
Alma Mater Studiorum · Università di
Bologna

SCUOLA DI INGEGNERIA E ARCHITETTURA

Corso di Laurea in Ingegneria Informatica M

A QoS Controller Framework
Compliant with the ETSI Network

Function Virtualization Specification

Relatore:

Chiar.mo Prof. Ing. Paolo

Bellavista

Correlatori:

Ing. Giuseppe Carella

Prof. Dr. Thomas Magedanz

Presentata da:

Pasquale Carlo Maiorano

Picone

Sessione III

Anno Accademico 2014/2015

CONTENTS

Introduzione 2

1 Background in Network Slicing 3

1.1 Use cases . 7

1.1.1 M2M Communications 7

1.1.2 Multimedia Service Delivery 7

1.1.3 Mission Critical Services 8

1.2 Network Slicing in NFV Environment 8

1.2.1 The ETSI NFV Architecture 10

1.2.2 NFV and SDN . 13

1.3 Introducing mechanisms for enforcing QoS requirements 17

1.4 Existing solutions for enforcing QoS requirements 22

1.4.1 SDN Controllers . 24

1.4.2 QoS Controllers . 35

2 Design and Specification 45

2.0.1 NFVO . 49

3

4 CONTENTS

2.0.2 Generic VNFM . 52

2.1 Network Slicer Functional Architecture 53

2.1.1 Interfaces . 57

2.2 Integration with Open Baton framework 58

2.3 Network Slicing Policies . 60

3 Implementation 63

3.1 Open Baton Implementation 64

3.1.1 NFVO Implementation 65

3.1.2 NFVO-Event . 67

3.1.3 SDKs . 68

3.2 Network Slicer Engine Implementation 70

3.2.1 Northbound endpoint 72

3.2.2 Network Slicer Engine threads 76

3.2.3 The QoSInterface implementation 80

3.2.4 Network Slicer Engine southbound 82

3.3 Connectivity Manager Agent 86

3.3.1 Connectivity Manager Agent Northbound 88

3.3.2 CMA Core . 90

3.3.3 Clients . 93

4 Validation and Evaluation 97

4.1 Tools . 97

4.1.1 Zabbix . 98

4.1.2 Iperf . 99

4.1.3 Generic VNFM . 100

4.2 Scenarios . 100

4.2.1 One Network Service Record 101

0 CONTENTS

4.2.2 Two Network Service Records 104

4.3 Considerations . 108

Conclusion 110

INTRODUZIONE

Il Network Slicing è stato introdotto a livello concettuale con la definizione

dei requisiti della rete mobile di quinta generazione, in quanto con questa

generazione vengono definiti una moltitudine di casi d’uso con requisiti di

rete molto diversi tra loro; per soddisfare questi requisiti di rete prima si

definivano reti diverse impiegando hardware dedicato, ora visto l’alto nu-

mero di casi d’uso, la varietà di risorse impiegate e la varietà di locazioni dei

singoli servizi (alcuni devono risidiere per forza ai margini della rete) risul-

terebbe molto costoso e difficile da mantenere una infrastruttura diversa per

servizio quindi è stato introdotto il Network Slicing.

Il Network Slicing consiste in una divisione in “fette” della rete fisica, ogni

fetta viene definita con tutte le caratteristiche richieste dal servizio che andrà

a utilizzarla. L’attuazione di questo concetto è possibile grazie all’utilizzo di

tecnologie quali Software Defined Networking, Network Function Virtuali-

sation e l’utilizzo di piattaforme cloud. L’allocazione della rete utilizzata

dal servizio viene fatta tramite SDN, ma la definizione delle caratteristiche

richieste viene fatta tramite meccanismi di allocazione di qualità del servizio

(sempre tramite SDN).

1

2 INTRODUZIONE

La qualità del servizio è definita come un set di parametri quali banda garan-

tita, jitter, latenza a livello di rete stabiliti al fine di avere un servizio più o

meno affidabile; l’esigenza di questa è nata con la definizione dei primi servizi

di streaming.

Le richieste di una “fetta” sono completamente assimilabili ai parametri della

qualità del servizio, pertanto in questa tesi abbiamo deciso di definire una

slice andando ad allocare caratteristiche di qualità del servizio sull’infrastruttura.

La definizione dei requisiti di una slice viene descritta nella definizione del

Network Service, questa definizione risponde alla specifica ETSI NFV; è stato

scelto la compatibilità con questa specifica in quanto è largamente support-

ata dagli operatori di rete mobile.

Questo lavoro di tesi si occuperà di allocare i requisiti di una slice definiti

all’interno di un Network Service Record sull’infrastruttura tramite la definizione

di apposite risorse, i requisiti verranno allocati come parametri definiti dalla

qualità del servizio.

L’elaborato andrà ad utilizzare tecnologie ben affermate sulle attuali pi-

attaforme cloud quali virtual switch ed Open Flow controller, si andrà inoltre

ad integrare ed utilizzerà il framework Open Baton come implementazione

di riferimento della specifica ETSI NFV.

I capitoli a seguire andranno ad approfondire il concetto di Network Slic-

ing e presenteranno anche soluzioni già esistenti e piattaforme utilizzate per

l’enforcing di parametri riguardanti la qualità del servizio, a seguire verrà

presentata l’architettura proposta della mia soluzione; il capitolo successivo

tratterà invece l’implementazione della soluzione ed in seguito verranno pre-

sentati i risultati ottenuti.

CHAPTER 1

BACKGROUND IN NETWORK SLICING

The 5th generation of mobile networking introduces a mixed scenario, made

using all the technologies available. 5G services introduce the concept of

fully mobile and connected society, requiring a multi-layer densification of

networks to enable differentiated services based on the use case for the busi-

ness model expected.

The multilayer network also requires an “envelope” of performances to pro-

vide them where needed. This envelope requires also a suitable network

flexibility, there is also the requirements in terms of speed, scalability, secu-

rity, reliability and latency plus an improved power management for the new

radio interface to get a longer battery life.

All of this needs require an infrastructural update for the RAN to match the

thousands of new use cases, many different subscribers types and varying

application uses that as to be supported. Evolving the radio access technolo-

gies (like LTE and the future 5G RAT) will enable cross-domain integration

in environments that could allow multiple radio access technologies; this up-

grade has to enable concepts like very low latency and higher bandwidth.

3

4 CHAPTER 1. BACKGROUND IN NETWORK SLICING

The 5G scenario will increase the traffic by a thousand times, requires an

increase of the average speed connection and the applications made for this

“environment” could have stringent requirements in terms of bandwidth and

latency. Not all the use cases has stringent requirements for bandwidth

and/or zero (or closer to zero) latency and/or super smart network, instead

they could have normal requirements with “relaxed” constraints; this could

bring to a flexible network, flexibility intended as an “adaptable” network.

This flexibility is useful to introduce the concept of network slicing. Network

slicing is a logical division of the network into “slices”, where each slice has

different characteristics in terms of bandwidth, latency and all required pa-

rameters for different services; the slices are made to meet the demands for

each use case.

For example we could have a service with high requirements for a limited

geographical area and another service with “standard” requirements in the

same area, nowadays this two will be implemented as two separated networks

with two infrastructures; this different implementation has near-double costs

for the operator and after the “disposal” of first (the high performance one)

service the specific purpose network will be teared down with relative costs

and the infrastructure remain unused. In 5G network will be an unique base

with very high performance and the capacity of divide the network into slices

(as depicted in figure 1.1), that will be allocated using parameters compliant

with the services request.

5

Figure 1.1: The network slicing in 5G architecture

Among the services that are heavily used in the LTE (4G) networks there

is also the video (and media content in general) streaming, which use a sig-

nificant portion of the overall network traffic; this service has different re-

quirements based on the accounting of provider, which could have different

requirements based on the “class” of service that it want provide. This dif-

ferentiation in LTE was not made because the architecture does not support

multi RAT technology, and many services available under LTE coverage are

not available under the older RAT generations. This different classification

of traffic under RAT (LTE or 5G) will be possible, will be also possible a

quality scale depending on which radio technology is available for that de-

termined geographic area.

To satisfy every use case, all the technologies that are used to compose the

5G architecture relies on logical instead of physical resources; this solution

enable the possibility to deliver network on as-a-service base. This flexibility

allows operators to create networks on demand and tailor the network slices

as requested.

6 CHAPTER 1. BACKGROUND IN NETWORK SLICING

However the resulting architecture could not scale in a proper way on telecom-

munication operators networks, in this contest high adaptability and reliabil-

ity in extreme use cases (for example emergency situations, natural disaster);

A big solution is represented by the Cloud Computing technology and the

Software Defined Networking, combined with NFV there are solutions for

handling all aspects of the vertical architecture and manage all the proposed

use cases. Using this services divide in building blocks all the elements of

vertical architecture, using this solution in chain having as result an horizon-

tal network.

In 5G architecture, using NFV on SDN and Cloud Computing, a service

could be abstracted in a network slice, using software defined functions that

has control in a specific geographical area with defined network requirements

such as latency, minimum bandwidth, security, robustness.

Slicing networks provides a huge optimization in network resource usage,

allowing the maximum customization for each slice to match the level of de-

livery desired by the services that will use the slice.

Main purpose of this thesis is to enable the Network Slicing on infrastruc-

tural level, implementing features and using platforms which allocate quality

of service in order to guarantee the slice requirements. Enabling this fea-

ture inside operators’ network will increase the efficiency of infrastructure,

reduces the cost for maintenance of the entire system decreasing the hard-

ware diversification for each service; moreover the environment become more

flexible to hardware faults enabling the path redefinition and offer a more

reliable service level agreement.

1.1. Use cases 7

1.1 Use cases

There are many use cases for the 5G architecture, most of them are focused on

multimedia traffic delivery and M2M communications; as wide area network

infrastructure has to cover also the mission critical services and be resilient

to natural disaster.

1.1.1 M2M Communications

The sensor networks, smart meters services has very high rate of data trans-

fer with small payloads, they requires a guaranteed bandwidth and near-zero

latency to provide a efficient service and significant informations; the require-

ments in terms of security are medium/low.

To satisfy these requirements could be allocated a network function, which

will provide security and replication for data “gathering”; The NFV Orches-

trator could use the interface with SDN Controller to enable the requirements

of network slice on the physical and virtual resources.

1.1.2 Multimedia Service Delivery

The multimedia service delivery requires a high network throughput to sup-

port a high video quality, requires also a very low latency and near-zero skew.

To meet these requirements could be defined a network function with a ro-

bust and maybe replicated service providers and high performance enabled

slice.

In this case the requirements of high performance network is the key to

achieve a very high quality, the security requirements are low.

8 CHAPTER 1. BACKGROUND IN NETWORK SLICING

1.1.3 Mission Critical Services

The mission critical services are defined to guarantee a reliable first aid im-

mediately after a disaster, this services requires a considerable amount of

bandwidth, near-zero latency and a very reliable infrastructure; this kind of

services are requested from governments, first aid organizations, the critical

aspect of this use case is the business agreement which is very stringent with

a probably damaged infrastructure.

1.2 Network Slicing in NFV Environment

Network slice requires SDN and NFV to be in place with Cloud computing

platforms to hide the underlining physical infrastructure and provides logical

resources for CaaS (Connectivity as a Service).

The devices will use the connectivity in a smart way, using a minimal signal-

ing part and lean data transmission. The infrastructure provides E2E (End

to End) Security which enables the mashing of multiple services ensuring the

trust from each source. The E2E security has to be achieved from services

but the infrastructure could support this feature allowing multi path for key

negotiation.

The Network Slicing concept relies strongly on NFV, because it enable the

implementation programmatically instead of design and create new hard-

ware only for that specific function (as in the first generation networks).

NFV brought also the benefit of executing virtual network function in differ-

ent locations, with different slice requirements; this feature also enables the

management of data centers at the “edge” points of the network, that could

be addressed and where could be deployed specific network functions that

requires to be placed at the edges.

1.2. Network Slicing in NFV Environment 9

Another functionality on which Network Slicing relies is Software Defined

Networking (SDN). SDN provides a logical vision of the network hiding the

real network infrastructure, enables also the programmability of networks

allowing different logical behaviors on the same physical network. It allows

also the differentiation between services, in terms of network requirements;

enabling de facto the capability of create network slices for a single location

(as depicted in figure 1.2).

Figure 1.2: The NFV plus SDN scenario[1]

This scenario requires a high capacity of provisioning, automation us-

ing less resources possible; could became necessary a centralized “command

point” like an Orchestrator and a SDN Controller in every location (or a

federated structure). Another aspect that become relevant is the increased

requirement of SLA because the network, as we said for the Network Slicing,

became to have an active role in this scenario.

The automation is provided by orchestration, that is one of the main com-

ponents in NFV.

