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Sommario

Alcuni dei fenomeni più interessanti che derivano dagli sviluppi dalla fisica moderna
sono sicuramente le fluttuazioni di vuoto. Queste si manifestano in diversi rami
della fisica, quali Teoria dei Campi, Cosmologia, Fisica della Materia Condensata,
Fisica Atomica e Molecolare, ed anche in Fisica Matematica.

Una delle più importanti tra queste fluttuazioni di vuoto, talvolta detta anche
“energia di punto zero”, nonché uno degli effetti quantistici più facili da rilevare,
è il cosiddetto effetto Casimir.

Le finalità di questa tesi sono le seguenti:

• Proporre un semplice approccio ritardato per effetto Casimir dinamico, quindi
una descrizione di questo effetto di vuoto, nel caso di pareti in movimento.

• Descrivere l’andamento della forza che agisce su una parete, dovuta alla
autointerazione con il vuoto.
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Abstract

Some of the most interesting phenomena that arise from the developments of the
modern physics are surely vacuum fluctuations. They appear in different branches
of physics, such as Quantum Field Theory, Cosmology, Condensed Matter Physics,
Atomic and Molecular Physics, and also in Mathematical Physics.

One of the most important of these vacuum fluctuations, sometimes called
“zero-point energy”, as well as one of the easiest quantum effect to detect, is the
so-called Casimir effect.

The purposes of this thesis are:

• To propose a simple retarded approach for dynamical Casimir effect, thus a
description of this vacuum effect when we have moving boundaries.

• To describe the behaviour of the force acting on a boundary, due to its
self-interaction with the vacuum.
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Chapter 1

Introduction

We know that a large number of problems in physics lead back to an harmonic
oscillator problem. The radiation field is the most famous example.
In fact, in the vacuum, in absence of charges, so with null current density j = 0
and obviously null charge density ρ = 0, Maxwell equations are written [1]

∇ · E = 0 , ∇ ·B = 0 ,

∇× E = −∂B

∂t
, ∇×B =

1

c2
∂E

∂t
,

therefore the electric field E, the magnetic field B and the potential vector A
satisfy the characteristic wave equation

1

c2
∂2E

∂t2
−∇2E = 0

1

c2
∂2B

∂t2
−∇2B = 0

1

c2
∂2A

∂t2
−∇2A = 0 .

For completness, we know that in electromagnetism, and then in electrodynamics,
we can always make a gauge transformation which does not change our equations
and their solutions. We choose a framework where the density of current and
the density of charge are null, so respectevely j = 0 and ρ = 0. In this case, it is
convenient to make the so called radiation gauge, where A, named vector potential
in literature, is linked to the fields thanks to the equations

E = −∂A

∂t
,

B = ∇×A ,

1
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while the scalar potential A0, sometimes called φ always vanishes. The constant
c = 299 792 458ms−1 is the speed of light in the vacuum [2], which corresponds to
the speed of propagation of electromagnetic waves.
We can also write these relations more briefly, using tensorial notation [3], once
defined in the chosen gauge the differential form Ai = gijA

j, where Aj = (0,A)
and gij is the metric tensor. The electromagnetic tensor, which contains electric
field and magnetic field, is

Fij = ∂iAj − ∂jAi , (1.1)

such that the following statements are valid

F 0α = −Eα
c
, Fαβ = −εαβγBγ , F ii = 0

and also, from the last one, the antisymmetry relation F ij = −F ji [4], as we can
clearly observe from (1.1).
According to the notation used, latin indices have time-spatial nature, while greek
indices are purely spatial indices, and 0 is undoubtedly purely time index. Eα and
Bα stand for the α-component of, respectively, E and B.

With this background, calling Fij = gikF
klglj, where gij is, again, the metric

tensor, that in our case is simply the Minkowskian metric tensor,

gij = ηij = diag(1,−1,−1,−1) ,

Maxwell equation, in absence of charges, appear

∂iF
ij = 0

∂iFjk + ∂jFki + ∂kFij = 0

where the first one includes Gauss law and Ampère law, and the second, named
Bianchi identity, holds Gauss law for magnetism and Faraday-Neumann-Lenz equa-
tion. Wave equations become, shortly

�Ai = 0 , �Ei = 0 , �Bi = 0 ,

where the box operator is � = ∂k∂
k =

∂2

∂(x0)2
− ∂2

∂(xα)2
, with x0 = ct.

Maxwell equations have wave solutions for the fields, with the (non)dispersive
relation ω = c|k|, where k is clearly the wave vector which identifies the direction
of the wave propagation [5], but we are interested in another thing: defining the
conjugate momentum p(t) = q̇(t), and q(t) satisfies the characteristic equation of
an harmonic oscillator

q̈(t) + ω2q(t) = 0 ,
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let’s calculate the energy of electromagnetic field. We find, trivially, an expression
strongly equivalent to the energy of an harmonic oscillator

H =
1

2

(
p2 + ω2q2

)
.

The next natural step is the quantization.
Like every elementary quantum mechanics textbook, we associate an hermitian
quantum operator to the variable q and to its conjugate momentum p, introducing
q̂ and p̂, which fulfill the canonic commutation relation

[q̂, p̂] = i~1̂ , (1.2)

where we name the reduced Planck constant ~ =
h

2π
= 1.054 571 726(47) ·10−34 Js

[2]. In order to solve the harmonic oscillator problem, it is very helpful to introduce
the ladder operators, the creation operator â† and the annihilation operator â, with
their algebra [

â, â†
]

= 1̂ ,

and we can definitely write, after a few computation, the following expressions for
the operators 

â =
1√
2~ω

(ωq̂ + ip̂)

â† =
1√
2~ω

(ωq̂ − ip̂)

and, reversing the formulas above, operator associated to position and momentum
in function of these ladder operators ensue

q̂ =

√
~

2ω
(â† + â)

p̂ =

√
~ω
2

i(â† − â)

so, the hamiltonian operator Ĥ = H(p̂, q̂) will be

Ĥ = ~ω
(
â†â+

1

2

)
, (1.3)

or, expliciting the number operator N̂ = â†â, it is written

Ĥ = ~ω
(
N̂ +

1

2

)
. (1.4)
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From the application of the hamiltonian operator on Fock’s states |n〉 follows the
eigenvalue relation [7]

Ĥ|n〉 = En|n〉 (1.5)

with the energy eigenvalue

En = ~ω
(
n+

1

2

)
,

and where |n〉 are eigenstates of the number operator N̂ , defined as

|n〉 =

(
â†
)n

√
n!
|0〉 , (1.6)

where |0〉 is called vacuum state and it is defined by the condition â|0〉 = 0.
The integer number n stands for the number of quantons1, so, in the electromag-
netic case, we are talking about photons.

