ALMA MATER STUDIORUM

UNIVERSITA DEGLI STUDI DI BOLOGNA

SCUOLA DI INGEGNERIA E
ARCHITETTURA

Facolta di Ingegneria
Corso di Laurea in Ingegneria Informatica
Tesi di Laurea in Reti di Calcolatori

CROWDSENSING AND PROXIMITY SERVICES FOR
IMPAIRED MOBILITY

Candidato: Relatore:

Cortellazzi Jacopo Chiar.mo Prof. Ing. Corradi Antonio
Correlatori:

Prof. Ing. Foschini Luca

Dott. Ing. lanniello Raffaele

ANNO ACCADEMICO 2014/2015
Sessione III

1

INTRODUCTION ...oiitiiimiemsimsmimismssasssassassnsans 5

1. SMART CITIES SCENARIO ..o ssssssssssssssssssssssssssssssssssssssnss 7
1.1 CROWDSENSINGoioismmsmnsmsamssmsnsssnssssssssassansnsnss 8
1.2 SMART CITIES ..o ssnssssssssssassnss 9
1.2 ACTUAL SUPPORTING SYSTEMSconimimsmsmmsmmsmssmsssssnssssssssssssssssssssssssssssssssssssssnsas 12
1.3 NOWADAYS NECESSITIES......cccosirsimmnmsmnmmsmssnsas 13
2. TECHNOLOGIES BACKGROUNDccccimmmmmmmsmsmmmmmmssnss 16
/25 2 ¥\ D 3 20 0 D 17
2.1.1 ARCHITECTURE.ccccounmnmmmimsmmmnsmsmsssinsssssssss s ssssssssssssssssssssssssssssssssssssssnss 19
2.1.2 APPLICATION LIFECYCLE ... ssssssssssssssssssssssssnss 21
2.1.3 ACTIVITIES AND FRAGMENTSoociiimmnmmmmmssssmnsssssssssssssssssssssssssssssssnss 23
/208 T 0 01 27
2.1.5 SERVICES. ... iisimsnssssssssssssssssssss s sss s s ss s s s s ss s sss s sassnsasnnass 29
2.1.6 ASYNCTASK AND LOADERScciiimimmnmsmsmninssnns 31
2.2 SPRING MVC....oiiiimimimismismssnssisisssssssisssssssss s s sassss s s sssssssssssssssssssssssnssssssssnassnss 34
2.2.1 ARCHITECTUREcccoonmnmmsmsmmmsmsmssnissanss 37
2.2.2 DI PRINCIPLE.......cciiimnmmmmmsmssssssisssssssss s s sssssssssssssssssssssssssssssssssssssanss 39
2.2.3 SPRING BEAN.....cciimmmsmmnsms s ssssssssssssssssssssssssssssssssnssnns 41
2.2.4 WEB. ... 42
2.2.5 RESTFUL COMMUNICATIONccocismsmsmsmmsmsssnss 44
2.3 OPEN STREET MAP (OSM)....cocimsmssmsmssmsmsssnns 47
2.4 PERSISTENCY TOOLScoiiiimimnmnsmsmssssinssmssanss 50
3. IMPAIRED MOBILITY APP......cnninnnnmssssssssssssssssssssssssssssssssssssssnns 53
3.1 CLIENT/SERVER MODEL......ccocsomsmmsmsmmsmssmsssnass 56
3.1.1 CLIENT FUNCTIONS ..ot issnssnss 58
3.1.2 SERVER FUNCTIONS. ... sssssssssssssssssssssssssssssssssssssssanss 60
3.2 ENTITIES OF INTEREST ..o sssssssssssssssssssssssnss 63
/200 0) 63
3.2.2 BARRIERS ... ssssssssss s sssssssssssssssssssasnss 65
3.3 USER INTERFACES ...t sssssssssssssssssssssssssssssssssssssnss 66
3.3.1 ANDROID APPLICATION ...ccccusmmmssmsemssssmsssssmsassnssssssssssnssnss 67
3.3.2 WEB PAGE ... s ssssssssss s ssssssssssssssssssssassnss 68
3.4 LOCALIZATION...cciiiiimmmnsmssmssssmsssssssssssssssssssssssssss s ssssssssssssssssssssssnssnsssssssssssssnsssssanssnassnss 69

3.5 COMMUNICATION ...covtiursmsumsmsnssmssnses 69

3.6 PLAN A SAFE ROUTE ... sssssssssssssssssssssssnss 70
4. APP AND SERVER DESIGNccconmimimmmmmnsmnssssssssssssssssssssssssssssssasss 71
4.1 EMPLOYED TECHNOLOGIES AND TOOLScconmimsmnmmmnmnsnsemssmsisssssssssssssssssssas 71
4.1.1 SERVER SIDE.....oinmmmnmsssssssss s ssssssssssssssssssssssasas 72
4.1.2 CLIENT SIDE....cci i ssssssssssssssssssssssssssssssassasnsans 73
4.1.2.1 ANDROID CLIENT ...cccoiiimimmmnsmsemssmssmmssmssassssssssssassnsans 73
4.1.2.2 WEBPAGE ... s s sassasas 77
4.2 DATA PERSISTENCY ...oiciiiiiimimmmnmsimsmsssssssssssss s ssssssssans 80
4.3 DESIGN OF THE ENTITIES OF INTEREST ..o 81
4.3.1 POIIMPLEMENTATION ...cccoisnmimimsnmmssmssmssmssmsssnsans 81
4.3.2 BARRIERS IMPLEMENTATION.....ccccnmmmmsmmmmsssssmesssssssssssssssssssssssssssssssssssssnsans 83
4.4 LOCALIZATION TOOLScoiiiimnmsemsnmssmmsssssmssnsans 84
4.5 DESIGN OF THE CLIENT /SERVER LOGIC.......cccotnmsmmsmmmsmssmsmsssssssssssssssssssssssssssssnnns 86
4.6 PEDESTRIAN ROUTE DESIGNcccccnmmmmmmmmmsnsmssssssssssssssssssssssssssss 87
5. IMPLEMENTATION ..oociiiimimsmnsssmssssnssnnnss 90
5.1 IMPLEMENTATION OF THE CLIENT /SERVER LOGICcccosmsmsmmsnnssnssesessssenss 92
5.2 IMPLEMENTATION OF SAFE ROUTE FUNCTIONccccnmmsmmmmsmssmsessssesssssssssssnsss 100
5.3 DATA EXCHANGE.......cosiimnmsmssmsnssssmssssmsssaes 103
5.3.1 PHOTO SETTINGSoovrinrrsmsnmsmssmsmssaes 104
5.3.2 TRANSMITTED ENTITIEScccsismimnmsmssmsmssssmsssas 106
5.4 GEOPOSITION.....cciciismsmnsmsmssmssssssmssnses 111
5.4.1 GEOCODING.....cossursmssmsessmssses 112
5.4.2 REVERSE GEOCODING......ccoosmsmmsmsmssmsmssses 113
5.5 EXPERIMENTAL MEASUREMENTS......ccocsmmmmmmnmnsmsmnsmsmssmsssssssssssssssssssssssssssssssssssses 113
5.6 TECHNICAL CONCLUSIONS AND FUTURE IMPROVEMENTS........ccoscusmsernsessas 117
CONCLUSIONS AND ON-GOING WORKS:coovmnmsemsmmsmmmssmssmssmsmmsssssssssssssssssssssssssssssssssns 120

Introduction

Nowadays, around 1 billion people live with disabilities, and the
percentage is around 15% of the total planet population. A large part of
them suffers from impaired mobility problems that can cause a large
number of difficulties related to the ‘normal life’ movements, so heavily
limiting their life full experience.

Because of that, the society has become more and more sensitive to this
kind of problematic: a vast number of institutions have been established to
help and sustain this category of people, including ONG associations and
public organisations. Their main goal is to help impaired people, pushing
toward their integration into everyday activities.

Despite all these efforts, a lot of impaired mobility people cannot live an
ordinary lifestyle because a lot of buildings and infrastructures are not
equipped properly for their specific needs, lacking environmental tools
that could help them to move. This kind of constraints is also evident if you
look around: how many times have we seen a bar with an assisted
entrance? Personally | have not seen so many of them, I have just seen a lot
of places with a step in the main entrance, instead.

If a person without problems can easily pass over a step, a person in a
wheelchair cannot do it so easily. Indeed, she cannot overstep it without
external help, causing a physically limitation to her activities. At least in
Italy, we are really far away from having a properly assisted society: most
of the private activities do not provide any tool to let in these people. There
is also a lack of IT platforms that support dynamically this category of
people, caring about their social integration and in general, their needs.

This thesis project aims to tackle all these issues and proposes a platform
to support people with impaired mobility by helping them to map all the
buildings and a large number of architectonical obstacles on a map and to
review all of them considering their level of accessibility. The final goal is
to help the impaired community to communicate with each other, sharing
their opinions to let other people in the community choosing the better
way to get across or the better place to go in order to be assisted properly.

5

In order to be effective in its goal, the application must be easy to use and
accessible to everyone at any moment and everywhere. For this reason, the
software will be developed around two pillars that are the main base for
today communication: the Internet and the smartphone environment.

The first two chapters of this thesis have an introduction role. Indeed, the
first chapter will introduce the background environment that surround
this thesis project, in particular the ‘smart cities’ principle, getting through
the technologies used for sustain this ideology. The second chapter will
explain all the technologies used in this project, giving a background
knowledge that is necessary for understanding the whole development
process.

The last three chapters explain at different levels the software
development: the third chapter contains all the consideration done during
the analysis phase, getting through the general idea about the application
workflow. It will introduce the general project environment and the
different entities that compose the structure. The fourth chapter talks
about the design of the application, explaining the structure of the project
and the functions needed by the entities composing the whole pack. It
shows and motivates how the technologies have been used into the project
and the main logic of its development. The last chapter shows the coding
phase, getting into the details of coding. It will contain sections about the
algorithms used and about the resource management, including some
monitored data.

1. Smart Cities Scenario

This section describes the general environment that surrounds the
development of this thesis project and its main principle and purposes. |
have decided to put this section at the beginning of the document
because is important to understand the main scenario in which this type
of platform is inserted into, in order to understand the reason of its
development.

Nowadays the cities are trying to collect data from their different areas
to understand the necessities of their citizens. This thesis project has the
same goal because the main idea is to collect information regarding the
adaptation levels of the various structure elements of the cities for
improving the life experience of people with impaired mobility.

This necessity has born by the necessity to build an infrastructure that
supports people with mobility handicap after collaboration between the
project ParticipAct of the University of Bologna and the EU CHEGO LA.
The first one is developing an Mobile CrowdSensing (MCS) application
which can create a dynamic and collaborative infrastructure composed
by the crowd, while the second one want to support impaired mobility
people in their every-day life creating them an open infrastructure that
reviews different kind of places. This put as key-principle of the project
the easy use of it and the high interactivity level required.

As first, the designed platform has the main purpose to inform these
people to the current conditions of the places in the current city
regarding the adaptation tools. Indeed, It has been developed with the
final purpose to help people with mobility problems in order to avoid
unpleasant experiences caused by not adapted passages or unequipped
structures that can represent a significant inconvenience. For these
reasons, the system must be up to date, in order to provide real-time
information to the final user.

For satisfy this necessity, there is the need to open the system to the
users, allowing them the possibility to upload their own opinion and
suggestions for helping the other community users. Because of this, the
entire system bases its roots on the ‘crowdsourcing’ principle, which
indicates the process to obtain services, ideas or just information by a
large group of volunteer people that are not organised between them.

The term ‘crowdsourcing’ has been used for the first time in the 2005
from Jeff Howe and Mark Robinson and derives from the idea that the
work through Internet was “outsourcing to the crowd”. This allows
obtaining a large amount of data, usually current information, by a self-
organized organism composed by people from different parts of the
world.

More specifically, the key-principle of this project is the crowdsensing,
which is a branch of the crowdsourcing.

11 Crowdsensing

The term ‘crowdsensing’ indicates the concept by which a large amount
of mobile sensing devices share a considerable amount of data with the
aim of measuring physical phenomena or to support a common interest
purpose.

These sensing devices could cover a large spectrum of objects, such as
smartphones, sensors embedded in videogame platforms, music-players
or built-in car devices. Obtaining information from these such devices is
possible because they contain a large number of sensors, as motion
sensors, accelerometer, GPS, microphone, ... This makes possible the
sharing of multiple type of information with an enormous amount of
people.

Mainly, there are two different type of crowdsensing: the Partecipatory
sensing and the Opportunistic sensing. The first requires a direct
interaction with the user, while the second work in background, without

8

breaking the normal device activities. Crowdsensing applications
represent a turning point regarding the data retrieving, because with
this kind of approach is possible to create a self-organized system which
can guarantee a complete set of data: it is self-organized because the
entire data stored are inserted from the users and, moreover, the
received data are obtained from an extended spectrum of people, which
guarantees a 360° set of information.

Usually, these kinds of systems contain a real-time set of information
because they are characterised by a high-speed updates frequency. This
characteristic cannot be reached by closed system, because they do not
allow the users to change the database content.

So, basing on these factors, the purpose of the crowdsensing project sis
to create an application that can draw a general review of a city
considered from a specific point of view, registering and storing the
weak and the strong points of it. Regarding this thesis project, the
crowdsensing tool is used to collect the information needed to review
the city structures equipment, in order to communicate to the final user
a brief suggestion based on main criteria that can summarize the actual
conditions of the selected entity.

1.2 Smart cities

The ‘smart cities’ expression indicates a city able to improve its own
services and tries to enhance the personal experience of its own citizens
through the use of the modern technologies. The concept is briefly
explained by the Fig. 1, 2, which shows a possible smart city model, in
which all the needed functionalities are improved and synchronized
together by sensors, constantly monitoring a focused condition, which
could be the pollution of the air, the traffic congestions, etc.

Smart Infrastructure Smart Operation

* Innovative platforms * Integration of urban

¢ Interconnection urban parts information systems

* Smart mobility * Interoperation Services

- — Smart City - —

Smart Governance Smart EcoSystem

® support governing activities * New Business model

* Urban management and ¢ Value-added services

service cooperation * enhance society's ability to

organize and interact

Figure 1. Smart city principles

Nowadays, the current way to obtain information about the city is
through fixed sensing devices as video cameras, traffic lights and other
types of fixed sensor. It is evident that this type of approach is limited,
because this kind of sensors covers a very strict set of data. Indeed each
single sensor can retrieve a specific type of information, as video for the
camera, the number of current vehicles and their average speed for
street sensors or just the current pollution level of the air.

This means that theoretically, in order to collect a correct draw of a city
using these kinds of sensors the entire city should be covered by them
because, as the name suggests, they can register the activities just in a
little area. Moreover, it would imply a huge amount of money and a
high-efficiency organisation that will merge all the received data and
stored them in real-time.

At last, with the increasing number of people who lives in the cities, this
method could be considered inefficient because it could not produce the
amount of information needed, which is directly proportional with the
number of the city citizens.

10

[¢]

Healthy Living Promotion
°, &

/_
S ARSI ST SRR RIS SRS S

2> < = 2 - i
¢ Traffic Control 5P Y ° o0, Air Quality Monitoring
> f and Mappin
— C o > <« pping

Location Aware
Advertising

/
O
|‘

° = "< L
O e
Q = 2
= =
. 2
Smart Public Targeted Infrastructure
Transport Improvement

Figure 2. Possible functionalities implemented by an efficient smart city system

For this purpose, crowdsensing is a new paradigm that can be useful in
order to handle the increased number of required data. By this
resolution approach, the citizens will become active actors that can
collect data around the all city area, constantly updating the data pool.
Applying it does not imply any kind of investment because the
smartphones or other mobile devices will represent the required
Sensors.

This can potentially create a self-organized system that ask to groups of
citizens to complete some kinds of ‘Tasks’ and upload the data to a
central system that computes the received data and collects information
regarding the city. These information cover a large spectrum of possible
options: for example using the smartphones is possible to measure the
air pollution and noise pollution, it is possible to share a photo of an
architectonic barriers that blocks a certain road and so forth. So, by
these kind of sensors is possible to retrieve a various set of data
regarding different aspects, a feature that is not provided by the fixed
category. Moreover, these sensors are mobile because they get around
with the person who carries them: it means that a single sensor could
cover different areas in different times.

11

A possible drawback is that use the citizens as data miners does not
guarantee a constant data flow: while using the fixed sensors pledge a
24 /7 data computation, crowdsourcing application must let to the user
the possibility of shutting down all the sensors and interrupting any
type of data sourcing, allowing his/her own privacy.

1.2 Actual supporting systems

As briefly explained before, nowadays the main crowdsourcing sources
are the ‘sensor networks’. This term indicates a network composed by
autonomous sensors spread into a chosen area for monitoring it and
retrieves useful information. There are multiple types of sensor
networks and one of the most common type is the one founded on
Machine-to-Machine (M2M) principle.

This term indicates a large number of devices that communicate
between the various entities through a direct link or satellites networks,
without any human interaction. The sensors just collect data during all
they lifetime and send them to the repository. The sensors could cover a
wide area of different data type. The Fig. 3 summarize a simple M2M
structure just for exemplify the concept: there are some sensors, in that
case three different sensors, which collect the information from the
environment and send them to the M2M AreaNetwork that will handle
the received data for sending them to the M2M Server, which will be
programmed for understanding the meaning of the received data and
act basing on it. In the picture case, the server will send a notification to
a device.

12

Sensor “’
Lamp Generic Event

Actuator Enabler
Remote
) M2M Area M2M M2M Warning Device
o N Sensor Network Gateway Server
/f ; Fan '
3 Actuato
- ! Location Remote .
Secver Contral Device

Presence

Temp. Sensor
l Server

Figure 3. Example scheme of M2M

1.3 Nowadays necessities

The need to obtain day by day a larger amount of data from the sensors
descends from the increasing number of the cities inhabitants. This can
be easily afforded through the MCS applications because each person
has its own smartphone, increasing exponentially the number of the
available sensors. The MCS applications are platforms that use the
mobile devices, as smartphone or tablets, as sensors. Indeed, today’s
mobile devices have more computing, storage and communication
resources than a simple sensor; also usually they have the possibility to
use various sensors in the same time, allowing storing a notable amount
of data.