10 CHAPTER 1. BACKGROUND IN NETWORK SLICING

1.2.1 The ETSI NFV Architecture

ETSI NFV MANO[17] is a specification which describes the management

and orchestration framework for Network Function Virtualisation (NFV). It

defines the provisioning, related operations (for example the configuration of

virtual network functions and relative infrastructure on which they relies).

The document addresses problems of management and orchestration, start-

ing from the architecture framework define the guidelines for information el-

ements, interfaces, provisioning, configuration and operational management

including integration with present systems.

The architecture relies on one fundamental element that is the NFV Or-

chestrator, which has an overall vision of every resource allocated to each

data center under its “control”. The document defines three main functional

blocks:

• Virtualised Infrastructure Manager: is the functional block that

communicates with the NFVI, which represents the physical infrastruc-

ture of the cloud environment

• NFV Orchestrator (NFVO): its objective is to provide the orches-

tration level, location independent; it uses VIM and VNF manager to

instantiate Network Services, the decision on who perform the opera-

tions is on behalf of the VNF manager.

• VNF Manager (VNFM): this component handle a specific Virtual

Network Function, the specification consider also a Generic VNFM

which delegates all instantiation operation to the NFVO

The architectural framework defines also the data repositories where store

descriptors and define configurations, this elements are called Catalogue.

1.2. Network Slicing in NFV Environment 11

The document specifies also a other functional block (in figure 1.3) in order

to share reference points with NFV-MANO:

• Element Management System: is the component in-place on the

VNFC instances which composes the virtual network function

• Virtualised Network Function (VNF): is the network function

that is developed by external vendor and uses the NFV Infrastructure

to be deployed

• NFV Infrastructure: is the representation of the cloud platform, it

abstract the physical infrastructure in one element which uses the entry

points that the infrastructure expose to instantiate a VNF

Figure 1.3: The architecture of ETSI main functional blocks

QoS in ETSI NFV Architecture

The documents expose also how has to be defined (in a structural way, not

implementation) the virtual network function. It defines the Network Service

12 CHAPTER 1. BACKGROUND IN NETWORK SLICING

as a composition of multiple Virtual Network Function (VNF), each VNF is

composed by multiple VDUs that is the definition of “physical components”

of the VNF and virtual link.

Figure 1.4: Virtual Link in ETSI Architecture

The Virtual Link is defined with multiple properties (in figure 1.5), one of

them is QoS; the QoS properties of the virtual link is applied at every VDU

that referees that virtual link in the connection point.

1.2. Network Slicing in NFV Environment 13

Figure 1.5: The Virtual Link Definition

The QoS parameters are a superset of the properties required by the

Network Slice definitions, specifying these a developer of a specific VNF could

easily define a network slice for its specific network function; as consequence

in one Network Service could be defined (and coexist) more than one single

network slice.

1.2.2 NFV and SDN

NFV, as we already said, uses SDN to provide a scalable, customized and

reliable service in each location, uses also it to define multi path provisioning

to reach the edge network and allows the communication between multi point

of presence Network Services.

NFV relies on SDN for the entire part of network definition. SDN hide all

the infrastructure and the physical network to the VNFs defining overlays

network; the VNF has the vision of this defined network with the capacity in

terms of bandwidth, latency and other parameters that are requested from

14 CHAPTER 1. BACKGROUND IN NETWORK SLICING

the NFV “plan”.

SDN

Software Defined Networking decouples the control plane from the data plane

(as depicted in figure 1.6), enabling a centralized entity for network control

and path definition. Typically the SDN controllers define a new layer on

top of the infrastructure layer (the physical network), this layer enables the

programmability of it.

Figure 1.6: The SDN stack

SDN presents an architecture that is:

• Directly Programmable: as we already said, the network is directly

programmable by developers using the decoupling of control plane from

the data plane

1.2. Network Slicing in NFV Environment 15

• Agile: the programmability enables also the dynamic, on demand,

configuration of the network allowing the modification of the traffic

flow network-wide

• Programmatically configured: the SDN architecture could be or-

chestrated using standard application that uses the controllers APIs

and is not dependent on proprietary software and interfaces.

Software Defined Networking was defined to address common problems,

such as:

• Changing Traffic Patterns: for application that uses different database

in different locations (in different moments) is required an extremely

flexible traffic management and access to the bandwidth on demand

• The rise of cloud services: the definition of new services in cloud envi-

ronment requires an high reconfigurability of the network, because the

user could require different networks with different characteristics

• Ability to scale: the software defined networks could add easily more

users, allowing the automatic provisioning of new resources.

• Any-to-any connection: the agility of SDN enables the reconfiguration

of paths on demand, this favorites applications for Big Data processing

The main protocol used in SDN is OpenFlow, which defines all the control

plane and management protocol to enable custom network definition in cloud

and wide-area environments.

NFV

Network Function Virtualisation is the new approach for instantiation, man-

agement, provisioning and orchestration of Network Service used by telecoms

16 CHAPTER 1. BACKGROUND IN NETWORK SLICING

operator; this paradigm relies on Cloud platforms and Software Defined Net-

working. Figure 1.7 depict the ETSI NFV Architecture.

Figure 1.7: The ETSI NFV Architecture

NFV exposes different functional blocks, the main interest is in NFV Or-

chestrator which represents a centralized point of management, provisioning

and handling of Network Services.

The Network Services are a set of virtual network function which are com-

bined to define a service. This services could be localized on a single data-

center or they can be designed to have a core inside the main datacenter and

some other functions on the edge of the network. The Orchestrator deploy

this functions on the location specified on the descriptor (or deploy template)

and define the intra-functions network delegating to the SDN Controller the

definition of paths (with requirements or less).

1.3. Introducing mechanisms for enforcing QoS requirements 17

1.3 Introducing mechanisms for enforcing QoS

requirements

Resource virtualization (including the network resources, such as switch,

router and entire network itself) define a new paradigm called SDN (Soft-

ware Defined Networking). SDN is about defining abstractions that expose

an appropriate level of detail for complex network functions, for implement

this level of abstraction n APIs for programmability, automatic provisioning,

configuration and management has to be defined.

The programmability (with all the features that derives from it) is one of the

keys of SDN, another big feature is the re-usability of the configurations and

the flexibility for modification and adaptation to a new scenario, decoupling

the logic control from the data plane.

The services providers make a large use of cloud computing platforms for ser-

vice hosting, exploiting the flexibility for configuration of that environment;

this feature has as cons the increased difficulty for traffic management from

and to the cloud platforms. The heterogeneity of services hosted on cloud

platforms brings different requirements depending on the type of the service

itself.

The Cloud hosted applications maintains the same QoS negotiation mecha-

nism. As a result automated negotiation is needed to accommodate different

consumer’s QoS requirements. The result of such a negotiation is a Service

Level Agreement(SLA), an electronic contract that establishes all relevant as-

pects of the service. The SLA contains the QoS requirements of Applications

hosted by a cloud based computing platform, such as timeliness, scalability,

response-time, throughput, failure probability, and dependability (availabil-

ity, security, safety, reliability, etc.); which are normal QoS requirements for

18 CHAPTER 1. BACKGROUND IN NETWORK SLICING

a cloud host, when the hosted application has also network QoS requirements

the cloud platforms has some limitations.

In SDN the network are virtualized as well as the other resource, but virtual

networks has some limitations. SDN networks are based on VLAN, VXLAN

and GRE overlay networks that encapsulate the normal IP packets and al-

lows sharing of the same physical link for more than one virtual network.

VLAN is a broadcast domain partitioned and isolated in many computer

network. Each computer network is attached to a port of network switch.

Simpler network devices can only partition per physical port (if at all), in

which case each VLAN is connected with a dedicated network cable (and

VLAN connectivity is limited by the number of hardware ports available).

GRE segmenation (and VXLAN) also provides network isolation, and also al-

lows overlapping subnets and IP ranges. It does this by encapsulating tenant

traffic in tunnels.

Figure 1.8: A simple VLAN schema

Cloud computing exploit the VLAN (and VXLAN and GRE) network

isolation, enabling the overlapping of network address. This is possible using

a virtualized network switch (usually Open vSwitch) which create separate

1.3. Introducing mechanisms for enforcing QoS requirements 19

VLAN for network on each tenant.

Figure 1.9: The VLAN packet

The network isolation and packet encapsulation are made “encapsulat-

ing” the entire packet in a VLAN (or GRE or VXLAN, depending on which

virtual network the cloud platform are using) packet which transform com-

pletely the pakcets (as shown in figure).

The network QoS support is possible only at switch level, which is the only

component that has a “complete” vision of VLANs and network infrastruc-

ture of the cloud platform.

The most used and common implementation of virtual network switch is

Open vSwitch, is a production quality, multilayer virtual switch. An in-

stance of this virtual switch is present in every node (compute and controller

node) of cloud infrastructure.

20 CHAPTER 1. BACKGROUND IN NETWORK SLICING

Figure 1.10: Open vSwitch distributed configuration

Open vSwitch uses a database to store all platform (or user) defined

components. The components are, in hierarchy:

• Bridge: is the representation of a virtualized bridge where can be

allocated one or more ports, for example Openstack define two bridges

(br-int, br-ex) to define internal ports and floating ports

• Port: represent the physical port of the bridge, it can be connected one

interface at time; if the port fail the relative interface must be migrated

• Interface: is the physical interface that belong to the virtual machine,

this interface is connected to the bridge port

• Qos: is the identifier of allocated queues it can be linked to a port, a

port could not have more than one Qos identifier

• Queue: is a representation of internal queue with specific QoS parame-

ters, is similar a class of traffic in DiffServ; the supported configuration

are:

– other config : min-rate represents the minimum bandwidth (guar-

anteed) for that queue

1.3. Introducing mechanisms for enforcing QoS requirements 21

– other config : max-rate represent the bandwidth upper bound,

the maximum throughput of the connection will be limited to this

value

– other config : priority is the priority between the other queues

that belongs to the same qos

The OVSDB has more entries but is not used to define QoS, instead are

used to store internal data; in the database there is also the flow table, but

it does not belong to any hierarchy; the delete operations on this table are

made by pattern matching, so is possible to delete more than one row with

one command.

Figure 1.11: OVSDB schema

Open vSwitch expose only command line interfaces to developers, it has

a kernel space module which uses the Linux Traffic Control implementation

for the Linux kernel; tc uses queuing discipline (qdisc) for network interfaces’

configuration. qdisc is considered as the essential scheduler of Linux. Pure

First In First Out (PFIFO) qdisc is the default queue type used in Linux

kernel. QoS in OVS uses Hierarchy Token Bucket (HTB) class-based qdisc to

22 CHAPTER 1. BACKGROUND IN NETWORK SLICING

schedule packets of queues. It exposes also binaries to interact with OVSDB

from the QoS side (ovs-vsctl) and OpenFlow side (ovs-ofctl). The distributed

deployment of Open vSwitch could be administrated using a controller (which

could be settled using cli) that allows creation QoS and flows to the node

which is settled as controller.

Figure 1.12: Open vSwitch internal architecture

1.4 Existing solutions for enforcing QoS re-

quirements

The NFV architecture started to facing QoS problems since when the first

streaming platform began to use the mobile telco infrastructure. This kind

of platforms has a big requirements of bandwidth and very reduced latency.

In a scenario which there are multiple data centers involved and each data

center has its own network architecture, with different hardware and capa-

bility. This differentiation plus the wide area network bring to define an

architecture with a QoS Controller plus SDN Controller.

The QoS Controller is the component that handle the paths (or the con-

nectivity) between the machine/client, it can use different technologies or

different algorithms (for path definition) or both. There are also solution

1.4. Existing solutions for enforcing QoS requirements 23

that uses a “all-knowing” SDN controller to allocate flows on the physical

switches with a path-decision algorithm that runs inside the QoS Controller,

which has a overall view of the topology.

The SDN Controller is, instead, a commercial product such as Open Day-

Light, Floodlight, Onos or other custom application developed for allocate

and define QoS requirements and flows in the datacenter. Normally this

products exposes REST APIs (or RESTConf as Open Daylight does) to en-

able a path definition in dynamic mode, but also define a GUI (typically

Web GUI) to instantiate flows between physical and/or virtual machine in a

static way.

On top of the architecture (depicted in figure 1.13) is mandatory to have

the Network Function Virtualisation Orchestrator which define, instantiate

and manage new Network Service Records in order to define services with

associated network slices. The slices are defined in the Network Service De-

scriptor, but in order to avoid a complex scenario all the related works with

QoS controller are made using a static use case with predefined services and

using categorized slices; as is made in DiffServ use case.

