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Sommario

L’analisi dei network a multiplex riscontra un sempre maggiore inter-
esse da parte della comunità scientifica. Questi network complessi sono
caratterizzati da una sovrapposizione di network semplici, chiamati layer,
e vengono comunemente definiti come network di network. La struttura a
multiplex permette l’analisi di dati reali provenienti dai più disparati am-
biti e l’identificazione di strutture complesse non altrimenti individuabili.
In questa tesi vengono studiate alcune caratteristiche dei network a multi-
plex; in particolare l’analisi verte sulla quantificazione delle differenze fra i
layer del multiplex. Le dissimilarità sono valutate sia osservando le connes-
sioni di singoli nodi in layer diversi, sia stimando le diverse partizioni dei
layer. Sono quindi introdotte alcune importanti misure per la caratteriz-
zazione dei multiplex, che vengono poi usate per la costruzione di metodi di
community detection . La quantificazione delle differenze tra le partizioni
di due layer viene stimata utilizzando una misura di mutua informazione.
Viene inoltre approfondito l’uso del test dell’ipergeometrica per la deter-
minazione di nodi sovra-rappresentati in un layer, mostrando l’efficacia del
test in funzione della similarità dei layer. Questi metodi per la caratter-
izzazione delle proprietà dei network a multiplex vengono applicati a dati
biologici reali. I dati utilizzati sono stati raccolti dallo studio DILGOM
con l’obiettivo di determinare le implicazioni genetiche, trascrittomiche e
metaboliche dell’obesità e della sindrome metabolica. Questi dati sono uti-
lizzati dal progetto Mimomics per la determinazione di relazioni fra diverse
omiche. Nella tesi sono analizzati i dati metabolici utilizzando un approccio
a multiplex network per verificare la presenza di differenze fra le relazioni
di composti sanguigni di persone obese e normopeso. La caratterizzazione
delle differenze viene effettuata usando i metodi analitici proposti. I risul-
tati dimostrano l’efficacia del metodo proposto, rilevando alcuni composti
aventi comportamenti differenti fra il layer legato a persone normopeso e
quello rappresentante persone obese.

La tesi è organizzata nel seguente modo:

• nel capitolo 1 viene introdotta l’analisi dei network; la descrizione si
concentra sulle caratteristiche dei network a multiplex e delle sotto-
strutture (comunità) dei network.

• Nel capitolo 2 si descrive la metodologia di estrazione dei dati analiz-
zati e gli aspetti biologici riguardanti i dataset, effettuando una breve
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analisi dei dati per metterne in luce alcune caratteristiche.

• Nel capitolo 3 viene illustrato nel dettaglio il metodo implementato per
l’analisi dei network a multiplex. Sono poi introdotti alcuni metodi
statistici utilizzati nell’analisi dei dati reali.

• Nel capitolo 4 sono riportati i risultati ottenuti applicando il metodo
proposto al set di dati metabolici reali, dimostrando sia l’efficacia del
metodo, sia l’importanza di un approccio a multiplex network.
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Abstract

Multiplex network analysis arouses great interest among scientific com-
munity. These complex networks are characterized by the overlapping of
simple networks (or layers) and are normally defined as networks of net-
works . Multiplex structure allows the analysis of real data from different
fields and the identification of complex structures, which cannot be located
otherwise. The present thesis deals with some features of multiplex net-
works, especially the quantification of differences among multiplex layers.
The differences are evaluated by observing the connections of single nodes
in different layers and estimating the layer partitions. Therefore, some im-
portant measures for multiplex characterization are introduced and they
are used to create community detection methods. The quantification of the
differences between the partitions of two layers is estimated using a mu-
tual information measure. Moreover, the use of hypergeometric test for the
determination of over-represented nodes in a layer is deeply analysed, show-
ing the test efficiency with regard to the layer similarity. These methods
for the characterization of multiplex network properties are applied to real
biological data. Data have been collected by DILGOM study in order to
determine the genetic, transcriptomic and metabolic implications of obesity
and metabolic syndrome. These data are used by the Mimomics project
to determine the relations among different omics. The present thesis anal-
yses the metabolic data using a multiplex network approach to verify the
presence of differences among the relations of blood mixtures that belong to
overweight and normal-weight people. The characterization of differences is
carried out using the analytical methods described above. The results show
the efficacy of the suggested method, pointing out that some mixtures have
different behaviours between the layer connected to normal-weight people
and the one connected to overweight people.

The structure of the thesis is described below:

• chapter 1 introduces the network analysis, in particular the description
focuses on multiplex network features and on network substructures
(communities).

• Chapter 2 discusses the method for the extraction of the analyzed data.
Also the biological aspects regarding datasets are described, carrying
out a brief data analysis in order to highlight some of their features.
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• Chapter 3 includes a detailed description of the method used for the
multiplex network analysis. In addition, some of the statistical meth-
ods used in the real data analysis are introduced.

• Chapter 4 describes the results that have been achieved applying the
suggested method to sets of metabolic real data; showing the efficiency
of the method and the importance of a multiplex network approach as
well.
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Introduction

Graph theory is a young mathematical field, which is attracting the attention of an
increasingly wide section of the scientific community. The interest on this new ana-
lytical method is due to the fact that it permits to study complex systems, namely
systems composed by a large number of interacting elements. Networks have two basic
components: nodes and edges; the former are the objects under analysis, the latter are
their interactions. According to this, networks can always be built if we have a dataset
with interacting elements; this is why network analysis is applied to different kinds of
data, such as informatics, economic, biological, genetic, social data. All these different
fields show similar features when they are studied using network theory; this is the
point that makes graph theory so interesting to the scientific community.
In this thesis, we will present a method for the multiplex networks analysis. It will be
applied to biological data, therefore it can be included in the new field called bioinfor-
matics, which applies mathematical and physical methods to genomic, metabolomic,
transcriptomic, proteomic, biochemistry data. Bioinformatics is giving many inter-
esting results, which could not be carried out only by using the classical biological
methods. Indeed, complex systems can be fully characterised only using a mathemat-
ical approach.

In particular, we will analyse multi-omic data using multiplex network structures,
which belong to the complex network theory. Multiplex structure allows the analysis of
real data from different fields and the identification of complex structures, which cannot
be located otherwise. The present thesis deals with some features of multiplex networks,
especially the quantification of differences among multiplex layers. The differences are
evaluated by observing the connections of single nodes in different layers and estimating
the layer partitions. We will apply the developed multiplex approach on a biological
dataset.

The dataset is provided by DILGOM study (the Dietary, Lifestyle and Genetic
determinants of Obesity and Metabolic syndrome) and it is composed by metabonomic,

9



Alice Zandegiacomo

transcriptomic, and genomic information of a Finnish cohort. Indeed, our research is
linked to the investigation of metabolic peculiarities of obese individuals. The aim
of our research is to evaluate if there are factors associated with Body Mass Index
(BMI) and to the waist-hip ratio (who) in different omics by using network analysis.
To do that, we build a multiplex network with two layers, where one layer is linked
to obese individuals and the other one refers to normal weight people. Each layer
displays the correlations of blood serum compounds extracted by the DILGOM study.
Differences between these two metabolic layers are therefore linked to the BMI. In order
to investigate these differences we take into consideration both differences between
single nodes and differences between clusters of nodes.

In the first chapter of this thesis we will introduce network theory, and we will
examine some graph measures and community detection methods which we will utilize.
In the second chapter we will report a brief explanation of the method which the
DILGOM study utilised for the extractions of blood serum compounds. Moreover we
will explain the biological aspects linked to this research, describing the characteristics
of the two datasets we will utilize. In the third chapter we will show the method which
we implemented for the analysis of multiplex networks. This method is completely
independent to the data to be analysed, since it is a purely physical, mathematical
and statistical approach. This makes it possible to extend this procedure to the most
disparate fields. We will apply the implemented method to the biological dataset,
which is described in chapter 2. The results are displayed in the fourth chapter and in
that chapter, a brief explanation of the results is also included.
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Chapter 1

Network theory

Conventional network theory is a multidisciplinary field of study which was developed
during the second half of the XX century. Initially it had connected the mathematical
graph theory to social science, but in short time it was embraced by many other field
to investigate complex systems. Nowadays it has been applied in the most varied dis-
ciplines including physics, computer science, electrical engineering, biology, economics
and climatology and it is re-labelled as complex networks theory.

In this chapter we will present a brief explanation of the structures studied by
network theory. These structures are discrete sets of related elements which form
complex systems. We will illustrate their commonly adopted representation called
adjacency matrix and some algebraic properties related to this algebraic description.
Thereafter some useful measures will be presented, these measures are utilized for
the description of the network topology and the nodes features. The first section will
inspect some measures related to the whole network topology, as distance and diameter ;
in the second section some measures which examine properties of single nodes, that
are node degree, strength and inverse participation ratio will be listed; and the third
section will concern the underling structures of graphs, called communities or clusters.
We will examine in depth some commonly adopted methods for community detection,
which have been applied to the DILGOM dataset.

In the second part of this chapter the multilayer and multiplex network approaches
will be introduced. These are recent extensions of graph theory which permit to inves-
tigate more complicate frameworks than the classical networks analysis. In the end of
the chapter a brief description of the most studied biological networks will be proposed
and we will dwell on metabolic networks.
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Chapter 1. Network theory

1.1 Networks

Networks belong to the field of graph theory, which is characterised by structures with
a high level of complexity, the topology of which is not intuitive. Therefore network
theory is the study of complex interacting systems which can be represented as graphs
equipped with some extra structures, which allow to define direction of the interactions
or the label of graph elements. The complexity of the framework can be estimated
observing diverse characteristics of network elements that are nodes and edges.

Edges represent the interactions between nodes which are the constituent elements
of graphs. Therefore, a graph (G(V, L)) can be defined as a non-empty finite set (V)
of nodes tied by a set (L) of links. Every link, or edge, connects a pair of vertices.
The relation between the two connected nodes can be bidirectional or unidirectional:
in the former case the graph is called undirected graph, which means that edges are
symmetrical L(x, y) = L(y, x); in the latter case there is an edges orientation (L(x, y) 6=
L(y, x)) and links are called directed.

Undirected graphs have symmetrical links, they describe relations that do not have
a preferential direction such as communication networks, chemical bonds and so on.
Digraphs are graphs with directed edges, they describe hierarchical relations; these kind
of graphs are used for the description of transportations, infectious diseases, citations,
transcriptional networks and so on.

Links can whether or not be weighted; the weight associated to the edge usually
indicates the strength of the correlation, but it can also represents a length or a cost.

Networks are classified and characterised looking at nodes and links distributions.
There are measures which analyse the whole graph properties, as diameter, clustering
coefficient, eigenvalues, spectral properties. Other measures concern the properties of
a single node of the graph, some of them are centrality, node degree, strength and
inverse participation ratio. There are also methods which analyse the presence of
’sub-structures’ of highly correlated nodes inside the network, which are clustering or
communities detection methods.
Graphs are usually represented using square matrices, called Adjacency matrices (A).

Adjacency and Laplacian matrices

The adjacency matrix (A) is a square matrix n × n, where n is the number of network
nodes. Each row and each column of A represents the interactions between a specific
node and all the others. In an undirected unweighted graph, adjacency matrix is
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1.1. Networks

symmetrical and

Ai,j =

{
1 if there is a link between node i and node j
0 otherwise

In weighted networks, Ai,j = wi,j, if there is a link between node i and node j, where
wi,j represents the link weight. Usually self-loops are not considered, which means that
the diagonal of the adjacency matrix is null (Ai,i = 0).

Another used matrix is the Degree matrix (D), which is a diagonal matrix defined
as:

Di,j =

deg(vi) if i=j

0 otherwise
(1.1)

where deg(vi) is the number of edges which terminate at the node i.
The Laplacian matrix (L) is a squared matrix n × n defined as:

L = D − A

where D is the degree matrix and A is the adjacency matrix of the graph. So we can
deduce that:

Li,j =


deg(vi) if i=j

−1 if i 6= j and there is a link between node i and node j

0 otherwise

(1.2)

Lmatrix has several important proprieties that help to understand the graph structure.
We can note that if the graph is undirected, L is symmetrical and positive- semidefinite,
that is λi ≥ 0 for all i. Moreover, since the sum of the elements in each row of L is
equal to 0, zero is an eigenvalue of L with corresponding eigenvector etn = (1, 1, ..., 1) .

A first important information of the graph structure given by adjacency and Lapla-
cian matrices is the number of connected components. The number of times 0 appears
as an eigenvalue in the Laplacian is the number of connected components of the graph.
We speak of connected graph if it is not divided into two or more non communicant
parts, that is if L has only one eigenvalue equal to zero. This can also be shown by
adjacency matrix: an undirected graph is connected if there is no any permutation
(PAP−1) that forms a block matrix. In a connected graph, any node can reach any
other node.

1.1.1 Distance and diameter

We define walk a sequence of nodes and links which connects two nodes; if all the links
of a walk are different then it is called trail and if also all nodes are different we speak
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Chapter 1. Network theory

of path.
Paths are used to calculate the node distance, also called geodesic distance. This quan-
tity is defined as the number of edges along the shortest path which connect the two
considered nodes. If the graph is weighted, the distance becomes:

dij =
∑
i→j

1

wkl
, (1.3)

where wkl is the weight of a link belonging to the shortest path.
We can see from equation 1.3 that if two nodes belong to disjoint components of

the graph, the distance between them is infinite.
The greatest geodesic distance between a node v and any other node is called

eccentricity (ε(v)).
An useful quantity to evaluate the efficiency of information of the network is the
average path length (l); it is defined as the average number of steps along the shortest
path for all possible pairs of network nodes.

l =
1

n · (n− 1)
·
∑
i 6=j

dij (1.4)

where, as before, n is the number of nodes in G.
An other important quantity is the graph diameter (d); it is defined as the maximum
eccentricity of any node in the graph:

d = max
v∈V

ε(v) . (1.5)

The diameter is representative of the linear size of a network.

1.1.2 Node degree, strength and inverse participation ratio

Node degree, strength and inverse participation ratio are three graph measures which
analyse the properties of a single node of the graph. Therefore, they stress the differ-
ences between nodes belonging to the same network.

Node degree (ki) specifies the number of edges that node i has with other nodes.
If the network is directed there are two different degrees, the in-degree, which is the
number of incoming edges, and the out-degree, which is the number of outgoing edges.
Considering an undirected network the node degree is:

ki =
∑
i 6=j

Θ(aij) , (1.6)

where Θ(x) = 1 if x > 0, otherwise Θ(x) = 0.
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1.1. Networks

An useful information about the network can thus be obtained from the distribution
of node degrees. The degree distribution (P (k)) of a network is defined as the fraction
of nodes in the network with degree k: P (k) = nk/n. Real world networks usually
have nodes with very different degree: most nodes have a relatively small degree and
only few nodes have many connections. These large-degree nodes are called hubs.

Since the node degree does not consider the weight of links, another measure can
be useful to characterize nodes of weighted networks: this measure is called strength.
The strength (si) is defined as the sum of the weights of the links of node i

si =
∑
i 6=j

aij . (1.7)

It can be seen that strength is equal to the node degree for unweighted networks but,
for weighted ones, it loses the information relating to the number of ties, so it is not a
substitute of the node degree.

The inverse participation ratio Yi is defined as the sum of the squared ratio of every
edge weight (aij) of node i and the strength of the node i

Yi =
∑
i 6=j

(
aij
si

)2

. (1.8)

Therefore, the inverse participation ratio indicates the homogeneity of the link weights
relative to a node i. As can be seen, 1 < 1/Yi ≤ ki; the lower limit is verified when
there is a high uneven weight distribution, while the upper limit 1/Yi = ki is verified
when all the edges weights of node i are equal.
The graph measures mentioned above allow to perform a classification of graphs based
on their topology. The main classes of graphs are [1]:

• Random networks: random networks are graphs in which properties such as
the number of graph vertices, graph edges, and connections between them are
determined in a random way. In particular, there are two main random graph
models : the Erdős and Rényi definition of random graph fixes the total number
of links L: given a graph with N labelled nodes, these are connected with L

randomly placed links G(N,L). On the other hand Gilbert defines random graph
starting from the probability p that two nodes are connected; therefore, each pair
of N labeled nodes is connected with probability p, G(N, p).
Random graphs are commonly used as null models, that is as a term of comparison
between the graph under study and a graph with some of its structural features
( as number of nodes and edges) , but which is built with random models.
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Chapter 1. Network theory

• Scale free networks are connected graphs with a degree distribution that fol-
lows a power law: P (k) ∼ k−γ, where usually 2 ≤ γ ≤ 3. They can be built
using the preferential attachment technique, that is progressively adding nodes
to an existing network and introducing links to the existing nodes. In this way
the probability of be linked to a given node i is proportional to the number of
existing links ki that node has: P (linking to node i) ∼ (ki)/(

∑
j kj).

• Small world networks are connected networks where the mean geodesic dis-
tance between nodes increases sufficiently slowly as a function of the number
of nodes in the network. Usually the growth follows a logarithmic function:
L ∝ logN . Nodes have usually few neighbours, but they can reach any other
node with a small number or steps.

1.2 Clusters or community structures

Until now, we have illustrated some general characteristics and measures of graphs
which help to classify nodes and to understand the whole graph structure. Now we
will introduce another point of view used to understand the graph framework, which
inspects the underling structure of graphs. Many kinds of networks are characterised
by the presence of groups of nodes highly connected to each others. These groups are
called community structures or clusters, nodes belonging to these groups have many
connections inside the group and sparser connections between them. The process of
identifying this structure in terms of grouping graph nodes is called graph clustering
or community detection[2][3].

The vast majority of real networks exhibits community structures, which are con-
sidered as fairly independent compartments of a graph. These groups of nodes are
expected to behave in a similar way, that is to share common properties or to carry out
similar functions. Communities can thus be found both using local or global criteria. In
the former case they are expected to be detected inspecting them as separated entities
and, in the latter, as a part of the whole graph. Independently of the adopted detec-
tion method, graph clustering is extensively used to analyse graphs of real complex
systems; examples are social networks, collaboration networks, computer science, and
protein-protein interaction networks (PPI). The latter are intensively investigated by
biologists, since grouping proteins which deeply interact with each others can highlight
their ’collective’ functions. Furthermore, community structures of PPI show differ-
ences between healthy and sick people; in particular metastatic cells have proteins
which interact very frequently with each other.
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1.2. Clusters or community structures

Given the importance of uncover these substructures, many methods are used to
investigate community structures and to evaluate their goodness. We present a sum-
mary of the most used community detection methods. The aim of community detection
methods is to group nodes so that nodes which belong to the same cluster C have many
edges within each other and few edges which connect them to nodes of other clusters.
Therefore, each cluster should be connected, which means that there should be at least
one path internal to the cluster connecting each pair of vertices within a cluster. A
cluster can be analysed as a subgraph C(S,Ec) of the graph G(V ;E), where S is the
set of vertices which belong to the cluster (S ⊆ V ) and Ec ⊆ E is the subset of edges
inside the cluster. Edges starting from the nodes of a cluster are divided in internal
and external edges. The internal degree Kint

v of a node v ∈ C is, from eq 1.6, the
number of edges connecting v to other vertices of C, on the other hand the external
degree (kextv ) is the number of edges connecting v to vertices of the rest of the graph.
A good cluster should have many internal edges and few external edges.

A measure which can help to evaluate the goodness of clusters is the density. The
density of a graph G(V ;E) is the ratio between the number of edges of the graph
and the maximum number of edges which the network could have. Considering an
unweighted graph with n nodes and m edges:

δ(G) =
m(
n
2

) . (1.9)

The density of the subgraph composed by the nodes of the cluster (S), is called local
density. Since a cluster has both internal and external edges, we need to define two
different local densities, the internal density (δint) and the external density (δext)

δint(Ci) =
|{{v, u}|v, u ∈ Ci}|
nci(nci − 1)/2

, (1.10)

δext(Ci) =
|{{v, u}|v ∈, Ci, u ∈ Cji 6= j}|

nci(n− nci)
, (1.11)

δint(G|C1, ..., Ck) =
1

k

k∑
i=1

δint(Ci) , (1.12)

where u v are nodes, {v, u} = 1 if there is a link between v and u and 0 otherwise, and
nci = Ci is the nodes set of the i-th cluster. If the average internal density (eq 1.12) is
significantly higher than the external and total densities ( eq 1.9) the cluster is good.

Communities detection algorithms seek to maximize the difference between internal
and external densities over all clusters of the partition.
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Chapter 1. Network theory

1.2.1 Community detection methods

The goal of community detection methods [4][2] is to discover subgroups of network
elements which are strongly bonded together. Graph clustering normally assumes that
the network of interest divides naturally into subgroups, therefore communities are
network’s own characteristics. According to that, methods should be able to detect
communities with different size and in variable number, for this reason clustering meth-
ods are often unsupervised. Moreover, community detection methods have to consider
that no good division of the network could exist.
As already said, clustering methods can be classified in local and global methods, in the
former case only the subgraph of interest and its closer neighbours are inspected. In the
latter case every subgraph is considered to be indispensable for the correct functioning
of the whole graph. In both cases, measures used to grouping similar objects can be
divided in measures based on nodes similarity and measure based on the optimisation
of some quality functions.
Similarity measures are at the basis of traditional clustering methods, like hierarchical,
partitional and spectral clustering; these methods place a node in the cluster whose
nodes are most similar to it. Similarity is computed considering some reference prop-
erties, one of the most popular is the distance. Since distance does not inspect whether
nodes are connected by an edge or not, a distance function cannot be in general defined
for a graph which is not complete, but for weighted complete graphs as correlation ma-
trices, it is often possible to define a distance function.
The distance between a pair of vertices can be calculated using the Minkowski metric

dEXY =

(
n∑
k=1

(xk − yk)g
)1/g

(1.13)

where X = (x1, ...xn), Y = (y1, ...yn) are the two nodes. The commonly used Euclidean
distance between two objects is achieved when g = 2. When the graph cannot be
embedded in space, a kind of distance deduced from the adjacency matrix A is often
used:

di,j =

√∑
k 6=i,j

(Aik − Ajk)2 (1.14)

Several methods use distance optimization for clustering in order to maximize inter-
cluster distance and minimize intra-cluster distance. When Euclidean distance is cho-
sen, the inter-cluster distances are usually represented by distance of clusters centroids,
which are the average of the cluster’s elements. With non-euclidean metrics, methods
as the shortest distance, weighted or unweighted average distance are used.
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1.2. Clusters or community structures

Quality measures are usually applied to assess the goodness of a graph partition.
Since there are several quality functions, there is not a ’absolute best’ partition, but it
depends on the metric and the quality function adopted. In this thesis we will introduce
two well-know quality measures which were used, at first, to evaluate the goodness of
a partition.