Secondly, people bring their smartphone whatever they do, making the
smartphone a highly reliable crowdsourcing tool: it can potentially store
data all day long, documenting our life day by day and merging the
collected data into a single database.

An example can be the estimation of the traffic congestion. Nowadays
the data for calculating it come from mote-class sensors that have been
places and set up in the road. Instead of spend money and resources for
setting up this kind of network, we could just use the localization sensor

13

of the drivers: the larger number of near positions the system receive,
the higher is the probability of a congestion in that point of the road.

Another useful application would be the customization of a map, which
is not possible by the traditional M2M sensor networks. Indeed,
information as the actual condition of a place or the review of its
activity is not obtainable thought sensors, but just by the users sharing.
This allows to create interactive map platforms that can help the
citizens to map a certain area in the most useful way for them. A
common example is the Point of Interest (POl) mapping, as explained in
the Fig. 4.

Figure 4. A POI-oriented map

Unfortunately, these MCS application still presents several drawbacks:
for example the data could be of a different quality type, because not all
the mobile devices have the same type of sensors, computing resources
or accuracy. For this reason, in order to implement a functional MCS
application a device target must be identified, allowing having a
minimum quality data.

Another aspect that must be considered is the privacy: of course
humans concerns their own personal spaces and the user may not want
to share data sensors that can reveal private information, as for example
the current location. For this reason, there is the necessity to find a way
to convince the user to use MCS applications and to share data, such as
incentives. So, based on these assumptions, crowdsensing seems to be
the most eligible way to collect data following the ‘smart city’ concept,

14

even considering it drawbacks. Indeed, while a sensor can just register
and share physical data, MCS applications can also collect other kind of
data, as the social data.

Three different categories of MCS application can be considered:

* Environmental: these applications measure natural events,
collecting physical data exactly as the mote-class sensors do

* Infrastructure: these applications measure large-scale
phenomena that are related to the public infrastructure. This can
also been implemented using sensors, implicating a waste of
resources

* Social: these applications regard information sharing between the
people of the same community. This feature, obviously, cannot be
implemented by sensors and it represent one of the most useful
functionality for citizens.

15

2. Technologies background

This chapter overviews the main technologies employed in this project. |
have decided to put this background material before other chapters
because the main idea is to build background knowledge to understand
the choices taken into the project.

Indeed, the world technologies are improving and changing day-by-day,
introducing new kind of devices and communication methods. The main
point of strength of a MCS application lies in the end-user device on
which it has been developed: to ensure a frequent use by the user it
should be developed on a platform that is at the base of the all-day life
and that allows to share data by remote.

For this purpose this platform has been developed on two main
environments that represent the routine of the modern human: the
mobile and the web.

16

2.1 Android

Android has been initially developed by Android Inc. and later bought by
Google in 2005, next unveiled in 2007. This alliance has the common
goal to foster innovation on mobile devices and to give to the consumers
a better user experience than what is available on today’s mobile
platforms. The main idea behind Android is to create an openness
platform that allows the developers to work more collaboratively,
increasing rapidly the services offered by the system itself.

A large number of industries build mobile devices based on Android
Operative System (0S) as Samsung, Lenovo, Huawei, LG, Xiaomi, etc...
which makes Android the most common installed mobile OS. Indeed
nowadays, it covers, basing on 2015 statistics, the 82,8% of the mobile
market, followed by the 13,9% of the i0S OS, as shown in Fig. 5.

Worldwide Smartphone OS Market Share
(Share in Unit Shipments)

90%

80%

70%

30% -

%7 w

10%

Windows Phone

Source: IDC, Aug 2015 Android —i0S BlackBerry OS Others

0% T T T T " f T T T —

Figure 5. A graph representing the most used mobile 0S

17

Android is a totally open source OS, with is characterised by one of the
largest community, due to the reduced development costs and to the rich
development environment. Another main aspect of Android is the constant
version update: starting from the unveiled in the 2007 and until today, 11
versions have been published:

Code name Version number Initial release date
Cupcake 1.5 April 27,2009
Donut 1.6 September 15, 2009
Eclair 2.0-2.1 October 26, 2009
Froyo 2.2-2.2.3 May 20, 2010
Gingerbread 2.3-2.3.7 December 6, 2010
Honeycombl] 3.0-3.2.6 February 22,2011
Ice Cream Sandwich 4.0-4.0.4 October 18, 2011
Jelly Bean 41-4.3.1 July 9, 2012

KitKat 4.4-4.4.4,4.4W-4.4W.2 October 31, 2013
Lollipop 5.0-5.1.1 November 12, 2014
Marshmallow 6.0-6.0.1 October 5, 2015

Passing to the hardware part, originally the main hardware platform is the
ARM architecture, with the adding of x86 and MIPS architectures officially
supported in later Android versions. Moving forward with the more recent
versions of the OS the requirements have changed, reaching the 1824MB
required on devices running Marshmallow version with a high screen
definition.

Also, each Android smartphone is composed by a large number of sensors,
as still or video camera, GPS, orientation sensors, accelerometers,
gyroscopes, barometers, magnetometers, proximity sensors, thermometers
and touchscreens. These hardware characteristics make the mobile
devices category the most eligible sensors nowadays.

18

2.1.1 Architecture

Android is an OS that is characterised by a pretty complex architecture,
shown in the Fig. 6.

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Activity Window Content View Notification
Manager Manager Providers System Manager

Package Telephony Resource Location XMPP
Manager Manager Manager Manager Service

LIBRARIES ANDROID RUNTIME

Surface Media . Core
Manager Framework o Libraries

OpenGLIES FreeT . “Balvik Virtual
pen ' - ype WEbKIt

LINUX KERNEL

Display Camera Bluetooth Flash Memory Binder (IPC)
Driver Driver Driver Driver Driver

usB Keypad WiFi Audio Power
Driver Driver Driver Drivers Management

Figure 6. The Android architecture

The bottom layer (the red one in the picture) is composed by a Kernel,
which is based on a Linux kernel (the original version was the 2.6, from
android 4.0 it has been updated to version 3.x), which approximately 115
patch. This layer provides a level of abstraction from the device hardware
and it contains all the essential hardware drivers, interfacing all the
peripheral devices.

19

On top of the Linux kernel there is a set of libraries (in the picture the
green part) that gives to Android the needed functionality for guaranteeing
a high interactivity. For example we can notice WebKit, which is an open-
source web browser engine, SQLite, which is a useful repository for storing
data, and SSL, which is responsible for Internet security. In addition to
these libraries, Android encompasses Java-based libraries that are specific
to the Android development. These libraries facilitate for example the
content access, providing some default services including messages,
system services and inter-process communication.

On the same level of the libraries we find a section called Android Runtime
that contains two main elements in the Android architecture. The first is
the Dalvik Virtual Machine, which is a JVM that uses Linux core features
like memory management and multi-threading. This VM allows to every
Android application to run in its own Dalvik VM instance, without
interfering with the others processes handled by the OS. The second is a set
of core libraries that enables Android application developer to write
Android applications through the Java programming language.

On top of these two second-level layers there is the Application Framework
level that provides high-level services in form of Java classes that can be
used and modified by the developers. One of the main services offered by
this layer is the Activity Manager, which controls all aspects of the
application lifecycle, interacting with the overall activities running in the
system. As following there is the Content Provider, which allows the data
sharing between different applications. This is particularly useful when a
data has been obtained with one application, for example the camera, but it
needs to be used into another application context, for example upload a
comment with a photo into a second application. Thirdly, we find the
Resource Manager, which provides access to non-code embedded
resources, as layouts, images, pre-defined strings and other type of
resource data. Then there is the Notification Manager, which handle all the
notification system of the Android applications, allowing showing alerts or
messages to the user. At last, the View System guarantee a large set of views
used to create the GUISs.

As top layer there is the Application level, which contains all the installed
application on a device.

20

2.1.2 Application lifecycle

An Android application is composed by building blocks called Components.
Briefly the four main components of an Android application are the
Activities, which handle the user interaction, the Services, which handle
background processes, the Broadcast Receivers, which handle the
communication between the OS and the applications and the Content
Providers, which handle the data management. These entities are declared
and coupled into the AndroidManifest.xml file that ratifies the interactions
between them, other than the application permissions and all the libraries
dependencies.

The application object is created whenever one of the declared
components is started, creating a new process with a unique ID under a
unique user. This object starts before any declared component and runs as
long as another component of the application runs.

When an application is started the system checks if an instance of the
selected application is still in the device memory, allowing a faster restart
of the object. Of course, the application objects are removed from the stack
if the system needs to free up resources. This operation follows a priority
system explained below:

Process

Description Priorit
status p y

An application in which the user is interacting with an
Foreground activity, or which has an service which is bound to 1
such an activity.

User is not interacting with the activity, but the
Visible activity is still visible or the application has a service 2
which is used by a inactive but visible activity.

21

Process

Description Priorit
status p y
. Application with a running service which does not
Service . . N 3
qualify for the precious priorities.
Application with only stopped activities and without a
Background pp? Oy Stopp 4
service or executing receiver.
Empty Application without any active components. 5

All processes with priority 4 or 5 are added to a Least Recently Used list
(LRU list) and the processes that are at the beginning of it are killed if the
system requires a free up of resources. The opposite option is the on in
which the processes have been recalled by the user, obtaining a high
priority. This workflow is illustrated in the Fig. 7, which explains the LRU
Cache logic.

LRU Cache

Least used
items in the list

get()

Calling get() for an item, moves it to the top of the cache

Figure 7. The Least Recently Used list behaviour

22

2.1.3 Activities and Fragments

As a C, C++ or Java program start from a main() function, the Android
application is initiated by an Activity through the onCreate() call-back
method.

In particular an activity is an application component that provides a
Graphical Interface, allowing the user to interact with the application.
Multiple activities bounded together create an application object. Between
all the activities there is an activity called ‘main’ that is the first activity
called when the application is launched.

When another activity starts the previous is stopped and is put into the
BackStack, which is a stack that store the activities sequence. For an
efficient organisation of the activities, Android has implemented a lifecycle
for this kind of entities.

As we can notice in the Fig. 8, this lifecycle is based on the activity state and
allows creating a strong and flexible application if used in the right way. An
activity can exist in three different states: Resumed, Paused and Stopped.

Resuming an activity means to recall the selected activity in foreground,
‘running’ the current activity. Instead, when an activity is in the Paused
state, it means that another activity is in foreground but the previous
activity is still visible (for example a half transparent activity that does not
fully cover the screen size). When an activity is in the Stopped state, the
activity is totally obscured by another activity. Both Paused and Stopped
activities could be killed if the Android system needs to free up memory.

23

User navigates
to the activity

|

' App kﬁr'::ess .‘I‘l
. 4

Apps with higher priority

need memory

Activity
launched

v

> onCreate()

v

onStart()

v

onResume()

v

Activity

running

\ 4

I

Another activity comes

nto the foreground

v

onPause()

The activity is
no longer visible

v

As illustrated into the Fig. 8, each change of state launchs a method
(onCreate () when the activity is created, onStart () when it becomes
visisble to the user, onResume () when the user starts interacting with the
application, onPause () when the current activity is being paused and
another is being resumed, onStop () when the activity is no longer visible,
onDestroy () when the activity is destroyed by the system, onRestart ()

onStop()
[

v

onDestroy()

:

' | Activity
\ shut down
.

24

+— onRestart()

A

+—

User returns
to the activity

)

User navigates
to the activity

J

The activity is finishing or
being destroyed by the system

Figure 8. An activity lifecycle

when a stopped activity is being resumed) and each method can be
customized replacing the default one.

Moreover, an activity can contain a various number of other types of
component: the Fragments. A Fragment is a portion of the user interface
into an Activity, which acts as ‘Container of fragments’. Indeed a single
activity can contains multiple fragments, or a new fragment can replace
and old one.

This is possible because fragments are always embedded into an activity;
for this reason the activity lifecycle heavily conditions the fragment
lifecycle. For example if an activity is paused, all its referred Fragment
entities are paused too. The philosophy behind this component is to
support a more dynamic and flexible Ul. Indeed, Fragments were not
implemented at the Android born, but have been introduced in Android
3.0.

Fragment are characterised by their own lifecycle, which is displayed in the
Fig. 9. As it is clear, the Fragment lifecycle follows the activity philosophy,
launching methods when the state of the fragment element changes.
Indeed, three different states exist that refers to a fragment: Resumed,
Paused and Stopped.

The state-dependant methods are the following:

* onAttach() : called when a fragment had been associated with the
activity

* onCreateView() : called to create the associated view hierarchy

* onActivityCreated() : called when the activity method onCreate() has
returned

* onDestroyView() : called when the associated hierarchy is being
destroyed

* onDetach() : called when the fragment is bing disassociated from the
activity

25

Fragment is

onAttach() ‘

v

onCreate()

v

onCreateView() —=-+————

v

onActivityCreated()

v

onStart() |

v

onResume() ‘

v

o ek e

User navigates The fragment is
backward or added to the back
fragment is stack, then

removed/replaced removed/replaced

v v

onPause() ‘
v v
onStop() ‘ The fragment
T ¥ returns to the
layout from the
onDestroyView() \ back stack

Lv L J
onDestroy() ‘

onDetach() ‘
Fragment is

Figure 9. A Fragment lifecycle

26

One of the main differences between an activity and a fragment is that
whenever a fragment is stopped it is not stacked into a collection by default
as an activity does. Indeed, this feature is obtained by calling the
FragmentManager method addToBackStack, adding in this way the
fragment to a stack hosted by the activity.

2.14 Intent

An Android Intent is an abstract description of an operation to be
performed and it could be used for launching an activity or for
communicating with another component of the application, as a Service or
BroadcastReceiver. More precisely, an Intent is a bundle of information
that carries information used by Android OS to determine which
component must be called, as showed in Fig. 10.

Furthermore, there are two different types of Intent types: the explicit
Intents that contains the name of the component to start, and the implicit
Intents that do not name a specific component, but letting the system
handles the requested action.

Figure 10. The intent role into Android

27

To handle the second type of Intent, the Android system checks the
<intent-filter> tag into the AndroidManifest.xml file. Using this tag is
possible to specify the type of intent that an entity can accept based on the
intent <action>, <data> and <category>.

Intent

: Data
Primary
attributes :
Action

Categor Flags
Secondary 5oLy 5
attributes

Component Extras

Figure 11 The Intent data entities

As showed in Fig. 11, an Intent is composed by six components:

* Action: this is a mandatory part of the intent and is a string
indicating the action to be performed or reported.

* Data: this field adds a data specification to an intent filter, consisting
in a data type or a URI or simply both

* (Category: this field is an optional part of Intent object and it's
composed by a string containing additional information about the
kind of component that should handle the intent.

* Extras: this field contains key-value pairs containing additional
information that must be delivered to the called component, as
variables.

28

* Flags: This field contains instructions on how to launch an activity
and how to treat it after it's launched.

* ComponentName: This optional field is a ComponentName object
representing a component class. If this field is set, the Intent object is
delivered to an instance of the addressed class.

2.1.5 Services

A Service is an android component that can perform long operations in the
background. They do not provide any type of user interface and they are
launched by other components and still run even if the component or the
application itself has been stopped.

A Service is characterized by a state, which has two different setting
option: the first is Started, which means that an application component
starts it calling startService (), the second is Bound, which indicates that an
application component binds to the Service entity by calling bindService ().
A bound Service offers a client-server interface that allows the other
application components to interact with Service obtaining results or
sending requests across processes; furthermore, more components can
bind to the same Service.

Another Service characteristic is that this component has a lifecycle and
some call back methods. The Fig. 12 illustrates which is the lifecycle of a
Service started with startService () on the left side, while on the right side
it explain the lifecycle of one started with bindService ().

29

onCreate()

T

onStart()

——

Service is
running

is stopped

_(no caliback) |

onDestroy()

" The service ’

UN Bounded Service

onCreate()

onBind()

(

| Client interacts

with the service |

v

4y

onRebind()

onUnbind()

{

onDestroy()

Bounded services

Figure 12. A Service lifecycle

The most important method that must be overwritten for create a Service

dare:

* onStartCommand(): this function is called when another component

requests to start the service by calling startService()

* onBind(): this function is called when another component wants to
bind to the service by calling bindService()

30

* onCreate(): this method is called when the service is created

* onDestroy(): this method is called when the service is not used and is
being destroyed

These functions represent the code lifecycle of a Service component. Once
a Service is started is a developer duty setting an event that calls the stop
of the component, even if the application has been destroyed, or it could
potentially go on until the entire device is shutting down.

2.1.6 AsyncTask and Loaders

By default, Android modifies the user interface and handles inputs event
from one single user interface thread, called the main thread and If the
programmer does not use any concurrency constructs, all code of an
Android application runs in the main thread and every statement is
executed after each other. If you perform a long lasting operation, for
example accessing data from the Internet, the application blocks until the
corresponding operation has finished. For this reason, Android as OS
provide two main classes that can handle asynchronous requests: the
AsyncTasks and the Loaders.

The AsyncTask class encapsulates the creation of a background process
and the synchronization with the main thread. It also supports reporting
progress of the running tasks. To use AsyncTask you must subclass it.
Indeed, AsyncTask uses generics and varargs. The parameters are the
following AsyncTask <TypeOfVarArgParams , ProgressValue , ResultValue>
An AsyncTask is started via the execute() method, which calls the
doInBackground() and the onPostExecute() method. TypeOfVarArgParams
is passed into the dolnBackground() method as input, ProgressValue is
used for progress information and ResultValue must be returned from
doInBackground() method and is passed to onPostExecute() as a
parameter. The doInBackground() method contains the coding instruction
which should be performed in a background thread. This method runs

31

automatically in a separate Thread. The onPostExecute() method
synchronizes itself again with the user interface thread and allows it to be
updated. This method 1is called by the framework once the
doInBackground() method finishes. The whole lifecycle is summerized is

the Fig. 13.
K Asynctask \

onPreExecute

dolnBackground

onPostExecute /

Figure 13. AsyncTask workflow

Because an AsyncTask has methods that run on the worker thread
(doInBackground()) as well as methods that run on the Ul (e.g.
onPostExecute()), it has took keep a reference to it's Activity as long as it's
running. But if the Activity has already been destroyed, it will still keep this
reference in memory. This is completely useless because the task has been
cancelled anyway. Another problem is that we lose our results of the
AsyncTask if our Activity has been recreated. For example when an
orientation change occurs. The Activity will be destroyed and recreated,
but our AsyncTask will now have an invalid reference to its Activity, so
onPostExecute() will have no effect.