24 CHAPTER 1. BACKGROUND IN NETWORK SLICING

Figure 1.13: The proposed architecture in literature

To define a QoS controller there is always the assumption that the public

network is known as the topology of network. This assumption was made to

present a use case that could be feasible for presenting significant results.

1.4.1 SDN Controllers

The SDN Controllers are the main actors to handle a single data center (and

sometimes not only a single datacenter), this platforms are designed to con-

trol all the hardware and software infrastructure for networking.

The SDN Controllers has specific requirements for hardware designed to han-

1.4. Existing solutions for enforcing QoS requirements 25

dle the networks:

• OpenFlow Compliant: OpenFlow requires a control “port” that en-

ables external control (made by the Openflow Controller)

• Persistency of Flow Definition: requires a persistency for the flow

definitions, in case of reboot or failure is better to have the information

stored to have a restart time very reduced (otherwise we could violate

the SLA) definitions)

The SDN controller act as strategic control point in the SDN network,

manage flow control to the switches using the business logic defined in the

applications; the flow and switch management are made through the south-

bound APIs, whereas the logic is “injected” through the northbound APIs.

The virtualization technology define a lot of SDN networks, which are han-

dled through common interfaces such as OpenFlow or Open vSwitch database

(OVSDB) and custom interface for example the one that are vendor specific

for the switches.

A SDN controller typically contains a collection of “on demand pluggable”

modules that can handle different devices (physical or virtual) and/or which

can perform different network tasks. They has basic module for handling

common devices (OpenFlow virtual controller, OVSDB), gathering devices

informations, network capacity; a developer or a vendor could create a spe-

cific extension to support new features or add new devices.

The two main protocol used are:

• OpenFlow: is a network protocol that gives to developer access to the

forwarding plane of (physical or virtual) switches through the control

plane, is used to determine the path of network packages.

26 CHAPTER 1. BACKGROUND IN NETWORK SLICING

• OVSDB: is a protocol that define access to Open vSwitch database,

where are stored all the configurations for a switching daemon, the

information stored represents the behavior of a single virtual switch

and does not describe routing for the entire system.

OpenFlow attempts to centralize all the forwarding decisions, so a packet

follows the flow rules and the source and destination switches applies the

configured behavior for that packet (or that kind of packet).

Currently all the Open vSwitch implementations has an OpenFlow Controller

inside them, exposing also a command line interface (or JSON RPC APIs)

to define flows inside virtual switches.

SDN Controllers main implementation

There are many implementations of SDN Controllers, everyone of them wants

to orchestrate the vendor equipment and possibly extendend to use the other;

there are also Open Source controllers that are vendor neutral.

The most used open source implementations are:

• Nox: is the first OpenFlow Controller, developed by Nicira Networks,

is written completely in C++ (new Nox) and supports less applica-

tion than the others; it supports only normal switches and OpenFlow

switches. Nox has also event support to detect the join or leave of new

switches in the network (could be virtual or physical) or other “upper

level” event for example flow events or ports events. The figure 1.14

depicts the Nox architecture

1.4. Existing solutions for enforcing QoS requirements 27

Figure 1.14: The NOX overview

• Beacon[14]: the most popular implementation of OpenFlow Controller,

is completely written in java and is used as base for the most mod-

erns implementations such as Floodlight and (partially) OpenDaylight.

Beacon uses the Spring framework[6] to expose northbound REST APIs

to the application, uses also the OpenflowJ library[12] to interact and

deserialize messages from OpenFlow. The figure 1.15 depicts the Bea-

con architecture

Figure 1.15: Beacon Overview

• Ryu: is an SDN Controller which exposes well-defined APIs to devel-

opers (as depicted in figure 1.16), written in python is maintained by

28 CHAPTER 1. BACKGROUND IN NETWORK SLICING

the community with contributions by Openstack until it switched to

OVSDB with direct access from Neutron.

Figure 1.16: Ryu Overview

The presented SDN Controller are used (especially Beacon) as base for

more complex and rich platforms that are currently used in production en-

vironments. Most of this complex platforms could be integrated in a cloud

environment.

The most popular cloud platforms are: OpenDaylight, Floodlight and Onos.

Floodlight

Floodlight[5] is an Open SDN controller, works with physical and virtual

switch. It is based on Beacon (originally was a fork project) to interact with

OpenFlow.

The Floodlight controller (depicted in figure 1.17) exposes northbound API to

the Application Tier to enable the applications to define the expected network

behavior. The southbound APIs uses Indigo[9] to realize the communication

and the flow definition to interact with the physical or virtual OpenFlow

compliant switches.

1.4. Existing solutions for enforcing QoS requirements 29

Figure 1.17: The FloodLight architecture

The controller realizes a set of common functionalities to control and in-

quire an OpenFlow network, depending on which module are enabled the

functionalities available on Application Tier are differentiated. Each module

is independent from the others as depicted in figure 1.18. Floodlight con-

troller is language independent on the Application Tier, also the modules

that it expose are “callable” through the APIs.

30 CHAPTER 1. BACKGROUND IN NETWORK SLICING

Figure 1.18: Floodlight Diagram

This SDN Controller could be configured as Neutron backend for Open-

stack enabling Floodlight as default network manager for the datacenter;

Floodlight realizes this feature using two modules: Virtual Network Filter

and RestProxy.

OpenDaylight

OpenDaylight[15] (ODL) is one of the most famous SDN controller. The

figure 1.19 shows that it exposes northbound REST APIs to developers, has

an intermediate level where are located the modules that could be activated

to run different types (also called OpenDaylight internal projects) feature

that OpenDaylight exposes; under the module layer is located the Service

Abstraction Layer in which lie all datastores, messaging systems and allows to

support multiple protocols providing consistent services for the upper layers.

The southbound is the protocol layer, all the supported protocols are linked

to this layer using a plugin mechanism; as default OpenDaylight starts only

1.4. Existing solutions for enforcing QoS requirements 31

the plugin OpenFlow 1.0.

Figure 1.19: The OpenDaylight Layered architecture

The OpenDaylight controller is written in Java and could run on all ma-

chine that supports a standard JVM.

The modules that are available on OpenDaylight are pluggable on demand,

most of them was introduced with the recent releases and most of them was

on it since the first release.

• AAA: is the module that provides Authentication and Authorization

for all operations that the developer want to execute on the Controller.

• OpenFlow Protocol Library: is the component that mediates the com-

munication between the controller and OpenFlow enabled switches

(physical or virtual)

32 CHAPTER 1. BACKGROUND IN NETWORK SLICING

• OVSDB Integration: The OVSDB NetVirt project is a project for

OpenDaylight that will implement a network virtualization solution.

The northbound module will handle the all the Open vSwitch based

virtualization platform and the southbound protocol plug in will inter-

act with all OVSB based switches.

• NeutronNorthbound: The neutron northbound project is the API defi-

nition for Neutron Server to register OpenDaylight as Neutron plugin.

It aims to only to handle the neutron data and store in the ODL data

store to enable other providers registered in the controller to use it

(based on the Neutron requests).

OpenDaylight support also the High availability in a cluster using con-

troller replication.

The integration of OpenDaylight in a cloud environment is possible just using

the base exposed services plus the Neutron Northbound project to declare

the platform as Neutron main controller.

Onos

Onos[13] (Open Network Operating System) is a distributed SDN controller

with instance coordination and replication (as depicted in figure 1.21). This

platform has 4 main features:

• Distributed Core: this component provides scalability, high availabil-

ity and fault tolerance; the core instances collaborate also to define

a global overview of the network infrastructure. All the request per-

formed through the Northbound APIs are dispatched transparently to

the instances of the network core.

1.4. Existing solutions for enforcing QoS requirements 33

• Northbound APIs: the northbound APIs are divided in two big frame-

works:

– The Intent Framework: this framework allows the developer of an

application to request a network service just providing the require-

ments, ignoring how are performed the actions or how is structured

the network; its objective is to provide high level programmabil-

ity specifying only a policy statement or connectivity requirement.

Figure 1.20 depicts the architecture of the Intent Framework

Figure 1.20: The intent framework

– The Global Network View: provides to applications, network ad-

ministrators and developers the global view of the network, in-

cluding hosts, switches, links; this framework maintains a snap-

shot of the network traffic and network flows. This framework

could provide different level of informations based on the develop-

ers requirements insulating the underlying levels.

• The Southbound Abstraction: this component abstract the network el-

ements in object in generic form; the network elements are switches,

hosts or links. The element abstraction simplifies the visualization to

34 CHAPTER 1. BACKGROUND IN NETWORK SLICING

Distributed Controller, who sees every element like a generic object

with common properties as state; this make the controller southbound

and driver agnostic. Architecturally the southbound is composed (from

the upper level):

– Southbound API: the API exposed to the controller, to perform

operation on the generic network objects

– Adapters: the definitions of the adapters, like Devices, Hosts and

Link

– Protocols: the supported protocols like OpenFlow, NetConf etc

– Network Elements: the physical or virtual network elements that

composes the architecture

• Modularity: like ODL also Onos is modular, so is easy to plug a new

protocol, application or “behavior”

Figure 1.21: The Onos Architecture

1.4. Existing solutions for enforcing QoS requirements 35

The complete architecture is a multi module application which can enforce

the desired behavior (if the application intent framework has the appropriate

module) and allow an high level programmability with a sufficient amount

of information.

1.4.2 QoS Controllers

The SDN Controllers has a lot of implementations and also commercial prod-

ucts (see the previous section), instead the QoS controllers doesn’t have com-

mercial product but there are some research work.

There are also related works that are introducing the concept of SD WAN

(Software Defined Wide Area Network) but are still experimental.

This kind of controllers assumes that hardware in the path between the data-

centers or between the service and the clients are monitorable or under direct

control of developers (or directly under control of a SDN Controller).

The objective of QoS controller are: check if is possible to create a path

between the source and destination (or the two datacenters), evaluate the

possibilities in terms of costs and SLA requirements (if presents), choose the

path that fits perfectly the requests and (if possible) is more reliable and

enforce this parameters on this path through a SDN Controller.

36 CHAPTER 1. BACKGROUND IN NETWORK SLICING

Figure 1.22: An example of system architecture

Most of the works present in literature are considering the use case of

enforcing QoS in client/server interaction, but the client could be replaced

by another data center.

There are a lot of works that uses the cloud platform virtual switch to enforce

QoS parameters and evaluate it enforcing different quality of services.

HiQoS

HiQoS[20] is a multipath SDN and QoS manager, it tries to enforce QoS

using the Differentiated Service model and also want to define the routing

path between the source and destination.

1.4. Existing solutions for enforcing QoS requirements 37

Figure 1.23: HiQos architecture

The architecture show the presence of an SDN controller (Floodlight)

which is used to create the path between source and destination and discover

the network links in order to provide an updated network topology to HiQos.

This application can be divided in two different parts, the Differentiated Ser-

vice traffic shaper and the Multipath Routing component.

The Differentiate Service traffic shaper uses Q-Ctrl to enforce the QoS pa-

rameters on the virtual switch present on the server machine, it defines three

different queues on the virtual switch (which is an instance of OVSDB compli-

ant switch, which means that is an Open vSwitch instance). The application

define three different static queues, one for each level of QoS, on the virtual

switch; when a request for a specific traffic level arrives it will instruct the

switch to redirect the flow on a specific queue for that class of traffic.

The traffic shaping is executed by Floodlight and orchestrated by MultiPath

38 CHAPTER 1. BACKGROUND IN NETWORK SLICING

Routing component. The association of a client to a specific type of traf-

fic in this case is based on the source IP address, but the available field in

OpenFlow are ToS, MAC address, traffic class header, source port and many

more; HiQos will check the source ip address of the request and make the

following steps:

1. Calculates the path through the Multipath Routing Component

2. Instructs the SDN Controller to address all the packets from that source

trough the calculated path

3. Instrcuts the Controller also to enqueue the traffic on the defined queue

on the virtual switch, based on the traffic class (decided by the appli-

cation)

The path is calculated using a modified Dijkstra Algorithm[2], to calcu-

late multiple paths that could satisfy the QoS requirements; the paths are

stored and checked in poll if there are still valid using the SDN Controller.

The Controller also enable the full knowledge of the topology to the applica-

tion, who associates a weight to each node and runs the algorithm to create

the path.

1.4. Existing solutions for enforcing QoS requirements 39

Figure 1.24: The HiQos experimental topology

The figure shows the topology of the experiment, where and which the

queues are defined and allocated. Shows also that they allocated a different

queue for each port of a switch, but there is also the possibility to filter the

traffic (in each different queue for the same port) for a single specific server.

Q-Ctrl

Q-Ctrl[11] is a QoS controller in SDN based Cloud environments, this appli-

cation receives QoS requests from the clients, schedules the QoS enforcement

based on the network topology.