We are able to write the energy of a generical quantized system, summing over
all different polarizations of the wave, labelled by the r-index, and over the wave
vector k already appointed,

H(nk,r) =
∑
k,r

~ωk

(
nk,r +

1

2

)
.

The expression for quantum energies of electromagnetic radiation has a nonzero
minimum value in absence of photons, when nk,r = 0, the so-called zero-point
energy. This particular behavior of the minimum arises because of fields quantum
fluctuations of the vacuum state |0〉, so something new is occurring compared with
classical electrodynamics.
In fact, there exist an infinite modes of radiation, each of them owns an energy
~ω
2

, so that the total vacuum energy diverges, unless we reach to exclude high-

frequency modes 2 [8]. In other words, quantum field theory, in the vacuum, assigns
half a quantum to each degree of the infinitely many degrees of freedom [23].

From a qualitative point of view, it is useful to think about a real harmonic
oscillator. The relation (1.2) prevents the simultaneous vanishing of the kinetic

1 According to Jean-Marc Lévy-Leblonde, theoretical physicist, who I heard in occasion of
a conference in March 2014, in Bologna, quantum entities do not have to be considered neither
as waves, nor particles. So, talking about wave-particle duality seems inaccurate, it is much
better to introduce the term quanton, with the -on suffix like every element dealt with quantum
mechanics [10].

2Ultraviolet divergence is the contribution of the high-frequency modes, opposite to infrared
divergence, which features low frequences [9].
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energy, proportional to the momentum squared p2, and the potential energy, pro-
portional to the position squared q2 [7]. So, the lowest allowed energy is a com-
promise between these two energies, and consequentially the energy of the ground
state can not be equal to zero.

Firstly, in order to bypass the problem of this nonzero value of vacuum energy,
one could employ the follow reasoning: in physics, the significant things are dif-
ferences of energy, and this latter can be redefined less than a constant value, so
that we can remove zero-point energy, even if it diverges.

Obviously, it cannot be the correct solution to our problem, because, according
to the General Theory of Relativity, not only a variation of energy assumes a key
role, but also the total energy of the universe [11].

Many of infinities, in quantum field theory, are removed by means of renormal-
ization procedures [8]. Moreover, zero-point energy and vacuum quantum fluctu-
ations give rise to observable effects.

Some examples of the manifestation of the vacuum energy are surely the spon-
taneus emission of radiation from excited atoms, at first proposed by Einstein3

for a correct energy balance of radiation [13], and the Casimir effect4, briefly,
an attractive force between two parallel conductor plates due to vacuum energy
fluctuations in dependence from the distance between the planes, as shown in Fig-
ure 1.1. This latter phenomenon will be widely discuss in the hereinafter of this
work in its different facets, starting from a stationary model and, subsequently,
adventuring in a moving boundary one.

The Casimir effect is a noteworthy topic, because it is a multidisciplinary sub-
ject. It is reflected in many fields of physics, such as Quantum Field Theory,
Condensed Matter Physics, Atomic and Molecular Physics, Gravitation and Cos-
mology, Mathematical Physics [23].

The purpose of this thesis is to study vacuum fluctuations due to the Casimir
effect, with different boundary conditions, and then we investigate their applica-
tions to a moving wall.

In order to be more specific, in Chapter 2: Simple models of stationary Casimir
Effect we present a brief review of the Casimir effect in the simplest case, thus
with stationary boundary conditions, already known from literature.

3 Albert Einstein (1879-1955), at the beginning of his career, investigated problems concerning
statistical mechanics, with main applications in what, nowadays, we would call quantum domain,
in particular his analysis of energy fluctuations in blackbody radiation led him to become the
first to state, in 1909, long time before the discovery of quantum mechanics, that the theory of
the future ought to be based on a dual description in terms of particles and waves. In 1916,
he proposed a new law of Planck’s blackbody radiation, and in the course of this last work, he
observed a lack of Newtonian causality in the process called spontaneous emission [12].

4 Hendrik Brugt Gerhard Casimir (1909-2000), Dutch physicist, was the first who predicted,
in 1948, this purely quantum effect, an attraction between neutral, parallel conducting plates.
In fact, there is no force acting between neutral plates in classical electrodynamics.
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Figure 1.1: A microscopic sphere is brought to a conducting plane, which is not shown
in the picture, up to a distance of about 100nm, for measuring the Casimir effect [15].

In Chapter 3: Moving Boundaries, we present a description of the behaviour
of these vacuum fluctuations, in (1+1)-dimensions, when one boundary is moving.
We consider both motion of the wall with constant velocity and motion of the wall
that oscillates around the initial position.

In Chapter 4: A retarded Approach, we describe the physics of Chapter 3 by
means of a “naive” retarded model, highlighting the differences between the two
approaches.

Finally, in Chapter 5: A self-consistent law of motion, we try to describe the
motion of the moving wall attached to some kind of a spring.



Chapter 2

Simple models of stationary
Casimir Effect

We are now going to introduce some models of the Casimir effect, in the case of
steady boundaries, the so called stationary Casimir effect.

2.1 Quantized scalar field in a hole

We start with a real scalar field φ(t, x) defined on an interval 0 ≤ x ≤ a and
obeying boundary conditions, introduced in [23]

φ(t, 0) = φ(t, a) = 0 . (2.1)

Figure 2.1: The topology of the hole.

The scalar field equation follows, as usual, the Klein-Gordon equation [9]

1

c2
∂2

∂t2
φ(t, x)− ∂2

∂x2
φ(t, x) +

m2c2

~2
φ(t, x) = 0 , (2.2)

which could be derived using Euler-Lagrange equation of motion

∂i
δL

δ∂iφ
− δL

δφ
= 0 (2.3)

7
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where the Lagrangian density L is

L =
1

2
∂iφ ∂

iφ− 1

2

m2c2

~2
φ2 , (2.4)

defined i = (t, x) with t time-index and x space-index.
The indefinite scalar product, associated with the field equation, is

〈f, g〉 = i

∫ a

0

dx (f ∗∂x0 g − ∂x0f ∗ g) = i

∫ a

0

dxf ∗
←→
∂x0g , (2.5)

where f and g are solutions of (2.2), and x0 = ct.
It is not hard to check that positive-frequency and negative-frequency solutions

are

φ±n (t, x) =

(
c

aωn

) 1
2

exp(±iωnt) sin(knx) , (2.6)

where is valid the dispersive relation

ωn =

√
m2c4

~2
+ c2k2n , (2.7)

and the wave vector is quantized according to the law

kn =
πn

a
, n ∈ N . (2.8)

The (2.6) is true only if the (2.1) is. Otherwise, there are also terms containing
cos(knx).