32

The second class that can implement asynchronous requests is the Loader
class. This class allow to load data asynchronously in an activity or
fragment. They can monitor the source of the data and deliver new results
when the content changes. They also persist data between configuration
changes. If the result is retrieved by the Loader after the object has been
disconnected from its parent (activity or fragment), it can cache the data.
Loaders have been introduced in Android 3.0 and are part of the
compatibility layer for Android versions as of 1.6. This class is supported
by a second entity, the LoaderManager, which keeps your Loaders in line
with the lifecycle of your activities or fragments. If Android destroys your
fragments or activities, the LoaderManager notifies the managed loaders to
free up their resources. The LoaderManager is also responsible for
retaining your data on configuration changes like a change of orientation
and it calls the relevant callback methods when the data changes. Loaders
are characterised by four different states:

Reset: in this state, the loader gives up any data associated with it for
garbage collection. Called by the LoaderManager when destroying the
loader.

Started: this is the started state achieved by a call to startLoading()
that’ll invoke the onStartLoading() callback. Monitoring for changes
and performing new loads based on the changes will also be done
here. This is the only state in which onLoadFinished() is called
(generally in the Ul thread).

Stopped: in this data, no data can be delivered to the client (that can
only happen in the Started state). It may observe/monitor for
changes and load content in the background for the purpose of
caching that can be used later if the loader is started again. From this
state the loader can be started or reset.

Abandoned: an intermediary state between stopped and reset where
it holds the data until a new loader is connected to the data source, so
that the data is available until the restart is completed.

33

2.2 Spring MVC

With the technology progress we are assisting to a radical change of human
habits. Always more our life is strictly related with the technologies around
us, and one of these technologies is Internet. As we can notice from the Fig.
14 the graph curve trend is almost exponential, indicating that the number
of users is increasing very quickly.

Number of Internet Users in the world

Internet Users in the World

3000 000 000

1993 1995 1999 2 DU' .‘
1994 W6 99 UL/.J .'“ 2 nu.: 2006 ; 8 2

B Intemet Users

1.500.000

=2

2‘ -b!.l

3,016,000,000 41%

Total number of internet users as of Percentage world population with

26" November 2014 internet

Figure 14. Internet users until 2014

Internet has brought an inner innovation in the communications
environment, redefining the most common communications media, giving
birth to a new kind of services as Internet telephony and Internet
television. This has facilitated sharing ideas between people, creating new
dynamic platforms as blogs or web feeds that allows to publish thoughts

34

and opinions on the web. Because of the freedom that Internet allows to its
user, a lot of companies offer their services online, through the websites.
This kind of approach is replacing totally the physical one.

Nowadays there are a lot of different websites that covers the most widely
spectrum of functions, starting from the social networks and ending with
the shop websites, passing through personal spaces in which the owner
can publish whatever he wants to, as blogs. Anyway, even these kind of
services need to be constantly updated.

Indeed, in the beginning all the websites were static, which means that all
the content was written in HTML combined with CSS, guaranteeing a short
development time and a faster website, because the content of the page can
not change and remains every time the same.

The problem with this approach is the low interactivity of the website.
Indeed, the website does not adapt itself to the current user and does not
allow the development of any kind of personalized section. For these
reasons nowadays the largest number of websites are dynamic, which are
not just composed by HTML and CSS, but also contains some part of a web-
scripting language, as JavaScript, PHP, Ruby, etc... These scripting
languages allow adding functionalities to webpages, such as recover data
from the database, save data into the database or calling external APIs to
get some information, as shown in the Fig. 15.

A platform that can handle this kind of complexity is Spring, which is one of
the most popular application development framework for enterprise java
allowing to create an high performing reusable code.Spring framework is
an open source Java platform initially written by Rod Johnson and the first
release was under Apache 2.0 in 2003. Using Spring brings various kind of
benefits, first of all this platform enables developers to develop enterprise-
class applications using POJOs.

POJO is an acronym, which stands for Plain Old Java Object and indicates a
Java object not bound by any special restriction. Using POJOs allows Spring
to do not need an E]B (Enterprise JavaBeans) container, but it needs just a
robust servlet as Tomcat.

35

STATIC WEB SITE DYNAMIC WEB SITE

INTERNET DEVICE INTERNET DEVICE
running a running a
USER AGENT USER AGENT
(i.e. a Web Browser) (i.e. a Web Browser)

URI detection

-
script

HTML
document

E

9

P

database other

documents
and scripts

Figure 15. Differences between a static website and a dynamic one

Moreover, Spring is based on the ModelViewController(MVC) framework,
providing a great alternative to other web frameworks, and it provides an
API to translate specific exceptions of different technologies, such as JDBC,
Hibernate or]DO. Furthermore, this framework is lightweight if
considering size and transparency caused by the usage of an Inversion of
Control (IoC) container, especially if compared to an EJB one. This brings a
consider limit of the resource consumptions and CPU.

36

One of the key components of Spring is the Aspect Oriented Programming
(AOP) Framework that provides the implementation of aspects and
behaviours present across the application, dividing them from the
application domain. At the base of this approach there is the concept of
Crosscutting Concern, which represents functionalities that can be invoked
in various points of an application, such as caching, logging or the
authentication. To reduce the redundancy of the application the AOP
approach tries to isolate these functionalities in a strict number of
modules, called aspect that represent the modularity unit of the AOP, as the
class represent the unity of modularity of OOP.

ASPECT ORIENTED PROGRAMMING
OOP

Application Code
sprinkled with
secondary/cross
cutting concerns
Primary
Concerns

Aspects(cross
cutting concerns)

Figure 16. The difference between OOP and AOP

Another key component is the previously mentioned IoC Container, which
is better explained in one of the following sections.

2.2.1 Architecture

One of the main properties of the Spring Framework is the modularity.
This allows developers to pick and choose which modules are applicable to

37

project, without the necessity to bring in the rest of them. The framework
is composed by 18 modules, illustrated in Fig. 17.

Spring Framework

Data Access / Integration Web (MVC / Remoting)

Ll il WebSocket Servlet

OXM JMS

. Web Portlet
Transactions

"

TAOP] [Aspects] [Instrumentation] [Mmaging

Core Container

Beans Core Context SpEL

Test

Figure 17. The Spring framework architecture

The heart of Spring Framework is the Core container that is the base for all
the other modules, built on top of it. It provides the Dependency Injection
feature and it contains the BeanFactory that creates and manages the
lifecycle of the various application objects. Also, the Context module is built
on the previous two and it is a middleware to access any defined object in
the application.

The Spring DAO section contains the modules needed from the application
to interact with its own database, creating abstractions over the low level
tasks. It supports various types of components as JDBC, ORM (Object

38

Relational Mapping), OXM (that supports Object/XML mappings), JMS (Java
Messaging Service) and the Transaction (that supports programmatic
transactions for POJOs classes).

The web layer offers web oriented features to build a solid and flexible web
application, such as multipart file-upload functionality and the
implementation of the IoC container using servlet listeners. This module is
built on the application context module that mainly provides enterprise
level services; moreover, Spring offers a web implementation using the
MVC approach, that will be explained in details in the following sections.

A key-module is the AOP module, that provides and Aspect-Oriented
Programming implementation, helping in the implementation of the
various crosscutting concerns in the application. These functionalities are
decoupled from the application code and are injected into the point cuts
through configuration file.

2.2.2 DI principle

The Spring container is the heart of the whole framework, because it
creates objects, links them together, configures them and manages their
complete lifecycle from creation until destruction. This component bases
its own workflow on the Dependency Injection (DI) principle, which is a
more specific application of the IoC. The IoC is an architectural principle
born in the late 80s based on the will of inverting the traditional Control
Flow.

In the traditional programming, the developer should define entirely this
flow logic, whereas adopting the IoC this flow is set by a generic, reusable
library. With this approach, differently from the traditional programming
pattern, the reusable code calls into the custom and specific code, not the
opposite.

39

This approach increases the modularity of the program, decoupling the
execution of a task from the implementation, and it makes the entire code
extensible, allowing adding new elements without changing the previous
code. The Dependency Injection is a specific application of this principle by
which the dependencies between classes are injected by an external entity
(assembler) into the java class, the IoC container in the Spring case.

Inject a dependency into a class means to use one of the three following
methods for links two classes:

* Constructor Injection : the dependency in injected through argument
constructor

* Setter Injection : the dependency is injected through ‘set’ method

* Interface Injection : the dependency is injected through mapping
between the interface and implementation

Spring framework uses the first two injection methods, indeed the
container gets the needed information for instantiates, configures and
assembles an object by reading the configuration metadata that can be
represented either by an XML file, Java annotations or Java code. Adopting
this principle allows to design a loosely coupled system, helping in gluing
all the classes together and keeping them independent. The [oC Controller
workflow is summarized in the Fig. 18.

40

Java POJO classes

Metadata

The Spring container

Final Result

Readyto use
application

Figure 18. The IoC workflow

2.2.3 Spring Bean

The objects assembled by the IoC container that form the backbone of the
Spring application are called beans, which are created by the pattern
explained in the previous section. The configuration metadata used by the
container contains the information used to build up the objects; especially
the metadata declare how to create a bean, its lifecycle and its
dependencies.

The most important field that is indeed mandatory is the ‘class’ field, which
indicates what class must be used to create the bean.

41

224 Web

The Spring Web module provides a MVC architecture, allowing to create
flexible web applications. This design architecture divides the model and
the view, two entities that are generally merged in one in other
architectures. This allows to adopt different develop techniques and to
modify the code of one of the two components without impacting the other
one. Theoretically, the Models are entities that allow accessing the
necessaries application data, while the Views are graphical interfaces that
interact directly with the final user and show the data.

At last, the Controllers are entities that implement the web application
logic, integrating the Models and the Views. A Controller receives the input
from the user, manages the data searching and figures out which view is
called by the user. In Spring, the Model elements are the POJO classes that
represent the stored data, the View is represented by the HTML pages and
the Controller are classes that have the responsibility of handling specific
URL callings.

For implement this function, inside the controllers each declared function
is linked to an URL and if that specific URL is called, the bounded function
is called too.

HTTP Request l T HTTP Response

DispatcherServlet

@ ® ®

o Controller View Resolver View

Mapping

Figure 19 .The Spring MVC model

42

As it is showed in the Fig. 19 all the structure is designed around a
DispatcherServlet that handles all the HTTP requests and responses.
Indeed, after that the HTTP request is sent by the user and received by the
Server, the DispatcherServlet consults the HandlerMapping, which is the
component that is in charge of identifying the right controller to call for
handling the incoming request.

When the right controller is called, it handles the request by calling one of
the declared methods based on one HTTP method. The Controller will set
the model data and it returns the view name to the DispatcherServlet,
which get the appropriate view taking help from the View Resolver. Once
view is finalized the DispatcherServlet passes the model data and the view
to the user browser.

All of these components are parts of the WebApplicationContext module,
an extension of the ApplicationContext one.

As showed in the Fig. 19, Spring MVC web module allows communicating
with the various clients relying on the HTTP, the Hypertext Transfer
Protocol. Through this protocol, Spring can map into the Controller
methods that are called requesting a declared URL with a specific request
method, that could be GET or POST.

In this way, the clients can call a method passing to the server as parameter
the URL and the needed metadata to handle the request. The HTTP
protocol offers a client-server communication on the port 80 and uses the
TCP as transport protocol, opening a stream channel between the two
parts. Getting into the details, the HTTP uses just one TCP connection: the
client initiates an HTTP session by opening a TCP stream to the HTTP
server. After this phase it sends the request messages to the server
specifying the requested service.

At this point the server will answer to the request with a message
containing the status of the server followed by the requested resources or
an error. As shown in the Fig. 20, the HTTP communication protocol uses

43

just one TCP connection for send all the requested data: in a single stream
multiple entities can be transmitted.

< TCPIP Connect >
GET fflename.htm HTTP/1.1 >

HTTP/1.1 200 OK

Wob Client HTTP Sorver

HTTP Server Sends filename.htm

TCPAP Close >

Figure 20. An HTTP connection model

AVAVAN

2.2.5 RESTful communication

In this section I’ m going to talk about the REST architectural style because
in this thesis project I have used some of the key-principle of this
development philosophy for communicate between the clients and the
server. Representational State Transfer (REST) is the software
architectural style of the World Wide Web introduced by Roy Fielding in
the year 2000.

44

BET POST PUT BDELEIE
REST based Service
Interoperate with service using XML

JAVA PHP

ASP

Figure 21. A simple description scheme that represent the REST communication

With the term RESTful we point at the systems that follows over the REST
principles.communicate through the HTTP/HTTPS protocol and its

methods.

The pillar principles of the REST philosophy are th

Uniform interface

* Stateless interaction
* C(Cacheable

* C(lient-Server

* Layered System

* Code on demand (optional)

45

e following:

The main concept of this approach is the existence of resources that are
accessible through an URI and the various components share the
representation of these data. Usually this representation is done by
language independent data formats, as JSON or XML. The differences
between them are many. As first, XML is a mark-up language as the HTML,
while JSON is born just to represent objects as strings. Moreover, JSON is
lightweight and takes fewer characters to transmit the same information
contained into an XML document. For example:

JSON (133 characters)

{
"id": 32,
"title": "Android Development",
"author": "Paul Deitel",
"published": {
"by": "Pearson",
"year": 2007 }
}

XML (189 characters)

<?xml version="1.0"?>
<book id="re">
<title> Android Development </title>
<author> Paul Deitel </author>
<published>
<by> Pearson </by>
<year>2007</year>
</published>
</book>

This characteristic makes the JSON transmission faster. Moreover, it has
been discovered that JSON files are serialized and de-serialized faster and
use a less amount of CPU resources. On the other hand, XML is not a data
format, it's a language. Indeed, it is possible to add metadata into the tags
as attributes, which is not so comfortable to develop using JSON. It is
preferred from JSON when complex data structures come to play due to its
tree structure.

46

2.3 Open Street Map (OSM)

One of the most important decision regards the choice of the map provider,
which conditions the choice of the libraries and the choice of the APIs to
interrogate for the various requests. The platform chosen is OpenStreetMap
(OSM), which is a collaborative project with the goal to create a free
editable map on the world. Indeed, the map data are collected by
volunteers performing systematic ground surveys using tools such as GPS
units, camera or notebooks, for then uploading the recovered data in the
OSM database.

The principle behind this map provider is the same of my thesis project,
the crowdsourcing, demonstrating that it is a winning approach. The OSM
project recently has switched from a Creative Commons license to an Open
Database Lince, which is a share-alike license, allowing OSM to be shared
and used as long as all of the data uploaded from the members are made
available to all the other users. Indeed, OSM was created in 2004 by Steve
Coast and from an update of the 2013, the registered users nowadays are
estimated as 1 million.

OpenStreetMap registered users
1000000

T T T T T T
900000 |- /
800000

700000

600000 |-
500000

I
2
E
3
=4
400000

300000

200000 |-

100000

el

!
2006 2007 2008 2009 2010 2011 2012

Date

Figure 22. The amount of registered users to OSM from 2006

47

OSM uses a topological data structure composed by four main elements:

* Nodes: points with a geographic position and stored as coordinates,
used to represent the OSM POI or elements without size

* Ways: lists of nodes that represent a polyline or a polygon used for
represent streets, parks or areas in general

* Relations: lists of elements in which each member is linked to the
others by a role. These components are used for representing
existing relations between OSM elements.

* Tags: are key-value pairs of strings that are used to store metadata
about the map objects, for example the belonging area, the kind of
entity represented, etc...

Moreover, each node is characterized by its own ID number: this
information will be useful for implementing the route calculation. With the
correct usage of the descripted elements is possible to retrieve the needed
data. For this map project, the main elements to focus on are the Nodes and
the Tags.

Indeed, the POl saved in OSM are represented as Nodes with particular
tags, so for retrieve the needed information its necessary a query that
focuses on the common factor of all of them, which in the case is the
location area. To access to the OSM database I choose to use the Overpass
API, aread-only API that serves up custom selected parts of the OSM map
data.

It is characterised by an intuitive scripting language for ask the data and an
enormous pro of this API, in my opinion, is that you can test the queries in
real-time on a specific website, called Overpass Turbo. For facing the
localization issues, OSM relies on Nominatim, which is a tool to search OSM
data, or through the geocoding or through the reverse geocoding.

48

This tool is accessible via an AP]I, to retrieve information during the
running time of the application. Also, OSM provides a large number of
different tiles, offering a large number of variants for the developers: some
tiles are specific for transports, other for streets, other are all in black and
white, et

Making a comparison with Google maps, the main difference is that Google
is a closed system that cannot follow the OSM rhythms, considering the
updates. The Fig. 23 explains the collaborative concept that stands behind
the OSM project.

Indeed, following the crowdsourcing principles, OSM is hugely more
powerful than Google Maps, because it relies on the people contribution
that is an enormous number if compared with the Google workers. Because
for this project the main purpose is to have a dynamic system that tries to
offer real time contents, the most eligible map provider is OSM.

Figure 23. A painting representing the OSM crowdfounding principle

49

24 Persistency tools

In order to adopt a high level approach for managing the database I have
selected the Hibernate platform. Indeed, the development of the web
applications and in general of the information technologies brings to
development models that take advantage of the Javabeans, as for example
Spring.

Hibernate is one of the most solid persistence middleware open source
service for the development of Java applications, which is based on the
relative framework. This platform offers an Object-Relational Mapping
(ORM) service, allowing to map an object-oriented domain model to a
relational database.