40 CHAPTER 1. BACKGROUND IN NETWORK SLICING

Figure 1.25: Q-Ctrl architecture

The reference architecture (in figure 1.25) shows a Network Topology

Monitoring and also a QoS Manager that use both the Connector Interface.

The Network Topology Monitoring communicates with the Connector Inter-

face to maintain a reliable and updated network Topology, this component

queries in polling the SDN Controller to get the latest changes in the network

topology.

The QoS Manager could work in two modes: Direct or Controller. In Direct

Mode the manager enforces directly the QoS and Flows on the switches using

the OVS Connector which uses the Command Line Interface APIs exposed

by Open vSwitch. In the Controller mode instead uses the intermediation of

a SDN Controller (as we said Floodlight) and its REST APIs.

Q-Ctrl perform operation to enforce the QoS following its life cycle:

1. Queue Creation: the queues are allocated on the virtual switches (also

on the physical switches)

2. QoS Flows Addition: trough the SDN Controller or directly trough the

OVS Connector the flows are allocated on the switches

1.4. Existing solutions for enforcing QoS requirements 41

3. QoS Flow Modification: to modify the bandwidth allocation and the

links between the vms

4. QoS Flow Deletion: when the client requires this operation means that

the application that are using a lot of bandwidth is terminated

5. Queue Deletion: after the flow deletion also the queues are deleted from

the switch

The SDN Controller is used only to instruct the switches in path definition

and also to retrieve a fully updated topology of the network.

Figure 1.26: The Q-Ctrl experimental scenario

The scenario for the evaluation expose the SDN Controller with an active

role in flow definition, also the OVS connector was used to create the queues

on the instances of the virtual switch. The network infrastructure is quite

simple, so they do not have to define an algorithm to find the path with

minimum cost, they just need to control different kind of switches.

OpenQoS

OpenQos is an implementation of a SDN controller which assumes to define

only the path with fixed queues for QoS definition. They try to optimize

the path between server and client, using Constrained Shortest Path (CSP)

42 CHAPTER 1. BACKGROUND IN NETWORK SLICING

algorithm using as constraints the QoS requirements in terms of jitter and

latency applied to a video streaming.

They use as architecture (depicted in figure 1.27) three physical nodes and

three switches to calculate the feasible path using the QoS constraints.

Figure 1.27: The OpenFlow Test network

For the bandwidth constraints they have allocated manually on the phys-

ical switches the lower and higher values. To inject the path inside the

switches uses Floodlight as SDN Controller, the controller is also used to

retrieve informations about the topology, link and bandwidth state.

OpenQoS introduces two components:

• Route Management: this module check in poll mode if the topology,

link state, available bandwidth are changed and collect it, after the

data retrieval it tries to check if there are congestions and if there are

find a new path. The link state for the application could be Congested

or Non-Congested, the congestion index is calculated using the formula

in figure 1.28

1.4. Existing solutions for enforcing QoS requirements 43

Figure 1.28: The Congestion Formula

If the link results congested they try to reroute the traffic deleting flows

and calculating a new path

• Route Calculation: is the module which calculates actively the path,

it detect if the first packet is a multimedia one and calculate the path

based on the type (using the ToS classifier); it calculates two kind

of path: the shortest path for non-multimedia packets and the QoS-

Optimized path for multimedia packets.

This implementation assumes that the QoS paths are preallocated and

dynamically (based on the type of packet) could defines a route; they also

could notice if there is a congestion situation and redefine routes also in QoS

paths.

44 CHAPTER 1. BACKGROUND IN NETWORK SLICING

CHAPTER 2

DESIGN AND SPECIFICATION

Open Baton is the first real implementation of the ETSI NFV MANO infor-

mation model, it provides the implementation of almost all functional blocks

that are defined in the specification. Open Baton implements each func-

tional block as different module, defines a plug in mechanism and an event

dispatching to enable the integration of external systems and is also used for

internal module communication.

45

46 CHAPTER 2. DESIGN AND SPECIFICATION

Figure 2.1: The Open Baton internal architecture

The main architecture includes the basics modules which are:

• NFVO: is the implementation of the NFV Orchestrator, it defines,

manages and starts the provisioning of the resources

• GenericVNFM: it represents the implementation of the “default”

VNFM, which has the default behavior for the VNF management and

can handle different VNFs of the same or different type.

• Fault Management System: this module receives and manages with

the fault at each level of the NFV architecture, it implements default

policies to manage faults which could be extended or redefined

• Auto Scaling System: this module enables the VNF autoscaling

based on developer defined (or also default) VNF thresholds

47

• Network Slicer Engine: is the module (developed in this thesis) that

defines network slices (if required) with requirements specified in the

Network Service Descriptor

• Monitoring Driver: this functional block provides a communication

system with the target monitoring system used on the operator system.

• EMS: this block is the in-place component that enables communication

with the VNFM to provide allocation on the VNFC instances of the

specific functions, provisioning for external resources.

• VIM Driver: is the component which interfaces the specific VIM with

Open Baton. The VIM Driver expose standard ETSI interfaces to the

overlying functional blocks.

The figure shows also other functional blocks, one of them is the Specific

VNFM; this manager could be implemented by the vendor of the VNF, it

could be implemented using the VNFM SDK provided by Open Baton. The

custom VNFM could decide to allocate the resources for target VNF.

The Generic VNFM instead of the custom is the implementation of the ETSI

specification, it handles the communication with the NFVO and EMS; to the

NFVO requires the resource allocation using the messages GRANT OPERATION

(to check if there are enough resources to allocate the VNF) and ALLO-

CATE RESOURCE (to delegate the allocation of the VNF to NFVO), to

the EMS send the scripts that it has to run on the VNFC instance to in-

stall, configure and start the services on the instance. The communication

sequence is depicted in figure 2.2

48 CHAPTER 2. DESIGN AND SPECIFICATION

Figure 2.2: The Generic VNFM[18] communication diagram

The Orchestrator is the main component of the Open Baton architecture,

it is implemented following the ETSI NFV MANO specification. Beyond the

ETSI specification it also provides a GUI where are available all the features

to register a PoP, onboard a NSD and launch it, upload VNF packages.

It also exposes an event mechanism to enable the integration of external sys-

tems, facilitates the module implementation for events related to the network

services allocation done by the NFVO (or an eventually custom VNFM).

The Network Slicer Engine uses this event framework to retrieve informations

regard the new network service allocation.

49

2.0.1 NFVO

The NFVO is the core of the Open Baton architecture, it executes the quota

control, resources reservation and instantiation (unless there is another man-

ager which declare itself as resource allocator for VNFs which declares it as

manager). It also resolves all the internal dependency (for instantiation), has

quota control, define an event mechanism.

Figure 2.3: The NFVO internal architecture

It is composed by different modules (as depicted in figure 2.3):

• API: represents the northbound interface to the “outside word”, en-

ables the onboard of descriptors, instantiation of records (related to

50 CHAPTER 2. DESIGN AND SPECIFICATION

the descriptors already boarded), definition of different PoP and VNF

packages following the ETSI[17] definition

• VIMC: this module defines the interaction between the NFVO and the

NFVI Point of Presence, for each registered PoP it defines an interac-

tion with it using a driver mechanism based on the type of PoP (for

example Openstack, AWS, Google Compute Engine) currently the only

PoP supported is Openstack but can be extended defining a new plug

in which extends the VimDriver class.

• Core: is the central component of the NFVO, coordinates the life cycle

events for the Network Service instantiation, manages the catalogue

when is requested the instantiation of a descriptor; also the event trig-

gering and dispatching is on behalf of the core module

• VNFMC: provides the interaction with the registered VNFMs using in-

ternal interfaces, can use the messaging system or REST for the inter-

action. It also accomplishes the management of internal state machine

for each Network Service Record, based on the communication with

VNFM that is instantiating the target record (or a “part” of it).

• Repository: this module defines the persistence, based on the catalogue

definition of each elements defined in the ETSI[17] specification

The NFVO also defines four different endpoints (one for northbound and

three for southbound respectively) which are used by the different modules

for the communication.

• NFVO-API: is the unique northbound endpoint, is responsible for all

the communication from outside applications, GUI etc with the API

module; the protocol that it uses is only REST over HTTP

51

• NFVO-VIM: this southbound endpoint is used by the module which

defines the interaction with each point of presence, this is achieved

using the plug in mechanism which use the messaging system

• NFVO-Events: provides an endpoint for event dispatching, could use

the messaging system or REST over HTTP to dispatch the events;

the subscription must to be made through the northbound endpoint

(NFVO-API)

• NFVO-VNFM: this endpoint communicates with the VNFMs, is used

by the VNFMC module, it enables the communication through the

messaging system or the REST protocol.

The network service is created as the final result of single VNF instan-

tiation procedures performed by the relative VNFMs. During the instantia-

tion of multiple VNFs, the NFVO resolves the dependencies between VNFs.

When a VNFa depends on VNFb, the VNFa is the target and the VNFb is

the source.

The messaging system is used to handle the instantiation process (with the

correct lifecycle) with the (or multiple) VNFM(s). The VNFM exposes a set

of methods that will be executed on the VNF in order to instantiate, update,

modify, query the VNF; this methods will change the internal state of the

VNF and according to the VNF life cycle possible status (in figure 2.4).

52 CHAPTER 2. DESIGN AND SPECIFICATION

Figure 2.4: VNF Life cycle diagram

Each method of the VNF life cycle management interface change the VNF

status. For example, the instantiate method changes the status of the VNF

from Null to ”Instantiated Not Configured”. The method Modify change the

status of the VNF from ”Instantiated Not Configured” in Inactive.

2.0.2 Generic VNFM

This VNFM is the implementation of the ETSI[17] specification for a generic

virtual network function manager, with default behavior regarding the in-

stantiation process and the EMS communication.

Internal architecture is composed by a single module, which uses all the fea-

tures implemented by the framework. This module communicates with the

EMS using the messaging system and with the NFVO also using the already

cited system.

It communicates with the NFVO through the NFVO-VNFM endpoint.

2.1. Network Slicer Functional Architecture 53

2.1 Network Slicer Functional Architecture

The Network Slicer architecture is composed by two different functional

blocks, the Network Slicer Engine is the block whic has not requirements

in terms deployment location, instead the Connectivity Manager Agent has

to be deployed on the controller node of the NFV infrastructure (assuming

that lies on Openstack[8] as VIM).

Figure 2.5: The complete architecture

The overall architecture2.5 shows three main components, one of that is

the NFVO as event dispatcher, network service manager and all the feature

that has already listed; the other two are the Network Slicer Engine and

the Connectivity Manager Agent, the first one is in between the orchestra-

tor and the Connectivity manager and has a level of abstraction (intended

as more oriented towards the ETSI data representation) higher respect the

Connectivity Manager Agent that has purely a platform data model.

54 CHAPTER 2. DESIGN AND SPECIFICATION

Network Slicer Engine

The Network Slicer Engine is composed by two modules, the QoS controller

and the SDN driver; this two modules uses a common interface to have a

uniform representation of the slice data (as depicted in figure 2.6).

Figure 2.6: The Network Slicer Engine architecture

The figure shows two components (plus an interface) that compose the

Network Slicer Engine. The QoS controller is the elements that “talks” with

Open Baton on the northbound and with the Connectivity Manager Agent

on the southbound.

The QoS controller receives new event from Open Baton, the event is com-

2.1. Network Slicer Functional Architecture 55

posed:

• Action: is the type of received event (could be a distinctive factor if

the endpoint of the event is the same for multiple kind of subscription)

• Payload: is the subject of the action, for example an INSTANTI-

ATE FINISH could have as subject a Network Service Record.

The event payload will be parsed to retrieve all information about the

physical allocations of each VNFC Instance and the information about the

Quality of Service of every virtual link in the Record.

The QoS controller retrieves the VNFC Instance locations to get an overall

vision of the network service topology and allocate on for each VNFC at

VNFC’s point of presence the desired slice characteristics.

The controller has to be aware of the entire network topology of each data

center under the control of NFVO and also of the topology that are in be-

tween these data centers, in order to define a path involving each VNFC

Instance that are involved in the service.

The QoS Interface will be exposed and discussed in the Interfaces Sec-

tion(2.1.1).

The SDN Driver performs the requests to data center’s SDN controller, which

could be different for each data center. This driver implements all the logic

to interact with the SDN controller, maintain the necessary data (using a

database if required) and translate the slice requirements from the data de-

fined in the interface to data type required by the SDN platform.

Connectivity Manager Agent

The Connectivity Manager Agent is our SDN Controller, has to be installed

on the controller node of the cloud infrastructure in order to be able to

56 CHAPTER 2. DESIGN AND SPECIFICATION

control the virtual switch and retrieve from the cloud platform the correct

informations.