One of the first quality function adopted is modularity, which was introduced by
Newman and Girvan [5]. The idea behind modularity is that a good graph partition
occurs when the concentration of edges within community structures compared with a
random distribution of links between all nodes is significant. Therefore, the calculus of
modularity requires a null model ; different choice of how to build the null model can
lead to different modularity values. For whatever null model, the modularity is defined
as:

QM =
1

2m

∑
ij

(Aij − Pij)δ(Ci, Cj) (1.15)

where A is the adjacency matrix, m the total number of edges of the graph, and Pij
represents the expected number of edges between vertices i and j in the null model.
The function δ(Ci, Cj) is set to one if (Ci = Cj), that is if nodes i and j are in the
same community, zero otherwise.
Usually, the null model is built in order to maintain the degree distribution of the
original graph. Therefore, a node i with degree ki is linked to an other node j with
degree kj with probability pipj, where pi = ki/2m and pj = kj/2m. Considering nc
custers, the equation 1.15 can be rewritten as:

QM =
nc∑
c=1

[
lc
m
−
(
dc
2m

)2
]

(1.16)

where lc is the total number of edges between nodes of the same cluster C and dc =∑
i∈C ki is the sum of the degrees of nodes of C.

Equation 1.16 shows that modularity can take on values in the interval [-1, 1] and, if C
is the whole graph, then Q become zero. Positive values of molularity indicate that the
tested subgraphs represent modules, and the higher the modularity, the better defined
are the modules. On the other hand, if Q assumes large negative values, it could mean
that the intra-cluster edges are fewer than the inter-clusters ones, therefore cluster
density is less than the whole graph density.

Another useful quality function used to find community structures is the stability [6],
[7]. This quality measure merges the idea behind modularity (to evaluate the goodness
of the partition), with an inner resolution parameter represented by the Markov time
(section 3.2.4). We choose to utilize this quality function in order to evaluate different
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community partitions, which are obtained in different Markov time. This method will
be described in chapter 3, section 3.2.4.

Originally, modularity and stability were used as evaluation criterion, the former to
assess the quality of clustering methods and the latter for hierarchical partition meth-
ods. Both have rapidly become an optimisation method utilized by many clustering
algorithms.

Modularity optimization methods aim to maximise modularity, since high values
of modularity are assumed to indicate good partitions. Many algorithms which use
modularity as optimisation method were designed, we will describe the first and fa-
mous one: the greedy Newman method [5]. This agglomerative hierarchical clustering
method starts from nc = n clusters, each containing a single disjoint node (n is the
number of graph nodes). Iteratively one edge of the graph is added to the nodes set, in
order to maximize the modularity of the new partition (or minimize its decrease) with
respect of the previous configuration. The modularity of partitions explored during this
procedure is always calculated from the full topology of the graph. At each step the
number of partitions can decrease or not vary, since intra-cluster edges do not merge
groups and thus the modularity stays the same. The Newman greedy algorithm ends
when all edges of the graph are added, consequently the number of partitions found
during the procedure is n. The best partition is the one with the higher modularity.
Many other algorithms are developed in order to reduce the computing time, the most
famous are: Clauset, Wakita and Tsurumi and Louvain algorithms.

1.3 Multilayer networks

Multilayer approach belongs to a recent extension of graph theory, called complex
networks theory, which permits to investigate more complicate frameworks than the
classical networks analysis. In fact, it was shown [8] that many real networks can not
be exhaustively explain with a classical network approach, but need more complex
structures. Real networks display complex topological features, which are different
from those of random or regular graphs; they present community and/or hierarchical
structures, high clustering coefficient and so on. These networks are classified as scale-
free networks and small-world networks, which are mentioned above.

Recently, according to the increase of both available data and dataset magnitude
and to the developing of a "new" complex approach, graph theory is expanded to
’networks of networks’, called also multilayer networks . The idea behind multilayer
networks is that, building multiple levels of networks, it is possible to explore various
types of edges and nodes that are linked together. A multilayer network is therefore
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characterized by nodes, edges and layers.
In the most general case, different aspects to connect nodes are considered; for every
aspect, there can be a set of layers, which are made up of elementary layers. Links in
different set of layers specify different kinds of relationships between nodes.
An explanatory example is reported in the multilayer review published by Kivela et al
[9]. They considered the Zachary Karate Club Club (ZKCC) network as a multilayer
network, where nodes represent the current members of the ZKCC. These are scientists
who use a particular network, the Zachary Karate Club network, as example in their
conferences. In figure 1.1 nodes are labelled with the initials of the four members.
Links represent interactions between the ZKCC members, in particular two aspects
are analysed: the first one is the type of relationship between the scientists (talked to
each other, went to a talk by the other) and the second one represents a conference
in which the ZKCC trophy was awarded (and thereby passed from one recipient to
the next). In this example there are thus 4 nodes (V), two aspects, and 6 elementary
layers. Edges can be intra-layer or inter-layers, the latter are coupling edges because
nodes are adjacent only to themselves in different layers but, in more general cases,
they can connect different nodes in different layers.
A multilayer network is thus fully described by a quadruplet of components;

M = (VM , EM , V,L) (1.17)

where L = {La}da=1 is the sequence of set of elementary layers, which are La for
each aspect a. A set of all the combinations of elementary layers can be built using
Cartesian product L1 × ... × Ld. V are the nodes of the multilayer network, a set of
all combinations is given by V = V × L1 × ... × Ld. Since the number of nodes can
vary between layers, the variable VM indicates only those nodes which are present in
each layer, it is thus a subset of V : VM ⊆ V ×L1× ...×Ld. EM is the edge set of the
multilayer network, which specifies the starting and the ending layers of each edge in
addition to the starting and the ending nodes (EM ⊆ VM × VM).
Going back to the previous example, V = {MAP, MB, Y Y A, AC} is the set of nodes,
L= {type of relationship between the scientists, conference in which the trophy was
awarded} are the two considered aspects which produce 6 different elementary layers:
{(X,A), (X,B), (Y,A), (Y,B), (Z,A), (Z,B)}. VM indicates what nodes are present
in each layer, that is: {(MAP,X,A)(MB,X,A) (YYA,X,A), (MAP,Y,A), (MB,Y,A),
(YYA,Y,A), ...} . EM is the edge set (VM×VM), edges can be intra-layer or inter-layers.
Since in this example inter-layer edges are coupling edges, therefore their corresponding
matrix is diagonal.
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Figure 1.1: Visualization of the Zachary Karate Club Club (ZKCC) network as a multilayer
network. [9]

For each multilayer network there is an underlying graph which is identified by:

GM = (VM , EM) (1.18)

where VM is the subset of nodes present in layers and EM is the edge set. The latter
can be parted into intra-layer edges (EA) and inter-layer edges EC .

In this thesis we focus on a specific type of multilayer network called multiplex
network, for this reason the theory underneath multiplex network will be illustrate
more in depth than the theory of multilayer networks.

1.3.1 Multiplex networks

Multiplex networks [10], [11] [9] are a particular case of multilayer networks. As the
latter, multiplex are composed by layers but, unlike multilayer networks, in multiplex
networks the number of nodes in every layer is the same. In these networks, edges in
different layers can symbolize different types of relations. The structure of a multiplex
can be examined both looking at the connections between distinct nodes and at the
connections between copies of the same node in different layers, trying to combine in-
tralayer and interlayer relationships. Moreover, the layers of multiplex networks can be
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1.3. Multilayer networks

study with different approaches: inspecting measures related to nodes, as node degree
and strength, looking at layers sub-structure, as graph partitioning and community
overlap, or comparing characteristics of the whole layers. In general, a weighted mul-
tiplex is composed of M weighted interdependent networks Gα, with α = 1, ...,M and
each one is made up of n nodes. The number and weight of links can vary from network
to network. Every network Gα represents a layer of the multiplex, which is therefore
described by M adjacency matrices n× n.
The elements aαij of the adjacency matrix Aα are defined as:

aαij

> 0 if there is link of weight aαij between node i and node j in layer α

= 0 otherwise
(1.19)

The adjacency matrix representative of connections between two layers is diagonal. In
fact, in multiplex networks a given node i can have different edges in different layers,
but it is linked only with itself in different layers.
A multiplex network can be examined evaluating properties of each layers but also
reducing its dimensionality. In the latter case data from different layers are aggregated
to construct a monoplex network, which can be analysed as a elementary graph.
Maintaining the layers structure, there are some useful graph measures which can
be extended to multiplex networks. Among those regarding nodes, the node degree,
the strength and the inverse participation ratio are very used. These measures are
extended to multilayer in order to show dissimilarity between nodes in different layers,
From equations 1.6, 1.7 and 1.8, they become:

kαi =
∑
i 6=j

Θ(aαij) (1.20)

sαi =
∑
i 6=j

aαij (1.21)

Y α
i =

∑
i 6=j

(
aαij
sαi

)2

(1.22)

where, as before, Θ(x) = 1 if x > 0, otherwise Θ(x) = 0.
Comparing values of these measures for every layer (α), it is possible to evaluate the
presence of significant difference between them. In order to verify the importance of a
single node in all layers also the total node degree (Ki) can be useful Ki =

∑
α ki.

A quantitative estimate of the overlap between layers can be obtained using multi-
links. For each pairs of nodes i and j there is a multilink ~m = (m1,m2, ...,mM) where
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Figure 1.2: Multiplex network with M=2 layers and N=5 nodes. Connection of each pair of
nodes i j can be represented by a multilink ~m [10].

mα = 1 if there is the link between i and j in the α layer and mα = 0 if it is not. Figure
1.2 illustrates some possible multilinks for a multiplex network with 2 layers. Using
the multilink formalism the adjacency matrix of a multiplex network can be rewrite as

A~m
ij =

M∏
α=1

[
Θ(aαij)mα + (1−Θ(aαij)mα)(1−mα)

]
. (1.23)

Communities detection analysis can be extent to multiplex networks; there are more
than one approach to detect clusters in different layers, as there are many clustering
methods to define highly connected nodes. One way to seek multiplex communities is
to start by separately detecting communities in each intra-layer network. A multiplex
community can be defined as a set of intra-layer communities which have at least a
given number of shared nodes, usually called ‘support values’ of the community. An
other kind of clustering method is based on the monoplex network model. In this case
community detection involves as for elementary networks, comparing nodes density of
the multiplex with nodes density of a null model. As reported by Kievela et al [9],
Barigozzi et al. compared intra-layer communities with communities that they found
in an aggregated version of their multiplex network (monoplex network), and they
observed considerable variation in the intra-layer communities across category layers.
It thus seems that much of the information about multiplex communities can be lost by
aggregating a multiplex network. This result underlines the importance of a multilayer
approach in order to preserve as much information as possible.
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1.4. Biological Networks

1.4 Biological Networks

The application of physics to biological data is growing, according to the increase of
the computing power and the admirable obtained results. In particular, we focus on
the application of graph theory on biological data [12], [13], [14].
Biological networks allow a description of the complexity of biological systems using the
basic components of a network: nodes and edges. Nodes represent different elements
according to the biological components would be analysed, moreover various networks
can be built using the same set of nodes, since many kind of relationships can be
explored. The most studied biological networks are: gene regulatory networks, gene
co-expression networks, protein-protein interaction networks, metabolic networks and
neural networks.

Gene regulatory networks analyse the interaction between DNA, RNA and proteins;
they describe gene expression as a function of regulatory inputs specified by interac-
tions between proteins and DNA. Proteins are synthesised using informations contained
in the mRNA molecules, which are transcribed from DNA. Some RNA sequences and
regulatory proteins recognize specific DNA sequences and activate or repress the ex-
pression of thousands of genes. Proteins, genes, or enzymatic substrates are usually the
nodes of these networks, while edges often represent direct molecular interactions, reg-
ulatory interactions or the sharing of functional properties. This kind of networks try
to deduce the complex structure and dynamic behaviour of genes and proteins, often
modules composed of genes with strong expression associations are found. Gene regu-
latory networks are usually directed, since activation or repression are one-directional
relations. Moreover their topology abides by a hierarchical scale free network, there
are thus few genes with a high node degree and many nodes with a lower mode degree.

Gene co-expression networks are weighted undirected graphs which evaluate the
associations between genes exploiting their DNA transcripts (RNA). Therefore nodes
act as genes and links as their co-expression relationships. The adjacency matrix
of that kind of networks is usually a correlation matrix based on data acquired by
microarray technique; a high value of adjacency matrix entries (aij) means high co-
expression between the two genes (i and j). In this kind of biological networks, a
clustering analysis is often performed. The aim is to associate modules to a clinical
trait of interest and to study their variations in illness patients.

Protein-protein interaction networks (PPI) analyse the complex protein interac-
tions inside cells. Hundreds of thousands of interactions are collected in biological
databases which are used for the construction PPI networks. In order to display all
these interactions, some networks were manually built, these databases often allow the
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identification of functional protein modules.
Metabolic networks examine the chemical reactions, the metabolic pathways and the

regulatory interactions of metabolism. Nodes usually represent chemical compounds
whereas links are the biochemical reactions which convert a compound into another. In
the following section metabolic networks will be discuss, while an extensive description
of the field of study of metabolic reaction, the metabolomic, will be presented in the
next chapter.

This brief characterization of the most inspect biological networks can help to un-
derstand the usefulness of graph analysis also for medical aims. In fact, in the last
decades, a great interest is turned toward network medicine [15]. This branch of biolog-
ical networks studies human diseases using a more holistic approach then the scientific
reductionist, which relies on single molecules or single genes to provide comprehensive
description of complex diseases. Network medicine can be split in some relevant areas:
the interactome , the diseasome and the epidemics network.

The interactome is the whole set of molecular interactions in a cell, therefore it
merges informations on protein–protein interactions, co-complex memberships, regu-
latory interactions and metabolic network maps. These networks have permitted to
discover disease modules, which are groups of cell components linked to disease pheno-
types. More specifically, most phenotypes reflect the interplay of multiple molecular
components that interact within each others, mutations inside these modules induce
to disease phenotypes. Usually disease genes produce disease proteins, which tend to
interact within each other forming connected subgraphs called disease modules. The re-
search of functional disease modules has a wide biomedical application; many modules
have been discover exploring diseases through their associated phenotypes [16].

Human disease networks (diseasome) are graphs linking different diseases. An edge
which connects two vertices indicates shared genes among diseases. Other types of
disease networks used communal metabolic pathway or communal phenotypes as links
between diseases. Epidemic disease networks connect biological issues to social ones:
this kind of network explores the diffusion of contagious diseases caused by biological
pathogens.

All these types of networks interact and they form over-structures with a high com-
plexity level. A notable example of these interactions was described by Barabasi [17],
in respect of obesity. It is known that obesity has a genetic component, in particular
it is related to the allele for the FTO gene (Fat mass and obesity-associated protein),
which causes an increased risk of obesity by 30%. The risk changes into 67% if both
alleles have the FTO gene variant for obesity. This example shows a high correlation
between genotype and phenotype; genes are also tied to transcription factors, RNA,
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1.4. Biological Networks

Figure 1.3: The complexity of the analysis of human diseases. Many diseases are associated
with the breakdown of functional modules, which lied in different related sub-networks, as
genetic, regulatory, metabolic, protein–protein and social networks [17].

enzymes and metabolites. It was also shown that friends, spouses and family members
have an increase risk of obesity during a given period, if one of them became obese in
that time interval. That risk is 171% for fiends and 40% for siblings. Obesity is then
clustered into communities in a sort of epidemic disease network. Many genes linked to
obesity are also related to other diseases. The current diseasome reveals that obesity
shares genes with diabete , asthma, insuline resistence, lipodystrophy, glioblastoma
and so on. This analysis of obesity shows the complexity of biological systems, where
social networks are tied to genome, metabolic and disease networks. In figure 1.3 is
graphically represented the overlapping of such networks.
This example permits to grasp the importance of a multilayer approach. In fact it
helps to tie different kind of networks and to have a more general point of view then
that offered by simple graphs.
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1.4.1 Metabolic networks

Metabolic networks are a mathematical representation of the metabolism of an organ-
ism, that is the totality of chemical interactions that generates essential components
such as amino acids, sugars and lipids, and the energy required to synthesize them and
to use them in creating proteins and cellular structures. Therefore, the actual graph
representation is a network where nodes represent metabolites and where edges are the
chemical reactions which transform them.
A series of chemical reactions occurring within a cell is called metabolic pathway ; these
pathways had been manually drawn and their collection was grouped in molecular inter-
action and reaction networks; one of the largest pathway database is the KEGG (Kyoto
Encyclopedia of Genes and Genomes) PATHWAY Database[18]. These metabolic path-
way databases are used to build various metabolic networks where links can symbolize
different kind of relations between metabolites.
One important study about topological properties and characteristics of biological net-
works was accomplished by Jeong et al.[19] in 2000. They analysed metabolic networks
of 43 organisms representing all three domains of life, where a metabolite (node) is di-
rectly links to another metabolite if there is a chemical reaction which transforms the
former in the latter. Their results show that all metabolic networks are described by
scale-free networks: the probability that a node has k neighbours (P (k)) follows a
power-law, P (k) ≈ k−γ. These networks have an extremely heterogeneous topology
in which few nodes are highly connected (hubs) and most of them are less connected.
Moreover, metabolic networks seem to be small world networks, since even if many
nodes have few edges they can be connected with all others nodes with short paths.
All the 43 networks exhibited module structures responsible for distinct metabolic
functions, and the hubs were the same for every analysed specie. They also found that
metabolic networks are robust against random errors, that is: removing random nodes
the average distance between the remaining nodes were not affected. On the other
hand, a removal of the hubs caused a fast increment of the diameter. An other partic-
ularity found by Jeong et al. is that the diameter (eq 1.5) of the metabolic network is
the same for all 43 organisms, instead of increasing according to the number of nodes
with the typical logarithmic trend of scale free networks. This indicates that more
complex organisms with more enzymes and substrates have an increased connectivity.
This permits to maintain a relatively constant metabolic network diameter.

As said in the previous section, metabolic networks can be used to build disease
networks. A great example of this method is shown by Lee et al. [14] who studied
the implication of human metabolic network topology for disease comorbidity, which
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Figure 1.4: Example of the method used to build the disease network a) and disease network
b) obtained by Lee et al. [14].

means that diverse disease phenotypes are coexpressed. They started looking that
mutations that cause a metabolic enzyme to be nonexpressed, inactive, or functionally
compromised can be associated to metabolic diseases, which are usually classified us-
ing some disease phenotypes. Moreover, since metabolites are grouped in functional
modules such as carbohydrate, amino acid, fatty acid metabolism which are connected
together, a dysfunction of one of them can have a cascade effect on the others. They
built a disease network starting from the metabolic network. Two disease were linked if
mutated enzymes associated with them catalyze adjacent metabolic reactions, as shown
in figure 1.4.a). The figure 1.4.b) displays the obtained disease network. Implementing
comorbidity analyses they found that connected diseases shown higher comorbidity
than those that have no metabolic link between them. Moreover the strongest predic-
tors of comorbidity are the metabolic links and not shared genes. This fact underlines
the importance of the study of metabolic data, since they seem to be highly related to
the phenotypes and diseases.

In this chapter we have proposed a brief introduction of the network theory, men-
tioning some of the most useful measures and describing some important graph features.
In particular, we have illustrated the main characteristics of the complex network the-
ory, in order to lay the foundation for the analysis we will do.
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Chapter 2

Metabolomics

Metabolomics is one of the emerging disciplines of omics research as well as lipidomics
and proteomics. The suffix omics is commonly used in bioinformatics for classifing a
specific field of research. Therefore, the term metabolomic concerns the study of all
metabolites being in the organism.

Since our study belongs to metabolomics, in this chapter we will focus on the
biological and health motivations which led to the collection of the DILGOM dataset,
which we will analyse with a physical and statistical approach in the following chapters.
In the first section we will summarise the characteristics of system biology, focusing on
the metabolomics branch. Consequently the reasons and the aims of DILGOM study
will be illustrated; moreover, we sum up the results obtained in previous studies showing
the usefulness of the network approach. In section 2.2 the main methods to extract
serum compounds will be presented, in particular we will give a brief explanation of
1HNMR, chromatography and mass spectrometry methods.

Later (section 2.3) we will show a fleeting overview of the incidence of obesity and
the cardiovascular diseases correlated to that. In section 2.4 some correlations between
the compounds extracted by the DILGOM study and cardiovascular diseases will be
listed. These compounds are grouped using a classification based on their biological
characteristics, therefore we will give a brief explanation of the their metabolic roles.

In the last section we will describe the DILGOM dataset, focusing on the phenotypes
and metabolic dataset, since we will apply our multiplex analysis method on these data.
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2.1 Metabolomics

Metabolomic, as lipomic and proteomic, is recent inter-disciplinary field of study. Re-
spectively, these omics concern the study of all metabolites, lipids and proteins being
in the organism. The omics have been a rapid development according to the increase of
available data and computing power. The first metabolomics web database METLIN
[20] was developed in 2005; its data regard metabolic profile, which is the measure of
the compounds which are present in human liquids and tissue extracts. An other fun-
damental project for the progression of metabolomic studies is the Human Metabolome
Project [21], which has been freely available online since 2007. The Human Metabolome
Database contains detailed information about 41,993 small molecule metabolites found
in the human body. These are detected and quantified using the two main techniques
adopted for human compounds analysis: the mass spectrometry and the 1H NMR.
These two powerful methods will be describe later in this chapter. Other analytical
technologies have been employed to extract, detect, quantify, and identify metabolites
in different organisms, tissues, or fluids in order to increase informations about these
small molecules.

The importance of a systematic study of the whole metabolic profile descends from
the fundamental functions that these compounds have in the body, which include fuel,
structure, signaling, stimulatory and inhibitory effects on enzymes, catalytic activity,
defense, and interactions with other organisms. Metabolites can thus be seen as the
functional readout of cellular state.

Even though the aim of the metabolomics is to understand all the chemical pro-
cesses which involve metabolites, it is also central for "inter-omics" analysis, since
metabolites are often connected to phenotypes, diseases, toxicity and eating habits.
Metabolomic can thus be seen as a bridge between phenotype and genotype. This new
branch is called functional genomics and it is applied on model organisms. The aim
is to predict the function of unknown genes by comparison with the metabolic per-
turbations caused by deletion/insertion of known genes. An even more complex study
is the nutrigenomic, which tries to establish links between genomic, transcriptomics,
proteomics, metabolomics and human nutrition.

All these omics are analysed by the sistems biology, which is the computational
and mathematical modelling of complex biological systems [22]. The ultimate goal of
systems biology is to integrate these different omics using a holistic approach. This
can leads to discover emergent properties and connections which are not identifiable
using reductionistic methods. The idea behind this holistic approach derives from the
observation of living systems: these are dynamic and complex systems and their nature
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is not deducible from the properties of their singular parts. Since there are hundreds
of thousands of elements which participate at the human body (or cellular) functions,
graph approach seems to be the most practical investigation method. Each component
can be represented as a node and its interaction as link. Therefore biological networks
are usually constituted by thousand of nodes connected by thousand of edges.

Metabolomic, unlike genomic and proteomic which have been developed for the last
forty years, has been investigated only for the last few years. Since it is a very recent
field of study, there is not a well-established background, but many articles have been
published recently, highlighting the interest of the scientific community.

In the current chapter, we will focus on the biological and methodological aspects
related to metabolomics, describing the method used to extract serum particles concen-
tration and the health motivations which induced these data collections. In particular,
we will examine in depth the dataset utilized in our study and the goal of that project,
detailing the biological functions of the quantified metabolites and their correlation
with cardiovascular disease.

2.1.1 The DILGOM study, biological aspects

The purpose of the DIetary, Lifestyle, and Genetic determinants of Obesity and Metabolic
syndrome (DILGOM) study is to realize a comprehensive characterization of the bi-
ological architecture of human diseases and traits[] [23]. More specifically, using a
network approach the ambition is to understand how nutrition, diet, lifestyle, psy-
chosocial factors, environment and genetics of a population are linked to obesity and
to the metabolic syndrome.