The main idea is to declare the association between the javabean class and
the relative table through a tool as descriptors or XML and, based on this
set of information, the infrastructure will set up dynamically the entire
data model. Hibernate moreover allows to the developer to automate the
CRUD(Create,Read,Update,Delete) procedures of the databases. The Fig. 24
shows clearly the collocation of Hibernate into a structured application.

This tool is totally compatible with the Spring framework, inserting itself
into the ORM module, allowing to define for each table a corresponding
class. In this project there is a last platform that is based on the ORM
approach offered by Hibernate: the Java Persistence API(JPA).

The JPA is a collection of classes and methods to persistently store a vast
amount of data into a database that allows an easy interaction with the
database instance. Nowadays the current version is the JPA 2.1 and it has
supported by a vast number of platforms, including Hibernate. The main
functionalities of the JPA infrastructure are showed in the Fig. 25, that
represents the different JPA layers.

50

Application

Persistent Objects Ii

Hibernate

hibernate. XML mpp'ng

properties

Database

Figure 24. The Hibernate collocation inside a complex architecture

JPA
Provider

Figure 25. A scheme of a server based on JPA

The JPA architecture is based on a PersistenceContext, which can be
identified by a cache, which is directly linked with the database. On the

51

cache is possible to modify the files and the flush operation of it propagates
these changes to the persistence level. The entity that handles all the
database operation is called EntityManager and it should be just one at
project, avoiding lacks caused by a missing synchronization between the
various entities.

Every entity instance of an object is characterized by a state and there are
four different states, as shown in Fig. 26:

* New or Transient: an entity has added to the Java memory

* Managed : an entity has became persistent

* Detached : when an entity is already stored in the database and is not
already present in the cache

* Removed : when an entity is removed from the database

New/Transient

_ commit
persist rallback new

persist/roliback

refresh Managed < >
‘. remove
v s
r'Y b H
merge b
g serializefdetachi - %, __Tl_l']_"'_". .‘
closefcleariclonel S, Lommit
v rolback “retrieves
find/
Detached GQUERY Database

Figure 26. Entity states scheme in JPA

52

3. Impaired Mobility App

This section explains which are the functionalities needed to the project,
which tools have been adopted and their role. Indeed, this communication
system requires a lot of tools for sharing data frequently between the client
parts and the server, which has to store all the received information into
the database.

As it is showed in the Fig. 27, the entire system project contains three
entities that must handle different type of communication, between them
and to other kind of resources, as external APIs or internal tables. As we
can notice there are two different devices that communicate with the
server: a mobile device and a personal computer one. So, the server must
implement two different listeners, one for each kind of client type.

Moreover, there are two main entities that will be the keys of the
application: the POI, which could include all the private or public
structures accessible to people, and the Barrier one, which contains all the
architectonical obstacles that can represent a huge problem for a person
with mobility problems. All the entities will be stored into a unique
database and can be added from the users or from the system itself that
will download them by an external call. In order to store them into the
database there is the need to define the POJOs classes for both of them and
the relative fields.

The system will allow to the users to add both type of entities into the
database through specific functionalities, but, in order to avoid
unnecessary work for the final users, it will at first download all the POI
entities already stored into the map provider database. This will be used to
hold the system updated too, checking at some time intervals if new
entities have been added.

Both entities will contains various data fields, as text or images, in which
some of them will be mandatory while others not. Both clients must send
and receive both POI and Barriers objects and for doing that 1 will
implement entities that can handle asynchronous transactions, both on the
web client and on the mobile one.

53

Localization

Pl -

download

=

B 2=
PA —
/Server (‘4”"/ Web User
Database \
Mobile
client
A \

Route Localization
E calculation E

Figure 27. Thesis project diagram

Both clients need to access to the information stored into the database in
real-time, allowing to the end-user their changes on act. They have also to
implement location functionalities, in order to significantly decrease the
amount of spent resource on the server machine, retrieving just the
entities belonging to the current area region. Indeed, the database will
contain entities belonging different cities and countries, so the system logic

54

must search just for a contained amount of them at every call, limiting the
resources costs.

The Android application also needs to implement a routing calculation that
track down a pedestrian route calculated trying to avoid the obstacles
present between the starting point and the destination one. Considering
the available resources on the mobile device, making this operation on-
board could compromise the entire workflow. This means that the
application will ask to an external API to calculate this route and so it must
handle an external resource request.

Moreover, another key-point is the dynamicity of the final interface, which
has to guarantee a dynamic interaction between the clients and the stored
dataset, representing the contained information clearly and faithfully. In
order to retrieve this goal, both clients must use solid and light libraries to
build and customize the map view.

There is also the need to cover a large set of possible actions done by the
users: for example if the user will zoom on an area that have not been
searched before the system must retrieve the POI already present into the
map provider database, avoiding to show an empty map.

55

3.1 Client/Server Model

The model that is at the base of this project is the Client-Server
architecture. As the name suggests, there are two main subjects that
interact among them: the server and the client, as represented in Fig. 28.

The server, also called daemon, is a device that offers services to other
entities across a network. It is called daemon because it is a component
that never stops working and it must be ready for answering each type of
manageable request, whenever it is sent. For these reasons, usually as
server we mean a computer with high available resources and high
reliability and that is totally dedicated on offering services to the connected
users.

The entity that sends the requests to the server is called client that is an
external device connected to the same network of the server and that ask
at least one of the services offered by the server. The client device can be
represented by any type of device that can access to the network, such as a
personal computer or a mobile device.

Figure 28. A brief rapresentation of the C/S architecture

56

There are different types of Server possible usages:

* File Server: this kind of Servers allows to access to the files stored on
the server machine as they are on the client device. This is possible if
the server machine share with the users a portion of its hard disk
Space

* Database Server: this kind of Servers stores a large amount of data
regarding a common topic or at least linked between them. It
structures the manage of these data using a database infrastructure

* Web Server: a web server is a server that provides a web page as
answer to a client request. The information sent by the web server
are carried by the HTTP protocol and it is part of the Wold Wide Web.

* Application Server: this kind of Servers is used to run a program on
the server-side and to share the functionalities with the clients.

The server developed in this project will cover two of the explained role: it
will be a database server because it will contain all the data into a local
database and it will implement a webpage, allowing to interact with it
through the WWW service.

The whole communication logic between the various components of the
application will be a complex net: indeed, the clients must communicate
with the server every time they starts, in order to communicate their actual
position and every time that they need to upload a set of information.
These calls will be light and fast, indeed one of the main goals is to manage
the needed data through algorithms that does not exceed the resources
required.

In order to develop this feature must be considered the main point by
which the web application cannot receive or send classes entities, but
exchanges these object under a representative language as XML or JSON,
while the Android application can send and receive entire classes because
both sides are implemented through Java language.

57

3.1.1 Client functions

As first I would like to illustrate the required functionalities of the user
interfaces because on these requirements is build the entire system logic.
The user interface is composed by two parts, one running on an Android
device and the other one running on a browser, implemented by the
server. Both of them need to show a map, with a specific tile and
information inside.

Localization

PA Server
\) [=]
1
|
3
, 4,
Android
client
(5 |
(6)
E Routing

Figure 29. The mobile interactions diagram

Both Fig. 29, 30 shows briefly the clients logic. As it could be noticed, the
client must as first locate the user, understanding which portion of data it
must retrieve from the server. For each location the system has to store all
the entities of interest, as public or private structures and architectonic

58

barriers, belonging to that specific area. For this purpose both the client
parts have to find the actual city area, limiting the amount of exchanged
data. Without adopting this precaution the system could send to the client
all the stored data every time, causing a useless consumptions of resources
both on server and on client side.

Moreover, both clients have to reorganize the received data and the
communication should be faster as possible for allowing to the user a
fluent experience. Both of the interfaces need to communicate with the
server for obtaining the needed data and the tools used will be different.
The two parts have mainly differences: the web side will be implemented
in a scripting language while the mobile side will be implemented in
Android, a compiled programming language.

Localization

=

PA Server

=

|

[]
— -
Web user

(5)

(6)

E Search

Figure 30. The web application interaction diagram

Furthermore, as I introduced before, the user experience should be as fluid
as possible, considering that each entity is categorized and characterised

59

by a different icon and that each one will be probably complex, containing
different kind of data. So both clients should handle the computing of at
least 2000 elements that must be dynamically visualized on the map.

Moreover, the user interfaces need to implement a part that allows the
consumer to upload a comment to an existing entity or inserting a new one.
This feature will be developed by creating two different spaces, one for
each type of object that will be edited, a POI or a Barrier.

At last, the Android client must implement one more service, consisting
into a route planning that will bring the user to the declared destination
avoiding as much architectural barriers as possible that will be
implemented by an external call to an API. The client will then retrieve the
output set of data and represent it on the visualized map.

For all of these purposes, is needed a dynamic and flexible platform that
can handle all the necessaries variants. The clients must send requests to
external APIs and to the server, manipulating the received data for obtain
the information needed and then prepare the context for the final user,
offering a useful service.

3.1.2 Server functions

The complementary part of the previous side is composed by the Server
functions. All the webpage behaviour descripted in the previous section
will be implemented on the server side, but will run on the client machine,
once the webpage has been downloaded to the user’s browser.

The Server must also handles different kind of communications, both with
the connected clients and both with eventually external APIs. As shown in
the Fig. 31 its main duty is to receive the requests by the clients and to
compute them, recovering the requested data or from the database or from

60

the web, in some rare cases. It must implement all the methods needed at
various abstraction layers for allowing to retrieve or modifying data stored
in the database.

Mobiles

A

N
A
—
Web users
Server

AN

PA Db

\ 4

Download

= POI

Figure 31. Server interactions schema

61

It will also need to handle an administrator section in which the admin can
launch the search algorithm for update the database, because the consulted
database receives updates very shortly. This section must allow the
administrator of the website to constantly check the current condition of
the database, displaying all the stored elements. There must be the
possibility to delete them too.

In the case the user’s browser visualize a location not inserted yet into the
database, the client will send a request to the server asking to download
the needed data to visualize the entities of interested of the focused
location, avoiding the visualisation of a void map. Furthermore, the
dynamic composition of the webpage has to guarantee some kind of
synchrony, because if the user uploads a new data on the database it must
be immediately visible, at least for that single consumer.

All the data displayed in the map must represent accurately the
information stored into the database. Moreover, the server has to send the
data to the user in the best way for it to process them, choosing the most
eligible option. For this reason, the data organisation should be as simpler
as possible but clear and efficient.

The last important issue to consider is the database organisation and how
the data will be stored. For ensuring the needed flexibility a high level
approach is needed, with the possibility to create data type classes, directly
stored into the database. This allows to the developer to see the database
as a ‘box of classes’, impossible if considering the data storing from a low
abstraction level.

62

3.2 Entities of interest

The map must display correctly located entities using markers. Each
marker should be different depending on the category of the entity to
represent and on its average vote. The main purpose of the map is shows
the city under the impaired mobility prospective, suggesting the best
places to go in order to live a comfortable experience and which ones
avoid.

All the information regarding the entities is contained into the server
database and just a few of them are showed to the user. The most
important thing is that the retrieved information is reliable, complete and
compatible with the server software, which will re-elaborate and store
them.

In this project there are two main entities at the base of the entire idea,
which represent the main data traffic that have been introduced in the
overview section of this chapter. Both entities can be directly created by
the users or downloaded as first from the map platform API, reorganized
and then stored. They represent the only entities shown on the map.

3.2.1 POI

A POI corresponds any public or private structure that has a particular role
into the environment. For this project, this term points at all the structures
that can host the presence, even if for a short time, of a person with
impaired mobility. It could correspond to a shop, a public place, a museum
or whatever kind of structure a person can think about: the Fig. 32 tries to
explain the POI concept by a set of icons that symbolically represent
various kind of different structures that have various roles into a social
environment.

63

Figure 32. Some POl icons

Not

Considered POI Parcial Adapted

adapted adapted
e e '¢ Yo & ¥

% ¢ AR R R
KWK | K K | Kok ok

Yok N/A X

N | (O N

Adapted access?

Adapted internal space?

Adapted bathroom?

Reserved parking space?

Color of the icon

RF3H

Each entity must be subject of a mass evaluation by the users considering
some main criteria, basing on the crowdsourcing logic: you offer to the
people a service and this will be evaluated by the crowd, which upload
their own opinion and ideas to a central storage. The criteria are the ones
contained into the table above, that summarise the outline of the entities
showed into the map.

64

Basing on the average of the users’ votes each POI has assigned an icon that
indicates its membership. To allow this, every entity has its own history,
composed by users’ opinions permanently stored into the database as text
or numbers. In particular every POI entity has a set of comments or images
that belongs to it, over a location, a name and a specific category.

Indeed, all the structures must be contained in categories that subdivide all
the POI in smaller groups containing places with similar characteristics, as
one for bars and pubs, one for restaurants and other feed structures, etc.
The number of these categories shouldn’t be too high, in order to preserve
simplicity and clearness

3.2.2 Barriers

The second entity of interest is the Barrier, which can regroup a large
group of architectonic obstacles, as scaffolding, street blocks and every
kind of physical object that can represent a mobility problem for people
with impaired mobility.

Figure 33. A graphic explanation of the impaired mobility problem

65

The Fig. 33 represents a concrete application of the problem that this
platform try to fix: in the illustrated situation a person with mobility
problems can only try to find another route to reach his/her destination.

Using the routing calculation on the android application helps avoiding
these kinds of sets back. Anyway, some kind of barriers could be adapted
for the passage of people with impaired mobility: our system have to help
identifying in which category a Barrier belongs to, based on its
accessibility. A pillar of stairs as the one in above image represents an
obstacle with the lowest accessibility because it does not help the person in
any way to pass the obstacle. In the option by which on these stairs there is
installed an elevator for people with impaired mobility, it would have
represented a barrier with a positive accessibility score.

It must also be possible to upload a set of photos for each barrier, in order
to allow the possibility for the users to personally consider the option to
try to pass through or try to change route.

3.3 User interfaces

This section explains how the user interfaces are organized. This part is
really important because software that does not provide an intuitive
interface will be probably avoided from the consumers or at least cannot
guarantee a positive experience.

Even if there are not instructions on how to use the interface, getting
through the application functionalities must be an easy task for everyone
who needs to use it.

66

3.3.1 Android application

The Android application needs to implement all the functionalities
explained in the previous section. So, as first, it needs to implement a view
representing the map of the current location of the user.

This map also need a ‘my location’ button that will set the map focus on the
location of the current user. This client part is more focused on a local
prospective, allowing the user to visualize by default the current city area.
Anyway, he/she will have the possibility to change visualized location.

It also needs a filter space, to allow the user to select which category
he/she wants to visualize on the map, offering a more flexible view.
Moreover, the map view have to be the base for any route searching, that
will draw the route line on the current map, changing so the focus point.
For make this feature possible, there is the need to let to the user two blank
spaces in which he/she can declare the starting route point and the
destination point, typing them.

The map needs to hold fixed view simplicity, avoiding to show too many
drawing elements that can potentially create confusion. There must be a
view dedicated entirely to the insert of a new entity into the database
because the Android screen is not so large, especially on phones. By this,
put all these features in the same view will create a chaotic view.

So, because the entities that can be added are two different (POl and
Barriers), the Android application will be composed by two different views,
one for each type of data to insert/modify. For both, the user must have
the possibility to choose the location of the new entity precisely and in a
comfortable way for the final costumer. For resolve this issue, probably
another map is the best solution, but there must be found a way to insert it
without increase too much the resource consumption.

Another issue is the image resizing: there must be find a way to reduce as
much as possible the file size without losing the image quality, in order to

67

limit the spent resource but maintaining a minimum detail quality allowing
to show them both on mobile client both on the web part.

3.3.2 Web page

The web interface must support all the functions declared in the previous
section and, as I said for the Android interface, this have to be as much
intuitive as possible, allowing an easy interaction for the final costumer.

As first, the interface must be composed by a map, which needs to be fluent
and dynamic for supporting all the possible changes. Moreover, this map
has to allow the user to search for other areas, changing the view on other
cities. For support this feature, there must be a space that allows the
customer to write the searched area that will be next visualized by the
map.

Also, despite the application, the webpage will list all the entities that
belong to the selected area, dividing them in two lists: one for the Barriers
and another for the POI. This feature brings the necessity of create two
sections on the page in which these lists are shown dynamically.

As the Android application, the web interface need to implements a filter
space allowing the user to select which category visualize despite others.
The icons representing the various categories of entities remains the same
of the Android application, in order to avoid confusion for users that use
both the interfaces.

There is also the need of a ‘my location’ button, that will change the current
focus of the map on the measured position. At last, there is the need of two
sections for insert or update the entities, such as in the Android
application. In order to avoid a chaotic interface, the inserts sections will
be divided as in the Android project: one section will be used for the POIs

68

and the other for the Barriers . As in the mobile application, the images
loaded by the users must be resized in order to save as much space as
possible.

34 Localization

The localization covers a key- role in both the applications: on the
localization data is based the entire logic for choosing the entities to
retrieve from the server. Moreover, two different operations are needed:
the geocoding and the reverse-geocoding.

The localization services will be different between the two clients: the
android application has indeed a Geocoder class that is provided by the OS
itself, while the browser has to lean on external geocoding services. These
location services will be called to retrieve the needed information
regarding a particular location, that will be declared using a text or a set of
coordinates.

The geocoding operation uses the description of a location, such as the
address, to find the geographic coordinates, while the reverse-geocoding
uses the geographic coordinates to find a description of the location.

3.5 Communication

The communication has to be reliable and should not represent a big usage
of resources, allowing a fluid and fast communication model. The
communication tools have to support different type of transfer size,

69

because various amounts of data can be requested or uploaded by the
clients and the system have to handle both situations.

Because the clients are composed by two different parts, the server have to
differentiate the requests originated by the mobile devices by the ones sent
from the client browsers, allowing an adapted communication logic.
Furthermore, the communication model has to handle the transmission of
different type of data, as text, numbers or photos.

