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1 

INTRODUCTION 

 

Sommario 

 
 Il problema del monitoraggio delle condizioni strutturali di sistemi quali 

quelli pontuali è divenuto ormai un tema centrale nel campo dell’ingegneria 

civile. Per questo, negli ultimi decenni, si sono sviluppati sempre più metodi 

aventi come obiettivo quello del controllo dello stato della struttura. Molto 

sviluppati, in questo senso, sono quelli che si avvalgono di dati dinamici, registrati 

ad esempio da strumenti quali gli accelerometri. Questi metodi permettono 

l’osservazione dello stato strutturale del sistema oggetto d’analisi e nel contempo 

possono fornire informazioni utili per il rinvenimento di danno, generatosi, ad 

esempio, a seguito di un evento sismico importante. Nel presente lavoro è stata 

compiuta l’analisi strutturale del Rio Dell – Hwy 101/Painter Street Overpass. 

Il Painter Street Overpass è collocato presso Rio Dell, nella California del 

Nord (Figure 1.1). Si tratta di un ponte a due campate, con impalcato a cassone in 

cemento armato precompresso. La geometria è complicata da un’inclinazione pari 

a 38.9 gradi dell’asse trasversale dell’impalcato rispetto a quello longitudinale. Il 

ponte è stato munito di accelerometri nel 1977 ad opera del Dipartimento dei 

Sottosuoli e della Geologia della California. In figura 1.2 è mostrata la 

disposizione di tali strumenti. 

 Il metodo di monitoraggio qui proposto si sviluppa in cinque passaggi. 

Essenzialmente, la vera e propria fase di monitoraggio si esplica solo al quinto 

passo, mentre i primi quattro possono considerarsi stadi necessari alla creazione di 

strumenti indispensabili per la finale individuazione del danno. 
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The use of dynamic data aimed to structurally identify systems such as 

bridges has become a well known non-destructive method able to provide  

evaluation of the condition of the structure. The subject of the present work is the 

Rio Dell - Highway 101/Painter Street Overpass, California. The approach 

presented herein is thought to offer an almost immediate estimation of whether or 

not the bridge under consideration has suffered some damage and, possibly, the 

location of the damage.   

 The Painter Street Overpass is located near Rio Dell, in Northern 

California (Figure 1.1). It is a continuous, two span, cast-in-place, pre-stressed 

post-tension, concrete, box-girder bridge. The geometry is complicated by a 38.9 

degrees skew of the bent with respect to the deck longitudinal axis. The bridge 

was instrumented in 1977 by the California Division of Mines and Geology. 

Figure 1.2 shows the location of the accelerometers. 

 The health condition monitoring method here proposed is developed in 

five stages. Essentially, the proper monitoring phase is only the fifth one, while 

the first four can be considered as the necessary steps that have to be taken in 

order to create the indispensable tools required for the final damage detection. 
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First Phase: Review of Previous Studies 

The review of previous studies enables to have some granted information 

on the structure, resulting as a starting point for the development of the actual 

work. At this stage, one should not seek any detail in particular. Any data gained 

should be accurately analyzed, since they could offer some hints such as 

indications on how to model the system, or suggestions on the boundary 

conditions to employ. 

 

Second Phase: Structural Identification through OKID Algorithm 

 In this part, special attention is devoted in identifying the dynamic 

characteristics of the bridge. An Observer/Kalman filter Identification (OKID) 

algorithm is applied using the recorded time histories available at the Center of 

Engineering Strong Motion Data website. This stage is essential to define the 

modal characteristics that will be some of the thresholds of the calibration of the 

mechanical model that will be built in the following step. 

 

Third Phase: Linear Finite Element Model of the Bridge 

 It consists in developing a linear finite element model of the bridge. 

This part is crucial in the development of the future steps.  It is required to the 

finite element model to be the most accurate as possible, in order to constitute a 

reliable tool on which perform the future damage detection. A number of finite 

element models are created with an increasing level of detail. Once the modal 

characteristics and the response of the model cannot be improved any further, the 

model has to be calibrated. In this study a genetic algorithm is applied. The 

calibration thresholds are the modal frequencies identified in the previous step, 

and the acceleration time histories available for the Painter Street Overpass.  
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Fourth Phase: Non-Linear Finite Element Model 

 The previously generated FE model is extended to the nonlinear range. By 

progressively increasing the load in the three space directions, the most stressed 

zones of the system are individuated. In these areas the elastic limit can be 

overcome, but this may not necessarily imply damage is occurred. On the 

contrary, it may only mean that the system has a non-linear behavior. Therefore, 

introducing non-linear elements in the most stressed regions will lead to handle 

with a model that will resemble more likely the actual response of the bridge. The 

simulated time histories of the response from the nonlinear model  represent a 

new set of data that are used in the next phase to test rapid response evaluation 

tools. 

 

Fifth Phase: Damage Detection 

This phase is herein presented to utterly describe the approach. 

Nonetheless, the phase explained below has not been tested, since the Painter 

Street Overpass had not suffered any damage at the time of the research.  

The “amplified” ground motion time histories are fed through the high-

fidelity bridge model developed, and the predicted response of the bridge at the 

various sensor locations on the superstructure is estimated. If the predicted 

response of the model matches the simulated response from Phase IV at all of the 

sensor locations, it will be indication that no damage has occurred in the bridge. 

If, instead, the previously identified model provides structural responses that do 

not match the ones from Phase IV, then this will serve as a caution that damage 

might have occurred somewhere in the bridge. Since the nonlinear response data 

are simulated through the model developed in Phase IV, different damage levels 

will be investigated and a sensitivity analysis on the damage intensity level should 

be performed.  

Another indicator of potential damage could consist in the relative 

displacements between critical sensor locations. Using the nonlinear model from 

Phase IV, time histories of the structural displacements at different sensor 
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locations and their relative magnitude will be determined. A displacement 

between two recording stations that is close to or beyond a certain threshold will 

be an indication of potential damage between the two sensor locations and an in-

depth damage assessment at that specified location will be necessary. This 

indicator can also be obtained in a relatively short time after the occurrence of the 

earthquake and can be run concurrently at the first approach.  



6 

 

 

 

  

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Geographical Location and View of Rio Dell-Hwy 101/Painter Street Overpass 
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Figure 1.2: Sensors Location on Painter Street Overpass 
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2  

REVIEW OF PREVIOUS STUDIES 

 

Sommario 

 
 Il capitolo che segue è frutto della ricerca bibliografica di studi 

precedentemente compiuti, aventi come oggetto il Rio Dell Overpass. Una volta 

reperito la maggior quantità di materiale possibile sull’argomento, è possibile 

analizzarlo e cogliere spunti di approfondimento. In particolare, nel seguito 

verranno analizzate le caratteristiche geometriche della struttura, il 

comportamento dinamico desunto dai dati ambientali registrati dagli accelerometri 

di cui il ponte è stato munito dal 1977 ad opera del Dipartimento dei Sottosuoli e 

della Geologia della California, l’interazione terreno-struttura ed infine verrà 

introdotto il problema dell’identificazione strutturale per mezzo dell’algoritmo 

OKID/ERA, sebbene nella letteratura scientifica sia difficile trovare pubblicazioni 

a rigurado. Infatti, l’algoritmo menzionato è stato creato per applicazioni nel 

campo dell’ingegneria aeronautica e solo ultimamente è stato introdotto nel 

campo dell’ingegneria civile.  
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2.1 Introduction 

As mentioned in the previous chapter, the Rio Dell Overpass was 

instrumented in 1977 by the California Division of Mines and Geology with 

twenty accelerometers (Figure 1.2). Eighteen accelerometers were located on the 

north edge of the bridge, while the remaining three sensors were put on the 

embankment in order to measure free field accelerations. However, the position of 

the channels give some problems for the determination of the characteristics of the 

system. Since the bent is skewed, the deck torsional deformations are not 

negligible. Nonetheless, the torsional contribute to the deformation cannot be 

caught only by means of the consideration of the recorded accelerations. It results 

apparent the necessity of the finite element model for a detailed structural  

identification of the Rio Dell Overpass.  

Moreover, despite the fact that the bridge was instrumented thirty three 

years ago, accelerograms of only three earthquake events are available at the 

Center of Engineering Strong Motion Data (CESMD) website. Therefore, maybe 

these are some of the reasons why there are not many papers published on the 

Painter Street Overpass subject. Nevertheless, the  researches available offer very 

helpful hints for structural identification through both OKID algorithm and finite 

elements model.  

Essentially, the literature available on the subject of the Painter Street 

Overpass is focused on the characteristics of the bridge derived from the 

acceleration time histories analysis. The soil-structure interaction is another issue 

accurately described in many papers.  

The literature on the use of the OKID/ERA algorithm for the structural 

identification is less ordinary. In fact, this is one of the first research in which this 

tool is exploited for structural purposes. The OKID/ERA algorithm was born in 

the mechanical engineering field, and only recently, for an intuition of Professor 

Betti and Professor Longman, has begun to be successfully tested in the civil 

engineering field.  
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2.2 The Geometrical Characteristics  

of the Bridge 

 

 Identified as CSMIP Station No. 89324, the US 101/ Painter Street 

Overpass is located in Rio Dell, California. The Rio Dell overpass is a two span 

bridge crossing Highway 101 at Painter Street, 265 feet long. The bridge is a 

monolithic, cast in place, prestressed concrete, multi-cell box girder road deck 

with end diaphragm abutments and a two columns bent. Both the abutment and 

bent foundations are supported on piles. The behavior is complicated by a 38.9 

degrees skew between the centerline of the bent and the centerline of Highway 

101 passing. The bent spans 38 feet measured along the centerline of the skewed 

cross sections and is monolithically connected top and bottom to the footings and 

superstructure respectively. The columns are approximately 20 feet in height. The 

abutments have been constructed on top fill material to provide appropriate 

vertical clearance over Highway 101 below. The west abutment rests on a 

neoprene bearing strip which is part of a designed thermal expansion joint. All of 

the foundations are supported on driven 45 ton concrete friction piles.   
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2.3 Dynamic Characteristics of the Bridge 

 

 Due to the records of the seismic events that interested the bridge since the 

Trinidad Earthquake in 1980, it is possible to examine the dynamic behavior of 

the bridge by means of the analysis of the aforementioned records. The following 

analysis are inspired by some papers published by Prof. Romstad, from the 

California University.  

 The first analysis performed consists in calculating and plotting the power 

spectral density functions for individual earthquakes for each sensor. Figures 2.1 

show the results. From the observation of all figures 2.1, it can be inferred that 

earthquakes tend to show a spike at 3.3 – 3.6 Hz, indicating an active natural 

mode with significant participation of all of the sensors. Other spikes tend to be 

concentrated at about 2.3, 4.2-4.4, 5.5 and  6.8 Hz. Nonetheless, only figures 2.1b 

and 2.1c show clearly dominating spikes; in particular, for sensor 6 two natural 

frequencies can be identified at 3.37 and 5.45 Hz, while for sensor 8 the 

dominating frequencies correspond to the values of 3.42, 4.40 and 6.98 Hz. 

However, it should be important to analyze the contribute to the modal 

characteristics of sensors 9 and 11, since they are the only sensors that measure 

transversal and longitudinal accelerations respectively. Anyway, observation of 

figures 2.1d and 2.1f demonstrates that the measurements recorded from these 

channels are quite invalidated by the noise. Therefore, only the modal frequencies 

at 3.42-3.52 Hz and at 4.20 Hz can be considered reasonable, since the frequency 

content of the other channels show this values too. Summarizing, from this initial 

analysis, four modal frequencies can be identified: the first is in the range from 

3.2 to 3.6 Hz, and is supposed to have both longitudinal and vertical and 

transverse contributes, since all of the channels have a peak corresponding to this 

value; then, the modal frequency of about 4.3 Hz is identified by both vertical and 

transverse channels; follow the modal frequencies at 5.5 and 7 Hz, both identified 

through sensors that measure vertical accelerations. 
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Figure. 2.1a: Sensor 5 PSD for Trinidad Rio Dell Earthquake and Petrolia Earthquake   
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Figure 2.1b: Sensor 6 PSD for Trinidad Rio Dell Earthquake and Petrolia Earthquake   
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Figure 2.1c: Sensor 8 PSD for Trinidad Rio Dell Earthquake and Petrolia Earthquake   
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Figure. 2.1d Sensor 9 PSD for Trinidad Rio Dell Earthquake and Petrolia Earthquake   
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Figure 2.1e: Sensor 10 PSD for Trinidad Rio Dell Earthquake and Petrolia Earthquake   
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Figure 2.1f: Sensor 11 PSD for Trinidad Rio Dell Earthquake and Petrolia Earthquake   
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Another analysis is performed on the Fourier transforms of the time 

histories recorded from channels that measure accelerations at the base of the pier 

(1, 2, 3), in free field (12, 13, 14), at the top of the east abutment (15, 16, 17) and 

on the bridge deck above the same abutment (9, 10, 11).  First of all, the average 

value of the records between the Trinidad and Petrolia earthquakes is computed. 

Then, the Fourier transforms of the resulting time histories are calculated, 

grouping the plots depending on the direction of the measured motions. Then, 

three plots are obtained: the first representing the frequency content of the 

longitudinal accelerations, from channels 1, 11, 12 and 15;  the second presenting 

the vertical accelerations, from sensors 2, 10, 13 and 16; the last showing the 

transverse behavior, from accelerometers 3, 9, 14 and 17. Results are presented in 

figures 2.2. 

Analysis of figures 2.2 demonstrates a minor soil-structure interaction in 

the area of the pier.  In fact, free field and base of the pier motions are similar. On 

the other hand, the interaction soil-structure is considerable in the area of the 

embankment, as can be inferred from the differences between the free filed and 

the top of abutment motion. Lastly, the similarity of the motions on top of the fill 

with the motions on the bridge deck could imply that the  embankment fill moves 

with the bridge deck.  

 The trend identified via Fourier Transforms is found again by comparing 

the acceleration amplitude of the channels, plotted in figures 2.3. The maximum 

longitudinal accelerations on the abutment fill and on the structure are essentially 

the same as the free field motion for all earthquakes, possibly indicating the 

bridge is moving as a rigid body with the ground in the longitudinal direction. 

Practically, the same behavior is observed in the vertical direction. On the 

contrary, in the transverse direction the abutment and deck accelerations are 

amplified compared to the free field ones.  

 These observations offer valuable information on how to model the 

boundary conditions of the finite element system. In fact, the soil-structure 

interaction between the base of the pier and the soil can be modeled through fixed 
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restraints, since the two systems move together as a rigid body. On the other hand, 

the area through which the deck approaches the abutment does not need any 

special representation, for the two systems move as rigid body as well. On the 

contrary, the soil-structure interaction needs to be well understood and then 

modeled at the abutment level. As will be deeply clarified in the following 

paragraph, the best model for this connection is represented by a set of springs, 

whose stiffness choice constitutes a crucial step to obtain a model with realistic 

response.  

Other interesting information on the dynamic behavior of skewed bridges 

can be found in a paper of Eng. Shamsabadi and Eng. Kapuskar. The research of 

the two engineers is focused on the determination of the response of skewed 

bridges to seismic inputs as a function of skew angle. Their results have obtained 

by exciting three-dimensional model of two-span box girder bridges with a skew 

angle varying from 0 to 60 degrees with non-linear time histories. It is observed 

that skewed bridges are affected by strong rotations with respect to the vertical 

axis during the seismic event, while present an irreversible transverse 

displacement after the shaking is terminated. On the contrary, the bridge with zero 

skew angle do not show this behavior. Moreover it is observed that, for 

particularly intense ground motions, the deck could experience the unseat at the 

abutments. The engineers clarify that what causes the severe deck rotations is a 

non uniform passive soil wedge behind the abutment wall, that results in 

asymmetric soil reactions of the wall itself. What deserves to be underlined is that 

the response changes as the direction of the applied motions vary. Therefore, it is 

important to be provided of earthquake time histories with more than one 

component and different records in order to completely identify the dynamic 

behavior of a skewed bridge. 
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Figure 2.2a: Average Fourier Amplitude for Sensors 1 (Base of Pier), 11( (Deck), 12 (Free field) and 15 (West Abutment)  
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Figure 2.2b: Average Fourier Amplitude for Sensors 2 (Base of Pier), 10( (Deck), 13 (Free field) and 16 (West Abutment)  
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Figure 2.2c: Average Fourier Amplitude for Sensors 3 (Base of Pier), 9( (Deck), 14 (Free field) and 17 (West Abutment)  
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Figure 2.3a: Average Acceleration Amplitude for Sensors 11( (Deck), 12 (Free field) and 15 (West Abutment) 
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Figure 2.3b: Average Acceleration Amplitude for Sensors 10( (Deck), 13 (Free field) and 16 (West Abutment) 
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Figure 2.3c: Average Acceleration Amplitude for Sensors 9( (Deck), 14 (Free field) and 17 (West Abutment) 
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2.4 Soil-Structure Interaction 

 

As derived in the previous paragraph, it is essential to individuate a model 

through which reasonably represent the soil-structure interaction at the base of the 

abutment.  Moreover, the final aim of this study is obtaining a realistic non-linear 

model of the Rio Dell Painter Street Overpass. It becomes apparent that this leads 

to deal with large displacements theory. As displacements raise, the behavior of 

bridge abutments cannot be modeled as linear anymore. Studies proved that the 

peak accelerations recorded near and on highway overcrossing approach 

embankments can be more than twice the crest motion of the pile cap of the center 

bent. Then, the kinematic response of the embankment strongly effects the bridge 

response. Design procedures used by Caltrans (1989) solve the problem by means 

of distributed linear springs whose objective is modeling the stiffness of the 

embankment. Nevertheless, the Caltrans approach does not take into account 

neither the energy absorbed by the embankment nor the dynamic nature of the 

problem. Thus, this simplified approach becomes unacceptable when there is an 

attempt to seek more detailed results. 

The solution proposed by Prof. Romstad consists of a complex system of 

springs reflecting soil, pile, concrete and interaction properties, as the one 

presented in figure 2.4. At both abutments the wingwalls are pinned with respect 

to moment about the vertical global Y axis. The wing wall cannot move out from 

the centerline of the bridge, once the joint filler is crushed to transfer the load. 

Nevertheless, there is not resistance to movement of the wingwall toward the 

longitudinal centerline of the bridge, except frictional resistance at the base of the 

wingwall. Moreover, the west backwall and the foundation are separated by a ¼” 

neoprene bearing strip. Shear keys bound the abutment backwall in the case gross 

relative displacements in both transverse directions and in the skewed longitudinal 

direction such that the backwall cannot move into the soil.  
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Figure 2.4a: Elevation View of Longitudinal West Abutment Resisting Elements 

 

 

 

 

Figure 2.4b: Schematic Representation of Longitudinal West Abutment Active 

Spring Elements 

 

However, this model seems to be very complex to apply and to be 

implemented in an FE model. Therefore, it is looked for another model. The 

research published by Zhang and Makris seems to achieve the purpose. The two 

researchers presented a study on Painter Street Overpass, providing the values of 
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the spring stiffness and dash-pot damping coefficients that can be used in a three 

dimensional finite element model in order to represent the soil-structure 

interaction at the end abutments. In the first phase of the method, the kinematic 

response of the embankments is evaluated. Through this step the shear modulus G 

and the damping coefficient  of the soil embankment are determined. In 

particular, the shear modulus of the Rio Dell Overpass embankment is set equal to 

8 MPa, while the damping coefficient equals 0.5. Then, it is possible to complete 

the dynamic stiffness calculation. Since this second phase is the one that leads to 

the values of interest, the detailed calculations are presented below:  

 

1. Computation of the dynamic stiffness of the unit-width shear wedge: 

 
     

      )kz(YHzkJ)kz(JHzkY

)kz(YHzkJHzkY)kz(J
kBi1G)(k̂

00000000

01000001
cx




  (2.1) 

where  

G = 8 MPa 

= 0.5 

Vs = 190 m/s 

Bc = 15.24 m 

z0 = 3.81 m 

H = 9.6 m 

k = 
)i1(Vs 


 

J0() = Zero Order Bessel Function of the First Kind 

J1() = First Order Bessel Function of the First Kind 

Y0() = Zero Order Bessel Function of the Second Kind 

Y1() = First Order Bessel Function of the Second Kind 
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2. Plot of the real and the imaginary parts of equation 2.1 as a function of 

frequency f = /2: 
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Figure 2.5: Plot of the Real Part of Equation 2.1 
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Figure 2.6: Plot of the Imaginary Part of Equation 2.1 
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3. Selection of practical spring and dash-pot values by passing a horizontal 

line through the graph of the real part and inclined line through the graph 

of the imaginary part at locations that capture with satisfaction the low 

frequency behavior: 
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Figure 2.7: Practical Spring Value 
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Figure 2.8: Practical Dash-Pot Value 
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Figures above show that the practical spring value can be taken equal to 

25.413 MN/m
2
, while the slope of the imaginary part of the unit-width 

shear wedge gives the practical dash-pot value of the soil embankment: 



=10.992 
(2.2) 

  

4. Computation of the transverse spring and dash-pot values of the 

embankment by multiplying the practical values with the critical length 

defined by equation 2.3: 

 

987.5HBS7.0L cc   (2.3) 

where 

S = 0.5 

Bc = 15.24 m 

H = 9.6 m 

 

 

Finally, the transverse and longitudinal values of the spring stiffness are: 

 

ft/lbf450,425,10m/MN148.152kk yx   (2.4) 

  

while the transverse and longitudinal values of the dash-pot damping 

coefficients are: 

 

809.65yx   (2.5) 

 

 

 

 

 

 

 

 



32 

 

2.5 Structural Identification through OKID 

 

 Examination of the literature demonstrates that essentially the subject is 

explored  in the damage identification field. The most common use of the OKID 

tool is that where data is recorded at two different period of time, and the goal is 

that of establish whether the system has suffered damage in the time between the 

two observations. At the beginning of the development of structural health 

monitoring technique, the recorded time histories were used to optimize a 

mechanical model of the system under analysis in the two states, and then the 

damage was identified by comparing the differences in the two conditions. 

Nonetheless, because of the high level of uncertainty and complexity strictly 

linked to the generation of a  structural model, the results were not always 

reasonable and reliable. Trying to fix a guideline for the Structural Health 

Monitoring, the dynamics committee of ASCEE formed a Task group on the 

subject in 1999. One of the solution the task group considered was that of 

obtaining a state-space realization from the measured signals. Moreover, in order 

to solve the state-space model in discrete time, the Eigensystem Realization 

Algorithm with a Kalman Observer (ERA-OKID) was used. As will be 

completely clear in next chapter, this is the starting point for the structural 

identification of the system through the OKID Algorithm. The damage 

identification strategy then developed by the task follows by extracting flexibility 

matrices form the matrices realization, computing the change in flexibility from 

the undamaged to the damaged state, reducing the subset of potentially damaged 

elements by examination of the change in flexibility and finally, quantifying the 

damage using the identified damaged flexibility. The technique finds its power in 

the simplicity of application. However, the exigency of disposing of many 

channel represents an important limitation of the method. Moreover, the technique 

was tested on relatively simple systems. Finally, this method represents a valid 
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tool to identify damage when occurred, and it is not the case of the Painter Street 

Overpass.  

 The last mention technique was used to solve the so called benchmark 

problem. Starting from the proposed solutions of the ASCEE task group, a team 

of researchers, led by Prof. Betti and Prof. Lus, introduced a new approach in the 

structural identification and damage detection theory. The method is divided into 

two stages: the first consists in identifying a state-space model, by using the 

recorded data, through the OKID/ERA algorithm, and then optimizing it through a 

non-linear optimization approach. The second step leads to the identification of 

the second order dynamic model characteristics from the previously realized state-

space model. Through the identification of the main dynamic model parameters, 

as mass, stiffness and damping, a set of information of the undamaged system can 

be organized. The variation of such values could mean the system has suffered 

damage. The intriguing advantage of this approach is the use of only the available 

input-output measurement data, without the need neither of manipulating them, 

nor of imposing any limitation on the kind of damping by which the system is 

subjected.  
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3  

SYSTEM IDENTIFICATION VIA 

OKID\ERA 

 

Sommario 

 

Di seguito è presentata una metodologia per l‟identificazione di modelli 

che descrivono lo stato di un sistema strutturale attraverso l‟utilizzo di time 

histories registrate delle accelerazioni al suolo e sulla struttura stessa registrate 

durante eventi sismici.  

Da tali modelli possono essere facilmente ricavati i parametri modali della 

struttura, quali le frequenze, i rapporti di smorzamento e le forme modali. Tale 

approccio d‟identificazione si basa sull‟utilizzo dell‟Eigensystem Realization 

Algortihm (ERA), complementato dall‟algoritmo Observer/Kalman filter 

IDentification (OKID). Per l‟ottenimento dei  risultati finali, si attua 

un‟ottimizzazione tramite la minimizzazione dell‟errore tra la risposta dedotta 

computazionalmente e quella misurata. L‟analisi dei risultati porta a concludere 

che la metodologia qui proposta è efficace nell‟identificare le caratteristiche 

strutturali del sistema, sebbene si debba riconoscere che tali risultati potrebbero 

essere migliorati avendo ad esempio a disposizione time histories più lunghe o 

accelerogrammi registrati anche sulla sponda sud del ponte.  

Fin dall‟inizio della sua introduzione, molti utenti hanno trovato questo 

metodo efficace in numerose applicazioni pratiche nel contesto del controllo delle 

vibrazioni di strutture flessibili in campo aerospaziale e meccanico. La teoria, 

dunque, è stata originariamente coniata appositamente per questo tipo di sistemi, 

tuttavia la formulazione matematica si basa su ipotesi facilmente applicabili a 

qualsiasi tipo di struttura. 
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3.1 Introduction 

 

In the field of identification of structures, the common practice is to create 

an analytical model and to update it by using static and dynamic testing. The 

initial finite element model is calibrated by comparing the numerical eigendata 

(natural frequencies and mode shapes) with the eigendata acquired from the model 

tests. Approaches based on frequency response functions and fast Fourier 

transforms are still dominant in the model updating philosophy. The aim of 

experimental modal analysis is to retrieve the system‟s modal characteristics, such 

as the natural frequencies, mode shapes, etc. from experimental data. However, 

such experiments generally require a large number of actuators and sensors to 

pick up most of the modal data. An alternative approach to determine an 

appropriate structural model is to use input-output relations, as the one developed 

in the present work.  

