible to distinguish classes
of objects that interact among objects of the same group; in this case we
have a natural model partitioning that respects as well the load balancing
of communication), another one is the hardware architecture on which the
simulation will be executed and, in the end, even the characteristics of the
synchronization algorithm that is implemented can guide the partitioning of
the model.

1.3.2 Data distribution

The model is partitioned so the principal consequence is that each com-
ponent of the simulator will produce status updates that might be relevant to
other entities: with the term data distribution we intend the dissemination
of these updates all over the execution architectures. For overhead reasons,
broadcast is not a good idea (the LPs are not interested in receiving updates
of all the other LPs) hence only the necessary data has to be forwarded to
the interested processes, this implies the application of criteria in order to
balance data production and data consumption adopting “publish/subscribe”
pattern [30]. Data distribution is closely related to synchronization.

1.3.3 Synchronization

In section 1.3 of this work, we have seen that each LP is executed by a
different PEU, realistically at a different speed. Furthermore, we have also
considered the presence of different kinds of networks which can be more or
less congested: about that we assume that the network can introduce delays

12 1. Simulation Background

but communication is reliable (e.g., TCP-Based).
Moreover, we have to introduce a definition of correctness to distinguish

the validity of the result of a PADS: we consider the result correct only if
the outcome is the same of the one deriving from a monolithic/sequential
execution. This means that causal ordering (see section 1.2.4) must be re-
spected also in PADS: this is much difficult in "PADS" than in sequential
simulation, because the LPs have only a partial view of the global state and
of the events that were happened in the model or that are pending on the
event list of the others. To achieve result’s correctness, we need some kind
of synchronization among the several component of the simulation, this aim
usually has a very relevant cost [19]. To solve this problem different solutions
have been proposed, divided in three main families:

• Time-stepped ;

• Conservative;

• Optimistic.

1.3.3.1 Time-Stepped

In this synchronization approach, the simulated time is partitioned in
periods of a fixed-size called time-steps. Each LP can pass to the next time-
step only when the current one is completed by all the other LPs. Hence, it is
evident that the time is discretized (even if is clearly a continuous measure)
and it comports a constant synchronization among all LPs: this is typically
implemented with a barrier at the end of each simulation step.

The key aspect of this synchronization paradigm is the choice of an ap-
propriate time-step size: small steps imply more synchronization points and
this can have a strongly repercussion on performance, on the other hand
large steps may influence the consistency of the simulation. This approach is
very simple to implement and to understand but the main drawback is the
unnatural representation of simulation time in some domain, furthermore a
slow LP is a relevant bottle-neck for the simulation.

1.3 PADS: Parallel And Distributed Simulation 13

Figure 1.3: Discretization of time in time-stepped synchronization approach

[19].

1.3.3.2 Conservative

The aim of the conservative (or pessimistic) synchronization is to avoid
causality errors (see paragraph 1.2.4); in this approach we want to determine
when the processing of an event is safe or not: we establish this when all
events that might influence the interested event have been processed. Hence,
the LPs have to determine if each event is safe before processing it: if in an
event list we have an unprocessed event Et with timestamp Tt (and no other
event with an inferior timestamp), and we can establish that it is not possi-
ble to receive other events with an inferior timestamp (i.e., in consideration
of timestamp Tt), then we can securely process Et because it is guaranteed
that doing so will not later lead to a violation of the causality constraint.
To respect the causality constraint, this synchronization approach block the
LPs that are containing an unsafe event until the event itself is not safe: it
is clear that we have to take appropriate precautions to avoid the danger of
deadlock situations [25].

One of the most used algorithm for pessimistic synchronization is the
Chandy-Misra-Bryant (CMB). In the CMB algorithm each LP needs to have
an incoming message queue for each LP that interacts (i.e., sends event) with
it. A LP produces events in a non-decreasing timestamp order, hence it is
relatively simple to establish the succeeding safe event: it has only to check
all the incoming queue. After that, the event with the lowest timestamp t is
surely safe and can be processed. In CMB the deadlock is prevented using

14 1. Simulation Background

NULL messages that allow to interrupt the “circular chain” (i.e., is one of the
required condition to lead to deadlock’s situations): these messages have not
a particular semantic but they are necessary for sharing information about
synchronization: each time an event is processed, a LP must send N NULL
messages each of which to the N LPs to whom it is connected [25, 19, 31].
It is evident that NULL messages can be present in a very huge number,
so it is legit to assume that CMB is “communication oriented” instead of
“computation oriented” (e.g., like optimistic mechanism): this communication
overhead may have a relevant effect on the total time of simulation and, above
all, introduce so many message can be an evident problem for the purpose
of this work.

1.3.3.3 Optimistic

The first assumption in this approach is that the processes are free to
violate the causality constraint, indeed optimistic methods detect and recover
from causality errors; they do not strictly avoid them. Each LP process all
events in receiving order and, in contrast to conservative mechanisms, they
are not interested if the processing of an event is safe or not: eventually they
determine when an error has occurred, and invoke a procedure to recover a
prior state that was correct. Doing a very simple parallel: we can consider
this procedure like saving a game on a computer game, if something goes
wrong, we can still restore the previous situation. This mechanism of recovery
the internal state variables of the LP in which happened the violation is called
roll back. By definition, a process detects a causality error each time it
receive an event message containing an inferior timestamp compared with the
timestamp of the last event processed (i.e., this event is in “late”): literature
define this event a straggler [25]. Hence, when a straggler is detected, the
interested process must perform a roll back: its state is restored to a previous
simulation time (respect to the straggler’s timestamp), after that it must
propagate the roll back to all other LPs (i.e., these restoring messages are
called “anti-messages”): if the last event processed by an LP that has received

1.4 Cloud computing & PADS performance 15

an "anti-message", has a timestamp inferior to the straggler’s timestamp,
then even this LP has to perform a roll back [32]. It is possible to generate
“rollback’s cascades”: to deal with this eventuality is fundamental that each
LP stores a list of the sent messages and also the local state data. It is
evident that we need to spend a lot of memory and computational resources;
the basic idea is to perform and propagate a consistent restore in order to
make a rollback up to a global safe state.

This mechanism is called Jefferson’s Time Warp[32] and, as previously
stated on the conservative approach section, it is “computation oriented”:
the proponents of this approach assert that computation is much faster than
communication; on the other hand advocates of conservative approach point
out that the Time Warp mechanism is much more complex to implement.

1.4 Cloud computing & PADS performance

We have seen the key aspects of PADS but what about performance? In
particular related to new trends like Cloud computing3? Considered what
was stated in the previous sections it is reasonable to think to exploit the
recent evolutions of computing systems, like public cloud technologies, also
in the PADS context. The most important advantage is surely the approach
pay-as-you-go or rather you pay only for the rented resources and you can
increase or decrease them dynamically but, a possible drawback, this kind
of environment can be very dynamic, variable and heterogeneous. Moreover,
the “market of cloud services” is composed of many competing vendors and
the price of the same service is often the result of a market economy of
supply and demand: the user usually must compose services from different
providers to take advantage (i.e., in price terms) of the competition among
vendors. The first consequence of this is a more heterogeneous and dynamic

3As Defined by NIST the Cloud is: “A model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction”[33].

16 1. Simulation Background

architecture, where the lack of interoperability and the use of different APIs
among vendors are a relevant problem.

It is also necessary to introduce other parameters to evaluate this ap-
proach: the most common metric to evaluate a simulation is the time needed
to perform a simulation run (WCT) but in this context it may also not be
the most relevant one; we have to take in consideration others factor like how
much time we can wait for the outcome of a simulation or how much we want
to pay the cloud providers for a simulation run? Typically an upper bound
of time is defined and this guides the cost of the resources. Is this pricing
model suitable for PADS?

In relation to what was observed about the mechanisms of synchroniza-
tion it is possible to assert that both optimistic and pessimistic approaches
are not well suited for a pay-as-you-go policy: indeed the CMB algorithm
is communication-oriented (i.e., the user has also to pay the bandwidth and
this communication overhead might be a problem for the WCT) and a lot
of computation is wasted (e.g., an LP is stuck waiting to get information to
decide if an event is safe), on the other hand, for example in a Jefferson’s
Time Warp mechanism, there is the risk of spend a considerable amount
of time and computation due to roll-backs mechanism [31], furthermore the
possible rollback cascade must be handled (i.e., this implies investments in
bandwidth and, as we have seen, in volatile memory). In all mechanisms
(time-stepped included as explained in 1.3.3) the slowest LP might affect
global performances of the simulation: in a pessimistic approach all the LPs
are constantly waiting for a NULL message from the slowest one, in an opti-
mistic approach, it is clear that the slowest LP shares events that are always
in late respect to the ones produced by the other LPs: the simulation is
bottle-necked by it and its lateness will cause a lot of roll-backs.

Besides the advantage of not having to buy hardware, as we said in the in-
troduction, cloud computing offers to applications the opportunity to require
more resources at run-time: this translates into a significant benefit for many
kind of domains. In our context, we can scale down the CPU consumption

1.4 Cloud computing & PADS performance 17

of processor-bound execution by adding instances (horizontal scaling) or, on
the other hand, we can request an upgrade of actual nodes where a higher
number of processes are located (i.e., to reduce remote communications) in
order to avoid CPU-bound bottleneck (vertical scaling). In the fourth chap-
ter, we will see an example with Amazon Elastic Compute Cloud (EC2) [34]
instances .

Related to the considerations about synchronization mechanisms, we must
also consider the problem of partitioning: the distribution of cloud services,
maybe provided from different vendors (it is our case as we will explain in
the fourth chapter of this work), means a convoluted version of the partition-
ing issues described above. Our purpose is to reduce communications and,
at the same time, balance the computation workload across the execution
units: especially in the context of cloud computing it is necessary to real-
ize a good partitioning strategy in order to pursue these achievements (load
balancing). The communication pattern evolves during the execution of the
simulation: it is usually frequent that, at some point, several processes open
and close communication streams to other component, in response to the
evolution of the simulation events. These dynamic changes have to be man-
aged with an adaptive approach and it is clear that the static partitioning is
not a performant solution [35] .

1.4.1 Adaptivity

The lack of adaptivity implies static partitioning and this leads to draw-
backs like a poor load balancing or a weak interactions approach between
partitions (e.g., the communications among different partitions are frequent
but the processes inside the partition do not communicate with each other:
this implies that they are not clustered properly).

An adaptive partitioning of the model is fundamental to resolve most of
the complications described in this section. First of all, following the so-
lution proposed in [31], it is necessary to further decompose the model in
tiny components called Simulated Entities (SEs). The model behavior

18 1. Simulation Background

is defined by the interaction, with a message exchange protocol, between all
the SEs; a subset of the total SEs is contained in each LP (that is running
on a specific PEU) but they are not statically bound to that LP: they can
be moved in order to reduce the communications overhead and enhance the
load balancing. In order to optimize the use of computational resources or
even to introduce a real scalability mechanism, the simulator can creates or
delete LPs during the simulation. In other words, the simulation is organized
as a Multi Agent System (MAS) [36].

The simplest strategy to reduce communication overhead is to group the
strongly interacting SEs within the same LP, respecting the load balancing
constraint (i.e., having too many SEs in the same LP does not lead any
benefit).

In Figure 1.5, it is possible to distinguish three different “interaction
groups” (marked with different colors). An efficient allocation of SEs is the
one depicted in Figure 1.5 (b), we can notice that the interaction groups
have been correctly reallocated to the same LPs/PEUs. It is important to
notice that, in this example, load balancing is respected (i.e., each LP has
the same number of SEs before and after the migration, and the sizes of in-
teraction groups are approximately the same). This procedure has its costs
that include network transfer delay, serialization and de-serialization of state
variables of the migrated SE, therefore it requires a constant evaluation of
communication and load balancing of each LP, which allows to understand
if and when it is convenient to perform a migration.

Furthermore, with regards to the observations made about the perfor-
mances of the synchronization mechanisms, we can evidence particular de-
lays due to slow LPs: the simulator can exploit these adaptivity mechanisms
in order to stem this retards; for example, at a given simulated time, it could
migrate some SEs from the slowest LP (decreasing its workload) to the most
performant one.

1.5 ARTÍS/GAIA 19

Figure 1.4: An example of PADS dynamic partitioning with two hosts con-

nected by a LAN [31].

1.5 ARTÍS/GAIA

The Advanced RTI System (ARTÍS) [8, 9], the case study of this work, is a
middleware that enables parallel and distributed simulation; it is specifically
thought to support a high degree of model scalability and execution architec-
tures composed of a huge number of Logical Process (and then PEUs). The
design of the middleware is guided by the High Level Architecture (IEEE1516
Standard) [37].