3.6 Plan a safe route

On the Android client there is the possibility to calculate a ‘safe route’. This
operation will be done leaning on an external service accessible through
API methods. Indeed, make this kind of calculus on board for a mobile
device would represent an higher resource consumption that could not
guarantee the fluent execution of the application. For this reason, the
android client will ask to an external server to make this operation for then
using the final result.

This service will allow calculating a pedestrian route that tries to avoid the
Barriers entities that could be present on the path, planning a route that is
accessible to people with impaired mobility. For implement this
functionality is necessary to retrieve the correct location of the Barrier
entity and ask to the API to do not calculate that nodes into the path
calculation. This needs an high precision regarding the coordinates related
to the entities.

The route will be drawn on the mobile map and will be composed by
markers indicating the route directions. For avoiding an element overlap,
the line route must be of different colours, from all the other elements,
same for the relative markers.

70

4. App and Server Design

This section contains a precise introduction and explanation of all the tools
used to satisfy the requirements displayed in the previous sections. Every
choose made tried to respect the introduced goals, focusing on the
flexibility of the code and allowing a fluid experience to the final customer,
trying to alleviate the impact that a large amount of data can have on an
application.

This section will not contain any piece of code or implementation that will
be showed in the next chapter.

4.1 Employed technologies and tools

This thesis project is implemented directly into the ParticipAct platform,
adding the explained functionalities to the previous project set of services.
ParticipAct is a platform developed by the University of Bologna that
collects different sensor data to store information in order to develop a
crowdsourcing platform that will help to create smart services following
the ‘smart cities’ principles.

This thesis project is built on the already present architecture that is
showed in the Fig. 34. For this reason, a big part of the used technologies
has been chosen in order to preserve the original structure of the project,
getting through its logic.

Both the clients will base their map retrieves by the OSM infrastructure,

chosen for its base principles and its characteristic to contain up-to-date
information. This is totally coherent with the project principles.

71

Data Backend
* Data processing
* Data storage
* User profiling

»

Web Console

[» Task design
* Data presentation

Create a new Sensing ...

Mobile App

oo * Local task management
E=N . Data upload
» Sensors management

Figure 34. Participact environment

4.1.1 Server side

As first, [will introduce the design made on the Server side because on the
following decisions depends the entire transmission model with the
clients. For creating a web server, one of the most flexible platforms is
Spring framework, explained in details in the previous section 3.2. This
framework has been chosen for its flexibility and lightweight and had have
been already in the previous ParticipAct version. Based on this
consideration, all the server side has been developed on that framework.

Moreover, on the server side must be implemented the needed classes for
access the database data, done by dividing the roles in three different
levels: a repository level, which is the lowest and that directly implement
the database access, a service level, which is in the middle between the
repository level and the higher-abstraction level, and an implementation
level, used by the developer for calling the service.

72

The server must implement the web interface that will not be run on the
server machine, but on the client device, after the downloading. For this
reason, the structure and the graphical part of the webpage will not
influence the server resources, but the client ones.

The persistence of data on the server will be covered in the following
sections.

4.1.2 Client side

Considering the server decision and the general decision of use OSM as
map provider both client parts will be affected, adopting some libraries
specific of OSM instead of others. Moreover, the communication will be
based on the HTTP protocol, or the Server cannot reply properly to the
clients.

Both clients have been built to be as much user-friendly as possible,
reducing in the same time the waste of resources.

4.1.2.1 Android client

Consequently of the adopting choice of OSM, the Android client has been
built on the osmdroid and osmbonuspack libraries.

Indeed, by default, Android uses Google services, because it is a Google
product. Osmdroid is a full replacement for Android MapView class, which
was v1 API and includes a modular tile provider system with support for a

73

large number of tile sources. It also provides a support with built-in
overlays for plotting icons or shapes.

The osmbonuspack library offers an interaction with OSM services inside
an Android application, leaving a huge personalization space for the
developer. Indeed, the View used into the Android application is based on
osmdroid, while all the added functionalities have been developed on the
second library. It also includes a class which replace the android Geocoder
class, calling the Nominatim API, for a full OSM extension. Moreover,
osmbonuspack set default behaviour for all the map components, which
can be freely changed by the developer following the application needs.

Regarding the communication between the Android device and the server,
which must be asynchronous, the Robospice library has been chosen.
Indeed, for executing an external request, Android needs to use an
asynchronous tool, which by default is represented by the Android Async
Task or the Loaders, but both of them have problems.

As first, AsyncTasks can create memory leaks or crashes because the call
back methods declared will be executed even if the activity on which the
AsyncTask has been declared has been destroyed. On the other hand,
Loaders are too tied to the activity lifecycle, destroying the requests sent if
the activity changes.

Robospice is a library that has been developed in contrast to these
transmission methods that are considered by the developers as ‘obsolete’.
This because the other communication methods do not follow the activity
lifecycle, losing the needed data while rotating the device or starting a new
activity. In contrast, the Robospice library does. This feature has been
implemented by starting an Android Service that works in the background
of the application and will end its task even if a new activity is started and
the previous one is closed. Moreover, it allows caching the results on the
mobile device and limits the memory leaks, unlike Async Tasks. This allows
a reliable communication between the mobile device and the server,
avoiding data loss. The Fig. 35 shows in an ironic way what I have said the
above sentences.

74

New
Activity

AsyncTasks

poorly tied

Figure 35. Robospice compared with obsolete solutions

75

New
Activity

Loaders
designed

They don’t fit

3 ROBOSPICE

M

§
2
A

Activity

[

5

Rotateyour © Back

device butto

Update Ul
of thenew
activity

Moreover, Robospice is strongly
typed, so is possible to query web
services using POJOs as parameter
and the result can be a POJO too.
This is particularly useful for this
project, allowing to exchange with
the server directly POIs or Barriers,
staying at a high-level of
abstraction.

For this reason, both for POI both
for Barriers an extra class has been
implemented that represent a list of
entities, which is received from the
server and that contains all the
needed entities. The same POJO
logic is used during the upload
phase, in which the entity has been
initiated on the client device and
then sent to the server that will re-
elaborate the received information
for storing a new entity in the
database.

So, the first screen of the
application will show just a map
with all the elements belonging to
the current location using the
osmdroid and osmbonuspack
infrastructures. A button is
provided for allowing the filter
functionality, = which will be
implemented reorganizing the
previous obtained data from the
server.

76

There will be also two spaces designate for declaring the starting and
destination point for the route calculation.

The two views for uploading, relative to Barriers and POls, have been
designed as two different pages. The more complex one is the POI
interface: it must contain a text space for each field, such as name and
description, and four different star-rating systems for each criterion.
Moreover, it must have a space for a photo preview and the possibility to
shoot. The same content must be provided in the Barrier section, that is
less complex because the criteria is just one instead of four.

The last functionality needed from both the interfaces is the possibility to
select precisely the location of the new entity or select which entity the
user wants to update. For this purpose the best solution is to open a new
screen showing a map with the already saved entities: if the user clicks one
of the showed entities, the system understand that the user wants to
update an already stored resource, holding its coordinates.

On the other hand, pressing on a free point on the map, the system
understand that the user wants to insert a new value and it will retrieve
the coordinates from the clicked location.

4.1.2.2 Webpage

In order to offer a dynamic map interface, the library chosen for implement
the map view is Leaflet. This is a JavaScript library based on three main
principles: simplicity, performance and usability. Indeed, it weighs just
33KB and offers all mapping features needed.

Leaflet provides a list of plugins developed by various Leaflet users for
increasing the library potentiality, and in this project a pairs of them are
needed. For example, the various functionalities of the web application, in

77

order to create a flexible and simple interface, can be contained into a map
sidebar, that is an open source leaflet plugin.

The sidebar can be fully customized and the idea is to divide it in four
parts, two containing information on the POIs and the other two on the
Barriers. Getting into the details, one of the two parts contains the list of all
the loaded entities, while the other allows to insert or update an entity. The
main difference between the two subgroups is that the filter function must
be inserted in the POI, allowing the user to display only a category of PO],
exactly as in the android application. The filter selection beyond filtering
the displayed markers, filter the list elements too, visualizing just the ones
that belongs to the selected category.

Moreover, there must be the possibility for the customer to change the
view of the area, because as default the map loads the area in which the
user has been located. This feature can be implemented by geocoding the
name of the desired city and then set the received coordinates as centre of
the map.

The last main feature of the map is to find the current location of the user,
which is mainly used to identify the city area in which he/she is located.
This feature can be called just clicking a button, which have the function to
centre the map in the registered location.

All the webpage behaviour will be implemented using JavaScript due to its
extreme flexibility and potentially. Indeed, JS is one of the most versatile
and effective languages used to extend website functionalities. As first,
JavaScript is executed on the client side, saving bandwidth and resources
on the web server and is relatively fast: indeed, the time difference
between the download of the code and the results visualization on the
webpage is completed almost instantly, of course depending on the task.
Secondly, it can be used for a in a huge variety of applications and it can
even support complex algorithms.

So, for sending requests to the server the AJAX technique has been
adopted. AJAX, which stands for Asynchronous JavaScript and XML, is an
approach that allows to create dynamic webpage, changing the content of
the webpage dynamically, exchanging data with the server behind the

78

scenes. Moreover, the presence of XML in the name does not indicate the
necessity to use the XML. This is based on JavaScript for representing the
data and on XMLHttpRequest to retrieve or send data to the server. In the
Fig. 36 there is showed the current web interface workflow. All the showed
communications are implemented using AJAX and exchanging
XMLHttpRequest objects.

N\
V"//
// . .
//’ If the ev§nt is a geocoding requ'est .
the client will connect to the Nominatim
HttpRequeSt API and retrieve the needed information
/{'

/

/ Response
/ \
If the event is an insert or a

download request, the client
will send a request to the PA
~ server for retrieve all the
;)] ~—_ S .
API depending on it. It will ~ sensible information

also handle the received & HttpRequest

data updating the page _(SNEEG—_— ~

content
N

S~

T~

An event occurred on the

web browser. The system

will send a request to the
server or to an external

"GN

Figure 36. Web application workflow using AJAX

79

4.2 Data Persistency

The persistence of data can be implemented in various ways, even if using
Spring as framework. As first, the database used is PostgreSQL a complete
object-relational database management system (ORDBMS) that allows to
store data securely.

It is cross-platform and runs on many operating systems because one of its
main goals is being standards-compliant and extensible. It is particularly
adapted for preserving data integrity, guaranteeing a reliable service,
exactly what is needed by this project. Furthermore, it is particularly
indicated when must be handled complex database designs: the saved
entities will be probably the union of two or more different classes,
creating a really complex database design. PostgreSQL seems to be the best
choice.

Other adopted tools in order to allow a high-level interaction with the
database are Hibernate and JPA, allowing to approach to the database
entities as POJO classes. This is possible by the features offered by those
two tools that provide an ORM approach. Basing on this, JPA provide a
mapping infrastructure. The JPA mapping, as the Hibernate one, can be
done by annotations or by XML, even if the XML approach could create
confusion because all the information are contained in an external file that
risks to begin too large and too complex if the project is vast. For this
reason this project will use the annotations approach.

Based on these architecture principles, [will create two POJO classes for
defining the needed entities for the project purposes, explained in the
following two sections, using the declaring rules of JPA. Both entities need
also to implement the Serializable interface in order to send them across
the network.

80

4.3 Design of the entities of interest

This section illustrates the design process of the main entities of this thesis
project. The main purpose is to have a complete set of information that can
help to study and to understand the user opinions, figuring out what are
the real needs of each city in order to improve the life experience of people
with impaired mobility. For this reason, the set of stored information must
consider as much details as possible.

Both the following entities depend on another entity, which helps to limit
wastes of resources: the City entity. This entity store the cities that have
already been populated and it counts the number of current POI and
Barriers that belongs to each specific city area. This allows to create a link
between the single element and the belonging area, allowing to narrow the
loading phase too.

4.3.1 POI implementation

The first entity to declare is the POI, already explained in the section 4.2.1.
For satisfying all the required characterization and for allowing a flexible
usage of the resources, I have decided to create a POJO that is the join of
other two classes: the Description class and the Votes class.

I have chosen this approach because in this way there is a clear role
distinction between objects and because a vast number of Votes and
Descriptions could be linked to the same POI entity. The classes are so
linked by the One-to-Many relation, which indicates that for one entity can
correspond many objects and vice versa.

The Votes class contains all the needed criteria to evaluate correctly a POI
entity, such as a field for voting the parking service, another for reviewing

81

the bathroom adaptation, another for the adapted access and a last for the
internal space adaptation. Moreover, it has a field called ‘vote’ in which
there is stored the final vote, which is the output between the average of
the previous fields. The Description entity is simple composed by a
description field and an image field, representing the user comment.

Both classes depend by a single POI entity, which is referred in the
structure declaration. Anyway, a POI entity must be composed by the
following fields:

* Id: this allows to differentiating the single entities into the database

* Name: this field contains the name of the physical structure
represented on the map

* Descrptions: a collection of Description objects that indicates the
users comments regarding the specific POI

* Vote: a set of Votes objects that indicates the users feedbacks
regarding the specific POI

* Type & Specific_type: these fields indicate the category identity of the
specific object. The type, which represents the category of the objects,
can be one of thirteen possible, which are: Food(1),
Entertainment(2), Bar&Nightlife(3), Accomodation(4),
Toilet(5),Shop(6),Diplomatic(7),Education(8),Sport(9),
Tourism(10),Health(11),Transport(12),Supermarket(13).

* Latitude & Longitude: these fields provide the detailed location of the
specific POI

* (City: this field specifies the city in which the POI is located

* New POI: this allows to identify if a POI has been commented or not.

82

e User POI: this allows to understand if a POI has been added from an
user or if it has been downloaded from the OSM database.

4.3.2 Barriers implementation

The Barrier entity, which is described in the section 4.2.2, follows the POI
approach being composed by the union of more entities. The main
difference is that the only vote submitted from an user can regards the
Barrier accessibility and for this reason the Description class contains, in
addition to fields for the description and for the image, a vote field in which
each user can vote the accessibility of the architectonic obstacle.

The Barrier fields are the following:

Id: this allows to differentiating the single entities into the database

* Name: this fields contains the name of the physical obstacle
represented on the map

e Start date: the date in which it has been added to the database

* End date: the supposed date in which this obstacle will be removed

* Descriptions: a collection of Descriptions objects that indicates the
user opinions on the obstacle

* Latitude & Longitude : these fields provide the detailed location of
the specific Barrier

83

* (City: this field specifies the city in which the POI is located

As in the POI case, the Description is referred to the Barrier using a One-to-
Many relation.

4.4 Localization tools

As introduced in the previous sections, one of the main features in the
localization, in order to organize the entire behaviour of the applications.
The localization tool changes with the platform: the web interface will use
a different tool respect the Android application.

Indeed, the Leaflet library provides the possibility to locate the user, calling
a specific function. This is the locate() method, which uses the W3C
Geolocation API to retrieve the current location of the device. Indeed, W3C
Geolocation APl is a platform provided by the World wide Web Consortium
to standardize an interface to retrieve the geographical location
information for a client-side device. The returned location is characterized
by a specific accuracy based on the best location source available because
the location can be based on various set of sources, such as IP address,
MAC address, Wi-fi, RFID and GPS.

On the other hand, on the Android application the current location can be
retrieved by three ways: using or the GPS provider or the Network
provider or the passive provider. The GPS provider determines the
location using satellites, while the network one determines the user
location based on availability of cell tower and Wifi access points. The
passive provider can be used to passively receive location updates when
other applications or services request them without actually requesting the
locations. This provider will return locations generated by other providers.

84

The main difference between these providers is that the GPS will return an
high accuracy location, almost 20ft, but it is the slowest provider and it
brings an high level of resource consumption. Also it needs a sight line to
the satellites pain the missed sent request. The network provider
guarantees a 200ft accuracy level, but it does not need all the precautions
of the GPS provider. Indeed, it doesn’t need a sight line to the satellites and
it implicate a low resource consumption. The last provider, the passive one,
has a really low accuracy level: 5300ft.

Having considered all the previous information, my decision is to adopt
only the first two providers, because the system needs a minimum
accuracy to work. An accuracy of 5300ft corresponds to 1.6km, which can
create a wrong call to the server if the application is launched near a
border area. The information gathered by the providers are then
elaborated from a Location Manager, an entity in charge of provide the
access to the location services.

Current State Of Platform APIs

Geofence PassivelLP
Location Manager
Platform
SensorMgr GpslLocationProvider v NemorkL&(::‘aLt;?nProvlder
Sensor HAL GPS HAL WPA Supp/cfg80211 RIL
Jammt X I - L E—
Hardware| Sensors I GPS Wifi | Cell

F A Y

Figure 37. The adopted location architecture

Nowadays, Android provides a new kind of provider called Fused location
provider but it is based on the Google services. For being coherent with the
choice of using just OSM based services, I will not adopt that kind of
provider, holding the architecture showed in Fig. 37.

85

4.5 Design of the Client/Server Logic

In this section [will in more details the logic that link the two clients to the
server side, which is shown in Fig.38. As first, as introduced in the previous
sections, the client must identify the current location of the user. The more
accurate it is, the better it is, but the main accuracy level regards the
location area, so both the Network provider and the GPS provider are a
good choice, considering the Android application.

4. If no present ask the POI stored
into OSM db to Overpass-API, else

skip to point 5. [
_ /
1. Locate the current user location 2. Send the current city to the server / |)
: : Ovepass-API

>
‘ | 5. Retrieve the POI of the current city
< .

3. Check if the city is already
present.

6. Create markers based on the received data

Figure 38. Data retrievment

Once that the device has identified the belonging area, it retrieves the
corresponding city checking if it is already present into the database. If it
has already been searched, the client just retrieve the belonging entities
from the server, while if the city area has not already been searched, the
server will make a request to the Overpass-API, downloading from the
OSM database all the stored POI, forwarding them to the client.

After that the client has received all the data, it will reorganize them and
create a marker entity for each of them, after having retrieved the precise
category of each one of them, assigning the current icon. Each marker
window must contain the user comments and the basic characterization
information.