The time histories available at the Center of Engineering Strong Motion 

Data (CESMD) are necessary to the Observer/Kalman filter Identification (OKID) 

algorithm to compute the Markov parameters of the system. The quality of the 

estimated state of the system by a designed observer depends on the accuracy of 

not only the assumed system model, but also the assumed system and 

measurement noise characteristics. Information of both the system and the noise 

characteristics are embedded in the above mentioned Markov parameters. For a 

lightly damped system, the number of system Markov parameters needed to be 

solved for becomes exceedingly large. It is known that not all the system Markov 

parameters are independent. By invoking the Cayley-Hamilton theorem we know 

that every Markov parameter can be expressed as a linear combination of a finite 

number of “independent” system Markov parameters where the unknown 

coefficients of the linear combination are those of the system characteristic 

equation. The key issue is how to reduce the number of unknowns without having 

to pose this problem as a non-linear parameter estimation problem. It is possible 
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to compress the original set of system Markov parameters into another set of 

parameters where the details of the compression is explained via a special matrix, 

which is precisely an observer gain described previously.  

The observer Markov parameters are then used by the Eigensystem 

Realization Algorithm (ERA) to realize the discrete time first order system 

matrices. Then, via a non-linear optimization algorithm, the output error between 

the measured and detected response is minimized.  Finally, the physical 

characteristics of the structure are recovered by means of a technique discussed by 

Lus (2001) and De Angelis (2002). 

For my purposes I have used one of the latest version of the function 

OKID/ERA/non-linear optimization algorithms written in the Matlab 

programming language. Essentially, the user provides a set (or multiple sets) of 

input-output data, together with such information as the number of inputs, the 

number of outputs, sampling interval, etc., the function will return an identified 

state-space model, associated observer gain and physical characteristics of the 

model.  
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3.1.1 The Historical Path of OKID/ERA Algorithm 

 

During the last three decades, there has been a vast number of studies and 

algorithms concerning the construction of state space representations in the time-

domain for linear dynamical systems, beginning with the works of Gilbert and 

Kalman. One of the first result obtained in this field was about „minimal 

realizations‟, indicating „a model with the smallest state-space dimension among 

system realized that has the same input-output relations within a specified degree 

of accuracy…‟. It was shown by Ho and Kalman, that the minimum 

representation problem was equivalent to the problem of  identifying the sequence 

of real matrices, known as the Markov parameters, which represent the unit pulse 

responses of a linear dynamical system. Following a time-domain formulation and 

incorporating results from control theory, Juang and Pappa proposed an 

Eigensystem Realization Algorithm (ERA) for modal parameter  identification 

and model reduction of linear dynamical systems, which extends the Ho-Kalman 

algorithm and creates a minimal realization that mimics the output history of the 

system when it is subjected to unit pulse inputs. Later, this algorithm was refined 

to better handle the effects of noise and structural non-linearities, and the ERA 

with data correlations (ERA/DC) was proposed.  When general input data such as 

an earthquake-induced ground motion is used, difficulties in retrieving the system 

Markov parameters can arise related to problem dimensionality and numerical 

conditioning. Among the algorithms proposed to overcome these difficulties, the 

Observer/Kalman filter IDentification (OKID) algorithm introduces an 

asymptotically stable observer which increases the stability of the system and 

reduces the computation time, improving the performance even when the noise 

and slight non-linearities are present. This technique has proven to be quite 

successful in the aerospace community in the identification of complex, high-

dimensional space craft structures. 
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3.2 Basic Formulation 

 

3.2.1 Input-Output relations 

 

The dynamic behavior of an N degrees of freedom linear structural system 

can be represented by the second-order differential equation: 

 

)t()t()t()t( uqKqLqM B   (3.1) 

 

where q ϵ R
N
 is the structural displacement vector in a fixed system of reference. 

The matrices M, L and K, all R
N x N

, are the mass, damping and stiffness matrices, 

respectively, while B ϵ R
N x r

 indicates the continuous time input matrix, in fact, 

the vector u(t) is assumed to contain r external excitations applied to the system. 

When the input is represented by a seismic excitation, the components of q(t) 

correspond to nodal displacements with respect to a system of reference whose 

origin is at the base of the structure and moves together with the base. The 

external forcing term B u(t) can now be replaced by )(1 txMI gxN
 , with IN x 1 

being the unitary vector and )(txg
  the ground acceleration at the time t.  

The same structural system of equation (3.1) can also be represented as a 

system of first-order differential equation in state-space form, setting )t()t( qv  : 

 











)t()t(

)t()t()t()t(

qv

u q Kv Lv M



 B
 

(3.2) 

 

 

Let assume that one is provided of only m output time histories of the response, 

then, it is possible to introduce a new vector  y(t), containing the measurements 

available (generally m ≠ N). 

Finally, it is possible to form the following system: 

 



 

39 

 

        









































































TT
a

T
v

T
p )t()t()t()t(

0

)t(

)t(10

)t(

)t(

qΨqΨqΨy

M

B
v

q

M

L

M

K
v

q







 

 

(3.3) 
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(3.4) 

 

(3.5) 

 

where x is the n-dimensional state vector, and y is the m-dimensional output 

vector, where n is 2N. The matrices A ϵ R
n x n

, B ϵ R
n x r

, C ϵ R
m x n

 and D ϵ R
m x r

 

represent the time invariant system matrices. Since we receive measurements of 

input and output as sets of discrete data, it is convenient to work in the discrete 

time domain so that equation (3.4) and (3.5) can be expressed as difference 

equations in the following form: 

 









)k()k()k(

(k)(k)1)(k

u Dx Cy

u Γx Φx

 
(3.6) 

(3.7) 

 

where the integer k denotes the time step number, i.e. x(k+1) =x[k(T)+T], with 

T being the time step interval. Assuming the input as a unit pulse, we obtain: 

 

Γ Φ CCΓ ΦΦ

Γ ΦΦ

1n-
nn

1n-
1nn

12

1

xyxx1nkfor

xx1kfor

1x0kfor











 

(3.8) 

 

 

The yn are called system Markov parameters, they are the response of the system 

to a unit pulse. For a zero-order hold approximation and a sampling time T, the 
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discrete time system matrices  and  can be evaluated as  = e
A(T)

 , so that  

= B















DT

A de
0

 , and the solution of equations (3.6) and (3.7) is given by the 

following convolution sum: 

 

1
1

0

1
1

0

x( ) x(0)

y( ) C x(0) D


 




 



    

     





k
k k j

j

k
k k j

j

k u(j)

k C u(j) u(k)

 
(3.9) 

(3.10) 

 

For zero initial conditions, equation (3.10) can also be written in matrix form for a 

sequence of l consecutive time steps as: 

 

llrlrmlm   UMY  (3.11) 

where  

 )1l(y,),2(y),1(y),0(ylm  Y  (3.12) 

 ΓCΦCΦΦCΓDM
2l

lrm ,,,, 
    (3.13) 
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)1l(u)2(u)1(u)0(u

llr 





U  (3.14) 

 

the matrix Y is a matrix whose columns are the output vectors for the l time steps, 

while the matrix U contains the input vectors for different time steps arranged in 

an upper-triangular form. The matrix M contains the Markov parameters, in form 

of its partitions. The system Markov parameters form a basis for the ERA. 
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3.2.2 Observer/Kalman filter IDentification 

 

The aim of this paragraph is that of explaining how to extract the system 

Markov parameters when only input-output data are available. The first attempt 

would be that of solving equation 3.11. However, for a multiple-input multiple-

output system the solution of that system is not unique, unless one truncates the 

Markov parameters sequence. In addition, deciding at which order truncate that 

sequence is problematic as well, especially for lightly damped structures. OKID 

algorithm solves these issues by introducing an observer to the state space 

equations, so that equations 3.6 and 3.7 become: 
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(3.15) 

 

 

(3.16) 

where: 

 

  

 TTT (k)(k)(k)

ˆ

ˆ

yuν

RRDΓΓ
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



 

(3.17) 

 

 

The new matrix R is chosen in order to make the system of equations 3.15 and 

3.16 as stable as possible. The gained system can be considered as an observer 

system, therefore its Markov parameters are called observer Markov parameters.  

By choosing R such that Φ̂  is asymptotically stable, one can obtain the result 

0ˆˆ h ΓΦ C   for h > p, and the input/output relation can be written as: 

 

    lrp)mr(rp)mr(mlm
ˆ

  VMY  (3.18) 
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The observer Markov parameters are the block partitions of the matrix M̂ , and 

they are obtained by finding the least-squares solution of Equation 3.18 as: 

 

M̂ =Y V
†
 (3.19) 

 

with ()† denoting the pseudo-inverse of a matrix.  It should be noted that when 

both Y and V are polluted with noise, the least square solutions might be 

problematic. Moreover, since the Markov parameters of the real system are 

retrieved from the identified observer Markov parameters, any bias introduced in 

the initial least-squares solution might propagate and become more pronounced in 

the Markov parameters of the real system, leading possibly to loss of accuracy in 

the final identified model. Having identified the observer Markov parameters, 

 the system Markov parameters can be retrieved using the recursive formula: 

 

Dˆˆˆ )2(
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(3.20) 

 

Once the system Markov parameters have been identified, they can be used in the 

ERA formulation for the identification of the dynamic structural characteristics. 
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3.2.3 Eigensystem Realization Algorithm 

 

The objective now is solving the so called minimal realization problem, 

i.e. finding a set of minimum order discrete time matrices , C, D, from the 

system Markov parameters identified previously.  

Let us consider that r impulse tests have been performed on a system with 

m outputs. Let us denote with y
j
(k) a new vector, of dimension m, that represents 

the response of the system at time kT to the unit impulse input uj at time zero. In 

this way, we can package the data as: 

 

     yyyY
r21 )(k  (3.21) 

 

For definition given in the first paragraph of this chapter, the vector Y(k) 

represents the system Markov parameters at time k t. The evaluation of the 

matrix D is then very simple, since it is apparent that: 

 

)0(YD   (3.22) 

 

Having identified the D matrix, we now look for C,   . ERA solves the 

problem by means of the singular value decomposition of the Hankel matrix, an 

ms x rs  matrix constructed by means of the system Markov parameters just 

identified: 
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where s is an integer that determines the size of such a matrix.  The Hankel matrix 

is a block symmetric matrix: denoting with O
~

 the ms x n the observability matrix 

and with C
~

 the n x rs controllability matrix, the Hankel matrix can be written as: 

 

C O
~~

)i( i
ΦH 

 

(3.24) 

where: 
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(3.27) 

  

The rank of the Hankel matrix is equal to the dimension of the minimum 

realization. The singular value decomposition of the Hankel matrix can then be 

written as: 
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(3.28) 

 

where the matrices U, of ms x ms dimension, and V, of rs x rs dimension, are 

unitary matrices, while the diagonal matrix S encloses exactly n singular values 

for a system deprived of noise. It is then clear the statement of the ERA theorem: 
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(3.29) 

 

where ()
† 

denotes the pseudo-inverse of a matrix. The input matrix  can be easily 

determined, as it is the first block partition  of C
~

, and, similarly, the output matrix 

C is the first block partition of O
~

.  

 

3.2.4 Refining the Identified State-Space Model 

 

The method described in the preceding sections performs quite well for 

finite-dimensional system when: 

1) the available input/output data time histories are sufficiently long; 

2) the noise is white, of zero mean and small. 

When these conditions are not satisfied, the results could be not acceptable. 

Moreover, measurement noise is not the only issue one has to consider. Other 

problems such as non-stationary and insufficient excitations, and truncation errors 

introduced in the ERA stage, also contribute to the errors. Therefore, it is apparent 

that the basic OKID/ERA methodology needs an optimization. The technique 

used to obtain the results of the present work is the output error minimization 

approach, a non-linear least squares problem based on the minimization of the 

following function: 
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where  contains the parameters to be optimized, the vector y(k,) is the output 

vector obtained from the state-space realization at time-step k, while )k(y  is the 
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measured output at time step k, with the index k varying from an initial time ti to a 

final time tf. 

In particular, the method used for the optimization of the state-space 

realization is the „Sequential Quadratic Programming‟ (SQP) technique, 

belonging to the quasi-Newton-type methods family; such methods guarantee fast 

convergence provided that the initial conditions are sufficiently close to the 

desirable solutions. This issue is solved for the problem analyzed, since the 

solutions provided by the methodologies discussed previously will serve as 

reasonably good estimates to initiate the search. 

The Taylor series expansion truncated at the second order of equation 3.30 is: 
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where, for i referring the i
th

 output, the following terms have been considered : 
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It is necessary to have the Hessian at worst positive semi-definite, therefore, the 

contribution of only the positive eigenvalues of () to H() will be considered. 

The SQP technique is an iterative method: in each iteration the parameters are 

updated via the following formula: 
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where j denotes the j
th

 iteration, dj is the step size, and H*
(j) and GT

(j) are 

obtained by evaluating Equations (3.32) using the parameters j. The size of the 

iteration step size has to be calibrated in order to avoid any instability, and to have 

a decrease of the objective function F(). 

 An important issue is the choice of the parameters to be optimized. It can 

be observed that the observer Markov parameters play a crucial role in the 

identification of the state-space realization, and then, indirectly, to the 

determination of the dynamics of the system, that are the proper objectives of the 

whole identification. Of course, one could decide to optimize all of the variables 

in the discrete time state space matrices, and in that case the number of elements 

of  would be n
2
 + n x r +m x n. This approach would give reliable results, but the 

computational effort requested will be very high for complex structures. An 

alternative is represented by the transformation of the state space discrete time 

system realization to a set of modal coordinates. Since the eigenvalues of the 

identified first-order system appear in complex conjugate pairs as ii j~  , with j 

representing the imaginary unit,  the discrete time equations can be transformed 

into a new basis in which they can be written as n/2 uncoupled equations (one for 

each structural vibration mode) as 
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and the state vector can now be expressed as 
TT

2/,n

T

1, )]k()k([)k( zzz  . With this 

formulation, the total number of parameters is reduced to n + n x r + m x n + m x 

r. The discrete time equations for each mode in the state vector can now be 

written separately as: 
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where in  are embedded the continuous time eigenvalues of the identified state 

space model, while , of order n x n, is the matrix of the eigenvectors 

corresponding to the eigenvalues of .  
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3.2.5 Recovering the dynamics of the system from the realized 

state-space model 

 

 Finally, it is possible to retrieve the dynamics of the system using the 

optimized state-space realization 3.37. Let recall the well-known eigenvalue 

problem: 
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where i represents the i
th

 complex eigenvalue i = i
 
± jI, for i = 1,2,…, N. The 

eigenvectors are then scaled such that: 
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 where  is the matrix containing the complex eigenvalues, while  the one of the 

corresponding eigenvectors. By using the assumptions presented in equations 3.39 

and 3.40, the system of equations 3.4 and 3.5 becomes: 
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that  represents the first order modal form of the equation of motion 3.1. 

Formulation given by equations 3.41 is a different model of the same system 

represented by equations 3.37: there must be a transformation matrix T that relates 

the two representations: 
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Once the eigenvectors matrix is determined, the evaluation of the mass, damping 

and stiffness matrices are retrievable from equations 3.39 and 3.40: 
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and undamped natural frequencies and damping ratios can be finally calculated: 
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3.3 Numerical Results 

 

The Painter Street Overcrossing was instrumented in 1977 by the 

California Division of Mines and Geology as part of the California Strong Motion 

Instrumentation Program. The bridge site was instrumented with twenty strong 

accelerometers capturing various motions on and off the bridge as shown in figure 

3.1. Channels 12, 13 and 14 measure free field motions (longitudinal, vertical and 

transverse to the bridge axis respectively) near the bridge site. At the east end of 

the bridge, triaxial sets of sensors are located both on the embankment (15, 16, 

17) and on the end of the bridge deck (9, 10, 11) so that relative motion between 

the embankment and the deck could be assessed. A triaxial set of sensors (1, 2, 3) 

is also located at the base of the bent‟s north column to aid in measuring soil-

structure interaction. A transverse sensor (7) is located at the base of the deck 

adjacent to the center bent and vertical sensors are located at midspan of the east 

(8) and west (6) spans on the north side of the deck. An important issue is the 

absence of accelerometers at the south edge of the bridge: torsion of the bridge 

cannot be directly assessed. 

Since the overpass was instrumented, it has been shaken by six earthquake. 

Of these only three set of data are available at Center of Engineering of Strong 

Motion Data (CESMD). Therefore, the results herein proposed are obtained by 

using records of Trinidad Offshore, Rio Dell earthquake and the first event of 

Petrolia earthquake. Table 3.1 presents the characteristics of the six earthquakes 

that interested the structure since 1977. 

In figure 3.1 are circled in different colors the sensors whose records are 

used as input and output data. In particular, the sensors circled in red offer input 

data, while the ones circled in blue give the output data.  

. 
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Event Date 
Mag. 

[ML] 

Epic. 

Dist. 

[km] 

Maximum Ground 

Acceleration 

Maximum Bridge 

Acceleration 

C12 C13 C14 C6 C7 C8 

Trinidad 11/08/80 6.9 72 0.15g 0.03g 0.06g 0.34g - 0.25g 

Rio Dell 12/16/82 4.4 15 - - - 0.39g 0.43g 0.59g 

Cape 

Medoncino 
08/24/83 5.5 61 - - - 0.27g 0.22g 0.16g 

Petrolia 

(#1) 
11/21/86 5.1 32 0.46g 0.08g 0.16g 0.24g 0.26g 0.33g 

Petrolia 

(#2) 
11/21/86 5.1 26 0.15g 0.02g 0.12g 0.21g 0.36g 0.29g 

Cape 

Medoncino 
07/31/87 5.5 28 0.15g 0.04g 0.09g - 0.34g 0.27g 

 

Table 3.1: Characteristics of the six seismic events recorded by instrumentation located on Painter Street Overcrossing
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Fig. 3.1: Input and Output Sensors Location 
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3.3.1 Trinidad Offshore (November 8, 1980) 

 

For this set of data records from channels 1, 2, 3, 15, 16, 17, 18, 19, 

20 are used as inputs, while the ones from channels 5, 6, 8, 9, 10, 11 as 

outputs. The total number of data points for each record is 1104, at a 

sampling interval of 0.02 seconds.  

As discussed, the choice of the number of observer Markov 

parameters affects the solution of the observer system, and then it is critical 

in the determination of the characteristics of the structure. It is important to 

choose the value of the number of observer Markov parameters (denoted as 

‘p’ from now on) as higher as possible. The  upper bound for p is given by 

the following demonstrable formula: 
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where 

r = number of inputs (9) 

m = number of outputs (6) 

l = number of data points (1104) 

 

 The number of system Markov parameters is usually set from two to 

four times the one of p. In the present work ‘nmarkov’ (number of system 

Markov parameters) equals four times p. 

With the values of ‘p’ and’ nmarkov’ defined, it is now possible to 

run the OKID/ERA via MATLAB. The program needs the asks for the 

definition of other parameters. The first thing one has to choose is the 

number of singular values of the V*V
T
 matrix

 
to keep to compute observer 

Markov Parameters. Usually, it is chosen the number of singular values just 

above the sharp drop, that in this case equals 1031. Nonetheless, after many 

trials, it has been observed that for this set of data the most stable results are 
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obtained by keeping 558 singular values, whose amount is one of the first to 

be not negligible (Figure B.1). The next step is to choose the number of 

singular values of the decomposed Hankel Matrix H(0)*H(0)
T
 (Figure B.2). 

When output observations are not contaminated by noise, the dimension of 

the state matrix can be clearly indicated by singular values of H(0)*H(0)
T
 

and so the modal parameters for the system modes can be estimated just 

from a realized model. However, when output measurements are disturbed 

by noise, the Hankel matrix has full rank and this makes it difficult to assign 

a certain order to an identified system model only based on the singular 

values distribution. Even though it is true that having a higher order 

identified model helps in minimizing the error between the measured data 

and the reconstructed responses from the identified model, this error 

reduction could be due to noise modes that are now included to improve the 

fitting between the data sets. For this reason the extraction of modal 

parameters corresponding to structural modes is generally complemented by 

a Stabilization Diagram (SD). Such a diagram, which represents the 

identified frequencies as a function of the model order, highlights modes 

whose properties do not change significantly when varying the dimension of 

the state vector; such modes are considered as structural modes. In order to 

form the SD, an observability matrix is repeatedly formulated from equation 

3.29 varying the dimension of the state, which provides different pairs of 

state and output matrices of corresponding orders. The properties of poles in 

a model of a certain order are compared with those of a two order larger 

model and stable and unstable modes are determined on the basis of the 

identified frequencies, damping ratios and mode shapes. A star in the 

diagram represents a value for which modal shape, frequency and damping 

are stable; an ‘f’ indicates that only modal frequency is stable, while a ‘v’ 

should give stable modal shape and frequency; finally, a ‘d’ informs that 

modal frequency and damping are stable (Figure 3.1).   
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Therefore, the following approach  is developed: a very high order is 

chosen; then, from the observation of the stabilization diagram the first trial 

is run by choosing only the frequencies that appear to be stable, i.e only 

frequencies denoted with either ‘star’, or ‘v’, or ‘d’ in the stabilization 

diagram. In the following trial the modal frequencies either with too high 

(greater than 10%) or too low (less than 0.1%) damping ratio are neglected. 

The trials continue until the system reduces to only the modal frequencies 

characterized by reasonable damping ratios. The last observed modal 

frequencies are considered the ones that identify the system dynamics.  

In next pages are presented the results obtained by choosing two 

values for the order of the system. The first bunch of results is obtained by 

choosing a value of 80, the second through a value of 118. The screens of 

the identified system before and after the optimization are presented in 

Appendix B. Moreover, for each trial it is calculated the relative error 

between the measured and optimized output time histories. Such an error is 

computed as follows: 
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3.3.1.1 Discussion on the Results 

 

The results herein presented are only the last of many trials 

performed in order to retrieve the best possible combination of the 

parameters defined previously. In Appendix B there are two examples of the 

numerical results, in the present paragraph is instead given a semi-

qualitative comment to the approach used for choosing the best identified 

model and are shown the parameters that will be used for the following 

applications.   

The error computed with the formula 3.46 is calculated first for the 

entire time histories, as shown in tables 3.2 and 3.3, for a model order of 80 

and 118 respectively. Then, the time histories recorded by each channel are 

divided into three parts  (the first from 0 to 7 seconds, the second from 7.02 

to 17 seconds, and the third from 17.02 to 22.08 seconds), and the relative 

error is computed for each one of the three pieces. This allows to consider 

the contribute to the error of each portion, in particular, one should be 

interested in the contribute given by the second piece of the time histories, 

the one from 7.02 to 17 seconds, for which the acceleration amplitude is the 

maximum. These results are presented in tables 3.4 and 3.5. As can be 

observed, while the global error is lower for the system of order set equal to 

80, the contribute to the error given by the second part of the time histories 

is lower if one considers the system performed with an order of 118. 

 Therefore, the second set of data leads to the modal parameters that 

better represent the structural characteristics of the Rio Dell Overpass. It is 

important to note that the determined dynamics give values close to the ones 

expected from the analysis of the frequency content, analyzed in the second 

chapter. Finally, figures 3.5 and 3.7 show the modal shapes corresponding 

to the identified modal frequencies although the modal shapes retrieved 

cannot display the torsional modes. For instance, it could be assumed that 

the third and fourth are torsional modes, but only a finite element model 

may give the validation of this assumption.      
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Fig. 3.2: Stabilization Diagram for a system realized with 73 Observer Markov Parameters and 558 Singular Values 
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vvvvvv vv vvv vvvv vvvv vvvvv vvvvvv vvvvvv vvvvvv vvvvvv vvvvvv vvvvvvv vvvvvvv v vvvvvvv vv vvvvvvv vv vvvvvvv vv f vvvvvvv vv f vvvvvvv vv f vvvvvvv vv v f vvvvvvv vv v f vvvvvvv vv v f vvvvvvv vv vv f vvvvvvv vv vv f vvvvvvv vv vv f vvvvvvv vv vv ff vvvvvvv vv vv ff vvvvvvv vv vv ff vvvvvvv vv vv ff vvvvvvv vv vv ff vvvvvvv vv vv ff f vvvvvvv vv vv ff ff vvvvvvv vv vvv ff ff vvvvvvv vv vvvv ff ff

vvvvvvv vv vv vvv vvvv vvvvv vvvvvv vvvvvvf vvvvvvv f vvvvvvvv f vvvvvvvv f vvvvvvvvv f vvvvvvvvvv f vvvvvvvvvv ff vvvvvvvvvvv ff vvvvvvvvvvv v ff vvvvvvvvvvv v fff vvvvvvvvvvv v fff vvvvvvvvvvv v fff vvvvvvvvvvv vv fff vvvvvvvvvvv vv ffff vvvvvvvvvvv vv ffff vvvvvvvvvvv vv ffff vvvvvvvvvvv vv fffff vvvvvvvvvvv vvv fffff vvvvvvvvvvv vvvv fffff vvvvvvvvvvv vvvv v fffff vvvvvvvvvvv vvvv v fffff vvvvvvvvvvv vvvv v fffff f vvvvvvvvvvv vvvv vv fffff f
ffv fv fvv fvvv fvvvv fvvvvv fvvvvv fvvvvvv fvvvvvv fvvvvvv fvvvvvv ff vvvvvv ff vvvvvv ff vvvvvv ff vvvvvvv ff vvvvvvv ff vvvvvvvv ff vvvvvvvvv ff vvvvvvvvvv ff vvvvvvvvvv ff vvvvvvvvvv ff vvvvvvvvvv fff vvvvvvvvvv v fff vvvvvvvvvv vv fff vvvvvvvvvv vv fff vvvvvvvvvv vvv fff vvvvvvvvvv vvv fff vvvvvvvvvv vvv ffff vvvvvvvvvv vvv ffff vvvvvvvvvv vvv v ffff vvvvvvvvvv vvv v ffff f vvvvvvvvvv vvv vv ffff f vvvvvvvvvv vvv vv ffff f vvvvvvvvvv vvv vvv ffff f vvvvvvvvvv vvv vvv ffff f