One of the most important feature of ARTÍS is the implementation of

20 1. Simulation Background

adaptive mechanisms to handle the different patterns of communication be-
tween LP, in order to reduce the communication and computation overheads
above mentioned and, consequently, reduce the WCT of the simulation.
ARTÍS provides an Application Programming Interface (API) that includes
functions for message passing (e.g., send, receive, and so on), that are used
indiscriminately by the LPs without them having to face the problem of how
the underlying hardware architecture is structured: if through the ARTÍS
API takes place a communication between two LP that are on the same
host, this is carried out through shared memory; if instead the communica-
tion takes place between LP that are on different computers connected to
the network, this is carried out by network protocols (e.g., TCP/IP). In this
thesis, we will consider only the second case also for LPs located in the same
computer. Furthermore ARTÍS offers the user the possibility to choose one
of the mechanisms of synchronization described in section 1.3.3 of this work.

Figure 1.5: Structure of a simulator using ARTÍS middleware and GAIA

framework [31].

The implementation architecture of ARTÍS is partially centralized: the
LPs involved in the simulation have all the same role and they are all dis-
tributed over the network but there is an exception constituted by a central-

1.5 ARTÍS/GAIA 21

ized element called SImulation MAnager (SIMA). SIMA covers various tasks
including the management of synchronization barriers during execution, co-
ordination of the LPs, the initialization and termination of the simulation.
For the purposes of this thesis the role of SIMA is fundamental: it knows
the number of LPs and the nature of communication channels that connect
them and, moreover, it indicates to each LP how to enter into dialogue with
others. I will explain in detail the behavior of the SIMA in chapter 3.

Generic Adaptive Interaction Architecture (GAIA) [8, 38] is a framework
that relies on the middleware for parallel and distributed simulation ARTÍS.
The approach described above in section 1.4.1 based on LPs viewed as con-
tainers of entity is made possible by the introduction of GAIA and its main
features are: dynamic partitioning and adaptive allocation of model entities.
The analysis of network conditions, the analysis of rates of communication
between the various entities and implementation of migration are carried
out by GAIA while running the simulation. In order to introduce an adap-
tive load balancing mechanism among LPs, GAIA+ [39] was developed, an
extension of GAIA that extends the framework with analysis of the work-
load of each LP and realize migration strategies with the purpose to balance
distribution of computation.

Chapter 2

Anonymization background

This chapter will introduce the main concepts regarding the notions of
privacy and anonymity, the principles behind anonymization networks and
the functioning of one of the most popular softwares for enabling anonymous
communications (Tor).

2.1 The importance of being anonymous

“Anonymity is a shield from the tyranny of the majority”
Supreme court of the United States of America [40].

It is granted to emphasize how connectivity and Internet usage have be-
come pervasive today, as it is clear that in later times some rights, considered
pivotal in the civil society, have lost value or, at least, have changed form.
In the past, concepts such as privacy, anonymity, freedom of speech and ex-
pression have always been protected (at least in democratic countries): con-
troversial voices have frequently been felt thanks to the cover of anonymity
(e.g., many authors who might be afraid of being persecuted because of their
thought have thus been able to freely express their opinions without fear of
recrimination). Pseudonyms have always played a key role in politics and
literature in general, so that even people marked by the opinions previously

23

24 2. Anonymization background

expressed, or by becoming a member of some association or group, to express
their ideas without the danger that these were distorted or denied a priori:
many censored writers have continued to work thanks to the possibility of
using a fictional name. However in the context of the Internet these rights
have suffered, with the passing of time, a limitation and, in any case, have
always received an ad-hoc treatment, as if the subtle difference between what
should be an inalienable right have consisted of a means of communication.
Recent news events have definitively established that the concept of privacy
in the name of a supposed security, is now practically disappeared and, above
all, it is impossible to be implemented in a context such as the Internet (if
not by a sudden change of course from governments worldwide more than
a technological change): any citizen of the world who has used the Internet
and its services was, in all probability, observed, studied, watched by United
States government entity (NSA1)[1]. But is it really possible to give up rights
and personal freedom in the name of a possible increase of national security?
Are we really talking about our safety? Who really has access to our personal
information and why? “Quis custodiet ipsos custodes?”2 What advantages
do we have from being truly anonymous on the net? And which drawbacks?
The main reasons can be:

• Freedom of speech: in many countries around the world it is not
possible to freely express our opinion. Just think about journalists and
bloggers in some countries of the Middle-East or human rights activists
that are using anonymous networks to report abuses from danger zones.

• Location independence: first of all, we might want to avoid sharing
our position with the rest of the world, as a matter of personal safety
(i.e. it is simpler than it seems to discover the city or even the street
from where we are connected). Moreover, in some countries it may
be forbidden to access certain services (e.g., like Google services or

1National Security Agency
2A Latin phrase of the Roman poet Juvenal. It is literally translated as “Who will

guard the guards themselves?”

2.2 Online identity 25

Facebook in China).

• Privacy: it may look the same but it is a direct consequence of
anonymity. A possible definition from [41] is “ensuring that individuals
maintain the right to control what information is collected about them,
how it is used, who has used it, who maintains it, and what purpose it
is used for”. In other words, we do something and we are free to decide
whether we want to make it known to others or not. A simple example
of everyday life concerns the sale of our Internet browsing data by In-
ternet Service Providers (ISPs). There are many companies willing to
pay for records of visited sites, for the text of performed searches on a
search engine or even to know our username or information about our
password. Also websites maintain their own logs that are containing a
lot of useful and valuable information about their users.

• Network security: it may seem trivial but it is certainly one of the
most important advantages. Using an anonymous network protects the
user against a common (often malicious) technique called traffic analy-
sis : it is the process of intercepting and studying messages with the pur-
pose of reveal information from patterns in communication. The most
dangerous aspect is that it can be performed even when the messages
are encrypted: it is not necessary to violate the integrity of the data
with decryption. Furthermore, knowing the source and destination of
Internet traffic allows others to track your behavior and interests.

• Do illegal things: All that glitters is not gold, anonymity brings with
it a series of problems concerning the execution of illegal activities (e.g.,
Silk Road marketplace [42]).

2.2 Online identity

The Internet is based upon a simple principle: transferring information
from a terminal to another. In order to do this each terminal needs an iden-

26 2. Anonymization background

tity which is determined by the IP address. An IP address is an unique
identifiable information that is received by the other components of the net-
work when any communications link is made over the network. This includes
visiting web pages, sending or receiving e-mail, updating software, or using
any network application. After the closing of a session (e.g., by turning off
a device), when a terminal reconnects to the Internet will often gets a new
IP address: this is not a certain rule for every provider. At some ISPs, the
address assigned is bound to a connection for a period of time which can
also be of several years and it becomes somewhat similar to a physical ad-
dress (like a street address or even telephone number). A user can be easily
identified by it. Our Internet identity is bound to the assigned IP also for
a variable period of time after a particular Internet session: the ISPs that
provide us connectivity must record and keep our personals data for months
or even years due to respond to any request from the authorities. These data
includes the name of the customer logged in, along with the IP address at
the time of registration, as well as all, for example, the full record of websites
the user has accessed on the Internet.

There are many services that allow to change IP address, but this is
clearly not an effective solution: often what we do, the sites that we consult,
or even what we search on a search engine, is sufficient to infer who we are.
Moreover, I have already mentioned the traffic analysis attacks: a communi-
cation pattern is often almost as dangerous as the spread of an IP address.
The only possible solution is to separate from the concept of identity (and
IP address) and at the same time curbing the spread (voluntary or not) of
our personal information.

But how can we actually do it? The basic idea is simple and may be
summarized in two macro activities:

1. adding intermediaries between sender and receiver;

2. using cryptography (a lot of).

2.3 The Tor Project 27

Prior to go into the details of the functioning of some protocols that guar-
antee anonymity, I can anticipate that the first activity consists, essentially,
in the addition of some steps to the packet’s path through the network. Why
should we do this? To make it more complex, if not impossible, to determine
the real source of the message. Clearly, this only activity serves no other
purpose than to spread quickly our personal data, the application of encryp-
tion and decryption techniques will ensure the confidentiality and integrity
of data3.

2.3 The Tor Project

At the time of writing, the most famous and diffused anonymizing net-
work is The Onion Router (Tor) [4]: the high number of users and the per-
vasiveness of the network, as we will see, is an indispensable characteristic
for online anonymity: Tor has over 2 million users [43].

As often happens, also The Onion Router was born for military purpose:
indeed the core of Tor (i.e., Onion Routing technique) was developed in 1997
by United States Naval Research Laboratory, with the purpose of assure, to
the United States intelligence, a secure communication online [44] and the
main goal of the creators was to limit a network’s vulnerability to traffic
analysis. The name “onion” is not accidental: it refers to the application of
layers of encryption, equivalent to the layers of an onion. The onion data
structure is formed by wrapping a message with layers of encryption, the
number of layers is equal to the number of nodes that must be traversed
before arriving at the destination. Each node can only decrypt its layer to
obtain information regarding its successor (an example in Figure 2.1).

The first alpha version of Tor network was launched in 2002, in 2004 was
published the second generation of Onion Router protocol [46], after this year

3Data confidentiality: private or confidential information is not made available or
disclosed to unauthorized individuals. Data integrity: assures that information and
programs are changed only in a specified and authorized manner [41].

28 2. Anonymization background

Figure 2.1: Example of an onion data structure: the source has wrapped the

message in three layers of encryption, each one for each router in

the network [45].

the growth of the Tor network will be constant up to the present day.

2.3.1 Introduction to Tor

The more general definition of Tor is: a circuit-based low-latency4 anony-
mous communication service; onion routing is a distributed overlay network
(i.e., built on top of Internet) designed to anonymize TCP-based applica-
tions (at the time of writing there is no support to others protocol like User
Datagram Protocol). The main purpose of Tor is to discourage a possible
attacker from linking communication partners, or from associating multiple
communications to or from a single user. The main characteristics that drive
the Tor design are:

4A network is low-latency if a human user can not notice delays between the processing
of an input to the corresponding output. In other word, this kind of networks provide a
real-time characteristics.

2.3 The Tor Project 29

• Deployability: clearly the design must be used in the real world and
it must not be expensive in term of resources (e.g., a reasonable amount
of bandwidth);

• Usability: the system must be easy to use, a difficult-to-use system
discourages the users and more users participate, more anonymity can
be guaranteed. An easy to use system should require few configurations
to the users and should be easily installed on all common operative
systems;

• Flexibility: the protocol must be flexible and well-specified so that it
can also be reused in other future researches;

• Simple design: the protocol’s design must be as simple as possible;
a complex system is difficult to manage from different points of view,
and probably, more exposed to possible attacks. As often happens in
the context of computer security: “a system more is complex and more
it is insecure”.

2.3.2 Tor Design

The first operation accomplished by a client who is connecting to the
Tor’s network is the choice of a path and the building of a circuit, each node
in this the circuit knows only its neighbors (i.e., the previous one and the
next one): it does not know anything about the other nodes of the path.
The nodes (also known as relays) that compose the overlay network can be
distinguished in:

• Onion router (OR): each OR keep a Transport Layer Security (TLS)
connection to every other onion router. There is no need for special
privileges, the ORs are executed as user-level processes. The goal of
the onion router is to connect clients to the requested destinations and
relay data to the successor in the circuit. Each one maintains two
different keys:

30 2. Anonymization background

– Identity key : is a long-term key used for different purposes. The
most important are the signing of the TLS certificates and the
signing of the router descriptor (a brief summary of its keys, ad-
dress, bandwidth, entry and exit policy). The identity key is also
used by directory servers5 in order to sign directories.

– Onion key : is a short-term key and is used to decrypt the requests
coming from the users in order to build a circuit. The onion
keys are changed periodically, to circumscribe the impact of key
compromise.

• Onion proxy (OP): is a local software that each user must execute
in order to participate to the Tor’s network, it is needed to establish
Tor’s circuits and, most important for this work, to handle connections
from applications.

The use of TLS connections implies that data are perfectly secrets, this
can also prevent an attacker from altering the integrity or impersonating an
OR. The unit of communication in Tor are fixed-size packets called cells : each
packet is 512 bytes and it includes, as a standard TCP/IP packet, a header
and a payload. The header is composed by a circuit identifier (CircID),
that specifies the circuit in which the cell has to be routed, and a command
(CMD) that defines how to use the cell’s payload (DATA). Tor distinguishes
two different kind of cells on the basis of their commands:

• control cells : these cells are always processed by the node. The com-
mands for this kind of packet are:

– padding : is used to communicate to keep-alive a circuit;

– create/created : the first one is used to set up a new circuit, the
second one is used as an ack to answer to a create request (i.e.,
to notify that a circuit has been created);

5A directory server is a trusted node that provides directories describing known routers.
Users have to download them via HyperText Transfer Protocol (HTTP).

2.3 The Tor Project 31

– destroy : self-explanatory command, it destroys the circuit.

The structure of a control cell is depicted in Figure 2.2 (a).