Figure 2.7: The Connectivity Manager Agent functional architecture

This controller is a unique macro-block but internally is organized in three

submodules (as depicted in figure 2.7):

• API: this module exposes REST endpoints to the Network Slicer Engine

(or whatever application that could be built on top of this component)

to instantiate queues, define paths (flows) and retrieve the updated

topology of the distribution of virtual resources inside the data center.

2.1. Network Slicer Functional Architecture 57

• Core: is the main module, it performs the requests to different enti-

ties (trough the clients), with the information retrieved sends back the

response through API module and/or parse it and find data for other

requests.

• Clients: in this module are located the implementation of clients used

by the core to interact with the client-specific endpoint

This controller works directly on top of the virtual switches, declaring

itself as controller for the flow controller and manager for the queue mecha-

nism; it also interact with the referenced cloud platform using the platform’s

northbound APIs.

2.1.1 Interfaces

The ETSI specification does not provide any interface regarding the QoS al-

location, because it is infrastructure agnostic and also controller agnostic.

To enable a uniform interaction between the QoS controller and multiple

instance of SDN Drivers which have different behaviors and data representa-

tion, we define a simple interface which expose the two methods to allocate

and delete the slice for that datacenter.

public interface QoSInterface {

public boolean addQoS(List <QoSAllocation >

vnfc_instances ,

FlowAllocation vnfc_flows , String nsrId);

public boolean removeQoS(List <String >

vnfc_instances ,

58 CHAPTER 2. DESIGN AND SPECIFICATION

String nsrID);

}

This is interface, as already said, is determined in order to define a north-

bound for the SDN driver and a common contract on QoS Controller side.

2.2 Integration with Open Baton framework

The Network Slicer Engine is integrated with the Open Baton framework

and refers to Open Baton as principal implementation for ETSI NFV spec-

ification. It relies on the NFVO-Events southbound endpoint to get events

regarding the instantiation of new Network Service Records.

Figure 2.8: New NSR creation sequence diagram

2.2. Integration with Open Baton framework 59

The diagram 2.8 depicts the interaction flow between the Network Slice

Engine, the NFVO and Connectivity Manager Agent. The interaction, ex-

cept for the first one, are always repeated for every Network Service creation

or deletion.

The first interaction, made through the Open Baton client sdk provided by

the framework, registers the Network Slicer Engine to events of new Net-

work Service instantiation finish and events for the deallocation of Network

Services already deployed. The event of completed instantiation of the Net-

work Service is triggered after that all resources are allocated and configured,

instead the event deletion is triggered when the requests for the resource deal-

location is scheduled.

When the event for new NSR creation is triggered the Network Slicer Engine

receives the data through the Open Baton messaging system, de-serializes it

and parses the record to check and retrieve (if there are) slice requirements;

checks the VNFC instance location, aggregates the data in order to send

correct informations to the Connectivity Manager Agent.

After these checks the Network Slicer will retrieve the topology from the Con-

nectivity Manager Agent, “translates” the data from the NFVO data model

to the CMA data model and performs request to the northbound endpoint

of the Connectivity Manager Agent.

The ETSI specification does not consider any data model for the Quality

of Service requirements (formally our slice requirements), in order to have

references the Network Slicer maintains a mixed data model in order to have

the platform data in relation to the NFVO data model.

60 CHAPTER 2. DESIGN AND SPECIFICATION

Figure 2.9: NSR deletion sequence diagram

The data model maintained allows a faster check to delete eventually slice

requirements already allocated for the Network Service Record.

The Figure2.9 depicts the NSR deletion scenario, the Network Slicer Engine

retrieves all the data previously allocated and sends it to the Connectivity

Manager Agent to remove the allocated queues and to delete the defined

flows for that network service record.

2.3 Network Slicing Policies

The Network Slicing Policies model is inspired to the DiffServ traffic class,

the policies are divided in class which has specific slice parameters. The

2.3. Network Slicing Policies 61

parameters supported are the maximum and minimum bandwidth for now.

We defined three class of Slices, but could extended to the “bare” number as

parameters:

• GOLD

• SILVER

• BRONZE

Every element of this class provides a guaranteed bandwidth which will

be preserved also in case of network congestion limiting the packet loss.

The values are:

Class Minimum Bandwidth Maximum Bandwidth

GOLD 200 Mbit/s 150 Mbit/s

SILVER 100 Mbit/s 50 Mbit/s

BRONZE 50 Mbit/s 25 Mbit/s

62 CHAPTER 2. DESIGN AND SPECIFICATION

CHAPTER 3

IMPLEMENTATION

The technology chosen for the implementation of the Network Slicer is strictly

related to the one on which Open Baton is implemented. The Network Slicer

Engine is implemented in Java, instead the Connectivity Manager Agent is

implemented in Python.

63

64 CHAPTER 3. IMPLEMENTATION

Figure 3.1: The general architecture

The figure 3.1 depicts the overall architecture, which allow us to un-

derstand the implementation choices. In this chapter we will explain the

implementation of each component.

3.1 Open Baton Implementation

Open Baton is implemented following the ETSI NFV MANO specification

[17]. Beyond the ETSI specification it also provides a GUI where are available

all the features to register a PoP, onboard a NSD and launch it, upload

VNF packages. It defines an event mechanism to enable the integration of

external systems, facilitates the module implementation for events related to

the network services allocation done by the NFVO (or an eventually custom

VNFM). The NS uses this event mechanism to retrieve the instantiation of

3.1. Open Baton Implementation 65

new network service record. The implementation architecture of the NFVO

is depicted in the Figure 3.2.

Figure 3.2: The NFVO internal architecture

3.1.1 NFVO Implementation

The NFVO is implemented in Java on top of the Spring framework[6], the

implementation relies on the IoC technology available from this framework;

the different modules uses also other features:

• The API module uses the Spring RestController in order to expose

66 CHAPTER 3. IMPLEMENTATION

REST (relative) paths to developers, the Open Baton client software

development kit and the Dashboard.

• Repository module uses the Spring CrudRepository technology to en-

able the persistence for each entity of the data model, this feature could

work with every database that expose the CRUD operations.

• Plug-in system on the NFVO side uses the Rabbitmq Spring library for

RPC communications, also the vim-drivers uses this library. It bases

the interaction using interface as “contract” to the RPC and uses the

message broker as transport to deliver the request.

• NFVO-Events endpoint uses the Rabbitmq Spring library for “nor-

mal” Rabbitmq communication and also (as we said in the architec-

ture) RestTemplate which is the REST client library in spring. This

mechanism will be explained in section 3.1.2

• The NFVO-VNFM uses aso the AMQP library and/or the RestTem-

plate REST client for the communication with VNFM(s); this interac-

tion is regulated and defined in the ETSI specification[17]

• The Command Line Interfaces uses a the Spring-Shell project and

also some functionalities exposed by the plug in mechanism to define

commands like InstallPlugin (and its dual UninstallPlugin) and

listPlugins.

The plugins are normal java application that uses the Java AMQP pro-

tocol library in order to become the endpoint for the RPC mechanism of the

plugin system.

3.1. Open Baton Implementation 67

3.1.2 NFVO-Event

The NFVO-Event endpoint enables the dispatching of events related to net-

work service record life cycle, when the network service record pass trough

one state an event was triggered and dispatched to all the subscripted appli-

cations. The available action for the subscription are:

• GRANT OPERATION

• ALLOCATE RESOURCES

• SCALE IN

• SCALE OUT

• SCALING

• ERROR

• RELEASE RESOURCES

• INSTANTIATE

• MODIFY

• HEAL

• UPDATEVNFR

• SCALED

• RELEASE RESOURCES FINISH

• INSTANTIATE FINISH

• CONFIGURE

68 CHAPTER 3. IMPLEMENTATION

• STAR

The event subscription has also other parameters more than the simple

action, in order to increase (or decrease if not settled) the coarseness of sub-

scription; could be enabled a specific “interest” for a network service record

setting the networkServiceId parameter, or more specific for a VNFR set-

ting the virtualNetworkFunctionId parameter.

In order to dispatch the event an endpoint has to be settled in the subscrip-

tion declaration with the relative endpoint type, the endpoint types available

are:

• RABBIT

• REST

The endpoint itself is a URL or queue name, depending on the endpoint

type in the subscription, NFVO will send the event to that specific endpoint

using the specified endpoint type.

The event subscription are exposed through the NFVO-API endpoint, an

external application could subscribe itself to different actions for each network

service record (higher granularity) or multiple actions without any network

service record specified (lower granularity) which means receive events with

that specified action(s) for each network service record.

3.1.3 SDKs

The Open Baton framework defines three different software development kit

in order to achieve openness and extendability, they encapsulate the commu-

nication (and relative logic) with one of the NFVO endpoints:

3.1. Open Baton Implementation 69

• vnfm-sdk(-amqp): this sdk defines the interaction with NFVO-vnfm

endpoint, it encapsulates all the logic to communicate with the NFVO

for network service record definition, instantiation and life cycle func-

tions (for example GRANT OPERATION and ALLOCATE RESOURCE

from the VNFM to NFVO, or QueryVNF from the NFVO to VNFM);

it uses the Spring library for AMQP to provide this functionalities

• plugin-sdk: defines the contract-based interaction with the defined

plugin, it encapsulates the Rabbitmq RPC mechanism enabling the

NFVO (or other components that uses this system) to call the methods

defined on the interface and transparently invokes them on the remote

plugin

• nfvo-sdk (known also as OpenBaton client): is the sdk which

encapsulates the nfvo-api endpoint, it uses the UniRest library to define

the interaction with NFVO REST APIs, uses also the Gson library to

define a “pojo vision” of json messages used to send requests as body

and responses. The figure 3.3 depicts the UML diagram of this sdk.

70 CHAPTER 3. IMPLEMENTATION

Figure 3.3: The NFVO sdk documentation[4]

It could be also used as “entry point” for the event mechanism, defining

subscription to events specifying endpoints and other parameters

Each sdk could be imported into the application logic as dependency

through the Open Baton maven repository, in order to enable the user-defined

plugin, vnfm or other application on top of the NFVO to interact with it in

agile way.

3.2 Network Slicer Engine Implementation

The Network Slicer Engine is also implemented in Java using the already cited

Spring framework[spring]. It uses the NFVO-Event endpoint to retrieve new

instantiation or deallocation of network service record, defines an internal

threading model in order to have an efficient request dispatching. The Figure

3.4 depicts the internal component architecture.

3.2. Network Slicer Engine Implementation 71

Figure 3.4: The Network Slicer Engine internal architecture

The Network slicer engine defines a northbound endpoint where retrieves

the events from the NFVO and a southbound endpoint which communicates

with the Connectivity Manager Agent.

72 CHAPTER 3. IMPLEMENTATION

3.2.1 Northbound endpoint

The northbound is defined using a single Spring bean, this endpoint receives

event from the NFVO, the event endpoint chosen is the message system; this

is implemented using the Spring AMQP library to define the interaction with

the message broker.

The entities necessary to queue instantiation on the message broker are de-

fined in a Configuration[3] bean, which defines two queues for the two differ-

ent event subscriptions; it also defines all the “protocol objects” in order to

have an interaction ready infrastructure at bootstrap, including the callback

methods when a new message is received.

The endpoint is represented by a Spring bean which implements the previ-

ously defined callback methods.

@Service

public class OpenbatonEventSubscription {

...

public void receiveNewNsr(String message) {

OpenbatonEvent evt;

try {

logger.debug("Trying to deserialize it");

evt = mapper.fromJson(message ,

OpenbatonEvent.class);

} catch (JsonParseException e) {

...

}

NetworkServiceRecord nsr = evt.getPayload ();

3.2. Network Slicer Engine Implementation 73

logger.debug("NSR is " + nsr.toString ());

vnfrloop:

for (VirtualNetworkFunctionRecord vnfr :

nsr.getVnfr ()) {

logger.debug("VNFR: " + vnfr.toString ());

for (InternalVirtualLink vlr :

vnfr.getVirtual_link ()) {

logger.debug("VLR: " + vlr.toString ());

if (!vlr.getQos ().isEmpty ()) {

for (String qosAttr : vlr.getQos ()) {

logger.debug("QoS Attribute: " +

qosAttr);

if

(qosAttr.contains("minimum_bandwith"))

{

...

creator.addQos(nsr.getVnfr (),

nsr.getId());

break vnfrloop;

}

}

}

}

}

logger.info("[OPENBATON -EVENT -SUBSCRIPTION] Ended

message callback function at " + new

Date().getTime ());

}

74 CHAPTER 3. IMPLEMENTATION

...

}

Listing 3.1: The nsr creation callback methods implementation

The listing 3.1 shows the source code of the method which parses the

received Network Service Record (after the appropriate control on the re-

ceived message) and checks in every virtual network function record if there

are Quality of Services requirements. If there are, the bean will demand to

the QoSAllocator the allocation of the required resources to define a network

slice with selected requirements.