According to the scalar product (2.5), these solutions satisfy the orthonormal-
ization relations

〈φ±m, φ±n 〉 = ∓δmn , 〈φ±m, φ∓n 〉 = 0 .

We begin by considering a free field in (1+1)-dimensional space-time.
The standard quantization of this field is performed by the expansion

φ(t, x) =
√
~c
∑
n

[
φ−n (t, x)an + φ+

n (t, x)a†n
]
, (2.9)

where the operators an, a†n are respectively the annihilation and creation operators,
obeying the commutation relations[

am, a
†
n

]
= δmn , [am, an] = 0 =

[
a†m, a

†
n

]
. (2.10)
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As mentioned in Chapter 1, the vacuum state is defined, repetita iuvant, by the
relation

an |0〉 = 0 ∀n ∈ N . (2.11)

We are interesting in investigating the energy of this vacuum state |0〉.
The operator associated with the energy density is given by the 00-component
of the energy-momentum tensor of the scalar field, defined, by means of the La-
grangian density,

Tij =
δL
δ∂iφ

∂jφ− gijL , (2.12)

with the result

T00(t, x) =
1

2

{
1

c2

(
∂φ(t, x)

∂t

)2

+

(
∂φ(t, x)

∂x

)2

+
m2c2

~2
φ2

}
, (2.13)

for a massive scalar field.
The energy density results

〈0|T00(x)|0〉 =
~
2a

∞∑
n=1

ωn −
m2c4

2a~

∞∑
n=1

cos(2knx)

ωn
, (2.14)

and the total vacuum energy in the integration of this latter expression in the
interval [0, a], so that the second term does not contribute to the result because of
periodicity of the trigonometric function

E0(a) =

∫ a

0

dx 〈0|T00(x)|0〉 =
~
2

∞∑
n=1

ωn (2.15)

Proof. First of all we write down the expression for the scalar field

φ(t, x) =
√
~c
∑
n

(
c

aωn

) 1
2

sin (knx)
[
exp(−iωnt)an + exp(iωnt)a

†
n

]
. (2.16)

The derivatives of (2.16) will be

∂

∂t
φ = i

√
~c
∑
n

(cωn
a

) 1
2

sin(knx)
[
exp(iωnt)a

†
n − exp(−iωnt)an

]
,

∂

∂x
φ =
√
~c
∑
n

(
c

aωn

) 1
2

cos(knx)kn
[
exp(−iωnt)an + exp(iωnt)a

†
n

]
,
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and their second power are(
∂

∂t
φ

)2

= ~c
∑
n

∑
m

( c

a

)
(ωnωm)

1
2 sin(knx) sin(kmx)(−1)×

×
[

exp(iωnt) exp(iωmt)a
†
na
†
m + exp(−iωnt) exp(−iωmt)anam+

− exp(iωnt) exp(−iωmt)a
†
nam − exp(−iωnt) exp(iωmt)ana

†
m

]
=

= ~c
∑
n

∑
m

( c

a

)
(ωnωm)

1
2 sin(knx) sin(kmx)×

×
[
− exp(iωnt+ iωmt)a

†
na
†
m − exp(−iωnt− iωmt)anam+

+ exp(iωnt− iωmt)a
†
nam + exp(−iωnt+ iωmt)

(
δmn + a†man

) ]
,

(
∂

∂x
φ

)2

= ~c
∑
n

∑
m

( c

a

) 1

(ωnωm)
1
2

cos(knx) cos(kmx)knkm×

×
[

exp(iωnt) exp(iωmt)a
†
na
†
m + exp(−iωnt) exp(−iωmt)anam+

+ exp(iωnt) exp(−iωmt)a
†
nam + exp(−iωnt) exp(iωmt)ana

†
m

]
=

= ~c
∑
n

∑
m

( c

a

) 1

(ωnωm)
1
2

cos(knx) cos(kmx)knkm×

×
[

exp(iωnt+ iωmt)a
†
na
†
m + exp(−iωnt− iωmt)anam+

+ exp(iωnt− iωmt)a
†
nam + exp(−iωnt+ iωmt)

(
δmn + a†man

) ]
,

while the field squared is

φ2 = ~c
∑
n

∑
m

( c

a

) 1

(ωnωm)
1
2

sin(knx) sin(kmx)×

×
[

exp(iωnt+ iωmt)a
†
na
†
m + exp(−iωnt− iωmt)anam+

+ exp(iωnt− iωmt)a
†
nam + exp(−iωnt+ iωmt)

(
δmn + a†man

) ]
.

The substitution of these relations in the (2.13) gives an operator, whose action
on the vacuum state is

〈0|T00|0〉 =
~c

2

∑
n

{ 1

c2
c

a
ωn sin2(knx) +

c

aωn
cos2(knx)k2n+

+
m2c2

~2

(
c

aωn

)
sin2(knx)

}
,
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where we substituted in the second term the dispersive relation (2.7), written as

k2n =
ω2
n

c2
− m2c2

~2
, and, with some calculations, we prove the (2.14)

〈0|T00|0〉 =
~c

2

∑
n

{ωn
ac

sin2(knx) +
ωn
ac

cos2(knx)+

− m2c3

a~2ωn
cos2(knx) +

m2c3

a~2aωn
sin2(knx)

}
=

=
~c

2

∑
n

{ωn
ac
− m2c3

a~2ωn
[
cos2(knx)− sin2(knx)

] }
=

=
~
2a

∞∑
n=1

ωn −
m2c4

2a~
∑
n

cos(2knx)

ωn
.

The equation (2.15) for the vacuum state energy of a quantized field between
boundaries is the key point for the formulation of the theory of the Casimir effect.
Clearly, it is immediatly viewable that the quantity E0(a) is infinite, but there are
sundry ways to regularize it [24], as we will explain subsequently.