• relay cells : these cells are used to carry the stream data from the sender
to the receiver. The header of this kind of cell includes other fields like
a byte to identify relay cells, a stream identifier (streamID), a digest
for end-to-end integrity checking and the length of the payload. The
most important commands for these cells are:

– relay data: the most common relay cell, it is used for data flowing;

– relay begin/end : respectively used to open and close cleanly a
stream;

– relay teardown: this command is used to tear-down a broken
stream;

– relay connected : this cell passes through the circuit to communi-
cate to an OP that a stream of data can start (i.e., the begin cell
has been successfully received by the recipient);

– relay extend/extended : operation used to extend a circuit incre-
mentally, the second one is used as an ack (i.e., to notify that a
circuit has been extended);

– relay truncate/truncated : operation used to exclude a part of the
circuit, the second one is used as an ack (i.e., to notify that a OR
has been excluded);

The structure of a relay cell is depicted in Figure 2.2 (b).

It is important to emphasize that all the relay cells are encrypted or
decrypted together while they are moving through the circuit: Tor utilizes
a 128-bit Advanced Encryption Standard (AES) cipher in order to generate
a cipher stream. Now that I have introduced the different type of cells and
relative commands, I can explain how Tor protocol works.

32 2. Anonymization background

Figure 2.2: Tor Cells: structures of control (a) and relay (b) cells. [46]

.

Construct a circuit

The construction of a circuit is an incremental operation: an OP deter-
mines a path (actually, is usually composed by at least three relays) and,
after that, it will negotiate a symmetric key with each relay on the circuit,
hop by hop. Hence the OP (e.g., Alice) send the first control cell to the first
OR (OR1) in the path: its command is create and the CircID is assigned
ex novo. The payload of this first message includes the first half of Diffie-
Hellman6 handshake (gx) encrypted with OR1’s onion key. The answer is a
created control cell that include in the payload gy (second half of D-H) with
a hash of the agreeded key K = gxy. The first hop of the path is completed,
now Alice sends the first relay extend cell to OR1, specifying in the payload:
the address of the next relay (OR2) and an encrypted gx2. OR1 has to copy
the D-H half-handshake into a new control create cell destined to the new
recipient to extend the circuit (this implies the choice by OR1 of a new Cir-
cID, Alice is not interested to know this CircID). After that, OR2 responds
with a created cell to OR1, OR1 forward the payload to Alice with a relay
extended cell. The circuit is now extended with OR2, Alice and OR2 share

6Diffie-Hellman key exchange (D-H) is a method of securely exchanging cryptographic
keys over a public channel. The goal of this method is to establish a common secret
between two different subject, this secret will be used for a secure communication for
exchanging data.

2.3 The Tor Project 33

a common key K2 = gx2y2. To conclude the circuit with a third relay, Alice
and the other ORs proceed as above. It is important to notice that Alice
never uses public key thus remaining anonymous. In Figure 2.3 it is depicted
the procedure above.

Figure 2.3: Constructions of a two-hop circuit (procedure above the dotted

line) and fetching a web page in Tor. [46]

The circuit has been fully established, now the OP can send relay cells.
Every time an OR receives a relay cell, it looks up the CircID and decrypts
the header and payload with the session key for that path. The OR always
checks the integrity using the digest, although it is not valid it sends the
relay cell to the next OR in the circuit: if the last OR of the circuit receives
an unidentified cell, the circuit is automatically closed. When an OR wants
to reply to an OP with a relay cell, it encrypts the cell with the key it shares
with the OP and sends back the relay cell to the OP. The successive ORs in
the circuit add layers of encryption. When an OP finally receives a relay cell
it iteratively decrypts the content with the session keys of each OR of the
specified circID (from the nearest to farthest), at any step of this unwrapping

34 2. Anonymization background

procedure it checks the integrity thanks to the digest of each cell.

Opening streams

When an user’s application needs a TCP connection to a specified address
and port, it requests the OP to prepare the connection. This demand is
performed by Socket Secure (SOCKS) protocol (in the third chapter we will
see how this protocol works). After the creation of the circuit, the OP sends
a relay begin cell (with a new random streamID) to the exit node to open
the stream. Once the exit node is connected to the remote host (e.g., a
website), it answers back with an ack (relay connected cell). After having
received the ack, the OP notifies to SOCKS the opening of the stream. Now
the communication consists of a series of relay data cells. The relay cell
exchange message protocol is depicted in 2.3 below the dotted line.

2.3.3 Rendezvous Points and Hidden Services

One of the main features of Tor is the possibility for users to offer services
(e.g., web publishing, instant messaging server, etc.) while their location is
totally hidden (clearly the IP will never be revealed). This anonymity is
extremely important while an OP is offering a service because it protects
against Distributed Denial of Service (DDoS)7 attacks: the attackers do not
know the OP’s IP address, they are forced to attack the onion routing net-
work. The explanation of Tor’s Hidden Service Protocol is fundamental to
understand how it is possible to make a simulator anonymous.

First of all an OP (e.g., Bob, our hidden service in this case) needs to
create a long-term public key pair to identify its service. The next step is
to create some circuits towards different ORs, called introduction points (IP)
(Figure 2.4(a)). Once the circuits are created, Bob creates a hidden service
descriptor composed by his public key and a list of the IPs: he signs this

7A DDoS is an attempt to make a resource unavailable to its intended users, typically
by flooding the target of requests

2.3 The Tor Project 35

advertise with his private key and uploads it to a distributed hash table
(Figure 2.4(b)). Another OP (e.g., Alice, the client) is interested in Bob’s
hidden service: she needs to know the onion address of the service (maybe
Bob told her or she found it in a search engine or website). She requests
more info about Bob’s hidden service from the database and subsequently
chooses a new relay, called rendezvous point (RP), that it will be used for
her connection to Bob (Figure 2.4(c)).

The rendezvous point is ready, the hidden service is up and the descriptor
is present: Alice must prepare a “presentation letter” called introduce message
(encrypted with the Bob’s public key) composed by a one-time secret and
the address of the RP: she contacts one of Bob’s IPs and asks to deliver the
introduce message to Bob (Figure 2.4(d)). The message also contains the
first part of the D-H handshake, as described in the procedure for opening of
a circuit. Bob decrypts Alice’s introduction message: now he knows the RP’s
address and creates a circuit to it; after, he sends a rendezvous message that
includes the second half of D-H handshake and an one-time secret (Figure
2.4(e)). Now the RP links Alice to Bob, but it can not identify neither the
sender nor the recipient, or even the information transmitted through the
circuit. Alice starts the communication with the sending of the usual relay
begin cell along the circuit (Figure 2.4(f)).

36 2. Anonymization background

(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Tor’s Hidden Service Protocol [4].

Chapter 3

An anonymous simulator

In the first two chapters, I have introduced the theoretical foundation to
implement a prototype of an anonymous simulator. In this chapter, we will
see the design of ARTÍS/GAIA, the proposed changes in the implementation
needed to anonymize the communication streams and the LPs participants
and the creation of the hidden services (see section 2.3.3).

The anonymized version of the simulator is a global prototype feature,
this implies that is applied to all the Logical Processes at compilation time.
Hence, it is not possible to have some anonymous LP and others that are
not anonymous: in any case all the LPs should use Tor, anonymous ones to
preserve their anonymity and to communicate with other LPs in the same
condition, non-anonymous to translate the onion address. Moreover, the hy-
pothesis of not anonymizing some LPs does not make much sense associated
with the purposes of this thesis.

3.1 ARTÍS logical architecture

As previously said in section 1.5, ARTÍS is a middleware for parallel and
distributed simulation, it is inspired by a Runtime Infrastructure provided
by High Level Architecture (HLA)[37]. HLA is the point of reference for
distributed computer simulation systems, it guarantees reusability and in-

37

38 3. An anonymous simulator

teraction with other computer simulations, independently of the computing
platforms. This standard does not cover the implementation of a distributed
simulation, which depends on who develops the simulator, but it defines
an architecture and a set of specifications that a simulation must respect,
also to ensure the appropriate interoperability. A HLA-compliant simula-
tion is composed by a set of federates (like our LPs) that interact with each
other to perform a simulation (i.e., a federation). The possible interactions
between federates are defined by the Federation Object Model (FOM), the
FOMs have to follow the structures defined in the Object Model Template
(OMT). In the end, the most important element for us, and in general for
HLA, is the Runtime Infrastructure (RTI) which represents the implementa-
tion of the distributed system underlying the simulation and that makes it
possible to execute the federates and their interactions. A possible drawback
of HLA standard is the absence of a paradigm based on the migration of the
simulated entities, the framework ARTÍS/GAIA was developed to solve this
problem [31].

Figure 3.1: Logical architecture of ARTÍS [47].

3.2 Communication architecture 39

The implementation of ARTÍS follows a component-based design pattern:
this translates into an easy to extend set of different modules. In Figure 3.1
we can observe the layered logical structure of ARTÍS, where the different
logical modules are organized in a stack-based architecture.

The communication layer (and associated API) is probably one of the
most important and it is definitely the one that is central to the purposes
of this thesis. Considering the communication cost of a distributed simula-
tion, ARTÍS tries to improve the performances selecting adaptively the most
appropriate communication module: for example, in multi-core or multi-
processor architecture, ARTÍS takes advantage of shared memory to reduce
the communication overhead; in the same way, if several hosts are located in
the same Local Area Network (LAN), hence without shared memory, ARTÍS
adaptively uses Reliable User Datagram Protocol (RUDP). In our context
this is not possible, as stated in section 2.3, Tor can use only TCP as a
transport layer protocol. Therefore, the anonymous communication feature
must be positioned on the top of the TCP/IP module.

3.2 Communication architecture

As we have seen in section 1.5, ARTÍS provides a central element in the
architecture: the SImulation MAnager (SIMA). This element is fundamen-
tal, especially in an anonymous simulator: I can affirm that the partially
centralized architecture of ARTÍS is predisposed to anonymization thanks to
the presence of the SIMA, without it I would have had to introduce a similar
entity. Indeed, in the “initialization phase”, the SIMA knows the number of
LPs and the nature of channels which connect them, each LP needs to con-
tact the SIMA in order to receive information about the other participants at
the simulation. It is also a relevant point of synchronization: the simulation
can start execution only once the transmission channels between the LPs are
effectively initialized.

Figure 3.2, depicts the communication architecture. The first step is

40 3. An anonymous simulator

Figure 3.2: Communication architecture of ARTÍS.

the initialization of SIMA, the LPs contact it in order to send information
about themselves (in Figure 3.2 this phase is represented by the black lines).
Because the SIMA knows the number of LPs, it waits until every single
LP has sent his information. The simulation will begin only when each LP
receives information about all the other LPs from the SIMA.

Subsequently the nodes start exchanging data in an adaptive way (in
Figure 3.2 the red dotted lines). In the next sections I will go into more
detail about this communication protocol, at this point it is important to
notice that each LP needs to previously know how to contact the simulation
manager. This forces us to determine in advance the identity (or better, the
fake identity) of our SIMA.

3.3 Proxy server 41

3.3 Proxy server

In the second chapter, we have seen that Tor uses a SOCKS proxy inter-
face to allow the support of TCP-based programs. It is our case, the goal
is to pass each TCP communication inside a Tor’s tunnel and we need to
use SOCKS to route network packets between a client and a hidden service.
Many applications use a simple remote proxy with the promise of provid-
ing anonymity between sender and receiver, but typically these applications
cannot provide any anonymity against an eavesdropper who can observe all
messages from and to the proxy [48]; through the use of a local SOCKS
server, and thanks to encryption offered by Tor, the possibility of eavesdrop-
ping is averted. The functioning of SOCKS, related to Tor, is quite simple
and we can summarize it in the following steps:

1. The client (e.g., a LP) connects to the local SOCKS server instead of
the destination’s hidden service (e.g., the SIMA);

2. The client sends a connect request to the receiver;

3. The hidden service replies to the SOCKS server of the client with an
answer code: if the request is accepted by the destination then the
SOCKS server tries to establish a connection:

(a) if it has not been possible to establish the connection, the SOCKS
server sends to the client a negative answer and the connection is
turned down;

(b) if the connection is established with success, the SOCKS server
starts to transfer data in a bidirectional way between the client
and hidden service.

While I was checking the documentation of the Tor project, I noticed
that the use of some versions of SOCKS is highly discouraged due to proba-
ble leaks of information caused by hostname resolution (the documentation

42 3. An anonymous simulator

refers in particular to DNS1 queries that are not encrypted, it is possible for
an attacker to see what onion address a user is connecting to). For more
information check [49].

3.3.1 SOCKS4a Protocol

The best version of SOCKS according to the documentation of the Tor
Project is the 4a which uses only hostnames resolution and not IP resolution.
In the SOCKS 4a protocol a client can specify a destination domain name
(in our case an onion address) rather than an IP address (this is not possible
in the base 4 version).