vvv vvf vvv f vvv ff vvv ff vvv ff vvvv ff vvvvv ff vvvvvv ff vvvvvv ff vvvvvv ff vvvvvvv ff vvvvvvv ff vvvvvvv ff vvvvvvvv ff vvvvvvvvv ff vvvvvvvvv ff vvvvvvvvv v ff vvvvvvvvv v ff vvvvvvvvv v ff vvvvvvvvv v ff vvvvvvvvv v ff vvvvvvvvv v ff vvvvvvvvv v ff vvvvvvvvv v fff vvvvvvvvv v v fff vvvvvvvvv v v fff vvvvvvvvv v v fff vvvvvvvvv v v fff vvvvvvvvv v v fff vvvvvvvvv v v fff vvvvvvvvv v v fff
vvv vvv vvvv vvvvv vvvvvf vvvvvff vvvvvv ff vvvvvv ff f vvvvvv ff f vvvvvvv ff f vvvvvvv ff f vvvvvvv ff f vvvvvvv ff ff vvvvvvvv ff ff vvvvvvvv ff ff vvvvvvvv ff ff vvvvvvvv ff ff vvvvvvvvv ff ff vvvvvvvvv ff ff vvvvvvvvv ff ff vvvvvvvvv ff ff vvvvvvvvvv ff ff vvvvvvvvvv v ff ff vvvvvvvvvv v v ff ff vvvvvvvvvv v v ff ff vvvvvvvvvv v v v ff ff vvvvvvvvvv v v v ff fff vvvvvvvvvv v v vv ff fff vvvvvvvvvv v v vv ff fff vvvvvvvvvv v v vvv ff fff vvvvvvvvvv v v vvvv ff fff
vvv vvv vvvv vvvvv vvvvvf vvvvvffd vvvvvffd vvvvvfffd vvvvvfffd vvvvvfffd vvvvvffff d vvvvvffff d vvvvvffff d vvvvvv ffff d vvvvvvv ffff d vvvvvvvv ffff d vvvvvvvv ffff d vvvvvvvvv ffff d vvvvvvvvv ffff d vvvvvvvvvv ffff d vvvvvvvvvv ffff d vvvvvvvvvv ffff d vvvvvvvvvv ffff d vvvvvvvvvv ffff d vvvvvvvvvv ffff d vvvvvvvvvv ffff d vvvvvvvvvv v ffff d vvvvvvvvvv vv ffff d vvvvvvvvvv vv v ffff d vvvvvvvvvv vv vv ffff d vvvvvvvvvv vv vv ffff d vvvvvvvvvv vv vv v ffff
ffffv ffv fff v ffff v fffff vv fffff vvv fffff vvv fffff vvv fffff vvvv fffff vvvvv fffff vvvvvv fffff vvvvvv fffff vvvvvvv fffff vvvvvvv fffff vvvvvvv fffff vvvvvvv fffff vvvvvvv fffff vvvvvvv ffffff vvvvvvvv ffffff vvvvvvvv ffffff f vvvvvvvv v ffffff f vvvvvvvv v v ffffff f vvvvvvvv v v v ffffff f vvvvvvvv v v v ffffff f vvvvvvvv v v vv ffffff f vvvvvvvv v v vvv ffffff f
ddd ddf ddv f ddv ff ddv fff ddd v fff ddd vv fff ddd vv fff ddd vv fff dddd vv fff dddd vvv fff ddddd vvv fff dddddd vvv fff ddddddd vvv fff ddddddd vvv fff ddddddd vvv fff ddddddd vvv fff ddddddd vvv ffff ddddddd vvv ffff ddddddd vvv ffff f ddddddd vvv ffff f ddddddd vvv ffff f ddddddd vvv ffff f ddddddd vvv ffff f ddddddd vvvv ffff f dddddddd vvvv ffff f dddddddd vvvv ffff f dddddddd vvvvv ffff f dddddddd vvvvvv ffff f
fff ffd ffd fff d ffff dd ffff ddv ffff ddvv ffff ddvvv ffff ddd vvv ffff ddd vvv ffff dddd vvv ffff ddddd vvv ffff ddddd d vvv ffff ddddd d vvv ffff ddddd d vvv ffff ddddd d vvv ffff ddddd d vvv ffff ddddd dd vvv ffff ddddd dd vvv fffff ddddd dd vvvv fffff ddddd dd vvvvv fffff ddddd dd vvvvv fffff ddddd dd vvvvv fffff f ddddd dd vvvvv fffff f f ddddd dd vvvvv fffff f f ddddd dd vvvvv v fffff f f ddddd dd vvvvv v fffff f f ddddd dd vvvvv v fffff f f
vvv vvv vvv vvvv vvvvfd vvvvfd vvvvff d vvvvv ff d vvvvvv ff d vvvvvv ff d vvvvvvv ff d vvvvvvv ff d vvvvvvvv ff d vvvvvvvv ff dd vvvvvvvv ff dd vvvvvvvv ff ddd vvvvvvvv ff ddd d vvvvvvvv ff ddd d vvvvvvvv v ff ddd dd vvvvvvvv v ff ddd dd vvvvvvvv v v ff ddd dd vvvvvvvv v v ff ddd dd vvvvvvvv v v ff ddd dd vvvvvvvv v v ff ddd dd vvvvvvvv v v ff ddd dd vvvvvvvv v v v ff ddd dd vvvvvvvv v v vv ff ddd dd vvvvvvvv v v vv v ff ddd dd vvvvvvvv v v vv v fff

fff fff ffff fffff ffffff fffffffd fffffffdv fffffffdvv fffffffdvvv fffffffdd vvv fffffffdd vvv fffffffdd vvvv fffffffdd vvvv fffffffddd vvvv fffffffddd vvvv fffffffddd vvvv fffffffddd vvvv ffffffff ddd vvvv ffffffff ddd vvvv ffffffff f ddd vvvvv ffffffff f ddd vvvvv ffffffff f f ddd vvvvv ffffffff f f f ddd vvvvv ffffffff f f ff ddd vvvvv ffffffff f f ff f ddd vvvvv ffffffff f f ff ff ddd vvvvvv ffffffff f f ff ff ddd vvvvvv ffffffff f f ff ff ddd vvvvvv v ffffffff f f ff ff ddd vvvvvv v ffffffff f f ff ff ddd vvvvvv v v ffffffff f f ff ff ddd vvvvvv v vv ffffffff f f ff ff
fd fd fd ff d fff d ffff dv ffff dd v ffff dd vv ffff dd vv ffff dd vv ffff dd vv ffff dd vv ffff ddd vv ffff ddd vv ffff ddd vv ffff ddd vv ffff ddd d vv ffff ddd d vv ffff ddd d vv fffff ddd d vv fffff ddd d vv ffffff ddd d vv ffffff f ddd d vvv fffff f f ddd d vvv fffff f f ddd d vvv v fffff f f ddd d vvv v fffff f ff ddd d vvv v fffff f ff
fd fdv fdvv fdvv ff dvvv ff dvvvv ff dvvvv ff dvvvv ff dd vvvv ff dd vvvv ff dd vvvv ff dd vvvv ff dd vvvv ff dd vvvv ff dd vvvv ff dd vvvvv ff dd vvvvv ff dd vvvvv v ff dd vvvvv vv ff dd vvvvv vv v ff dd vvvvv vv v ff dd vvvvv vv v v ff dd vvvvv vv v v v ff dd vvvvv vv v v vv ff dd vvvvv vv v v vvv ff
vvvvv vvv vvvf vvvv f vvvvv f vvvvv f vvvvv f vvvvv f vvvvvv f vvvvvvv f vvvvvvv f vvvvvvvv f vvvvvvvv f vvvvvvvv f vvvvvvvv f vvvvvvvv ff vvvvvvvv ff vvvvvvvv ff vvvvvvvv ff vvvvvvvv v ff vvvvvvvv v ff vvvvvvvv v v ff vvvvvvvv v v ff vvvvvvvv v vv ff vvvvvvvv v vv ff vvvvvvvv v vv ff
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fffd ffd ffdd ffddd ffdddv ffdddv fff dddd v fff ddddd v fff dddddd v fff dddddd vv fff dddddd vv fff dddddd vv fff dddddd vv fff dddddd vv fff dddddd vv fff dddddd vv v fff dddddd vv v v fff dddddd vv v v fff dddddd vv v v fff dddddd vv v v ffff dddddd vv v v ffff dddddd vv v v ffff dddddd vv v v v ffff dddddd vv v v v ffff dddddd vv v v v ffff dddddd vv v v v ffff

vvvvv vv vvv vvvv vvvvv vvvvv vvvvv vvvvvv vvvvvvv vvvvvvv vvvvvvv v vvvvvvv v vvvvvvv v vvvvvvv vf vvvvvvv vf vvvvvvv vvf vvvvvvv vvf vvvvvvv vvf vvvvvvv vvvf vvvvvvv vvvf f vvvvvvv vvvf f vvvvvvv vvv vf f
vvvvv vvf vvf vvv f vvv f vvvv f vvvv f vvvvv f vvvvv f vvvvv f vvvvv f vvvvv f vvvvv f vvvvv v f vvvvv v f vvvvv v v f vvvvv v v f vvvvv v v ff vvvvv v vv ff vvvvv v vv ff vvvvv v vv ff vvvvv v vv ff vvvvv v vv ff vvvvv v vvv ff

vvv vvf vvf vvf vvf vvf vvf vvv f vvv f vvv f vvv f vvv f vvv f vvv v f vvv v f vvv v f vvv v f vvv v ff vvv v v ff vvv v v ff vvv v v ff vvv v v ff vvv v v ff vvv v v ff
vvf vff vfff vfff vfff vfffd vfffd vfffd vffff d vv ffff d vvv ffff d vvv fffff d vvvv fffff d vvvv v fffff d vvvv vv fffff d vvvv vv v fffff d vvvv vv vv fffff d vvvv vv vv v fffff

fffffffffv fv fv ff vv ff vv ff vv ff vv fff vv v fff vv v v fff vv v v fff vv v vv fff vv v vv v fff
vvvvf vv fd vv fd vv fdd vv fddd vv fdddd vv fdddd vvv fdddd vvv fddddd vvv fddddd vvv fddddd vvv fddddd vvv ff ddddd vvv ff ddddd vvv ff ddddd vvv v ff ddddd vvv v fff ddddd vvv v v fff ddddd vvv v v v fff ddddd vvv v v v fff ddddd vvv v v v v fff ddddd vvv v v v vv fff
vvv vvf vvff vvfffd vvfffd vvffff d vvfffff d vvffffff dd vvffffff dd vvv ffffff ddd vvv ffffff ddd vvv ffffff ddd vvv v ffffff ddd vvv vv ffffff ddd vvv vv v ffffff ddd vvv vv vv ffffff ddd vvv vv vv v ffffff ddd vvv vv vv v v ffffff ddd vvv vv vv v v v ffffff
vvd vd vfd vff dd vff ddd vff dddd vff ddddd vff dddddd vff dddddd vff ddddddd vff ddddddd vff ddddddd vff ddddddd vv ff ddddddd vv ff ddddddd vv v ff ddddddd vv v ff ddddddd vv v v ff ddddddd vv v v fff dddddddd vv v v fff dddddddd vv v v v fff dddddddd vv v v v v fff
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Figure 3.3a: Comparison between meausred and optimized time history recorded by channel 5 
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Figure 3.3b: Comparison between meausred and optimized time history recorded by channel 6 
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Figure 3.3c: Comparison between meausred and optimized time history recorded by channel 8 
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Figure 3.3d: Comparison between meausred and optimized time history recorded by channel 9 
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Figure 3.3e: Comparison between meausred and optimized time history recorded by channel 10 
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Figure 3.3f: Comparison between meausred and optimized time history recorded by channel 11 
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Figure 3.4a:First Identified Modal Shape 
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Figure 3.4b:Second Identified Modal Shape 
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Figure 3.4c:Third Identified Modal Shape 
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Figure 3.4c:Fourth Identified Modal Shape 
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Trial Ch05  Ch06 Ch08 Ch09 Ch10 Ch11 

1 0.47 0.38 0.35 0.26 0.33 0.30 

2 0.39 0.18 0.26 0.22 0.25 0.24 

3 0.30 0.13 0.18 0.17 0.22 0.18 

4 0.50 0.42 0.38 0.27 0.35 0.32 

5 0.43 0.17 0.29 0.25 0.28 0.29 

6 0.39 0.17 0.27 0.22 0.27 0.24 

7 0.38 0.15 0.26 0.20 0.25 0.23 

8 0.37 0.15 0.26 0.19 0.26 0.20 

9 0.43 0.24 0.36 0.33 0.31 0.30 

10 0.41 0.22 0.29 0.23 0.30 0.30 

 

Table 3.2: Error Computed on the entire time history for 

System Order of 80 
 

 

 

 

 

 

 

 

Trial Ch05  Ch06 Ch08 Ch09 Ch10 Ch11 

1 0.27 0.08 0.11 0.12 0.17 0.15 

2 0.30 0.09 0.11 0.12 0.18 0.17 

3 0.32 0.09 0.14 0.13 0.17 0.15 

4 0.34 0.13 0.19 0.16 0.23 0.21 

5 0.32 0.14 0.17 0.16 0.21 0.16 

6 0.34 0.14 0.23 0.17 0.24 0.17 

7 0.66 0.23 0.41 0.27 0.41 0.45 

8 0.43 0.15 0.26 0.20 0.26 0.20 

9 0.41 0.17 0.26 0.18 0.26 0.20 

10 0.45 0.18 0.26 0.20 0.27 0.21 

11 0.49 0.20 0.26 0.25 0.29 0.26 

12 0.41 0.21 0.26 0.27 0.30 0.35 

13 0.42 0.23 0.27 0.29 0.31 0.38 

 

Table 3.3: Error computed on the entire time history for 

System Order of 118 
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Ch 05 Ch 06 Ch 08 Ch 09 Ch 10 Ch 11 

T
r
ia

l 
1
 ep1 0.54 0.59 0.35 0.32 0.37 0.35 

ep2 0.46 0.35 0.33 0.25 0.32 0.29 

ep3 0.45 0.50 0.58 0.33 0.36 0.37 

T
r
ia

l 
2
 ep1 0.44 0.35 0.26 0.27 0.29 0.35 

ep2 0.38 0.14 0.24 0.21 0.23 0.22 

ep3 0.42 0.27 0.45 0.30 0.3 0.29 

T
r
ia

l 
3
 ep1 0.38 0.24 0.21 0.24 0.27 0.26 

ep2 0.29 0.11 0.15 0.15 0.20 0.17 

ep3 0.26 0.20 0.36 0.23 0.28 0.25 

T
r
ia

l 
4
 ep1 0.56 0.63 0.40 0.31 0.36 0.4 

ep2 0.49 0.39 0.36 0.26 0.35 0.31 

ep3 0.54 0.52 0.6 0.37 0.36 0.35 

T
r
ia

l 
5
 ep1 0.54 0.35 0.32 0.28 0.31 0.36 

ep2 0.41 0.14 0.28 0.24 0.27 0.28 

ep3 0.44 0.27 0.45 0.33 0.29 0.36 

T
r
ia

l 
6
 ep1 0.47 0.35 0.31 0.29 0.30 0.35 

ep2 0.38 0.13 0.25 0.20 0.26 0.22 

ep3 0.39 0.25 0.44 0.28 0.28 0.31 

T
r
ia

l 
7
 ep1 0.45 0.30 0.29 0.28 0.29 0.29 

ep2 0.37 0.12 0.24 0.18 0.24 0.21 

ep3 0.37 0.22 0.41 0.23 0.27 0.30 

T
r
ia

l 
8
 ep1 0.47 0.32 0.31 0.26 0.31 0.28 

ep2 0.35 0.12 0.24 0.18 0.25 0.18 

ep3 0.31 0.23 0.36 0.22 0.26 0.24 

T
r
ia

l 
9
 ep1 0.54 0.38 0.38 0.37 0.34 0.45 

ep2 0.41 0.21 0.35 0.32 0.31 0.28 

ep3 0.36 0.32 0.44 0.33 0.29 0.29 

T
r
ia

l 
1
0
 

ep1 0.51 0.37 0.33 0.25 0.30 0.39 

ep2 0.39 0.20 0.27 0.22 0.30 0.28 

ep3 0.38 0.30 0.43 0.24 0.29 0.28 

 
 

Table 3.4: Error computed on three pieces of time history separately for a 

system order equal to 80  
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Ch 05 Ch 06 Ch 08 Ch 09 Ch 10 Ch 11 

T
ri

a
l 

1
 ep1 0.36 0.16 0.13 0.16 0.20 0.21 

ep2 0.25 0.06 0.09 0.10 0.15 0.14 

ep3 0.29 0.13 0.25 0.22 0.21 0.22 
T

ri
a

l 
2
 ep1 0.36 0.19 0.14 0.18 0.21 0.25 

ep2 0.29 0.06 0.09 0.10 0.16 0.15 

ep3 0.37 0.14 0.26 0.20 0.24 0.25 

T
ri

a
l 

3
 ep1 0.43 0.18 0.16 0.18 0.19 0.20 

ep2 0.30 0.07 0.11 0.11 0.16 0.13 

ep3 0.34 0.15 0.30 0.18 0.23 0.25 

T
ri

a
l 

4
 ep1 0.53 0.23 0.25 0.20 0.26 0.31 

ep2 0.31 0.11 0.15 0.15 0.21 0.19 

ep3 0.32 0.22 0.38 0.20 0.29 0.28 

T
ri

a
l 

5
 ep1 0.37 0.25 0.24 0.18 0.25 0.24 

ep2 0.31 0.11 0.14 0.15 0.20 0.15 

ep3 0.33 0.25 0.34 0.19 0.26 0.25 

T
ri

a
l 

6
 ep1 0.41 0.24 0.30 0.22 0.27 0.25 

ep2 0.32 0.11 0.20 0.16 0.23 0.16 

ep3 0.36 0.23 0.38 0.18 0.26 0.23 

T
ri

a
l 

7
 ep1 0.76 0.42 0.55 0.38 0.46 0.50 

ep2 0.60 0.19 0.37 0.25 0.39 0.44 

ep3 0.97 0.39 0.54 0.28 0.51 0.53 

T
ri

a
l 

8
 ep1 0.64 0.28 0.34 0.27 0.30 0.24 

ep2 0.39 0.12 0.23 0.19 0.25 0.20 

ep3 0.42 0.24 0.39 0.20 0.25 0.25 

T
ri

a
l 

9
 ep1 0.54 0.31 0.33 0.20 0.29 0.23 

ep2 0.38 0.14 0.22 0.17 0.25 0.19 

ep3 0.37 0.30 0.37 0.20 0.25 0.25 

T
ri

a
l 

1
0
 

ep1 0.57 0.32 0.35 0.22 0.31 0.30 

ep2 0.43 0.15 0.22 0.19 0.26 0.20 

ep3 0.38 0.31 0.37 0.20 0.24 0.28 

T
ri

a
l 

1
1
 

ep1 0.51 0.36 0.33 0.35 0.31 0.37 

ep2 0.50 0.17 0.23 0.23 0.29 0.24 

ep3 0.43 0.31 0.37 0.25 0.26 0.31 

T
ri

a
l 

1
2
 

ep1 0.51 0.35 0.34 0.34 0.31 0.44 

ep2 0.40 0.18 0.23 0.26 0.30 0.34 

ep3 0.36 0.31 0.38 0.26 0.29 0.36 

T
ri

a
l 

1
3
 

ep1 0.54 0.40 0.37 0.37 0.33 0.48 

ep2 0.40 0.19 0.24 0.28 0.31 0.36 

ep3 0.37 0.33 0.38 0.23 0.29 0.40 
 

Table 3.5: Error computed on three pieces of time history separately for a  

system order equal to 118 
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3.3.2 Rio Dell (December 16, 1982) 

 

For this set of data records from channels 2, 15, 16, 17, 18, 19, 20 are used as inputs, while 

the ones from channels 4, 5, 6, 7, 8, 9, 10, 11 as outputs. The total number of data points for each 

record is 1064, at a sampling interval of 0.02 seconds.  

The  upper bound for p for this set of data is given by: 

 

75
rm

rl
pmax 




  (3.47) 

 

where 

r = number of inputs (7) 

m = number of outputs (8) 

l = number of data points (1064) 

 

 Also in this case the number of system Markov parameters is set equal to four times p. To 

obtain the final model it is chosen to keep 138 singular values of the matrix V*V
T
 to compute 

observer Markov Parameters. Moreover, the realized model order is set equal to 80. Also for this 

case, the MATLAB results (only for the final experiment) are presented in appendix B with the 

corresponding plots. 

 The results obtained from this set of data may complete the identification performed with 

the Trinidad set of data. In fact, for the Rio Dell records, time histories from transversal sensor are 

available. This may allow to identify also the transverse modal shapes. Nonetheless, by running the 

algorithm the best results obtained so far are characterized by the relative error shown in table 3.6. 

For these accelerograms, the part characterized by the major amplitudes is that from 2 to 4 seconds. 

As can be observed from table 3.6, the values of the error are very high, imposing a high level of 

criticism in considering the results: 

 

 
Ch04 Ch05  Ch06 Ch07 Ch08 Ch09 Ch10 Ch11 

etotal 0.30 0.48 0.54 0.19 0.31 0.25 0.36 0.46 

e0-2 sec 1.50 0.89 0.64 0.89 0.54 1.58 0.68 1.08 

e2-4 sec 0.26 0.42 0.33 0.13 0.18 0.21 0.29 0.44 

e4-21.28 sec 0.56 0.67 0.79 0.57 0.78 0.47 0.73 0.49 

 

 Table 3.6: Relative Error for the model identified through Rio Dell Earthquake Event 

 



73 

 

 In considering these results may be helpful referring to the ones obtained with the previous 

set of data. Moreover, for this case, it is reasonable to analyze the plot of the modal shapes in the 

space, and only their vertical view. In fact, as mentioned, for these records also transversal 

measurements are available, although it is possible to have the motion at only two points of the 

north edge. Figure 3.6a plots what is supposed to be the first mode, nonetheless the shape is too 

complicated to be likely to represent the first natural mode of the structure. This result is considered 

to be strongly affected by noise and is then neglected. For what concerns the second and third 

frequencies, from observation of figures 3.6b and 3.6c, it can be inferred that the two represents the 

same mode. This conclusion can be evaluated also by comparing these values with those 

individuated in the initial analysis, presented in chapter 2. Finally, the last mode may represent a 

torsional mode, but again, it is not possible to guarantee this assumption before running a modal 

analysis on the three-dimensional finite element model.  

 In conclusion, the modal parameters individuated for this case are presented in table 3.7: 

 

Mode 
Frequency 

[Hz] 

Period 

[sec] 

Damping 

ratio 

1 2.590 0.386 0.06 

2 5.349 0.187 0.05 

3 5.732 0.174 0.06 

4 8.107 0.123 0.08 

 

Table 3.7: Modal Parameters Identified with Rio Dell Earthquake records 
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Figure 3.5a: Comparison between oprimized and measured time History of channel 4 
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Figure 3.5b: Comparison between oprimized and measured time History of channel 5 
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Figure 3.5c: Comparison between oprimized and measured time History of channel 6 
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Figure 3.5d: Comparison between oprimized and measured time History of channel 7 
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Figure 3.5e: Comparison between oprimized and measured time History of channel 8 
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Figure 3.5f: Comparison between oprimized and measured time History of channel 9 
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Figure 3.5g: Comparison between optimized and measured time History of channel 10 
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Figure 3.5h: Comparison between optimized and measured time History of channel 11 
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Figure 3.6a: First Identified Modal Shape 
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Figure 3.6b: Second Identified Modal Shape 
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Figure 3.6c: Third Identified Modal Shape 
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Figure 3.6d: Fourth Identified Modal Shape 
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3.3.3 Petrolia (April 25th, 1992) 
 

For this set of data records from all of the channels are available: accelerations 

measured from channels 1, 2, 3, 15, 16, 17, 18, 19, 20 are used as inputs, while records 

from sensors 4, 5, 6, 7, 8, 9, 10, 11 are treated as outputs. These time histories are the 

longest available for the Rio Dell/Painter Street Overpass, since they are constituted by 

3000 data points measured every 0.02 sec. With these values, the maximum number of 

observer Markov parameters is possible to compute is given by: 

 

175
rm

rl
pmax 




  (3.47) 

where 

r = number of inputs (9) 

m = number of outputs (8) 

l = number of data points (3000) 

 

The best results that can be obtained with this set of data is evaluated by 

computing 175 Markov parameters, keeping 808 singular values from the VT*V matrix, 

and constituting a model of order 60. The relative errors for this trial are presented in 

table 3.6: 

 
Ch04 Ch05  Ch06 Ch07 Ch08 Ch09 Ch10 Ch11 

etot 0.39 0.57 0.69 0.29 0.68 0.32 0.52 0.42 

e 0-10 s 0.37 0.58 0.68 0.26 0.66 0.30 0.52 0.42 

e 10-30 s 0.49 0.53 0.74 0.38 0.76 0.40 0.49 0.40 

e 30-60 s 0.54 0.56 0.74 0.52 0.80 0.60 0.54 0.49 

 

Table 3.6: Errors for the model identified through Petrolia Earthquake Records 

 

  

It is clear as this set of data cannot give reasonable results, since the errors 

computed both on the entire time histories and on parts of those are too high to consider 

the gained values reliable. Therefore, also for this set of data it is requested an exercise 

of critical analysis of what evaluated. 
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 In particular, the modal parameters gained through Petrolia Earthquake records 

are presented in table 3.7: 

 

Mode 
Frequency 

[Hz] 

Period 

[sec] 

Damping 

ratio 

1 3.366 0.297 0.05 

2 4.382 0.228 0.09 

3 6.173 0.162 0.05 
 

Table 3.7: Modal parameters identified with Petrolia Earthquake records 

 

By comparing the findings to the those obtained with the more reliable Trinidad 

Erathquake set of data, it can be observed a clear resemblance between the two. 

Nonetheless, the modal shapes are not reasonable. The first two plots seem to represent 

the  same natural mode, but the corresponding frequencies are supposed appreciable 

both for the results gained with Trinidad set of data and for those detected through the 

initial frequency content analysis performed on the acceleration time histories records. 

 In conclusion, from this set of data only the modal frequencies are retrieved, and 

considered as the validation of previous gains. 
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Figure 3.7a: Comparison between optrimized and measured time History of channel 4 
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Figure 3.7b: Comparison between oprimized and measured time History of channel 5 
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Figure 3.7c: Comparison between oprimized and measured time History of channel 6 
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Figure 3.7d: Comparison between oprimized and measured time History of channel 7 
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Figure 3.7e: Comparison between oprimized and measured time History of channel 8 
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Figure 3.7f: Comparison between oprimized and measured time History of channel 9 
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Figure 3.7g: Comparison between optimized and measured time History of channel 10 
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Figure 3.7h: Comparison between optimized and measured time History of channel 11 

 

 

 

0 10 20 30 40 50

-400

-300

-200

-100

0

100

200

300

400

Time [sec]

A
c
c
e
le

ra
ti
o
n
 [

c
m

/s
2
]

Channel 11

measured output

optimized output

4 5 6 7 8 9

-400

-200

0

200

400

Zoom of TIme History btw. 0 and 10 seconds

Time [sec]

A
c
c
e
le

ra
ti
o
n
 [

c
m

/s
2
]

measured output

optimized output



96 

 

 

 

 
Figure 3.8a: First Identified Modal Shape 
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Figure 3.8b: Second Identified Modal Shape 
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Figure 3.8c: Third Identified Modal Shape 
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4 

FINITE ELEMENT MODEL  

 

Sommario 

 
 Nel presente capitolo si mostra il lavoro svolto per la generazione di un 

modello agli elementi finiti della struttura in analisi. Per arrivare al modello finale, 

presentato nel quarto paragrafo, vari modelli di tentativo sono stati creati, con un 

livello di dettaglio sempre più alto. In particolare, tre modelli verranno presentati: 

il primo, estremamente semplice, avente l‟unico scopo di delineare i valori da 

attribuire ai parametri che descrivono il materiale costituente il Rio Dell Overpass, 

è costituito da un elemento trave longitudinale rappresentate l‟impalcato del ponte 

e altri due elementi travi verticali rappresentati le pile. Col secondo modello 

comincia lo studio vero e proprio delle ipotesi più adatte alla rappresentazione del 

sistema, particolarmente approfondito è l‟analisi del comportamento trasversale 

del ponte e la ricerca della tipologia d‟elemento che meglio riproduce il 

comportamento del ponte stesso. Nel terzo ed ultimo modello l‟impalcato è 

costituito da elementi bidimensionali.  