Evindently, physical results should not depend on the choice of the regularation
procedure.

2.2 Regularizations in the vacuum

There are different possible ways to regularize the ultraviolet divergences in the
vacuum. The most important of them are, without any doubt, frequency cutoff
regularization, zeta function regularization and point splitting regularization, each
of them will be dealt carefully.

2.2.1 Frequancy cutoff regularization

This could be considered the conceptually simplest scheme of regularization5. As
was already said in the introduction, we want to remove the ultraviolet frequences.
We put a damping function exp{−δωn} in the sum

E0(a, δ) =
~
2

∞∑
n=1

ωn exp (−δωn) , (2.17)

5The frequancy cutoff regularization was also used by Casimir in the original work [25].
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that obviously comes to (2.15) when δ → 0.
Without losing generality, we consider the regularized vacuum energy of the inter-
val for a massless field (m = 0), that results [24]

E0(a, δ) =
~
2

∞∑
n=1

cπn

a
exp

(
−δ cπn

a

)
=

~cπ

8a
sinh−2

(
δcπ

2a

)
. (2.18)

Proof. We can prove the last passage of this latter expression using the relation,
proved in A,

SN =
N∑
n=1

αne−αn =
αe−αN

[
eα(N+1) +N − eα(N + 1)

]
(eα − 1)2

, (2.19)

and computing the limit for N →∞. In fact, the result is

lim
N→+∞

αe−αn
[
eα(N+1) +N − eα(N + 1)

]
(eα − 1)2

=
αeα

(eα − 1)2
=

=
α(

e
α
2 − e−

α
2

)2 =
α

4
sinh−2

(α
2

)
,

that for α =
δcπ

a
, since we have

∞∑
n=1

α

δ
exp (−αn), gives back the (2.18).

In the limit of small δ we obtain

E0(a, δ) =
~a

2πcδ2
+ E(a) +O(δ2) , E(a) = −~cπ

24a
, (2.20)

so the vacuum energy is represented by a sum of singular terms, each of them with
a finite contribution.

We now repeat the same calculation to the vacuum energy density in Minkoski
vacuum |0M〉

〈0M |T00|0M〉 =
~
2π

∫ +∞

0

dk ω , (2.21)

and we evaluate the regularized vacuum energy for the interval [0, a], that is

E0M(a) =
~a
2π

∫ +∞

0

dk ω . (2.22)

At this point, we apply the same regularization as above, imposing an exponentially
damping function exp{−δω(k)} under the integral, again considering the massless
case, so that ω(k) = ck

E0M(a, δ) =
~ca

2π

∫ +∞

0

dk k exp (−δck) =
~a

2πcδ2
. (2.23)



2.2. REGULARIZATIONS IN THE VACUUM 13

Proof. It is quickly to demonstrate the latter result, simply integrating by parts

E0M(a, δ) =
~ca

2π

∫ +∞

0

dk ke−δck =

[
− ~a

2πδ
ke−δck

]+∞
0

+
~a
2πδ

∫ +∞

0

dke−δck =

=

[
− ~a

2πcδ2
e−δck

]+∞
0

=
~a

2πcδ2
.

Consequently, the renormalized vacuum energy in the interval [0, a], that we
can call Casimir energy for the scalar field, is the difference between (2.18) and
(2.23), in the limit δ → 0

Eren0 (a) = lim
δ→0

[E0(a, δ)− E0M(a, δ)] = lim
δ→0

[
E(a) +O(δ2)

]
= −~cπ

24a
. (2.24)

So, in this simple case, the renormalization corresponds to removing a quantity
equal to the vacuum energy of the unbounded space in the given interval. The
renormalized energy E(a) monotonically decreases when boundary points approach
each other and this points to the presence of an attractive force between the
conducting planes, namely

F (a) = −∂E
ren
0 (a)

∂a
= − ~cπ

24a2
. (2.25)

2.2.2 Zeta function regularization

ζ-function regularization method is the most elegant, and maybe even useful, in a
large variety of cases, because of its pleasant mathematical properties. The basic
idea is as simple as powerful, and it is based upon the analytical continuation of
the Riemann ζ-function

ζ(s) =
∞∑
n=1

1

ns
(2.26)

Firstly, we change the power of the frequency ωn in the sum (2.15), and it lead to

E0(s) =
~
2
µ2s

∞∑
n=1

ω1−2s
n , (2.27)

where µ is an arbitrary mass scale, introduced in order to keep the energy dimen-
sion of E0.
The physical expression is recovered on removing the regularization, thus evaluat-
ing the limit lim

s−→0
E0(s).
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This latter series converges, in general, for Re(s) >
D + 1

2
, in a D-dimensional

space. In our model, D = 2 because we are working with one time-dimension and
one space-dimension.

So, we can evaluate the series
∞∑
n=1

ωn, with ωn =
ncπ

a
in the cavity [0, a]. The

energy density is

〈T00(x)〉 = − ~cπ

24a2
− m2c4

2a~

∞∑
n=1

cos(2knx)

ωn
, (2.28)

and the energy results

E0(a) =
~
2

∞∑
n=1

ωn =
~
2

∞∑
n=1

ωn = −~cπ

24a
, (2.29)

because of the relation
∞∑
n=1

n = − 1

12
, proved in B.

This regularization procedure has an important property in common with the
previos one: in both processes, the eigenvalue spectrum has to be determined
explicitly.

2.2.3 Point splitting regularization

In this regularization procedure, we start representing the vacuum energy in terms
of the Green’s function, as follows

E0 = i

∫
V

dr
∂2G(x, x′)

∂x20

∣∣∣∣∣
x′=x

, (2.30)

and we introduce the regularization vector parameter ε, such that

E0(ε) = i

∫
V

dr
∂2G(x, x′)

∂x20

∣∣∣∣∣
x′=x+ε

. (2.31)

The only nonzero component of ε is the time one, so we keep ε = (ε0,0), with
ε0 6= 0. This technique was used in quantum field theory in operator product
expansions and for quantum fields in curved backgrounds.

Anyway, point splitting regularization has been shown to be equivalent to the
zeta function regularization, by Moretti in 1999 [18].
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2.3 One dimensional space with a nontrivial topol-

ogy

We continue considering a real scalar field on the interval 0 ≤ x ≤ a, but we
change the boundary conditions, imposing

φ(t, 0) = φ(t, a) ,
∂φ

∂x
(t, 0) =

∂φ

∂x
(t, a) , (2.32)

that is equivalent to identify the boundary points, x = 0 and x = a, as the same
[23]. As a consequence, we want to get the scalar field on a flat manifold with
topology of a circle S1, as shown in Figure 2.2.