The typical structure of a connection request in SOCKS 4a looks like the
one represented in Figure 3.3, the fields depicted have this interpretation:

• VN: version number, in our case 0x04 ;

• CD: this field represents the type of command of a request (0x01 to
establish a TCP stream connection, 0x02 to establish TCP port bind-
ing):

• DSTPORT: the port of the receiver in network byte order;

• USERID: the sender can communicate to the receiver an identifier
(e.g., in our case we use the onion address of the sender);

• HOSTNAME: this is the name of the host we want to contact, in our
case is an onion address.

Figure 3.3: Structure of a SOCKS4a Connection Request

1Domain Name System is a decentralized naming system for hosts, services, or resources
connected to the Internet or a private network.

3.4 Interaction in ARTÍS 43

On the other hand, the hidden service answers to the SOCKS server with
a response message structured like in the Figure 3.4.

Figure 3.4: Structure of a SOCKS4a Connection Response

In the case of a connection response (our main case), the last two fields
are ignored. The CD field is the most important, indeed it contains the
result code of the request: 0x5A (i.e., 90 dec) means request accepted,
0x5B (i.e.,91 dec) means request refused or failed. In the next sections, I
will explain the implementation of this protocol in ARTÍS.

3.4 Interaction in ARTÍS

As previously described (refer to Figure 3.2), at the startup of the sim-
ulation we have an initialization phase: the main goal for the LPs is to
communicate their existence to the SIMA and then know how to contact the
other LPs. First of all, each LP needs to know the onion address and the
TCP port of the hidden service of SIMA, the solution I have adopted was to
place this information in a configuration file that contains other specifications
of the simulation model of the respective LP.

Not only the SIMA but also the LPs expose hidden services in order to
have their own onion address; about that, another relevant aspect to consider
is the binding of the port used by these hidden services: which port should
we use? For the moment we assume that the port is assigned to the LP in
the startup phase, I will explain this aspect in the section 3.5.1.

Once a LP has bound the appropriate TCP port, it creates the first step
of “Tor tunnel ” using the necessary local SOCKS server (which is listening
for a TCP connection on port 9050 by default): therefore proceeds creat-
ing a connection to 127.0.0.1:9050 and subsequently applying the SOCKS

44 3. An anonymous simulator

protocol described above. Due to an experienced instability of Tor services
at startup, LP may have to repeat several times the sending of a SOCKS
connect request (typically the first responses are all with CD field equal to
0x5B or rather “Request refused”).

When the SOCKS response is finally positive, a LP has its own connec-
tion (in our case a network socket) to communicate in a bidirectional way
with SIMA: the first message sent includes all the LP info (for us the most
important are surely the onion address and the TCP port) that are collected
by the SIMA, the answer is a unique identificator for the LP.

Once finished the process of collecting the information about the LPs,
the SIMA first sends to all a table header (that contains information like the
number of nodes) and after sends the entire table. An LP uses the table
header to allocate memory required to store the messages subsequently re-
ceived, relating to other participating nodes to the simulation. The sequence
diagram depicted in Figure 3.5 summarizes the interaction of this important
initialization phase.

After this first step, each LP needs to establish a TCP connection to the
rest of LPs: in other words we need to build a complete (and anonymous)
graph2 among the participating nodes to the simulation. We have already
bound the hidden service port on every node, so the first LP (with the lower
identificator) is accepting connection on its port. The other nodes, make a
SOCKS request to each LP (i.e., hidden services) with a lower identificator.
This procedure is incremental and the related communication topology is
represented in Figure 4.1, the arrows indicate only the destination of SOCKS
requests.

2A complete graph is a graph in which every pair of distinct node is connected by a
unique edge. In our case the nodes are the LPs and the edges are a bidirectional TCP
connections

3.4 Interaction in ARTÍS 45

Figure 3.5: Sequence diagram of communication initialization using ARTÍS

API. This UML diagram might not be the most appropriate

choice to represent the interactions among entities of a dis-

tributed system, however the purpose of this figure is to clarify

the initialization phase and the diagram is expressive enough for

this goal. Furthermore, it is possible that the three entities are

located on the same host.

46 3. An anonymous simulator

Figure 3.6: Communication topology between 5 LPs, the arrows indicate the

SOCKS request destination. LPs recipients are listening for con-

nections on TCP port associated with each relative hidden ser-

vice.

3.5 Implementation

The middleware ARTÍS/GAIA is, for performance reasons, entirely de-
veloped in C programming language, but it also provides to users the Java
language bindings to take advantage of the APIs. From the various features
offered, I can cite the possibility of choosing the method of communication
(e.g., shared memory or TCP), the possibility of using Message Passing In-
terface (MPI) or the choice of the synchronization approach [8]. Most of the
features offered by ARTÍS/GAIA are defined at compile time through the file
compilation_config.mak: we want that the possibility for the nodes to be
anonymous is added to this list, therefore it will be necessary to modify the
above mentioned file and all the makefiles3 interested by the presence of this
functionality (in particular those related to the Message Passing, GAIA and
different synchronization approach directories). The modification takes shape
with the addition of an instruction (USE_TOR=YES/NO) within the compilation
configuration file: when this instruction is enabled all of the makefiles will
include USE_TOR to the macros of the compiled files. Evidently this choice
has a fairly pervasive impact in the code: based on the definition of the

3A makefile is basically a script that guides the make utility to choose the appropriate
program files that are to be compiled and linked together.

3.5 Implementation 47

above mentioned macro it is necessary to circumscribe certain portions of
code and avoid others (this takes place utilizing the preprocessor statements
like #ifdef or #ifndef) and in some cases this is not so simple.

Activation of the anonymous function also impacts on the start-up scripts
of the simulation: we shall see in the section 3.5.1, the presence of Tor im-
plies the configuration of the hidden services which promotes the passage of a
series of parameters not present in the standard execution script. In regards
to this, the data structure which describes each LP has to be modified in
order to maintain its relative onion address (see Code 3.1).

typedef struct

{

int type; /* Channel Type */

int protocol; /* Communication Protocol */

int nodeid; /* LP Identifier */

int gnodeid; /* Group Identifier (SHM and MPI) */

int port; /* TCP Port */

int sockfd; /* File Descriptor */

double lookahead; /* Outgoing Lookahead */

char hostname[MAX_HOSTNAMELEN]; /* LP Hostname */

char cname[MAX_HOSTNAMELEN]; /* LP Canonical Name */

char onion_address[ONION_ADDRESS_LEN]; /* LP Hidden Service Onion Address */

}

LPInfo;

Code 3.1: The data structure of the LPs.

The implementation of anonymity is mainly realized via the creation of
Tor’s tunnels in the initialization phases of communications previously de-
scribed. All of the TCP connections will have to go through both SOCKS
local server and Tor’s circuits, this has made it necessary to realize the proto-
col of request-response in SOCKS4a and relative response parsing (designed
in Figure 3.5 and implemented in Code 3.2).

SOCKET create_socks_socket(char *hname_snd, char *hname_rcv, uint16_t port)

48 3. An anonymous simulator

{

SOCKET sock = NO_SOCKET;

int len = -1;

char *req = NULL;

char *reply_buf[RESPONSE_SOCKS4_LEN];

int connected = 0;

int try = 0, maxtries = 100;

int nw , nr;

for (try = 0; try < maxtries; try++)

{

//1. Create connection to local SOCKS server

sock = do_connect_tor_socks();

if (sock < 0)

{

SOCKET_CLOSE(sock);

sock = NO_SOCKET;

}

else

{

//2. Create SOCKS Connection Request message

len = build_socks_connect_req(&req, hname_snd, port,hname_rcv);

//3. Send SOCKS Conn. Req. to the onion address of the rcv

nw = writen(sock, req, len);

ASSERT(nw == len, ("!"));

//4. Read the SOCKS Response

nr = readn(sock, reply_buf, RESPONSE_SOCKS4_LEN);

//5. Parse SOCKS Response message

connected = parse_socks4a_connect_resp(reply_buf,RESPONSE_SOCKS4_LEN);

if (connected == 1) break;

printRTI("COMM_____", "...retrying connect()\n");

SOCKET_CLOSE(sock); sock = NO_SOCKET;

sleep(3);

}

}

return sock;

}

Code 3.2: Implementation of SOCKS4a protocol. The parameters passed to

this function are the onion addresses of sender and receiver, and

the port of the receiver’s hidden service.

3.5 Implementation 49

The realization of TCP connections in C is done utilizing the APIs and
the protocol defined by Berkeley Socket [50]: without having to explain in
detail the programming of these sockets, it is important to underline certain
modifications of the behavior defined in the absence of anonymity. Firstly,
as stated above, we obviously cannot rely on IP addresses, this has made it
necessary to modify or exclude all the components which use or store this
information.

Another relevant change regards the search and the exclusion of the possi-
ble calls to API functions gethostbyname() and gethostbyaddr(): we have
observed that the resolution of the hostname is one of the most critical points
in maintaining anonymity. The purpose of these functions is to resolve a
hostname (e.g., a web site or also an onion address) in an IP address (in the
case of gethostbyname()) and viceversa (in the case of gethostbyaddr()).
Regarding gethostbyaddr() we are fortunate because the framework does
not use this function, however there are many gethostbyname() invocations:
we are clearly not interested with this resolution and we must avoid it and
circumscribing these portions of code in the only case in which the proposed
connectivity is not anonymous. When we are in anonymous mode, the calls
will be avoided and the resolution of the hostname (hence of the onion ad-
dresses) will be directly delegated to Tor. All of the present hostnames will
be substituted with the relative onion addresses.

3.5.1 Hidden services creation

We have already described the notion of hidden service in paragraph 2.3.3,
clearly to seek benefit from and to configure the hidden services it is neces-
sary that the hosts have Tor installed. The creation procedure is not one of
great complexity, however in our case we must consider different aspects, but
we shall proceed with order.

To create a hidden service and obtain an onion address it is necessary
to modify Tor’s configuration file (in the Unix-like systems, those supported

50 3. An anonymous simulator

by ARTÍS/GAIA, it is located in /etc/tor/torrc) inserting the following
instructions:

HiddenServiceDir /directory/path/hidden_service/

HiddenServicePort fake_port 127.0.0.1:real_port

The first row defines the directory (which must be accessible in reading
and writing to the user that is using Tor) in which two important files are
created: private_key and hostname. At the start-up of Tor’s services, a new
pair of public and private keys is created for the hidden service linked to the
specified directory: private_key is located into that directory and it must
not be shared with anyone, otherwise he would be able to impersonate the
hidden service. The second file contains a brief summary of the public key
and can be shared with the rest of the world: it is our onion address and it
is similar to something like this:

zqktlwi4fecvo6ri.onion

In the second row, fake_port corresponds to the virtual port that the
clients are thinking of using while the real_port corresponds to the port
which the hidden service is actually listening to, the connections towards the
fake_port are redirected to the real_port: these ports can coincide.

I deliberately wanted to leave suspended a query about the choice of
ports: which ports should the LPs use? The initial solution foresaw the
binding of a random free port at execution time, exactly before the connec-
tion procedure to the SOCKS local server. However, this choice presented
numerous disadvantages such as the management of concurrent access to the
file torrc on behalf of many LPs (plausible hypothesis regarding the cases of,
for example, multi-core hosts) and, moreover, the introduction of consider-
able overhead due to bootstrapping of Tor’s services to every present LP in
that host (necessary procedure to render effective all of the modification in
the file torrc).

3.5 Implementation 51

As previously stated, the port is assigned during the start-up phase of the
simulation and this permits us to resolve both problems: there is no longer
a necessity to manage the concurrent access to the file and, in the case of
several LPs in the same machine, the bootstrapping of Tor’s services will be
executed once.

The execution script creates the hidden services (if necessary, they may
have already been created) equal to the number of the LPs present in a
specific host: the port is determined in a predefined range (from 10200 to
10300), in an incremental manner. Subsequently Tor’s services are reloaded,
the procedure requires only an arbitrary number of seconds invested in the
creation of necessary circuits; every LP will then be started with variable
parameters on the base of the simulation model with the addition of onion
address and relative port. In Code 3.3, we can observe the passage of the
parameters to the created LPs.

LPs execution

X=0

Y=$(($LP-1))

PORT=10200

while [$X -le $Y]

do

ONION_ADDRESS=$(./read_onion_address $X)

if [$X -lt $Y]

then

foreground execution

./LP_model $((PORT+X)) $ONION_ADDRESS &

else

background execution

./LP_model $((PORT+X)) $ONION_ADDRESS

fi

X=$((X+1))

done

Code 3.3: A piece of an execution script: in this example the LPs receive as

parameters just their onion address and relative port.

52 3. An anonymous simulator

The script ./read_onion_address (Code 3.4) is very simple: it is used
to access the file HOSTNAME in order to get the onion address of the LP "X".
This script must run only when the Tor’s services have been reloaded after
the execution of the hidden services creation script.