@Service

public class OpenbatonEventSubscription {

...

public void deleteNsr(String message){

OpenbatonEvent evt;

try {

logger.debug("Trying to deserialize it");

evt = mapper.fromJson(message ,

OpenbatonEvent.class);

} catch (JsonParseException e) {

// exception catch

}

NetworkServiceRecord nsr = evt.getPayload ();

3.2. Network Slicer Engine Implementation 75

vnfrloop:

for (VirtualNetworkFunctionRecord vnfr :

nsr.getVnfr ()) {

logger.debug("VNFR: " + vnfr.toString ());

for (InternalVirtualLink vlr :

vnfr.getVirtual_link ()) {

logger.debug("VLR: " + vlr.toString ());

if (!vlr.getQos ().isEmpty ()) {

for (String qosAttr : vlr.getQos ()) {

if

(qosAttr.contains("minimum_bandwith"))

{

creator.removeQos(nsr.getVnfr (),

nsr.getId());

break vnfrloop;

}

}

}

}

}

}

...

}

Listing 3.2: The callback function to delete a network service record

The above listing 3.2 depicts the callback method defined to handle a

network service record deallocation, it always search if there are network

slicing requirements; confirmed the presence of slice features it delegates the

QoSAllocator to start the deallocation process.

76 CHAPTER 3. IMPLEMENTATION

The QoSAllocator is a Spring bean which schedules thread in order to support

multiple allocation (or deallocation or both) requests at the same time. The

Java task scheduler mechanism is used in order to define thread scheduling,

the scheduling policies are defined in different ways for the allocation and

deallocation operation. The policy for allocation process is defined using a

little delay, it becomes necessary because the messaging system (used for

event dispatching) has a time out for the callback method; after exceeding

the time out the message will be redelivered and could flood the component,

so I decided to schedule a thread using a “fire-and-forget” model in order to

give back the control to the caller bean and finish the method.

The policy for deallocation is completely different (uses always the fire-and-

forget model), uses a higher delay modeled on the event characteristics. The

RELEASE RESOURCE FINISH (is the Action for event deallocation of a

network service record) event is triggered when the resource termination is

scheduled on the VIM side and the QoS mechanism could not be removed

until the virtual resources are not terminated (see the Connectivity Manager

Agent section 3.3.1); after some tests we found that the correct delay is

approximately ten seconds.

3.2.2 Network Slicer Engine threads

Internally, as already said (see section 3.2.1), the Network Slicer Engine uses

threads, in order to avoid a possible flooding from the messaging system and

enable the multiple request at the same time; two types of thread have been

defined, one for allocation and one for deallocation. Both of them use the

defined QoSInterface (see section 2.1.1), in order to have a contract-based

interaction with plugin (that for our case is the Connectivity Manager Agent

plugin).

3.2. Network Slicer Engine Implementation 77

The thread defined for allocation of QoS resources (AddQoSExecutor) re-

trieves and “groups” data from the network service record.

public class AddQoSExecutor implements Runnable{

// constructor and internal data

@Override

public void run() {

...

FlowAllocation flows = this.getSFlows(vnfrs);

List <QoSAllocation > qoses = this.getQoses(vnfrs);

boolean response =

connectivityManagerHandler.addQoS(qoses ,flows ,nsrID);

...

}

private List <QoSAllocation >

getQoses(Set <VirtualNetworkFunctionRecord > vnfrs) {

// internal logic to group data for QoS parameter

injection

}

private boolean hasQoS(List <VldQuality > qualities ,

Set <VNFDConnectionPoint > ifaces , String vnfrId){

// check if the connection point is related to a

virtual link with QoS requirements

}

78 CHAPTER 3. IMPLEMENTATION

private FlowAllocation

getSFlows(Set <VirtualNetworkFunctionRecord > vnfrs){

//this method group data for flow allocation

}

private List <VldQuality >

getVlrs(Set <VirtualNetworkFunctionRecord > vnfrs) {

// method scope: find the

}

private List <FlowReference >

findCprFromVirtualLink(Set <VirtualNetworkFunctionRecord >

vnfrs , String vlr){

// method logic to find the connection points from

virtual link names

}

}

Listing 3.3: The methods of the AddQoSExecutor thread

The listing 3.3 depicts the thread code, who exposes methods for parsing

the network service descriptor and defines the appropriate data structures,

based on the Open Baton data model which are described in the QoSInterface

definition. After the appropriate “grouping”, it uses the already mentioned

interface to delegate the SDN Controller plugin of the Network Slice alloca-

tion through the SDN Controller.

public class RemoveQoSExecutor implements Runnable{

// Constructor and internal data

3.2. Network Slicer Engine Implementation 79

@Override

public void run() {

List <String > servers =

this.getServersWithQoS(vnfrs);

boolean response =

connectivityManagerHandler.removeQoS(servers ,nsrID);

}

private List <String >

getServersWithQoS(Set <VirtualNetworkFunctionRecord >

vnfrs){

//this method retrieves all the name of the

instances with QoS

}

private Map <String ,Quality >

getVlrs(Set <VirtualNetworkFunctionRecord > vnfrs) {

//this method retrieves the quality from each

virtual link (in each vnfr)

}

private Quality mapValueQuality(String value){

// method which get the enumerative (with relative

values) from a string

}

}

Listing 3.4: The methods of RemoveQoSExecutor

80 CHAPTER 3. IMPLEMENTATION

The code of RemoveQoSExecutor (listing 3.4) shows an easier data aggre-

gation, instead of the one performed by the AddQoSExecutor, and delegates

directly to the SDN Controller plugin passing only the server list (which is

the host names of each single VNFC Instance with QoS defined)

3.2.3 The QoSInterface implementation

The ETSI NFV MANO specification did not defined a common interface,

which could enable a uniform communication between the NFVO (or an in-

tegrated module) and the SDN Controller platforms; indeed there are many

SDN Controllers with different APIs and data representation so define an

interface could be a good compromise to enable a level of abstraction closer

to the specification and also maintain the extendability.

The implementation of this interface (defined in the architecture section

2.1.1) is the ConnectivityManagerHandler, it was implemented using the

Spring bean technology.

Whenever a new network record is instantiated, the handler requests an up-

dated topology in order to get an overall vision of the deployment of each

VNFC Instance inside the data center in terms of node location for each de-

ployed virtual machine; after it gets an updated topology it calls two different

beans in order to define an appropriate data structure for queues allocation

and flow definition on the controller.

@Service

@Scope ("prototype")

public class ConnectivityManagerHandler implements

QoSInterface{

3.2. Network Slicer Engine Implementation 81

// PostConstruct initializator and internal data

public boolean addQoS(List <QoSAllocation > queues ,

FlowAllocation flows , String nsrId){

this.updateHost (); // retrieves the updated

topology ...

List <Server > servers =

queueHandler.createQueues(hostMap , queues);

internalData.put(nsrId ,servers);

flowsHandler.createFlows(hostMap ,servers ,flows);

return true;

}

private void updateHost () {

this.hostMap = requestor.getHost ();

}

public boolean removeQoS(List <String > servers ,String

nsrID){

List <Server > serversList;

queueHandler.removeQos(hostMap ,serversList ,servers);

flowsHandler.removeFlows(hostMap ,servers ,internalData.get(nsrID));

internalData.remove(nsrID);

return true;

}

}

82 CHAPTER 3. IMPLEMENTATION

Listing 3.5: The ConnectivityManagerHandler implementation

The above listing 3.5 shows the implementation of methods defined in

the QoSInterface and also the method which retrieves the topology from

Connectivity Manager Agent (using defined Requestor, see the southbound

section 3.2.4).

The internalData is a data structure which has the network service record

id as “key” and all the platform-related information retrieved from the SDN

Controller (Connectivity Manager Agent).

3.2.4 Network Slicer Engine southbound

The engine define also a southbound in order to communicate with SDN Con-

troller, this endpoint is composed by the QoSHandler and FlowHandler which

use another bean ConnectivityManagerRequestor to perform requests to

the controller.

The QoSHandler uses the topology to create the appropriates data struc-

tures in order to define the queues on virtual switch instances, resolves the

slicing policies defined in the network service record and extracted from the

northbound of the application.

@Service

@Scope ("prototype")

public class QoSHandler {

// internal data and initialization method

public List <Server > createQueues(Host hostMap ,

List <QoSAllocation > queues , String nsrId){

3.2. Network Slicer Engine Implementation 83

List <ServerQoS > queuesReq = new ArrayList <>();

List <Server > servers = new ArrayList <>();

for(QoSAllocation allocation : queues){

String serverName = allocation.getServerName ();

String hypervisor = hostMap.belongsTo(serverName);

Server serverData =

requestor.getServerData(hypervisor ,serverName);

servers.add(serverData);

ServerQoS serverQoS =

this.compileServerRequest(serverData ,allocation.getIfaces (),hypervisor);

queuesReq.add(serverQoS);

}

QosAdd add = new QosAdd(queuesReq);

add = requestor.setQoS(add);

servers = this.updateServers(servers , add);

return servers;

}

private List <Server > updateServers(List <Server >

servers , QosAdd add) {

// update the data structure defined for the request

}

private ServerQoS compileServerRequest(Server

serverData , List <QoSReference > ifaces , String

84 CHAPTER 3. IMPLEMENTATION

hypervisor) {

// prepare the request body using the defined pojo

}

private InterfaceQoS addQuality(InterfaceQoS

serverIface , Quality quality) {

//add the slice requirements in terms of bandwith

}

public void removeQos(Host hostMap , List <Server >

servers , List <String > serverIds , String nsrId){

for (Server server :servers){

if (serverIds.contains(server.getName ())){

String hypervisor =

hostMap.belongsTo(server.getName ());

for (InterfaceQoS iface :

server.getInterfaces ()){

Qos ifaceQoS = iface.getQos ();

requestor.delQos(hypervisor ,

ifaceQoS.getQos_uuid ());

}

}

}

}

}

Listing 3.6: QoSHandler source code

Listing 3.6 shows the internal definition of methods to add and remove

queues, based on the slicing policy (Quality enumerative); the add has more

3.2. Network Slicer Engine Implementation 85

complex data aggregation instead the delete which relies on the internal

data. The createQueues method transform the data from ETSI data model

to Connectivity Manager Agent data model.

The FlowHandler instead performs a data aggregation based on relations

between the VNFC Instances, a relation is intended as two virtual network

function component instance which have a connection point which referencing

the same virtual link.

@Service

@Scope ("prototype")

public class FlowHandler {

// Internal data and initialization method

public void createFlows(Host host , List <Server >

servers , FlowAllocation allocations , String nsrId){

// business logic to define relations

}

public void removeFlows(Host hostmap , List <String >

serversIds , List <Server > servers , String nsrId){

//flow deletion based on source

// address and destination address

// retrieved from internal data

}

private Server getServerRefFromIp (List <Server >

86 CHAPTER 3. IMPLEMENTATION

servers , String ip){

for (Server server : servers){

if(server.getFromIp(ip) != null){

return server;

}

}

return null;

}

}

Listing 3.7: ı̀FlowHandler source code

The createFlow method defines the relation definition based on virtual

link identification reference, the ETSI specification does not specify relation

between VNF in terms of QoS; the possibility of defining relations is exposed

in the Virtual Network Function Forwarding Graph but is more oriented on

Service Function Chaining.

The ConnectivityManagerRequestor maps all the available requests to the

SDN Controller (Connectivity Manager Agent), uses the Spring RestTem-

plate library in order to have a more integrated client with all the features

exposed by the Spring framework REST client.

3.3 Connectivity Manager Agent

The Connectivity Manager Agent (friendly CMA), is our SDN Controller

which runs on the controller node of the cloud platform infrastructure. This

component is written in Python on top of the Bottle.py[7] framework, exposes

REST APIs in order to enable decoupling for interaction without using a

3.3. Connectivity Manager Agent 87

specific programming language.

The controller uses in-place virtual switches to enable the QoS allocation

and, using also the switches, defines a path between the host and destination

enabling the enqueue mechanism; this strategy enable the injection of quality

of service inside the data center.