86

The second part of the communication, showed in Fig.39, consists into the
upload of the entities: the user must be able to upload the needed
information to the server, which has to store them into the database. Once
the upload has been done, the map should being updated, allowing to the
user to concretely see his/her contribute to the platform.

R >l -
5. Retrieve the entity of the current city
g < . J

— 3. Save the new entity or update
an old one

6. Create updated markers based
on the received data

Figure 39. Data upload

Sending another request to the server and asking the new set of data
stored, does this. For doing this, on the Android side has been adopted the
Robospice library, exchanging between the client and the server directly
the POJO, allowing an high-abstraction level communication even if it is
heavier than a communication based on JSON, for example. This because
the Android OS, as illustrated, allows to focus all the device resources
totally on the current activity, freeing up memory if necessary.

On the web side, instead, the data are transmitted using the AJAX technique
flanked with the JSON representation method.

4.6 Pedestrian route design

The extra function present into the Android client is the planning of a
pedestrian route that avoids obstacles for impaired mobility people.

87

This service is offered using the osmbonuspack library, which allows to
send requests to various kind of route APIs, adding various parameters to
them. The selected API for this project is MapQuest, which is an American
free online web mapping service. Nowadays, MapQuest has been
integrated with OpenStreetMap, allowing to use OSM data to handle many
of the features found in the MapQuest Platform Web Services. So, through
the library the request is sent to the API and retrieved by them phone as a
Road entity.

This entity is like the way entity of OSM and it is composed by nodes. Once
that the nodes has been retrieved, they must be checked in order to
understand if the route really avoid that obstacles, as summarized in Fig.
40 . If the route contains the Barrier coordinates into the path, the client
will try to find an alternative route and show it on the map, linked by a line.

v
Lot
=
R

Figure 40. Route checking process

The key-part of this function is to identify the right ID of the nodes that
contains an obstacle, in order to not consider them while sending the
request. For this purpose, is possible to use the Nominatim Geocoder class
provided in the osmbonuspack library that returns all the OSM
considerable information that the default Android Geocoder can not get.

88

For limiting the resources consumption, the reverse-geocoding is run just
on the Barriers elements that are characterized by Accessibility vote that is
under the high-level threshold. The ID nodes that are sent into the request
are not considered in the route calculation of the API.

89

5. Implementation

In this chapter [will explain all the passages and the choices taken during
the code development. The whole work has been divided in two main
phases: the theoretical development and the debugging. In the first portion
[have developed the entire code just following the abstract schema of the
project, while in the second part I have tried the efficiency of the code.

By these considerations, the entire code has not developed linearly, but it is
the product of multiple considerations that have been done in different
moments of the development and I will try to explain the consideration
that I have done during the different phases. The base principle beyond the
code production has been to offer the most fluid interface, considering the
large amount of data that the client device has to manage. Indeed, both
clients have to communicate with the server by sending single entities or
large collections of them that must be displayed on the current map. This
means to rebuild the original objects from a representation for the browser
and to deserialize the received POJO for the mobile application.

Moreover, all the information contained into the received object have to be
extracted and used to create map markers, which are divided in different
categories, depending the specific entity. Indeed, POI entities are
represented by icon numbers, in which the number changes with the
category of the object while the Barrier entities are characterized by a
different kind of icon, as showed in Fig. 41. This feature is obtainable by
mapping each object with a specific category is characterised by a specific
icon.

[have also spent a lot of efforts on prediction, trying to imagine all the
possible user interactions, avoiding random crashes for unexpected
actions. The all implementation can be divided in three main parts:

* The first part regards the persistence and the methods to access and
modify the stored data

90

_ . - .
g ® ; CEL S
L < =) <
=z A 2 < > o S
Via Monte 3 < o o S i
& Grapp; b s T o 5 S-Yiy
O] = % of T S
o ~ £ o =
< T) 3
Via |y L S
@@@ > 50 ® s
CL ®
©
3
Ly
-
Via 1y o
’F-"”I)l,;
k ¥
I3
f, ® ~ ®
Pl ° S ®
= degji > = ®
o Qres ti o = © § <
& N = Vi > = o
< 3 Cla)
w a I Avaty
= v I e @
LF o o
Mgy £ 1] |2 ®
°5Calch; OF
Vv @ 2 Basilica o S "
'a Santy Margherits > ° hl‘-» % 2 @) @
herits ~ Sa » o Z
B 2 Petronio & Vi & G
: 320
Sch o iy
@ :@ Cherar-o)
o 2,
r///1 5 & ©
s 3
> : @
Vi © S 2 ® %
T o 2
e G s De' @ o ‘ \ %
u/fm“ AT Cort® €' Galluzzi >'_" 5 Via de' Pepoll
©
IS =
o
o
Figure 41. The browser map

* The second part regards the server interface and the called methods
both for user and administrator panels

* The third part regards the mobile application and the methods called

by it on the server
All the administration sections are just present on the web side and are
just accessible by logging with root credentials. The system recognizes the

authentication permissions by the @PreAuthorize notation. Indeed, this
annotation allows Spring to associate each logged user to a specific set of
contents, as functions or webpages. The maps and checks the current user

authentication permissions, deciding which elements are accessible or not

to the current logged user.
Moreover, both client maps does not allow zooming out excessively,

because for now the need is to focus on city areas. For this reason, I have
set a range of zoom level that allows the user to have both an entire vision

of the current urban area both a precise view of a particular street. The

91

expansion over this zoom range will be probably considered for next
implementations, allow the user to freely scroll around countries.

In both client implementations a particular attention has been spent on the
photo resizing and the free of memory resources, avoiding an overweight
of memory usage, particularly on the mobile application because one goal
is to render the application runnable on old smartphones too. The GUIs
have been designed very simple, trying to render the interface as intuitive
as possible.

Another key issue is the coordinates accuracy: indeed, a vast number of
operations need to reveal the presence or the absence of some entities and
one tool is the coordinates pair. But if different tools are designed for have
different accuracy levels, this can fail the entire identity algorithm. For
these reason must be developed a flexible set of comparing algorithms.

5.1 Implementation of the Client/Server
Logic

The first step for implementing the communication logic that characterises
this project is to set up the tables that are going to contain the data
regarding the needed entities. The two main entities, Barriers and POI, are
stored in two different tables and are linked to their descriptions entities
though foreign keys.

Each Description object is characterized by a mandatory text message and
an optional image. The only difference between the description of a POI
entity and a Barrier entity is that the Barrier one has another field, the
vote. Indeed while the POI entity is provided by a support table that
contains the current vote, the Barrier entity vote is calculated by the total
average of all the descriptions referred to it. The entire referred
descriptions entities link to the parent object through the OnetoMany JPA

92

relation, which allows associating to a single entity a set of others child
objects. All these collections of objects are contained in Set<> structures,
because one advantage of using Sets is that it forces you to define a proper
equals/hashCode strategy, which should always include the entity’s
business key. A business key is a field combination that’s unique, or unique
among a parent’s children. Moreover, each child entity contains an image
field, which is referred to a single comment of an user. The approach
adopted in this project for transferring images data between the various
devices is through the base64 format. Indeed, it allows to encode various
kind of images in Strings, sending them through the same HTTP connection
that link the client and the server, without opening others.

This approach has been adopted because all the data transmissions
transfer a low amount of data: indeed, on both clients, each image is
resized with a set of algorithms show in the next sections, proportionally
with its characteristics. Moreover, the user can upload comments
sequentially, so the entities are sent individually, not in groups. This allows
using the only advantage of base64 transmissions. I have decided to use
that format because the maximum image weight is around 250KB, so
lightweight image files.

All these descriptions entities are then displayed into the marker popup,
showed in in both clients. These are indeed showed as lists into the marker
window allowing the user to read both text and see the related image. On
the browser application this is done by creating a specific HTML code for
each object, which includes the name, the vote, a preview image of the
place and a list of descriptions, as showed in Fig. 42. This code is built
reading and understanding all the information contained into the POI and
Barrier classes, creating so a faithfully graphical representation. While on
the browser map is only possible to zoom up a specific photo from a
comment, in the Android application clicking on a specific comment will
open another fragment in which is displayed the photo of the current
comment above the full comment list. The rest of the marker pop is the
same of the browser one.

The main difference between the two markers is the background logic:
indeed, on the browser, all the comments are loaded during the initiation
phase, while in the mobile application all the comments are loaded when
the user clicks on a specific marker. Indeed, the onOpen() method of the

93

° 1z
&

D+

Universita di Bologna

N\ Castey, M

Figure 42. Web application marker cloud

marker call an asynchronous method that retrieves all the comments
referred to the clicked entity, reducing the memory allocated during the
initial phase; this logic has been adopted for both Barriers and POL
Moreover, both windows have a button that allows the user to directly
open the comment view, in order to update the selected entity.

In order to obtain a fluid scroll interface for the map view, the two clients
do not download all the entities regarding a specific city area all in one
time. Indeed, downloading around 2000 elements, which one composed by
images and descriptions, could cause an overload of the system, heavily
reducing the system performance. For this reason, once the client focus on
a first-screen, it will take the boundaries converted in coordinates of the
current screen and calculate a larger area, as 1.5 times bigger than the
original one and ask to the server to send all the entities referred to that
area. This operation is launched in onCreateView() and will so load not just
the entities that are showed on the current screen, but also others that are
near. In this way, the system will call the server for a second download
only if the user moves away from the current loaded area, overtaking a
fixed threshold. Another precaution is to transfer a fixed number of items
through all the zoom levels. In this way, the system will load a reduced set
of entities, showing new ones when the user will zoom into a certain area.
This has been done for two main reasons: at first, to reduce the resource
consumption and to obtain a faster communication and in second to avoid

94

a confused map. Indeed, showing more than 200 elements on a map could
cause the overlap of a large number of markers, bringing to an unclear
map. Because a mobile phone has a reduced set of resources, I have
adopted a different approach to download the data. Indeed, the client
receives all the element information except the set of descriptions, which
are downloaded later only if required, as explained in the previous
paragraph. Thank to this strategy, the memory usage is heavily reduced,
because the client do not have to download any file .
case 15:
if(1atDiff>=9000 || lonDiff>=9000){
scroll_launched=1;
IGeoPoint mapTopLeft = map.getProjection().fromPixels(@, @);
TopLatitude = (double) (mapTopLeft.getLatitudeE6()) / 1000000;
LeftLongitude = (double) (mapTopLeft.getLongitudeE6()) / 1000000;
IGeoPoint mapBottomRight = map.getProjection().fromPixels(map.getWidth(), map.getHeight());
BotLatitude = (double) (mapBottomRight.getLatitudeE6()) / 1000000;
RightLongitude = (double) (mapBottomRight.getLongitudeE6()) / 1000000;
markers_visualization();
if(new_center!=null) {
map_center = new_center;
}
}
break;
case 16:
if(latDiff>=5000 || lonDiff>=5000){
scroll_launched=1;
IGeoPoint mapTopLeft = map.getProjection().fromPixels(@, @);
TopLatitude = (double) (mapTopLeft.getLatitudeE6()) / 1000000;
LeftLongitude = (double) (mapTopLeft.getLongitudeE6()) / 1000000;
IGeoPoint mapBottomRight = map.getProjection().fromPixels(map.getWidth(), map.getHeight());
BotLatitude = (double) (mapBottomRight.getLatitudeE6()) / 1000000;
RightLongitude = (double) (mapBottomRight.getLongitudeE6()) / 1000000;
markers_visualization();

if(new_center!=null) {
map_center = new_center;
}

Figure 43. Scroll handler

The threshold can be calculated as shown in the Fig. 43: the system holds a
variable that stores the current coordinates of the centre of the map. When
the user scrolls the map, the application calculates the difference between
the new map centre and the previous one. If the difference between the
saved map-centre and the current centre is more than a fixed threshold,
the call will be invoked. This method has to be called both on the scroll of
the map both for the zooming operation, in order to update the current
collection. Moreover, the zoom factor is a key variable In order to handle
correctly the Scroll operation. At various zoom levels the delta changes
radically: the more the zoom is high, the more the difference is little. For
this reason, as shown in Fig. 42, | have implemented a switch statement
that change the difference threshold based on the current zoom value. The

95

same operation is done on the browser client. This event is handled in two
different ways: on the Android application this is done by initiating a
MapListener, which is an entity that call functions when the mag is dragged
or zoomed, while on the browser the map is responsive to specific events,
as the ‘dragend’ or the ‘zoomend’.

The request sent to the server contains the latitudes and longitudes that
describe the boundaries of the searched area, filtering the elements by
their position. Indeed, the code is divided in two main parts: the first one
obtains the data from the server, and the second shows the downloaded
information. Both clients provide a set of functions that understand the
information stored in the POI and Barriers collection and display them on
the map as markers. The elements added to these collections are new
entities or updated ones. Secondly, in order to calculate the boundaries of
the search area, the clients calculate the difference between the top and bot
sides and left and right sides. Then these differences are multiplied for a
fixed constant in order to decide the shape of the future area and then
added or subtracted to the current boundaries, creating a wider search
area. Currently, the clients load from the database all the entities that are
into an area that in 1.5 times the original one, as showed in Fig. 44. Thirdly,
the map view will create the markers entities from these local collections,
verifying which are the elements that are contained between the current
screen boundaries. This allows a faster performance in case that all the
downloaded entities are already stored in the local data set. This approach
has been adopted for both Barriers and POI entities on both client types.

IGeoPoint mapTopLeft = map.getProjection().fromPixels(@, @);

TopLatitude = (double) (mapTopLeft.getLatitudeE6()) / 1000000;
LeftLongitude = (double) (mapTopLeft.getLongitudeE6()) / 1000000;
IGeoPoint mapBottomRight = map.getProjection().fromPixels({map.getWidth(), map.getHeight());

BotLatitude = (double) (mapBottomRight.getLatitudeE6()) / 1000000;

RightLongitude = (double) (mapBottomRight.getLongitudeE6()) / 1000000;
diff_lat=Math.abs((TopLatitude-BotLatitude))x0.50000;
diff_lon=Math.abs((LeftLongitude-RightLongitude))x*0.50000;
TopLatitude+=diff_lat;

BotLatitude-=diff_lat;

LeftLongitude-=diff_lon;

RightLongitude+=diff_lon;

Figure 44. Android implementatio of the resizing area

Another functionality that both clients must handle with is the situation in
which the user changes the city area to visualize. This situation can be
reached in two different ways: or the user directly searches for another

96

city in the search field or he gets there by scrolling the map. In both
situations, the clients reset the current entity collections and verify the
presence of the new city area in the City table. If the city is already present,
the client just have to ask to the server the stored entities belonging to the
new city area, while if the city is not present into the table, it must
communicate to the server to search a new city area. In this case, the
server will send the query to Overpass and download all the POI referred
to the current area from the OSM database, saving them to the database
and forwarding them to the client. In this case, the system will send the
whole set of POI because they do not include any type of heavy data, due to
their current initialization. This allows the end user to freely focus on
desired locations, even if they are not saved into the database.

Furthermore, for the POI entity the vote is saved into another table,
referenced to the single entity by another foreign key. This table contains
one entry for each POI entity and the value is updated each time that a POI
entity is reviewed by a user. The reason to adopt this kind of approach is
that the POI vote depends on four different variables that must be stored in
order to hold significant data regarding the entity of interest, while the
vote that refers to the Barrier entities is composed by a single parameter.
Indeed, the average number of POls into a city area is around 1500
elements, which is higher than the estimated Barrier entities. For this
reason | have decided to occupy a single row for each POI entity, saving
memory and resources. Indeed, holding a row for each vote uploaded by a
user would have been traduced into an enormous number of votes for each
POI, summed to the resources needed to cycle into it for calculate the
average vote.

The POI and Barrier tables are strictly linked to another set of data that
contains all the searched cities: each row is just composed by the name of
the city and the number of POls assigned to it and the number of Barriers.
This table has the function of ‘chronology’ of the system. Indeed, once that
a city has been searched and so saved into this table it can not be searched
again, at least for the users: the administrators can indeed update the
current data saved by logging into the administration panel and run the
adding algorithm. Indeed, from this section, this limit has been bypassed in
order to allow to the administrators to update the information stored. This
necessity born because, as said in the previous chapters, the OSM database
get updates very frequently for its crowdsourcing nature.

97

Furthermore, for each entity there are mandatory fields and optional fields,
as said previously: these aspects reflect themselves on the database
structure and on the future control logic of the algorithms. Using the ORM
approach, allowed to Hibernate and JPA, I have declared the relative
entities using java classes with annotations, as suggested. The various
entities are created through a Builder entity, unique for each class. This
entity allows to build a specific class, setting all the parameters by set
methods. After that all the needed parameters have been set, the Builder
will make the entity persistent, adding it to the JPA cache.

Getting through, the administrator POI panel is composed by a single table
that contains all the POI into the database with the needed information, as
shown in the Fig. 45. From this panel is also possible to add a specific city
area to the database or update the stored information with the new set of
data contained into the OSM database. This operation will not override
entries with the same name and position, it just add entities that are not
present into the database yet. This allows checking the current state of the
POIs stored into the database, including the number of descriptions
referred to that entity. Instead, the Barrier administration section is
composed by a table that shows all the Barrier entries. In both sections is
possible to directly delete a selected entity.

Insert the name of the city to search:

Run

POIls Contained into the database

Description
Name Type City Specific type Latitude Longitude Vote number

Michelangelo health Bologna pharmacy 44.3483235 11.7152433 0 0 Delete
Polo Territoriale Citta di Imola (Ospedale Vecchio) health Bologna hospital 44.3550335 11.7048449 0 0 Delete
Vigili Urbani governmentservices Bologna police 44349289 11.6993626 O 0 Delete
Biblioteca Comunale education Bologna library 44.3547159 11.711278 0 0 Delete
Cinema Cristallo entertainment Bologna cinema 44.3557051 11.7156435 0 0 Delete
McDonald's food Bologna fast_food 44.368268 11.7284024 O 0 Delete

Scuole Medie Sante Zennaro education Bologna school 44.3490541 11.6998196 0 0 Delete

Figure 45 .POI administrator panel

98

On the other hand, the user panel (shown in the Fig. 46) is just composed
by a mapview that contains a set of extra tools that implement the
interactive functions of the map, as locate a specific POI, filter the showed
content, add an entity of interest, etc. These blocks gain interactivity to the
map, rending it flexible and updated. For example, is possible to insert an
entity of interest into the database or update an existent one and instantly
visualize the inserted data in real time into the map, without accessing
another section of the website.