#Read_onion_address

HSN=$1 #Hidden Service Number

SIM_DIR="$(pwd)"

HOSTNAME=$SIM_DIR/"HS_"$HSN"/hidden_service/hostname"

sudo chmod 777 $HOSTNAME

echo $(<$HOSTNAME)

sudo chmod 700 $HOSTNAME

Code 3.4: Read onion address script: each hostname file resides in a directory

HS_N where the N is the progressive number of the relative LP.

To modify the torrc file and adding, for each LP, the above described
instructions, we use the script ./hs_creator (Code 3.5). This script receives
as parameters two values: the first one (LP) is the progressive number of the
current LP and it is used in order to create the appropriate directory, the
second one (PORT) is the progressive number of port assigned to that hidden
service. The script checks if there is already a directory with the same path
on the torrc file, in this case the hidden service for that directory has been
previously created: thanks to the coupling between the progressive number
(LP) and the port number, it is possible to re-utilize the previously created
hidden services. For example, the progressive LP=0 will have associated the
directory HS_0 and the port will be the 10200 ; the progressive LP=1 will
have associated the directory HS_1 and the port 10201, and so on.

#LPs hidden service creation script

######

LP=$1

PORT=$2

SIM_DIR="$(pwd)"

3.5 Implementation 53

HS_DIR=$SIM_DIR/"HS_"$LP"/hidden_service"

CONFIG_TORRC_FILE=/etc/tor/torrc

######

if [! -d "$HS_DIR"]; then

mkdir -p $HS_DIR

fi

sudo chmod 700 $HS_DIR

if grep -q ’HiddenServiceDir ’$HS_DIR "$CONFIG_TORRC_FILE"; then

echo ’Hidden Service already exists’

else

echo ’HiddenServiceDir ’$HS_DIR >> $CONFIG_TORRC_FILE

echo ’HiddenServicePort ’$PORT’ 127.0.0.1:’$PORT >> $CONFIG_TORRC_FILE

fi

Code 3.5: Hidden service creation script: this script receives two parameters,

the progressive number of the LP and the assigned port.

The creation of the hidden services relative to the LPs is therefore dy-
namically executed, moreover the same procedure cannot be applied for the
SIMA (we must remember that the onion address and the TCP port of the
SIMA must be known and included in the specified configuration file) whose
onion address should be previously created and shared with all LPs.

Chapter 4

Performance evaluation

4.1 Simulation model

The simulation model used belongs to the class of discrete models, hence
the state variables which characterize the simulation will change in well de-
fined instant of time. Moreover, the used model is dynamic in that it rep-
resents the evolution in time of a system; an additional characteristic is the
presence of aleatory which classifies the simulation model in the stochas-
tic class. We underline how this classification (discrete, dynamic, aleatory)
defines, in broad terms, the peculiarities of the paradigm used by ARTÍS/-
GAIA, or DES which we saw in section 1.2.4 of this work.

The model, contained in the directory /MODELS/MIGRATION-WIRELESS/ in
the last distribution of the middleware, it represents a set of mobile hosts
which move within a specific area; their movement is random and is deter-
mined by a common mobility model: the Random Waypoint (RWP) model
[51]. The area is defined by a bi-dimensional toroidal space, this implies that
once the limits of the defined area have being reached by a simulated entity,
this will not stop but will continue its course from the opposite perimetral
point. The entities, should they be provided by a wireless device (customiz-
able parameter), interact between each other via these devices within a cer-

55

56 4. Performance evaluation

tain proximity limits.

Certain parameters useful to the model are defined in the already cited
configuration file: specifically the dimension of the toroidal space, the com-
munication radius of the wireless devices and the speed of the nodes. As
mentioned in 3.4, within the same file are contained the information to con-
tact the SIMA (Onion address/IP address and the port). The number of
simulated hosts (SMH) is initially equally distributed on all the participants
logical processes: this parameter is passed to the LPs by the simulation ex-
ecution script, together with the total number of processes (NLP) and, in
the case of the activation of the anonymity mode, with the port used by the
hidden service and the relative onion address.

./wireless $NLP $SMH $PORT $ONION_ADDRESS

The implementation of the functionality of anonymity is therefore cor-
rectly transparent for the simulation model, the only shrewdness is the allo-
cation of two variables act on storing the two input added parameters.

The synchronization approach utilized is Time Stepped (see section 1.3.3)
and the model finds in its macros wide margins of configuration; among its
most interesting parameters we have the duration of the simulation (defined
in simulation steps by the END_CLOCK macro, default 1000), the flight time
of ping messages between the node (expressed in terms of time step needed,
FLIGHT_TIME, default 1.0), potential payloads added to simulate different
network conditions (e.g., a particularly congested network), the probability
of an entity to interact in a determined step with another device within its
communication radius via a ping message (PERC_PING, default 0.2) and finally
the percentage of hosts provided with a wireless device (PERC_COMM, default
1.0).

The nodes can interact exchanging three different types of messages:

• MoveMsg : used to update the position of a SMH;

• CommMsg : used to turn ON or turn OFF the wireless device of a SMH;

4.1 Simulation model 57

• PingMsg : used to send a simple ping message.

If GAIA is active, there is a fourth class of message called MigrMsg : they
are used to communicate the migration of a SMH from a LP to another one
(which will be effectively realized with the transfer of the SMH’s state to
another LP by the function GAIA_Migrate).

Each SMH is characterized by the following data structure:

typedef struct hash_data_t

{

int key; // SMH identifier

int lp; // LP in which the SMH is run

float posX; // current position X-axis

float posY; // current position Y-axis

float targX; // target position X-axis

float targY; // target position Y-axis

char changed; // used by simulation visualizer

char mobile; // static or dynamic simulated entity?

char comm_device; // wireless enabled or not?

TSeed Seed; // seed used for the random generator

unsigned char rwp_state; // random way point mobility state

}

hash_data_t;

Code 4.1: The data structure of the SMH.

Each LP, after loading the input parameters, proceeds initializing the
communication following what we have said in the third chapter. This op-
eration concludes with the assignment of an identifier (LP_ID) to each LP.
Subsequently, the length of each time step is defined: this happen reading a
parameter defined in another file (channels.txt, default 1.0). This value has
to be less than the FLIGHT_TIME previously described (i.e., it is not possible
to correctly model the messages if these should reach the destination before
the completion of a step, clearly this would result in an inconsistency).

On the basis of the assigned LP_ID, multiplied by the number of simu-
lated entities, the identifier of the initial SMH is defined for the relative LP.

58 4. Performance evaluation

Once this is completed, the model predisposes the configuration of certain
settings relative to GAIA, particularly useful for the evaluations that we will
perform: GAIA_SetMigration permits the activation and disactivation of the
migrations mechanisms (i.e., according to what is described in 1.4.1, the sim-
ulated entities that compose the same interaction group are clustered in the
same LP), GAIA_SetMF allows the specification of the Migration Factor that
is a float value used to define the migration threshold of the heuristic, finally
the function GAIA_SetLoadBalancing permits the activation of the mecha-
nisms of load balancing, offered by GAIA+, among LPs (i.e., utilized in order
to respect the balancing from a computational viewpoint).

The simulation output statistics are produced, step-by-step, in an exten-
sive manner by what we define “LP Master”, by default the LP with identifier
equal to zero. The other LPs will produce reduced outputs containing the
WCT measured at the end of each step, the effective step performed, the
number of entities located in a LP and the number of the migrated entities
towards another LP in a determined step. The simulation for all of its dura-
tion (corresponding to the definition of the END_CLOCK value) is composed by
a sort of event loop which will only effect the dispatch of the various incom-
ing messages towards the appropriate event handlers. Some handlers will be
directly activated by the messages originating from the various SEs (in this
case we are referring to Simulated Model Events), others will be executed in
response to the events produced by GAIA framework (in this case we refer
to GAIA Related Events).

All the operations of receiving messages, as well as the respective sending
functions, are clearly managed by the API provided by the ARTÍS/GAIA
framework (i.e., specifically via the function GAIA_Receive, which holds in
itself the function TS_ReceiveV provided by ARTÍS and utilized by the time-
stepped approach for the reception of events from other LPs).

If a specific LP should not receive anymore events, from either model
layer or other LPs, it proceeds with the termination handler of the current

4.2 Simulation architecture 59

step, if the whole simulation is not completed there will be a series of pro-
cedures useful for the evolution of the model (e.g., the movements or the
possible migration of the SMHs) and the production of statistics: the LP
Master will have to print the extensive outputs, which includes unique and
global information like the intra-LP communications (i.e., the local communi-
cations) and the inter-LP communications (i.e., the remote communications).

Our expectation, in performance evaluation phase, is that the GAIA
mechanisms allow to maximize the intra-LP communications, breaking down
the elevated overhead introduced by the remote communication via Tor. For
more information about the above cited function, refers to [52].

4.2 Simulation architecture

The architecture used for the performance evaluation is composed by
three different hosts distributed throughout Europe. All of the computational
resources is supplied by two different cloud providers: as previously stated,
from a computer security viewpoint, we are entrusting the communication
between the components of our simulation to a public network, inherently
insecure. In this context, our objective are to preserve the confidentiality
and integrity of the data in transit through the various physical execution
units and to protect the availability of the assets, hiding their online identity.
Regarding the availability, the idea of anonymizing the used instances allow
us to consider our simulator unattackable in each of its components (e.g., a
DDoS, for what stated in 2.3.3, can not take place: a possible offender is
unable to attack a host without knowing its relative IP address).

Going back to the architecture: the communication will follow what is
reproduced in Figure 3.2, however, in contrast to what it is represented,
only one LP will be used for each machine. This decision will convey the
means of communications, which are obviously be constituted only by TCP

60 4. Performance evaluation

connections.
Three hosts geographically distant from each other will be used in order

to effect a concrete distribution of resources, one of this will cover simulta-
neously also the role of SIMA in the initialization phase of the simulation.

For the test, two instances offered by Amazon EC2 and one offered by
Okeanos have been used: the two EC2 machines are instances of the type
ec2.micro located in Ireland (named EC2.dublin) and in Germany (named
EC2.frankfurt), the host originating from Okeanos is physically placed in
Greece. For more information regarding the services and the architectures
offered by the cloud providers Amazon and Okeanos, see respectively [34]
and [53]. The hardware used in the test is therefore composed by:

• ec2-instaces : 1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 GiB memory,
Network performances declared: low to moderate.

• okeanos : 4 vCPUS, 2.1 GHz, AMD-V Family, 4 GiB memory, Network
performances not specified.

In Figure 4.1, we can observe the geographical distribution of the nodes.
In each host we can see the IP address (in red) and the onion address (in
purple). Our SIMA is EC2.dublin, it is characterized by two different onion
addresses: one for the SIMA and the other for its LP. The port used by the
SIMA is static for both executions, as well as the hidden services ports used
by the LPs. We are able to determine the paths followed by the IP packets
(e.g., in Figure 4.1, they are depicted in red and we can define those paths
by using applications like traceroute) but we can not make any assumptions
for the circuits used by Tor’s Onion Proxies.

4.3 Introduction to Tor’s performances

Before proceeding with the simulation tests, it is worth spending a few
words regarding Tor’s performances and the overhead introduced by its pro-
tocols and therefore by the hops traversed in the network. Obviously we

4.3 Introduction to Tor’s performances 61

Figure 4.1: Simulation distribution of hosts used for the performance evalu-

ation.

expect a decrease in response times with a general increment of the RTT,
however it is necessary to quantify this and other aspects, for example the
stability of Tor’s network (we must remember that is formed by volunteers
relay nodes, very often private hosts that could disconnect at any moment).
Unfortunately in this evaluation of Tor’s network we can not rely on the
renowned application “ping” offered by the Internet Control Message Proto-
col (ICMP)1; however, we can test performances developing a simple software

1ICMP is a service protocol used in packet-switched network. It takes care to transmit
information regarding failures (caused by the firsts 8 byte of IP’s datagram), control
information or messages between the nodes of a network. ICMP is directly encapsulated
in IP, hence it is a network layer protocol and therefore it is not guaranteed the delivery

62 4. Performance evaluation

client-server which sends TCP packets to the onion address of the server, it
will respond with a simple ACK. In order to have a term of comparison, I
used the the tcpping [54] software: its purpose is to replicated the behavior
of the ping applicative but at a superior layer: the transport one used by
TCP.

The comparison was based on the sending of 200 packets, at intervals of
three seconds, between the three hosts that compose our network.

TCP/IP Tor

x (ms) σ (ms) x (ms) σ (ms)
EC2.dublin - Okeanos 92.91 0.75 326.42 278.52

Okeanos - EC2.frankfurt 67.14 0.16 282.74 104.83
EC2.frankfurt - EC2.dublin 20.84 0.20 540.74 54.5

Table 4.1: Performances of standard TCP/IP and Tor communications: the

results are obtained with two hundred different ping, one every

three seconds, between our cloud instances. x are the mean values

instead σ are the standard deviations.