Figure 3.5: Connectivity Manager Agent software architecture

The software architecture (depicted in figure 3.5) could be divided in

three different submodules, which is a common practice in SDN controller

development; the modules are:

• Northbound (API): this module enables the interaction from other ap-

plications, in particular the Network Slicing Engine

• Core: receives the request from northbound and uses the clients (south-

bound) to retrieve all the required data and allocates the slice require-

ments

• Clients (Southbound): this module is composed by the clients for in-

teraction with Openstack components and Open vSwtich

88 CHAPTER 3. IMPLEMENTATION

3.3.1 Connectivity Manager Agent Northbound

The northbound is composed by a single class which define all the REST

path and map each request to a method exposed by core module.

class Application:

def __init__(self , host , port):

self._host = host

self._port = port

self._app = Bottle ()

self._route ()

self._debug = True

self.agent = CMAgent ()

def _route(self):

Welcome Screen

self._app.route(’/’, method="GET",

callback=self._welcome)

Hypervisor methods

self._app.route(’/hosts’, method="GET",

callback=self._hosts_list)

self._app.route(’/server/<hypervisor_name >/<server_name >’,

method="GET", callback=self.get_server_info)

QoS methods

self._app.route(’/qoses’, method =["POST", "OPTIONS"],

callback=self._qoses_set)

3.3. Connectivity Manager Agent 89

QoS methods

self._app.route(’/qoses/<hypervisor_hostname >/<qos_id >’,

method =["DELETE", "OPTIONS"],

callback=self._delete_qos)

QoS methods

self._app.route(’/queue/<hypervisor_name >/<queue_id >/<queue_number >/<qos_id >’,

method =["DELETE", "OPTIONS"],

callback=self._delete_queue)

self._app.route(’/queue’, method =["POST","OPTIONS"],

callback=self.add_queue_to_qos)

Flow methods

self._app.route(’/flow’, method =["POST", "OPTIONS"],

callback=self._assign_flow_to_queue)

self._app.route(’/flow/<hypervisor_name >/<flow_protocol >/<flow_ip >’,

method =["DELETE","OPTIONS"],

callback=self._delete_flow)

...

Listing 3.8: Defined REST paths

The listing 3.8 shows the different path exposed by the application north-

bound, from the url to retrieve the updated topology (/hosts) passing through

the path to retrieve single data for a VNFC Instance (which is a virtual ma-

chine on Openstack) to the path for QoS, single queue and flow allocation.

90 CHAPTER 3. IMPLEMENTATION

3.3.2 CMA Core

The Core of Connectivity Manager Agent receives requests for QoS allocation

and Flow definition from the northbound, it uses the Client module in order

to retrieve data for each virtual machine (involved in the network service

record) and define QoS, queues and flows.

The module use Openstack clients to retrieve each relevant data in order to

interact with the virtual switch instance correctly, this clients are used only

to retrieve data (and perform authentication).

This layer is composed by the Agent only which define three different classes:

• Host: represent the single node of the cloud platform, defines all the

methods which involves a single entity of the infrastructure

• Cloud: is the class that interacts with the Openstack REST APIs in

order to get the overall topology, has a wide vision of the infrastructure

• Agent: this class defines all the methods callable from the northbound,

it uses the Cloud and the Host class to achieve the slice allocation

The listing 3.9 exposes the methods defined in the Agent class, they uses

the already cited class to achieve functionalities.

class Agent(object):

def __init__(self):

self.cloud = Cloud()

def get_hypervisor_map(self):

// retrieve the overall topology , with the

allocation of all the vms running in that

datacenter

3.3. Connectivity Manager Agent 91

def set_qos(self , qos_args):

// method to add qos to an nsr (called from the

northbound)

def add_new_queue(self ,qos_json):

// method to add a queue on an existing QoS

def destroy_qos(self ,hypervisor_hostname ,qos_id):

// removes the qos allocated for all the elements

for a specific hypervisor

def

destroy_queue(self ,hypervisor_name ,queue_id ,queue_number ,

qos_id):

// remove a single queue allocated to a particular

def set_flow(self , flow_args):

// define the flows for the network service record

def

_remove_flow(self ,hypervisor_name ,flow_protocol ,flow_ip):

// remove the defined flows for a single virtual

machine

def

get_new_server_info(self ,hypervisor_name ,server_name):

// retrieve the informations for a single virtual

92 CHAPTER 3. IMPLEMENTATION

machine

Listing 3.9: Agent source code

The Cloud class, as already said, represents the overall infrastructure, it

uses the Openstack clients in order to:

• Retrieve the topology: location of vm in terms of hypervisor (node) on

which is instantiated.

• Retrieve hypervisors info: in terms of computational resources avail-

able.

• Get all the informations about network: interaction with Neutron to

get the necessary information which are used by the Host class

In particular the Cloud class interacts with Neutron and Nova (using the

respective clients) to retrieve also server info on “Openstack side” and also

gets the necessary data from the networking agent to enable data retrieval

for the virtual switch.

The Host class uses all the data passed from the “upper” class and interact

with the OVS client to define the flow and QoS (and queues). This class has

also a reference to Cloud because the “data extraction” has to involve the

Neutron client, managed by Cloud class, to retrieve the correct port which

corresponds to the ip assigned to the virtual machine. This class implements

also the algorithm to properly delete QoS and flows from the virtual switch,

because OVS has a hierarchy as depicted in figure 3.6

3.3. Connectivity Manager Agent 93

Figure 3.6: The OVSDB schema

To respect this hierarchy, assuming that the port was already deleted by

Openstack because is the normal behavior, it deletes the QoS and after the

queues; after proceeds to delete flows. This mechanism was implemented

per virtual machine in order to support an eventually scaling of the network

service record.

3.3.3 Clients

The clients could be divided in two different types:

• Openstack clients: are the simple python libraries exposed by the Open-

stack framework in order to enable a REST “wrapped” interaction with

the platform

• OVS client: this is written from scratch, it enables the interaction with

Open vSwitch regarding the queue creation and flow definition

The Openstack clients used, as already said, are three: the Nova client

to retrieve all the information regarding virtual machines, Neutron client to

retrieve data about the port name, ip and hypervisor datas, the Keystone

client to get tokens for authorization and authentication.

94 CHAPTER 3. IMPLEMENTATION

The OVS client defines and interaction with Open vSwitch, using the Python

subprocess library in order to use the CLI entry point offered by the switch

platform. The listing 3.10 depicts some methods exposed to define all the

structures necessary.

class Client(object):

...

def create_queue(self , hypervisor_ip , min_rate ,

max_rate):

// create a queue on Open vSwitch

def

set_qos_ovs(self ,hypervisor_ip ,qos_id ,queue_id ,queue_number):

//link the queue to already defined QoS

def list_queues(self , hypervisor_ip):

//list all the queues in a determined node

(hypervisor)

def create_qos(self , hypervisor_ip , queue_string ,

queues):

// create a QoS id in the Open vSwithc database and

link directly to it one or more queues

def del_queue(self , hypervisor_ip ,

qos_id ,queue_id ,queue_number):

// delete a queue

def del_qos(self , hypervisor_ip , qos_id):

// delete a qos entry

3.3. Connectivity Manager Agent 95

...

def add_flow_to_queue(self , hypervisor_ip , src_ip ,

destination_ip , protocol , priority ,

ovs_port_number , queue_port):

//flow definition with enqueue action

def

remove_flow_dest(self ,hypervisor_ip ,destination_ip ,

protocol):

//flow deallocation with a specific destination ip

def remove_flow_src(self ,hypervisor_ip ,src_ip ,

protocol):

//flow deallocation with a specific source ip

Listing 3.10: Methods for create a queue, QoS and flows

This client exposes also all the methods mandatory to properly delete

QoS and Flow respecting the OVSDB integrity, otherwise an exception will

be raised.

96 CHAPTER 3. IMPLEMENTATION

CHAPTER 4

VALIDATION AND EVALUATION

Our component was validated using the Iperf[16] scenario to check if the

bandwidth limitations (upper and lower bound) are respected.

The measurements were achieved using Zabbix[19] to get the real time mon-

itoring of bandwidth throughput from the client to server. Other measure-

ments were made to check the system performances in order to get an average

response time when a new INSTANTIATE FINISH event is triggered.

4.1 Tools

The tools used to evaluate the Network Slicer (plus the Connectivity Manager

Agent) are:

• Zabbix: in order to monitor the throughput in terms of bandwidth

• Iperf: in order to use all the bandwidth available on the testbed

• Generic VNFM: in order to require the instantiation of

97

98 CHAPTER 4. VALIDATION AND EVALUATION

• at: in order to schedule the start of iperf scenario to allocate the QoS

infrastructure before

Now we will analyze the tools used in order to “locate” them in the

scenario and define each considered use case in order to get the overall vision

of what each component do.

4.1.1 Zabbix

Zabbix is one of the most used platform for real time monitoring of virtual

and physical machines, this system could monitor a huge number of hosts

with different metrics for each host.

Zabbix uses a manager-agent architecture which could be “expanded” to a

manager-proxy-agent infrastructure, in order to monitor hosts in separate

networks (for example in different tenants or locations).

Figure 4.1: Zabbix Architecture

The figure 4.1 depicts the two different architectures Zabbix, for the eval-

uation I chose the simple one because our different services has to lies on the

4.1. Tools 99

same network in order to evidence the behavior of Network Slicer in presence

of different services.

Zabbix enables the simultaneous monitoring of multiple metrics for various

components, such as cpu, memory, network interfaces, hard drives; we were

interested in all metrics regarding network interfaces such as throughput,

packet loss and real time values.

4.1.2 Iperf

Iperf is tool for active measurements of bandwidth in IP networks, it could

use different type of L4[10] protocols (such as TCP, UDP) on both versions

of L3[10] protocol (IP v4 and v6).

This software uses all the bandwidth available in order to retrieve measure-

ments of average bandwidth used, packet loss, latency and many more (as

depicted in figure 4.2).

Figure 4.2: Iperf scenario

This software is used in traditional networks to measure the network

performance in order to verify that all the links are perfectly functional and

active, is used also to verify quality of services queues and flow definition in

combination with network performances.

Iperf has a lot of options, to retrieve metrics and performances also increase

the measurement time; sometimes it is used to test the overall throughput of

100 CHAPTER 4. VALIDATION AND EVALUATION

a system placing the Iperf client as “input” for the platform and Iperf server

to the other “end”.

4.1.3 Generic VNFM

The Generic VNFM is also implemented in Java on top of the Spring framework[spring],

as already explained (see section 2.0.2) its architecture is composed by only

one module.

The VNFM used the vnfm-sdk to define the interaction with the NFVO,

uses the Rabbitmq library for Spring to send the script to EMS (in order to

execute all the steps for each life cycle event) and also to retrieve the results

of execution (including errors).

It implementation architecture is defined in only one Spring bean that im-

plements all the logic, because it has a “passive” behavior (as specified in the

specification[17]) regarding the instantiation of the resources and the quota

managing (granting operations).

I used the Generic VNFM as manager to instantiate the target Iperf scenario

and handle the life cycle of each Network Service Record instantiated for our

test.

4.2 Scenarios

We have used two scenarios to make the system measurements. First scenario

was defined to retrieve result about the bandwidth limitation (upper bound

for the queue) and system response time, the second test tries to achieve the

validation of guaranteed bandwidth and also evaluate the system response

time.

4.2. Scenarios 101

4.2.1 One Network Service Record

The first scenario considers the allocation and deallocation of one network

service descriptor with one iperf client and one iperf server with GOLD quality

of service in order to verify the slice “ceiling”. The Network Service Descrip-

tor (in the listing 4.1) underline the slice requirements at virtual link level,

we have also defined a dependency between the two vnf in order to obtain

the instantiation of the iperf server before the iperf client.

{

"name":"iperf -NS",

...

"vnfd":[

{

"name":"iperf -server -gold",

...

"connection_point":[

{

"virtual_link_reference":"private"

}

...

"virtual_link":[

{

"name":"private",

"qos":[

"minimum_bandwith:GOLD"

]

}

...

102 CHAPTER 4. VALIDATION AND EVALUATION

{

"name":"iperf -client -gold",

...

"connection_point":[

{

"virtual_link_reference":"private"

}

...

"virtual_link":[

{

"name":"private",

"qos":[

"minimum_bandwith:GOLD"

]

}

...

}

Listing 4.1: The Network Service Descriptor used for this test

In order to have an accurate evaluation of the response time for allocation

and deallocation we ran this test two times. The figure 4.3 depicts the

response time after the reception of INSTANTIATE FINISH event till the

allocation of network slice.

4.2. Scenarios 103

Figure 4.3: Results of allocation 1 network service record (for two times)

The figure 4.4 depicts the deallocation of already allocated network service

record, the “peak” in terms of time response is the already discussed (see

section 3.2.2) delay to remove the queues and flow respecting the integrity

of Open vSwitch database.

Figure 4.4: Result of deallocation 1 network service record (for two times)

We also followed (as shown in figure 4.5) the traffic flow through Zab-

bix[19] in order to get the real time throughput of the Iperf client.