Figure 2.2: The topology of the manifold S1.

Compared with (2.1), now solutions where φ 6= 0 are possible at the point
x = 0, likewise x = a. The orthonormal set of solutions of the field equation (2.2),
with conditions (2.32), can be represented in the form

φ(±)
n =

(
c

2aωn

) 1
2

exp [±i(ωnt− knx)] , (2.33)

with the following relations

ωn =

(
m2c4

~2
+ c2k2n

) 1
2

, kn =
2πn

a
, n ∈ Z .
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Substituting these positive and negative frequency solutions in the field decompo-
sition (2.9), and using its expression in order to calculate the density of energy,
according to (2.13), we find the vacuum energy density of a scalar field defined on
a one dimensional sphere

〈0|T00(x)|0〉 =
~
2a

∞∑
n=−∞

ωn . (2.34)

The first comparison with (2.14) is the absence of an oscillating term, while the
total vacuum energy turns out to be

E0(a,m) =

∫ a

0

dx 〈0|T00(x)|0〉 =
~
2

∞∑
n=−∞

ωn ,

then,

E0(a,m) = ~
∞∑
n=0

ωn −
1

2
mc2 . (2.35)

The renormalization of this divergent quantity is performed by subtracting the
contribution of the Minkowski space, as calculated previously in the accordance to
(2.24), so it is, substituting (2.33), (2.35) and (2.22) into (2.24)

Eren0 (a,m) = ~

{
∞∑
n=0

ωn −
a

2π

∫ ∞
0

dkω(k)

}
− mc2

2
= (2.36)

=
2~cπ

a

{
∞∑
n=0

√(amc

2π~

)2
+ n2 −

∫ ∞
0

dt

√(amc

2π~

)2
+ t2

}
− mc2

2
,

with t =
ak

2π
.

Using the Abel-Plana formula [26]

∞∑
n=0

F (n)−
∫ ∞
0

dtF (t) =
1

2
F (0) +

∫ ∞
0

dt

e2πt − 1
[F (it)− F (−it)] , (2.37)

we put

F (t) =

√(amc

2π~

)2
+ t2

and since

F (it)− F (−it) = 2i

√
t2 −

(amc

2π~

)2 (
t ≥ amc

2π~

)
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for F (z) analytic function in the right half-plane, we finally obtain

Eren0 (a,m) = −4~cπ

a

∫ ∞
amc
2π~

dt

√
t2 −

(
amc
2π~

)2
e2πt − 1

= − ~c

πa

∫ ∞
µ

dξ

√
ξ2 − µ2

eξ − 1
, (2.38)

where ξ = 2πt and µ =
mca

~
.

In we consider the massless case, we have µ = 0, and the result is

Eren0 (a,m) = − ~c

πa

∫ ∞
0

dξ
ξ

eξ − 1
= −~cπ

6a
. (2.39)
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Chapter 3

Moving boundaries

Taking in exam the wave equation

1

c2
∂2φ

∂t2
− ∂2φ

∂x2
= 0 (3.1)

in a time-dependent domain 0 < x < L(t), where L(t) is the right moving edge,
constrained to the boundary conditions [21]

φ(t, 0) = φ (t, L(t)) = 0 . (3.2)

A complete set of solutions to this problem can be written in the form [27]

φn(t, x) = Cn

{
exp

[
− iπnR(ct− x)

]
− exp

[
− iπnR(ct+ x)

]}
, (3.3)

where the function R(ξ) must satisfy the functional equation

R(ct+ L(t))−R(ct− L(t)) = 2 . (3.4)

The field φ is a linear combination of these solutions and their complex conjugate,
namely

φ(t, x) =
√
~c

∞∑
n=1

{
anφn(t, x) + a†nφ

∗
n(t, x)

}
, (3.5)

where Cn is a normalization constant that will be evaluated in the next pages.

Proof. Let’s prove the (3.1) calculating the derivatives of (3.3). If it is true for

19
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every n, then it is for their summation, too.

∂φn
∂t

= Cn

{
exp

[
− iπnR(ct− x)

]
c (−iπnR

′
(ct− x))+

− exp
[
− iπnR(ct+ x)

]
c (−iπnR

′
(ct+ x))

}
,

∂2φn
∂t2

= Cn

{
exp

[
− iπnR(ct− x)

]
c2
(
− π2n2R

′2
(ct− x)− iπnR

′′
(ct− x)

)
+

+ exp
[
− iπnR(ct+ x)

]
c2
(
π2n2R

′2
(ct+ x) + iπnR

′′
(ct+ x)

)}
.

In the same way

∂φn
∂x

= Cn

{
exp

[
− iπnR(ct− x)

]
iπnR

′
(ct− x)+

+ exp
[
− iπnR(ct+ x)

]
iπnR

′
(ct+ x)

}
,

∂2φn
∂x2

= Cn

{
exp

[
− iπnR(ct− x)

](
− π2n2R

′2
(ct− x)− iπnR

′′
(ct− x)

)
+

+ exp
[
− iπnR(ct+ x)

](
π2n2R

′2
(ct+ x) + iπnR

′′
(ct+ x)

)}
.

It is possible to compute the same calculation for φ∗n, and it will be very similar
to φ’s, in fact

∂2φ∗n
∂t2

= C∗n

{
exp

[
iπnR(ct− x)

]
c2
(
− π2n2R

′2
(ct− x) + iπnR

′′
(ct− x)

)
+

+ exp
[
iπnR(ct+ x)

]
c2
(
π2n2R

′2
(ct+ x)− iπnR

′′
(ct+ x)

)}
,

and

∂2φ∗n
∂x2

= C∗n

{
exp

[
iπnR(ct− x)

](
− π2n2R

′2
(ct− x) + iπnR

′′
(ct− x)

)
+

+ exp
[
iπnR(ct+ x)

](
π2n2R

′2
(ct+ x)− iπnR

′′
(ct+ x)

)}
.