From the Table 4.1, it is possible to note difference of RTT among the
various nodes. In the case of the classic TCP/IP communication, we can
observe that the average time respects the geographical distance between
hosts and a extremely low variability. Regarding the circuits used by Tor
the situation is more articulated: we repeat it, we do not know anything
about the paths that our packets will take and the geographical distance can
not considered a useful parameter (e.g., it must be noted that the fastest
channel via TCP/IP is the slowest with the corresponding Tor channel), we
only know that the operations of encryption and decryption have a cost a we
can now estimate them.

The standard deviation results must be noted: such an elevated values,
with respect to the corresponding TCP/IP, are surely the result of the vari-

of packets.

4.3 Introduction to Tor’s performances 63

ability of which Tor’s network is subjected. This variability is justified by
many factors: the nature of the relays which compose the network, the posi-
tions of the ORs in a specified circuit, and, extremely relevant, the fact the
circuits are subjected to changing. This last factor can have considerable
consequences and it implies the reconstruction of a new circuit (has we saw
in 2.3.2, this entails a closing protocol that involves all of the nodes and the
subsequent opening of a new circuit which implicates the exchanging D-H
keys phase and so on).

To illustrate this variability, in the Figures 4.2, 4.3, 4.4, are represented
the distribution of the RTT frequencies of the two hundred ping packets: it
is important to underline that the collected data and the related figure have
the only purpose to offer a general vision of Tor’s network performances, they
can not be an empirical evaluation.

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

10
00

20
00

0

20

40

60

80

100
94

51

17 15

3 3 3

10

2 1

T(ms)

N
um

be
r

of
pi

ng
pa

ck
et

s

EC2.dublin-Okeanos

Figure 4.2: Distribution of frequency of 200 RTT of Tor’s packets between

EC2.dublin instance and Okeanos instance. The mean value (x)

is 326.42 ms and the standard deviation (σ) is 278.52 ms

64 4. Performance evaluation

24
0

26
0

28
0

30
0

32
0

34
0

36
0

40
0

10
00

12
00

0

20

40

60

80

5

87

61

28

7

1 3 1
5 3

T(ms)

N
um

be
r

of
pi

ng
pa

ck
et

s
Okeanos-EC2.frankfurt

Figure 4.3: Distribution of frequency of 200 RTT of Tor’s packets between

Okeanos and EC2.frankfurt. The mean value x is 282.75 ms and

the standard deviation σ is 104.83 ms.

48
0

50
0

52
0

54
0

56
0

58
0

60
0

62
0

70
0

90
0

0

10

20

30

40

50

60

27

55

48

33

13

7
5

8

4
1

T(ms)

N
um

be
r

of
pi

ng
pa

ck
et

s

EC2.frankfurt-EC2.dublin

Figure 4.4: Distribution of frequency of 200 RTT of Tor’s packets between

EC2.frankfurt and EC2.dublin. The mean value x is 540.74 ms

and the standard deviation is 54.50 ms.

It is evident that our simulations will be affected be this unpredictabil-
ity, however Tor offers certain personalization of the torrc configuration file,

4.4 Execution script 65

which allows us to partially contain this problem: it is possible to define a
list of entry node (i.e., the first hop of the circuit) and a list of exit node (i.e.,
the last hop before the destination) which the OP will have to use in order
to contact the hidden service recipient. It is also possible to specify only a
country code in order to reduce the distance between sender and receiver.
In order to have a major degree of anonymity (specifying a country code
could not be the best choice in this case) we will not apply this modification,
leaving unchanged the configuration file.

4.4 Execution script

To have sufficient samples to execute an exhaustive analysis, and consider-
ing the duration of certain practice run performed in phase of developing/de-
bugging, it became necessary to automate the startup of the simulations. For
this purpose a script was utilized which allowed us to define the parameters
of the models in order to render them common to all the nodes, avoiding
the update of every single configuration file and which would subsequently
carry out multiple runs, communicating via Secure Shell (SSH)2 the start
of the initialization phase to SIMA and LPs. In regards to this, it is worth
specifying that during the performance evaluation phase also the LPs (as
well as the SIMA) maintain the same onion address (as explained in Figure
4.1): this does not affect the maintainment of anonymity but saves us the
restart procedure of Tor services in each node. In Code 4.2, we can see the
script utilized for the starting of N runs.

2SSH is a network layer protocol that permits to establish an encrypted remote session
with another host of a network [55].

66 4. Performance evaluation

#!/bin/bash

############

RESULTS_FILE="results_tor.txt"

LPs

LPS=3

Total number of Simulated Entities

SE=3000

Migration Heuristic (0 = Migration Disabled)

MIGR_HEU=3

Speed of Simulated Entities

SPEED=10

Communication Range of Simulated Entities

RADIUS=250.0

Number of Runs

RUNS=10

Migration Factor (If MIGR_HEU=0 this parameter will be ignored by models)

MF=3.00

############

Cleaning up old results

rm -f $RESULTS_FILE

for ((run=1; run<=RUNS; run=run+1))

do

echo "Running Tor: mf=$MF run=$run"

Launching single run

nice -n +20 ./run_tor.sh $SE $SPEED $MIGR_HEU $MF $RADIUS $run

done

The averager executable calculates the average WCT of the runs

./averager $RESULTS_FILE $RUNS >> $RESULTS_FILE

mv $RESULTS_FILE $RESULTS_FILE-$SE-$RUNS

Cleaning up the old results

rm -f $RESULTS_FILE

Code 4.2: Example of an execution script of multiple Tor’s simulation

run. We can see the configuration parameters constituted by

the number of Simulated Entities (SE), the Migration Heuristic

used (MIGR_HEU), the speed of the simulated wireless devices

(SPEED) and their radius of action (RADIUS), the number of runs

(RUNS) and, finally, the migration factor (MF).

4.5 Results 67

The script run_tor.sh (Appendix A) starts the simulations creating SSH
connections towards the nodes (the terminal that executes the run knows the
IP addresses of all the participants of the simulation) and it communicates
to them the parameters of the model, after that it collects the statistics
produced by LP Master (which as we saw in the section 4.1, maintains an
extensive description of the whole simulation, step by step) via the use of
Secure Copy Protocol (SCP) 3.

4.5 Results

Utilizing as initial reference the results and the considerations produce in
[57], the initial expectations were very low. Considering what we analyzed in
4.3, in particular related to the poor stability of Tor’s network we expected
that a large part of the simulation runs would fail following the possible
unreachability of some nodes: it is sufficient that only one host does not
participate actively to fail the whole simulation.

We must remember that we are using a time-stepped approach, conse-
quently the slowest host (or the slowest communication circuit) affects the
simulation time. Following the considerations in 4.3, we can affirm that prob-
ably utilizing a time-stepped approach is the most convenient choice in the
case of an anonymous simulation. The idea of using a pessimistic approach,
which involves the constant sending of NULL messages, will probably bring
to a degeneration of the Wall-Clock-Time; on the other hand, the use of
an optimistic approach will be extremely dangerous: in our specific case we
are paying for the computational resources and for the bandwidth offered
by cloud providers, are we really sure that we want incur in an extremely
probable roll-back cascade? The hypothesis that a LP must lose a lot of time
to rebuild Tor’s circuits is concrete, thrown away the work produced by the
other two LPs is not a risk that we want to take.

3SCP is a protocol whose purpose is to transfer files between two hosts (both remote
or one local and one remote) in a secure manner. It uses Secure Shell protocol [56].

68 4. Performance evaluation

The tests are classified in this manner:

• TCP/IP-Tor ALL_OFF : the migrations performed by GAIA and
the load balancing offered by GAIA+ are disabled. We are consider-
ing this simulation as “pure”: every node manages the same number
of SE equal to SE/LPs; the simulation is therefore balanced (only nu-
merically) in the initialization phase. We expect elevated WCT, in
particular in regards to Tor’s case: hypothesize, for example, that a set
of distributed SE in EC2.dublin communicates frequently with other
SE collocated in Okeanos forming an interaction group, considering
the experimented RTT, this situation will bring to an explosion of the
overall WCT.

• TCP/IP-Tor ALL_ON : the migrations effected by GAIA are ac-
tive, as well as the load balancing of GAIA+. It is legitimate to expect
an improvement in performances; as stated above this improvement
should be, proportionally, superior in the simulation executed with
Tor, however we can not make any assumptions because of the unpre-
dictability of the channel of communication. The SEs of the previous
example will be migrated from one of the two considered LPs, always in
respect of the load balancing, obtaining the clustering of the interaction
groups. Regarding the context in which this performance evaluation is
collocated, we will use the same migration heuristic (Mig_Heu) and
the migration factor (MF) for all of the tests: we want to demonstrate
that GAIA/GAIA+ are in general effective also in the case of using
Tor, for the moment we are not interested in an analysis bound to the
variation of that heuristic and migration factors.

In our case, we used a Mig_Heu equal to 3.0 (i.e., MIGR_E3) in
which the migration heuristic is evaluated only if the simulated entity
has sent at least N events (where it is by default equals to 30 but it
can be changed via GAIA_SetCountDown). This heuristic is particularly

4.5 Results 69

recommended in the case of an elevate number of SEs and where the in-
teraction pattern can rapidly change. With regards to the MF, we used
a default value equal to 3.0: this value defines the relocation threshold
of the heuristic, a low value increments the number of migrations while
a high value reduced that number.

The results shown in the following pages were gathered through 10 dif-
ferent runs for each single configuration. The configurations, other than the
classifications ALL_OFF e ALL_ON, are defined by a fixed number of steps
(1000) and by an incremental number of SEs. In the tables indicated below
are represented, in seconds, mean WCT (x), relative standard deviation (σ),
experimental minimum and maximumWCT and the confidence interval (CI)
relative to each mean WCT (this is calculated with a level of confidence of
90%).

70 4. Performance evaluation

Configuration x (s) σ (s) Min (s) Max (s) CI (s)

TCP/IP ALL_OFF 130.46 1.44 128.05 132.48 0.75

TCP/IP ALL_ON 106.94 3.58 102.62 114.87 1.86

Tor ALL_OFF 923.58 414.36 508.37 1,683.73 215.53

Tor ALL_ON 528.90 100.29 425.07 709.10 52.17

Table 4.2: The Wall-Clock-Times taken for the executions of the simulations

with 3000 SEs

ALL_OFF ALL_ON
0

200

400

600

800

1,000

1,200

130.46 106.94

923.58

528.9

W
al
l-C

lo
ck
-T

im
e
(s
)

WCTs for simulation with 3000 SEs

TCP/IP
Tor

Figure 4.5: Average times to complete the simulation model with 3000 SEs

and relative confidence intervals.

As we can see from the data in the Table 4.2, the anonymous simulations
(without the GAIA mechanisms active) employ, in average, seven times those
obtained by the “standard” simulations. This does not surprise us and, once
more, what we must underline is the variability of the results acquired with
Tor. The scissor between WCT minimum and maximum and the indication
offered by the standard deviation confirms what we have previously stated:
during the 10 sample runs, the circuits will have changed a various number

4.5 Results 71

of times, decreasing (or increasing) the performance offered by the runs.

The portion of the report of the simulation shown in Figure 4.6 wants
to demonstrate what happened during a run Tor ALL_OFF. In the second
column we have the current WCT, in the third the relative step and in the
fourth the number of SEs located in a determined LP. Observing the second
one, it is implicit to understand the values of the standard deviation: certain
steps of the simulation last only a few seconds, other some tens of seconds.

If we take a few a moments we can understand what happened to the
LPs (probably to the slowest) during the simulation steps: we can see that
the first four steps had an execution time in the order of a few seconds,
subsequently we can observe that the step 557 (in line #4), was executed
52 seconds after the previous step, the following step was even slower (close
to a minute). What we can speculate, considering the WCT from step 559
onwards, is that one or more LPs had a few problems of reachability: we can
assume this is due to the reconstruction of the Tor’s circuits.
par

#0 [343.92] [553.00000] 1000

#1 [348.31] [554.00000] 1000

#2 [349.13] [555.00000] 1000

#3 [358.25] [556.00000] 1000

#4 [420.33] [557.00000] 1000

#5 [486.04] [558.00000] 1000

#6 [500.62] [559.00000] 1000

#7 [500.86] [560.00000] 1000

#8 [501.51] [561.00000] 1000

#9 [501.94] [562.00000] 1000

Figure 4.6: Example of simulation results report.

The positives for the anonymous version emerge with the activation of

72 4. Performance evaluation

GAIA: the speedup4 obtained, calculated as the ratio between x ALL_OFF
and x ALL_ON, is equal to 1.75. In Figure 4.5, it is visibly tangible both
the reduction of the duration and, more importantly, a greater stability of
the performance of the anonymous version. This is clearly motivated by the
reduction of the number of messages exchanged between the various LPs
which allows us a greater predictability of the time range of the simulations
(one must note the considerable shortening of the interval of confidence).