As already discussed in the previous chapter, many diseases present complex sub-
networks structures, which are usually characterized by the breakdown of functional
modules. In particular, many studies have shown that obesity is influenced by genetics,
metabolic and social factors.

For this reason the DILGOM study collected informations regarding phenotypes,
metabolomics, transcriptomics and genetics of 518 Finns. The integration of these
’omics’ may lead to the discover of new module structures linked to the metabolic syn-
dorme and to assess, in a more accurately way, the risk for various vascular outcomes.
The DILGOM study consists of unrelated individuals, 240 males and 278 females, aged
25–74 years, sampled from the capital region of Finland.

Using the DILGOM database, network analyses have already recognised a set of
highly correlated genes, the lipid–leukocyte (LL) module, as having a prominent role in
over 80 serum metabolites [24]. Using a co-expression network, Inouye et all [?] identi-
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fied 11 genes with strong expression associations with HDL (High Density Cholesterol)
(P = 5.62 × 10−27), APOB (apoliprotein B)(P = 3.06 × 10−26), and TG levels (total
triglycerides)(P = 2.44×10−29). They supposed that the module composed by these 11
most strongly associated genes for APOB, HDL, and TG could be a candidate module
for metabolic dysfunction, inflammation, and atherosclerosis; moreover also adiposity
could be linked to the LL module. Indeed, network analyses have shown a dependence
of gene co-expression leukocytes from serum metabolite concentrations, which are con-
ditioned by environmental factors. This beginning result underlines the importance of
a systematic molecular and environmental analysis.

In this thesis we analyse the phenotypes and the metabolomic dataset using a
network approach. The aim is to verify if blood serum particles of obese people show a
different behaviour than those of normal-weight people. The presence of compounds or
modules with different behaviours in the two groups could be related to some diseases
recurring in obese people.

2.2 Methods of data extraction

In the past decades, more than one method for metabolic profiling of biological spec-
imens was developed. In fact it was proved that many diagnosis can be done from
blood concentrations. Two of the most widely used analytical platforms for metabolic
profiling are nuclear magnetic resonance (NMR) spectroscopy, and chromatography
joined to mass spectrometry (MS).

2.2.1 1HNMR

NMR spectroscopy has become the most adopted technique for determining the struc-
ture and the concentration of organic compounds. It takes advantage of the intrinsic
quantum property of spin (I) which all nucleons have. A spinning charge generates a
magnetic field which has a magnetic momentum ~µ:

~µ = γnh̄~I (2.1)

µ is proportional to the spin (I), to the Plank constant h and to the gyromagnetic
ratio γn. The latter is the ratio of the magnetic dipole momentum and the angular
momentum of a specific nuclear element n, therefore it assumes different values relative
to the chemical element. The nucleons spin can be ±1/2, the overall spin of a nucleus is
the sum of the nucleons spin whereof nucleus is made, and therefore it can be integral,
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fractional, but also zero. In the latter case, the nucleus magnetic momentum is also
equal to 0 (eq 2.1) and thus nuclei of that species can not be detected using NMI.

Without an external magnetic field, the momenta of a given chemical element, such
as hydrogen nuclei 1H (I = ±1/2), are in random directions. When they are placed in
a external magnetic field (B0) they align their momentum either with or against B0,
respectively if they have I = +1/2 or I = −1/2. These two nucleus states have a little
difference in energy: the state with I = +1/2 is aligned with B0 and it is placed to a
lower energy level in respect to the state with I = −1/2. Therefore, the application
of an external magnetic field causes a little difference in energy between the two spin
states, which is directly related to the field strength.

4 E =
µBo

I
(2.2)

Considering a set of 1H nuclei in a magnetic field BO, they will split in two states
on the basis of the Boltzmann distribution: the lower energy state (corresponding to
I = +1/2) will be more populated in comparison to the higher energy level. Irradiation
of the sample with radio frequency (rf) energy corresponding exactly to the spin state
separation (4E) causes an excitation of those nuclei in the +1/2 state to the higher
−1/2 spin state. There is thus a net transition from the lower level to the higher one
which produces a net energy absorption. This absorption is quantifiable and produces
the NMR signal. The resonance frequency corresponds to the Larmor precession fre-
quency νL = |γ/2π|B0, which indicates the frequency of the precession motion of the
magnetic moments ~µ.

For NMR purposes, the utilized frequency ranges from 20 to 900 MHz, depending
on the magnetic field strength and the specific nucleus being studied.

A powerful application of NMR is the Proton NMR Spectroscopy [25]. There are
more than one procedure to obtain the NMR spectrum; we will describe the simplest
one which is the continuous wave (CW) method. In figure 2.1 the principal aspects
of a NMR spectrometer are schematically illustrated. At first, the sample tube is
oriented between the poles of a powerful magnet, and is spun to average any magnetic
field variations, as well as tube imperfections. Radio frequency radiation with fixed
frequency (νrf ) is broadcast into the sample from the rf transmitter. A receiver coil
surrounds the sample tube and the emission of absorbed rf energy is monitored by
dedicated electronic devices and a computer. The magnetic fieldB0 is slowly intensified,
until the resonance condition is reached (4E = Erf = µrfh) and a signal is thus
detected by the radio frequency receiver. The magnetic field intensity continues to
improve until the final value Bf , and the radio frequency signal is no more revealed.
An equally effective technique is to vary the frequency of the rf radiation holding the
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Figure 2.1: Schematic representation of a 1H NMR spectrometer.

external field constant.

Using the 1H NMR it is possible to detect signals from different compounds which
have at least one 1H. A classical 1H NMR spectrum is illustrated in figure 2.4 a).
The discrimination between different compounds which have all the same absorbing
nucleus (1H) is possible thank to a characteristic called chemical shift. Effectively, the
Larmor precession frequency of a given nucleus depends not only on the spin and the
gyromagnetic ratio of the element, but also on its chemical environment. This causes
local microscopic magnetic fields which add themselves up to the external magnetic field
B0. The local magnetic field shields the nucleus from Bo by a factor σ called shield
factor. The actual external magnetic field perceived by the nucleus is Beff

o = Bo(1−σ),
thus the Larmor frequency is ωL = γnB

eff
o . The change of the external field intensity

perceived by 1H in different compounds is very small if compared with the actual
external field (about 0.0042%). The chemical shift in respect to a reference compound
is commonly measured in parts per million (ppm).

The 1H NMR spectrum allows to reveal signal of different components but it also
gives the relative ratio of the number of H for each peak. Effectively, the number of
hydrogen atoms is directly proportional to the area of the peak, that is the intensity
of the NMR signal.

For these reasons 1H NMR Spectrometry has grown significantly in metabolomics
in the past two decades, since it gives quantitative measurement of multicomponent
in a complex mixture. Many methods are been developed in order to improve the
accuracy and the precision of NMR, and now the quantitative inaccuracy of qNMR
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Figure 2.2: Schematic representation of the column chromatography.

has been reported to be less than 2.0% [26].

2.2.2 Chromatography and mass spectrometry

Chromatography technique is used to separate compounds of a mixture, it is often
associated to mass spectroscopy in order to characterize quantitatively and qualitatively
these substances. There is more than one kind of chromatography, but they are all
based on the same principle of differential partitioning of components between mobile
and stationary phase [27].

Considering the column chromatography, the stationary phase or adsorbent is a
solid, usually silica gel, whether the mobile phase is a solvent. The stationary phase
(solid adsorbent) is placed in a vertical column and the mixture to be analysed is
placed inside the top of the column. The mobile liquid phase is added to the top
of the column and, opening the tap at the bottom of the column, it flows down by
either gravity or external pressure. Adding repeatedly fresh solvent to the top of the
column, different components present in the sample start to form separate strips. This
is caused by the different polarisation of the components, which tie themselves to the
absorbent with different bond intensity. Since different components in the mixture
have different interactions with the stationary and mobile phases, they will be carried
along with the mobile phase to varying degrees, consequently separation of the strips
will improve during time. The individual components, or elutants, are collected as the
solvent drips from the bottom of the column. In figure 2.2 it is schematically illustrated
the chromatography technique, where different colours represent different compounds
of the analysed mixture sample.

The high improvement of the column chromatography is the High Performance
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Figure 2.3: Schematic representation of mass spectrometer.

Liquid Chromatography (HPLC), a liquid chromatography which permits to separate,
to identify, to purifier and to quantify each component of a mixture using an automatic
process. Instead of solvent being allowed to drip through the column under gravity, it
is forced through under high pressure (up to 400 atmospheres). The typical column
measures are 2.1-4.6 mm diameter and 30-250 mm length; high pressure and small
column dimensions allow a remarkable saving of time (an analysis usually required
10-30 minutes). Also sensitivity and resolution are extremely increased thanks to the
advances in instrumentation and column technology. The separated components are
automatically collected and identified using photodiode or spectrophotometer, but the
most common parameter for compound identification is the retention time, that is the
time of eluition. Using a chromatograph it is possible to perform chromatographic
separation. This equipment produces chromatograms, which are graphs showing the
quantity of a substance leaving a chromatography column as a function of time. The
peak area is measured in order to know the amount of the compound of interest. A
real chromatogram of plasma lipids is illustrated in figure 2.4.b.

Some instruments merge chromatography, which divides compounds of the studied
mixture, to mass spectrometry, which quantifies the amount of compounds.

Mass spectrometry is an analytical tool which is utilised for the measurement of the
mass-to-charge ratio of charged particles. This technique allows also to characterize
individual molecules, such as to determine their masses, their elemental composition
and their chemical structure. All mass spectrometers can be divided in five basic parts
which perform the essential functions: a high vacuum system, a ion source which ionizes
the sample, a mass analyser which sorts and separates the ions according to their mass
and charge and a detector which implements measurements. In figure 2.3 the process
conduct by a mass spectrometer is schematically illustrated. The samples are loaded
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into the mass spectrometer and then they are vaporised and ionised by the electrons
issuing from a heated filament of the ion source. The whole analysis is conducted in
vacuum since ions are very reactive and short-lived particles. The cations formed by
the electron bombardment are pushed away by a charged repeller electrode whereas
anions are attracted to it. The positive ions are then accelerated by electrodes and
collimated in a beam. A static magnetic field (B) perpendicular to the ion beam is
applied, ions of mass m and charge z moving in vacuo with a velocity v follow a circular
path with radius r

r =
mv

Bz
(2.3)

Ions with the same charge and momentum follow the same path. Therefore ions of
different masses can be focused on the detector by varying the strength of the magnetic
field (from equation 2.3). The detector is fixed at the end of the curved tube. Mass
spectrometers utilize software which analyse the ion detector data. They produce
graphs where the detected ions are organised by their individual mass-to-charge ratio
and their relative abundance. Spectra are then compared with databases to predict
the identity of the molecules.

Study of biological compounds are often realised using the mass spectrometry as-
sociated with the chromatography, the latter is typically performed for the separation
of the mixture to be analysed. In the last years sophisticated methods for the ioniza-
tion of macromolecule have been developed. Moreover, mass accuracy and resolution
have been improved since biological molecules are complex. Current methods allow to
quantified compounds both in relative and absolute terms. Technology behind mass
spectrometer is constantly growing to accommodate large-scale, high-throughput ex-
periments [28].

DILGOM study [23] used both NMR and chromatography techniques to acquire
the serum compounds concentrations of ∼ 140 metabolic measures. Since the multi-
metabolic nature of serum, 1H NMR spectra can contain signal overlap. The metabolite
content and concentrations can be extracted by appropriate experimental settings and
advanced computational techniques. The work frequency of the 1H NMR spectrometer
was set at 500.36MHz and the temperature of the samples was approximately 0.01oC.
High-performance liquid chromatography were used to calibrate the 14 subclasses of
bad cholesterol, which are commonly classified using the average particle diameter
(table 2.5). Concentrations of such subclasses were also realized by 1H NMR, which
permits to quantify some lipoprotenin characteristics, such as total triglycerides free
and esterified cholesterol and total cholesterol. The spectrum of human serum lipids
LIPO were used to arise different lipid molecules in various lipoprotein particles. Some
of them are also visible in the LMWM spectrum, which contains mainly glucose reso-
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a) b)

Figure 2.4: 1H NMR signals of low molecular weight metabolites a) as well as of larger
molecules such as lipoproteins. Real chromatogram b) of plasma lipids, Abbreviations: A,
TMS ester derivatives of free acids; B, TMS ethers of monoacylglycerols; C, TMS ether of
cholesterol; D, tridecanoin; E, TMS ether of 16:0-sphingosine ; F, TMS ethers of diacylglyc-
erolsand ceramides; G, more TMS ethers of ceramides; H, cholesterol esters; J, triacylglycerols
(from Nature protocols).

nance.

2.3 Biological and health aspects

The goal of the DILGOM study is to understand how nutrition, diet, lifestyle, psy-
chosocial factors, environment and genetics of a population are linked to obesity and
to the metabolic syndrome. In this section the implications of such syndrome will be
described, in order to underline the health importance of that kind of studies.
Over-weight and obesity are defined as abnormal or excessive fat accumulation that
presents a risk to health. More specifically, overweight refers to an excess amount of
body weight that may come from muscles, bones, fat, and water, when obesity refers
only to an excess amount of body fat. Both obesity and overweight result from an en-
ergy imbalance and can be caused by several factors, as genetic aspects, eating habits,
geography, emotions, dysfunctions and so on [29].

Many studies show that overweight and obese people have a major risk of chronic
diseases, including hypertension, diabetes and musculoskeletal disorders. Obesity en-
hances the risk of certain forms of cancer and, above all, cardiovascular diseases (mainly
heart disease and stroke) which are the leading cause of death. Every year, an estimated
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Figure 2.5: Planisphere where colours are associated to the mean BMI of each country (Figure
of WHO [30])

.

17 million people globally die of cardiovascular diseases (CVD) and, approximately, the
50% of deaths in the European Region are caused by cardiovascular diseases. Mortal-
ity rate increases with increasing degrees of overweight, which is in perpetual raise: in
2014, more than 1.9 billion adults, 18 years and older, were overweight; among these
over 600 million were obese. In figure 2.5 is displayed a planisphere where colours are
associated to the mean body mass index in each country (image of WHO). On this
basis one can understand the scientific interest about these risk factors.

There are some phenotypic measures used to classify people as obese. The most
adopted are the body mass index (BMI) the waist-hip ratio (WHR) and the waist
circumference. BMI is calculated as a person’s weight (in kilograms) divided by the
square of his height (in metres) and WHR is the ratio between waist and hip circum-
ference. For these parameters the World Health Organisation (WHO) has established
thresholds in order to classify individuals as normal weight, overweight and obese [31].
The threshold values for the three mentioned parameters are reported in table 2.1. Fig-
ure 2.7 shows the histogram of the BMI of the individuals analysed in the DILGOM
study.
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gender BMI [kg/m2] WHR waist circumference [cm]

obese F >29 >0.85 >88
M >30 >0.95 >102

normal weight F <24 - < 80
M <25 - < 94

Table 2.1: Threshold values established by WHO to classify normal weight, overweight and
obese individuals.

2.3.1 Risk factors and Cardiovascular Diseases

The presence of significant differences between the behaviour of blood serum particles
in obese and in normal weight people. If they are present, it would help to diagnose
risk of cardiovascular diseases. Even though overweight and obesity are the most
relevant risk factors of cardiovascular diseases, other factors are important too: high
blood cholesterol and triglyceride levels, high blood pressure, diabetes and prediabetes,
smoking, lack of physical activity, unhealthy diet, stress, age, gender and family history
[32]. All these risk factors are related together; for example, obesity typically raises
pressure and cholesterol levels and lowers HDL levels. It predisposes to type 2 diabetes
and it is correlated with unhealthy diet and physical inactivity. The presence of these
risk factors enhances the probability of contracting Cardiovascular diseases (CVDs)
[33].

CVDs are disorders related to the cardiovascular system, that is heart and blood
vessels. In particular, they are categorized into: coronary heart disease (heart attacks),
cerebrovascular disease (strokes), peripheral arterial disease, rheumatic heart disease,
congenital heart disease, deep vein thrombosis and pulmonary embolism.
Cardiovascular diseases are globally the first cause of death; it is estimated that 31% of
all global deaths is due to CVDs in 2012, as reported by the world Health Organisation.

2.4 Correlations between diseases and serum substances

Many biological and medical studies have found correlations between serum values and
diseases.
The DILGOM study analysed 134 substances of human serum, which are divided into
lipoproteins, metabolites and amino acids, fatty acids and others derived measures.
We report the connections found between the blood elements analysed in the DILGOM
study and the diseases for which over-weight and obesity are risk factors.
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2.4.1 Lipoproteins

Lipoproteins are particles comprising several thousands molecules. They have a sin-
gle layer of phospholipid molecules and apoliproteins on their outside, surrounding a
central core of triglycerides and cholesterol. Lipoproteins are synthesized in the small
intestine and in the liver; their role is to transport substances contained in their core
to all body tissues.
They are divided into VLDL (Very low density cholesterol), IDL (intermediate-density
lipoprotein), LDL (Low Density Lipoprotein) and HDL (High Density cholesterol).
VLDL is a lipoprotein made by the liver and it is composed of 55-65% triglycerides,
of 10-15% cholesterol, of 15-20% phospholipid, and of 5-10% protein. Its density is
between 0,95 and 1,006 g/ml and its diameter is around 30-80 nm. Once in the cap-
illars, VLDL interacts with HDL and cedes triglycerides and phospholipid to muscles
and takes cholesteryl esters. Then its density changes, the percentage of triglycerides
becomes 50% and it becomes IDL.
IDL’s density varies between 0,95 and 1,063 g/ml, and its diameter is around 25-35
nm. The IDL particle can be removed from the blood by the liver or converted to
LDL; usually a half is removed. During the conversion to LDL, much of the remaining
triglycerides are removed and LDL triglycerides are around 20%.
LDL particles have a density between 1,006 and 1,063 g/ml and a diameter around
18-25 nm. They transport mainly cholesterol and cholesteryl esters to pheripherical
tissues, but if LDL’s particles concentration exceeds the amount of cholesterol required
by cells, then accumulate themselves within the walls of arteries.

HDL (High Density Lipoprotein) particles have a higher density, which ranges from
1,063 to 1,210 g/ml and they have a diameter around 8-11 nm. They are synthesized
in blood by plasma enzymes from free cholesterol and by some apoliproteins produced
by liver.The main function of HDL is to incorporate cholesterol from tissues and others
lipoproteins and to transport them to the liver.

Correlation between Lipoproteins and CVD

Many studies [34] have found a high correlation between plasma lipoproteins and car-
diovascular disease, specifically coronary artery diseases (CAD). A study carried out
in [35] on 182 patients found a significant correlation between coronary atherosclerosis
diseases, and serum lipid and lipoprotein concentrations. In particular, they found that
CAI correlated significantly and positively with total, VLDL, IDL and LDL cholesterol
(p<0.01, p < 0.05, p < 0.01 and p < 0.01, respectively) and negatively with HDL
cholesterol (p < 0.01).

43



Chapter 2. Metabolomics

In general, high values of VLDL, IDL and LDL lipoproteins are positively corre-
lated with CVDs, while HDL cholesterol correlates negatively with CVDs. The most
used parameter is LDL blood concentration, since persistent high blood levels of LDL
produce plaques, that is a thick, hard deposit that can clog arteries and make them
less flexible. This condition is called arteriosclerosis. The most relevant consequences
of arteriosclerosis are: heart attack, stroke and peripheral artery diseases.

2.4.2 Fatty Acids

Fatty acids are lipids implied in many biological processes. They are used for energy
production by citric acid cycle, and are also converted into triglycerides, phospholipids,
hormones and others essential molecules. They are classified into unsaturated and sat-
urated fatty acids, according to the presence or the absence of carbon–carbon double
bonds. The former help to lower the levels of total cholesterol and LDL cholesterol in
the blood, whereas the latter have a high positive correlation with blood LDL choles-
terol. There are also two essential fatty acids: alpha-linolenic acid (an omega-3 fatty
acid) and linoleic acid (an omega-6 fatty acid). These two fatty acids are not synthe-
sized by human metabolism, therefore they must be introduced by means of the diet.
Free fatty acids come from the breakdown of a triglyceride within adipose tissue. They
can be used as an immediate source of energy by many organs and can be converted
by the liver into ketone bodies (see Acetoacetate 2.4.3 ).

Fatty acids are contained in many types of food, in particular unsaturated fats are
present in avocados, nuts, and vegetable oils, (especially olive oil); animals fats usually
contain both saturated and unsaturated fats.

Disease correlations

The most important health authorities, such as the World Health Organization, the
American Dietetic Association, the British Dietetic Association, the American Heart
Association, the World Heart Federation and the Food and Agriculture Organization
(FAO), highlight the role of diet, claiming that ’adequate amounts of dietary fat are
essential for health’. Moreover it is universally acknowledged that a diet rich in satu-
rated fatty acids is directly related to coronary heart disease, due to increasing LDL
cholesterol caused by fatty acid [36]. A study carried out in 2008 [37] found a correla-
tion between blood levels of free fatty acids and obesity. In particular it is proved that
obesity is closely associated with insulin resistance. Free fatty acids (FFA) cause both
insulin resistance and inflammation in the major insulin target tissues and thus are an
important link between obesity, insulin resistance, inflammation and the development
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of type 2 diabetes, hypertension and other diseases.
On the other hand, a large body of scientific research suggests that higher dietary
omega-3 fatty acid intakes are associated with reductions in cardiovascular disease
risk, especially coronary hearth diseases [38].

2.4.3 Metabolites and amino acids

Metabolites are the product of enzyme-catalyzed reactions that occur naturally within
cells. To be classified as a metabolite, a compound must have some characteristics as:
a finite half life, in order not to be accumulated in cells, and a useful biological function
[39]. Thus, metabolites are compounds that intervene between the start and the end of
a pathway, where a pathway indicates a series of chemical reactions that occur within
living cells. In figure 2.6 some important reactions which involves metabolites are
shown, in particular, the image exemplifies the most important connections between
the metabolites take into account in the DILGOM study.
Amino acids are organic compounds which are used both as building blocks of proteins
and as intermediates in metabolism. All proteins are built using 20 amino acids, which
are classified as essential if they must be supplied by means of food and non essential
if the body can produce them. The 10 amino acids the body can build are: alanine,
asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine
and tyrosine; while the essential amino acids are arginine, histidine, isoleucine, leucine,
lysine, methionine, phenylalanine, threonine, tryptophan, and valine.

Metabolites and amino acids extracted from the blood serum by DILGOM study are
described in the following points; for each compound the principal biological functions
and its correlation with cardiovascular disease are outlined.