The first boundary condition is straightforward

φn(t, 0) = Cn

{
exp

[
− iπnR(ct)

]
− exp

[
− iπnR(ct)

]}
= 0 ,

while for demonstrate the second one we need the (3.4)

φn(t, L(t)) = Cn

{
exp

[
− iπnR(ct− L(t))

]
− exp

[
− iπnR(ct+ L(t))

]}
= 0 .
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Differentiating (3.4) with respect to the time variable t, we find the following
expression for the velocity

L̇(t) =
R′[ct− L(t)]−R′[ct+ L(t)]

R′[ct− L(t)] +R′[ct+ L(t)]
c , (3.6)

where the primes indicate the total derivative with respect to the argument. With
these relation we can find the relation between the derivative of the function R, in
particular

R′(ct− L(t)) = R′(ct+ L(t))
c+ L̇(t)

c− L̇(t)
, (3.7)

or

R′(ct+ L(t)) = R′(ct− L(t))
c− L̇(t)

c+ L̇(t)
. (3.8)

Now, we can find the value of the constant Cn

Cn =
i√

4πn
=

i

2
√
πn

. (3.9)

according to [27], [28], too.

Proof. We want to calculate the value of the constant Cn imposing the normaliza-
tion with the scalar product (2.5), as in the stationary model.
Firstly, we compute the time-derivative of the field

1

c

∂φn
∂t

=
1

c
Cn(−iπn)

{
exp

[
− iπnR(ct− x)

]
R′(ct− x)c+

− exp
[
− iπnR(ct+ x)

]
R′(ct+ x)c

}
=

=(−iπn)Cn

{
exp

[
− iπnR(ct− x)

]
R′(ct− x)+

− exp
[
− iπnR(ct+ x)

]
R′(ct+ x)

}
,

and, in a similar way, we compute the time-derivative of the complex conjugate of
the field

1

c

∂φ∗m
∂t

=(iπm)C∗m

{
exp

[
iπmR(ct− x)

]
R′(ct− x)+

− exp
[
iπmR(ct+ x)

]
R′(ct+ x)

}
.

Now, we evaluate the expression of the scalar product, and we want it to be
normalized according to

〈φm, φn〉 = δmn .
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〈φm, φn〉 =

∫ L(t)

0

dx

{[
φ∗m

(
i

c

∂φn
∂t

)
−
(

i

c

∂φ∗m
∂t

)
φn

]
=

=πC∗mCn

∫ L(t)

0

dxn
(

eiπmR(ct− x) − eiπmR(ct+ x)
)
×

×
(

e−iπnR(ct− x)R′(ct− x)− e−iπnR(ct+ x)R′(ct+ x)
)

+

+m
(

eiπmR(ct− x)R′(ct− x)− eiπmR(ct+ x)R′(ct+ x)
)
×

×
(

e−iπnR(ct− x) − e−iπnR(ct+ x)
)}

=

=πC∗mCn

∫ L(t)

0

dx

{
n
(

eiπ(m− n)R(ct− x)R′(ct− x)+

+ eiπ(m− n)R(ct+ x)R′(ct+ x)− eiπ(mR(ct+ x)− nR(ct− x))R′(ct− x)+

− eiπ(mR(ct− x)− nR(ct+ x))R′(ct+ x)
)

+

+m
(

eiπ(m− n)R(ct− x)R′(ct− x)+

+ eiπ(m− n)R(ct+ x)R′(ct+ x)− eiπ(mR(ct− x)− nR(ct+ x))R′(ct− x)+

− eiπ(mR(ct+ x)− nR(ct− x))R′(ct+ x)
)}

=

=πC∗mCn

∫ L(t)

0

dx

{
(n+m)R′(ct− x)eiπ(m− n)R(ct− x)+

+ (m+ n)R′(ct+ x)eiπ(m− n)R(ct+ x)+

− (nR′(ct− x)−mR′(ct+ x)) eiπ(mR(ct+ x)− nR(ct− x))+

− (nR′(ct+ x)−mR′(ct− x)) eiπ(mR(ct− x)− nR(ct+ x)) .

}

We can see that the first two terms, integrated on the space, give a delta-funcion
δ(n−m), while the last two terms, integrated by parts, vanish.
Then, we obtain the following espression

|Cn|2 4πn = 1 ,

that is satisfied by (3.9).
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Substituting in the previous expressions this value of the constant (3.9), we
find that the scalar field (3.5) is written as

φ =
∑
n

i

2

√
~c

πn

{(
exp

[
− iπnR(ct− x)

]
− exp

[
− iπnR(ct+ x)

])
an+

−
(
exp

[
iπnR(ct− x)

]
− exp

[
iπnR(ct+ x)

])
a†n

}
. (3.10)

It is also possible to write the density of energy, or density of the Hamiltonian
operator, that results

T00(t, x) =
1

2

[(
1

c

∂φ

∂t

)2

+

(
∂φ

∂x

)2
]
, (3.11)

which results

T00(t, x) = ~c
∞∑

n,m=1

π

4

√
nm

{
anam

[
R′2(ct− x) exp [−iπ(n+m)R(ct− x)] +

+R′2(ct+ x) exp [−iπ(n+m)R(ct+ x)]
]
+

+ a†na
†
m

[
R′2(ct− x) exp [iπ(n+m)R(ct− x)] +

+R′2(ct+ x) exp [iπ(n+m)R(ct+ x)]
]
+

+ a†nam

[
R′2(ct− x) exp [−iπ(m− n)R(ct− x)] +

+R′2(ct+ x) exp [−iπ(m− n)R(ct+ x)]
]
+

+
(
δmn + a†man

) [
R′2(ct− x) exp [−iπ(n−m)R(ct− x)] +

+R′2(ct+ x) exp [−iπ(n−m)R(ct+ x)]
]}

(3.12)

Proof. We can prove the expression for the density of energy in two different ways.
Starting from the Lagrangian density (2.4), by means of (2.12) we find, as shown
previously, the expression (2.13), that turns into (3.11) when m = 0, so in case of
massless field.
We can obtain the same result in a different way, through a Legendre transform,

where, defined φ as canonical coordinate, φ̇ =
1

c

∂φ

∂t
, the conjugate momentum is

p =
∂L

∂φ̇
=

1

c

∂φ

∂t
= φ̇ ,
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so the Hamiltonian density is

H = pφ̇− L =
1

2

[(
1

c

∂φ

∂t

)2

+

(
∂φ

∂x

)2
]
. (3.13)

Let’s write the derivatives of the field (3.10)