However, to gather the 10 sample runs of the anonymous simulation with
GAIA activated, it was necessary to execute a higher number of runs: 3
times a LP manifested an error in relation to the lack of an arbitrary number
of SEs to migrate. Presently we are unable to explain the causes of these
errors which are correlated to the use of GAIA in Tor’s network (in no other
circumstances was a simulation aborted).

Regarding the average number of global migrations and the migration
ratio, we can state that the presence of Tor (as we might expect) does not
have any influence (the average number of migrations with Tor was 7,582.40,
with TCP/IP 7,677.00).

4Speedup is a parameter for the measuring of the performance’s improvement between
two systems or architecture that are processing the same problem.

4.5 Results 73

Configuration x (s) σ (s) Min (s) Max (s) CI (s)

TCP/IP ALL_OFF 527.73 26.38 465.81 554.17 13.72

TCP/IP ALL_ON 167.05 13.35 157.23 198.39 6.95

Tor ALL_OFF 1,585.78 825.88 939.30 3,403.19 429.58

Tor ALL_ON 1,021.91 202.94 735.73 1,336.46 105.56

Table 4.3: The Wall-Clock-Times taken for the executions of the simulations

with 6000 SEs

ALL_OFF ALL_ON
0

500

1,000

1,500

2,000

527.73

167.05

1,585.78

1,021.91

W
al
l-C

lo
ck
-T

im
e
(s
)

WCTs for simulation with 6000 SEs

TCP/IP
Tor

Figure 4.7: Average times to complete the simulation model with 6000 SEs

and relative confidence intervals.

Even doubling the number of entities simulated, the considerations made
for the set of previous runs does not change. Observing the Figure 4.7, it is
evident a considerable reduction of running times for the version TCP/IP:
the speedup is equal to 3.15 unlike the anonymous version which has value
of 1.55. How can this reduction of the speedup comparing to the previous
set of runs of 3000 SEs be explained? We can suppose that the increase of
entities produces a greater interactivity in the LPs which can not be com-

74 4. Performance evaluation

pensated by clustering without damaging the load balancing active between
the nodes. Consequently the increase of the use of Tor’s circuits increases
the computational times of the simulations. It is legitimate to believe that a
further increment of the number of SEs will allow a greater reduction of the
speedup.

Also in this case (anonymous communication and GAIA active) two runs
were aborted for errors regarding the migration of entities.

4.5 Results 75

Configuration x (s) σ (s) Min (s) Max (s) CI (s)

TCP/IP ALL_OFF 1,155.99 57.68 1,076.49 1,220.34 30.00

TCP/IP ALL_ON 396.65 68.52 343.66 505.29 35.64

Tor ALL_OFF 2,274.58 1,010.47 1,144.28 3,821.52 525.59

Tor ALL_ON 1,720.24 279.10 1,232.30 2,072.04 145.17

Table 4.4: The Wall-Clock-Times taken for the executions of the simulations

with 9000 SEs

ALL_OFF ALL_ON
0

500

1,000

1,500

2,000

2,500

1,155.99

396.65

2,274.58

1,720.24

W
al
l-C

lo
ck
-T

im
e
(s
)

WCTs for simulation with 9000 SEs

TCP/IP
Tor

Figure 4.8: Average times to complete the simulation model with 9000 SEs

and relative confidence intervals.

With this last case, we confirm our above considerations. As foreseen the
speedup for the anonymous version has furthermore been reduced to 1.32,
whilst for the TCP/IP version it is 2.91.

Even in this last set of runs two extra simulations have been performed
to compensate for the problems regarding the lack of SEs migrations.

Conclusions

The main purpose of this work was to verify the possibility of realizing a
distributed simulation with a total degree of anonymity, and assess its effec-
tiveness and subsequently its efficiency. We can consider the implementation
of the anonymous feature via Tor a success: the participating hosts, after a
superficial packet sniffing analysis (using Wireshark software [58]), resulted
anonymous, unlikely to be attacked by an external agent.

The critical point which lead this work from the beginning was the per-
formance and the possibility of seeing the simulation times explode. Fur-
thermore, previous studies like [57] (that work involves a higher number of
nodes), highlighted the possibility of a low failure resistance: initially this
lead us to believe that the stage of collecting data should use greater number
of runs, with lower success rates. In this sense, we can affirm that we are sur-
prised of the performance of ARTÍS in its anonymous version which, however
variable in its WCT, managed to complete 100% of the runs. The introduc-
tion of the GAIA mechanisms bought about a percentage failure of nearly
20%: it is necessary to go into more depth on the reasons for these failures,
however a possible solution is already in development and evaluation. The
implementation of the software layer GAIA-FT provides, via replications in
the various LPs, our simulations a fault tolerance: the SEs are replicated in
what are known as virtual SEs. The number of replicas guarantees a grade
of fault tolerance, this has an evident cost both in terms of computational
resources, also in terms of WCT.

77

78 CONCLUSIONS

Currently it is essential to use Tor to obtain anonymous software, it is evi-
dently the only alternative sufficiently widespread to guarantee anonymity. A
short while before writing this thesis, a group of researchers published a new
version of Tors protocol, operating in the network layer, which guarantees
greater performance and could be the future generation of onion routing (i.e.,
the third): this version of Tor is called High-speed Onion Routing NETwork
(HORNET) [59, 60] and its development and diffusion will be followed with
interest in order to improve the performances analyzed in the fourth chapter.

Appendix A

Distributed execution script

In order to better understand the startup procedure of the remote sim-
ulations, illustrated below is the script initially produced by the supervisor
of this MsC thesis and modified for the performance evaluation phase of this
work.

#!/bin/bash

######################################

Simulation execution parameters

######################################

#

SESTATE=32

PINGSIZE=1024

SIM_DIR=$(pwd)

#

Allocation of LPs on hosts

HOSTS_FILE="hosts-distributed_tor.txt"

#

Filename for results

RESULTS_FILE="results_tor.txt"

#

rm -f wireless_tor.ini

ln -s wireless_tor.ini.distributed wireless_tor.ini

#

######################################

ESC="\033["

79

80 APPENDIX A

TOT_SMH=$1

SPEED=$2

MIGRATION_HEURISTIC=$3

MIGRATION_MF=$4

RADIUS=$5

SEED_POS=$6

SIM_TIME=$7

######################################

Cleaning up

function cleanup {

I=0

for h in $HOST_LIST; do

echo "...cleaning: $h"

ssh -p ${SSH[$I]} $h "pkill -9 sima; pkill -9 wireless"

I=$((I+1))

done

}

######################################

if ["$#" != "7"]; then

echo " Incorrect syntax... "

echo "USAGE: $0 [#SMH] [#SPEED] [#MIGRATION_HEURISTIC] [#MIGRATION_MF] [#RADIUS

] [#SEED_POS] [#SIM_TIME]"

echo ""

exit

fi

echo -e "${ESC}29;39;1mWIRELESS SIMULATION ... ${ESC}0m"

if [! -f $RESULTS_FILE]; then

Preparing the new results file

touch $RESULTS_FILE

echo "# ART\’IS/GAIA+ simulator - MIGRATION-WIRELESS model" >> $RESULTS_FILE

echo "#" >> $RESULTS_FILE

echo "# Running parameters: SMH=$TOT_SMH SPEED=$SPEED MIGRATION_HEURISTIC=

$MIGRATION_HEURISTIC RADIUS=$RADIUS SEED_POS=$SEED_POS" >> $RESULTS_FILE

echo "#" >> $RESULTS_FILE

echo "# Columns:" >> $RESULTS_FILE

echo "# 1 - Number of LPs" >> $RESULTS_FILE

echo "# 2 - Migration Factor (MF)" >> $RESULTS_FILE

A Distributed execution script 81

echo "# 3 - Random waypoint MAX=MIN speed" >> $RESULTS_FILE

echo "# 4 - Total number of migrations (global value)" >> $RESULTS_FILE

echo "# 5 - Final migration ratio" >> $RESULTS_FILE

echo "# 6 - Final average local communication ratio" >> $RESULTS_FILE

echo "# 7 - Final average local communication ratio gain" >> $RESULTS_FILE

echo "# 8 - Final clustering efficiency" >> $RESULTS_FILE

echo "# 9 - Wall Clock Time" >> $RESULTS_FILE

echo "#10 - SE state size" >> $RESULTS_FILE

echo "#11 - PING state size" >> $RESULTS_FILE

echo "#" >> $RESULTS_FILE

fi

echo "...parsing the LP-to-host allocation file"

POS=0

TOT_LPS=-1

while IFS=’’ read -r line || [[-n "$line"]]; do

HOSTNAME=‘echo $line | cut -f1 -d’:’‘

SSHPORT=‘echo $line | cut -f2 -d’:’‘

PRT=‘echo $line | cut -f3 -d’:’‘

LP=‘echo $line | cut -f4 -d’:’‘

PTH=‘echo $line | cut -f5 -d’:’‘

ONION_ADDR=‘echo $line | cut -f6 -d’:’‘

HOST[POS]=$HOSTNAME

SSH[POS]=$SSHPORT

PORT[POS]=$PRT

LPS[POS]=$LP

EXE_PATH[POS]=$PTH

ONION[POS]=$ONION_ADDR

TOT_LPS=$((TOT_LPS+LP))

POS=$((POS+1))

done < "$HOSTS_FILE"

HOST_LIST=‘echo "${HOST[@]}" | tr ’ ’ ’\n’ | tr ’\n’ ’ ’‘

SSH_PORT_LIST=‘echo "${SSH[@]}" | tr ’ ’ ’\n’ | tr ’\n’ ’ ’‘

Intercept ctrl-c then cleaning

trap cleanup SIGINT

Cleaning before starting

cleanup

82 APPENDIX A

Partitioning the #SMH among the available LPs

SMH=$((TOT_SMH/TOT_LPS))

SIMA_HOST=${HOST[0]}

SIMA_SSH=${SSH[0]}

SIMA_PORT=${PORT[0]}

SIMA_PATH=${EXE_PATH[0]}

unset HOST[0]

unset SSH[0]

unset PORT[0]

unset LPS[0]

unset EXE_PATH[0]

unset ONION[0]

echo "...running SIMA on $SIMA_HOST:$SIMA_PORT (waiting for $TOT_LPS LPs)"

SImulation MAnager (SIMA) execution

ssh -p $SIMA_SSH -n -f $SIMA_HOST "sh -c ’cd $SIMA_PATH; nohup ./sima $TOT_LPS > sima-

$SIMA_HOST.log 2>&1 &’"

for i in ‘seq 1 ${#HOST[@]} ‘;

do

for y in ‘seq 1 ${LPS[$i]}‘;

do

echo starting "#LP:" $y/${LPS[$i]} on ${HOST[$i]}

echo "... ${ONION[$i]} : ${PORT[$i]}"

ssh -p ${SSH[$i]} ${HOST[$i]} "sh -c ’cd ${EXE_PATH[$i]}; nohup ./

wireless $TOT_LPS $SMH $SEED_POS $MIGRATION_HEURISTIC $MIGRATION_MF

$SPEED $RADIUS ${PORT[$i]} ${ONION[$i]} 2> $i.err’" &

sleep 5

done

done

echo "...waiting for LPs termination"

wait

echo "...collecting statistics"

for i in ‘seq 1 ${#HOST[@]} ‘;

do

if ssh -p ${SSH[$i]} ${HOST[$i]} stat ${EXE_PATH[$i]}/0.out \> /dev/null 2\>\&1

then

scp -P ${SSH[$i]} ${HOST[$i]}:${EXE_PATH[$i]}/0.out $SIM_DIR/tmp-0.

out

A Distributed execution script 83

ssh -p ${SSH[$i]} ${HOST[$i]} "sh -c ’rm ${EXE_PATH[$i]}/0.out’"

else

ssh -p ${SSH[$i]} ${HOST[$i]} "sh -c ’rm ${EXE_PATH[$i]}/*.out’"

fi

done

Collecting statistics

MIGRATIONS=‘cat tmp-0.out | grep "Total number of migrations" | cut -d":" -f 2‘

MIGRATION_RATIO=‘cat tmp-0.out | grep "Final migration ratio:" | cut -d":" -f 2‘

LCR=‘cat tmp-0.out | grep "Final average local communication ratio:" | cut -d":" -f 2‘

LCR_GAIN=‘cat tmp-0.out | grep "Final average local communication ratio gain:" | cut -

d":" -f 2‘

CLR_EFF=‘cat tmp-0.out | grep "Final clustering efficiency:" | cut -d":" -f 2‘

WCT=‘cat tmp-0.out | grep "Elapsed time" | cut -d":" -f 2‘

echo -ne "$TOT_LPS\t" >> $RESULTS_FILE

echo -ne "$MIGRATION_MF\t" >> $RESULTS_FILE

echo -ne "$SPEED\t" >> $RESULTS_FILE

echo -ne "$MIGRATIONS\t" >> $RESULTS_FILE

echo -ne "$MIGRATION_RATIO\t" >> $RESULTS_FILE

echo -ne "$LCR\t" >> $RESULTS_FILE

echo -ne "$LCR_GAIN\t" >> $RESULTS_FILE

echo -ne "$CLR_EFF\t" >> $RESULTS_FILE

echo -ne "$WCT\t" >> $RESULTS_FILE

echo -ne "$SESTATE\t" >> $RESULTS_FILE

echo "$PINGSIZE" >> $RESULTS_FILE

rm $SIM_DIR/tmp-0.out

echo "...simulation done"

Bibliography

[1] Steven Levy. How the nsa almost killed the in-
ternet, 2014. URL http://www.wired.com/2014/01/

how-the-us-almost-killed-the-internet/. [Online; accessed
25-January-2016].