 Ognuno dei sopraddetti modelli è considerato ragionevole quando i 

parametri modali che lo caratterizzano sono sufficientemente vicini a quelli 

individuati nel capitolo precedente. 

 Una volta che le caratteristiche dinamiche del modello agli elementi finiti 

siano soddisfacentemente vicine, comincia la fase di calibrazione che per questo 

lavoro è stata operata attraverso un algoritmo genetico. Tale fase rappresenta 

l‟anello di congiunzione tra il lavoro portato a termine nell‟identificazione 

strutturale e quello di modellazione della struttura e stabilisce le basi per la 

creazione dell‟ultimo modello agli elementi finti, destinato a rappresentare 

l‟attuale comportamento della struttura.   

 

 

 

 



101 

 

4.1 Introduction 
 

 

The linear-elastic analysis of continuous body if formulated in terms of 

displacements leads to a system of partial differential equations. In the following 

will be briefly recalled the finite element method for a body with linear elastic 

behavior and assuming small displacements.  

 The closed form solution of the linear elasticity problem is possible only in 

some well defined cases. The finite element method is a numerical technique able 

to give an approximate solution to the problem under consideration, and , in 

general, to any problem defined by partial differential equations. The basis of the 

approach is replacing the differential problem with an algebraic one, and then 

solve the simplified new problem. Essentially, the finite element method permits 

the description of the behavior of an infinite degrees of freedom system through a 

finite set of parameters, that are the nodal characteristics.  

 To present the main idea of the method, let consider the surface of function 

u(x,y), in figure 4.1, representing the unknown solution of a partial  differential 

equation of the second order: 

 

 
 

Figure 4.1: Approximation of Function u(x ,y) by Means of Interpolant Functions 
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The domain of the function is represented by the rectangle of corners OABC. 

Such a domain can be subdivided into a finite number of smaller sub-regions, 

called elements. In figure 4.1, for example, is indicated only one rectangular 

element. The vertices of the elements are denominated nodes. By discretizing the 

domain into N rectangular element, on each element the function u(x, y)  can be 

approximated through the following linear polynomial: 

 

xyayaxaa)y,x(u 4321
e   (4.1) 

 

By means of the 4.1, the surface u(x, y) may be approximated by a set of surfaces, 

each one defined correspondently to an element.  The values u1, u2, u3, u4 of the 

function u(x, y) at nodes 1, 2 , 3, 4 respectively, are the nodal parameters, and are 

the unknown of the problem solvable by the finite element method. In place of the 

plane elements, one could have used curved elements, in this case the number of 

the polynomial coefficients would have increased, leading to an increase of the 

number of unknowns too. Surely, the function u(x, y) would be better 

approximated, but the computational effort would increase.  

 No matter what is the approximation level, for each element, the internal 

points behavior t is represented by a sum of the kind shown by equation 4.2: 





n

1i

iiuN)y,x(u  (4.2) 

where Ni=Ni(x, y) is the shape function correspondent to the i-th node, and the 

unknowns qi=ui are what we called nodal parameters.  

 Briefly, the finite element method, in its displacement formulation, is 

developed in the following six steps: 

1. structure discretization; 

2. evaluation of the element stiffness matrix and of the nodal forces vector; 

3. element stiffness matrix and nodal forces vector assembly; 

4. imposition of the boundary conditions; 

5. solution of the resulting algebraic system of equations; 

6. computation of the secondary characteristics, such as deformation and 

internal foces, from the gained nodal parameters. 
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4.2 Formulation of the Displacement-Based 

Finite Element Method 

 

In this paragraph will be presented the finite element method procedure 

applied in the area of linear analysis of solids and structures. Indeed, this is where 

the numerical technique was applied and obtained its original thrust of 

development. Nowadays, many types of linear analyses of structures can be 

performed in a routine manner by using  standard computer programs.  

 In the following, the displacement-based formulation method will be 

introduced: at first, the governing finite element equations will be evaluated and 

then the method convergence properties will be discussed. Finally, since the 

displacement-based formulation is not preferred for certain analysis, the use of 

mixed formulation will be introduced, in which, in addition to the displacements, 

other parameters are introduced as unknowns.  

 The displacement-based finite element method can be considered as an 

extension of the displacement method of analysis of beam and truss structures, for 

which the basic steps of the analysis are recalled next: 

1. idealization of the total structure as a set of beam and truss elements 

interconnected at structural joints; 

2. identification of the unknowns joint displacements that completely define 

the displacement response of the structural idealization; 

3.  formulation of the equilibrium equations corresponding to the unknown 

joint displacements and solution of the equations; 

4. calculation of the internal element stress distribution; 

5. interpretation of results, based on the assumptions used. 

The solutions gained through displacement and finite element methods have a 

major difference: in the displacement method the exact element stiffness matrices 

(exact within the beam theory) could be evaluated. In fact, the stiffness properties 

of a beam element are physically the beam end forces corresponding to unit 

element end displacement. The named forces can be computed by solving the 
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partial differential equations of the equilibrium of the element, once the 

appropriate boundary conditions are applied. In these differential equations the 

three requirements of the exact solution are fulfilled, i.e. the stress equilibrium, 

the compatibility and the constitutive requirements are defined, therefore the exact 

element internal displacements and stiffness matrices can be computed. On the 

contrary, by using finite element technique, paired with Galerkin method, it is 

necessary to introduce some trial functions. This approach will lead to the “exact” 

solution only when such trial functions are the exact element internal 

displacements, otherwise, approximate stiffness coefficients will be obtained. 

Indeed, when applying the finite element method, the exact displacement 

functions are unknown, therefore, in using the variational approach one is obliged 

to employ trial function that approximate the actual displacements. As a result, the 

equilibrium equations are not satisfied in general, but the error can be reduced by 

increasing the mesh refinement. 

 It is worth to recall that the general formulation of the displacement-based 

finite element method is based on the use of the principle of displacements, 

equivalent to the use of either Galerkin or Ritz methods, where the last mentioned 

approach consists in minimizing the total potential energy of the system to find 

the equilibrium equations. 
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4.2.1 General Derivation of Finite Element Equilibrium 

Equations 

 

 Consider the equilibrium of a general three-dimensional body (figure 4.2), 

fixed in a reference coordinate system OXYZ. On the body surface area, the 

system is supported on u with prescribed displacements u  and subjected to 

surface tractions t  on the surface area t. Moreover, the forces per unit volume f
B
 

and concentrated load i
CR  (I denotes the point of load application) are also 

applied to the body: 

 

 
 

Figure 4.2: General Thre-Dimensional Body with an 8-node Three Dimensional element 

 

In general, the externally applied forces have three components corresponding to 

X, Y, Z coordinate axes: 
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The displacements of the nody from the unloaded configuration are measured in 

the coordinate system OXYZ and are collected in the vector U: 
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and U on the surface area u. The strain corresponding to U are: 
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while the stresses corresponding to  are: 

 

 YZXZXYZYX
T σ  (4.6) 

 

where  = C + σ  where C is the material matrix and σ  denotes the given initial 

stresses.  

The problem we want to solve is the following: given the geometry of the 

body, the applied loads, the boundary conditions on u, the constitutive law and 

the initial stresses σ , calculate the displacement U of the system and the 

corresponding strains and stresses . In the problem solution proposed herein, 

linear analysis assumptions will be considered: 

1. displacements infinitesimally small so that equation 4.5 is valid and the 

equilibrium of the body can be evaluated with respect to the undeformed 

configuration; 

2. the material matrix C does not depend on stress state. 
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4.2.1.1 The Principle of Virtual Displacements 

 

It constitutes the basis of the displacement-based formulation for the finite 

element method. The principle states that the equilibrium of the body in figure  

4.3 requires that for any compatible small virtual displacements imposed on the 

body in its state of equilibrium, the total internal virtual work is equal to the total 

external virtual work: 

 

 
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i
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iT
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V
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V

T ˆdSˆdVˆdVˆ

t

RUtUfUσε  (4.7) 

where the Û are the virtual displacements and the ε̂  are the corresponding virtual 

strains. It is important to note that the adjective „virtual‟ denotes displacements 

and strains totally independent from the actual displacements and used with the 

only aim to evaluate the integral equilibrium equations. To clarify how the 

principle of virtual displacements can be used, assume to have been given a 

continuous displacement field that satisfies the boundary conditions on u  and 

that is believed being the exact solution displacement field of the body. Therefore, 

it is possible to evaluate    and  . The stresses vector   will list the correct 

stresses if and only if the equation 4.7 holds for any arbitrary virtual 

displacements  Û  that are continuous and that satisfy the prescribed displacement 

on u. Meaning that if we can individuate a virtual displacement Û  for which the 

4.7 is not satisfied, then this proves that   is not the correct stress vector, and 

hence the given displacement field is not the exact solution displacement field. 

Furthermore, the principle of virtual displacements can be directly related to the 

principle of stationarity of the total potential energy of the system. For a linear 

elastic continuum body with zero intial stresses, as the one presented in figure 4.2, 

the total potential energy can be expresses as in 4.8: 
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The abovementioned principle states that of all of the configurations that a body 

can assume, under the action of the applied load, the equilibrium state is 

individuated by the configuration for which the total potential energy  is 

stationary. Therefore, evaluating , and make it vanishing, we find again 

equation 4.7: 
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 (4.9) 

 

Summarizing, by applying the principle of virtual work the following 

fundamental requirements are fulfilled: 

1. equilibrium holds because the principle of virtual displacements is an 

expression of equilibrium; 

2. compatibility holds because the displacements field U is continuous 

and satisfies the displacement boundary conditions; 

3. the constitutive law holds because the stresses have been calculated 

using the constitutive relationships from the strains . 
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4.2.1.2 Finite Element Equations 

 

 So far it has always been assumed that the body of reference is properly 

supported. Nonetheless, in formulating the finite element equations, it results 

more convenient to assume to remove the supports and replace them with the 

correct reactions. In this case, the space u is zero, and the space t  is identified 

with all of the body surface S. The first step in applying the finite element 

technique is discretized the body under consideration in n discrete finite elements 

interconnected at nodal points on the element boundaries. For each element, a 

convenient reference system xyz is then chosen, and the displacements within 

each element are assumed to be a function of the displacement at the N finite 

element nodal points. Therefore, for an element m it can be written that: 

 

Uu
~

)z,y,x()z,y,x( mm N  (4.10) 

 

where Nm
 is the shape functions matrix referred to element m, and U

~
 is a vector 

of the three global displacement components Ui, Vi, Wi at all nodal points. In 

figure 4.2, a typical finite element of the assemblage is shown, such an 8-node 

three-dimensional element is called brick. The body must be thought subdivided 

in many bricks put together in order to cover the entire domain, without leaving 

any gap. Of course, depending on the characteristics of the body under analysis, 

the shape of the elements can be very different: it is possible to handle with 1-, 2- 

or 3-dimensional elements, the number of the nodes for elements can vary, 

according to the kind of formulation chosen, moreover, for 2- and 3-dimensional 

elements, also the shape can vary. Starting from the definition given in 4.10, it is 

possible to define the element strains: 

 

UBUDε
m ~~

)z,y,x()z,y,x( mm  N  (4.11) 

 

where it has been introduced the compatibility matrix D and the strain-

displacement matrix B
m

 referred to the m element.  
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By constitutive equations, the stresses in finite element can be defined according 

to equation 4.12: 

 

mm ~
C)z,y,x( σUBσ

m   (4.12) 

 

 Now we have all the ingredients to derive the equilibrium equations that 

correspond to the nodal point displacements of the set of finite elements. First of 

all, let rewrite the virtual displacement formula 4.11 as a sum of integrations over 

the volume and areas of all finite elements: 
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(4.13) 

where m=1,…, n, and S denote element surfaces m

q

m

i S,,S  part of the body surface 

S. It is important to note that in the use of principle of virtual displacements the 

same assumptions for the virtual displacements and strains are employed, in order 

to obtain a symmetric stiffness matrix: 
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By plugging the 4.14 into 4.13, equation 4.15 is obtained: 
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To obtain the equations for the unknown nodal point displacements from equation 

4.15, it is necessary to apply the principle of virtual displacement n times by 

imposing unit virtual displacements in turn for all components of  U
~̂

, so that the 

result is:  

 

RKU   (4.16) 
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Equation 4.14 is obtained by an operation called of assembly performed on the 

elements stiffness matrices and load vectors: for example, to obtain the total body 

stiffness matrix K, it is necessary to expand the element stiffness matrix to the 

body size and then directly add the resulting K
m

 matrices.  

 The method is completed by applying the boundary conditions and solving 

the resulting system of equations 4.16. From the determined displacmentes is then 

possible retrieving the secondary quantities, as deformations, stresses and internal 

forces. 
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4.2.2 Finite Element Formulation for Euler-Bernoulli Beams 

 

 The Euler-Bernoulli beam theory is appropriate for slender beams, for 

which the deformations can be considered small. Let consider an Euler-Bernoulli 

beam subjected to a uniform distributed load over its total length: 

 

 
 

Figure  4.3: Euler-Bernoulli Beam Subjected to Uniform Distributed Load 

 

By combining compatibility, Hooke‟s Law and equilibrium, it is possible to get 

the well known equation representing the bending behavior of the beam. 

Moreover, imposing the boundary conditions, finally one can write the strong 

form of the problem: 
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To apply the finite element formulation, it is now necessary to multiply the first, 

the fourth and the fifth equations of the 4.18 by w and then integrate over the 

domain: 
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Then, integrating by part the first of the 4.19, it is possible to arrive at the weak 

form: 
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(4.20) 

 

The space C
1
 is the set of continuous functions with continuous first derivative. It 

can be observed that the first term of the 4.20 is symmetric in w and v, that will 

lead to a symmetric stiffness matrix. 

 The next step consists in disctretize the space domain: 

 

 

 
 

Figure 4.4: Space Discretization 

 

For this particular case, the Hermite functions are employed as shape functions: 

they are cubic functions whose expression is given in 4.21: 
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(4.21) 

 

Through the 4.21, the displacement is approximated by: 

 

2

423

1

211

24231211
e

d

dv
HvH

d

dv
HvH

HvHHvH)(v


























 

 

(4.22) 

 

and from coordinate transformation: 

 

dx

dv

2

l

d

dv
d

2

l
dx

x
2

1
x

2

1
x

ee

e
2

e
1












 

 

(4.23) 

 

Applying the Galerkin‟s method: 
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Once computed the derivative of v(x) and substituted everything back into the 

4.20, finally we obtain the discrete problem where the stiffness matrix K is 

obtained by assembling the element stiffness matrices given by 4.25: 
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(4.25) 

 

while the force vector, assuming constant distributed force, is collected once 

assembled the element force vectors given by the 4.26: 
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(4.26) 

 

 

4.2.3 Finite Element Formulation for Plates and Shells 

 

A plate is a three dimensional body with one dimension much smaller than 

the other two, and the curvature of the plate mid-surface in the reference 

configuration equal to zero. On the other hand, a shell is a three dimensional body 

with one of the dimension much smaller than the other two, but with non-zero 

curvature of the plate mid-surface in the current configuration. Therefore, as can 

be easily understood, plates and shells are special case of 3D solids. Nonetheless, 

the use of the plate/shell elements is preferable when the thickness of the system 

is negligible compared to the other dimensions. In this case full 3D numerical 

treatment is costly and leads to serious ill-conditioning problems. Moreover, the 

plate/shell theory should be employed only to system subjected to very smooth 

loading. Nonetheless, if we are interested in global behavior, local details may be 

neglected. Table 4.1 gives a guideline for the theory to use depending on the 

geometrical and behavioral characteristics of the system under analysis: 
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 Thick Thin Very Thin 

L/t From 5 to 10 From 10 to 100 Greater than 100 

Charcteristics With transverse 

shear deformation 

Without 

Transverse Shear 

Deformation 

Geometrically 

Non-Linear 

Plate Theory Reissner-Mindlin Kirchhoff-Love Von Karman 

Beam Theory Timoshenko in 2D 
Euler Bernoulli in 

2D 
 

 

Table 4.1: Different Plate Theories 

 

4.2.3.1 Kirchhoff Plate 

 

  The Kirchhoff-Love theory is the plate/shell theory corresponding 

to the Euler-Bernoulli theory for the beams. In fact, the key assumptions of this 

theory are the following: 

1. geometrically linear systems: small strains and deformations; 

2. linear elastic material (Hooke‟s Law can be employed); 

3. plane normal to the plate mid-surface in the undeformed configuration 

remains normal to that plane in the deformed shape. This implies that the 

transverse shear strains with respect to the z-axis are null: 

xz=0; yz = 0 

4. the dilatation z is negligible; 

5. the displacement along the plate thickness are much smaller than the 

thickness itself, therefore, the in-plane forces are neglected, leading to the 

the following semplifications: 

u = u(x, y, 0) = 0 

v = v(x, y, 0) = 0 

w = w(x, y, 0) 
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Figure 4.5 represents the stress configuration of a plate treated through Kirchhoff-

Love theory: 

 

 
 

Figure 4.5: Stress Configuration for the Kirchhoff-Love Theory 

 

From the Kirchhoff assumptions theory derive the following expressions: 
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Once define the curvature of the plate according to equation 4.28: 
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(4.28) 

 

in-plane strain-displacement equations become: 

 

   zyxzyx kkkz   (4.29) 

 

and assuming plane-stress conditions, the constitutive equations are: 
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From the stresses definition, via static equivalence, the moments can be retrieved, 

and then, the equilibrium equations are: 
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(4.31) 

 

It is easy to observe that the shear forces Q can be defined as function of the 

moment M, by plugging the results into the third of the 4.31, a biharmonic 

equation is obtained: 
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(4.32) 

 

Now, let consider the a 3-node triangular element (with three degrees of freedom 

per node), the displacement w(x, y) can be approximated as: 
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and the nodal displacement vector can be then defined as:  
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(4.34) 

and finally the stiffness matrix is easily evaluable.  
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4.2.3.21 Reissner-Mindlin Plate 

 

The computation of the stiffness matrix for the Reissner-Mindlin 

formulation is instead a little more complicated. In fact, for this theory the 

transverse shear deformation is not neglected, leading to the problem of shear 

locking. Essentially this phenomenon leads to a non-convergent solution when the 

traditional computation of the stiffness matrix is employed. To avoid such a 

problem, once defined the degrees of freedom of the element, that for a 4-node 

quadrilateral element with three degrees of freedom per node are: 
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(4.35) 

 

it is possible to construct the stiffness matrix in the following way: 
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(4.36) 

where the first term represents the exact integration, performed according the 

2 × 2 Gauss Quadrature technique, while the second term is obtained through a 

reduced integration performed following the 1-point Gauss Quadrature. It is the 

introduction of this second term that avoids shear locking. 
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4.2.3 Modal Analysis 

 

 Modal analysis is used to determine the vibration modes of a structure, that 

are useful tools to understand the behavior of a structure. In the following, the 

results shown are those obtained via the usual modal analysis, i.e. with the 

analysis that determines the undamped free-vibration modal parameters of the 

system. The aim of a standard modal analysis is that of calculate the mode shapes 

and frequencies of the structure under analysis.  

 Let consider an undamped system of N degrees of freedom, with no force 

applied. System 4.37 represents the set of equations of motion that give the 

dynamical behavior of the system: 

 

}{}]{[}]{[ 0ukum   (4.37) 

 

where [m] is the mass matrix of the system, [k] its stiffness matrix, and {u} the 

vector of displacements. Now, set {u(t)} as 

 

)t(g}{}{ u  (4.38) 

 

where {} is a N × 1 vector, and plug 4.38 into the equation of motion: 
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where it has been introduced the constant 
2
. The 4.39 leads to a system of two 

equations, in which the first represents an eigenvalues problem, while the second 

gives the equation of harmonic motion: 
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The modal analysis the first equation of 4.40 by setting equal to zero the 

determinant of the matrix into round brackets: the positive square roots of the 

eigenvalues represent the so called natural frequencies of the system, while the 

corresponding eigenvectors represent its modal shapes. From the natural 

frequency it is easy to get the cyclic frequencies f and the modal periods: 
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 (4.41) 

 

Obviously, once solved, the eigenvalue problem in equation 4.40 gives as many 

natural frequencies as the number of degrees of freedom. Conventionally, modes 

are ordered with respect to the frequencies: the smallest modal frequency 

represents the first mode, the biggest modal frequency represents the N-th mode. 

By combining the modal shape, one gets the deformed configuration of the 

system. The modal superposition is possible only because the system under 

analysis is linear. It is important to underline that this superposition does not occur 

by a simple sum of the various terms, but it can be thinked as a weighted sum: the 

first modes count more than the last, meaning that the first modes give a larger 

contribute to the overall deformation of the system than the last. Because of this 

consideration, the majority of the computational programs allows the user to 

choose to compute only some modes, i.e. the ones identified by small values of 

natural frequencies.  

 Let come back to the solution of the eigenvalue problem in 4.4, it can be 

demonstrated that: 
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The 4.42  represents the orthogonality property of natural modes, and allows to 

drastically simplify the problem to solve. In fact, due to this property, the mass 

and stiffness matrices are transformed into diagonal matrices. Therefore, the 

system of N equations in N unknowns linearly dependent becomes a system of N 

equations with N unknowns linearly independent: every equation represents the 

equation of motion of a single degree of freedom system, very easy to solve.  

 

 

4.2.3.1 Verification Example: Modal Analysis of a Beam  

via STRAUS7 and SAP2000 

 

In order to prove the equivalence of the two programs, in the following a 

simple problem is solved with both Straus7 and SAP2000. Results are compared 

to the exact ones, obtained via analytical solution. 

 The problem considered is that of a concrete undamped cantilever beam in 

free-vibration 96 inches long. The material properties given to the system are the 

following: 

Young Modulus (E): 3,600 kip/in
2
 

Mass per Volume (m): 2.3 × 10
-7

 kip-sec
2
/in

4
 

while the cross section characteristics are: 

b  = 12 in 

d  = 18 in 

A = 216 in2 

Iy = 5,832 in
4
 

Iz = 2,592 in
4
 

 

 

 

 

 



123 

 

With these values, the first three modes for a cantilever beam, derived from the 

solution of the equation of motion, are given by the following expressions: 

 

4

2
3

4

2
2

4

2
1

Lm

EI
855.7

Lm

EI
694.4
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875.1
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 (4.43) 

where: 

I is the moment of inertia with respect either to the weak (z) and strong (y) axis 

m  is the mass per unit length ( m  = m × A) 

Plugging the values of the parameters just defined, the first six modes are 

characterized by the natural frequencies and periods given in table 4.2: 

 

Mode Expression 
Frequency 

[rad/sec] 

Frequrncy 

[Hz] 

Periods 

[sec] 

1 
4

z2
1

Lm

EI
875.1  165.32481 

 

26.3122608 0.038005 

2 
4

y2
2

Lm

EI
875.1  247.987216 

 

39.4683912 0.025337 

3 
4

z2
3

Lm

EI
694.4  1036.14768 

 

164.9080254 0.006064 

4 
4

y2
4

Lm

EI
694.4  1554.22152 

 

247.3620381 0.004043 

5 
4

z2
5

Lm

EI
855.7  2901.53536 

 

461.7936957 0.002165 

6 
4

y2
6

Lm

EI
855.7  4352.30305 692.6905435 0.001444 

 

Table 4.2: Modal Parameters for a cantilever beam computed analytically 



124 

 

 

The same problem is then solved with the two design program. It is important to 

note that the solution presented in table 4.2 take into account only the bending 

modes, therefore, in order to get results close to the analytical ones, it is necessary 

to not consider the shear deformation and the axial and torque contribute. In 

SAP2000 the first assumption is obtained by setting equal to zero the shear areas, 

while the second is respected by canceling out the torsion coefficient and ignoring 

both the axial translation and the rotation with respect to the longitudinal 

direction. In order to get results resembling the analytical ones in STRAUS7, it is 

necessary to cancel out the terms of shear area and inertia, to fix the rotation 

around the x-axis and the translation along the same axis, and impose consistent 

the mass distribution, operation set by default in SAP2000. 

In table 4.3 are presented the results got from both programs by using a model 

consisting in 96 line elements, each one 1 inch long: 

 

Mode 
SAP2000 STRAUS7 

Freq. [Hz] Period [sec] Freq. [Hz] Period [sec] 

1 26.314 0.038 26.536 0.038 

2 39.471 0.025 39.654 0.025 

3 164.89 0.006 163.381 0.006 

4 247.33 0.004 239.074 0.004 

5 461.63 0.002 445.178 0.002 

6 692.45 0.001 632.683 0.002 

 

Table 4.3: Comparison between results of SAP2000 and STRAUS7 

 

It is apparent that the solution obtained with the two programs is really similar; 

nonetheless, it can be observed that results obtained with SAP2000 are closer to 

the analytical ones. Then, the last mentioned program will be used to build the 

final model, although the results got via STRAUS7 can be considered reliable. 
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4.3 Finite Element Models 

 

4.3.1 First Model: the Beam Model 

 

This model is considerable as a benchmark for the definition of some 

fundamental characteristics of the system. One of the main topic to explore is the 

definition of the material characteristics. In fact, the Rio Dell Overpass plans 

available (Appendix A) give some indication that have to be considered 

erroneous: the compressive strength of the concrete used is set equal to 12 psf, 

that is a value too low for a structure such as that analyzed.  

The model here proposed is composed by a unique longitudinal beam 

representing the deck, and two vertical beams representing the piers. The 

objective is finding the concrete characteristics such that the lowest modal 

frequencies are appreciably  close to the ones individuated in the structural 

identification via OKID/ERA.  It is well known that the modal frequencies depend 

on the mass and on the stiffness of the system, therefore, if the choice of the 

material parameters is correct, the first modal characteristics will be close to the 

structural ones.  