1

c

∂φ

∂t
=

√
~cπ

2

∑
n

√
n
{(

R′(ct− x)e−iπnR(ct−x) −R′(ct+ x)e−iπnR(ct+x)
)
an+

+
(
R′(ct− x)eiπnR(ct−x) −R′(ct+ x)eiπnR(ct+x)

)
a†n

}
,

∂φ

∂x
= −
√
~cπ

2

∑
n

√
n
{(

R′(ct− x)e−iπnR(ct−x) −R′(ct+ x)e−iπnR(ct+x)
)
an+

+
(
R′(ct− x)eiπnR(ct−x) −R′(ct+ x)eiπnR(ct+x)

)
a†n

}
,

then(
1

c

∂φ

∂t

)2

=
~cπ

4

∑
n,m

√
nm
[ (

e−iπnR(ct−x)R′(ct− x)− e−iπnR(ct+x)R′(ct+ x)
)
an+

+
(

eiπnR(ct−x)R′(ct− x)− eiπnR(ct+x)R′(ct+ x)
)
a†n

][(
e−iπmR(ct−x)R′(ct− x)+

− e−iπmR(ct+x)R′(ct+ x)
)
am +

(
eiπmR(ct−x)R′(ct− x)− eiπmR(ct+x)R′(ct+ x)

)
a†m

]
=

=
~cπ

4

∑
n,m

√
nm

{
anam

[
R′2(ct− x)e−iπ(n+m)R(ct−x) +R′2(ct+ x)e−iπ(n+m)R(ct+x)+

−R′(ct− x)R′(ct+ x)
(

e−iπ[nR(ct−x)+mR(ct+x)] + e−iπ[nR(ct+x)+mR(ct−x)]
) ]

+

+ a†na
†
m

[
R′2(ct− x)eiπ(n+m)R(ct−x) +R′2(ct+ x)eiπ(n+m)R(ct+x)+

−R′(ct− x)R′(ct+ x)
(

eiπ[nR(ct−x)+mR(ct+x)] + eiπ[nR(ct+x)+mR(ct−x)]
) ]

+

+ ana
†
m

[
R′2(ct− x)e−iπ(n−m)R(ct−x) +R′2(ct+ x)e−iπ(n−m)R(ct+x)+

−R′(ct− x)R′(ct+ x)
(

e−iπ[nR(ct−x)+mR(ct+x)] + e−iπ[nR(ct+x)+mR(ct−x)]
) ]

+

+ a†nam

[
R′2(ct− x)e−iπ(m−n)R(ct−x) +R′2(ct+ x)e−iπ(m−n)R(ct+x)+

−R′(ct− x)R′(ct+ x)
(

e−iπ[mR(ct+x)−nR(ct−x)] + e−iπ[mR(ct−x)−nR(ct+x)]
) ]}

,
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and(
∂φ

∂x

)2

=
~cπ

4

∑
n,m

√
nm
[ (

e−iπnR(ct−x)R′(ct− x)− e−iπnR(ct+x)R′(ct+ x)
)
an+

+
(

eiπnR(ct−x)R′(ct− x)− eiπnR(ct+x)R′(ct+ x)
)
a†n

][(
e−iπmR(ct−x)R′(ct− x)+

− e−iπmR(ct+x)R′(ct+ x)
)
am +

(
eiπmR(ct−x)R′(ct− x)− eiπmR(ct+x)R′(ct+ x)

)
a†m

]
=

=
~cπ

4

∑
n,m

√
nm

{
anam

[
R′2(ct− x)e−iπ(n+m)R(ct−x) +R′2(ct+ x)e−iπ(n+m)R(ct+x)+

+R′(ct− x)R′(ct+ x)
(

e−iπ[nR(ct−x)+mR(ct+x)] + e−iπ[nR(ct+x)+mR(ct−x)]
) ]

+

+ a†na
†
m

[
R′2(ct− x)eiπ(n+m)R(ct−x) +R′2(ct+ x)eiπ(n+m)R(ct+x)+

+R′(ct− x)R′(ct+ x)
(

eiπ[nR(ct−x)+mR(ct+x)] + eiπ[nR(ct+x)+mR(ct−x)]
) ]

+

+ ana
†
m

[
R′2(ct− x)e−iπ(n−m)R(ct−x) +R′2(ct+ x)e−iπ(n−m)R(ct+x)+

+R′(ct− x)R′(ct+ x)
(

e−iπ[nR(ct−x)+mR(ct+x)] + e−iπ[nR(ct+x)+mR(ct−x)]
) ]

+

+ a†nam

[
R′2(ct− x)e−iπ(m−n)R(ct−x) +R′2(ct+ x)e−iπ(m−n)R(ct+x)+

+R′(ct− x)R′(ct+ x)
(

e−iπ[mR(ct+x)−nR(ct−x)] + e−iπ[mR(ct−x)−nR(ct+x)]
) ]}

.

Adding these two terms as requested by (3.11) and using the algebra (2.10) so that

ana
†
m = δmn + a†man

we find the relation (3.12).

Evaluating this latter expression of the density of energy in the vacuum, in-
stead, there is only one nonvanishing term, because

〈n|m〉 = δnm , (3.14)

and it reads

T00(t, x) =
∑
n

~cπn

4

{
R′2(ct− x) +R′2(ct+ x)

}
, (3.15)

or

T00(t, x) = −~cπ

48

{
R′2(ct− x) +R′2(ct+ x)

}
. (3.16)
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We can complete our collection writing the pressure, that corresponds to the
two space-index of the energy momentum tensor Tij, when they are equivalent.
We can conclude that it is equal to the density of energy for a one dimensional
model,

P = Tαα = T00 = −~cπ

48

{
R′2(ct− x) +R′2(ct+ x)

}
, (3.17)

in fact we may have expected that

Tαα = NT00 ,

where N is the dimension of the purely spatial space.

Proof. Using the general equation (2.12), it is easy to see that

Tαα =
∂φ

∂x

∂φ

∂x
+

1

2c2
∂φ

∂t

∂φ

∂t
− 1

2

∂φ

∂x

∂φ

∂x
=

=
1

2

[(
1

c

∂φ

∂t

)2

+

(
∂φ

∂x

)2
]
,

that leads to (3.11).