[2] Sharon Weinberger. Computer security: Is this the start of cyberwar-
fare?, 2011. URL http://www.nature.com/news/2011/110608/full/

474142a.html. [Online; accessed 10-January-2016.

[3] RT.com. Snowden: Cyber war more damaging to us than
any other nation, 2015. URL https://www.rt.com/usa/

221031-snowden-cyber-warfare-threat-usa/. [Online; accessed
10-January-2016.

[4] The Tor Project Inc. Tor: anonymity online, 2006. URL https://www.

torproject.org/.

[5] Merriam-webster.com. Definition of simulation, 2016. URL "http://

www.merriam-webster.com/dictionary/simulation".

[6] Wikipedia. Buffon’s needle — wikipedia, the free encyclopedia,
2015. URL https://en.wikipedia.org/w/index.php?title=Buffon%

27s_needle&oldid=671661324. [Online; accessed 18-January-2016].

[7] David Goldsman, Richard E. Nance, and James R. Wilson. A brief
history of simulation revisited. In Proceedings of the Winter Simulation
Conference, WSC ’10, pages 567–574. Winter Simulation Conference,

85

86 BIBLIOGRAPHY

2010. ISBN 978-1-4244-9864-2. URL http://dl.acm.org/citation.

cfm?id=2433508.2433574.

[8] L. Bononi M. Bracuto L. Donatiello, G. D’Angelo. Pads: Parallel and
distributed simulation research group, 2005. URL http://pads.cs.

unibo.it/. University of Bologna.

[9] Luciano Bononi, Michele Bracuto, Gabriele D’Angelo, and Lorenzo Do-
natiello. Scalable and efficient parallel and distributed simulation of com-
plex, dynamic and mobile systems. In Proceedings of the 2005 Workshop
on Techniques, Methodologies and Tools for Performance Evaluation of
Complex Systems, Washington, DC, USA, 2005. IEEE Computer So-
ciety. ISBN 0-7695-2447-8. doi: 10.1109/FIRB-PERF.2005.17. URL
http://portal.acm.org/citation.cfm?id=1114282.1114476.

[10] W David Kelton and Averill M Law. Simulation modeling and analysis.
McGraw Hill Boston, 2000.

[11] Markus Diesmann. The road to brain-scale simulations on K. BioSu-
percomputing Newsletter, 8:8, 2013. URL http://www.csrp.riken.jp/

BSNewsLetters/BSNvol8-1303/EN/report03.html.

[12] Stewart Robinson. Simulation: the practice of model development and
use. Palgrave Macmillan, 2014.

[13] Robert Geoffrey Coyle. System dynamics modelling: a practical ap-
proach, volume 1. CRC Press, 1996.

[14] John D Sterman. Business dynamics: systems thinking and modeling
for a complex world, volume 19. Irwin/McGraw-Hill Boston, 2000.

[15] Charles M Macal and Michael J North. Tutorial on agent-based mod-
elling and simulation. Journal of simulation, 4(3):151–162, 2010.

BIBLIOGRAPHY 87

[16] Jon Parker and Joshua M Epstein. A distributed platform for global-
scale agent-based models of disease transmission. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 22(1):2, 2011.

[17] J Banks, JS Carson, and BL Nelson. DM Nicol, Discrete-Event System
Simulation. Prentice hall Englewood Cliffs, NJ, USA, 2000.

[18] Susan K Heath, Arnold Buss, Sally C Brailsford, and Charles M Macal.
Cross-paradigm simulation modeling: challenges and successes. In Pro-
ceedings of the Winter Simulation Conference, pages 2788–2802. Winter
Simulation Conference, 2011.

[19] Gabriele D’Angelo. Parallel and distributed simulation from many cores
to the public cloud. In High Performance Computing and Simulation
(HPCS), 2011 International Conference on, pages 14–23. IEEE, 2011.

[20] Richard M Fujimoto. Parallel and distributed simulation systems, vol-
ume 300. Wiley New York, 2000.

[21] O. Dalle. On reproducibility and traceability of simulations. In Simu-
lation Conference (WSC), Proceedings of the 2012 Winter, pages 1–12,
Dec 2012. doi: 10.1109/WSC.2012.6465284.

[22] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978. ISSN 0001-0782. doi:
10.1145/359545.359563. URL http://doi.acm.org/10.1145/359545.

359563.

[23] Esteban Egea López. Simulation scalability issues in wireless sensor
networks. 2006.

[24] M. Mitchell Waldrop. The chips are down for moore’s law.

[25] Richard M. Fujimoto. Parallel discrete event simulation. Commun.
ACM, 33(10):30–53, October 1990. ISSN 0001-0782. doi: 10.1145/
84537.84545. URL http://doi.acm.org/10.1145/84537.84545.

88 BIBLIOGRAPHY

[26] Kalyan S. Perumalla. Parallel and distributed simulation: Traditional
techniques and recent advances. In Proceedings of the 38th Confer-
ence on Winter Simulation, WSC ’06, pages 84–95. Winter Simula-
tion Conference, 2006. ISBN 1-4244-0501-7. URL http://dl.acm.org/

citation.cfm?id=1218112.1218132.

[27] M. Hybinette and R.M. Fujimoto. Scalability of parallel simulation
cloning. In Simulation Symposium, 2002. Proceedings. 35th Annual,
pages 275–282, April 2002. doi: 10.1109/SIMSYM.2002.1000164.

[28] Mikel D Petty and Eric W Weisel. A composability lexicon.

[29] R.E. De Grande and A. Boukerche. Dynamic partitioning of distributed
virtual simulations for reducing communication load. In Haptic Au-
dio visual Environments and Games, 2009. HAVE 2009. IEEE Inter-
national Workshop on, pages 176–181, Nov 2009. doi: 10.1109/HAVE.
2009.5356113.

[30] Yu Jun, Come Raczy, and Gary Tan. Evaluation of a sort-based match-
ing algorithm for ddm. In Proceedings of the sixteenth workshop on Par-
allel and distributed simulation, pages 68–75. IEEE Computer Society,
2002.

[31] Gabriele D’Angelo and Moreno Marzolla. New trends in parallel and dis-
tributed simulation: From many-cores to cloud computing. Simulation
Modelling Practice and Theory, 49:320–335, 2014.

[32] David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst., 7
(3):404–425, July 1985. ISSN 0164-0925. doi: 10.1145/3916.3988. URL
http://doi.acm.org/10.1145/3916.3988.

[33] Peter Mell and Tim Grance. The nist definition of cloud computing.
2011.

[34] Amazon. Elastic cloud compute. URL https://aws.amazon.com/ec2.

BIBLIOGRAPHY 89

[35] David Nicol and Richard Fujimoto. Parallel simulation today. Annals
of Operations Research, 53(1):249–285, 1994.

[36] Michael Wooldridge. An introduction to multiagent systems. John Wiley
& Sons, 2009.

[37] IEEE Standard for Modeling and Simulation (M&S) High Level Archi-
tecture (HLA) - Framework and Rules. IEEE Std. 1516-2000, pages i
–22, 2000. doi: 10.1109/IEEESTD.2000.92296.

[38] Gabriele D’Angelo and Michele Bracuto. Distributed simulation of large-
scale and detailed models. International Journal of Simulation and Pro-
cess Modelling, 5(2):120–131, 2009.

[39] Luciano Bononi, Michele Bracuto, Gabriele D’Angelo, and Lorenzo Do-
natiello. Frontiers of High Performance Computing and Networking –
ISPA 2006 Workshops: ISPA 2006 International Workshops, FHPCN,
XHPC, S-GRACE, GridGIS, HPC-GTP, PDCE, ParDMCom, WOMP,
ISDF, and UPWN, Sorrento, Italy, December 4-7, 2006. Proceedings,
chapter An Adaptive Load Balancing Middleware for Distributed Sim-
ulation, pages 873–883. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2006. ISBN 978-3-540-49862-9. doi: 10.1007/11942634_89. URL
http://dx.doi.org/10.1007/11942634_89.

[40] Supreme Court of United States. Mcintyre v. ohio elections comm’n (93-
986), 514 u.s. 334, 1995. URL https://www.law.cornell.edu/supct/

html/93-986.ZO.html. [Online; accessed 25-January-2016].

[41] Stallings William. Computer Security: Principles And Practice. Pearson
Education, 2011.

[42] Wikipedia. Silk road (marketplace) — wikipedia, the free encyclopedia,
2016. URL \url{https://en.wikipedia.org/w/index.php?title=

Silk_Road_(marketplace)&oldid=702803157}. [Online; accessed 25-
January-2016].

90 BIBLIOGRAPHY

[43] The Tor Project Inc. Tor metrics - direct users by country, 2016. URL
https://metrics.torproject.org/userstats-relay-country.html.

[44] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hid-
ing routing information. In Proceedings of the First International
Workshop on Information Hiding, pages 137–150, London, UK, UK,
1996. Springer-Verlag. ISBN 3-540-61996-8. URL http://dl.acm.org/

citation.cfm?id=647594.731526.

[45] Wikipedia. Onion routing - wikipedia, 2016. URL \url{https:

//en.wikipedia.org/w/index.php?title=Onion_routing&oldid=

699545059}. [Online; accessed 28-January-2016].

[46] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The
second-generation onion router. In Proceedings of the 13th Confer-
ence on USENIX Security Symposium - Volume 13, SSYM’04, pages
21–21, Berkeley, CA, USA, 2004. USENIX Association. URL http:

//dl.acm.org/citation.cfm?id=1251375.1251396.

[47] Luciano Bononi, Michele Bracuto, Gabriele D’Angelo, and Lorenzo Do-
natiello. Artis: a parallel and distributed simulation middleware for
performance evaluation. In Computer and Information Sciences-ISCIS
2004, pages 627–637. Springer, 2004.

[48] Souvik Ray. Design and analysis of anonymous communications for
emerging applications. ProQuest, 2008.

[49] The Tor Project Inc. Tor project faq: Socks and dns information leaks.
should i worry?, 2006. URL https://www.torproject.org/docs/faq.

html.en#WarningsAboutSOCKSandDNSInformationLeaks.

[50] Michael J Donahoo and Kenneth L Calvert. TCP/IP sockets in C:
practical guide for programmers. Morgan Kaufmann, 2009.

BIBLIOGRAPHY 91

[51] Wikipedia. Random waypoint model — wikipedia, the free encyclopedia,
2015. URL https://en.wikipedia.org/w/index.php?title=Random_

waypoint_model. [Online; accessed 14-February-2016].

[52] Parallel and Distributed Simulation Research Group. Gaia apis, 2011.
URL http://pads.cs.unibo.it/doku.php?id=pads:gaia-apis. [On-
line; accessed 6-February-2016].

[53] Okeanos. Iaas service. URL https://okeanos.grnet.gr/home/.

[54] Richard van den Berg <richard@vdberg.org>. tcpping: test response
times using tcp syn packets. URL http://www.vdberg.org/~richard/

tcpping.

[55] Wikipedia. Secure shell (ssh), 2016. URL https://en.wikipedia.org/

wiki/Secure_Shell.

[56] Wikipedia. Secure copy protocol (scp), 2016. URL https://en.

wikipedia.org/wiki/Secure_copy.

[57] Michele Amati. Design and implementation of an anonymous peer-
to-peer iaas cloud, 2015. URL http://amslaurea.unibo.it/8426/1/

amati_michele_tesi.pdf.

[58] The Wireshark team. Wireshark, 2015. URL https://www.wireshark.

org/.

[59] Chen Chen, Daniele E Asoni, David Barrera, George Danezis, and
Adrain Perrig. Hornet: high-speed onion routing at the network layer.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 1441–1454. ACM, 2016.

[60] Sean Gallagher. Researchers claim they’ve developed a better, faster tor,
2015. URL http://arstechnica.com/information-technology/2015/

07/researchers-claim-theyve-developed-a-better-faster-tor/.
[Online; accessed 16-February-2016].