• Alanine (ALA) Alanine is a non essential amino acid and a hydrophobic molecule.
It is produced within the body from the conversion of the carbohydrate pyruvate
or the breakdown of DNA. Alanine is highly concentrated in muscles and is one
of the most important amino acids released by muscles, functioning as a major
energy source. It is also an important participant as well as regulator in glucose
metabolism and has an important role in lymphocyte reproduction and immu-
nity. It behaves as an inhibitory neurotransmitter in the brain. Alanine is highly
concentrated in meat products and other high-protein types of food like wheat
germ and cottage cheese.
It has been shown [40] that alanine levels are related with blood sugar levels in
both diabetes and hypoglycemia, and alanine reduces both severe hypoglycemia
and ketosis of diabetes.
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• Albumin (ALB) Albumin is a protein made by the liver and it is the most
prevalent protein of blood plasma. One of albumin’s principal functions is to
support the oncotic pressure, which aids in keeping blood within the circula-
tion. Albumine is also an important circulating antioxidant and it has enzymatic
properties. It serves as carrier for molecules of low water solubility isolating their
hydrophobic nature, including lipid-soluble hormones, bile salts, free fatty acids
(apoprotein), calcium, ions (transferrin), and some drugs.
Kuller et al [41] found a highly significant inverse relation between serum albumin
level and risk of coronary heart disease. Lower albumin levels may be a marker of
persistent injuries to arteries and progression of atherosclerosis and thrombosis.

• Acetate (ACE) Acetic acid is one of the simplest carboxylic acids and it is
produced by certain bacteria. The acetyl group, derived from acetic acid, is
fundamental to the biochemistry of virtually all forms of life. Acetic acid perform
an important role in the metabolism of carbohydrates and fats.

• Acetoacetate (ACACE) Acetoacetate is a weak organic acid, it is produced in
the human liver when there is an excessive fatty acid breakdown. This explains its
presence under a prolonged physical exertion or during starvation. Acetoacetate
is excreted either in urine or through respiration. It provides acetoacetyl-CoA
and acetyl-CoA for synthesis of cholesterol, fatty acids, and complex lipids.
The correlation between acetoacetate and diabetes mellitus type 2 was demon-
strated several times [42], Ketone bodies, as acetoacetate and acetone, are re-
leased into the blood from the liver when hepatic lipid metabolism has changed
to a state of increased ketogenesis. A relative or absolute insulin deficiency is
present in all cases.

• Citrate (CIT) Citrate is a weak acid that can be produced by human cells
or introduced with diet. It takes part in citric acid cycle, a series of chemical
reactions that generate energy from carbohydrates, fats and proteins. Citric acid
is found in citrus fruits, most concentrated in lemons and limes.
The evaluation of plasma citric acid is scarcely used in the diagnosis of human
diseases.

• Creatinine (CREA) Creatinine is a breakdown product of creatine phosphate
in muscles, kidneys, liver and pancreas. The loss of a water molecule from crea-
tine results in the formation of creatinine, which is transferred to the kidneys by
blood plasma, whereupon it is eliminated from the body. Creatinine is usually
produced at a fairly constant rate by the body.
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Serum creatinine test is the most commonly used indicator of renal function. A
rise in blood creatinine levels is thus related to renal failure, but it was also demon-
strated [43] that serum creatinine value, obtained in normotensive, nonobese,
normoglycemic survivors of a myocardial infarction without preexistent renal
disease or heart failure, provides independent prognostic information regarding
subsequent overall and atherosclerotic coronary heart disease mortality.

• Glucose (GLC) Glucose is a monosaccharide and it is the primary source of
energy for living organisms. In animals glucose arises from the breakdown of
glycogen; it is synthesized in the liver and the kidneys from non-carbohydrate
intermediates, such as pyruvate and glycerol. Glucose can be broken down and
converted into lipids or used for synthesize other important molecules such as
vitamin C. It also supplies almost all the energy for the brain, so its availability
influences psychological processes. Glucose is found in fruits and other parts of
plants in its free state.
It is obviously correlated with diabetes, a metabolic disorder caused by lack of
insulin, that doesn’t allow to use glucose as an energy resource. It was also
found [44] that coronary-heart-disease mortality was approximately doubled for
subjects with impaired glucose tolerance (IGT), defined as a blood-sugar above
the 95th centile (≥ 96 mg/dl).

• Glutamine (GLN) Glutamine is a non essential amminoacid. It is synthesized
by the enzyme glutamine synthetase from glutamate and ammonia and the most
relevant glutamine-producing tissue is the muscle mass. Glutamine is fundamen-
tal for protein synthesis; it is also a regulator for acid-base balance in the kidneys,
and a energy source.
Glutamine is found in food high in proteins, such as fish, red meat, beans, and
dairy products. There is a significant body of evidence that links glutamine-
enriched diets with intestinal effects; aiding maintenance of gut barrier function,
intestinal cell proliferation and differentiation [45].

• phenylalanine (PHE) Phenylalanine is an essential amino acid and the pre-
cursor for the amino acid tyrosine. It is highly concentrated in the human brain
and plasma.
Phenylalanine is highly concentrated in high protein food, such as meat, cottage
cheese and wheat germ. A new dietary source of phenylalanine is found in arti-
ficial sweeteners containing aspartame.
Low phenylalanine diets have been prescribed for certain cancers with mixed re-
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sults. Some tumors use more phenylalanine (particularly melatonin-producing
tumors called melanoma). One strategy is to exclude this amino acid from the
diet. Wannemacher et al [46] found a correlation between serum phenylalanine-
tyrosine and myocardial infarction.

• Isoleucine (ILE), Leucine (LEU), Valine (VAL) Valine, isoleucine and
leucine are Branched chain amino acids (BCAA), which are essential amino
acids. These three amino acids are critical to human life and are particularly
involved in stress, energy and muscle metabolism. Valine is used in carbohy-
drates metabolism, leucine in fats metabolism and isoleucine in both. BCAA,
particularly leucine, stimulate protein synthesis and reduce protein breakdown.
Furthermore, leucine can be an important source of calories. Leucine also stim-
ulates insulin release, which in turn stimulates protein synthesis and inhibits
protein breakdown.
These amino acids exhibit different deficiency symptoms. Valine deficiency is
marked by neurological defects in the brain, while isoleucine deficiency is marked
by muscle tremors. Norrelund et al [47] found a significant correlation (P-value
< 0.01) between the BCAA blood concentration comparing patients with chronic
heart failure and healthy people.

• Lactate (LAC) Lactate is constantly produced in muscles from pyruvate, as a
product obtained from glucose breakdown.
Lange at al [48] found that plasma lactate concentrations exceeded the reference
range in all the cases of mesenteric ischaemia (n = 20) and general bacterial
peritonitis (n = 15). They concluded that a raised plasma lactate concentration
is always a sign of an acute life-threatening condition, and usually indicates the
need for an emergency operation. As a marker of mesenteric ischaemia its sensi-
tivity was 100% and its specificity 42%, they suggest that a raised serum lactate
concentration would be the best marker of mesenteric ischaemia to date.

• Pyruvate (PYR) Pyruvic acid is an intermediate compound in the metabolism
of carbohydrates, proteins, and fats. Pyruvic acid can be made from glucose
through glycolysis, converted back to carbohydrates (such as glucose) via gluco-
neogenesis, or to fatty acids through acetyl-CoA. It can also be used to construct
the amino acid alanine and be converted into ethanol. Pyruvic acid supplies en-
ergy to living cells through the citric acid cycle when oxygen is present (aerobic
respiration), and alternatively ferments to produce lactate when oxygen is lacking
(fermentation).
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• Tyrosine (TYR) Tyrosine is a non-essential amino acid, which can be synthe-
sized within the body from phenylalanine. It readily passes the blood-brain bar-
rier and, once in the brain, it is a precursor for the neurotransmitters dopamine,
norepinephrine and adrenalin. Tyrosine is also the precursor for hormones, thy-
roid and the major human pigment, melanin. It is not found in large concentra-
tions throughout the body, probably because it is rapidly metabolized.
It is found in many high-protein food products such as chicken, turkey, fish, milk,
yogurt, cheese, seeds.
Some adults develop elevated tyrosine levels in their blood. This indicates a need
for more vitamin C. More tyrosine is needed under stress, and tyrosine supple-
ments can cure biochemical depression. Norrelund et al [47] found a significant
increase of tyrosine blood concentration (P-value < 0.01) between patients with
chronic heart failure and healthy people. Wannemacher et al [?] found a relation
between phenylalanine-tyrosine ratio and myocardial infarction.

• UREA Urea is a highly soluble organic compound formed in the liver by the urea
cycle. It is the principal end product of protein catabolism; it has no physiological
function and constitutes about one half of the total urinary solids. It is dissolved
in blood (in humans in a concentration of 2.5 - 7.5 mmol/liter) and excreted by
the kidney in the urine.

• Histidine (HIS) Histidine is an essential amino acid, its has anti-oxidant, anti-
inflammatory and anti-secretory properties, it is also the precursor of neurotrans-
mitter histamine. Histidine increases histamine in the blood and probably in the
brain.
Elevated blood histidine is accompanied by a wide range of symptoms, from
mental and physical retardation to poor intellectual functioning, emotional in-
stability, tremor, ataxia and psychosis.
Serum histidine levels are lower and are negatively associated with inflammation
and oxidative stress in obese women. Histidine supplementation has been shown
to reduce insulin resistance, reduce BMI and fat mass and suppress inflammation
and oxidative stress in obese women with metabolic syndrome.
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Figure 2.6: Transport and fate of major carbohydrate and amino acid substrates and metabo-
lites.

2.5 DILGOM dataset

The Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome
(DILGOM) study collected sample concerning metabolomics, transcriptomics and ge-
nomics of a finish cohort in order to investigate possible relations between lipids, im-
mune cells in circulation and cardiovascular diseases.

Study participants were aged 25–74 years and were drawn from the Helsinki/Vantaa
area of southern Finland. In order to avoid aberrant values of blood serum compounds,
participants were asked to fast overnight for a period of at least 10 h before giving a
blood sample. The extraction of serum from blood samples was performed by cen-
trifugation, this operation allow to remove clotting factors. DNA and RNA were then
extracted, identified and quantised using microarray technique. Here we will describe
the two utilized dataset, which regard phenotypes and serum compounds.

2.5.1 Phenotypes dataset

The word phenotype indicates observable physical or biochemical characteristics of an
organism, as determined by both genetic and environmental influences. Phenotypes are
therefore directly linked to genetic, but also to nutrition, diet, lifestyle and psychosocial
factors. For this reason they play a fundamental role in the DILGOM study which,
starting from the typical obesity phenotypes, aims to identify connections between
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2.5. DILGOM dataset

some ’omics’, that are metabolomics, transcriptomics and genomics. The phenotypes
listed by the DILGOM study are thus related to obesity, as the BMI, WHR (waist-hip
ratio) and waist circumference. These measures are commonly used to characterized
a person as normal-weight, over-weight or obese, as discussed in section 2.3. The phe-
notypes dataset includes also some general informations of the Finnish cohort, such
as: age, gender, systolic and diastolic pressure, total cholesterol and HDL cholesterol.
These features are relevant for the evaluation of the cardiovascular diseases risk. Specif-
ically, total cholesterol, age and systolic pressure are directly related to the increase of
cardiovascular disease risk, in contrast, high HDL levels lower that risk.

In the DILGOM phenotypes dataset there are also some variables which permit to
identify people who already present cardiovascular or, more generally, health problems.
Effectively, some individuals of the Finnish cohort are affected by insulin resistance or
diabetes. These people have two to four times more likely to develop cardiovascu-
lar disease than people without diabetes, as reported by the world health federation.
Looking at the diseasome in figure 1.3, it can be seen that diabetes shares disease genes
with obesity; in fact, both these diseases are risk factors for cardiovascular diseases.
Cardiovascular diseases are, indeed, the leading cause of mortality for people with dia-
betes. In the DILGOM cohort there are also people with high values of fasting glucose,
which is commonly considered a pre-diabetic state, and which is associated with in-
sulin resistance and increased risk of cardiovascular pathology. Other people are under
cholesterol treatment, their risk to develop CVDs is thus lowered by medicines, which
modify their LDL cholesterol level. Some individuals of the Finnish cohort take blood
pressure medications, which modify systolic and diastolic pressure values.

The DILGOM study suggests to select a subset of individuals that haven’t aber-
rant observations. Specifically, as reported in the file DILGOMdate. Update for Case
Study, they identifyed some individuals with ’aberrant’ variables values in the pheno-
types dataset; that are diabetics, individuals under cholesterol treatment and individ-
uals with fasting glucose anomalies. In table 2.2 we report the variable nouns and
the used thresholds. Individuals with variables values higher then the corresponding
thresholds are removed from the list, in order to harmonize the use of the DILGOM
datasets. The DILGOM study states as discretionary the correction for blood pressure
medication, this medication does not condition the values of blood components but
only the corresponding phenotypes of systolic and diastolic pressure.
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Chapter 2. Metabolomics

Figure 2.7: Hisogram of the BMI of the individuals analysed in the DILGOM study.

variable noun meaning threshold

FR07_38 diagnosed diabetes FR07_38 >1
SL_GLUK_0H fasting glucose SL_GLUK_0H>10

K34 cholesterol medication K34=1

Table 2.2: Variables of the phenotypes dataset which indicates some diseases.

Phenotypes correlation

In order to realize an initial evaluation of the phenotypes dataset, we selected a subset
of 11 features. Some of them are notoriously correlated to health as BMI, WHR, waist
circumference, systolic and diastolic pressure, total and HDL cholesterol and fasting
glucose; others help to classified individuals, as age and gender, and others show if
people use blood pressure medications.
We calculated the correlation between 10 variables for female and male individuals
using the Kendall’s τ . As expected, some features have high correlations, as WHR, BMI
and waist circumference and systolic and diastolic pressure, less relevant correlations
are those linked to total cholesterol. HDL cholesterol displays only inverse correlations,
in agreement with its definition of "good cholesterol", the positive relation with total
cholesterol is due to the fact that total cholesterol is the sum of bad (LDL) and good
(HDL) cholesterol. Also age seems to be related to WHR, but with a higher value for
male individuals. The correlation values are reported in tables 2.3 and 2.4 for female
and male individuals respectively. This subset of phenotypes was used to classify obese
and normal-weight individuals, in order to perform a multilayer analysis with two
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2.5. DILGOM dataset

Figure 2.8: Scatter plot where every point represents an individual, coordinates are obtained
using PCA on the 10 features selected. BMI is used for the classification, as reported in table
2.1.

layers, one representing normal-weight people and one for the obese ones. In figure
2.8 is displayed the correlation between the selected phenotypes subset and the BMI:
individuals are represented as points, coordinates are obtained using the Principal
Component Analysis (PCA) on the phenotypes subset except BMI, used for classify
individuals in normal-weight (blue), over-weight (green) and obese (red). It can be
qualitatively seen that the subset permits a quite good classification of individuals.
The methods tested to perform a good classification of individuals will be analysed in
the chapter 4 and in the appendix A.

2.5.2 Blood serum particles dataset

The DILGOM study aims to characterize the serum metabolites relationships linked
to human diseases. The ultimate objective is to understand the potentially causative
and reactive relationships between serum metabolites and geonomic and transciptomic
networks. To this end, the DILGOM study extracts the serum metabonomes of 518
individuals from a population-based cohort using proton nuclear magnetic resonance
spectroscopy (NMR). These serum compounds are divided in: lipoproteins, serum lipid
extracts, amino-acids and metabolites. The full list of these compounds is reported in
appendix B.
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Female

tot chol HDL fasting gluc syst press diastPress BMI waist circ whr

age 0.19 -0.01 0.18 0.33 0.19 0.23 0.24 0.17
tot chol 0.21 0.07 0.08 0.12 0.13 0.13 0.05
HDL -0.04 -0.06 -0.04 -0.18 -0.20 -0.21
fasting gluc 0.18 0.14 0.28 0.28 0.21
sys pres 0.47 0.22 0.22 0.19
dias press 0.22 0.21 0.22
BMI 0.75 0.38
waist circ 0.56

Table 2.3: Kendall correlation of some selected phenotypes used for classification. Upper
triangular matrix refers to female correlations.

Male

tot chol HDL fasting gluc syst press diastPress BMI waist circ whr

age 0.05 -0.02 0.18 0.20 0.07 0.14 0.29 0.35
tot chol 0.15 0.02 0.08 0.15 0.10 0.11 0.09
HDL -0.12 0.00 -0.05 -0.20 -0.20 -0.17
fasting gluc 0.09 0.12 0.22 0.28 0.27
sys pres 0.36 0.15 0.20 0.19
dias press 0.16 0.18 0.16
BMI 0.68 0.43
waist circ 0.66

Table 2.4: Kendall correlation of some selected phenotypes used for classification. Upper
triangular matrix refers to male correlations.

Lipoproteins are classified according to their density: a high fat to protein ratio
causes large and low dense lipoproteins. The acronym of these sub-group are: VLDL
(Very Low Density Lipoprotein), IDL (intermediate-density lipoprotein), LDL (Low
Density Lipoprotein) and HDL (High Density Lipoprotein). Each density-based class
of lipoproteins is also divided in subclasses based on diameter differences of the particle,
as reported in table 2.5. For each lipoproteins subclasses the DILGOM study extracted
values relating to: total cholesterol (-C), cholesterol esters (- CE), free cholesterol (-
FC), total lipids (-L), phospholipids (-PL), triglycerides (-TG), concentration (-P) and
average diameter (-D) of the particles. An example of the used acronym for VLDL
particles is reported in table 2.6.

Amino-acids are the building blocks of proteins in the body, but they can also
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lipoprotein sub-class acronym name average particles
diameter (nm)

VLDL XXL-VLDL chylomicrons and extremely
large VLDL

least 75 nm

XL-VLDL very large VLDL 64.0
L-VLDL large VLDL 53.6
M-VLDL medium VLDL 44.5
S-VLDL small VLDL 36.8
XS-VLDL very small VLDL 31.3

IDL 28.6

LDL L-LDL large LDL 25.5
M-LDL medium LDL 23.0
S-LDL small LDL 18.7

HDL XL-HDL very large HDL 14.3
L-HDL large HDL 12.1
M-HDL medium HDL 10.9
S-HDL small HDL 8.7

Table 2.5: Lipoproteins classification and respective average diameter.

be found in plasma as free amino acids, according to their role in neurotransmitter
functioning, cholesterol and carbohydrate metabolism, and detoxification processes.
The amino acids extracted by the DILGOM project are: alanine (ALA), glutamine
(GLN), glycine (GLY), histidine (HIS), isoleucine (ILE), leucine (LEU), phenylalanine
(PHE), tyrosine (TYR), valine (VAL).

Metabolites and are the intermediate products of metabolic reactions catalyzed by
various enzymes that naturally occur within cells. The blood amino acids quantified
by the DILGOM study are: 3-hydroxybutyrate (BOHBUT), acetate (ACE), acetoac-
etate (ACACE), citrate (CIT), creatinine (CREA), Lactate (LAC), pyruvate (PYR),
glucose (GLC), glycerol (GLOL), glycoprotein acetyls, mainly a1-acid glycoprotein
(Gp). Others serum compound listed are albumin (ALB), CH2 groups of mobile lipids
(MobCH2), CH3 groups of mobile lipids (MobCH2), double bond protons of mobile
lipids (MobCH), urea (UREA).

Serum lipids are lipids in the blood, either free or bound to other molecules. They
are mainly fatty acids, the fatty acids values extracted by DILGOM project are: n-3
fatty acids (FAw3), n-6 fatty acids (FAw6), n-7 n-9 and saturated fatty acids (FAw79S),
total fatty acids (TotFA), Monounsaturated fatty acids; 16:1, 18:1 (MUFA). Other
serum lipid measures concern the serum cholesterol, as Esterified cholesterol (Est-C)
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acronym meaning unit

L-VLDL-C Total cholesterol in large VLDL (mmol/L)
L-VLDL-FC Free cholesterol in large VLDL (mmol/L)
L-VLDL-PL Phospholipids in large VLDL (mmol/L)
L-VLDL-TG Triglycerides in large VLDL (mmol/L)
L-VLDL-CE Cholesterol esters in large VLDL (mmol/L)
L-VLDL-L Total lipids in large VLDL (mmol/L)
L-VLDL-P Concentration of large VLDL particles (mol/L)
VLDL-D Mean diameter for VLDL particles (nm)

Table 2.6: Values extracted from the VLDL particles.

and Free cholesterol (Free-C).
These listed compounds were used as nodes to build a multiplex network, where one

layer represents the correlation between them in normal- weight people, and another
layer shows the correlations between serum compound for obese individuals.
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Method

In this chapter we will present the method which were implemented for the samples
classification and the graph analysis. This method requires multi-omic data, since it
reveals if there are significant differences in one omic (B), based on a classification
performed by another omic (A). Namely it says, if two or more omic are related to
each other.

Differences inside the omic (B) are detected using complex networks analysis, which
is the core of this thesis. In particular we build a multiplex network (see section
1.3.1) in order to stress the differences inside the omic B between two groups classified
using the omic A. The implemented method is totally independent of the data to
be analysed, since it is a purely physical, mathematical and statistical approach. This
makes it possible to extend this procedure to the most disparate fields. This method can
be particularly useful to reveal significant differences between two apparently similar
groups, as we will see. During this chapter we will often refer to the biological case of
study, which is presented in chapter 2, in order to clarify the procedure.

The implemented method can be divided into two main steps. The first step is
related to the classification of two groups from the whole dataset. Looking at our case
of study, this step regards the extraction of obese individuals, that have an increased
CVD risk, and normal-weight individuals, and it is therefore based on the phenotype
dataset (omic A), which is described in section 2.5.1). The goal of this initial processing
is to obtain two sub-groups which have different characteristics in one omic (A). We opt
for two different methodology of classification: one based on the thresholds suggested
by the WHO (section 2.3, table 2.1) and one on linear models (lm) (appendix A). These
approaches lead to a division into three classes, which are linked to obese, over-weight
and normal-weight people. The two groups associated to obese and normal-weight
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people were used for the set up of the multiplex network.

The second and principal step is focused on the setting-up of the multiplex network
and its analysis. The used dataset is that related to the concentrations of blood com-
pounds (omic B), relative to each individual, which is described in section 2.5.2). We
built a weighted multiplex network made up of two layers, which have the same number
of nodes, but different edges between nodes. In our case, nodes of these layers represent
compounds, whereas links between them are their correlations. The first layer concerns
relations of compounds of the obese group and the second layer the relations between
nodes of the normal-weight group. The adjacent matrices of the two layers (section
1.1) are therefore the correlation matrices of compounds of the two groups. Once set
up the two graphs, we evaluated differences and similarities between them in order to
highlight some diverse behaviours of compounds. This analysis evaluates both single
nodes, (using the hypergeometric test), and communities behaviours (section 1.2).

Looking at our case of study, this method highlights compounds (nodes) which have
different intra-layer connections, these compounds are interesting from a biological
point of view since they could be related to some dysfunctions which cause obesity,
and which increase the cardiovascular disease risk.

3.1 Classification

We use two methods for the classification of the individuals. Both methods use some
features of phenotypes dataset (omic A) which are linked to CVD risk and which are
described in section 2.5.1. These two approaches focus on different principles to classify
people.

The first classification method is based on the BMI and whr (waist hip ratio)
thresholds suggested by the WHO. These thresholds are listed in table 2.1) in section
2.3. We focus our analysis on this classification method, but we present also another
method which uses the linear model.

The linear model (lm) classifies individuals into two groups, one is associated to
obese individuals and the second one to non-obese ones. Obese and normal-weight
individuals are established looking at their residuals. In our analysis, a residual of an
individual, is defined as the difference between his actual BMI and the value of his
BMI estimated by the lm. This method is presented in the appendix A.
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3.2 Multiplex analysis

In this section we will explain the method which is utilized for the setting-up of the
multiplex network and its study. As already said, this is the core of our analysis and
it is completely independent from the data to be analysed. We will refer to our case of
study to clarify the process.