Appreciable results are obtained by choosing  the following values for the 

materials: 

 

Compressive Strength: 4 ksi 

Young Modulus E: 4,490.369 ksi 

Poisson Coefficient  0.2 

Shear Modulus G: 1,870.987 ksi 

Density  2.695 10
-7

 lb/ft
3
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The deck is modeled with a unique beam element with the section shown 

by figure 4.6: 

 

 
 

Figure 4.6: Deck Section of Model One 

 

The boundary conditions for the deck are here simplified by fixing all of the 

degrees of freedom at both extremes of the deck-beam. 

 On the other hand, the piers are modeled with two types of sections: the 

top pier, 10 ft high, is modeled with a beam whose round section has a radius of 

3.5 ft, while the radius of the bottom section is of 2.5 ft.  

 Table 4.4 shows the first six modal frequencies obtained by solving the 

model via Natural Frequencies Solver. The choice of the material properties 

results satisfied from the comparison of these results to the ones shown in 

previous chapter. In fact, the first six modes are sufficiently close to those 

identified with OKID/ERA. Figure 4.7 shows the first three modal shapes in the 

normal and solid views . 
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Mode 
Frequency 

[rad/sec] 

Frequency  

[Hz] 

Period 

[sec] 

1 20.1564585 3.208 0.312 

2 23.3922989 3.723 0.269 

3 27.2690242 4.340 0.230 

4 36.0152182 5.732 0.174 

5 40.0992886 6.382 0.157 

6 50.6361904 8.059 0.124 
 

Table 4.4: Six Modal Frequencies Obtained with the First FEM 

 

By maintaining the characteristics just defined, the model is improved by 

modifying the boundary conditions of the deck. Once created a proper coordinated 

system, turned of 39° with respect to the Y axis, a translational spring, with the 

stiffness calculated via Makris method, is introduced along the x direction of the 

new system. Practically, now the deck cannot traslate neither in the vertical nor in 

the longitudinal direction, nor can rotate around any axis, but the transverse 

motion is restrained by the springs. The introduction of the spring leads to results 

even closer to the ones identified, as can be observed in table 4.5: 

 

Mode 
Frequency 

[rad/sec] 

Frequency  

[Hz] 

Period 

[sec] 

1 23.12 3.68 0.27 

2 26.83 4.27 0.23 

3 30.47 4.85 0.21 

4 31.73 5.05 0.20 

5 41.09 6.54 0.15 

6 42.73 6.80 0.15 
 

Table 4.5: Six Modal Frequencies Obtained with the First FEM with the addition 

of the springs to the deck extremes 
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Figure 4.7: First, Second and Third Modal Shapes of the First Model 
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4.3.2 Second Model: the Grid Model 

 

Through this model it is possible to begin exploring the behavior of the 

structure. In fact, in the model presented in this section there are all of the elements 

present in the actual system.  

A grid model is chosen to permit the rotational inertia of the deck about the 

longitudinal axis, skew and deep beam effects and intermediate diaphragms to be 

directly incorporated. Each superstructure girder is modeled as a series of longitudinal 

members with the flanges assumed effective out to one-half the distance to the adjacent 

girder. The exterior girder elements are assumed to use the entire overhang but not the 

sidewalk or barrier rail. Transverse diaphragms are also modeled as beams with 

effective flanges. However, a similar model is not adequate for incorporating the 

transverse stiffness, since an intersecting series of beams would not capture the shear 

stiffness. Therefore, plane stress elements representing the deck are used to fill between 

the intersecting beams.  

 In Straus7 „beam‟ is a generic name for a group of one-dimensional or line 

elements. These elements are all connected between two nodes at their ends and the 

single dimension is length. In its most general form the beam element can carry axial 

force, shear force, bending moment and torque. The active degrees of freedom for a 

beam element depend on the beam type and the stiffness it provides: a conventional 

beam can be characterized by stiffness against all of the solicitations. The beam 

elements are used to model the girders of the deck, the diaphragms, the abutments, the 

bent and the piers.  
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Fig. 4.8: Tapered Pier 

Two issues have to be solved: the first is that of the 

boundary conditions. The study of the frequency content 

presented in the second chapter has proved that the piers 

move as a rigid body with the soil of the foundations, 

therefore, the basis of the piers can be fixed without any 

risk of oversimplification of the structural behavior. The 

piers itself are modeled with a series of beams, whose 

cross section is increasing from the 11
th
 feet from the 

ground until the deck, as shown in figure 4.8. On the 

other hand, it has been underlined the necessity of 

considering a more specific model for the representation 

of the interaction between the soil and the abutments. 

This interaction is represented by means of transversal 

springs whose reaction is directed along a line skwed of 

39° with  respect to the longitudinal axis of the system. 

Practically, a new coordinate system needs to be 

defined; in particular, for this model a the new 

coordinate system has the y-axis directed along the 39° 

skewed line, and the springs are defined in this new reference system, in the y direction, 

as can be observed in figure 4.9. The translational stiffness is 1.043 × 10
7
 lbf/ft, that is 

the value resulting from the application of Makris method: 

 

 

 
 

Figure. 4.9: Abutment Boundary Conditions, New Reference System 

  

Reference System for the 

location of the springs 
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 The second problem that needs to be solved is how to model the deck. In fact, in 

the existent structure this element consists in a unique piece cast in place. That means 

the system is characterized by a strong stiffness both in longitudinal and in transverse 

direction. By modeling the deck by means of seven longitudinal girders, only the 

stiffness along x-axis can be reproduced, but not that in the z-axis direction (figures 

4.10): 

 

 

  

Fig. 4.10a: Lateral Girder Cross Section Fig. 4.10b: Central Girder Cross Section 

 

The actual problem is finding the best element that gives transverse stiffness, without 

modifying the response of the structure. A number of experiments is developed, the first 

being the use of plates elements in order to model the transverse connections. In 

STRAUS7 plate is a generic name for a group of two-dimensional surface elements. 

The surface elements include the three and six node triangular elements, and four, eight 

and nine node quadrilateral elements. In particular, for this model two types of plate 

elements are tested. The first is the plane stress eight node plate element. A plane stress 

analysis assumes a thin two-dimensional sheet of material. All stresses are in the plane 

and the stress through the thickness is zero. The only active degrees of freedom are 

those associated with displacement in the XY plane, as shown in figure 4.11.  
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Figure  4.11: Active Degrees of Freedom in the in the Plane Strees Plate Elelement 

 

The second is the plate/shell eight node element, the most general type of plate element 

in that it is a three-dimensional membrane and bending element (figure 4.12) . It is the 

only plate element that permits out of plane displacements associated with bending 

behavior.  

 

Figure 4.12: Membrane and Bending Actions in the Plate/shell Element 

 

Results obtained with the first kind of element are shown in figure 4.13 and table 4.6: 

Mode 
Frequency 

[rad/sec] 

Frequency 

[Hz] 

Period         

[sec] 

1 17.1531 2.73 0.366 

2 21.0487 3.35 0.299 

3 21.9283 3.49 0.287 

4 24.2531 3.86 0.259 

5 29.4681 4.69 0.213 

6 31.4159 5 0.200 
 

 

Table 4.6: Modal Parameters Resulting from the Model with Plane Stress Plates giving the 

Transverse Stiffness to the Deck 
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while table 4.7 and figure 4.14 show what results from the model in which plate/shell 

elements are used: 

Mode 
Frequency 

[rad/sec] 

Frequency 

[Hz] 

Period         

[sec] 

1 17.1531 2.73 0.366 

2 20.8602 3.32 0.301 

3 21.6142 3.44 0.291 

4 23.8761 3.8 0.263 

5 25.9496 4.13 0.242 

6 31.3531 4.99 0.200 
 

Table 4.7: Modal Parameters Resulting from the Model with Plete/Shell elements giving 

the Transverse Stiffness to the Deck 

 

From comparison between figures 4.13 and 4.14, it can be observed that the use of 

plate/shell elements gives more reasonable modal shapes, nevertheless, the natural 

frequencies are too low. In fact, the introduction of such elements in the system add 

some structural modes that represent a local deformation of the plates itself rather than 

the global behavior of all of the structure. 
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Fig. 4.13: Modal Shapes Resulting from the Second Model in Which the Transverse Stiffness is given by Plane Stress Elements 
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Fig. 4.14: Modal Shapes Resulting from the Second Model in Which the Transverse Stiffness is given by Plate/Shell Elements 
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Therefore, even though the values of the modal parameters obtained are 

appreciable, another solution has to be inspected. In place of the plates are chosen some 

beams with the section given in figure 4.15: 

 

 

Fig. 4.15: Transverse Element Cross Section 

 

With this approach the results obtained are given in table 4.8 and in figure 4.16: 

 

Mode 
Frequency 

[rad/sec] 

Frequency 

[Hz] 

Period         

[sec] 

1 17.7814 2.83 0.353 

2 20.9858 3.34 0.299 

3 21.8655 3.48 0.287 

4 25.3841 4.04 0.248 

5 27.269 4.34 0.230 

6 31.6044 5.03 0.199 
 

Table 4.8: Modal Parameters Resulting from the Second Model with Beams giving the 

Transverse Stiffness to the Deck 

 

The overall stiffness is increased compared to the one observed with the previous 

models, nonetheless, the results obtained are still not sufficiently closed to the values 

gained in the structural identification of chapter 3. The aim is increasing the transverse 

stiffness of the deck.  
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Fig. 4.16: Modal Shapes Resulting from the Second Model in Which the Transverse Stiffness is given by Beams
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In the next model the transverse beams are substituted with rigid links. These 

elements provides an infinitely stiff connection between two nodes and constraints on 

the nodal rotation such that there is no relative rotation between the connected nodes. A 

typical example of the use of a rigid link in one of the global planes, is the modeling of 

rigid diaphragms for the analysis of floor slabs. The modal parameters got with this 

system are presented in table 4.9: 

 

Mode 
Frequency 

[rad/sec] 

Frequency 

[Hz] 

Period         

[sec] 

1 22.054 3.51 0.285 

2 27.7088 4.41 0.227 

3 34.1805 5.44 0.184 

4 39.2071 6.24 0.160 

5 62.9575 10.02 0.100 

6 66.2876 10.55 0.095 

 

Table 4.9: Modal Parameters Resulting from the Second Model with Rigid Links giving 

the Transverse Stiffness to the Deck 

 

while figure 4.17 represents the modal shapes of this new model. It is clear that this 

solution gets closer to the expected values. However, the gap between the fourth and the 

fifth natural frequencies, united to the comparison of the natural frequencies identified 

with OKID/ERA, suggests that this model still does not catch sufficiently well the 

actual behavior of the structures. 
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Fig. 4.17: Modal Shapes Resulting from the Second Model in Which the Transverse Stiffness is given by Rigid Links
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 Until now, it has been neglected the fact that the deck is constituted by pre-

tensioned concrete. STRAUS7 allows to apply an axial load to the beam as a pre tension 

force.  The specified pre tension force is applied as two equal and opposite forces on the 

ends of the beam element, but the jack force will not be recovered as an axial force in 

the beam element at the end of the solution. In the model a positive pre tension value is 

applied, this generates a tensile axial force in the fully fixed girders. As said at the 

beginning, the modal analysis solves the problem of an undamped free-vibration 

system; thus, the action of the pre-tension forces does not affect directly the analysis, 

but it changes the initial conditions. The jack forces will generates an initial 

displacement to the elements to which they are applied, then the modal parameters will 

change, as actually is observed in table 4.10: 

 

Mode 
Frequency 

[rad/sec] 

Frequency  

[Hz] 

Period 

[sec] 

1 18.4097 2.93 0.341 

2 21.1115 3.36 0.298 

3 29.531 4.7 0.213 

4 31.9186 5.08 0.197 

5 40.4009 6.43 0.156 

6 50.1398 7.98 0.125 

 

Table 4.10: Modal Parameters Resulting from the Second Model with Pre-Tensioned 

Girders 

 

Finally, the modal parameters obtained with this model are sufficiently closed to those 

previously identified. Anyway, some of the modal shapes are not reasonable, as 

observable in figure 4.18.  
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Fig. 4.18: Modal Shapes Resulting from the Second Model by adding a pre-tended cable in the seven deck girders
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4.3.3 Third Model: Shell Model 

 

4.3.3.1 The Shell Element in SAP2000 

 

 The Shell Element is a three or four node formulation that combines separate 

membrane and plate-bending behavior. Actually, the homogeneous shell combines 

independent membrane and  plate behaviors, that are coupled when the element is non-

planar. In this kind of element all six degrees of freedom are activated at each corner: 

the element is capable of supporting both forces and moments.  

The membrane behavior is defined by an isoparametric formulation, that takes 

into account the translational in-plane components and a drilling rotational stiffness 

component in the direction normal to the plane of the element. On the other hand, plate-

bending behavior includes two-way, out of plane, plate rotational stiffness components 

and a translational stiffness component in the direction normal to the plane of the 

element. The user can choose between the shell-thin and shell-thick formulations: the 

first neglects the transverse shearing deformation, according to Kirchhoff-Love theory, 

while the second includes those effects, being developed according to Reissner-Mindlin 

theory. Shearing deformations are important for elements whose thickness is greater 

than about one-tenth to one-fifth of the span, as also close to bending-stress 

concentrations, that can  occur near sudden changes in thickness or support conditions.  

The shell elements used in the generation of the third model have quadrilateral 

shape, defined by four nodes, as shown in figure 4.19: 
 

 

Figure. 4.19: Four-node Quadrilateral Shell Element 
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where joints j1 and j4 serve as corners of the reference surface of the shell element. In 

particular, for the homogeneous shell, the reference surface is the mid-surface of the 

element. In the SAP2000 Analysis Reference Manual is explicitly stated that the best 

results with the quadrilateral element may be obtained by locating the joints according 

to well defined geometrical conditions: the inside angle at each corner must be in the 

range of 45° to 135°, the ratio of the longer distance between midpoints of opposite 

sides to the shorter such distance should be less than four.  

Each shell element has its own local coordinate system used to define all kind of 

assignments on it, such as material properties, loads, etc. The axes of the local system 

are denoted with 1, 2 and 3: the 1 and 2 axes lie in the plane of the element with an 

orientation specified by the user, the 3-axis is normal to the other two. The 1-2-3 

coordinate system is generally different than the global X-Y-Z coordinate system. By 

default, the local 3-2 plane is taken parallel to the Z axis; the local 2 axis is taken to 

have an upward sense (+Z), unless the element is horizontal, in which case the 2 axis is 

taken along the global +Y direction; the 1-axis lies in the X-Y plane (Figure 4.20): 

 

 
 

Figure 4.20: Element System with Respect to the Global Coordinate System 
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 In defining the element section properties, the user has to decide what value give 

to the membrane (th)  and bending  (thb) thicknesses. Usually, the two values are 

maintained identical, and the user can vary the computed section properties by operating 

on the property modifiers.   

 Finally, the shell element stress resultants are the forces and the moments that 

result from integrating the stress over the element thickness as follows: 
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(4.44) 

 

The 4.44 are forces and moment per unit of in-plane length. For the thick-plane 

formulation of the homogeneous shell the shear stresses are computed directly from the 

shearing defomation, while for the thin plate homogeneous shell the V12 and V23 are 

determined from the equilibrium equations 4.45: 
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 (4.45) 

 

where x1 and x2 are the coordinates parallel to the local axis 1 and 2. Stresses acting on 

a positive face are oriented in the positive direction of the element local axes. Stresses 

acting on a negative face are oriented in the negative direction of the element local axes 

(figure 4.21): 
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Figure 4.21: Shell Element Internal Resultants Forces and Moments 

 

Stresses are reports for homogeneous shells at the top and bottom surfaces,, and are 

linear in between. Stresses and internal forces are evaluated at the standard Gauss 

integration points of the element and extrapolated to the joints.  

 

4.3.3.2 Thick-Shell Elements Model 

 

 Maintaining the same material properties as the ones employed for the previous 

models, the new generated system is built by using thick-shell elements for the deck, 

diaphragms and abutments and beams elements for the piers and the bent 

representations. The boundary conditions remain those identified above: the basis of 

piers have the translational and rotational degrees of freedom restrained in all of the 

three directions; to apply the boundary conditions at the basis of the abutments a proper 

new coordinate system is introduced, in which the y-axis denotes the direction parallel 

to a line skewed of 39° with respect to the global X-axis. The basis of the abutments 

cannot either translate in the longitudinal and vertical direction or rotate with respect to 

any of the global axis, while in the y-axis direction, springs characterized by 869.1667 

kips/in stiffness restrain the translational motion.  
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 The first experiments are focused on understanding the contribute to the global 

behavior of the diaphragms. The same model is analyzed with and without the 

diaphragms, and in table 4.11 are presented the results: 

 

 Model with Diaphragms Model Without Diaphragms 

Mode Freq. [Hz] Period [sec] Freq. [Hz] Period [sec] 

1 2.905 0.344 2.934 0.341 

2 3.557 0.281 3.576 0.280 

3 4.628 0.216 4.683 0.214 

4 6.390 0156 6.400 0.156 

5 8.279 0.121 8.274 0.121 

6 8.617 0.116 8.635 0.116 

 

Table 4.11: Comparison between model with and without Diaphragms Representations 

 

As can be observed from the table above, the presence of the diaphragms does not 

affects greatly the overall behavior of the structure. Therefore, they can be neglected in 

the generation of the finite element model, gaining a simpler system. Indeed, 

introducing less elements in the model decreases the computational request and offers a 

system simpler to calibrate, since with less variables to handle with. 

 Figures 4.22 show the first height modal shapes obtained for the model without 

diaphragms. 



147 

 

 
 

Figure 4.22a: First, Second, Third and Fourth Modal Shapes for the Shell Model without Diaphragms 
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Figure 4.22b: Fifth, Sixth, Seventh and Eighth Modal Shapes for the Shell Model without Diaphragms 
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4.3.3.3 Thin-Shell Elements Model 

 

 The new trial model is identical to the previous one, but the shell elements used 

are now the thin-shell elements, i.e. the ones formulated according to Kirchhoff-Love 

theory.  In table 4.12 are presented the modal parameters obtained: 

 

Mode Freq. [Hz] Period [sec] 

1 3.356 0.298 

2 4.606 0.217 

3 5.200 0.192 

4 6.802 0.147 

5 7.256 0.138 

6 9.079 0.110 

7 10.498 0.095 

8 11.848 0.084 

 

Table 4.12: Modal Frequencies and Periods for Thin-Shells Model 

 

It is certainly worth to highlight the fact that the values detected are finally sufficiently 

close to those identified in chapter 3, therefore the model here obtained is ready to be 

calibrated. Figures 4.23 show the first eight modal shapes of the structure. The first five 

modes are compared with the modal shapes obtained in the identification via 

OKID/ERA to underline once again the reasonability of the results. 
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Mode 1: 3.407 Hz
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Figure 4.23a: First Mode Shape for the Model to Be Calibrated 
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Figure 4.23b: Second Mode Shape for the Model to Be Calibrated 
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Figure 4.23c: Third Mode Shape for the Model to Be Calibrated 
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Figure 4.23d: Fourth Mode Shape for the Model to Be Calibrated 
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Figure 4.23e: Fifth Mode Shape for the Model to Be Calibr 
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4.4 Model Calibration 

 

In Chapter 3, the modal characteristics of the Painter Street Overpass have been 

obtained through the OKID algorithm. The results obtained are now used to optimize the 

FEM model defined in the first paragraphs of this chapter.  The objective is that of 

minimize the error given by the sum of the difference of the modal frequencies obtained by 

OKID (our threshold) and the ones obtained through the SAP model. This result is achieved 

by varying three parameters through a genetic algorithm, until the best combination is 

found. Obviously, the best combination of the three parameters is the one that minimizes 

the error. The parameters chosen are the mass and stiffness coefficients and the Young’s 

modulus of the concrete, since these are the factors the mostly affect the modal 

characteristics of any system. 

 

4.4.1 Genetic Algorithm (GA) 

 

In order to understand how a genetic algorithm works, it is useful to remind some 

basics of Biology. Every organism has a set of rules describing how it is built up. These 

rules are encoded in the genes of an organism, and connected into strings called 

chromosomes. Each gene represents a specific trait of the organism, and the settings of the 

genes are known as the organism’s genotype. The physical expression of the genotype is 

the phenotype. When two organisms mate they share their genes, in a processes usually 

referred to as recombination. Sometimes, a gene may be mutated. Occasionally the 

mutation will affect the phenotype, as well. Genetic Algorithms are stochastic global search 

methods that mimic the metaphor of natural biological evaluation, being based on the 

principles of Darwinian theory of survival of the fittest. 

Before someone can use a GA to solve a problem, it is necessary to find a way to 

encode any potential solution of the problem. This could be done through a string of real 

number or, more typically, a binary bit string. In the following, the bit string will be 
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referred to as a chromosome. At the beginning of a run of a genetic algorithm, a large 

number of random chromosome is created. Each new chromosome will represent a solution 

to the problem, once it is decoded. Assuming a population of N chromosomes, the 

following steps are repeated until a solution is found: 

1. Test the validity of the chromosome in solving the problem, and assign a fitting 

score to the chromosome. 

2. Select two members from the current population: higher the fitting score, higher is 

the probability of the chromosome to be selected. 

3. Depending on the crossover rate, crossover the bits from each chosen chromosome 

at a randomly chosen point. The crossover rate is the chance that two chromosomes 

will swap their bits. A good crossover rate value is around 0.7. 

4. Depending on the mutation rate, step through the chosen chromosomes bits and flip. 

The mutation rate is the chance that a bit within a chromosome will be flipped. In 

binary encoded genes, the mutation rate has usually very low values, as 0.001. 

Then, whenever a chromosome is chosen from the population, the algorithm first 

checks to see if crossover should be applied, then, the algorithm iterates down the 

length of each chromosome mutating the bits if applicable. 

5. Repeat from step 2 to 3 resulting in a new population of N chromosomes. 
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4.4.2 The Code used in the Optimization Process 

 

In calibrating the model, a GA coded by Prof. David L. Carroll is used. In the 

following will be briefly explained how it works. The copyright by which the code is 

subjected does not authorize me to show the code in appendix. Then, I will not give any 

details on how it has been built, but I will only explain the main phases of which it is 

compound. 

The code initializes a random sample of individuals with different parameters to be 

optimized using the genetic algorithm approach. As mentioned in the introduction, I have 

chosen to vary three parameters: mass coefficient (aM), stiffness coefficient (aK) and 

Young’s modulus of the concrete (E). For what concerns aM and aK, the range of variation 

of these two coefficients has been evaluated according to the Rayleight approach. Through 

previous process, the modal frequencies of the model have been obtained. Fixed the first 

two natural frequencies, it is possible to get the value of aM and aK by solving for the 

unknow parameters the following system of equations: 
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 (4.46) 

 

The minimum values of aM and aK are calculated by fixing the I’s equal to 0.01, while the 

maximum values are obtained by setting the damping ratios equal to 0.1. The ranhges of the 

three parameters are shown in the table 4.13: 
 

 parmin parmax 

Mass Coefficient 0.2077 2.0768 

Stiffness Coefficient 0.0005 0.0047 

Young’s Modulus 3000 ksi 8000 ksi 

 

Table 4.13: Range of Parameters used for the Calibration of the linear FEM 
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The next step is the one of the evaluation of the population: once the chromosomes 

are generated, the fitness score is them assigned, and the best individual is established. This 

peocedure is acted on each member of the population. It is now necessary to create some 

space where locate and mantaine multiple solutions. This is obtaiend through the niching 

method. In particular, the Goldberg’s multidimensional phenotypic sharing scheme with a 

triangular sharing function is implemented in the code. 

It is time to select the better of two possible parents for mating. The selection 

scheme used is tournament selection with a shuffling technique. Follows the crossover step. 

The program allows you to choose between two options: single point crossover at a random 

chromosome point, and unform crossover between randomly selected pair. Then, mutation 

is perfomed on the children generation. A jump mutation will be performed if a random 

number is less than 0.05, random creep mutation will be used if a different number is less 

than 0.1. Finally a new generation is run consisting in writing the child array back into 

parent array, while checking if the best individual was replicated. The last mentioned check 

is called elitism. 

The procedure explained will continue until either the user stop the debugging of the code 

because the error is reasonably minimized, or the maximum number of iterations is 

reached, i.e. 100 generations have been performed. 

 

Parameter Summary 

 

Population Size 7 Crossover Rate 0.5 

Number of Children 2 Mutation Rate 0.05 

Niching Yes Creep Mutation Rate 0.1 

Selection Strategy Tournament Elitism yes 

 

Table 4.14: Parameters Used in the Genetic Algorithm 
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4.4.2.1 Tournament Selection with a Shuffling Technique 

 

There are several techniques by which a mating pool for reproduction can be created. 

The one used in the code is the tournament selection method. Also called the ranking 

method, selection probabilities are calculated normally and successive pairs of individuals 

are drawn using roulette wheel selection. Practically, the last mentioned method selects 

parents according to a spin of a weighted roulette wheel. The roulette wheel is weighted 

according to string fitness values. A high-fit string will have more area assigned to it on the 

wheel and hence, a higher probability of ending up as the choice when the biased roulette 

wheel is spun.  

After drawing a pair, the string with the highest fitness is declared the winner and is 

inserted into the mating pool, and another pair is drawn. The process continues until the 

mating pool is full.    

 

4.4.2.2 Single Point and Uniform Crossover 

 

When single point Crossover is applied, one crossover point is selected, binary string 

from beginning of chromosome to the crossover point is copied form one parent, the rest is 

copied from the second parent, as well explained by figure 4.24: 

 

Figure 4.24: Graphical Explanation of Single Point Crossover 

 

When Uniform crossover is performed, bits are randomly copied from the first or from the 

second parent, as shown in figure 4.25: 

 

Figure 4.25: Graphical Explanation of Uniform Crossover 
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4.4.2.3Jump and Creep Mutation  

 

There are two types of mutation operators: the standard jump mutation and the creep 

mutation. The first one acts on the chromosome (referred to as genotype in the introductive 

explanation of GA’s), while the second one acts on the decoded individual (the phenotype 

in the biological parallelism). The mutation probabilities have to be low; otherwise 

disruption of promising schemes may result. 
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5 

CONCLUSIONS 
 

 

The thesis describes a dynamically-based technique to detect and locate damage 

and illustrates the performance in the case of the Rio Dell – Hwy 101/Painter Street 

Overpass. The method discussed, conceptually simple and practically tractable, aims to 

retrieve an high fidelity finite element model whose response can be compared to that of 

the actual structure. The final objective is comprehending whether the structure has 

been damaged during a strong seismic event and, possibly, detect the location of the 

eventual damage. The approach is developed in five steps: 

1.    From the study of previous papers, the main characteristics of the system are 

individuated. In particular, from the analysis of the frequency content of the 

acceleration  time histories recorded during three seismic events, natural 

frequency values  of reference and boundary conditions to apply to the finite 

element model were evaluated. 