104 CHAPTER 4. VALIDATION AND EVALUATION

Figure 4.5: The real time throughput of the Iperf Client

4.2.2 Two Network Service Records

This test was repeated two times, one time with two network service descrip-

tor with different QoS requirements (GOLD the first one and SILVER the

second one) and one time with a descriptor with QoS requirements (GOLD)

and one with best effort quality.

Two Network Service Records with Different QoS

The first test was ran in order to check if different slice requirements are

applied on the same switch (always checking the response time) with the

specified values (for this test the SILVER requirements have been defined to

5 Mbit/s of guaranteed bandwidth and 10 Mbit/s of maximum in order to

emphasize the bandwidth difference).

The figure 4.6 shows the real time throughput of the iperf-client-gold which

highlights that the minimum bandwidth is always guaranteed from the Open

vSwitch instance.

4.2. Scenarios 105

Figure 4.6: The Iperf Client Gold output

Also the iperf-client-silver zabbix graph (in figure 4.7) shows that the min-

imum bandwidth is always guaranteed also for different slice requirements.

Figure 4.7: The Iperf Client Silver output

The records allocation is initiated with a difference of less than a second

(from the NFVO Dashboard) but the event dispatching depends also on

the instantiation time (from the Generic VNFM, which depends also from

network latency in order to download all the packets specified in the script

installation) so the event start highlighted in figure 4.8 are different.

106 CHAPTER 4. VALIDATION AND EVALUATION

Figure 4.8: Allocation of two network service records with different QoS

The deallocation event instead is dispatched as soon as the VIM driver

“confirm” the scheduled deletion of the virtual resources, as expected behav-

ior of the Generic VNFM, meaning that the two events are dispatched with

some milliseconds of delay; the figure 4.9 depicts the event deallocation of

the two network service record from the point of view of the Network Slicer

Engine.

Figure 4.9: Deallocation of two network service records with different QoS

4.2. Scenarios 107

This test highlights that queue definition on OVS are respected and the

guaranteed bandwidth is allocated to the VNFC Instances (the Iperf Server

and Iperf Client).

Two Network Service Records one with QoS

The objective of this test is to demonstrate that our infrastructure respects

the guaranteed bandwidth, also in presence of another service (which insists

on the same network). We defined two different network service descriptor,

one with QoS requirements (policy GOLD) and one without any QoS policy;

this test leverages on the characteristics of Iperf suite which uses all available

bandwidth in order to retrieve network performance. After instantiation the

expected result was a measured bandwidth of at least 150 Mbit/s for the

network service record with GOLD policy.

The figure 4.10 depicts the real time monitoring of the best effort client used

to flood the network in order to check the “performance” of infrastructure.

Figure 4.10: The best effort client bandwidth measurements

The figure 4.11 instead shows the real time evolution of bandwidth used

by the client with GOLD policy allocated, which respects the defined “rules”

and does not convey the flooding.

108 CHAPTER 4. VALIDATION AND EVALUATION

Figure 4.11: The gold client bandwidth measurements

The response time of the entire system corresponds to the response time

of the allocation of one nsr, because when the best-effort network service

record INSTANTIATE FINISH event was dispatched to the Network Slicer

Engine it was discarded; the rejection of the record is the normal behavior for

Network Slicer Engine because there are not defined any QoS policy inside

of it.

4.3 Considerations

Measurements shows the expected behavior of the infrastructure with high

responsiveness from the entire system when a new event is triggered.

The infrastructure responsiveness indicates also a good feasibility with more

complex scenarios with different slice requirements also on different links.

CONCLUSIONS

The Network Slicer Engine is defined as independent module for QoS pa-

rameter definition, used also as main mechanism to enable the Network Slice

feature. This feature is one of the main principle of the 5th generation net-

work infrastructure which will become the main connectivity system after

the year 2020.

The examination of related work show us that the QoS parameters are de-

fined at the edge of network and network traffic is addressed defining a path

through the internal network. We had also to be compliant with the ETSI

NFV specification in order to define a component which is usable by every

platform ETSI compliant.

After the analysis of Open Flow and Open vSwitch as reference technolo-

gies to enable the QoS parameters in cloud environment we have developed

the Connectivity Manager Agent (CMA) which has become our SDN Con-

troller. The CMA uses Openstack as reference cloud platform and interact

with Open vSwitch using the virtual switch controller ovs-vsctl and Open

Flow controller ovs-ofctl; it allows the interaction from application layer

through REST APIs.

109

110 CONCLUSION

In order to be compliant with the ETSI NFV specification and also to enable

the integration with Open Baton framework we defined the Network Slicer

Engine to receive events for instantiation of a new network service record,

retrieves the QoS requirements from the ETSI data model, “translates” this

requirements in the SDN Controller data model and demands the allocation

to the latter. Internally the Network Slicer Engine is divided in two macro

blocks plus one interface, this division has become necessary because we want

to achieve the extendability of the platform also with other SDN platforms.

The first “block” is the QoS Controller which receives events and parse the

record (payload of the event) and checks for QoS requirements, if there are

invokes a method of the interface in order to communicate with the SDN

driver. The second “block” is the SDN Driver which will be directly invoked

(through the interface) from the QoS controller and communicates with the

SDN Controller in order to define the network slice (defined in turn by the

QoS requirements in the network service record). The interface was defined

to achieve the extendability and compatibility with other SDN platform but

is not ETSI compliant, simply because the specification does not define any

interface for QoS allocation. Further development could be done on the Net-

work Slicer Engine, it could be expanded in order to support the multi data

center environment to support a Network Service Record distributed in a

multi VIM environment.

Another improvement always on Network Slicer Engine side, could be the

integration with plug in system of Open Baton framework in order to handle

multiple SDN Controllers in multiple locations.

The Connectivity Manager Agent could be replaced by another SDN con-

troller such Onos or could be expanded in order to handle the physical hard-

ware in place into the data center.

LIST OF FIGURES

1.1 The network slicing in 5G architecture 5

1.2 The NFV plus SDN scenario[1] 9

1.3 The architecture of ETSI main functional blocks 11

1.4 Virtual Link in ETSI Architecture 12

1.5 The Virtual Link Definition 13

1.6 The SDN stack . 14

1.7 The ETSI NFV Architecture 16

1.8 A simple VLAN schema . 18

1.9 The VLAN packet . 19

1.10 Open vSwitch distributed configuration 20

1.11 OVSDB schema . 21

1.12 Open vSwitch internal architecture 22

1.13 The proposed architecture in literature 24

1.14 The NOX overview . 27

1.15 Beacon Overview . 27

1.16 Ryu Overview . 28

1.17 The FloodLight architecture 29

111

112 LIST OF FIGURES

1.18 Floodlight Diagram . 30

1.19 The OpenDaylight Layered architecture 31

1.20 The intent framework . 33

1.21 The Onos Architecture . 34

1.22 An example of system architecture 36

1.23 HiQos architecture . 37

1.24 The HiQos experimental topology 39

1.25 Q-Ctrl architecture . 40

1.26 The Q-Ctrl experimental scenario 41

1.27 The OpenFlow Test network 42

1.28 The Congestion Formula . 43

2.1 The Open Baton internal architecture 46

2.2 The Generic VNFM[18] communication diagram 48

2.3 The NFVO internal architecture 49

2.4 VNF Life cycle diagram . 52

2.5 The complete architecture . 53

2.6 The Network Slicer Engine architecture 54

2.7 The Connectivity Manager Agent functional architecture . . . 56

2.8 New NSR creation sequence diagram 58

2.9 NSR deletion sequence diagram 60

3.1 The general architecture . 64

3.2 The NFVO internal architecture 65

3.3 The NFVO sdk documentation[4] 70

3.4 The Network Slicer Engine internal architecture 71

3.5 Connectivity Manager Agent software architecture 87

3.6 The OVSDB schema . 93

List of Figures 113

4.1 Zabbix Architecture . 98

4.2 Iperf scenario . 99

4.3 Results of allocation 1 network service record (for two times) . 103

4.4 Result of deallocation 1 network service record (for two times) 103

4.5 The real time throughput of the Iperf Client 104

4.6 The Iperf Client Gold output 105

4.7 The Iperf Client Silver output 105

4.8 Allocation of two network service records with different QoS . 106

4.9 Deallocation of two network service records with different QoS 106

4.10 The best effort client bandwidth measurements 107

4.11 The gold client bandwidth measurements 108

114 LIST OF FIGURES

BIBLIOGRAPHY

[1] Ericsson Network Service Business. http://www.slideshare.net/

Ericsson/network-service-business.

[2] Dijkstra. A note on two problems in connexion with graphs. 1959.

[3] Spring Configuration Bean documentation. http://docs.spring.io/

spring-javaconfig/docs/1.0.0.M4/reference/html/ch02s02.

html.

[4] The NFVO sdk documentation. http : / / openbaton . github . io /

documentation/nfvo-sdk/.

[5] Project Floodlight. http://www.projectfloodlight.org/floodlight/.

[6] Spring Framework. http://spring.io.

[7] The Bottle.py framework. http://bottlepy.org/docs/dev/index.

html.

[8] Openstack Reference Guide. http://www.openstack.org/.

[9] Indigo OpenFlow implementation. https://github.com/floodlight/

indigo.

115

http://www.slideshare.net/Ericsson/network-service-business
http://www.slideshare.net/Ericsson/network-service-business
http://docs.spring.io/spring-javaconfig/docs/1.0.0.M4/reference/html/ch02s02.html
http://docs.spring.io/spring-javaconfig/docs/1.0.0.M4/reference/html/ch02s02.html
http://docs.spring.io/spring-javaconfig/docs/1.0.0.M4/reference/html/ch02s02.html
http://openbaton.github.io/documentation/nfvo-sdk/
http://openbaton.github.io/documentation/nfvo-sdk/
http://www.projectfloodlight.org/floodlight/
http://spring.io
http://bottlepy.org/docs/dev/index.html
http://bottlepy.org/docs/dev/index.html
http://www.openstack.org/
https://github.com/floodlight/indigo
https://github.com/floodlight/indigo

116 BIBLIOGRAPHY

[10] Open System Interconnection. https://en.wikipedia.org/wiki/

OSI_model.

[11] Kong Chee Meng Kannan Govindarajan. Realizing the Quality of Ser-

vice (QoS) in Software-Defined Networking (SDN) Based Cloud Infras-

tructure.

[12] Openflow Java Library. https://github.com/floodlight/loxigen/

wiki/OpenFlowJ-Loxi.

[13] Onos White Paper. http://onosproject.org/wp-content/uploads/

2014/11/Whitepaper-ONOS-final.pdf.

[14] The Beacon Paper. http://yuba.stanford.edu/~derickso/docs/

hotsdn15-erickson.pdf.

[15] OpenDaylight reference platform. https://www.opendaylight.org/.

[16] The Iperf Scenario. https://iperf.fr/.

[17] ETSI NFV MANO Specification. https://www.etsi.org/deliver/

etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.

pdf.

[18] The Generic VNFM. http://openbaton.github.io/documentation/

vnfm-generic/.

[19] Zabbix website. http://www.zabbix.com/.

[20] ZHAng Hailong YAn Jinyao1. HiQoS: An SDN-Based Multipath QoS

Solution.

https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model
https://github.com/floodlight/loxigen/wiki/OpenFlowJ-Loxi
https://github.com/floodlight/loxigen/wiki/OpenFlowJ-Loxi
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://yuba.stanford.edu/~derickso/docs/hotsdn15-erickson.pdf
http://yuba.stanford.edu/~derickso/docs/hotsdn15-erickson.pdf
https://www.opendaylight.org/
https://iperf.fr/
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://openbaton.github.io/documentation/vnfm-generic/
http://openbaton.github.io/documentation/vnfm-generic/
http://www.zabbix.com/

	Introduzione
	Background in Network Slicing
	Use cases
	M2M Communications
	Multimedia Service Delivery
	Mission Critical Services

	Network Slicing in NFV Environment
	The ETSI NFV Architecture
	NFV and SDN

	Introducing mechanisms for enforcing QoS requirements
	Existing solutions for enforcing QoS requirements
	SDN Controllers
	QoS Controllers

	Design and Specification
	NFVO
	Generic VNFM

	Network Slicer Functional Architecture
	Interfaces

	Integration with Open Baton framework
	Network Slicing Policies

	Implementation
	Open Baton Implementation
	NFVO Implementation
	NFVO-Event
	SDKs

	Network Slicer Engine Implementation
	Northbound endpoint
	Network Slicer Engine threads
	The QoSInterface implementation
	Network Slicer Engine southbound

	Connectivity Manager Agent
	Connectivity Manager Agent Northbound
	CMA Core
	Clients

	Validation and Evaluation
	Tools
	Zabbix
	Iperf
	Generic VNFM

	Scenarios
	One Network Service Record
	Two Network Service Records

	Considerations

	Conclusion