/b4 © i 3 W)%’
+ E o :
-t 1t ~) J& @ 8 @ o \; 5 t;
Q \ @ ® o
v @® N : Q
o 7 Via Falegn2 @ % f' 5
= s
Qw P
@ i @, O @ e
BT g e <
ey €8 N iy s
: § ® Via ‘/olr(,,,w@;@% 55 g %:i v/T:/ ® (
,/ N y m) 7 5 f r” G
y @ v . P s Giorgio 2 2’\ L @' "';ag? ,@

Figure 46. User map

These blocks are all Leaflet plugins, customized for the current project. |
have modified the Turbo87/sidebar-v2Z project in order to obtain a
personalized sidebar, containing four different sections: the first section
contains a list with all the downloaded Barriers; the second section
contains the filter functionality and the list of the downloaded POIs. Both
lists allows to directly locate the selected entity on the map. The last two
sections allows to insert information into the database, creating a new
entity or updating a new one. Moreover, | used the stefanocudini/leaflet-
search project allowing the search function to the map.

The main logic of this thesis project is to hold a frequent communication
with the server, in order to charge a reduced number of entities at time,
with the goal to reduce the used resource both on server and on client side.
The alternative would have been to send all the stored entities to the client
just once in the beginning. But after some tests | have seen that it uses a
large amount of the resources of the client for 20s at least, freezing the
application. For this reason I have decided to adopt this approach, limiting
the queried area to 1.5 times the current screen of the user. In this way the

99

size of the exchanged data is heavily reduced, by sending a little portion of
the total amount of data. Another strategy adopted in order to reduce the
resource consumption in Android is to pass through fragments information
as the current city area by Intents, avoiding to call Geocoding requests in
all the application screens.

5.2 Implementation of safe route function

Various steps compose the calculation of the pedestrian route
implemented in the Android client, which as introduced before, is not
directly implemented on the device itself. Indeed, the calculation algorithm
to calculate the route would have implied the full amount of resources,
probably causing a crash of the application or at least a long freezing of it.
Indeed the most used algorithm for calculate the fastest route between two
different points is the Dijkstra’s algorithm which implies a lot of calcolus
resources. Moreover, this path is specific for pedestrian users and have the
characteristic to avoid the Barrier entities that are located between the
route. So, the algorithm would get heavier, because there are also some
conditions to respect. Because of that, the client send a request to
OpenMapQuest through the library osmbonuspack, though a class declared
in the library, the RoadManager.

100

From:

OpenMapQuest provides two ways to avoid specific options to insert into
the request in order to avoid certain parts of a route: tryToAvoidLinklId,
which tries to calculate a road that does not cross some parts of the streets,
and mustAvoidLinkld, which calculate an effective route that avoid some
places. The only difference between these two calls is that the second one
can couse a crash of the routing calculation, while the other one is always
safe. Moreover, the arguments of these two options are the IDs of the nodes
or streets that must be avoided. For these reasons, the algorithm provide
some checks and it could send two requests in order to try to guarantee an
efficient routing.

Getting through the algorithm, at first it identifies the Barrier elements that
are characterised by a low adaptation score and calls a reverse geocoding

101

operation by Nominatim, obtaining the OSM ID of that elements. Indeed,
OSM categorizes each entity present into an area with a node, and each
single street is composed by an array of nodes. For this reason, the
algorithm executes another request for identifying the ways in which is
present that particular node. After having retrieved this information, the
client will call the external API and receive the route calculated by the
trytoAvoidLink option. After this, it will check the received route,
understanding if it really does not cross any Barriers entity. If the result is
positive, it will load that route on the map, but if the result is negative, it
will send another request using the mustAvoidLinklId. I have decided to call
this method as second because after some testing I have verified that the
route calculated by the first method is in general shorter and that this
algorithm just works if there are some near nodes around the Barrier,
while the first one calculate an effective alternative route. Because of that,
the application will verify if this calls cause the crash of the API, controlling
the Status response. If the status reports the presence of a route, this will
be loaded into the map, while is the status reports an error, the previous
route will be loaded.

this. roadmanager.addRequestOption("tryAvoidLinkIds=" + to_avoid);
temp_result = roadmanager.getRoads(waypoints);
boolean redo = false;
if (temp_result.length > @) {
if (temp_result[@].mStatus == Road.STATUS_OK) {
for (GeoPoint n : temp_result[@].mRouteHigh) {
for (Barriers b : barriers.getList()) {
double latitude___ = Math.round(b.getLatitude() * 100000.0) / 100000.0;
double longitude__ = Math.round(b.getLongitude() * 100000.0) / 100000.0;
double latitude__ = Math.round(n.getLatitude() * 100000.0) / 100000.0;
double longitude__ = Math.round(n.getLongitude() * 100000.0) / 100000.0;|
if (equals_double(latitude__, latitude__, 0.0003) &% equals_double(longitude__, longitude__, 0.0003)) {
redo = true;
}
}
}

this. roadmanager.addRequestOption("mustAvoidLinkIds=" + to_avoid);

temp_ = roadmanager.getRoads(waypoints);

if(temp_result.length>0 & temp_result[@].mStatus==Road.STATUS_OK){
temp_result=temp_;

}
Figure 48. The routing algorithm checkings

Each node of the showed route, if clicked, will pop the directions to get
through the path, including the distance left and the name of the streets to
get through.

102

5.3 Data exchange

Through the entire project, clients and server exchange a large amount of
data, in order to guarantee a flexible platform. Each client is characterised
by its own way to send data and to manage them. The logic that stays
behind it is really similar, but the implementation is really different.
Indeed, the browser client communicates with the server by JSON files,
while the Android one through POJOs. The first guarantee high-speed
transmissions representing the shared objects as Strings. On the other
hand this implies a low level interaction and a full rebuilding of the original
element from the JSON. Instead, the second communication method is
characterised by lower speed transactions, but it guarantees a high-level
interaction because both devices just work with class entities. Moreover,
the webpage has been implemented through a scripting language, while
the application by a compiled one.

Anyway, they also share the almost the same functionalities: they
download and upload POI and Barrier entities, in various ways. Both
clients must implement the functionalities to create a new entity from
scratch, through specific forms. These forms have been implemented as
sidebar sections in the browser and as other fragments in the application.
These input sections must collect various kind of data type, as text,
numbers and images. In order to guarantee a reduced consumption of
resources on both machines, all the images are resized, reducing their size.
Indeed, there is not the necessity to store high quality images, because they
have to adapt to pictures with smaller sizes.

103

5.3.1 Photo settings

As introduced, both clients must provide a resizing algorithm to reduce the
current size of the image file. This feature is necessary in particular on the
mobile client because it allow the option to take a picture and to set it as
image of the entity to upload. Indeed, this operation produces a high
resolution image, which weigh 1 or 2mb at least, causing multiple issues if
manipulated without a correct resizing strategy. Indeed, the Android OS
will throw an OutofMemory exception if the size of the bitmap is not
modified properly while obtaining the image from the device memory. This
is because mobile devices have constrained system resources; in particular
Android devices can have 16MB of memory available for a single
application. Making some calculus and testing with a Galaxy S3 Mini, the
photos taken have a resolution of 2560*1920, for a weigh of 2.30MB
average. Mostly the photos have ARGB_8888 configuration, carrying to a
resource consumption of 19.6MB, exhausting all the application resources.

Because of that, the resizing algorithm in the Android application has been
implemented by the following steps. At first, the system retrieves the URI
of the image from the system. This operation depends on the user choice to
load the image from the gallery or by taking a picture. Anyway, after this
step, using the file URI is possible to obtain information about the current
size of the image and orientation, in order to represent the correct image
information in the preview ImageView. In order to obtain the orientation
information, the URI must be converted in a filepath, and the algorithm to
do this changes with the current OS version. In order to adapt the
application to various OS versions, I have created a module, called
UriSupport, which implement all the different variants. Depending on the
obtained information and on the desired output, the class ImageResizer
calculates the optimal scale factor of the current image by setting the
inSimpleSize value, as shown in Fig. 49. This factor requests the decoder to
subsample of the original image, saving memory. After this operation, this
class receive as input the orientation of the image, understanding if it must
be rotated or not. This must be necessary in the case that the image is
portrait. The image is then processed and added as image of the entity that
must be uploaded.

104

bitmap=null;
AssetFileDescriptor fileDescriptor =null;
fileDescriptor =getActivity().getContentResolver().openAssetFileDescriptor(mImageURI, "r");
BitmapFactory.0Options options = new BitmapFactory.Options();
options.inJustDecodeBounds = true;
BitmapFactory.decodeFileDescriptor(fileDescriptor.getFileDescriptor(), null, options);
int imageHeight = options.outHeight;
int imageWidth = options.outWidth;
String igeType = options.outMimeType;
ImageResizer resizer=new ImageResizer();
String[] projection = {MediaStore.Images.ImageColumns.ORIENTATION};
Cursor cursor = getActivity().getContentResolver().query(mImageURI, projection, null, null, null);
int orientation = -1;
if (cursor != null & cursor.moveToFirst()) {
orientation = cursor.getInt(@);
cursor.close();
}
bitmap=resizer.scaled_bitmap(fileDescriptor.getFileDescriptor(), imageHeight, imageWidth,orientation);
poiImage.setImageBitmap(bitmap);

while ((current_w / inSampleSize) > MAX_WIDTH
&% (current_h / inSampleSize) > MAX_HEIGHT) {
inSampleSize %= 2; calculate the scaling factor
}
options.inSampleSize=inSampleSize;
options.inJustDecodeBounds = false;
bitmap=BitmapFactory.decodeFileDescriptor{fd,null,options);

Figure 49. the scaling factor calculation

Instead, in the browser client the image is loaded from the local disk of the
user computer through a file input field. The image is then processed by a
JavaScript entity, the FileReader. This is an entity that allows to read file in
JavaScript using asynchronous methods. This entity, after having read the
file, loads it into the selected image field as preview. Until this point the
image has not been resized. The resize method, shown in Fig. 50, is called
when the user tries to upload the new entity in the database, sending to the
server the resized image. This is done by the canvas entity, which is mainly
used to load or draw graphic on webpages. The function will receive as
input the image field and the two-dimension threshold. It calculates the
proportion of the image and calculates the scaling factor for resize the file.

Both algorithms allows to choose the correct resolution of the image

proportionally with the setting of the limit size. Increasing these thresholds
increase the image size, but increase the resolution.

105

function imageToDataUri(img, max_width,max_height) {

var canvas = document.createElement('canvas'),
ctx = canvas.getContext('2d'); // create a 2D canvas

var height=img.naturalHeight;

var width=img.naturalWidth;

var ratio=height/width;

var scale;

var correct_height;

var count;

var correct_width;

var count;

//adapt the algorithm to the ratio for maintaining the proportions

if(ratio<=1){
correct_height=(max_width*ratio);
correct_width=max_width;
count=height/correct_height;
scale=1/count;//calculate the scale variable

}else{
correct_height=max_height;
count=height/correct_height;
scale=1/count;//calculate the scale variable

}

var iwScaled=width*(scale);

var ihScaled=height*(scale);

canvas.height=1ihScaled;// calculate the new height

canvas.width=iwScaled;// calculate the new width

ctx.drawlmage(img,9,0,iwScaled,ihScaled);

// produce a jpeg format image

return canvas.toDataURL("image/jpeg");

Figure 50. The image resizing method in Javascript

5.3.2 Transmitted entities

All the entities are stored into a common database and this project is
mainly based on three tables: the Barriers, the POI and the Cities. While the
last one is just a support table, the first two tables contain all the key
information that are necessary for make this software works. Thanks of
Hibernate and JPA, all the methods that access the database are managed
as Objects, as explained before.

106

Indeed, each table correspond to a Java class that is characterized by the
@Entity annotation, indicating that the class is a POJO. By this, the system
creates a table in which each field is a variable of the POJO class. All the
fields are characterised by a single or a set of annotations that declare the
properties of that particular field. Using these tools, I have created
collections of element referred to a single entity, as sets of descriptions
linked to a single POI or Barrier. These entities are all linked together
through the @OnetoMany annotation. This is not the only annotation with
which is possible to create collections in Hibernate. Indeed there is also the
annotation @ElementCollection but it has one main drawback: it does not
allow to update or to delete an item stored into the database because
Hibernate does no create a primary key for the collection tables so the
system can not identify which item has been changed. On the other hand, a
OneToMany relationship in Java is where the source object has an attribute
that stores a collection of target objects and if those target objects had the
inverse relationship back to the source object it would be a ManyToOne
relationship. All relationships in Java and JPA are unidirectional, in that if a
source object references targets object there is no guarantee that the target
object also has a relationship to the source object. Moreover, all the
mandatory fields are characterised by the not null annotation.

@Entity
@Cacheable
@Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
@Table(name="poi")
public class POI implements Serializable{
private static final long serialVersionUID = -6503864251024996729L;
eld
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;
@NotEmpty
private String name;
@0neToMany(fetch=FetchType.EAGER, cascade=CascadeType.ALL,orphanRemoval=true)
@J)sonManagedReference
@Column(name="description™)
private Set<Description> description= new HashSet<Description>();
@0neToMany(fetch=FetchType. EAGER, cascade=CascadeType.ALL,orphanRemoval=true)
@Column(name="voting")
@)sonManagedReference
private Set<Votes> voting= new HashSet<Votes>();
@NotEmpty
private String type;
@NotNull
private double latitude;
@NotNull
private double longitude;
Figure 51. Declaration of the POI entity

For each class of the project, two support classes implement the access to
the database: one repository class and one service class. These two classes,
combined together, manage the database interactions regarding a specific
class, as storing or modifying objects. In order to add or modify City,

107

Barrier and POI entities [added six different classes, two for each entity:
Repository-Service class for POI, Repository-Service class for Barriers and
Repository-Service class for City. Repository classes work at the
persistence layer and acts as database repository. Indeed, this class
implements the direct communication functions between the client and the
database, querying that using the HQL or the EntityManager. The Service
class is an abstraction level above, using repository methods to elaborate
more complex algorithms and working on the service layer. These two
modules together provide a large set of functions recalled in all the server
code as getting a list with all the entities stored, retrieve a single entity
from the database or update an existent entity. In this way a high
abstraction prospective is maintained, because the single requests handled
by the Hibernate Controller do not access directly to the entityManager
object, while they access to it through other entities that are lower level.

The communication between the web client and the server is based totally
on JSON representation. Indeed, the client uses AJAX post requests to send
the data to the server, while the server uses the Jackson library to convert
the entire list of elements retrieved from the Service. This can be done
through the ObjectMapper entity, which can parse a JSON from a string,
stream or file, and create an object graph representing the parsed JSON.
Through this approach, the original classes must be rebuilt once they have
been received: for example the client receive an JSONArray of elements
representing all the stored POI and in order to rebuild the original entity it
has to iterate across that array and to recreate all the objects locally,
initiating new POI objects on the client machine and caching them on a
variable. A characteristic of the web client is that it provides two full list
that show all the downloaded entities of interest. This has been done by
associating to each downloaded entity an HTML block of the list. In order
to create classes in JavaScript I used the function approach, creating a
function object for each entity of interest. The next step is the marker
creation, showed in the Fig. 52. It is indeed done by iterating through the
saved collection and categorizing the contained entities basing on their
category and their vote. The upload of an entity of interest is possible by
retrieving all the inserted value from the input fields of the HTML page and
sending them to the server as JSON.

108

if(POI.type.toLowerCase()=="food"'){

var marker = L.marker([POI.latitude,POI.longitude],{icon:food_icon_yellow}).bindPopup(ult_html,{minWidth:289,maxWi
}else if(POI.type.toLowerCase()=="accomodation'){

var marker = L.marker([POI.latitude,P0I.longitude],{icon:accomodation_icon_yellow}).bindPopup(ult_html,{minWidth::
}else if(POI.type.toLowerCase()=="enterntainment”){

var marker = L.marker([POI.latitude,P0I.longitude],{icon:enterntainment_icon_yellow}).bindPopup(ult_html, {minWidt}
}else if(POI.type.toLowerCase()=="bar&nightlife"){

var marker = L.marker([POI.latitude,P0I.longitude],{icon:bar_icon_yellow}).bindPopup(ult_html,{minWidth:280,maxWic
}else if(POI.type.toLowerCase()=="toilets"){

var marker = L.marker([POI.latitude,P0I.longitude],{icon:toilets_icon_yellow}).bindPopup(ult_html,{minWidth:288,m
}else if(POI.type.toLowerCase()=="supermarket"){

var marker = L.marker([POI.latitude,P0I.longitude],{icon:supermarket_icon_yellow}).bindPopup(ult_html,{minWidth:2
}else if(POI.type.toLowerCase()=="education"){

var marker = L.marker([POI.latitude,P0I.longitude],{icon:education_icon_yellow}).bindPopup(ult_html,{minWidth:280,
}else if(POI.type.toLowerCase()=="governmentservices"){

var marker = L.marker([POI.latitude,P0I.longitude],{icon:diplomatic_icon_yellow}).bindPopup(ult_html,{minWidth:28(
}else if(POI.type.toLowerCase()=="sport"){

var marker = L.marker([POI.latitude,POI.longitude],{icon:sport_icon_yellow}).bindPopup(ult_html,{minWidth:280,,max|
}else if(POI.type.toLowerCase()=="tourism"){

var marker = L.marker([POI.latitude,POI.longitude],{icon:tourism_icon_yellow}).bindPopup(ult_html,{minWidth:289,m¢
}else if(POI.type.toLowerCase()=="transport"){

var marker = L.marker([POI.latitude,P0I.longitude],{icon:transport_icon_yellow}).bindPopup(ult_html,{minWidth:288,
}else if(POI.type.toLowerCase()=="health"){

var marker = L.marker([POI.latitude,P0I.longitude],{icon:health_icon_yellow}).bindPopup(ult_html,{minWidth:280,ma)
}else if(POI.type.toLowerCase()=="shop"){

var marker = L.marker([POI.latitude,POI.longitude],{icon:shop_icon_yellow}).bindPopup(ult_html, {minWidth:289,maxWi
}

Figure 52. Marker creation
On the Android client, instead, I used the Robospice module to retrieve the
information needed. As explained before, it is a library that allows making
asynchronous requests that can be cached as JSON and that guarantee
reliability, because the network requests are implemented using a Service,
guaranteeing a proper integration with the Activity lifecycle. Using this

approach, the entities transmitted are not JSON representation, but directly
POJO classes, maintaining a high level approach.