2.    Through the employment of a two-stage system identification methodology 

(OKID/ERA) the characterization of dynamic properties of the Painter Street 

Overpass has been performed by identifying its natural frequencies, damping 

ratios, and mode shapes, using three ambient vibration data sets recorded 

through the acceleration monitoring system. First, a first-order state-space model 

of the structural system is identified using only the available input-output 

measurement data and then, such a model is converted to a second-order mass, 

damping and stiffness model. Some of the advantages that is worth to restated 

are that the technique does not require any numerical manipulation (integration, 

differentiation, filtering) of the recorded data and that it does not impose any 

limitation on the nature and type of structural damping and on the coupling of 

the vibrational modes. For the structure under consideration, six modal 

frequencies were identified: 3.407 Hz, 4.757 Hz, 5.541 Hz, 6.122 Hz, 7.335 Hz, 

8.106 Hz. Moreover, plots of the corresponding modal shapes were plotted, 
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although those may only represent a reference for the actual structural modal 

shape.  

   Results obtained through this step are considered quite reliable, although some 

issues had to be solved, as it was discussed in detail in the body of the thesis. 

First of all, the available time histories are too short. Indeed, researches have 

demonstrated that for the OKID/ERA to be effective, records covering a time of 

more than 60 seconds are necessary. Instead, the data available refer to records 

at most 60 second long. Moreover, the only data having these characteristics had 

been strongly corrupted by noise, maybe consequently to the high energy 

generated during the seismic event. The second problem that had to be faced was 

the location of the sensors, that does not permit the visualization of the torsional 

natural modes, that anyway are not negligible for this kind of structure. A further 

assessment on the robustness of the identification results had to await, therefore, 

the finite element model analysis validation. 

3.    Using the modal parameter estimates identified as thresholds, a linear finite 

element model has been generated. After some trials, the model considered more 

accurate in resembling the modal parameters thresholds was selected to be that 

in which deck and abutments are constituted by shell elements, formulated 

according to the Kirchhoff theory. The first six natural frequencies computed 

with this model were found to be equal to 3.356 Hz, 4.606 Hz, 5.200 Hz, 6.802 

Hz, 7.256 Hz, 9.079 Hz. The finite element model has been then calibrated by 

means of a genetic algorithm in order to retrieve the same modes individuated in 

the previous structural identification. The parameters chosen to be modified 

were the Young’s modulus of the concrete, the mass and the damping ration of 

the system. The initial value for the damping ratio was computed via Rayleigh 

approach.   

4.    The final step should be that of modifying the calibrated FEM by inserting 

some non linear elements. Such elements have to be placed in the most stressed 

areas, that may be detected by means of an approach similar to the push-over 

analysis. The technique employable may be that of applying excitation of 

increasing intensity, until an area of the system overcomes the elastic-limit 
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behavior. It is reasonable to suppose that these areas would experience a big 

deformation during a particularly strong earthquake. Therefore, for this zones it 

is inappropriate a linear model, that does not allow to appreciate the real 

response of the structure. However, this analysis has to be enfaced from the 

beginning, topics that would be properly explored would be those of which 

elements to use to model the non-linearities of the system, and how to detect the 

zones that need to be modeled as non-linear. 

5. Once all of the material is collected, we have a powerful tool able to resemble 

the structural response of the real system. By comparing the model response to 

the actual one, we are immediately capable of assume whether the structure has 

suffered damage. Moreover, individuating the zones where the structural 

response differs significantly with respect to the model reponse, it is possible to 

simplify the detection of the damage, addressing the inspections in those areas. 

 

Therefore, a potentially important limitation in the strategy derives from the difficulties 

that can be incurred in the structural identification simulated via OKID/ERA. However, 

most of the difficulties can be circumvented in comparing the identification results with 

the findings assessed through the finite element model analysis. In conclusion, the 

technique engaged offers a valid alternative to the traditional methods of damage 

detection. Some of the advantages that is worth to restate are the generality with respect 

to the type of structures that it applies to, the fact that can operate with a small set of 

data and finally that the OKID/ERA structural identification is computed strictly from 

the measured data. To utterly complete the analysis, the non-linear finite element model 

should be created, and experimental validation should be performed. 
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APPENDIX A 
 

Rio Dell – Hwy 101/Painter Street Overpass Plans 























APPENDIX B: Lists of results form OKID/ERA 

application 

 
In the following pages are presented some examples of the results 

obtained by running the OKID/ERA algorithms as given by MATLAB. It is 

worth to remember that these are only the final trials performed. In order to 

individuate the values of the parameters such as the model order or the 

number of Markov parameters to evaluate a year of experiments has been 

performed. 

 For each set of data, in addition to the tables of the results, at the 

beginning the plots that serve as tools for the choice of the abovementioned 

parameters are shown.  

 



B.1 RESULTS WITH TRINIDAD SET OF DATA (p=73; SVs=558; Order=118) 

  
 

 
 

Fig. B.1: Singular values for V*VT 
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Fig. B.2: Singular values for H(0)*H(0) 
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Trial 1 [1:44 47:118] 
    Initial system Optimized System 

Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

--------------  ---------    ----------   --------------   ---------   ---------- 

1.6263e+000   2.5884e-001   3.6907e-001   2.6058e+000   4.1472e-001   4.2060e-001 

4.7061e+000   7.4901e-001   3.7313e-001   7.5703e+000   1.2049e+000   7.5171e-001 

1.1856e+001   1.8869e+000   5.5772e-001   1.2560e+001   1.9990e+000   5.3972e-001 

1.3401e+001   2.1328e+000   9.2760e-002   1.5859e+001   2.5241e+000   2.1812e-001 

1.7727e+001   2.8213e+000   8.1885e-002   1.8125e+001   2.8847e+000   6.0329e-002 

2.0257e+001   3.2239e+000   2.9910e-002   2.0286e+001   3.2286e+000   1.9448e-002 

2.1658e+001   3.4469e+000   2.2515e-002   2.1642e+001   3.4444e+000   2.6521e-002 

2.4984e+001   3.9763e+000   4.3300e-002   2.5182e+001   4.0078e+000   9.7377e-002 

2.7531e+001   4.3818e+000   4.9645e-002   2.6712e+001   4.2513e+000   6.1321e-002 

2.8120e+001   4.4754e+000   1.6275e-002   2.8149e+001   4.4800e+000   7.1672e-003 

2.9516e+001   4.6976e+000   8.5542e-002   2.9431e+001   4.6841e+000   1.6886e-001 

2.9642e+001   4.7176e+000   1.5335e-002   2.9679e+001   4.7235e+000   9.8254e-003 

3.0303e+001   4.8229e+000   5.9044e-003   3.0243e+001   4.8133e+000   5.8856e-003 

3.3073e+001   5.2637e+000   3.2569e-002   3.3081e+001   5.2650e+000   2.9936e-002 

3.3372e+001   5.3114e+000   1.5867e-002   3.3137e+001   5.2739e+000   1.0760e-001 

3.3497e+001   5.3311e+000   1.1295e-001   3.3468e+001   5.3266e+000   9.4189e-003 

3.6314e+001   5.7796e+000   1.7623e-002   3.6351e+001   5.7855e+000   6.6280e-003 

3.6891e+001   5.8714e+000   3.3015e-002   3.7129e+001   5.9092e+000   4.6429e-002 

    3.9082e+001   6.2201e+000   5.1165e-003   3.9091e+001   6.2216e+000   3.2229e-006 

4.0058e+001   6.3754e+000   9.9622e-003   3.9996e+001   6.3656e+000   1.0220e-002 

4.1467e+001   6.5997e+000   6.4068e-002   4.0703e+001   6.4781e+000   4.9319e-002 

4.3496e+001   6.9225e+000   1.9734e-002   4.3359e+001   6.9007e+000   5.4895e-003 



4.6318e+001   7.3717e+000   5.1364e-002   4.6015e+001   7.3236e+000   7.6645e-002 

4.6434e+001   7.3901e+000   7.9941e-003   4.6321e+001   7.3722e+000   2.0581e-003 

4.8100e+001   7.6554e+000   8.2914e-003   4.7873e+001   7.6192e+000   2.4424e-003 

4.9427e+001   7.8666e+000   1.1212e-002   4.9567e+001   7.8888e+000   5.7130e-004 

5.0203e+001   7.9901e+000   2.2032e-002   5.0214e+001   7.9918e+000   2.4542e-002 

5.2047e+001   8.2835e+000   1.9103e-002   5.1569e+001   8.2075e+000   4.8701e-002 

5.4758e+001   8.7150e+000   2.5912e-002   5.4177e+001   8.6226e+000   8.4222e-001 

5.5890e+001   8.8951e+000   7.9595e-003   5.5018e+001   8.7564e+000   4.5129e-002 

5.7131e+001   9.0927e+000   2.4412e-002   5.5763e+001   8.8750e+000   1.0971e-002 

5.8015e+001   9.2334e+000   1.3332e-002   5.7501e+001   9.1515e+000   3.0537e-002 

6.0999e+001   9.7082e+000   1.7913e-002   5.8254e+001   9.2714e+000   1.2162e-002 

6.1199e+001   9.7401e+000   3.7580e-002   6.0711e+001   9.6625e+000   4.4475e-002 

6.2750e+001   9.9870e+000   1.5351e-002   6.1363e+001   9.7662e+000   2.1369e-002 

6.7443e+001   1.0734e+001   3.0588e-002   6.3299e+001   1.0074e+001   1.2369e-002 

6.7789e+001   1.0789e+001   1.3959e-002   6.7789e+001   1.0789e+001   9.4429e-003 

7.1043e+001   1.1307e+001   2.0156e-002   6.8267e+001   1.0865e+001   8.3844e-002 

7.2079e+001   1.1472e+001   2.9356e-002   7.1376e+001   1.1360e+001   2.1415e-002 

7.4499e+001   1.1857e+001   8.0286e-003   7.2213e+001   1.1493e+001   4.9406e-002 

7.6746e+001   1.2215e+001   1.7319e-002   7.4376e+001   1.1837e+001   6.4884e-004 

7.9699e+001   1.2684e+001   9.3028e-003   7.5883e+001   1.2077e+001   5.6523e-002 

8.3011e+001   1.3212e+001   1.0057e-002   7.9553e+001   1.2661e+001   1.4436e-002 

8.5069e+001   1.3539e+001   6.5968e-003   8.2277e+001   1.3095e+001   2.7892e-002 

8.9790e+001   1.4290e+001   1.4264e-002   8.6289e+001   1.3733e+001   1.5340e-002 

9.0898e+001   1.4467e+001   1.3026e-002   8.8162e+001   1.4031e+001   6.4267e-001 

9.5189e+001   1.5150e+001   1.4247e-002   8.8874e+001   1.4145e+001   7.6426e-003 

9.5808e+001   1.5248e+001   3.0645e-001   8.9872e+001   1.4304e+001   1.2424e-002 

1.0145e+002   1.6146e+001   2.1199e-002   9.4318e+001   1.5011e+001   2.7337e-001 



1.0485e+002   1.6688e+001   4.8218e-002   9.5828e+001   1.5251e+001   2.0454e-001 

1.0511e+002   1.6729e+001   7.7829e-003   9.6136e+001   1.5300e+001   2.8424e-001 

1.1139e+002   1.7728e+001   1.1076e-002   1.0423e+002   1.6589e+001   1.1026e-002 

1.1826e+002   1.8822e+001   8.6634e-003   1.0721e+002   1.7064e+001   1.8604e-001 

1.2287e+002   1.9555e+001   9.2927e-003   1.1765e+002   1.8724e+001   1.0581e-002 

1.2683e+002   2.0186e+001   2.0321e-002   1.2191e+002   1.9403e+001   4.8224e-002 

1.2978e+002   2.0655e+001   1.6972e-002   1.2301e+002   1.9578e+001   8.4338e-003 

1.3566e+002   2.1591e+001   1.0347e-002   1.3192e+002   2.0995e+001   4.7602e-002 

1.4465e+002   2.3022e+001   5.5555e-003   1.4131e+002   2.2490e+001   1.0286e-001 

 

 

Trial 2 [3:18 23:26 31:38 41,42 47:64 67:70 73:96 99:102 105,106 109:116] 
    Initial system Optimized System 

Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

--------------  ---------    ----------   --------------   ---------   ---------- 

4.7473e+000   7.5556e-001   3.9221e-001   1.1169e+001   1.7777e+000   8.9534e-001 

1.3378e+001   2.1292e+000   7.5845e-002   1.5839e+001   2.5209e+000   3.0048e-001 

1.7570e+001   2.7964e+000   6.8863e-002   1.8092e+001   2.8794e+000   4.3880e-002 

2.0266e+001   3.2254e+000   3.0802e-002   2.0321e+001   3.2342e+000   1.5604e-002 

2.1645e+001   3.4449e+000   2.2599e-002   2.1606e+001   3.4387e+000   2.7348e-002 

2.4904e+001   3.9636e+000   4.5418e-002   2.6623e+001   4.2372e+000   1.7133e-001 

2.7662e+001   4.4025e+000   5.7244e-002   2.8322e+001   4.5077e+000   2.3830e-002 

2.8119e+001   4.4753e+000   1.5463e-002   2.9058e+001   4.6247e+000   3.8038e-002 

3.0307e+001   4.8235e+000   5.8146e-003   3.0240e+001   4.8128e+000   4.4399e-003 

3.2964e+001   5.2464e+000   3.3896e-002   3.1433e+001   5.0028e+000   3.6139e-001 

3.6317e+001   5.7800e+000   1.6504e-002   3.3217e+001   5.2867e+000   4.9706e-002 



3.6945e+001   5.8800e+000   3.5688e-002   3.6385e+001   5.7909e+000   2.8394e-003 

3.9084e+001   6.2203e+000   4.8967e-003   3.6535e+001   5.8148e+000   4.7654e-001 

4.0087e+001   6.3801e+000   1.0225e-002   3.7588e+001   5.9823e+000   3.8758e-002 

4.3487e+001   6.9211e+000   2.1150e-002   3.9004e+001   6.2076e+000   3.1716e-003 

4.6449e+001   7.3926e+000   7.3787e-003   4.0097e+001   6.3816e+000   4.6588e-003 

4.8072e+001   7.6509e+000   8.3162e-003   4.2510e+001   6.7656e+000   4.5193e-001 

4.9397e+001   7.8618e+000   1.1618e-002   4.3321e+001   6.8948e+000   1.0937e-002 

5.0033e+001   7.9631e+000   2.2055e-002   4.6359e+001   7.3783e+000   2.9973e-003 

5.2032e+001   8.2812e+000   1.9898e-002   4.7727e+001   7.5960e+000   1.1785e-002 

5.4779e+001   8.7183e+000   2.7163e-002   4.9580e+001   7.8909e+000   5.8299e-004 

5.5904e+001   8.8974e+000   7.8455e-003   4.9624e+001   7.8978e+000   3.6814e-002 

5.7009e+001   9.0732e+000   2.6841e-002   4.9659e+001   7.9034e+000   5.1055e-002 

5.7989e+001   9.2293e+000   1.2687e-002   5.4403e+001   8.6586e+000   2.5283e-002 

6.1312e+001   9.7580e+000   3.5228e-002   5.6826e+001   9.0442e+000   1.1148e-001 

6.2775e+001   9.9909e+000   1.5344e-002   5.6878e+001   9.0524e+000   2.6547e-002 

6.7777e+001   1.0787e+001   1.3800e-002   5.8165e+001   9.2573e+000   5.6554e-003 

7.1063e+001   1.1310e+001   1.9700e-002   5.9587e+001   9.4835e+000   5.9118e-002 

7.2158e+001   1.1484e+001   3.2008e-002   6.3547e+001   1.0114e+001   1.7722e-002 

7.4498e+001   1.1857e+001   8.5387e-003   6.7172e+001   1.0691e+001   5.2492e-003 

7.6739e+001   1.2213e+001   1.8222e-002   6.9823e+001   1.1113e+001   5.6867e-002 

7.9709e+001   1.2686e+001   9.3905e-003   7.0397e+001   1.1204e+001   4.7528e-002 

8.3048e+001   1.3217e+001   9.5898e-003   7.4437e+001   1.1847e+001   2.3772e-007 

8.5078e+001   1.3541e+001   6.5836e-003   7.4981e+001   1.1934e+001   8.2081e-002 

8.9798e+001   1.4292e+001   1.4353e-002   7.9490e+001   1.2651e+001   4.7888e-002 

9.0872e+001   1.4463e+001   1.2419e-002   8.0695e+001   1.2843e+001   4.7562e-001 

9.5125e+001   1.5140e+001   1.3381e-002   8.3577e+001   1.3302e+001   6.8219e-002 

1.0153e+002   1.6159e+001   2.0986e-002   8.5831e+001   1.3660e+001   7.1186e-003 



1.0514e+002   1.6733e+001   7.9979e-003   8.8710e+001   1.4119e+001   9.6586e-003 

1.1137e+002   1.7726e+001   1.0775e-002   9.5921e+001   1.5266e+001   1.0901e-001 

1.2276e+002   1.9539e+001   9.7529e-003   9.8276e+001   1.5641e+001   1.5034e-001 

1.2615e+002   2.0078e+001   1.9833e-002   1.0115e+002   1.6099e+001   9.6357e-002 

1.2957e+002   2.0622e+001   1.4214e-002   1.2348e+002   1.9653e+001   7.4481e-003 

1.3548e+002   2.1563e+001   1.1375e-002   1.2554e+002   1.9980e+001   5.9235e-003 

1.4462e+002   2.3017e+001   6.0174e-003   1.2570e+002   2.0006e+001   1.7682e-001 

 

Trial 3  

[7:18 23,24 31:36 41,42 47,48 51:56 59:64 67:70 73:84 87:90 93:96 99:102 105,106 109:114] 
    Initial system Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.7570e+001   2.7964e+000   6.8863e-002   1.8444e+001   2.9355e+000   6.3660e-002 

  2.0266e+001   3.2254e+000   3.0802e-002   2.0083e+001   3.1962e+000   1.6100e-002 

  2.1645e+001   3.4449e+000   2.2599e-002   2.1609e+001   3.4392e+000   2.4809e-002 

  2.4904e+001   3.9636e+000   4.5418e-002   2.7477e+001   4.3731e+000   1.6959e-001 

  2.7662e+001   4.4025e+000   5.7244e-002   2.8040e+001   4.4626e+000   8.8817e-002 

  2.8119e+001   4.4753e+000   1.5463e-002   2.8253e+001   4.4966e+000   3.8024e-003 

  2.8996e+001   4.6149e+000   1.1522e-001   2.9674e+001   4.7227e+000   1.5229e-002 

  2.9638e+001   4.7170e+000   1.5459e-002   3.0240e+001   4.8129e+000   7.3529e-003 

  3.0307e+001   4.8235e+000   5.8146e-003   3.2577e+001   5.1848e+000   1.6932e-001 

  3.6317e+001   5.7800e+000   1.6504e-002   3.6410e+001   5.7948e+000   6.7056e-004 

  3.6945e+001   5.8800e+000   3.5688e-002   3.7129e+001   5.9092e+000   3.7252e-002 

  3.9084e+001   6.2203e+000   4.8967e-003   3.9330e+001   6.2596e+000   3.2706e-003 

  4.3487e+001   6.9211e+000   2.1150e-002   4.3157e+001   6.8686e+000   9.2474e-003 



  4.6449e+001   7.3926e+000   7.3787e-003   4.6704e+001   7.4332e+000   5.1736e-003 

  4.9397e+001   7.8618e+000   1.1618e-002   4.8336e+001   7.6929e+000   6.1775e-002 

  5.0033e+001   7.9631e+000   2.2055e-002   4.9624e+001   7.8978e+000   3.2352e-003 

  5.2032e+001   8.2812e+000   1.9898e-002   4.9958e+001   7.9510e+000   4.9651e-001 

  5.5904e+001   8.8974e+000   7.8455e-003   5.0143e+001   7.9805e+000   4.9024e-002 

  5.7009e+001   9.0732e+000   2.6841e-002   5.4691e+001   8.7043e+000   9.9956e-002 

  5.7989e+001   9.2293e+000   1.2687e-002   5.6775e+001   9.0360e+000   2.7037e-002 

  6.1312e+001   9.7580e+000   3.5228e-002   5.7744e+001   9.1903e+000   4.6406e-002 

  6.2775e+001   9.9909e+000   1.5344e-002   5.9643e+001   9.4925e+000   6.7745e-001 

  6.7777e+001   1.0787e+001   1.3800e-002   6.0605e+001   9.6456e+000   4.0323e-001 

  7.1063e+001   1.1310e+001   1.9700e-002   6.3082e+001   1.0040e+001   6.9475e-002 

  7.2158e+001   1.1484e+001   3.2008e-002   6.4674e+001   1.0293e+001   2.8875e-002 

  7.4498e+001   1.1857e+001   8.5387e-003   6.7253e+001   1.0704e+001   5.4506e-003 

  7.6739e+001   1.2213e+001   1.8222e-002   7.0144e+001   1.1164e+001   7.7205e-002 

  7.9709e+001   1.2686e+001   9.3905e-003   7.1668e+001   1.1406e+001   6.5793e-002 

  8.5078e+001   1.3541e+001   6.5836e-003   7.4263e+001   1.1819e+001   1.2358e-003 

  8.9798e+001   1.4292e+001   1.4353e-002   7.5873e+001   1.2076e+001   1.4797e-001 

  9.5125e+001   1.5140e+001   1.3381e-002   7.9990e+001   1.2731e+001   1.7269e-002 

  1.0153e+002   1.6159e+001   2.0986e-002   8.5135e+001   1.3550e+001   2.2719e-001 

  1.0514e+002   1.6733e+001   7.9979e-003   8.5879e+001   1.3668e+001   4.0211e-006 

  1.1137e+002   1.7726e+001   1.0775e-002   8.9175e+001   1.4193e+001   6.9763e-003 

  1.2276e+002   1.9539e+001   9.7529e-003   9.6316e+001   1.5329e+001   2.2181e-001 

  1.2615e+002   2.0078e+001   1.9833e-002   1.2036e+002   1.9156e+001   3.3001e-001 

  1.2957e+002   2.0622e+001   1.4214e-002   1.2335e+002   1.9631e+001   1.1502e-002 

  1.3548e+002   2.1563e+001   1.1375e-002   1.4255e+002   2.2687e+001   2.4417e-001 

 

 



Trial 4 

[7:12 15,16 19:22 33:36 41,42 47,48 51:54 59:64 67,68 75:84 87:90 93,94 101,102 111,112] 
    Initial system Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.7570e+001   2.7964e+000   6.8863e-002   1.8504e+001   2.9451e+000   8.8683e-002 

  2.0266e+001   3.2254e+000   3.0802e-002   2.0131e+001   3.2039e+000   3.4906e-002 

  2.1645e+001   3.4449e+000   2.2599e-002   2.1593e+001   3.4366e+000   2.3138e-002 

  2.7662e+001   4.4025e+000   5.7244e-002   2.9187e+001   4.6453e+000   8.9185e-002 

  2.8996e+001   4.6149e+000   1.1522e-001   3.0375e+001   4.8343e+000   3.1868e-002 

  2.9638e+001   4.7170e+000   1.5459e-002   3.0474e+001   4.8500e+000   3.0055e-001 

  3.6945e+001   5.8800e+000   3.5688e-002   3.0646e+001   4.8775e+000   5.0832e-002 

  3.9084e+001   6.2203e+000   4.8967e-003   3.5208e+001   5.6035e+000   3.0291e-001 

  4.3487e+001   6.9211e+000   2.1150e-002   3.7379e+001   5.9491e+000   1.9663e-002 

  4.6449e+001   7.3926e+000   7.3787e-003   3.9181e+001   6.2359e+000   2.5368e-003 

  4.9397e+001   7.8618e+000   1.1618e-002   4.3422e+001   6.9108e+000   1.0491e-002 

  5.0033e+001   7.9631e+000   2.2055e-002   4.6469e+001   7.3957e+000   5.9603e-003 

  5.5904e+001   8.8974e+000   7.8455e-003   4.8615e+001   7.7373e+000   5.1824e-002 

  5.7009e+001   9.0732e+000   2.6841e-002   4.9543e+001   7.8851e+000   5.9421e-003 

  5.7989e+001   9.2293e+000   1.2687e-002   5.4741e+001   8.7124e+000   5.0218e-002 

  6.1312e+001   9.7580e+000   3.5228e-002   5.6450e+001   8.9843e+000   5.2490e-002 

  7.1063e+001   1.1310e+001   1.9700e-002   5.7123e+001   9.0914e+000   4.1464e-002 

  7.2158e+001   1.1484e+001   3.2008e-002   6.0763e+001   9.6708e+000   8.7532e-002 

  7.4498e+001   1.1857e+001   8.5387e-003   7.1512e+001   1.1381e+001   4.5699e-002 

  7.6739e+001   1.2213e+001   1.8222e-002   7.2086e+001   1.1473e+001   1.1011e-001 

  7.9709e+001   1.2686e+001   9.3905e-003   7.2572e+001   1.1550e+001   6.9410e-002 



  8.5078e+001   1.3541e+001   6.5836e-003   7.4451e+001   1.1849e+001   8.7279e-007 

  8.9798e+001   1.4292e+001   1.4353e-002   7.9333e+001   1.2626e+001   4.1323e-002 

  9.5125e+001   1.5140e+001   1.3381e-002   8.6285e+001   1.3733e+001   5.4043e-002 

  1.1137e+002   1.7726e+001   1.0775e-002   9.4550e+001   1.5048e+001   2.7614e-001 

  1.2957e+002   2.0622e+001   1.4214e-002   9.5766e+001   1.5242e+001   5.6629e-001 

 

Trial 5 

[7:12 15,16 19,20 33,34 41,42 47,48 51:54 59:64 67,68 75:84 89,90 93,94] 
    Initial system Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.7570e+001   2.7964e+000   6.8863e-002   2.0277e+001   3.2272e+000   2.6171e-002 

  2.0266e+001   3.2254e+000   3.0802e-002   2.1152e+001   3.3664e+000   1.5980e-001 

  2.1645e+001   3.4449e+000   2.2599e-002   2.1621e+001   3.4411e+000   2.6324e-002 

  2.7662e+001   4.4025e+000   5.7244e-002   3.0438e+001   4.8444e+000   4.2599e-002 

  2.8996e+001   4.6149e+000   1.1522e-001   3.0654e+001   4.8787e+000   7.6071e-002 