In our metabolic study this analysis is based on the compounds dataset, which
includes the concentrations of blood compounds of each participant of the DILGOM
study. An accurate description of DILGOM compounds dataset is illustrated in section
2.5.2.

We built a weighted multiplex network with two layers, based on the classification
performed with another omic (A), in order to evaluate if the the two groups maintain
differences also in the current omic (B). In this instance we want to evaluate if the
obese group and the the normal-weight group have differences also from a metabolic
point of view. These layers are constituted by the same number of nodes (n), which
represent the compounds extracted from the blood of each individual by the DILGOM
study. An edge between two compounds specifies a positive correlations between them,
and its weight is a measure of the correlation strength. The adjacency matrix (sec.
1.1) of each layer is obtained applying the CLR algorithm on the correlation matrix of
compounds; this step will be described in section 3.2.2.

The assessment of the differences between the two layers is achieved looking at
the dissimilarities of the single node edges and of community structure. The imple-
mented procedure is schematically illustrated in the block-diagram in figure 3.1. A
brief explanation of each step is reported in the following:

1. The starting point of our multiplex analysis consists of two ’sub-datasets’ whose
difference are to be evaluated. Therefore these ’sub-datasets’ must have the
same features to be compared. In our application the two sub-datasets contain
information about 107 compounds, one is related to the concentration of these
compounds in obese individuals, while the second sub-dataset is relative to the
concentration of the same compounds in normal-weight individuals. The two sub-
dataset are composed by a different number of individuals, but the compounds
(n) are the same for the both groups.

2. for each ’sub-dataset’ the correlation between features (that are compounds in
our example) is computed. We choose Kendall’s τ correlation (sec 3.2.1) since
it is a non-parametric measure of relation between two variables. This step leads
to a n× n symmetric matrix (τ) with values ranging from -1 to 1, where a value
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Figure 3.1: Scheme of the implemented method.

equal to ±1 means a perfect correlation or anticorrelation, while a correlation
coefficient value towards 0, means a weak relationship. In our example, the τij
coefficient of the τ matrix indicates the Kendall’s correlation between compound
i and compound j, the diagonal of τ matrix is set to zero.

3. Once obtained the correlation matrix, we apply the Context likelihood ratio
(CLR), a method used to enhance meaningful correlations. The CLR algorithm
builds a z-score matrix where the contrast between the physical interactions and
their indirect relationships is enhanced [49]. CLR algorithm considers only posi-
tive correlations between compounds. This method is explained in greater detail
in section 3.2.2). The n× n z-score matrix resulting from the CLR is set as the
adjacency matrix (section 1.1) of the considered layer, the diagonal is set to zero
since self loops have no sense for this analysis.

As already said, the nodes of the two layers are the same, therefore differences
between the two layers lie in their different edges weights. In other words, the
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same node can be linked to different nodes and with different edge weight in
the two layers. Consequently, we can deduce that the feature associated to that
compound has different behaviours among the two groups. In order to highlight
differences in the nodes behaviour, we evaluate both single nodes and communi-
ties.

4. The evaluation of the single node connections is performed using the hyperge-
ometric test (section 3.2.3). To carry out this test it is necessary to make the
weighted adjacency matrices becoming topological matrices. We fix a threshold z̃
on the z-score values: coefficients of the adjacency matrices with z-score greater
than or equal to the threshold (zij ≥ z̃) are set to one, others (zij < z̃) to zero.
For each node i (i.e. the i−th row of the n × n topological matrices), edges
are divided into three groups: edges belonging only to layer 1 (L10(i)), edges
belonging only to layer 2 (L01(i)) and edges belonging to both (L11(i)). The
hypergeometric test uses the hypergeometric distribution to assess whether the
observations are statistically significant. Specifically the test assesses whether
there is a significant enrichment or a depletion in the number of links of a node
(eg. k01(i)) lying only in one layer beyond what might be expected by chance,
which is established looking at the total L01 and L11 links and k11(i) links.

5. The evaluation of the differences between the communities of nodes is performed
comparing edges in the same communities in the two layers.

• For each layer we carry out a community detection ( section 1.2.1) in order
to join subgroups of nodes which are strongly bonded together, using the
stability as quality function. Algorithms based on stability, unlike those
based on modularity, allow to evaluate the goodness of clusters through
different Markov times, which are different partition scales. The evolution
of the communities among time is computed separately for the two layers.

• We apply the consensus clustering at each Markov time. This is a data
analysis method used to generate stable results out of a set of partitions
delivered by stochastic methods [50] (section 3.2.5). Therefore this method
shall enhance the stability and the accuracy of the communities detection
algorithm.

• We evaluate the evolution of the communities of each layer with the reso-
lution parameter represented by the discrete Markov time. As the Markov
time increases, the number of communities usually decreases since a stable
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partition is obtained. The stability of the partition can be evaluated consid-
ering the stability value (eq 3.8) at each Markov time, but also looking at
the duration of that partition along the Markov chain. These two aspects
are taken into account in order to choose the best nodes partition.

• If the same communities are detected in both layers, we evaluate differences
between same communities in different layers. In this case, to select the
best partition we consider also the communities overlap. The overlap is
computed using the normalised mutual information (NMI), this quantity
ranges between zero and one, high NMI values means a good overlap. The
complete explanation of the NMI is reported in section 3.2.6.

• Once selected the Markov time and consequently the nodes belonging to
each community, we compare the weights of the links belonging to the same
community, but in different layers. Considering a community made up of k
links (k < n), we extract the corresponding k × k adjacency matrix, which
represents only the connections inside that community.

To estimate the significance of the differences between the community edges
of the two layers we perform theWilcoxon rank sum test (section 3.2.7). This
is a non-parametric test which is used to verify if two statistical independent
samples come from the same population. We consider also the distribution
of weights in the same community in different layers. Moreover, we evaluate
the robustness of these differences comparing the results obtained for the
two layers with a distribution of those values which is computed extracting
individuals in a random way.

This procedure allows to evaluate both single node differences and communities
differences between the two layers. In the following sections we will described in great
depth each step listed in this brief explanation.

3.2.1 Kendall’s τ

Kendall’s rank correlation [51] [52] is a non-parametric measure of dependence between
two variables. It is based on the number of concordances and discordances in paired
observations, therefore the two samples, X and Y , have to be of the same size n. The
total number of possible pairings observations of X with Y is n(n− 1)/2.

Two observations (xi and yi) and (xj and yj) are concordant if they are in the same
order with respect to each variable. That is, if xi < xj and yi < yj , or if xi > xj

and yi > yj. They are discordant if they are in the reverse ordering for X and Y , and
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they are tied if xi = xj and/or yi = yj. Defined S as the difference between the total
number of concordant(nc) and discordant nd pairs (S = nc− nd), Tau (τ) is related to
S by:

τ =
S

n(n− 1)/2

If there are tied (same values) observations then τb is used:

τb =
S√[

n(n− 1)/2−
∑t

i=1 ti (ti − 1)/2
]

[n(n− 1)/2−
∑u

i=1 ui (ui − 1)/2]

where ti is the number of observations tied at a particular rank of X and ui is the
number tied at a given rank.

We compute the correlation between the n features for each ’sub-dataset’: this lead
to a n×n symmetric correlation matrix (τ), where each entry τij indicates the Kendall’s
correlation between the features i and j. Going back to our biological application, we
compute two correlation matrices, one for the ’sub-dataset’ of obese individuals and
another one for normal-weight group. These matrices represent the correlation of the
n compounds in the two groups.

A network with an adjacency matrix equal to a correlation matrix would be with
high probability completely connected, since the chance of having a correlation exactly
equal to zero is very small. Moreover it would have both positive and negative links.
It is possible to remove weak correlations fixing a threshold on the correlation values;
an example is displayed in Fig 3.3.a) and 3.3.b). Figure 3.3.a) shows the kendall’s τ
correlation matrix of the obese layer, colours indicate the strength of the correlation
between two compounds: blue represents high negative correlations whereas red means
high positive ones. From this image we can qualitatively deduce that, in our biological
application, negative correlations are generally weaker then positive ones, since the
highest negative correlation is -0.5. The application of a threshold on the correlation
matrix of figure 3.3.a) is illustrated in figure 3.3.b). Many relations are set to zero,
and three main blocks are identified. The first 10 nodes are completely isolated using a
threshold on the Kendall’s correlation matrix. Therefore they would be not considered
by our analysis if we build a network with this threshold correlation matrix as adjacency
matrix. The first disadvantage of the correlation matrix is that it considers also indirect
relationships: if the nodes a and b are highly related to the node c, the correlation
between a and b will be high, even if they are not directly related. We fix these
problems applying the CLR algorithm (section 3.2.2) to the correlation matrix.
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3.2.2 Context likelihood ratio (CLR)

The Context likelihood ratio (CLR) is a method introduced by Gardner et al [49].
Starting from a correlation matrix C, Gardner et al used a mutual information matrix,
the CLR algorithm builds a z-value matrix where the contrast between the physical
interactions and their indirect relationships is enhanced. Considering an element i,
which can be a gene or, in our case, a compound, the CLR algorithm compares the
correlation value (cij) between that element i and another element j with their back-
ground distribution. The background distribution (Ci) of the i element is gather by all
the correlation values of i, therefore it corresponds to a row or column of the correla-
tion matrix C. In the same way it is constructed the background distribution of the
j element. Most correlation values of C are caused by the random background, (e.g.,
due to indirect network relationships). The random background is approximate as a
joint normal distribution, considering the two background distributions Ci and Cj as
independent variables. A schematic representation of the CLR algorithm is symbolised
in figure 3.2.
The comparison between the correlation value cij and its two marginal background
distributions gives two z-score values:

zi = max

(
0,
cij − µi
σi

)
zj = max

(
0,
cij − µj
σj

)
(3.1)

where µi and µj are the means of Ci and Cj which are defines as: µi = 1/N(
∑

iCi) for
a random variable vector made up of N scalar observations. The standard deviations
σi and σj are defined as σi = (1/(N − 1)

∑
i |Ci − µi|2)

1/2.
The elements of the CLR matrix are calculated as

f(zi, zj) =
√
z2i + z2j (3.2)

where f(zi, zj) is the joint likelihood measure. Gardner et al applied the CLR algorithm
to transcriptional profiles of E.Coli, concerned diverse set of conditions, in order to
determine transcriptional regulatory interactions. They showed that, comparing several
different network inference methods, CLR was the top-performing method for their case
of study.

We apply the CLR method on metabolic data [53] in order to enhance the contrast
between the compounds interactions and their indirect relationships. This allows to
increase the significance of some quite weak correlations with respect to their back-
ground. An example is displayed in figure 3.3: figure 3.3 c) represents the z-score
matrix resulting from the application of the CLR algorithm on the Kendall’s correla-
tion matrix in figure 3.3.a). We fix a threshold on the z-scores of the CLR matrix in
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Figure 3.2: Graphic representation of the CLR algorithm. The left image symbolises the
starting correlation matrix (τ − kendall in our case and MI in the article of by Gardner et al
[49]). The right image symbolises the final CLR matrix.

figure 3.3.c, the resultant matrix is displayed in figure 3.3.d. This matrix shows the
presence of four main blocks. Therefore there is a significant difference between the
two thresholded matrices (figures 3.3,b) and 3.3.d)). While the Kendall thresholded
matrix causes the disconnection of approximately 20 nodes and the presence of three
blocks, the second one builds a completely connected graph with four blocks. It should
be noted that the two thresholded matrices have about the same number of non-zero
entries: the the Kendall thresholded matrix in figure 3.3b) has 1686 values different to
zero, while the thresholded z-score matrix (fig 3.3d)) has 1680 non-zero entries.

These images permit to see that this method allows to enhance the contrast be-
tween the physical compounds interactions and their indirect relationships. However,
the implementation of the CLR method causes a loss in information, since negative
correlations are set to zero. This can be seen confronting images 3.3 a) and 3.3 b):
blue areas in figure a) are linked to negative correlations, while in figure b) they rep-
resent null correlations. Since the CLR algorithm builds a z-score positive matrix,
correlations can range from 0 to infinite.

The CLR matrix gives a completely connected network where indirect relationships
are lowered. We choose to use the z-score matrices obtained with the CLR algorithm
as adjacency matrices, therefore we consider only positive correlations between nodes.

Looking at our case of study, the CLR allows to evaluate all compounds extracted
from the blood serum, which are usually characterised by weak correlations, as all
metabolic elements. In fact, the majority of Kendall’s correlations ranges between 0
and 0.4. This is one of the most problematic aspects of the metabolic studies, which
require methods to enhance the most significant of these weak correlations.
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a)

c)

b)

d)

Figure 3.3: Correlation matrices of: a) Kendall’s correlation, b)Kendall’s correlation with
threshold at 0.6, c) CLR z-values matrix, d) CLR z-score matrix with a threshold at z=2.0.

3.2.3 Hypergeometric test

The hypergeopetric test is performed to evaluate the most significant differences be-
tween single nodes of the two layers. This test is based on the hypergeometric distri-
bution.

The hypergeometric distribution [54] describes the experiment where elements are
picked randomly without replacement . The initial condition is that there are N

elements out of which M have a certain attribute (and N −M have not). Randomly
picking n elements without replacement from the whole set N , we can compute p(m),
which is the probability that exactly m of the selected elements (n) come from the
group with the attribute (M).
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The Hypergeometric distribution is given by:

p(m;n,N,M) =

(
M
m

)(
N−M
n−m

)(
N
n

) (3.3)

where the discrete variable m has limits from max(0, n−N +M) to min(n,M). The
parameters n (1 ≤ n ≤ N ), N (N ≥ 1) and M (M ≥ 1) are all integers.

Hypergeometric test

The hypergeometric test [55] uses the hypergeometric distribution to assess whether
the observations (n) are statistically significant; that is whether there is a significant
enrichment or a depletion in the number of drown elements with a certain attribute
(m) beyond what might be expected by chance.
We consider only a test for over-representation of successes in the sample; in this case
the hypergeometric p-value indicates the probability of randomly drawing m or more
elements with a certain attribute from the population N in n total draws. In a test for
under-representation, the p-value is the probability of randomly drawing m or fewer
elements. The p-value for over-representation of discrete variables is then:

P (at leastm;N,M, n) = 1−
m−1∑
i=0

p(i;N,M, n) (3.4)

We set the significance level at 0.05, that is we reject the null hypothesis if the proba-
bility of obtaining a result equal to or ’more extreme’ than what was actually observed
is less than 5%.

We perform the hypergeopetric test to evaluate the most significant differences
between nodes connections of two layers. This test evaluates significant enrichment or
a depletion in the number of ’drawn elements’ which are, in our case, the connections
of a node.

In order to have topological matrices which permit to count the amount of links
of each node, we impose a threshold on the weighted adjacency matrices. In fact, the
matrices which came out from the CLR algorithm (3.2.2) are weighted. In particular,
they are positive z-score matrices since negative correlations are set to zero by the
algorithm. The entry ãij of a topological matrix is set to one if the z-value of the
weighted adjacency matrix aij is greater than or equal to the fixed threshold value z̃.
This process leads to two topological matrices n×n, one relative to the layer 1 (Ã(10))
and the other one to the layer 2 (Ã(01)). Considering the multilink formalism explained
in section 1.3.1, we classify edges of a node i in:

• edges lying only in layer 1 (i.e obese): k10(i) =
∑n

j=1(a
(10)
ij )
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• edges lying only in layer 2 (i.e normal): k01(i) =
∑n

j=1(a
(01)
ij )

• edges lying in both layers: k11(i) =
∑n

j=1(a
(11)
ij )

Where a(10)ij is the ij entry of the layer-specific adjacency matrix. It is equal to one if
there is an edge between i and j in layer 1 and there is not in layer 2, in other cases
a
(10)
ij = 0. The total number of edges which occur only in the layer 1 is

L10 =
n∑
i=1

l10(i) (3.5)

In the same way is computed the total number of edges which occur only in the layer 2
(L01) and the total number of shared edges L11. The total number of links in the layer
1 is L1 = L10 +L11, and the total number of links in the layer 2 is L2 = L01 +L11. The
total number of edges relative to the node i in the layer 1 is k1(i) = k10(i) + k11(i).

The hypergeometric test to evaluate the enrichment of connections of the node i in
the obese layer becomes (from eq 3.4):

P (at least k10(i);L1, L10, k1(i)) = 1−
k10(i)−1∑
k=0

(
L10

k

)(
L1−L10

k1(i)−k

)(
L1

k1(i)

) (3.6)

The null hypothesis is that there is not enrichment in the number of links of node i
which occur only in layer 1. We reject the null hypothesis at the 5% significance level.
Therefore this test assesses whether there is a significant enrichment in the number
of links of a node (l01(i)) lying only in one layer beyond what might be expected by
chance, which is established looking at the total L01 and L11 links and l11(i) links.
It should be noted that the same node i can be over-represented in both layers, this
fact suggests that the node i has very different behaviours in the two layers, where
different behaviours means different connections.

Going back to our metabolic application, this test shows if there is a significant
enrichment in the links of a compound i, therefore if it has different relations in the
obese layer and in the normal-weight one.

Toy model

In order to evaluate the significance of the hypergeometric test we performed an analysis
on a toy model. We choose a toy model which respects the principal characteristics of
biological networks, it is a protein-protein interaction network [56]. This graph is an
unweighted undirected graph with 217 nodes and 726 links; in figure 3.4 the structure
of the toy model is displayed. We built a multilayer network with two layers, in a
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a)

b)

Figure 3.4: Graph of the toy model [56] a) and degree distribution b).

first instance both layers are identical to the null model, therefore the overlap is 100%.
In order to analyse the behaviour of the hypergeometric test, we modify step by step
edges of one layer, in this way there is a gradual decrease of the overlap. In particular,
we decided to gradually modify edges in one layer keeping unvaried the degree of each
node (equation 1.6). Therefore we change nodes connections, and we fix the number
of edges of each node. With the increase of the randomization, the number of edges
(ij) belonging to both layers decreases. Consequently, using the formalism introduced
in the previous section, edges which occur only in one layer (L10 = L01) grow. In
figure 3.5.b) we report the evolution of the number of links which are shared by layers
(L11), whereas in figure 3.5.a) is displayed the number layer-specific links L10 = L01.
With the increase of randomization and, consequently, the decrease of the overlap, the
number of nodes which result enriched in one layer is reduced. This fact is displayed in
figure 3.5.d), where it is plotted the number of significant enriched nodes with reference
to the randomization . Figure 3.5.c) displays the trend of the smallest p-value versus
randomisation: it increases with the randomisation growth. In particular, there are
not significant enriched nodes when the overlap is low: the minimum p-value when the
overlap is low is equal to 0.07. Both the lower p-value and the number of significant
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a)

c)

b)

d)

Figure 3.5: Images referred to the toy model in figure 3.4.a). We built a multilayer network
with two layers, at ntry=0 (x axis) both layers are identical to the null model, therefore the
overlap is 100%. We modify step by step edges of one layer, keeping the degree of each node
unvaried. In this way there is a gradual decrease of the overlap. The x axis indicates an
increased randomisation of edges in one layer. Figure 3.5.a) shows the evolution of L10 = L01:
with the increase of randomisation the overlap decrease and the number of nodes belonging
only to one layer grows. Figure 3.5. b)shows the evolution of L11. Figure 3.5.c) displays the
trend of the smallest p-value versus randomisation, while figure 3.5.d) illustrate the number
of significant enriched nodes.

enriched nodes depend on the degree of overlap.

3.2.4 Community detection: stability optimisation

In this section we will describe the community detection method adopted in our mul-
tiplex analysis. We perform a community detection separately for the two layers, in
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order to assess differences of nodes clustering between two networks.
As discuss in chapter 1, there are many clustering networks, which are usually

based on distance measures. Distance measures are utilised by clustering methods as k-
means and hierarchical clustering, which are methods that do not consider the network
structure, that is the presence or the absence of an edge. Therefore we choose to use
a quality measure optimisation method, in order to perform a community detection
based on the structure of the network. In particular, we opt for stability as quality
measure [7], since it merges the idea behind modularity (described in section 1.2.1),
with an inner resolution parameter represented by the Markov time (section 3.2.4).

The stability of a graph considers the graph as a Markov chain where each node
represents a state and each edge a possible state transition. As before, we consider a
graph composed by n nodes and m edges, which can be weighted or not. The vector d
indicates the degree of each node (eq. 1.6) and thus it is a n size vector. If the graph
is weighted, d can represent the strength of each node (eq 1.7). The corresponding
diagonal matrix is D = diag(d). The stationary degree distribution is thus represented
by π = d/2m where, Π is the corresponding diagonal matrix Π = diag(π). The
transition between states, which are symbolized by graph nodes, is given by the n× n
stochastic matrix M = D−1A, since edges are assumed to display the possible state
transitions. A community partition can be represented by a matrix H of size n × c

where c is the number of communities, so that each node belong to one community.
Stability is computed starting from the auto-covariance matrix at Markov time t, which
gives the covariance of the process with itself at pairs of time points. The clustered
auto-covariance matrix is defined as:

Rt = HT (ΠM t − πTπ)H (3.7)

Consequently, if the process is not stationary, the stability changes according to time
t, so it is noted as QSt . The stability value QSt is given by the trace of Rt, and the
global stability measure QS considers the minimum value of the QSt over time, from
time 0 to a given upper bound τ :

QS = min
0≤t≤τ

trace(Rt) (3.8)

Therefore stability allows to evaluate the goodness of clusters toward different times,
which are different partition scales. Form equations 1.16 and 3.7 it can be seen that
stability at time t = 1 is modularity.

Stability optimization methods are inferred by modularity methods, which are de-
scribed in section 1.2.1. The former, unlike modularity methods, permits to investigate
the evolution of communities along the Markov time.
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The stability at time t can be obtained from modularity since, for discrete time model,
from eq 3.7 QSt = QM(At) with At = DM t. Stability optimisation can thus be re-
duced to modularity optimisation methods with an additional resolution parameter
representing by the Markov time. At each Markov time, the partition with the best
stability value (Q′S) is kept and QS is update as QS = Q′S. Defining with 4QSt the
change of stability at time t, from eq. 3.8

Q′S = min
0≤t≤τ

(QSt +4QSt) (3.9)

The fastest way to approximate stability is to compute it with only one time value.
As stability tends to decrease as the Markov time increases, we are seeking when the
following approximation can be made:

QS = min
0≤t≤τ

trace(Rt) ≈ trace(Rτ ) (3.10)

The computation time increases according to the time boundaries adopted, but a
wide time interval permits to better evaluate the obtained clusters.
As for modularity optimisation methods, many algorithms have been implemented in
order to improve the stability optimisation algorithm performance. We use the fast
multi-scale detection algorithms, which are explain by Erwan Le Martelot [6]. In order
to obtain the most stable results we implemented a consensus algorithm at each Markov
time; this method is described in the successive section.