Name

Zanzibar

Description

Posto accogliente e personale premuroso, I'unica pecca é I'assenza di

N

Via San Donato, IT, Italia, Bologna.
Comfortable
internal space * * *

Internal
bathroom
adapted * *

Figure 53. Mobile implementation of the upload screen

109

For this reason, all the entities sent extends the Serializable Interface,
allowing to rebuilt a transmitted entity on the destination device using its
unique Serialization ID. Using Robospice, | have created one request class
for each request that the client must send to the server. The common
characteristic of all these requests is that is possible to send a unique input
value, declared as HttpEntity and inserted into the Http request. Moreover,
all the request get cached into the device memory because the
cacheExpiryDuration field, which declares the duration in milliseconds
after which the content of the cache will be considered to be expired, is set
as DurationInMillis. ALWAYS : this means data in cache is always returned
if it exists, while DurationInMillis.NEVER would have meant that data in
cache is never returned. In this way, the system reduce its memory
consumption, sending a request only if the data are not present into the
cache. So, both for upload or download a set of information, client and
server just exchange a single variable, in which for the downloading phase
correspond to a full list of the needed elements, while for the uploading
phase correspond to a single entity. Indeed, I created two different
fragments for implement the creation of a new entity of interest, one for
the POI entity, showed in the Fig. 54, and the second for the Barrier. These
layouts allow the user to insert all the sensible data that characterise an
entity and verifies if all the fields are properly filled warning the user if
some mandatory fields are not filled. If all the fields are properly set, it
merges all the information extracted creating a new entity and sending it to
the server, which will manage the received resource to merge it into the
database.
super(R. layout.custom_marker, mapView);
btn = (Button)(mView.findViewById(R. id.bubble_moreinfo));
list=(ListView) (mView.findViewById(R.id.bubble_list));
image= (ImageView)(mView.findViewById(R.id.my_image));
vote=(TextView)mView. findViewById(R. id.bubble_description);
btn.setOnClickListener((view) - { '
Toas{;makeTéxt(viéw.getContext(), “éufton cliéked“+m5e1ected?oi.getName(), Toast.LENGTH_LONG).show();
FragmentTransaction Transaction = getActivity().getSupportFragmentManager().beginTransaction();
MapActionFragment aDifferentDetailsFrag = new MapActionFragment();
aDifferentDetailsFrag.setPoint(actual_position);
aDifferentDetailsFrag.setTo_review(mSelectedPoi);
aDifferentDetailsFrag.setMy_pois{my_pois);
Transaction.replace(R. id.content_frame, aDifferentDetailsFrag);
Transaction.show{aDifferentDetailsFrag);
Transaction.addToBackStack{null);
root.setVisibility(View.GONE);

Transaction.commit();
;i

Figure 54. Custom marker view

110

54 Geoposition

One of the key aspects of this project is the localization of the user. On this
operation indeed depends all the software workflow. Indeed, if the system
would not retrieve the current user location, all the system does not work
correctly, because it cannot identify the city area to query. In order to
guarantee a correct operation of the whole system, two main

geolocalization operations are needed: the geocoding and the reverse
geocoding.

ol . 09:00
From:
Search
To:
@ X ,
= \O“;." WL
- 93‘\06@ %€ o
& y % od
3 i :) % ‘ \\\’b
4 ! e%‘ g 20 :J " ¥
3 ‘4 r//11 S : %K\ 3
‘ 2 %&%

BIgN BIA

Figure 55. Mobile map implementation, in which is notable the user position

Both functionalities are implemented on both clients, using different tools.
On the Android phones I have initialized a LocationManager, which allows

111

to check the actual system status regarding location services. Because this
projects needs a high precision location, the preferred location method is
based on the GPS provider, even if it bring an higher resource
consumption. If this provider is not enables or not available, the
application will rely on the NETWORK provider, but it does not use the
PASSIVE provider, due to its low accuracy level. Moreover, in order to
follow the movement of the user, | have implemented a LocationListener
that updates the current location of the user if there is a difference of 20 m
each 20s. In order to have the same effect on the mapview, I have used a
osmbonuspack library element called MyLocationOverlay, centering the
map on the current location of the user.

On the browser client, the Leaflet library provides a location method that
works as a set of calls: indeed, it keeps calling the location method until it
does not receive the command to stop the location searching. Indeed, in
order to get an accurate location, it tries to locate the user as loop. For this
reason, once that the system has retrieved the user is important to
interrupt this request flow by the stopLocate() method, preserving
resource. Moreover, I have set the high accuracy on, because as default the
library turns it off.

All the calls needed for retrieve the needed information, as geocoding or
reverse geocoding, are executed by sending a request to an external API,
which could be Nominatim or the Android implemented one, and then
managed to the current client, setting the required fields.

54.1 Geocoding

As explained in previous sections, the geocoding operation retrieves the
coordinates of a particular place declared as text. This operation is used in
both clients, especially for the search function. Indeed, the system receive
as input the name of the place to display on the map, so the system must
use a geocoding service to obtain the coordinates in which it has to focus
on. In this project the most used provider is Nominatim, which is called
both from the browser client both from the mobile one.

112

It is particularly useful in the Android application for the routing function.
Indeed, this feature is fully based on geocoding, because it receive the
starting point and the destination point as text and in order to execute the
road calculation request, they must be converted into GeoPoint, done by
coordinates. Moreover, the Nominatim Geocoder allows to retrieve the
OSM ID of a particular node or street and this is necessary for inserting the
correct fields into the request to MapQuestApi.

54.2 Reverse Geocoding

The reverse geocoding does the opposite operation, it indeed finds the
description of a location receiving as input the coordinates. This service is
used in both clients in the most localization services. Indeed, it is used in
the main location function to retrieve the name of the current city area,
because the localization services both on Android and on the browser
retrieves the user location as coordinates. This operation is necessary in
order to select the POI to ask to the server, because they are classified from
belonging areas.

It is also mainly used into both clients when the user choose the location
for a new entity of interest: indeed, both mapview retrieve the location
information as coordinates and in order to implement a intuitive interface,
the view will display that coordinates set as the name of the selected street,
by calling the Nominatim API and obtaining the referred name.

5.5 Experimental measurements

This project has been tested on two main platforms: a browser and an
Android phone. The phone used is a Samsung slII mini, which is provided
by a Dual core processor with 1.0GHz with 1GB of RAM. At first, I have
monitored the Memory spent during the initial phase, while the application

113

has to download all the needed element of interests from the server. As it is
shown in the Fig. 56, it has a pick in the point in which the client has to
manage all the received information, creating a different marker for each
one of them. The first picture shows the memory usage, while the second
one shows the CPU. The peak uses around 50% of the CPU, while the
memory pick is about 24MB. Indeed, in the blue graph, the darker part of
the graph represent the memory used, while the light blue one represent
the memory hold free by the system.

—

AAMA_ AL 0D

AED i A aabhe AL00808

Figure 56. Initial phase

Anyway, the mobile application focuses at the first launch on the current
position of the user that in my case was an area with a middle number of
elements of interest. Focusing on the area with most elements I have
registered the graphs in Fig. 57.

3 I = VY. I

Figure 57. Resource consumption

114

As we can notice, the memory consumption is the same of the Fig. 56, while
the CPU usage is higher. The main difference between the two areas is the
number of visualized entities and their composition. Another monitored
operation is the photo load, which is represented in the Fig. 58.

Figure 58. Photo loading

Indeed, loading Bitmap could cause a crash of the application due to the
extreme memory consumption. As we can notice from the Fig. 58, this
application can handle correctly the Bitmap loading, which correspond to
the operation done between 4m and 4m 5s.

Figure 59. POI upload

The Fig .59, instead, represents the resource consumption while uploading
a POI entity that contains an image. As we can notice, this operation brings
the highest resource consumption, because after the upload the application
will retrieve the new elements to display on the map. Because of that I have
also monitored the network resources sent during this operation, which

115

embrace the two most significant network operations. The results are
showed in the Fig. 60, showing a maximum upload speed of 1.1Mb/s and a
download speed of 2.1 Mb/s.

nnnnnnnnnnnn

Figure 60. Network resources

Instead, getting through the web client, it has been tested on two different
browsers, Mozilla Firefox and Google Chrome. Monitoring the start phase
in both browsers, I have noticed that Mozilla Firefox is faster than Chrome,
as shown in the Fig. 61.

A 304 GET bootstrap.js localhost:8080 is 60,43 kB 60,43 kB —36ms

A 304 GET bootstrap.min.css J# netdna.bootstrapcdn.com css 24,74 kB 119,67 kB —~57ms

A 304 GET leaflet.js # cdn.leafletjs.com is 122,76 kB 122,76 kB —211ms

A 304 GET bootstrap.css localhost:8080 css 124,43 kB 124,43 kB —~58ms

® 200 GET leafletmap localhost:8080 html 148,83 kB 148,83 kB — 1216 ms

A 304 GET jquery-1.9.0.js localhost:8080 is 261,05 kB 261,05 kB —~13ms

® 200 POST data_pos localhost:8080 json 546,09 kB 546,04 kB | -+ 1678 ms

addcity POST 200 xhr query-1.9.0.js:8475 1498 16ms |

5 data_pos POST 200 xhr query-1.9.0.is:8475 547 KB 1.97s N I |
(] data_barrier POST 200 xhr query-1.9.0.js:8475 2.7KB 48ms i
; barriers, _icon.png GET 200 png Other (from cache) 2ms |
; dataimage/jpeg;bas GET 200 peg query-1.9.0.is:6040 (from cache) 1ms |

Figure 61. Comparison between Mozilla Firefox and Chrome

This difference in average is 0.3s, which is particularly significant. Indeed,
by the method data_pos, the clients retrieve the needed entities and it
influences all the performance of the map. Despite this, the Chrome map
interaction is more fluid than the Mozilla one. Due to the different
development of the browsers, the webpage brings to different memory
consumptions. On Mozilla [have used the add-on Tab Memory Usage 0.2.2
in order to get the memory consumption and the average consumption is
about 30mb, with some peaks during the calls of 60mb. On Chrome,

116

instead, the JS Heap picks to 36.4 MB as shown in Fig. 62, using the
developer tools built in into the browser.

2000ms 400 ms 6000 ms 8000ms 10000ms 12000 ms 14000ms 16000ms 18000ms 20000ms 22000ms 24000ms 26000ms 28000ms 30000ms 32000ms 34000ms 36000ms
2409.4ms WYINI IUI w I A [LI L IV TR 1111} [| A | [LT [R I | Al

Main Thread
E Fi...s) Fin...os)

F..]
I F... XH..) XHR...s)
F...

Fu..ll Fun__all

MEMORY JS Heap: 16177 712
@ JS Heap (3.4 MB - 36.4 MB]

@ Documents [1-2]

(@ Nodes [16 - 18 856]

() Listeners [0 -7 892]

Figure 62. Memory measurments on Chrome

On the other hand, because Chrome subdivides each tab into a different
process, using the Task Manager of Chrome, I have monitored a memory
usage of 250MB in average, with some peaks at 300MB.

Moreover, the most heavy method is the one by which is possible to
download POI from OSM and to save into the database. Monitoring it on
both browser I have discovered an average time of 1 minute, depending on
the city searched: more POI the city has, more time it gets.

5.6 Technical conclusions and future
improvements

As it has been showed, the platform works correctly and a reasonable time
has been spent on the debug part, testing the applications behaviour. Both
clients are sufficiently fluid to allow a friendly user experience and the
waiting phases are relatively short.

The memory consumption of the mobile application remains almost
constant around 30mb, reaching the 35mb as maximum. Instead, the CPU
usage is alternated by moments in which it is almost none and others in

117

which it covers around the 60% of the CPU. These are short periods of time
that happens during the uploading phase and the downloading of the new
data set, so this does not affect significantly the application performances.
Anyway, asynchronous calls do not affect the user interface, allowing a
smooth scrolling.

Analysing instead the performance of the web application has been noticed

that the scripting part covers the largest part of the CPU activities, as
shown in Fig. 63.

Range 7.30 s — 50.36

w

Aggregated Time 43.06 s

B 275.91 ms Loading
7.7@0 s Scripting

Bl 4.88 s Rendering

Bl 758.45 ms Painting
1.82 s Other

28.44 s Idle

Figure 63. CPU usage summary

Moreover, the JavaScript Heap average size is around 20 MB as showed in
Fig. 64, which is limited memory consumption, considered the set of data
loaded. Indeed, on both browsers (Mozilla Firefox and Google Chrome), the
map interactions are fluid and allow a dynamic representation system.
Indeed, as shown in Fig. 65, the data exchanged between the clients and the
server are low weigh, the showed method is the heavier and it transfer a
data set around 170KB in average, and a lot of the needed files are
retrieved automatically from the cache.

MEMORY

@ JS Heap (4.6 MB - 13.9 MB]
@ Documents [1-3]

(@ Nodes [40-9384]

[Listeners [0-5373]

Figure 64.]S heap

118

data_pos POST 200 xhr query-1.9.0.js:8475 157 KB 1.52s |

data_pos POST 200 xhr query-1.9.0.js:8475 158 KB 1.245s ']

data_pos POST 200 xhr query-1.9.0.is:8475 158 KB 1.80s |H

data_pos POST 200 xhr query-1.9.0.i5:8475 165 KB 1.95s a
265 requests | 1.0 MB transferred | Finish: 1.7 min | DOMContentLoaded: 377 ms | Load: 377 ms

Figure 65. Network heavier data transfers

Anyway, the platform is limited to a single city area and does not support
the visualization of a whole country. This feature can be considered one of
the main aspects as future deployment in order to obtain a flexible map
that holds different zoom-level prospects. Moreover, in order to save space
into the database, a way should be compressing the base64 images,
reducing their size. This operation needs the implementation of
compression and a decompression algorithm, the first for saving the file
and the second one for retrieving it from the database. Finally, both
applications should be more tested in order to find precisely the best
threshold values both for the map scroll and for the maximum number of
entities that the server can send.

119

Conclusions and Ongoing Work

The diffusion and development of mobile devices have experienced
significant evolutions in the last years, both in application complexity and
accuracy. These factors open new opportunities for the ‘mobile sensing’
area that becomes a common part of the people life. This thesis project
focuses on this area and proposes an extension of the ParticipAct project,
which has been designed around the goal of optimizing the smart cities life
by adopting a crowdsourcing system. We chad the goal of design a new
experience for impaired people, integrating them into the city life.

In particular, our thesis makes possible for mobility impaired people to
share experiences and data with other people, using our platform a map
that links together all stored information. By using the new function, it is
indeed possible to upload new entities and to comment existent ones,
uploading comments and images. Both operations have been widely tested
both on browser and on mobile client deployments.

Indeed, the crowdsourcing potential is wide, as explained in this document,
granting more and more complex interactions between the crowd and any
single application. That will help people in communication and in life,
allowing an improvement and global feedback of the surrounding
environment and of the knowledge of people. The concrete example of the
smart cities, built on the interaction between the users and the city itself,
shows the idea of retrieving the citizens needs and hints.

Unfortunately, our current platform is limited by focusing on a single city
area, specifically the province. Indeed, the system cannot manage the load
of an entire country, as for example the whole Italy. This will be probably
part of the future development of the application, guarantying a flexible
view that is not limited to the current city area. Another function that will
be implemented in the future is the possibility to upload multiple images
for a single comment. Indeed, by now, each user can upload only a single
comment that is composed by a text and one image at most.

These features will amplify the application platform, guaranteeing a more
flexible interaction with the end-users.

120

Bibliography:

[1] Paul Deitel, Harvey Deitel, Abbey Deitel, Michael Morgano, “Developing Android application”, Pearson.

[2] G. Cardone, A. Cirri, A. Corradi, L. Foschini, R. Ianniello, R. Montanari, “Crowdsensing in Urban Areas for City-
Scale Mass Gathering Management: Geofencing and Activity Recognition”, IEEE Sensors Journal, vol. 14, no. 12,
2014.

[3] G. Cardone, L. Foschini, P. Bellavista, A. Corradi, C. Borcea, M. Talasila, R. Curtmola, “Fostering ParticipAction
in Smart Cities: A Geo-Social Crowdsensing Platform”, IEEE Communications Magazine, vol. 51, no. 6, 2013.

[4] G. Cardone, A. Cirri, A. Corradi, L. Foschini, “The ParticipAct Mobile Crowd Sensing Living Lab: The Testbed for
Smart Cities”, IEEE Communications Magazine, vol. 52, no. 10, 2014.

[5] David Flanagan, “JavaScript guide”, O’Reilly, Apogeo.
[6] Craig Walls, “Spring in action”, Manning.

[7] Raghu K. Ganti, Fan Ye, Hui Lei, “Mobile Crowdsensing: Current State and Future Challenges”, IBM T. J. Watson
Research Center, Hawthorne, NY.

[8] Vogella, http://www.vogella.com/.

[9] Android, http://developer.android.com/.

[10] XML vs JSON, http://www .cs.tufts.edu/comp/150IDS/final _papers/tstrasO1.1/FinalReport/FinalReport.html.

[11] PostgreSQL Global Development Group, PostgreSQL, , http://www .postgresql.org/ .

[12] Oracle, Java Persistence API, , http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049 .html .

[13] Hibernate, , http://hibernate.org/ .

121

122