  3.6945e+001   5.8800e+000   3.5688e-002   3.4755e+001   5.5314e+000   1.7209e-001 

  4.3487e+001   6.9211e+000   2.1150e-002   3.8395e+001   6.1107e+000   2.1140e-002 

  4.6449e+001   7.3926e+000   7.3787e-003   3.8424e+001   6.1154e+000   2.6216e-001 

  4.9397e+001   7.8618e+000   1.1618e-002   4.0941e+001   6.5160e+000   3.4530e-001 

  5.0033e+001   7.9631e+000   2.2055e-002   4.2144e+001   6.7074e+000   3.1772e-001 

  5.5904e+001   8.8974e+000   7.8455e-003   4.3641e+001   6.9457e+000   1.2425e-002 

  5.7009e+001   9.0732e+000   2.6841e-002   4.4911e+001   7.1479e+000   1.3987e-001 

  5.7989e+001   9.2293e+000   1.2687e-002   4.5323e+001   7.2134e+000   1.3878e-001 

  6.1312e+001   9.7580e+000   3.5228e-002   4.6331e+001   7.3737e+000   7.8671e-007 

  7.1063e+001   1.1310e+001   1.9700e-002   4.6583e+001   7.4139e+000   1.5003e-001 



  7.2158e+001   1.1484e+001   3.2008e-002   4.8628e+001   7.7393e+000   5.0487e-001 

  7.4498e+001   1.1857e+001   8.5387e-003   5.0033e+001   7.9630e+000   4.4739e-002 

  7.6739e+001   1.2213e+001   1.8222e-002   5.0302e+001   8.0057e+000   5.3524e-002 

  7.9709e+001   1.2686e+001   9.3905e-003   5.8327e+001   9.2831e+000   3.0636e-001 

  8.9798e+001   1.4292e+001   1.4353e-002   7.4941e+001   1.1927e+001   1.0597e-001 

  9.5125e+001   1.5140e+001   1.3381e-002   7.8842e+001   1.2548e+001   1.4756e-001 

 

Trial 6 

[7:12 15,16 19,20 33,34 41,42 59:64 75,76 79:82 89,90 93,94] 
      Initial system Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.7570e+001   2.7964e+000   6.8863e-002   1.8404e+001   2.9291e+000   6.7082e-002 

  2.0266e+001   3.2254e+000   3.0802e-002   2.0449e+001   3.2545e+000   2.6261e-001 

  2.1645e+001   3.4449e+000   2.2599e-002   2.1615e+001   3.4402e+000   2.7120e-002 

  2.7662e+001   4.4025e+000   5.7244e-002   2.3892e+001   3.8025e+000   4.9212e-001 

  2.8996e+001   4.6149e+000   1.1522e-001   3.0157e+001   4.7997e+000   1.8908e-001 

  3.6945e+001   5.8800e+000   3.5688e-002   3.0219e+001   4.8096e+000   9.5402e-002 

  4.3487e+001   6.9211e+000   2.1150e-002   3.0979e+001   4.9305e+000   2.2761e-002 

  5.5904e+001   8.8974e+000   7.8455e-003   3.5427e+001   5.6383e+000   2.6823e-001 

  5.7009e+001   9.0732e+000   2.6841e-002   3.7455e+001   5.9612e+000   2.7615e-001 

  5.7989e+001   9.2293e+000   1.2687e-002   3.7984e+001   6.0453e+000   1.7835e-002 

  7.1063e+001   1.1310e+001   1.9700e-002   3.8899e+001   6.1909e+000   6.3622e-002 

  7.4498e+001   1.1857e+001   8.5387e-003   4.2772e+001   6.8074e+000   1.4706e-001 

  7.6739e+001   1.2213e+001   1.8222e-002   4.3242e+001   6.8822e+000   2.3528e-001 

  8.9798e+001   1.4292e+001   1.4353e-002   4.5953e+001   7.3136e+000   3.4588e-002 



  9.5125e+001   1.5140e+001   1.3381e-002   4.7622e+001   7.5792e+000   7.2827e-003 

 

Trial 7 [7,8 11,12 19,20 33,34 41,42 63,64 75,76 79,80 89,90 93,94] 
      Initial system Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.7570e+001   2.7964e+000   6.8863e-002   1.7997e+001   2.8642e+000   7.9247e-002 

  2.1645e+001   3.4449e+000   2.2599e-002   2.1613e+001   3.4398e+000   2.1975e-002 

  2.8996e+001   4.6149e+000   1.1522e-001   2.7982e+001   4.4535e+000   7.5723e-002 

  3.6945e+001   5.8800e+000   3.5688e-002   3.7488e+001   5.9664e+000   3.2766e-002 

  4.3487e+001   6.9211e+000   2.1150e-002   4.3622e+001   6.9427e+000   2.2688e-002 

  5.7989e+001   9.2293e+000   1.2687e-002   5.7898e+001   9.2148e+000   1.4495e-002 

  7.1063e+001   1.1310e+001   1.9700e-002   7.0442e+001   1.1211e+001   9.4549e-008 

  7.4498e+001   1.1857e+001   8.5387e-003   7.4765e+001   1.1899e+001   2.0392e-002 

  8.9798e+001   1.4292e+001   1.4353e-002   9.0378e+001   1.4384e+001   1.1309e-001 

  9.5125e+001   1.5140e+001   1.3381e-002   9.0531e+001   1.4408e+001   7.5376e-002 

 

Trial 8 [7,8 11,12 19,20 33,34 41,42 63,64 79,80 89,90 93,94] 
      Initial system Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.7570e+001   2.7964e+000   6.8863e-002   1.9085e+001   3.0374e+000   1.2008e-001 

  2.1645e+001   3.4449e+000   2.2599e-002   2.1574e+001   3.4336e+000   2.1130e-002 

  2.8996e+001   4.6149e+000   1.1522e-001   3.0451e+001   4.8465e+000   4.9062e-002 

  3.6945e+001   5.8800e+000   3.5688e-002   3.0480e+001   4.8510e+000   2.3941e-001 

  4.3487e+001   6.9211e+000   2.1150e-002   3.6161e+001   5.7553e+000   9.8805e-002 



  5.7989e+001   9.2293e+000   1.2687e-002   3.6743e+001   5.8479e+000   7.8058e-002 

  7.4498e+001   1.1857e+001   8.5387e-003   3.7763e+001   6.0102e+000   3.9831e-003 

  8.9798e+001   1.4292e+001   1.4353e-002   3.9216e+001   6.2415e+000   7.7344e-002 

  9.5125e+001   1.5140e+001   1.3381e-002   4.5980e+001   7.3180e+000   3.6677e-002 

 

Trial 9 [7,8 11,12 19,20 41,42 63,64 79,80 89,90 93,94] 
      Initial system Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.7570e+001   2.7964e+000   6.8863e-002   1.8969e+001   3.0190e+000   1.2305e-001 

  2.1645e+001   3.4449e+000   2.2599e-002   2.1574e+001   3.4336e+000   1.9912e-002 

  2.8996e+001   4.6149e+000   1.1522e-001   2.8908e+001   4.6009e+000   4.4667e-001 

  4.3487e+001   6.9211e+000   2.1150e-002   3.0248e+001   4.8141e+000   1.6940e-001 

  5.7989e+001   9.2293e+000   1.2687e-002   3.0617e+001   4.8729e+000   4.8925e-002 

  7.4498e+001   1.1857e+001   8.5387e-003   3.2769e+001   5.2154e+000   1.2026e-001 

  8.9798e+001   1.4292e+001   1.4353e-002   3.8250e+001   6.0877e+000   2.7360e-002 

  9.5125e+001   1.5140e+001   1.3381e-002   4.5991e+001   7.3198e+000   3.8030e-002 

 

Trial 10 [7,8 11,12 41,42 63,64 79,80 89,90 93,94] 
      Initial system Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.7570e+001   2.7964e+000   6.8863e-002   1.9414e+001   3.0898e+000   1.2924e-001 

  2.1645e+001   3.4449e+000   2.2599e-002   2.1455e+001   3.4147e+000   2.0257e-002 

  4.3487e+001   6.9211e+000   2.1150e-002   2.9094e+001   4.6305e+000   1.1777e-001 

  5.7989e+001   9.2293e+000   1.2687e-002   3.0978e+001   4.9303e+000   7.3875e-002 



  7.4498e+001   1.1857e+001   8.5387e-003   3.1131e+001   4.9546e+000   1.4208e-001 

  8.9798e+001   1.4292e+001   1.4353e-002   3.8118e+001   6.0666e+000   2.9782e-002 

  9.5125e+001   1.5140e+001   1.3381e-002   4.5972e+001   7.3166e+000   3.6968e-002 

 

Trial 11 [7,8 11,12 41,42 63,64 89,90 93,94] 
      Initial system Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.7570e+001   2.7964e+000   6.8863e-002   2.0169e+001   3.2099e+000   5.8809e-002 

  2.1645e+001   3.4449e+000   2.2599e-002   2.1389e+001   3.4042e+000   2.8521e-002 

  4.3487e+001   6.9211e+000   2.1150e-002   3.0181e+001   4.8035e+000   3.6279e-002 

  5.7989e+001   9.2293e+000   1.2687e-002   3.4432e+001   5.4800e+000   1.9504e-001 

  8.9798e+001   1.4292e+001   1.4353e-002   3.8340e+001   6.1020e+000   3.0813e-002 

  9.5125e+001   1.5140e+001   1.3381e-002   4.6030e+001   7.3260e+000   3.6044e-002 

 

Trial 12 [7,8 11,12 41,42 89,90 93,94] 
      Initial system Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.7570e+001   2.7964e+000   6.8863e-002   2.0441e+001   3.2532e+000   7.6041e-002 

  2.1645e+001   3.4449e+000   2.2599e-002   2.1384e+001   3.4034e+000   2.7716e-002 

  4.3487e+001   6.9211e+000   2.1150e-002   2.9984e+001   4.7722e+000   4.6498e-002 

  8.9798e+001   1.4292e+001   1.4353e-002   3.8457e+001   6.1205e+000   3.1055e-002 

  9.5125e+001   1.5140e+001   1.3381e-002   4.6038e+001   7.3271e+000   3.3881e-002 

 

 



Trial 13 [11,12 41,42 89,90 93,94] 
 

      Initial system Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  2.1645e+001   3.4449e+000   2.2599e-002   2.1409e+001   3.4074e+000   2.6201e-002 

  4.3487e+001   6.9211e+000   2.1150e-002   2.9891e+001   4.7572e+000   5.5308e-002 

  8.9798e+001   1.4292e+001   1.4353e-002   3.8469e+001   6.1225e+000   3.2199e-002 

  9.5125e+001   1.5140e+001   1.3381e-002   4.6088e+001   7.3351e+000   3.3733e-002 

 

 



B.2 RESULTS WITH RIO DELL SET OF DATA (p=75; SVs=138; Order=80) 
 

 

 
Fig. B.3: Singular values for V(0)*V(0) 
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Fig. B.4: Singular values for H(0)*H(0) 
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Trial 1 [9, 10, 13, 14, 19,20, 23, 24, 27, 28, 33, 34, 39, 40, 43, 44, 47:68, 77,78] 
Initial system                       Optimized System 

Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

--------------  ---------    ----------   --------------   ---------   ---------- 

1.5485e+001   2.4646e+000   3.4120e-002   1.5537e+001   2.4727e+000   5.4686e-002 

1.8241e+001   2.9031e+000   7.4815e-002   1.9414e+001   3.0898e+000   5.1631e-002 

2.1360e+001   3.3995e+000   1.3798e-002   2.1330e+001   3.3947e+000   2.1115e-002 

2.3646e+001   3.7633e+000   2.7736e-002   2.4818e+001   3.9499e+000   4.9141e-002 

2.7424e+001   4.3646e+000   4.6977e-002   3.0756e+001   4.8950e+000   4.8256e-002 

3.2187e+001   5.1226e+000   1.2064e-001   3.0899e+001   4.9178e+000   6.8726e-002 

3.6661e+001   5.8348e+000   2.8122e-002   3.6560e+001   5.8188e+000   4.2777e-002 

3.8732e+001   6.1644e+000   4.3148e-002   3.7913e+001   6.0341e+000   3.7673e-002 

4.4938e+001   7.1520e+000   1.2992e-002   4.4260e+001   7.0442e+000   3.3766e-002 

4.7420e+001   7.5472e+000   2.6475e-002   4.6352e+001   7.3772e+000   2.6038e-002 

5.1100e+001   8.1329e+000   1.7085e-002   5.1037e+001   8.1228e+000   2.7027e-002 

5.3924e+001   8.5823e+000   2.7080e-002   5.2114e+001   8.2943e+000   3.2925e-002 

5.7896e+001   9.2145e+000   3.0421e-002   5.5723e+001   8.8685e+000   1.2310e-001 

5.9419e+001   9.4568e+000   1.9899e-002   5.9173e+001   9.4176e+000   2.5762e-002 

6.1957e+001   9.8607e+000   3.2406e-002   6.1726e+001   9.8240e+000   1.4110e-002 

6.9874e+001   1.1121e+001   1.9115e-002   7.1894e+001   1.1442e+001   4.4741e-003 

7.5532e+001   1.2021e+001   1.8652e-002   7.5479e+001   1.2013e+001   2.1634e-002 

8.1772e+001   1.3014e+001   2.0305e-002   8.4233e+001   1.3406e+001   4.9176e-008 

8.5972e+001   1.3683e+001   1.8264e-002   8.6759e+001   1.3808e+001   8.4471e-002 

1.4202e+002   2.2603e+001   1.6823e-002   1.5759e+002   2.5082e+001   1.3851e-001 

 

 

 

 

 



Trial 2 [9, 10, 13, 14, 19,20, 23, 24, 27, 28, 33, 34, 39, 40, 43, 44, 47:54, 57:64, 67, 68] 
Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.5485e+001   2.4646e+000   3.4120e-002   1.5466e+001   2.4615e+000   2.9497e-002 

  1.8241e+001   2.9031e+000   7.4815e-002   1.8759e+001   2.9856e+000   3.7273e-002 

  2.1360e+001   3.3995e+000   1.3798e-002   2.1343e+001   3.3969e+000   1.4876e-002 

  2.3646e+001   3.7633e+000   2.7736e-002   2.3872e+001   3.7994e+000   2.6926e-002 

  2.7424e+001   4.3646e+000   4.6977e-002   2.7505e+001   4.3775e+000   4.5688e-002 

  3.2187e+001   5.1226e+000   1.2064e-001   3.2311e+001   5.1425e+000   9.3071e-002 

  3.6661e+001   5.8348e+000   2.8122e-002   3.6512e+001   5.8110e+000   3.1268e-002 

  3.8732e+001   6.1644e+000   4.3148e-002   3.8339e+001   6.1019e+000   2.0321e-002 

  4.4938e+001   7.1520e+000   1.2992e-002   4.4724e+001   7.1181e+000   1.3614e-002 

  4.7420e+001   7.5472e+000   2.6475e-002   4.7344e+001   7.5350e+000   1.6052e-002 

  5.1100e+001   8.1329e+000   1.7085e-002   5.0845e+001   8.0922e+000   2.2172e-002 

  5.3924e+001   8.5823e+000   2.7080e-002   5.3260e+001   8.4765e+000   2.7550e-003 

  5.9419e+001   9.4568e+000   1.9899e-002   5.9480e+001   9.4666e+000   2.1233e-008 

  6.1957e+001   9.8607e+000   3.2406e-002   6.0816e+001   9.6792e+000   3.5284e-002 

  6.9874e+001   1.1121e+001   1.9115e-002   7.1565e+001   1.1390e+001   1.3085e-002 

  7.5532e+001   1.2021e+001   1.8652e-002   7.4654e+001   1.1882e+001   3.0334e-002 

  8.5972e+001   1.3683e+001   1.8264e-002   8.5372e+001   1.3587e+001   2.2580e-003 

 

 

 

 

 

 

 



Trial 3 [9, 10, 13, 14, 19,20, 23, 24, 27, 28, 33, 34, 39, 40, 43, 44, 47:54, 59:64, 67, 68] 
Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.5485e+001   2.4646e+000   3.4120e-002   1.5623e+001   2.4865e+000   2.1263e-002 

  1.8241e+001   2.9031e+000   7.4815e-002   2.0305e+001   3.2316e+000   1.0262e-001 

  2.1360e+001   3.3995e+000   1.3798e-002   2.1372e+001   3.4015e+000   2.1008e-002 

  2.3646e+001   3.7633e+000   2.7736e-002   2.4968e+001   3.9737e+000   3.8298e-002 

  2.7424e+001   4.3646e+000   4.6977e-002   3.0844e+001   4.9089e+000   5.1617e-002 

  3.2187e+001   5.1226e+000   1.2064e-001   3.1670e+001   5.0404e+000   1.1675e-001 

  3.6661e+001   5.8348e+000   2.8122e-002   3.5667e+001   5.6766e+000   7.4251e-002 

  3.8732e+001   6.1644e+000   4.3148e-002   3.8860e+001   6.1848e+000   6.3267e-002 

  4.4938e+001   7.1520e+000   1.2992e-002   4.2594e+001   6.7790e+000   5.6183e-002 

  4.7420e+001   7.5472e+000   2.6475e-002   4.7654e+001   7.5844e+000   6.3696e-003 

  5.1100e+001   8.1329e+000   1.7085e-002   5.1497e+001   8.1960e+000   1.0118e-002 

  5.3924e+001   8.5823e+000   2.7080e-002   5.3471e+001   8.5102e+000   4.0224e-003 

  6.1957e+001   9.8607e+000   3.2406e-002   6.1547e+001   9.7955e+000   5.1417e-002 

  6.9874e+001   1.1121e+001   1.9115e-002   6.8734e+001   1.0939e+001   8.8937e-002 

  7.5532e+001   1.2021e+001   1.8652e-002   7.0275e+001   1.1185e+001   6.6988e-002 

  8.5972e+001   1.3683e+001   1.8264e-002   8.7695e+001   1.3957e+001   3.9158e-002 

 

 

 

 

 

 

 

 



Trial 4 [9, 10, 19,20, 23, 24, 27, 28, 39, 40, 43, 44, 47:54, 59:64, 67, 68] 
Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.5485e+001   2.4646e+000   3.4120e-002   1.5577e+001   2.4792e+000   3.0928e-002 

  2.1360e+001   3.3995e+000   1.3798e-002   2.1359e+001   3.3994e+000   1.4180e-002 

  2.3646e+001   3.7633e+000   2.7736e-002   2.3776e+001   3.7840e+000   2.4082e-002 

  2.7424e+001   4.3646e+000   4.6977e-002   2.7475e+001   4.3728e+000   4.1930e-002 

  3.6661e+001   5.8348e+000   2.8122e-002   3.6579e+001   5.8218e+000   3.1620e-002 

  3.8732e+001   6.1644e+000   4.3148e-002   3.8610e+001   6.1449e+000   3.2790e-002 

  4.4938e+001   7.1520e+000   1.2992e-002   4.4926e+001   7.1502e+000   1.2715e-002 

  4.7420e+001   7.5472e+000   2.6475e-002   4.7859e+001   7.6170e+000   2.6479e-002 

  5.1100e+001   8.1329e+000   1.7085e-002   5.1385e+001   8.1781e+000   1.8320e-002 

  5.3924e+001   8.5823e+000   2.7080e-002   5.3785e+001   8.5601e+000   1.9601e-002 

  6.1957e+001   9.8607e+000   3.2406e-002   6.1688e+001   9.8180e+000   1.9326e-002 

  6.9874e+001   1.1121e+001   1.9115e-002   7.0201e+001   1.1173e+001   1.3842e-002 

  7.5532e+001   1.2021e+001   1.8652e-002   7.5853e+001   1.2072e+001   4.6485e-002 

  8.5972e+001   1.3683e+001   1.8264e-002   8.5284e+001   1.3573e+001   8.3995e-010 

 

Trial 5 [9, 10, 19,20, 23, 24, 27, 28, 39, 40, 43, 44, 47:54, 59:64] 
Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.5485e+001   2.4646e+000   3.4120e-002   1.5636e+001   2.4886e+000   2.2363e-002 

  2.1360e+001   3.3995e+000   1.3798e-002   2.1351e+001   3.3981e+000   1.3150e-002 

  2.3646e+001   3.7633e+000   2.7736e-002   2.3764e+001   3.7822e+000   2.0457e-002 

  2.7424e+001   4.3646e+000   4.6977e-002   2.7338e+001   4.3509e+000   4.0491e-002 

  3.6661e+001   5.8348e+000   2.8122e-002   3.6657e+001   5.8342e+000   2.6934e-002 



  3.8732e+001   6.1644e+000   4.3148e-002   3.8622e+001   6.1468e+000   3.5712e-002 

  4.4938e+001   7.1520e+000   1.2992e-002   4.4966e+001   7.1565e+000   1.2543e-002 

  4.7420e+001   7.5472e+000   2.6475e-002   4.7681e+001   7.5886e+000   2.7364e-002 

  5.1100e+001   8.1329e+000   1.7085e-002   5.1686e+001   8.2261e+000   2.0405e-002 

  5.3924e+001   8.5823e+000   2.7080e-002   5.3538e+001   8.5209e+000   7.1043e-003 

  6.1957e+001   9.8607e+000   3.2406e-002   6.0817e+001   9.6793e+000   8.6536e-008 

  6.9874e+001   1.1121e+001   1.9115e-002   6.9615e+001   1.1080e+001   2.1988e-002 

  7.5532e+001   1.2021e+001   1.8652e-002   7.5112e+001   1.1954e+001   2.7410e-002 

 

Trial 6 [9, 10, 19,20, 23, 24, 27, 28, 39, 40, 43, 44, 47:54, 61:64] 
Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.5485e+001   2.4646e+000   3.4120e-002   1.6846e+001   2.6812e+000   5.9551e-002 

  2.1360e+001   3.3995e+000   1.3798e-002   2.1143e+001   3.3650e+000   2.3866e-002 

  2.3646e+001   3.7633e+000   2.7736e-002   2.6506e+001   4.2186e+000   9.5128e-002 

  2.7424e+001   4.3646e+000   4.6977e-002   3.1091e+001   4.9482e+000   7.3664e-002 

  3.6661e+001   5.8348e+000   2.8122e-002   3.5546e+001   5.6573e+000   7.7602e-002 

  3.8732e+001   6.1644e+000   4.3148e-002   3.8689e+001   6.1575e+000   2.5943e-002 

  4.4938e+001   7.1520e+000   1.2992e-002   4.2826e+001   6.8159e+000   7.0395e-002 

  4.7420e+001   7.5472e+000   2.6475e-002   4.4217e+001   7.0373e+000   6.0741e-001 

  5.1100e+001   8.1329e+000   1.7085e-002   4.7305e+001   7.5289e+000   9.6378e-002 

  5.3924e+001   8.5823e+000   2.7080e-002   5.0837e+001   8.0910e+000   6.0691e-003 

  6.9874e+001   1.1121e+001   1.9115e-002   5.1765e+001   8.2386e+000   1.8902e-001 

  7.5532e+001   1.2021e+001   1.8652e-002   7.2076e+001   1.1471e+001   1.2272e-001 

 

 

 



Trial 7 [9, 10, 19,20, 23, 24, 27, 28, 39, 40, 43, 44, 47,48, 51:54, 63, 64] 

Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.5485e+001   2.4646e+000   3.4120e-002   1.6239e+001   2.5845e+000   4.4439e-002 

  2.1360e+001   3.3995e+000   1.3798e-002   2.1243e+001   3.3809e+000   2.5512e-002 

  2.3646e+001   3.7633e+000   2.7736e-002   2.6062e+001   4.1479e+000   1.2055e-001 

  2.7424e+001   4.3646e+000   4.6977e-002   3.1303e+001   4.9820e+000   7.3972e-002 

  3.6661e+001   5.8348e+000   2.8122e-002   3.2926e+001   5.2404e+000   8.6678e-002 

  3.8732e+001   6.1644e+000   4.3148e-002   3.8781e+001   6.1722e+000   2.7948e-002 

  4.4938e+001   7.1520e+000   1.2992e-002   4.4196e+001   7.0340e+000   5.5618e-002 

  5.1100e+001   8.1329e+000   1.7085e-002   5.0154e+001   7.9823e+000   1.2031e-003 

  5.3924e+001   8.5823e+000   2.7080e-002   5.2979e+001   8.4319e+000   6.7218e-002 

  7.5532e+001   1.2021e+001   1.8652e-002   7.0440e+001   1.1211e+001   1.9538e-001 
 

Trial 8 [9, 10, 19,20, 23, 24, 27, 28, 39, 40, 43, 44, 47,48, 51:54] 

Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.5485e+001   2.4646e+000   3.4120e-002   1.6278e+001   2.5908e+000   4.4399e-002 

  2.1360e+001   3.3995e+000   1.3798e-002   2.1261e+001   3.3838e+000   2.6192e-002 

  2.3646e+001   3.7633e+000   2.7736e-002   2.6004e+001   4.1387e+000   1.4297e-001 

  2.7424e+001   4.3646e+000   4.6977e-002   3.1136e+001   4.9554e+000   5.6108e-002 

  3.6661e+001   5.8348e+000   2.8122e-002   3.6573e+001   5.8207e+000   4.2684e-002 

  3.8732e+001   6.1644e+000   4.3148e-002   3.8505e+001   6.1282e+000   3.4822e-002 

  4.4938e+001   7.1520e+000   1.2992e-002   4.4233e+001   7.0399e+000   7.2897e-002 

  5.1100e+001   8.1329e+000   1.7085e-002   4.8486e+001   7.7167e+000   2.0329e-001 

  5.3924e+001   8.5823e+000   2.7080e-002   5.0892e+001   8.0997e+000   1.4619e-002 

 



Trial 9 [9, 10, 19,20, 27, 28, 39, 40, 43, 44, 47,48, 53,54] 

Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.5485e+001   2.4646e+000   3.4120e-002   2.1230e+001   3.3788e+000   2.6582e-002 

  2.1360e+001   3.3995e+000   1.3798e-002   2.1471e+001   3.4172e+000   2.3208e-001 

  2.7424e+001   4.3646e+000   4.6977e-002   3.0741e+001   4.8926e+000   5.1421e-002 

  3.6661e+001   5.8348e+000   2.8122e-002   3.6074e+001   5.7413e+000   3.9962e-002 

  3.8732e+001   6.1644e+000   4.3148e-002   3.6743e+001   5.8478e+000   3.5309e-002 

  4.4938e+001   7.1520e+000   1.2992e-002   4.4467e+001   7.0772e+000   4.1803e-002 

  5.3924e+001   8.5823e+000   2.7080e-002   5.0883e+001   8.0983e+000   1.4875e-001 