The goodness of a partition can be evaluated looking at the duration of that par-
tition/ community along the Markov chain. As reported by Le Martelot [57], in the
absence of knowledge on networks, the analyst can look for community structures that
are consistently found on some scale intervals. These are stable partitions. Similar
or identical partitions may have about the same composition of communities. For a
qualitative evaluation of that parameters we can consider fig. 4.6 in chapter 4, which
displays the evolution of communities with the increase of the Markov time of our
case of study; while in figure 4.8 it illustrates the stability evolution. Another qual-
itative evaluation of the partition can be done looking at the adjacency matrix: as
we described in chapter 1, the presence of groups of nodes highly connected produces
a block matrix. We plot in figure 3.6 the adjacency matrix where nodes (i.e rows
and columns) are sorted by the detected communities in comparison with the same
adjacency matrix, where rows do not have a order criterion.

Markov chains

A Markov chain [58] is a random process used to represent sequences of states of a
system. The evolution of many systems can be represented by a Markov chain: in
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a) b)

Figure 3.6: Adjacency matrix with no order criterion a), same adjacency matrix with rows
and column sorted by the detected communities b).

physics it is commonly adopted for the description of thermodynamic systems, since
their dynamic is assumed to be time-invariant. Markov chains are widely adopted
in chemistry to described chemical reactions, as those modelled by Michaelis–Menten
kinetics. This statistical method has many application also in network theory, where
it is used to calculate random walks.
Considering a set of states S = s1, s2, ...sn, the process starts in one of these states
and it moves successively from one state to another. For each pair of states si and sj,
there is a probability pij of going from state i to state j, where for each i,

∑
j pij = 1.

The probabilities pij are called transition probabilities. These probabilities depend only
upon the current state of the chain, and not upon the previous states; that is why this
process is often defined as memoryless. Formally it becomes;

P [x(tn+1) = xn+1|x(tn) = xn, x(tn−1) = xn−1, . . . , x(t0) = x0] =

= P [x(tn+1) = xn+1|x(tn) = xn]
(3.11)

where t1 < t2 < ... < tn < tn+1.
The transition probabilities can be represented as a square matrix P called transition
matrix, where pij shows the probability of being at state j at time t+ 1 if the current
state is i at time t. Therefore, the ijth entry p(n)ij of the matrix Pn gives the probability
that the Markov chain, starting in state si, will be in state sj after n steps.
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3.2.5 Consensus matrix

Consensus clustering is a data analysis method introduced by Lancichinetti and For-
tunato [50]. This method is utilized to generate stable results out of a set of partitions
delivered by stochastic methods. We applied this method in order to enhance the sta-
bility and the accuracy of the community detection algorithm: we iterate several times
the community detection at each Markov time and, at each t, we perform a consensus
algorithm. In this section we briefly describe the implemented algorithm.

The consensus algorithm is applied on a set of np partitions, produced by a classi-
fication algorithm, starting from a network with n nodes. The consensus matrix D is
a square weighted matrix n× n which entries have value between 0 and 1. The value
assigned to an element Dij is calculated as the ratio between the number of partitions
ns in which nodes i and j are in the same group and the number of total partitions
np. High values of Dij mean that nodes i and j appear in the same group in most
partitions, on the other hand, lower weights indicate a low probability that the two
nodes belong to the same group. Since the consensus matrix D is used as adjacency
matrix for recalculating the np partitions, it is necessary to drop the low values in
order to avoid that the successive consensus matrices will become to much dense. A
threshold d̃ is then fixed, in this way random edges are not considered. If a node has
all the weight edges below the threshold value, it will be disjointed from the network;
in order to avoid this eventuality only the higher edge weight is maintained.

This method uses an iterative process: the consensus matrix D is used as adjacency
matrix to generate other np partitions, then D is re-calculated from the new partitions.
The process go ahead until all weights Dij are 0 or 1; Dij = 1 indicates that nodes
i and j are in the same group, instead Dij = 0 means that the two nodes belong to
different groups.
As already said, we applied the consensus method to the np partitions generated by a
community detection algorithm C . The procedure can be summarising in a sequence
of steps:

1. obtain np partition from C using the adjacency matrix

2. compute the consensus matrix D, where Dij = ns/np

3. if Dij < d̃ set Di,j = 0; if a node becomes disjoint, keep the higher weight.

4. apply C on D np times, so to yield np partitions.

5. recalculate D using the new np partitions
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6. if all entries are equal to 0 or to 1 stop, else go back to 2.

This method allows to enhance the stability and the accuracy of the community
detection algorithm. In fact, there are some nodes which lie on the boundary of two
communities, and they are assigned to different communities in different iterations of
the community detection algorithm. Therefore we iterate several times the community
detection algorithm at each Markov time and, at each t, we perform the consensus
algorithm. The final classification during different Markov time is the most stable
partition of that network.

3.2.6 Normalized mutual information (NMI)

The community detection with consensus method, described in the previous sections,
is performed separately for the two layers; therefore we obtain the evolution of the
communities partitions of each layer. It becomes useful to define a measure which
permits to compare the sets of clusters found in different graphs, since the clustering
analysis examines each single layer as a separate graph. More precisely, this measure
has to evaluate how similar or different the sets are.

In multiplex networks analysis this similarity measure is often compute using the
normalized mutual information (NMI) [59] [60].
Considering two discrete random variables X = (x1, ..., xn) and Y = (y1, ..., yn), which
are associated to the partitions CX and CY , the mutual information (MI) is defined
as:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x) p(y)

)
, (3.12)

where p(x) and p(y) are the marginal probability distribution functions of X and Y re-
spectively and p(x, y) is the joint probability distribution function of X and Y . Mutual
information can be equivalently expressed as function of the entropy. Named H(X)

and H(Y ) the marginal entropies of X and Y , H(X|Y )and H(Y |X) the conditional
entropies, and H(X, Y ) the joint entropy of X and Y , the equation 3.12 becomes:

I(X;Y ) = H(X) +H(Y )−H(X, Y ) (3.13)

Consequently, the normalized mutual information Inorm(X : Y ) is defined as:

Inorm(X : Y ) =
H(X) +H(Y )−H(X, Y )

(H(X) +H(Y ))/2
(3.14)

The normalisation ensures that the Inorm values lie in the range [0, 1]; Inorm equal to
0 means that the two sets are totally dissimilar, while a value Inorm = 1 indicates that
they are identical.
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This measure gives a quantification of the similarity of two partitions, therefore a
low NMI value suggests that the two layers have different clusters. We evaluate the
NMI at each Markov time of the stability optimisation method in order to highlight
the time at which communities present the maximum diversity (fig 4.8).

3.2.7 Wilcoxon rank sum test

The Wilcoxon rank sum test is performed to evaluate differences of edges weights be-
longing to one community between two layers. More precisely, we choose the best
partition of each layer; for each community of the layer 1 we evaluate if the weights
distribution of edges in that community is significantly different in respect to the cor-
responding distribution in the layer 2. Since the partitions of the two layers are rather
different, we impose the partition of the layer 1 on the layer 2 and vice versa. Here we
described the main characteristics of the performed test.

The Wilcoxon rank sum test is a non-parametric test which is used to verify if two
statistical independent samples of ordinal values from a continuous distribution, come
from the same population.

The null hypothesis is that the two samples X and Y (obese and the normal-weight
layer case of study) come from the same population, in this case their probability
distributions are equal.

The Wilcoxon rank sum test ranks the combined two samples (X + Y ) and then it
calculates the sum of the ranks for each group Rx and Ry. Indicating the two samples
dimensions as nx and ny, the statistic U is calculated as:

Ux = Rx −
nx(nx − 2)

2
Uy = Ry −

ny(ny − 2)

2
(3.15)

The P-value indicates what is the chance that random sampling would result in the
mean ranks being as far apart as observed, if the groups are sampled from populations
with identical distributions.
For small sets of observations, usually lower that 100 observations, the exact p-value is
calculated by calculator, which randomly classifies nx of the total observations in the
X samples and the rest in the Y ’s sample . For large samples, it is usually adopted a z-
statistic to compute the approximate p-value of the test. In that case, the standardized
value

z =
U −mU

σU
(3.16)

where mU and σU are the mean and standard deviation of U

mU =
n1n2

2
σU =

√
n1n2(n1 + n2 + 1)

12
(3.17)
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The standard normal distribution gives the p-value for this z-statistic.
We use this test to evaluate if there are significant differences between edges weight

which belong to the same community, but in different layers.

3.3 The software Gephi

Gephi [61] is an open-source software for networks visualization and exploration. Through
an easy interactive interface it permits to manipulate graph structures and visually
evaluate modification in nodes and edge arrangement. Since visualizations are useful
to find features in network structure, Gephi shows in real time all manipulations and
filtering. Various layout algorithms both for efficiency and quality can be used to give
the shape to the graph, it is also possible to change layout settings while algorithm
is running and to visualize in real-time the framework variation. Graph can be also
visually analysed using the most common metrics as betweenness centrality, closeness,
diameter, clustering coefficient, community detection (modularity), shortest path. In
order to improve network readability, the thickness of edges is proportional to their
weight ans it is also possible to show node labels.
Data are imported in two data tables, one for nodes and the other one for edges. The
node table is composed by columns which indicate node IDs, the corresponding node
label and other node characteristics. The edge table describes the edge characteristics:
each row corresponds to one link, the first two columns contain the source and the
target nodes, other columns are used to indicate if the edge is directed or not and the
edge weight.

We used Gephi to visualise the network structure, in order to qualitatively evaluate
our results. In the node table we specify the community label for each node, to visualize
the different clusters with an assigned color. Various kind of layout algorithms were
employed, in the end we opted for the ForceAltas algorithm [62]. This method was
made to spatialize Small-World and Scale-free networks, i.e. networks of real data. The
parameters utilised by ForceAtlas are: a repulsion strength, which ensures that a node
rejects others, an attraction strength, which puts connected nodes near and a gravity
parameter which attracts all nodes to the center to avoid dispersion of disconnected
components. Since ForceAtlas permits a rigorous interpretation of the graph with
the least bias possible, we choose this layout to qualitatively evaluate the goodness of
partitions.
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Chapter 4

Results

In this chapter we illustrate the results that we obtained using the method explained in
chapter 3. We apply the complex graph theory on multi-omics biological data in order
to discover complex relationships between elements of that omics. In particular our
study is linked to metabolomics, since we perform a multiplex network analysis using
metabolic data. All layers of the multiplex have the same nodes, which are blood serum
compounds, therefore the final aim of this project is to reveal significant differences
between layers, and these differences are set in the nodes connections.

4.1 Data processing

The Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome
(DILGOM) study collected samples concerning metabolomics, transcriptomics and ge-
nomics of a Finnish cohort, as already said in section 2.5. They aim to investigate
possible relations between lipids, immune cells in circulation and cardiovascular dis-
eases. Therefore the DILGOM study offered four datasets: one related to genomic, one
to transcriptomic (SNP), one to metabolomic and one that describes the phenotypes
of the individuals. The total number of individuals analysed by the DILGOM study
is 518, in particular 240 males and 278 females. Since not all the subjects have com-
pounds, SNPs and phenotypes data, it is necessary to remove such people from the
analysis.

Moreover, as written in the file DILGOMdate. Update for Case Study , there are
some individuals with ’aberrant’ variables values in the phenotypes dataset, indicating
diabetics, individuals under cholesterol treatments and individuals with fast glucose
anomalies. For reasons explained in section 2.5, these individuals are removed from
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Case 1, not considered metabolites

APOA1 VAL TOTFA PC TGPG
APOB ESTC LA SM CH2DB
APOBAPOA1 FREEC OTPUFA FAW3FA DBINFA
BOHBUT FAW3 DHA FAW6FA BISDB
GLOL FAW6 MUFA FAW79SFA BISFA
LEU FAW79S TOTPG CH2INFA FALEN

Table 4.1: Metabolites with Nan values. These metabolites are not considered in case 1.

the list.
In particular we try two different ways for the homogenization of the dataset:

1. intersection of SNP, compounds and phenotypes (without aberrant values) datasets.
This way will permit to integrate our results, which are related to the compound
dataset, with future analysis on SNP. This intersection leads to a subset of 187
individuals.

2. intersection of compounds and phenotypes datasets, without considering the SNP
dataset. In this way we have a dataset as large as possible. This intersection leads
to a subset of around 500 individuals.

Another reduction of the number of samples is caused by the compounds dataset.
In fact, not all the subjects have all the values of compounds concentrations. Figure
4.1 displays the complete compounds dataset matrix (m individuals × n compounds),
where blue points indicate Nan values. We see that Nan values are linked to 30
compounds, therefore we used two different ways to manage these Nan values: for
the case 1) (dataset with 187 individuals) compounds with Nan values are deleted (i.e
the columns of the matrix in figure 4.1). We choose to delete compounds in order
to not further reduce the samples number, therefore the subset of case 1 is composed
by 187 individuals and 107 compounds. The majority of the discarded compounds
belong to the class of fatty acids, while all lipoproteins measurements are maintained.
The deleted compounds are reported in table 4.1. For dataset 2, that is the dataset
with approximately 500 individuals, we consider all the compounds while individuals
with Nan values are discarded. In this second dataset the final subset is composed by
418 individuals and 137 compounds. We also analysed this larger dataset considering
418 individuals and the 107 compounds of dataset 1, in order to validate the results
obtained for the smaller dataset.
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Figure 4.1: Image of the complete compound dataset individuals × metabolites, where blue
points correspond to Nan values.

4.2 Classification

Classification is carried out to extract two subsets which delineate obese and normal-
weight people. This classification is based on the phenotypes dataset, which is described
in section 2.5.1. This classification permits to investigate possible differences between
blood compounds relations for obese and normal weight people. If significant differences
are found, then the metabolomics and the phenotypes are correlated.

The classification using the phenotypes dataset is thus a preliminary important step
in view of performing a multiplex analysis. The final aim is to assess differences and
similarities between two layers, which represent the metabolites correlations of the two
defined subsets.

We tested various classification methods, in order to compare the final results of
the multilayer analysis and to verify the robustness of the outcomes. Clearly, different
methods can be based on slightly diverse assumptions, so they can lead to marginally
different subset and results. In the end we opt for the thresholds suggested by WHO,
we consider also a classification based on the glm, which is reported in appendix A.
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method dataset class BMI LDL HDL age systolic Pressure

WHO
1

obese 33.6± 3.6 5.7± 0.6 1.2± 0.3 57± 11 139± 16

normal 22.3± 1.5 5.1± 0.9 1.7± 0.4 47± 13 125± 18

2
obese 33± 4 5.6± 0.8 1.3± 0.3 57± 10 138± 17

normal 22.2± 1.7 5.1± 0.9 1.6± 0.4 46± 14 126± 17

Table 4.2: Mean and standard deviation values of some phenotypes features, related to
normal and obese groups.

method cass BMI age LDL HDL fast Gl sys P. dias P WHO waist circ

WHO
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1

Table 4.3: Results of the median test (sec. 3.2.7) between the obese and the normal-weight
clusters. The null hypothesis is that the two groups belong to the same population, H0 = 1

indicates that the null hypothesis is rejected. The confidence is set at p = 0.05.

4.2.1 WHO thresholds

We used a partition method based on the directions of the World Heath Organization
(WHO) to classify obese and normal-weight individuals. This classification is realised
looking only at the values of waist-hip ratio, BMI and waist circumference. As reported
in table 2.1, WHO fixed different threshold values for female and male individuals,
therefore we classify separately obese female and obese male individuals using their
respective threshold values. Once the two groups of obese people (male and female)
are obtained, they are grouped in one obese cluster. The same strategy is adopted for
normal-weight male and female individuals. We display the main phenotypic differences
between normal and obese groups in table 4.2, where the mean and standard deviation
values of some phenotypes features are reported.

We also perform a median test (see section 3.2.7) for quantifying the phenotype
differences between the obese and the normal-weight clusters.The null hypothesis is
that the two groups belong to the same population, which means that their phenotypes
are not significantly different. The confidence value is set at p = 0.05 and a value of
H0 = 1 indicates that the null hypothesis is rejected. In table 4.3 the results of the test
are reported. The WHO thresholds method forms two groups that are significantly
different with respect to all the phenotipic parameters. Only the gender appears to be
homogeneous between obese and normal-weight groups.
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4.3 Multiplex network analisys

The main purpose of this thesis is the setting-up of a multiplex network and its analysis.
As enunciated in section 1.3.1, multiplex networks belong to complex networks theory, a
recent extension of the classical graph theory which permits to investigate real networks,
that are usually characterised by complex frameworks.

We build a weighted multiplex network with two layers, one for the obese group
and the other one for the normal-weight group; these groups are obtained using the
classification method described in section 4.2.

These layers are fully described by their n× n symmetric adjacency matrices A(1),
A(2) which are constituted by the same number of nodes (n). Each node represents a
blood compound extracted by the DILGOM study. Since we evaluate the correlation
between compounds, each row i and each column i of A represents the interactions
between a specific compound i and all the others. The differences between the two
layers are shown by their coefficients a(1)ij and a(2)ij . In order to avoid indirect relations,
we apply the CLR algorithm to each correlation matrix (section 3.2.2). This method
builds a z-score matrix where the contrast between the physical interactions and their
indirect relationships is enhanced. The complete procedure we implemented to build
the adjacency matrices with meaningful informations is described in chapter 3 where
figure 3.1 shows the schematic block diagram of our method.

The comparison between the two layers is carried out looking at:

• differences of a fixed node in different layers. We implement a hypergeometric
test (section 3.2.3) in order to highlight the enrichment of connections of a node
in a specific layer.

• differences between the same community in different layers. This comparison
requires a preliminary intra-layer community detection, in order to define groups
of compounds which are strongly linked together. Once determined compounds
clusters, we move on the parallel of the two layers.

In this section we report the results of the multiplex analysis, which ground on the
study of the z-score adjacency matrix of each layer.

4.3.1 The hypergeometric test

The hypergeopetric test is performed to evaluate the most significant differences be-
tween single compounds of the normal-weight and the obese layers. More precisely, the
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hypergeometric test assesses if there is a significant enrichment in the number of links
of a node i in a specific layer beyond what might be expected by chance.

As explained in detail in section 3.2.3, this method requires topological matrices to
evaluate the enrichment; since the adjacency matrices are z-score weighted matrices,
we set a threshold Z̃ on the adjacency matrix values. Entries of the adjacency matrices
which are higher than the threshold Z̃ are set equal to one, while all the others are set
equal to zero. Different threshold values are fixed in order to not affect results by the
Z̃. In particular, the tested thresholds rank from Z̃ = 1.5 to Z̃ = 3.4 with steps of
0.1. For each threshold we obtain two topological matrices, one for the obese layer and
the second one for the normal-weight layer. The hypergeometric test is performed for
each layer. Referring to the formalism introduced in section 3.2.3, we evaluate whether
there is a significant enrichment or a depletion in the number of links of a node (k01(i))
lying only in one layer beyond what might be expected by chance, which is established
looking at the total L01 and L11 links and k11(i) links. Therefore the comparison is
between edges belonging only to one layer (as example the obese layer) and the shared
links. Considering as example the obese layer, the hypergeometric test returns for each
node (i.e compound) a value equal to one if the null hypothesis is rejected, that is if the
compound is oversampled in the obese layer, and 0 otherwise. We fix the significance
level at 0.05. For each layer we consider the number of times that a specific compound
results to be enriched, since we perform the test using different thresholds. At the end
we rank the compounds looking at their number of over-representations; the results
for the different datasets are listed in table 4.4.Numbers associated to each compound
indicate the number of times that every single compound has p-value ≤ 0.05. Since
the threshold Z̃ ranks from 1.5 to 3.4, the maximum possible number is 20.

Table 4.4 shows the results obtained for the different datasets. The first two columns
list the rank obtained using the dataset 1. In order to validate the results of the smaller
dataset, we perform the hypergeometric test on the dataset with 418 individuals, re-
stricted to the 107 compounds of the dataset 1. The results are listed in the third and
fourth columns of table 4.4. The last two columns refer to the results obtained for the
complete second dataset (418 individuals and 137 metabolites).

The results of the obese and normal-weight layers are coherent between the dataset
1 and 2. Moreover, results of the hypergeometric test show that some compounds have a
different behaviour between the two layers, especially for what concerns metabolites and
good cholesterol. In particular, metabolites as lactate, glucose, glutamine, histidine,
phenylalanine, pyruvate, tyrosine, albumin and alanine are oversampled in the obese
layer. Some of these metabolites, such as glucose and albumin, are oversampled also
in the normal layer; this fact suggests that they have different links in the obese and in
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the normal-weight layers. Also the measures of the medium good cholesterol (MHDL-)
seem to have different behaviours in the two layers, therefore they are interesting for
our analysis.

It must be stressed that these results are linked to the multilayer structure that we
build. In fact, a simple analysis of the blood concentrations does not reveal differences
between those compounds. We analyse the differences in concentration between the
obese and the normal-weight groups of individuals. Both the t-test and the rank-sum
test reject the null hypothesis that the MHDL- cholesterol measures are significantly
different between the two groups. Also the metabolites glutamine, histidine, albumin,
creatinine, urea, acetate, acetoacetate and glycine are not significantly different in
concentration between the two groups. This fact indicates that a network approach
can give further or different informations with respect to an analysis based on the blood
concentrations.

In figure 4.2 the evolution of the number of edges depending on the threshold is
displayed. The red line refers to edges which occur only in the obese layer (L10), the
blue line shows links lying only in the normal-weight layer (L01) and the green line
indicates the number of shared links (L11). Since the shared edges are many more with
respect to L10 and L01, we plot the L11/10. As expected, L11, L10 L01 decrease with the
increase of the z-threshold and only the most significant edges endure. Figure 4.2.a)
refers to dataset 1 (107 compounds), while Fig. 4.2.b. refers to dataset 2 (with 137
compounds). To evaluate the importance of the overlap in the hypergeometric test, we
randomize the edges of the obese layer. The procedure is the same that we utilize for
the toy model of section 3.2.3. We consider the dataset 1 and we utilize the topological
matrices of the obese and normal-weight layers, which we obtained fixing a threshold
at Z̃ = 2.1. We chose this threshold since the two layers have approximately the same
number of edges at Z̃ = 2.1, as shown in Fig. 4.2.a). In particular, links which occur
only in the obese layer (L10) are 214, edges which belong only to the normal-weight
layer are L01 = 224 and the number of shared links is L11 = 628. As expected, the
number of significant enriched nodes (p−val < 0.05) decreases with the increase of the
randomization; this trend is displayed in figure 4.3 c). We consider also the minimum
p-value at each randomization step: the minimum p-value grows with the increase of
the randomisation; this trend is shown in figure 4.3 d). In figures 4.3.a and 4.3 b). we
report the evolution of L10 and L11 with respect to the increase of randomization.

Going back to the results in table (4.4), we note a clear difference as concerns the
metabolites and amino acids behaviour (section 2.4.3). In particular they seem to be
more oversampled in the obese layer. Therefore we represent with a network image
their connections in order to qualitatively evaluate the differences. Figure 4.4 displays
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Table 4.4: Rank of DILGOM compounds based on p-values of hypergeometric test. The rank is
obtained considering the results of hypergeometric test for different threshold values: from z-score of
1.5 to 3.5 with steps of 0.1. We fix the significance level at 0.05. The number associated to a compound
name indicates the number of times that compound has p-value ≤ 0.05. The first two columns are
related to the first dataset (187× 107), the third and the fourth columns refer to the dataset 2 with
107 compounds while the last two columns are related to the dataset 2 with 137 compounds.
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a) b)

Figure 4.2: Evolution of the number of edges depending on the threshold. Red line refers
to links lying only in the obese layer (L10), blue line refers to links lying only in the normal-
weight layer (L01) and green line to the number of shared links (L11). Image 1) refers to the
dataset 1 (107 compounds), and image 2 to dataset 2(137 compounds); using WHO thresholds
for the classification.

the graph of the overlap of metabolites and amino acids, considering the dataset 2
(418 × 137). Red lines refer to edges which occur only in the obese layer (L10), blue
lines show links lying only in the normal-weight layer (L01) and green lines indicate the
shared links (L11). The overlap in figure 4.4a) is obtained for a threshold of z̃ = 1.6;
we choose this threshold because L01(z̃ = 1.6) = L10(z̃ = 1.6), as can be seen in figure
4.2.b. Figures 4.4.c., 4.4.d. and 4.4.e display the graph in figure 4.4a) considering L11,
L10 and L01 separately. These images help to visualise the graph in figure 4.4a); they
show that the these metabolites have more links in the obese layer than in the normal
one, in particular glucose, phenylalanine, albumin, alanine and glutamine are highly
connected in the obese layer. The normal-weight layer shows many relations between
the amino acids: isoleucine, leucine, valine and tirosine. The urea seems to have very
different behaviour between the two groups. Figure 4.4.b. shows the edges overlap for
the threshold at z̃ = 2.5. At this threshold, edges which occur only in the obese layer
(L10) are less then those in the normal-weight layer (L01), as we deduce from figure
4.2.b. The graph 4.4.b. shows that metabolites and amino acids are stronger bounded
in the obese layer than in the normal one. In particular, glucose, phenylalanine and
glutamine have many links in the obese layer, but very few in the normal one. On the
other hand, the amino acids: isoleucine, leucine, valine and tirosine have more links in
the normal-weight layer.

This qualitative analysis suggest that the metabolites group is more linked in the
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a)

c)

b)

d)

Figure 4.3: Randomisation of links in the obese layer. The x axis indicates an increased
randomisation of edges in the obese layer. Figure 4.3.a) shows the evolution of L10 with
respect to the randomization. Figure 3.5. b) shows the evolution of L11. Figure 4.3.c)
display the trend of the smallest p-value versus randomisation, while figure 4.3.d) illustrates
the number of significant enriched nodes.

obese group. In the next section we consider whether all compounds are linked together
and in what way, that is we evaluate the communities structure of the two layers.

4.3.2 Communities analysis

We perform a community detection in order to determine subgroups of compounds
which are strongly bonded together. In particular we want to evaluate how the com-
pounds highlighted by hypergeometric test are linked. The final goal of this analysis is
to highlight structural differences between the two layers and, precisely, between their
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a) b)

c) d) e)

Figure 4.4: Graphs of the overlap of metabolites and amino acids (see section2.4.3), consid-
ering the dataset 2 (418× 137) and using classification into obese and normal layer based on
the WHO thresholds method. Red lines refer to edges which occur only in the obese layer
(L10) (figure 4.4 d), blue lines show links lying only in the normal-weight layer (L01)(figure
4.4 e) and green lines indicate the shared links (L11)(figure 4.4 d). The overlap in figure 4.4
a) is obtained fixing the threshold at z̃=1.6; at this threshold L01 = L10. Figure 4.4.b. shows
the edges overlap for z̃=2.5.

communities. Therefore this study can be divided in two main steps: the first one is
related to the community detection, while the second and principal step concerns the
evaluation of differences between community partitions of the two layers.
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Community detection

We perform a community detection separately for the two layers and we use the method
described in section 3.2.4. The quality function chosen to evaluate communities is the
stability (equation 3.8), since it allows to evaluate the goodness of clusters through
different partition scales. In particular, the stability evaluates if the density of edges
within community structures compared with a random distribution of links between
all nodes is significantly different. Therefore it ranges between -1 and 1: high positive
values means a good definition of the communities.

We implement the community detection algorithm which assigns each compound to
a community, according to which group it belongs to. The algorithm returns different
node partitions according to the given Markov time. Therefore we evaluate a range of
partitions, from t = 0.6 to t = 2.0, with discrete steps equal to δt = 0.1. Since clustering
methods can lead to slightly different partitions on the same graph, we iterate several
times the community detection algorithm at each Markov time. This set of partitions
are used to obtain a stable result: considering all the partitions obtained at a fixed t,
we programmed a consensus algorithm (section 3.2.5) which returns the more stable
partition. Therefore the evolution of the partition through Markov times that we obtain
is the most stable one.

With the increase of the Markov time, the number of communities usually decreases
since a stable partition is obtained. Therefore the goodness of a partition can be
evaluated both looking at the stability value 3.8 at each Markov time, and at the
duration of that partition during the Markov chain.

For these reasons we evaluated both the evolution of the partitions and the evolution
of the stability with the increase of the Markov time. This evaluation is performed
separately for each layer.

We wrote an algorithm which allows to display the evolution of partitions, this
program fixes a colour for each community, the final plots are reported in figures 4.5, 4.6
and 4.7 . The first figure (4.5) displays the evolution of dataset 1 (187 individuals ×107

compounds), the second (fig 4.6) shows the communities detected for dataset 2 with
418 individuals and 107 compounds, while the latter concerns the dataset 2 with 418
individuals and 137 compounds. In these images we use same colours for communities
which are composed by roughly the same compounds. In particular, compounds of
the blue community are mostly VLDL measures, compounds of the cyan community
are mainly IDL an LDL cholesterol measures and the green community is composed by
good cholesterol (HDL) measures. Differences between the two layers are located in the
orange and dark-green communities. The orange community belongs only to the obese
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layer and it is mainly composed by metabolites. The dark-green community lies only in
the normal-weight layer and it is constituted by medium cholesterol measures (MHDL-
). From a biological point of view, both the green and the dark-green communities
belong to good cholesterol measures, but they differ by the diameter of the analysed
good cholesterol.

Looking at the hypergeometric test results, both compounds of the orange and
dark-green communities are enriched in the obese layer (table 4.4). We explain this
apparent contrast studying the adjacency matrix of the normal layer. We noted that
nodes belonging to the MHDL- community (dark-green) in the normal-weight layer are
very highly related together, but they have few connections to other good cholesterol
measures (green community). In the obese layer, compounds of the (MHDL-) com-
munity are less related together, and they form a bigger community with the other
good cholesterols (green community). Therefore the (MHDL-) nodes have more links
in the obese layer, even if they are less heavy. At high Markov times, the dark-green
community of the normal layer is joined to the green community, forming the big com-
munity of the good cholesterol measures (green). All images illustrate a decrease in
the number of communities with the increase of the Markov time, that fact is expected
since t can be seen as a resolution parameter.

As mentioned earlier, an important parameter to estimate the goodness of the
partition is the stability (3.8). We plot the evolution of the stability for both datasets
in Fig. 4.8. In these figures the red line refers to the stability profile of the obese
layer partition, while blue line indicates the stability profile of the normal-weight layer.
Figure 4.8 a. refers to the dataset 1, fig. 4.8 b) is related to the dataset 2 with 107
compounds and Fig. 4.8 c) refers to the dataset 2 with 137 compounds. In table 4.5
we report the maximum stability value and the corresponding Markov time for each
layer. For all the datasets, the maximum stability value is observed at small Markov
time, that is when there are many communities. At these short times there is a high
variability of the partitions, this fact is linked to the utilised optimization method.

Community comparison: Markov time selection

The comparison between communities of the two layers required the definition of shared
communities. As can be seen from figure 4.5 both layers have the same number of
communities along the Markov chain. Moreover, communities are composed by roughly
the same compounds. We facilitate the visualisation of these shared communities
colouring them with same colours. Also for the dataset 2 (figures 4.6 and 4.7) there is
a positive overlap between communities of the two layers.
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Dataset Layer t(max stability) max stability

WHO 187× 107
obese 0.6 0.52
normal 0.7 0.49

WHO 418× 107
obese 0.6 0.485
normal 0.6, 0.7 0.48

WHO 418× 137
obese 0.6, 0.7 0.45
normal 0.7 0.45

Table 4.5: Maximum stability value and the corresponding Markov time for each layer and
each dataset.

We quantitatively estimate the overlap between communities in different layers
using the normalised mutual information (NMI), which is described in section 3.2.6.
This measure of similarity ranges between 0 and 1, a value equal to 0 means that the
two compared sets are totally dissimilar, while a value of 1 indicates that they are
identical. The community detection method which we utilise gives different partitions
according to the Markov time, therefore we compute the NMI between the partitions
of the two layers at each t. The NMI value at each Markov time is illustrated by the
green line in figure 4.8. For both datasets, the NMI has a depletion at small Markov
times, then it increases according to t. That agrees with the informations that we can
deduced from figures 4.5 and 4.6: at low times, four communities are detected, but with
the increment of the Markov time one of them is lost (the orange one for the obese
layer and the dark-green for the normal one). Nodes belonging to the orange and the
dark-green communities are merged to the other communities, causing the increase of
the partitions overlap at high Markov times. The same analysis can be done for the
dataset 2 with 137 compounds (figure 4.7): at very low Markov times five communities
are discover in both layers, but two of them are untied at higher times. We keep the
same colours for communities which share approximately the same nodes and, as for the
dataset 1, also for the dataset 2 the orange and the dark-green communities are untied.
Therefore nodes of the orange and dark-green communities result to be interesting for
the investigation of differences between the communities of the two layers.

Datasets with 107 compounds The aims of the community analysis is to evaluate
if there are significant differences between the partition of the obese layer and that of
the normal-weight one. In the previous section we compared the partitions of the two
layers, which are detected separately for the two groups. Results show that different
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a) b)

Figure 4.5: Evolution of communities with the increase of the Markov time for the dataset 1
(187× 107), using the WHO classification. Figure a) is related to the evolution of communities
in the obese layer, figure b) for the evolution in the normal-weight one.

communities are detected for the two layers. Moreover, there is an agreement with
the results obtained with the dataset 1 (187× 107) and the dataset 2 restricted to 107
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a) b)

Figure 4.6: Evolution of communities with the increase of the Markov time for the dataset
2 restricted to 107 metabolites, using the WHO classification. Figure a) is related to the
evolution of communities in the obese layer, figure b) for the evolution in the normal-weight
one.
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a) b)

Figure 4.7: Evolution of communities with the increase of the Markov time for the dataset 2
with 137 metabolites, using the WHO classification. Figure a) is related to the evolution of
communities in the obese layer, figure b) for the evolution in the normal-weight one.

compounds (418×107). We compute the NMI between the partitions of the obese layer
for the two datasets, that is we consider the obese layer of the dataset 1 and the obese
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a) b)

c)

Figure 4.8: Stability and normalised mutual information (NMI) profiles. Red line refers to
the stability profile of the partition of obese layer, blue line for stability profile of the normal-
weight layer. Green line shows the NMI evolution between the partitions of the two layers,
along the Markov chain.

Dataset t(minNMI) min NMI t(maxNMI) max NMI

WHO 187× 107 0.9 0.56 1.8; 1.9; 2.0 0.68
WHO 418× 107 1.0 0.63 1.4; 1.5; 1.6 0.78
WHO 418× 137 1.0 0.55 0.6 0.63

Table 4.6: Maximum and minimum NMI value and the corresponding Markov time for each
layer and each dataset.

layer of the dataset 2 with 107 compounds, the same is done for the normal layer. The
maximum overlap of the obese layer partitions is obtained when t=0.9 for both datasets;
the mutual information between these partitions is NMIobese = 0.83. The overlap of
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the normal-weight layers is greater, since the NMI results to be NMInormal = 0.93

considering the partition at t = 0.8 for the dataset 1 and the partition at t = 0.9 for
the dataset 2 .

Given the high agreement of the partition results in the two datasets, we display
that with 107 metabolites and 418 individuals. We consider the partitions obtained at
t = 0.9 for both the obese and the normal layers of the dataset 2 with 107 compounds;
these are quite stable partitions, since they persist for different resolution scales. A
graphic representation of the two layers is displayed in figures 4.9.a) and 4.9.b), which
represent the graphs of the obese and normal-weight layer respectively. Node colours
are associated to the communities detected at Markov time =0.9, which are listed in
table 4.7. The layout underlines the communities found by the algorithm. In fact,
nodes belonging to the same community form clusters in the images. Moreover, the
orange and the dark-green communities are located between bigger communities, to
which they are merged at high Markov times. We built these images using the Gephi
software, which is shortly presented in section 3.3. To simplify the visualization we
delete edges with weight lower than z=2.0, moreover we utilize the Force Atlas layout
to accost nodes highly related.

In table 4.7 we report the compounds of each community at t = 0.9. The blue
and cyan communities have a good overlap, since they differ by almost 10%. The
differences are due to the compounds of the orange and dark-green communities: in
the obese layer the dark-green community does not assemble and it is joined to the
green community. On the other hand, the orange community is grouped only in the
obese layer, while it’s elements are distributed in various communities in the normal
layer.

We evaluate the significance of these differences looking at the mean weight of
communities. In particular we consider the blue, the cyan and the green communities
equal for both layers, since their differences are caused by the elements of the orange and
dark-green communities. Therefore we look at the intersection of the blue communities
of layer 1 and 2, and the same for the cyan and green clusters. The final clusters which
we obtain from the intersection are marked by a line in table 4.7.

Datasets with 137 compounds The dataset 2 is composed by 418 individuals and
137 compounds. The main differences towards the dataset with 107 compounds are
related to fatty acids and some metabolites nodes, which are not present in the dataset
1. Looking at the evolution of the partition (figure 4.7), these new fatty acids nodes
are initially joined to the dark-green partition in the normal-weight layer, while in the
obese layer they form a separate group. This happens at very low Markov times, then
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a)

b)

Figure 4.9: Graph of the obese layer (a) and normal-weight layer (b), considering the dataset
2 with 107 compounds and using classification into obese and normal layer based on the WHO
thresholds. Colours specified the communities detected at Markov time =0.9.
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a)

b)

Figure 4.10: Graph of the obese layer (a) and of the normal-weight layer (b), considering the
dataset 2 (418× 137) and using classification into obese and normal layer based on the WHO
method. Colours specify the communities detected at Markov time =1.0.
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blue cyan green orange dark-green
obese normal obese normal obese normal obese normal

XXLVLDLPL XXLVLDLPL XSVLDLPL XSVLDLPL XLHDLC XLHDLC ALB ALB
XXLVLDLL XXLVLDLL XSVLDLL XSVLDLL XLHDLFC XLHDLFC SHDLL MHDLC
XXLVLDLP XXLVLDLP XSVLDLP XSVLDLP XLHDLPL XLHDLPL SHDLP MHDLFC
XLVLDLPL XLVLDLPL IDLFC IDLFC XLHDLCE XLHDLCE ALA MHDLPL
XLVLDLTG XLVLDLTG IDLPL IDLPL XLHDLL XLHDLL GLC MHDLCE
XLVLDLL XLVLDLL IDLL IDLL XLHDLP XLHDLP GLN MHDLL
XLVLDLP XLVLDLP IDLP IDLP LHDLC LHDLC HIS MHDLP
LVLDLC LVLDLC LLDLC LLDLC LHDLFC LHDLFC LAC SHDLL
LVLDLFC LVLDLFC LLDLFC LLDLFC LHDLPL LHDLPL PHE SHDLP
LVLDLPL LVLDLPL LLDLPL LLDLPL LHDLCE LHDLCE PYR MOBCH3
LVLDLTG LVLDLTG LLDLL LLDLL LHDLL LHDLL TYR MOBCH
LVLDLCE LVLDLCE LLDLP LLDLP LHDLP LHDLP HIS
LVLDLL LVLDLL MLDLC MLDLC HDLC HDLC
LVLDLP LVLDLP MLDLPL MLDLPL HDLD HDLD
MVLDLC MVLDLC MLDLCE MLDLCE HDL2C HDL2C
MVLDLFC MVLDLFC MLDLL MLDLL GLY GLY

MVLDLPL MVLDLPL MLDLP MLDLP MHDLC ACE
MVLDLTG MVLDLTG SLDLC SLDLC MHDLFC XLHDLTG
MVLDLCE MVLDLCE SLDLL SLDLL MHDLPL
MVLDLL MVLDLL SLDLP SLDLP MHDLCE
MVLDLP MVLDLP IDLTG IDLTG MHDLL
SVLDLFC SVLDLFC IDLC IDLC MHDLP
SVLDLPL SVLDLPL LDLC LDLC
SVLDLTG SVLDLTG SERUMC SERUMC
SVLDLL SVLDLL LDLD LDLD
SVLDLP SVLDLP IDLCEFR IDLCEFR
XSVLDLTG XSVLDLTG LDLCEFR LDLCEFR
LLDLCE LLDLCE CIT CIT
SHDLTG SHDLTG UREA UREA

XXLVLDLTG XXLVLDLTG ACACE GLC
VLDLTG VLDLTG ACE GLN
SERUMTG SERUMTG XLHDLTG PHE
VLDLD VLDLD TYR
VLDLTGEFR VLDLTGEFR ALA
HDL3C HDL3C SVLDLC
MOBCH2 MOBCH2
GP GP ACACE
ILE ILE CREA

SVLDLC LAC
MOBCH3 PYR
MOBCH
CREA

Table 4.7: Communities found using the optimisation of the stability on the dataset 2 with
107 compounds. The Markov time is 0.9. Colours refer to the image 4.6.

they are merged to the blue, cyan, and green communities. therefore they seem to not
affect the partition which we found for the datasets with 107 compounds. The new
nodes are grouped in the orange community as concerns the obese layer, while they
are merged to the blue and cyan communities in the normal-weight layer. In order
to evaluate differences between communities of layers with 137 nodes, we chose the
partitions looking at the NMI. As reported in table 4.6, the minimum overlap occurs
at t=1.0 . Therefore we consider the two partitions at this Markov time. At this time,
both layers have four communities and the fatty acids are grouped in the blue, cyan and
green communities, and they exhibit similar behaviours. The new nodes are joined
to the orange community in the obese layer, while the dark-green community of the
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Community median obese mean obese median normal mean Normal p-val Rank Sum H0

dataset 1 (187× 107)

Blue 1.68 1.6± 0.5 1.49 1.5± 0.5 0.000 1
Cyan 1.75 1.9± 0.9 2.10 1.9± 0.9 0.659 0
Green 2.57 2.6± 0.8 3.00 2.9± 0.5 0.000 1
Orange 2.08 2.2± 1.7 0.57 1.0± 1.0 0.003 1
Dark-green 1.37 1.9± 1.9 2.05 2.6± 1.9 0.019 1

dataset 2 (418× 107)

Blue 1.56 1.5± 0.5 1.54 1.5± 0.5 0.585 0
Cyan 1.79 1.8± 0.9 2.06 1.9± 0.8 0.068 0
Green 2.73 2.7± 0.7 3.01 2.9± 0.7 0.047 1
Orange 1.87 2.08± 1.5 0.91 1.2± 1.2 0.012 1
Dark-green 0.89 1.5± 1.7 1.54 2.4± 1.7 0.000 1
Green+
dark-green

2.1 1.8± 1.3 1.4 1.7± 1.5 0.33 0

Table 4.8: Median and mean edges weight values of each community and median test between
layers. The null hypothesis is that edges of the two layers of a fixed community comes from
the same population. The significance level is set at 0.05.

normal layer has approximately the same elements of the dataset with 107 compounds.
The orange community is then composed by 16 metabolites and amino acids, which are:
albumin, alanine, 3-hydroxybutyrate, acetate, acetoacetate, citrate,glucose, glutamine,
glycerol, histidine, lactate, leucine, phenylalanine, pyruvate, tyrosine, urea and valine.

As for the graph with 107 nodes, we display the community structures of these layers
using the software Gephi, and the ForceAtlas layout. The two graphs are displayed in
figure 4.10.

Community comparison

This almost total overlap of the blue, cyan and green communities allows to analyse
differences between the same communities in different layers. The disagreement lying in
the orange and dark-green communities, since they share only 4 compounds, therefore
we evaluate these clusters in a different way.

A preliminary evaluation of the differences which occur in the orange community is
done looking at figure 4.4. This graph shows the connections between all the metabo-
lites of the DILGOM dataset and it is obtained form the dataset 2 with 137 compounds.
We use this graph to give a qualitative evaluation of the orange community since there
are not huge differences between the metabolites connections of dataset 2 and that of
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a)

c)

b)

d)

e)

Figure 4.11: Bivariate distribution ( Aobese, Anormal) for each community. X and Y axis rep-
resent edges weights, while Z axis displays the number of edges. Bars on the diagonal indicate
edges with the same weight belonging to both layers. Asymmetries reveal differences between
the weight distribution of the two layers. Figure 4.11 a) shows the bivariate distribution of
the blue community, b) of the cyan community, c) of the green community, d) of the orange
community and e) of the dark-green one.
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dataset 2 restricted to 107 compounds. In that graph red lines refer to edges which oc-
cur only in the obese layer (L10), blue lines show links lying only in the normal-weight
layer (L01) and green lines show shared links (L11). There is a clear majority of red
lines, in particular if we restrict the nodes to those belonging to the orange community.
In order to quantified these differences ad similarities, we perform a Wilcoxon rank
sum test (section 3.2.7) between communities of the two layers. In particular we con-
sider the intersections of the blues, cyans and greens communities, while we consider
separately the orange and the dark-green communities. Since the orange community
is grouped only in the obese layer, we extract the corresponding nodes in the nor-
mal layer and quantify the differences of their links weight distributions. The same
is done for the dark-green community. Table 4.8 shows the results of the median test
for the dataset 1 and for the dataset 2 with 107 compounds. The null hypothesis is
that edges of the two layers of a fixed community come from the same population, and
the significance level is set at 0.05. The mean and the median weight of edges in the
orange community are significantly higher in the obese community, while the mean and
the median edges weight of the dark-green community are significantly greater in the
normal layer. Also the green community is significantly higher related in the normal
layer. When we consider the total cluster of good cholesterol (green+ dark-green com-
munities) there are not significant differences between the two layers. In table 4.8 we
report also the mean and the standard deviation values of the edge weight distribution
of each community. The median test indicates that there are significant differences
between edges weights which connect nodes of the orange and dark-green communities
in the two layers. Considering the orange community, we extract the adjacency matrix
of orange nodes of the two layers ( AobOr, AnorOr ) and we plot a bivariate distribution of
links of the orange community. The x and the y axes of these distributions indicate
the edges weight, while the z axis displays the number of edges. In particular the x
axis refers to the obese layer and the y axis to the normal-weight one. The bivariate
distribution considers the weight of the ij edge in the two layers: aobOr(ij) and anorOr (ij);
if its weights are similar in the two layers it will be set on the diagonal of the discrete
bivariate distribution. If aobOr(ij) > anorOr (ij) it will be set in a bin of the right half of
the histograms in figure 4.11; vice versa, if its weight is higher in the normal layer
it will be set in the left half. Therefore asymmetries reveal differences between the
weight distribution of the two layers. Figures 4.11 display the bivariate distributions
of the blue, cyan, green, orange and dark-green communities. The orange distribution
has a high asymmetry, in particular all bins are set in the right half of the bivariate
distribution. Also in figure 4.11.e, which refers to the dark-green community, there is
a high asymmetry, since all bins are in the left half of the bivariate distribution.
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a)

c)

b)

d)

e)

Figure 4.12: Distribution of the mean weight of links of each community for random sample extrac-
tion. Red line indicates the mean weight of links of the obese layer, while green line of the normal one.
Figure a) shows results of the blue community, b) of the cyan community, c) of the green community,
d) of the orange community and e) of the dark-green one.
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Conclusions

To evaluate the strength of the results we performed a comparison with random
models. We randomly extract 85 individuals from the whole DILGOM dataset and
we compute their adjacency matrix, as done for the two layers. In other words, we
compute the correlation matrix using the Kendall’s τ , then we compute the z-score
matrix with the CLR algorithm (AR). For each adjacency matrix we compute the
mean edge weight of the five detected communities (blue, cyan, green, orange and dark-
green). Considering the orange community as example, we extract from the random
adjacency matrix AR the nodes belonging to the orange community. Then we compute
the mean edges weight of nodes of that community. This process is iterated 250 times,
for each iteration we compute the mean edges weight of each community. The final
distributions of the mean edges weight are displayed in figure 4.12. Figure 4.12.a shows
the mean weight distribution of edges of the blue community, figure 4.12.b displays the
distribution of cyan community, figure 4.12.c is related to green community and figure
4.12.d to the orange one. In each histogram we plot a red line to indicate the mean
weight of links of that community for the obese layer, while the green line is set for
the normal one. The distribution in figure 4.12.b seems to indicate that the mean
weight of links of the cyan community is not related to the performed classification. In
other words, compounds of the cyan community does not discriminate obese individuals
form normal-weight ones. The blue community (figure 4.12.a) is highly related for the
random samples; since we utilize the CLR algorithm, this distribution means that,
for a random sampling, blue nodes are more significantly linked with respect to other
compounds (the CLR considers the background distribution of each entry). The highest
differences between the random distribution and the mean weight of the obese and
normal-weight layer are linked to the green, dark green and orange communities. In
particular, the mean weights of the orange community for the obese and normal layer
are on opposite sides of the mean weight distribution. The mean weight of the edges
of the obese layer is higher than that of the normal one, as reported in table 4.8; this
result is displayed in figure 4.12.d. The opposite situation occurs for the dark green
community, where the mean weight of the edges of the normal layer is significantly
higher than that of the obese one.