 

Trial 10 [9, 10, 27, 28, 39, 40, 43, 44, 47,48, 53,54] 
Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.5485e+001   2.4646e+000   3.4120e-002   2.1439e+001   3.4121e+000   2.7751e-002 

  2.7424e+001   4.3646e+000   4.6977e-002   2.2571e+001   3.5923e+000   1.5866e-001 

  3.6661e+001   5.8348e+000   2.8122e-002   3.0548e+001   4.8619e+000   6.0050e-002 

  3.8732e+001   6.1644e+000   4.3148e-002   3.6199e+001   5.7613e+000   4.0232e-002 

  4.4938e+001   7.1520e+000   1.2992e-002   4.5003e+001   7.1624e+000   6.9605e-002 

  5.3924e+001   8.5823e+000   2.7080e-002   4.9681e+001   7.9070e+000   1.2711e-001 

 

Trial 11 [9, 10, 39, 40, 43, 44, 47,48, 53,54] 
Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.5485e+001   2.4646e+000   3.4120e-002   2.1439e+001   3.4121e+000   2.7751e-002 



  2.7424e+001   4.3646e+000   4.6977e-002   2.2571e+001   3.5923e+000   1.5866e-001 

  3.6661e+001   5.8348e+000   2.8122e-002   3.0548e+001   4.8619e+000   6.0050e-002 

  3.8732e+001   6.1644e+000   4.3148e-002   3.6199e+001   5.7613e+000   4.0232e-002 

  4.4938e+001   7.1520e+000   1.2992e-002   4.5003e+001   7.1624e+000   6.9605e-002 

  5.3924e+001   8.5823e+000   2.7080e-002   4.9681e+001   7.9070e+000   1.2711e-001 

 

Trial 11 [9, 10, 39, 40, 43, 44, 53,54] 
Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.5485e+001   2.4646e+000   3.4120e-002   2.1022e+001   3.3458e+000   1.5205e-001 

  3.6661e+001   5.8348e+000   2.8122e-002   3.2537e+001   5.1783e+000   7.1218e-002 

  3.8732e+001   6.1644e+000   4.3148e-002   3.3271e+001   5.2952e+000   9.4628e-002 

  4.4938e+001   7.1520e+000   1.2992e-002   4.3699e+001   6.9549e+000   1.8980e-001 

  5.3924e+001   8.5823e+000   2.7080e-002   4.4301e+001   7.0508e+000   1.1114e-001 

 

Trial 12 [9, 10, 39, 40, 43, 44, 53,54] 
Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.5485e+001   2.4646e+000   3.4120e-002   1.6273e+001   2.5900e+000   6.2947e-002 

  3.6661e+001   5.8348e+000   2.8122e-002   3.3606e+001   5.3485e+000   5.0274e-002 

  3.8732e+001   6.1644e+000   4.3148e-002   3.6016e+001   5.7322e+000   6.2522e-002 

  5.3924e+001   8.5823e+000   2.7080e-002   5.0935e+001   8.1065e+000   7.9887e-002 

 

 

 

 



B.2 RESULTS WITH PETROLIA SET OF DATA (p=175; SVs=808; Order=60) 
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Trial 1 [1:60] 

Initial system                       Optimized System 

Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

--------------  ---------    ----------   --------------   ---------   ---------- 

6.9353e+000   1.1038e+000   5.6086e-002   9.2548e+000   1.4729e+000   3.0020e-001 

1.8148e+001   2.8883e+000   1.5603e-002   1.7644e+001   2.8082e+000   2.9897e-002 

1.9760e+001   3.1449e+000   1.5360e-002   1.9465e+001   3.0979e+000   2.1087e-002 

1.9991e+001   3.1817e+000   1.9110e-002   1.9472e+001   3.0991e+000   1.9407e-002 

2.0938e+001   3.3323e+000   2.0711e-003   2.0981e+001   3.3392e+000   9.0668e-003 

2.1385e+001   3.4036e+000   4.8990e-002   2.1836e+001   3.4753e+000   1.4526e-001 

2.2321e+001   3.5525e+000   2.3044e-003   2.2311e+001   3.5509e+000   1.0134e-003 

2.3104e+001   3.6771e+000   1.9240e-002   2.3538e+001   3.7462e+000   8.6241e-002 

2.4709e+001   3.9326e+000   1.2646e-001   2.5516e+001   4.0610e+000   1.5234e-001 

2.5414e+001   4.0448e+000   1.8564e-002   2.5673e+001   4.0860e+000   1.0068e-002 

2.5787e+001   4.1042e+000   9.8213e-003   2.6153e+001   4.1624e+000   7.3381e-002 

2.8535e+001   4.5415e+000   1.1329e-002   2.8530e+001   4.5406e+000   2.8076e-002 

2.9025e+001   4.6194e+000   2.0734e-003   2.8795e+001   4.5828e+000   2.6178e-002 

3.1064e+001   4.9440e+000   2.7908e-002   3.1314e+001   4.9837e+000   2.1373e-003 

3.1250e+001   4.9736e+000   1.5404e-003   3.1983e+001   5.0903e+000   1.0582e-001 

3.4476e+001   5.4870e+000   6.3636e-003   3.4496e+001   5.4902e+000   1.1312e-002 

3.5364e+001   5.6284e+000   2.0560e-003   3.5477e+001   5.6463e+000   5.0645e-003 

3.7125e+001   5.9086e+000   5.5037e-003   3.7209e+001   5.9221e+000   3.3839e-003 

3.9373e+001   6.2664e+000   7.5132e-003   3.8907e+001   6.1922e+000   3.8878e-002 



4.1175e+001   6.5533e+000   8.5331e-003   4.1849e+001   6.6604e+000   1.8441e-002 

4.3166e+001   6.8701e+000   8.3983e-003   4.2992e+001   6.8425e+000   1.5266e-002 

4.4573e+001   7.0941e+000   9.4450e-003   4.4844e+001   7.1371e+000   3.1770e-002 

4.6631e+001   7.4216e+000   1.6864e-002   4.6247e+001   7.3605e+000   9.3361e-002 

6.0867e+001   9.6873e+000   4.9209e-003   5.6281e+001   8.9573e+000   1.4244e-001 

6.4579e+001   1.0278e+001   1.4039e-002   5.9816e+001   9.5200e+000   3.2651e-002 

8.5269e+001   1.3571e+001   9.6588e-004   8.5821e+001   1.3659e+001   3.9098e-003 

8.7656e+001   1.3951e+001   4.1815e-003   8.7054e+001   1.3855e+001   8.8677e-002 

9.7607e+001   1.5535e+001   3.0128e-003   9.7762e+001   1.5559e+001   1.4758e-002 

1.1530e+002   1.8351e+001   2.3276e-003   1.2166e+002   1.9363e+001   6.7112e-002 

1.2969e+002   2.0640e+001   7.7809e-003   1.2433e+002   1.9788e+001   1.2575e-001 

 

Trial 2 [3:10 13:16 19:46 49:58] 

Initial system                       Optimized System 

Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

--------------  ---------    ----------   --------------   ---------   ---------- 

1.8148e+001   2.8883e+000   1.5603e-002   1.7749e+001   2.8249e+000   2.9654e-002 

1.9760e+001   3.1449e+000   1.5360e-002   1.9441e+001   3.0942e+000   2.6070e-002 

1.9991e+001   3.1817e+000   1.9110e-002   1.9829e+001   3.1559e+000   1.2503e-001 

2.0938e+001   3.3323e+000   2.0711e-003   2.0991e+001   3.3408e+000   1.6057e-004 

2.2321e+001   3.5525e+000   2.3044e-003   2.2329e+001   3.5538e+000   2.5049e-003 



2.3104e+001   3.6771e+000   1.9240e-002   2.4885e+001   3.9605e+000   1.4440e-001 

2.5414e+001   4.0448e+000   1.8564e-002   2.4933e+001   3.9681e+000   1.3736e-001 

2.5787e+001   4.1042e+000   9.8213e-003   2.5822e+001   4.1097e+000   2.6097e-001 

2.8535e+001   4.5415e+000   1.1329e-002   2.8349e+001   4.5119e+000   2.8460e-002 

2.9025e+001   4.6194e+000   2.0734e-003   2.8407e+001   4.5211e+000   2.0358e-002 

3.1064e+001   4.9440e+000   2.7908e-002   3.1286e+001   4.9793e+000   1.8835e-003 

3.1250e+001   4.9736e+000   1.5404e-003   3.2037e+001   5.0988e+000   9.3975e-002 

3.4476e+001   5.4870e+000   6.3636e-003   3.4523e+001   5.4945e+000   1.9720e-002 

3.5364e+001   5.6284e+000   2.0560e-003   3.5556e+001   5.6590e+000   6.6215e-003 

3.7125e+001   5.9086e+000   5.5037e-003   3.7154e+001   5.9132e+000   1.7772e-003 

3.9373e+001   6.2664e+000   7.5132e-003   3.8772e+001   6.1707e+000   6.8483e-002 

4.1175e+001   6.5533e+000   8.5331e-003   4.1546e+001   6.6122e+000   1.4829e-001 

4.3166e+001   6.8701e+000   8.3983e-003   4.1979e+001   6.6812e+000   1.8738e-002 

4.4573e+001   7.0941e+000   9.4450e-003   4.2972e+001   6.8393e+000   1.6393e-002 

4.6631e+001   7.4216e+000   1.6864e-002   4.3586e+001   6.9369e+000   6.2656e-001 

6.4579e+001   1.0278e+001   1.4039e-002   4.4250e+001   7.0425e+000   4.9178e-002 

8.5269e+001   1.3571e+001   9.6588e-004   5.3525e+001   8.5187e+000   4.0421e-001 

8.7656e+001   1.3951e+001   4.1815e-003   7.3114e+001   1.1636e+001   9.8264e-001 

9.7607e+001   1.5535e+001   3.0128e-003   8.6327e+001   1.3739e+001   2.6188e-002 



1.1530e+002   1.8351e+001   2.3276e-003   9.7104e+001   1.5455e+001   3.5024e-002 

Trial 3 [3:8 13,14 19,20 23:44 49,50 55:58] 

               Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.8148e+001   2.8883e+000   1.5603e-002   1.7468e+001   2.7801e+000   6.3648e-002 

  1.9760e+001   3.1449e+000   1.5360e-002   2.0039e+001   3.1894e+000   6.0075e-002 

  1.9991e+001   3.1817e+000   1.9110e-002   2.0567e+001   3.2733e+000   3.7310e-002 

  2.2321e+001   3.5525e+000   2.3044e-003   2.2307e+001   3.5502e+000   2.6619e-003 

  2.5414e+001   4.0448e+000   1.8564e-002   2.4071e+001   3.8310e+000   1.4676e-001 

  2.8535e+001   4.5415e+000   1.1329e-002   2.5507e+001   4.0596e+000   9.9576e-001 

  2.9025e+001   4.6194e+000   2.0734e-003   2.8317e+001   4.5068e+000   3.8444e-002 

  3.1064e+001   4.9440e+000   2.7908e-002   2.8661e+001   4.5616e+000   2.4639e-002 

  3.1250e+001   4.9736e+000   1.5404e-003   2.9501e+001   4.6953e+000   7.8576e-002 

  3.4476e+001   5.4870e+000   6.3636e-003   3.1289e+001   4.9797e+000   1.5686e-003 

  3.5364e+001   5.6284e+000   2.0560e-003   3.4450e+001   5.4829e+000   1.6560e-002 

  3.7125e+001   5.9086e+000   5.5037e-003   3.5561e+001   5.6597e+000   4.4209e-003 

  3.9373e+001   6.2664e+000   7.5132e-003   3.7207e+001   5.9217e+000   1.9098e-003 

  4.1175e+001   6.5533e+000   8.5331e-003   3.9702e+001   6.3188e+000   3.7974e-002 



  4.3166e+001   6.8701e+000   8.3983e-003   4.0510e+001   6.4473e+000   1.4869e-001 

  4.4573e+001   7.0941e+000   9.4450e-003   4.2306e+001   6.7332e+000   1.3758e-002 

  6.4579e+001   1.0278e+001   1.4039e-002   4.5086e+001   7.1756e+000   4.6804e-002 

  9.7607e+001   1.5535e+001   3.0128e-003   6.2337e+001   9.9212e+000   1.0560e-001 

  1.1530e+002   1.8351e+001   2.3276e-003   9.7248e+001   1.5477e+001   2.4271e-002 

 

Trial 4 [3:8 13,14 19,20 25:44 49,50 55:58] 

Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.8148e+001   2.8883e+000   1.5603e-002   1.7145e+001   2.7288e+000   8.1201e-002 

  1.9760e+001   3.1449e+000   1.5360e-002   2.0131e+001   3.2040e+000   5.5808e-002 

  1.9991e+001   3.1817e+000   1.9110e-002   2.0453e+001   3.2552e+000   3.8699e-002 

  2.2321e+001   3.5525e+000   2.3044e-003   2.2279e+001   3.5457e+000   5.0515e-003 

  2.5414e+001   4.0448e+000   1.8564e-002   2.3423e+001   3.7279e+000   1.4967e-001 

  2.9025e+001   4.6194e+000   2.0734e-003   2.8198e+001   4.4879e+000   2.6111e-002 

  3.1064e+001   4.9440e+000   2.7908e-002   2.8625e+001   4.5558e+000   9.9959e-001 

  3.1250e+001   4.9736e+000   1.5404e-003   2.9125e+001   4.6354e+000   5.7161e-002 

  3.4476e+001   5.4870e+000   6.3636e-003   3.1340e+001   4.9879e+000   2.7646e-003 



  3.5364e+001   5.6284e+000   2.0560e-003   3.4580e+001   5.5036e+000   2.3787e-002 

  3.7125e+001   5.9086e+000   5.5037e-003   3.5547e+001   5.6575e+000   3.0306e-003 

  3.9373e+001   6.2664e+000   7.5132e-003   3.7188e+001   5.9187e+000   2.0490e-003 

  4.1175e+001   6.5533e+000   8.5331e-003   4.0041e+001   6.3727e+000   5.0010e-002 

  4.3166e+001   6.8701e+000   8.3983e-003   4.1644e+001   6.6278e+000   1.8006e-001 

  4.4573e+001   7.0941e+000   9.4450e-003   4.1737e+001   6.6427e+000   2.9883e-002 

  6.4579e+001   1.0278e+001   1.4039e-002   4.4890e+001   7.1444e+000   3.9301e-002 

  9.7607e+001   1.5535e+001   3.0128e-003   5.1182e+001   8.1459e+000   4.8314e-001 

  1.1530e+002   1.8351e+001   2.3276e-003   9.6894e+001   1.5421e+001   3.2188e-002 

 

Trial 5 [3:8 13,14,19,20,25,26 29:40 43,44,49,50,57,58] 

Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.8148e+001   2.8883e+000   1.5603e-002   1.7787e+001   2.8309e+000   6.0163e-002 

  1.9760e+001   3.1449e+000   1.5360e-002   2.0194e+001   3.2140e+000   4.8213e-002 

  1.9991e+001   3.1817e+000   1.9110e-002   2.0572e+001   3.2741e+000   3.2011e-002 

  2.2321e+001   3.5525e+000   2.3044e-003   2.2308e+001   3.5505e+000   4.1052e-003 

  2.5414e+001   4.0448e+000   1.8564e-002   2.5753e+001   4.0988e+000   9.7398e-002 

  2.9025e+001   4.6194e+000   2.0734e-003   2.8670e+001   4.5630e+000   1.0980e-002 



  3.1250e+001   4.9736e+000   1.5404e-003   3.1246e+001   4.9730e+000   1.4528e-003 

  3.4476e+001   5.4870e+000   6.3636e-003   3.4630e+001   5.5115e+000   2.4057e-002 

  3.5364e+001   5.6284e+000   2.0560e-003   3.5424e+001   5.6379e+000   2.5094e-003 

  3.7125e+001   5.9086e+000   5.5037e-003   3.7244e+001   5.9276e+000   7.3685e-003 

  3.9373e+001   6.2664e+000   7.5132e-003   3.9485e+001   6.2842e+000   1.7415e-002 

  4.1175e+001   6.5533e+000   8.5331e-003   4.2374e+001   6.7440e+000   7.4879e-002 

  4.4573e+001   7.0941e+000   9.4450e-003   4.4806e+001   7.1310e+000   5.6629e-002 

  6.4579e+001   1.0278e+001   1.4039e-002   6.3024e+001   1.0031e+001   9.5102e-002 

  1.1530e+002   1.8351e+001   2.3276e-003   1.1707e+002   1.8633e+001   7.4366e-001 

 

Trial 6 [3:8 13,14,19,20,25,26 29:40 43,44,49,50] 

Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.8148e+001   2.8883e+000   1.5603e-002   1.7039e+001   2.7118e+000   1.4087e-001 

  1.9760e+001   3.1449e+000   1.5360e-002   2.0342e+001   3.2375e+000   5.6258e-002 

  1.9991e+001   3.1817e+000   1.9110e-002   2.0624e+001   3.2825e+000   3.2574e-002 

  2.2321e+001   3.5525e+000   2.3044e-003   2.2252e+001   3.5415e+000   1.0479e-002 

  2.5414e+001   4.0448e+000   1.8564e-002   2.5917e+001   4.1249e+000   1.0726e-001 

  2.9025e+001   4.6194e+000   2.0734e-003   2.8064e+001   4.4665e+000   2.4637e-002 

  3.1250e+001   4.9736e+000   1.5404e-003   3.1243e+001   4.9724e+000   1.2855e-003 



  3.4476e+001   5.4870e+000   6.3636e-003   3.4587e+001   5.5047e+000   3.6748e-001 

  3.5364e+001   5.6284e+000   2.0560e-003   3.4716e+001   5.5253e+000   3.1003e-002 

  3.7125e+001   5.9086e+000   5.5037e-003   3.5414e+001   5.6363e+000   5.5764e-003 

  3.9373e+001   6.2664e+000   7.5132e-003   3.7196e+001   5.9200e+000   5.5441e-003 

  4.1175e+001   6.5533e+000   8.5331e-003   3.9601e+001   6.3027e+000   3.5687e-002 

  4.4573e+001   7.0941e+000   9.4450e-003   4.5367e+001   7.2204e+000   6.1224e-002 

  6.4579e+001   1.0278e+001   1.4039e-002   5.7354e+001   9.1281e+000   2.5082e-001 

 

Trial 7 [3:8 13,14,19,20,25,26 29:40 43,44,49,50] 

Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.8148e+001   2.8883e+000   1.5603e-002   1.7428e+001   2.7738e+000   1.0266e-001 

  1.9760e+001   3.1449e+000   1.5360e-002   2.0284e+001   3.2283e+000   5.3079e-002 

  1.9991e+001   3.1817e+000   1.9110e-002   2.0699e+001   3.2944e+000   3.4973e-002 

  2.2321e+001   3.5525e+000   2.3044e-003   2.2284e+001   3.5466e+000   7.0680e-003 

  2.5414e+001   4.0448e+000   1.8564e-002   2.6274e+001   4.1817e+000   1.0542e-001 

  2.9025e+001   4.6194e+000   2.0734e-003   2.8256e+001   4.4972e+000   1.8769e-002 

  3.1250e+001   4.9736e+000   1.5404e-003   3.0207e+001   4.8076e+000   1.9096e-001 

  3.5364e+001   5.6284e+000   2.0560e-003   3.1240e+001   4.9719e+000   2.6059e-003 



  3.7125e+001   5.9086e+000   5.5037e-003   3.4911e+001   5.5562e+000   1.8937e-002 

  3.9373e+001   6.2664e+000   7.5132e-003   3.6068e+001   5.7404e+000   7.1827e-002 

  4.1175e+001   6.5533e+000   8.5331e-003   3.6919e+001   5.8758e+000   2.0090e-002 

  4.4573e+001   7.0941e+000   9.4450e-003   4.5493e+001   7.2404e+000   5.8593e-002 

 

Trial 8 [3:8 13,14,19,20, 29:40 43,44,49,50] 

Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.8148e+001   2.8883e+000   1.5603e-002   1.7453e+001   2.7778e+000   1.2658e-001 

  1.9760e+001   3.1449e+000   1.5360e-002   2.0279e+001   3.2274e+000   5.1063e-002 

  1.9991e+001   3.1817e+000   1.9110e-002   2.0657e+001   3.2876e+000   3.5161e-002 

  2.2321e+001   3.5525e+000   2.3044e-003   2.2296e+001   3.5484e+000   6.2903e-003 

  2.5414e+001   4.0448e+000   1.8564e-002   2.5970e+001   4.1333e+000   1.1122e-001 

  2.9025e+001   4.6194e+000   2.0734e-003   2.8403e+001   4.5204e+000   1.7227e-002 

  3.5364e+001   5.6284e+000   2.0560e-003   3.0235e+001   4.8120e+000   2.0319e-001 

  3.7125e+001   5.9086e+000   5.5037e-003   3.4846e+001   5.5459e+000   1.5942e-002 

  3.9373e+001   6.2664e+000   7.5132e-003   3.6398e+001   5.7929e+000   7.3737e-002 

  4.1175e+001   6.5533e+000   8.5331e-003   3.6885e+001   5.8705e+000   2.4054e-002 

  4.4573e+001   7.0941e+000   9.4450e-003   4.5476e+001   7.2377e+000   6.1123e-002 



Trial 9 [3:8 13,14,19,20,25,26 35:40 43,44] 

Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.8148e+001   2.8883e+000   1.5603e-002   1.7496e+001   2.7845e+000   1.2224e-001 

  1.9760e+001   3.1449e+000   1.5360e-002   2.0262e+001   3.2248e+000   5.2801e-002 

  1.9991e+001   3.1817e+000   1.9110e-002   2.0738e+001   3.3006e+000   3.4778e-002 

  2.2321e+001   3.5525e+000   2.3044e-003   2.2297e+001   3.5487e+000   5.0833e-003 

  2.5414e+001   4.0448e+000   1.8564e-002   2.5816e+001   4.1087e+000   1.2197e-001 

  2.9025e+001   4.6194e+000   2.0734e-003   2.8520e+001   4.5391e+000   1.5162e-002 

  3.7125e+001   5.9086e+000   5.5037e-003   2.9925e+001   4.7627e+000   2.2625e-001 

  3.9373e+001   6.2664e+000   7.5132e-003   3.5779e+001   5.6945e+000   8.3466e-002 

  4.1175e+001   6.5533e+000   8.5331e-003   3.6134e+001   5.7509e+000   3.5667e-002 

  4.4573e+001   7.0941e+000   9.4450e-003   4.5460e+001   7.2352e+000   6.1322e-002 

 

 

 

 



Trial 10 [3:8 13,14,19,20,25,26 37:40 43,44] 

Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.8148e+001   2.8883e+000   1.5603e-002   1.7490e+001   2.7836e+000   2.7954e-001 

  1.9760e+001   3.1449e+000   1.5360e-002   2.0457e+001   3.2558e+000   5.6474e-002 

  1.9991e+001   3.1817e+000   1.9110e-002   2.0769e+001   3.3055e+000   2.9059e-002 

  2.2321e+001   3.5525e+000   2.3044e-003   2.2214e+001   3.5354e+000   1.7531e-002 

  2.5414e+001   4.0448e+000   1.8564e-002   2.6160e+001   4.1635e+000   9.2974e-002 

  2.9025e+001   4.6194e+000   2.0734e-003   2.8096e+001   4.4716e+000   2.3330e-002 

  3.9373e+001   6.2664e+000   7.5132e-003   3.4304e+001   5.4597e+000   8.5201e-002 

  4.1175e+001   6.5533e+000   8.5331e-003   3.4624e+001   5.5106e+000   6.3036e-002 

  4.4573e+001   7.0941e+000   9.4450e-003   4.4488e+001   7.0805e+000   1.0582e-001 

 

 

 

 

 

 



Trial 11 [5:8 13,14,19,20,25,26 37:40 43,44] 

Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.9760e+001   3.1449e+000   1.5360e-002   1.9762e+001   3.1451e+000   1.5173e-001 

  1.9991e+001   3.1817e+000   1.9110e-002   2.1017e+001   3.3450e+000   2.9479e-002 

  2.2321e+001   3.5525e+000   2.3044e-003   2.1690e+001   3.4521e+000   1.0161e-001 

  2.5414e+001   4.0448e+000   1.8564e-002   2.5931e+001   4.1270e+000   1.4095e-001 

  2.9025e+001   4.6194e+000   2.0734e-003   2.8001e+001   4.4564e+000   2.0295e-002 

  3.9373e+001   6.2664e+000   7.5132e-003   3.4805e+001   5.5394e+000   5.6791e-002 

  4.1175e+001   6.5533e+000   8.5331e-003   3.4875e+001   5.5505e+000   7.4821e-002 

  4.4573e+001   7.0941e+000   9.4450e-003   4.0226e+001   6.4022e+000   1.8444e-001 

 

Trial 12 [5:8 13,14,19,20,25,26 37:40] 

Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.9760e+001   3.1449e+000   1.5360e-002   2.0243e+001   3.2218e+000   5.7276e-002 

  1.9991e+001   3.1817e+000   1.9110e-002   2.0852e+001   3.3188e+000   3.0146e-002 



  2.2321e+001   3.5525e+000   2.3044e-003   2.2321e+001   3.5525e+000   5.3411e-003 

  2.5414e+001   4.0448e+000   1.8564e-002   2.6081e+001   4.1509e+000   9.2861e-002 

  2.9025e+001   4.6194e+000   2.0734e-003   2.8754e+001   4.5763e+000   1.7053e-002 

  3.9373e+001   6.2664e+000   7.5132e-003   3.6093e+001   5.7444e+000   1.0475e-001 

  4.1175e+001   6.5533e+000   8.5331e-003   3.7378e+001   5.9490e+000   1.2272e-001 

 

Trial 13 [5:8 13,14,19,20,25,26 37:40] 

Initial system                       Optimized System 

 Freq.(rad/sec.) Freq.(Hz.)   Modal Damp.  Freq.(rad/sec.) Freq.(Hz.)   Modal Damp. 

 --------------  ---------    ----------   --------------   ---------   ---------- 

  1.9760e+001   3.1449e+000   1.5360e-002   2.0101e+001   3.1993e+000   8.2397e-002 

  1.9991e+001   3.1817e+000   1.9110e-002   2.0825e+001   3.3145e+000   3.7055e-002 

  2.5414e+001   4.0448e+000   1.8564e-002   2.5680e+001   4.0871e+000   1.0395e-001 

  2.9025e+001   4.6194e+000   2.0734e-003   2.8603e+001   4.5523e+000   1.3970e-001 

  3.9373e+001   6.2664e+000   7.5132e-003   2.9542e+001   4.7018e+000   8.4413e-002 
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