These results provide a further confirm that there are some nodes which have differ-
ent behaviours in the two layers. Specifically, these nodes are medium good cholesterol
measures (MHDL-) and some blood metabolites. The former are highly related for
normal individuals, while the latter form a cluster with significant mean weight only
in the obese layer.

This application of multiplex analysis on real data allowed to discover differences
between the two layers. These results show the efficacy of the proposed method.
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Chapter 5

Conclusions

In this thesis we analysed multiplex network structures, which belong to the complex
network theory. This new approach permits to investigate more complex frameworks
than the classical networks analysis. Indeed, multiplex network are “networks of net-
works”, that is multiple levels of networks. Therefore each network is a layer of a more
complex structure.

We focused our analysis on the characterization of some multiplex properties. The
final aim is to develop null hypothesis which can be applied to statistical analysis. We
studied some methods which permit to evaluate intra-layer structures and inter-layers
differences.

To discover intra-layer structures we implemented a community detection method,
which detects subgroups of network elements which are strongly bonded together.
These sub-groups of highly tied nodes are commonly called clusters or communities. We
perform a clustering method which utilises a quality function called stability. It eval-
uates whether the concentration of edges within clusters is significant when compared
with a random distribution of links. An important aspect of this clustering method is
that it permits an evaluation of the layer partition at different partition scales. The
inner resolution parameter is represented by the Markov chain. Therefore, the stability
of a graph considers the graph as a Markov chain where each node represents a state
and each edge a possible state transition. The overlap between communities of different
layers is quantified using the normalised mutual information. This measure quantifies
how similar or different two partitions are.

The evaluation of inter-layers differences concerned also single nodes connections.
Indeed, since all layers have the same nodes, differences between layers lay in their
edges. Therefore we perform a hypergeopetric test to evaluate whether there is a
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significant enrichment or depletion in the number of layer-specific edges of a node.
This method shows that only with a high overlap between edges laying in different
layers some nodes are significantly enriched. When the overlap is weak, the nodes do
not result to be significantly over-represented in a specific layer. Therefore this method
emerges the differences between similar layer, looking at the at the layer-specific, node-
specific and shared edges.

These analyses allow to characterise multiplex properties and especially intra-layer
structures and intra-layer differences.

We applied this analytical method to real data. In particular, these data are col-
lected by the DLIGOM the Dietary, Lifestyle and Genetic determinants of Obesity and
Metabolic syndrome study and they regard metabolomic, transcriptomic, phenotypic
and genomic information of a Finnish cohort. These datasets are utilised by the Mi-
momics project in order to identify some factors that might be related to obesity. The
final goal of the Mimomics project is to reveal if there are significant differences in one
or more omics, which are genomic, transcriptomic and metabolomic, looking at the
differences which are observed in an another omic, that is the phenotype of obesity in
this specific case. This mulit-omic approach is an innovative way which evaluates if
two or more omic are related to each other.

We focus our analysis on the metabolomic, which regards the concentrations of
blood serum compound of the Finnish cohort. These metabolic data are analysed us-
ing complex network analysis and, in particular, the multilayer approach. We built
a multiplex network in order to stress the metabolic differences between obese and
normal-weight people, which are classified on the basis of their phenotypes. This mul-
tiplex network is made up of two layers, one linked to obese individuals and the other
one to normal-weight individuals. The layers are constituted by the same number of
nodes (n), which represent the compounds extracted from the blood of each individual
by the DILGOM study. An edge between two compounds specifies a positive correla-
tions between them, and its weight is a measure of the correlation strength. We utilized
a statistical method to avoid indirect relationships and enhance significant interactions.
This method produces z-score positive matrices, that are set as adjacency matrices.

The assessment of the properties of this real multiplex network was achieved im-
plementing the statistical analysis which we develop. Specifically, the results of the
hypergeometric test show that there are some nodes which have different behaviour
in the two layers. We noted a significant enrichment of the links of some metabolites
and of some measures related to the medium good cholesterol (MHDL-), which seem
to have different behaviours in the two layers.

These results are confirmed by the community detection. This method discovered
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a module which is composed by highly related metabolites, which lies only in the
obese layer. These metabolites are approximately the same which result enriched in
the previous analysis. This evidence suggests that those metabolites are not only
highly related, but they are highly related to each other. The measures related to the
medium good cholesterol gather together only in the normal-weight layer, while other
communities have a perfect overlap between the two layers.

It must be stressed that these results are linked to the multilayer structure we built.
In fact, a simple analysis of the blood concentrations does not bring to light differences
between the concentrations of those compounds. Specifically, the concentrations of
good medium cholesterol measures and some metabolites are the same for both groups
of individuals.

In conclusion this multiplex analysis on real data shows the efficacy of the proposed
method. Since the implemented method is totally independent of the data to analyse,
it will be possible to extend this procedure to other fields of study.

.
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Appendix A: Generalized linear model

We consider a second method for the classification of the individuals, in order to form
the obese and the normal-weight group. This method is based on the generalised linear
model (glm).

The Linear Regression Model, (lm) [63] is a statistic technique which studies lin-
ear, additive relationships between variables. More precisely, the goal of lm is to
predict values of a scalar dependent variable y called the criterion variable, given n

variables X = x1, ..., xn called predictors or explanatory variables. We consider as pre-
dictors some features of the phenotypes dataset, that are: genders, age, bad and good
cholesterol (LDL and HDL), fasting glucose, systolic and diastolic pressures and the
consumption of blood pressure medications. The response variable y was considered
the BMI . When there are more than one predictors (n > 1), as in our case, the process
is called multiple linear regression. A multiple linear regression model is:

y(i) = β0 + β1x1(i) + · · ·+ βnxn(i) + εi = β0 + xT
i β + εi, i = 1, . . . , n, (5.1)

where the vector β = (β1, ..., βn) expresses parameters called regression coefficients and
the variable ε, named noise or error variable, represents the random error. Usually the
noise terms are assumed to be uncorrelated and to have independent and identical
normal distributions with mean zero and constant variance. Moreover, the responses
yi are assumed to be uncorrelated. Given these assumptions, the fitted linear function
becomes:

ỹi = bo +
K∑
ki

bkfk(x1(i), x2(i), ..., xn(i)) i = 1, . . . , n, (5.2)

Where ỹi is the estimated response and f is a scalar-valued function of the predictors.
The function f might be non linear or polynomial, since the linearity is due to the
coefficients βk of equation 5.1; that is, the response variable, y, is a linear function of
the coefficients βk. The coefficients bk are the fitted coefficients, which are computed
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minimising the mean square difference between the prediction vector bf(x) and the
true response vector y: ỹ − y.

The difference between the observed value and the estimated value of the quantity of
interest ỹ−y is the residual or fitting deviation of the criterion variable. The residuals,
in our analysis, are the differences between the actual BMI of individuals and their
estimated BMI (ỹ) using the lm. Since they are used for the estimation of the fitted
coefficients, the sum of residuals of a random sample is zero.

An extension of the lm are the generalised linear models (glm). These models
consist of three components:

• A random component, which specifies the conditional distribution of the criterion
variable (yi), given the predictors X = x1, ..., xn. The distribution of yi can be
Gaussian, binomial, Poisson, gamma and so on.

• A linear predictor which performs a linear regression, as for the lm (equation5.2).

• a smooth and invertible linearizing link function g(ỹ), which transforms the
expectation of the response variable ỹ to the linear predictor:

g(ỹi) = bo +
K∑
ki

bkfk(x1(i), x2(i), ..., xn(i)) i = 1, . . . , n, (5.3)

Therefore, generalised linear models allow to perform a linear regression for criterion
variables which have arbitrary distributions, moreover they introduce the link function
to relate the linear model to the response variable.

We use a glm to implement a regression on our data. In particular, the link function
is set as the logarithm and the performed regression is:

log BMI =lm(gender, age, hypertensionmedications, log(fasting glucose),

systolic pressure, diastolic pressure, total LDL, total HDL),

For each individual the corresponding residual is computed (log(BMI)− ˜log(BMI)),
obtaining a residual vector with length equal to the number of individuals (m).

We computed the number of normal-weight (nnor) (BMI≤ 25) and obese individuals
(nob) (BMI ≥ 30), in order to classify people into a group with an increased CVD risk
and a group with normal CVD risk. We sorted them residuals and grouped individuals
with the nob highest residuals in the increased CVD risk class people. In the same way
we compose the normal CVD risk group, which is formed by the individuals with the
nnor lower residuals.
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dataset # obese mean BMI # normal- weight mean BMI total # of people in the dataset

1) 33 32.8 84 23.4 187
2) 79 32.8 172 23.5 418

Table 5.1: Number of individuals classified as obese and normal-weight using the glm method
for the two datasets described in section 4.1.

Results with generalised linear model classification

As already said, we consider as predictors the following phenotypes: genders, age, total
and good cholesterols (LDL+HDL and HDL), fasting glucose, systolic and diastolic
pressures and the consumption of blood pressure medications. The response variable
is considered the BMI and we use as link function the logarithm. The number of
individuals labelled as obese abides by the percentage of people with BMI greater than
or equal to 30. More precisely, we include in the obese group people with residuals
greater than a threshold value, which is established as the percentile associated to
the percentage of non-obese people. The residual of one individual is the difference
between his actual BMI and the B̃MI estimated by the glm. In the same way we
classify normal-weight individuals, considering normal weight people characterised by
BMI ≤ 25. We applied this classification method on both the datasets described in
section 4.1:

1. For dataset 1 (the dataset composed by 187 individuals and 107 compounds) the
percentage of normal-weight individuals (BMI < 25) is 45% and that of obese
individuals (BMI > 30) is 17%.

2. For dataset 2 (the dataset composed of 418 individuals and 137 metabolites) the
percentage of normal-weight individuals is 41% and that of obese individuals is
19%.

We report in table 5.1 the number of individuals that are grouped in the obese and
normal-weight groups; for each group we associate its mean BMI.

We display the main phenotypic differences between normal and obese groups in
table 5.2, where the mean and standard deviation values of some phenotypes features
are reported.

We also perform a median test (see section 3.2.7) for quantifying the phenotype
differences between the obese and the normal-weight clusters.The null hypothesis is
that the two groups belong to the same population, which means that their phenotypes
are not significantly different. The confidence value is set at p = 0.05 and a value of
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dataset class BMI LDL HDL age systolic Pressure

1
obese 32.8± 4.5 5.5± 0.8 1.44± 0.43 54± 13 135± 16

normal 23.4± 2.4 5.3± 0.98 1.5± 0.4 53± 12 130± 18

non-ob 24.9± 3.1 5.30± 0.9 1.5± 0.4 53± 13 130± 18

2
obese 32.8± 4.9 5.3± 0.9 1.4± 0.6 52± 13 132± 15

normal 23.5± 3.5 5.2± 0.97 1.4± 0.3 51± 13 131± 18

non-ob 25.1± 3.1 5.7± 0.96 1.5± 0.4 51± 14 130± 18

Table 5.2: Mean and standard deviation values of some phenotypes features, related to
normal and obese groups.

method cass BMI age LDL HDL fast Gl sys P. dias P WHO waist circ

glmBMI
1 1 0 0 0 0 0 0 1 1
2 1 0 0 0 0 0 0 1 1

Table 5.3: Results of the median test (see sec. 3.2.7) between the obese and the normal-
weight clusters, for the glm classification method. The null hypothesis is that the two groups
belong to the same population, H0 = 1 indicates that the null hypothesis is rejected. The
confidence is set at p = 0.05.

H0 = 1 indicates that the null hypothesis is rejected. In table 5.3 the results of the
test are reported.

Both tables 4.2, 5.2 and 4.3, 5.3 show substantial differences between the cluster
phenotypes which depend on the adopted classification method. In particular, the
glm method forms two groups of individuals that are not significantly different with
respect to some phenotypic parameters (age, good and total cholesterols, fasting glu-
cose and systolic and diastolic pressures), but they have different BMI, whr and waist
circumference.

Hypergeometric test results

We perform the hypergeopetric test to evaluate the most significant differences between
single compounds of the normal-weight and the obese layers. The theoretical principles
of this test are explained in section 3.2.3. The method is the same of that described in
section 4.3.1 which is applied on the classification based on the WHO thresholds. As in
that section, for each layer we consider the number of times that a specific compound
results to be oversampled, since we perform the test for different thresholds. At the end
we rank the compounds looking at their number of over-representations; the results for
the different datasets and classification methods are listed in table 5.4.
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Table 5.4: Rank of DILGOM compounds based on p-values of hypergeometric test. The rank is
obtained considering the results of hypergeometric test for different threshold values, in particular
from z-value of 1.5 to 3.5 with steps of 0.1 using the glm classification method.

We noted that the results we obtain using the glm classification (tab 5.4) have a
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greater discrepancy between the dataset 1 and the dataset 2 (with 107 compounds).
For this reason we choose to use only the WHO classification method for the multiplex
analysis.
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Appendix B: Compounds of the DILGOM study

Abbreviation Full description Unit

Lipoprotein subclasses

XXL-VLDL-PL Phospholipids in chylomicrons and extremely large VLDL mmol/L
XXL-VLDL-TG Triglycerides in chylomicrons and extremely large VLDL mmol/L
XXL-VLDL-L Total lipids in chylomicrons and extremely large VLDL mmol/L
XXL-VLDL-P Concentration of chylomicrons and extremely large VLDL particles mol/L
XL-VLDL-PL Phospholipids in very large VLDL mmol/L
XL-VLDL-TG Triglycerides in very large VLDL mmol/L
XL-VLDL-L Total lipids in very large VLDL mmol/L
XL-VLDL-P Concentration of very large VLDL particles mol/L
L-VLDL-C Total cholesterol in large VLDL mmol/L
L-VLDL-FC Free cholesterol in large VLDL mmol/L
L-VLDL-PL Phospholipids in large VLDL mmol/L
L-VLDL-TG Triglycerides in large VLDL mmol/L
L-VLDL-CE Cholesterol esters in large VLDL mmol/L
L-VLDL-L Total lipids in large VLDL mmol/L
L-VLDL-P Concentration of large VLDL particles mol/L
M-VLDL-C Total cholesterol in medium VLDL mmol/L
M-VLDL-FC Free cholesterol in medium VLDL mmol/L
M-VLDL-PL Phospholipids in medium VLDL mmol/L
M-VLDL-TG Triglycerides in medium VLDL mmol/L
M-VLDL-CE Cholesterol esters in medium VLDL mmol/L
M-VLDL-L Total lipids in medium VLDL mmol/L
M-VLDL-P Concentration of medium VLDL particles mol/L
S-VLDL-C Total cholesterol in small VLDL mmol/L
S-VLDL-FC Free cholesterol in small VLDL mmol/L
S-VLDL-PL Phospholipids in small VLDL mmol/L
S-VLDL-TG Triglycerides in small VLDL mmol/L
S-VLDL-L Total lipids in small VLDL mmol/L
S-VLDL-P Concentration of small VLDL particles mol/L
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Abbreviation Full description Unit

XS-VLDL-PL Phospholipids in very small VLDL mmol/L
XS-VLDL-TG Triglycerides in very small VLDL mmol/L
XS-VLDL-L Total lipids in very small VLDL mmol/L
XS-VLDL-P Concentration of very small VLDL particles mol/L
IDL-C Total cholesterol in IDL mmol/L
IDL-FC Free cholesterol in IDL mmol/L
IDL-PL Phospholipids in IDL mmol/L
IDL-TG Triglycerides in IDL mmol/L
IDL-L Total lipids in IDL mmol/L
IDL-P Concentration of IDL particles mol/L
L-LDL-C Total cholesterol in large LDL mmol/L
L-LDL-FC Free cholesterol in large LDL mmol/L
L-LDL-PL Phospholipids in large LDL mmol/L
L-LDL-CE Cholesterol esters in large LDL mmol/L
L-LDL-L Total lipids in large LDL mmol/L
L-LDL-P Concentration of large LDL particles mol/L
M-LDL-C Total cholesterol in medium LDL mmol/L
M-LDL-PL Phospholipids in medium LDL mmol/L
M-LDL-CE Cholesterol esters in medium LDL mmol/L
M-LDL-L Total lipids in medium LDL mmol/L
M-LDL-P Concentration of medium LDL particles mol/L
S-LDL-C Total cholesterol in small LDL mmol/L
S-LDL-L Total lipids in small LDL mmol/L
S-LDL-P Concentration of small LDL particles mol/L
XL-HDL-C Total cholesterol in very large HDL mmol/L
XL-HDL-FC Free cholesterol in very large HDL mmol/L
XL-HDL-PL Phospholipids in very large HDL mmol/L
XL-HDL-TG Triglycerides in very large HDL mmol/L
XL-HDL-CE Cholesterol esters in very large HDL mmol/L
XL-HDL-L Total lipids in very large HDL mmol/L
XL-HDL-P Concentration of very large HDL particles mol/L
L-HDL-C Total cholesterol in large HDL mmol/L
L-HDL-FC Free cholesterol in large HDL mmol/L
L-HDL-PL Phospholipids in large HDL mmol/L
L-HDL-CE Cholesterol esters in large HDL mmol/L
L-HDL-L Total lipids in large HDL mmol/L
L-HDL-P Concentration of large HDL particles mol/L
M-HDL-C Total cholesterol in medium HDL mmol/L
M-HDL-FC Free cholesterol in medium HDL mmol/L
M-HDL-PL Phospholipids in medium HDL mmol/L
M-HDL-CE Cholesterol esters in medium HDL mmol/L
M-HDL-L Total lipids in medium HDL mmol/L
M-HDL-P Concentration of medium HDL particles mol/L
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Abbreviation Full description Unit

S-HDL-TG Triglycerides in small HDL mmol/L
S-HDL-L Total lipids in small HDL mmol/L
S-HDL-P Concentration of small HDL particles mol/L

Total lipids

VLDL-TG Triglycerides in VLDL mmol/L
LDL-C Total cholesterol in LDL mmol/L
HDL-C Total cholesterol in HDL mmol/L
Serum-TG Serum total triglycerides mmol/L
Serum-C Serum total cholesterol mmol/L

Amino acids and other metabolites

bOHBut 3-hydroxybutyrate mmol/L
Ace Acetate mmol/L
AcAce Acetoacetate mmol/L
Ala Alanine mmol/L
Alb Albumin mmol/L
MobCH2 CH2 groups of mobile lipids mmol/L
MobCH3 CH3 groups of mobile lipids mmol/L
Cit Citrate mmol/L
Crea Creatinine mmol/L
MobCH Double bond protons of mobile lipids mmol/L
Glc Glucose mmol/L
Gln Glutamine mmol/L
Glol Glycerol mmol/L
Gly Glycine mmol/L
Gp Glycoprotein acetyls, mainly a1-acid glycoprotein mmol/L
His Histidine mmol/L
Ile Isoleucine mmol/L
Lac Lactate mmol/L
Leu Leucine mmol/L
Phe Phenylalanine mmol/L
Pyr Pyruvate mmol/L
Tyr Tyrosine mmol/L
Urea Urea mmol/L
Val Valine mmol/L
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Abbreviation Full description Unit

Serum lipid extracts

Est-C Esterified cholesterol mmol/L
Free-C Free cholesterol mmol/L
FAw3 n-3 fatty acids mmol/L
FAw6 n-6 fatty acids mmol/L
FAw79S n-7, n-9 and saturated fatty acids mmol/L
TotFA Total fatty acids mmol/L
LA 18:2, linoleic acid mmol/L
otPUFA Other polyunsaturated fatty acids than 18:2 **
DHA 22:6, docosahexaenoic acid mmol/L
MUFA Monounsaturated fatty acids; 16:1, 18:1 mmol/L
TotPG Total phosphoglycerides mmol/L
PC Phosphatidylcholine and other cholines mmol/L
SM Sphingomyelins mmol/L

Derived measures

VLDL-D Mean diameter for VLDL particles nm
LDL-D Mean diameter for LDL particles nm
HDL-D Mean diameter for HDL particles nm
VLDL-TG-eFR Triglycerides in VLDL * mmol/L
IDL-C-eFR Total cholesterol in IDL * mmol/L
LDL-C-eFR Total cholesterol in LDL * mmol/L
HDL2-C Total cholesterol in HDL2 * mmol/L
HDL3-C Total cholesterol in HDL3 * mmol/L
ApoA1 Apolipoprotein A-I * g/L
ApoB Apolipoprotein B * g/L
ApoBtoApoA1 Apolipoprotein B by apolipoprotein A-I *
FAw3toFA Ratio of n-3 fatty acids to total fatty acids %
FAw6toFA Ratio of n-6 fatty acids to total fatty acids %
FAw79StoFA Ratio of n-7, n-9 and saturated fatty acids to total fatty acids %
CH2inFA Average number of methylene groups in a fatty acid chain
TGtoPG Ratio of triglycerides to phosphoglycerides
CH2toDB Average number of methylene groups per a double bond
DBinFA Average number of double bonds in a fatty acid chain
BIStoDB Ratio of bisallylic groups to double bonds
BIStoFA Ratio of bisallylic groups to total fatty acids
FALen
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