3.1 Uniform motion with a constant velocity

The simplest law is, obviously, the uniform motion

L(t) = L0(1 + αt) or L(t) = L0 + vt , (3.18)

where v = αL0. The first exact solution was written by Havelock [16], and it
was developed by Nicolai [17], and it has brought to a R-function depending on α
according with the following formula [30]

Rα(ξ) =
2 ln

∣∣∣1 +
αξ

c

∣∣∣
ln
∣∣∣c + v

c− v

∣∣∣ . (3.19)

Since in this paper we will use “physical units”, we can define the ξ-parameter in
two ways: or with space dimension [ξ] = [L] as we did before, so writing ξ = ct±x,

or with time dimension [ξ] = [T ], when we would express it as ξ = t± x

c
and the

(3.19) ensues

Rα(ξ) =
2 ln |1 + αξ|

ln
∣∣∣c + v

c− v

∣∣∣ . (3.20)
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The equation (3.19) can also be written, in literature, as follows

Rα(ξ) =
1

tanh−1
(v

c

) ln
∣∣∣1 +

αξ

c

∣∣∣ , (3.21)

since tanh−1(z) =
1

2
ln

(
1 + z

1− z

)
, but we prefer to use the previous notation.

Anyway, we can put the (3.19) into the (3.4) and verify its correctness.

Proof. Remembering that v = αL0 and that ln
∣∣∣c + v

c− v

∣∣∣ = ln
∣∣∣1 + v/c

1− v/c

∣∣∣, the calcu-

lation is straightforward

R(ct+ L(t))−R(ct− L(t)) =

=
2 ln

∣∣∣1 +
α

c
[ct+ L0(1 + αt)]

∣∣∣
ln
∣∣∣c + v

c− v

∣∣∣ −
2 ln

∣∣∣1 +
α

c
[ct− L0(1 + αt)]

∣∣∣
ln
∣∣∣c + v

c− v

∣∣∣ =

=
2

ln
∣∣∣c + v

c− v

∣∣∣ ln

∣∣∣∣∣1 + αt+
v

c
t+

vα

c
t

1 + αt− v

c
t− vα

c
t

∣∣∣∣∣ =
2

ln
∣∣∣1 + v/c

1− v/c

∣∣∣ ln

∣∣∣∣∣(1 + αt)(1 + v/c)

(1 + αt)(1− v/c)

∣∣∣∣∣ = 2 .

We can also check that L̇(t) = v, by means of the general formula (3.6).

Proof. We first calculate the derivative of (3.19)

R′α(ξ) =
2α

ln
(c+v

c−v
)

c
· 1

1 + α
cξ

,

so

L̇(t) =
R′[ct− L(t)]−R′[ct+ L(t)]

R′[ct− L(t)] +R′[ct+ L(t)]
c =

=

2α

ln
(c+v

c−v
)

c

[
1

1 + α
c(ct− L(t))

− 1

1 + α
c(ct+ L(t))

]
2α

ln
(c+v

c−v
)

c

[
1

1 + α
c(ct− L(t))

+
1

1 + α
c(ct+ L(t))

]c ,

simplifying the constants and calculating the common denominator, it is not hard
to find

L̇(t) = c
α
c(ct+ L0 + vt− ct+ L0 + vt)

2 + α
c(ct− L0 − vt+ ct+ L0 + vt)

= α
(L0 + vt)

1 + αt
= v ,

using once more the relation v = αL0.
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In this model, where we call D = ln
c + v

c− v
for brevity, our scalar field reads

φ =
∑
n

i

2

√
~c

πn

{
(

exp
[
− i

2πn ln
∣∣1 + αt− αx

c
∣∣

D

]
− exp

[
− i

2πn ln |1 + αt+ αx
c |

D

])
an+

−

(
exp

[
i
2πn ln

∣∣1 + αt− αx
c
∣∣

D

]
− exp

[
i
2πn ln |1 + αt+ αx

c |
D

])
a†n

}
,

(3.22)

while the density of energy (3.16) can be expressed in the following way,

T00(t, x) = − ~πα2

12D2c

 1[
1 + αt− αx

c

]2 +
1[

1 + αt+
αx

c

]2
 , (3.23)

or, in an alternative form, writing β =
v

c
and substituting D = ln

c + v

c− v
and

α =
v

L0

T00(t, x) = − ~cπ

12L2
0

β2

ln2

(
1 + β

1− β

)


1[
1 +

β

L0

(ct− x)

]2 +
1[

1 +
β

L0

(ct+ x)

]2
 .

(3.24)
We could also operate the limit for small velocity, recovering for the density of

energy of the static case for
v

c
= β � 1,

lim
β−→0

− ~cπ

12L2
0

β2

ln2

(
1 + β

1− β

)


1[
1 +

β

L0

(ct− x)

]2 +
1[

1 +
β

L0

(ct+ x)

]2
 = − ~cπ

24L2
0

.

(3.25)

3.2 Oscillating boundary

Let us consider a massless real scalar field in a one dimensional vibrating cavity,
with the left boundary fixed at x = 0, as in the previous case, while the right one
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performs an oscillatory motion around the equilibrium position x = L0, described
by the law

L(t) = L0

[
1 + ε sin

(
2π

L0

ct

)]
, (3.26)

and its behaviour is well shown in Figure 3.1

Figure 3.1: Position of the right boundary in function of time, following the oscillating

law L(t) = L0

[
1 + ε sin

(
2π

L0
ct

)]
.

Unfortunately, an exact solution can not be found, unlike in the previous case, so
we have to deal with this problem in a different way.

The presence of a vibrating mirror can change the fluctuations of the field at
a given spatial point time dependently.
This local fluctations are characterized by the energy density of the field, again,

〈T00(t, x)〉 =
1

2

{
1

c2

〈(
∂φ(t, x)

∂t

)2
〉

+

〈(
∂φ(t, x)

∂x

)2
〉}

, (3.27)

where the expectation value is obviously taken with respect to the vacuum state.
We already know that 〈T00〉 is a divergent quantity, but in this case we can regu-
larize it by means of the “point-splitting” regularization procedure.

The “regular” part, physically meaningful and cut-off independent, is [28]

〈T00(t, x)〉reg = −f(ct+ x)− f(ct− x) , (3.28)

and f is a particular function satisfying

24πf

~c
=
R

′′′

R′ −
3

2

(
R

′′

R′

)2

+
π2

2

(
R

′
)2

, (3.29)
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but only the last term is the Casimir energy contribution [22].
In order to get this result, we can treat the problem perturbatively, expanding

R(ct) = R0(ct) + εR1(ct) in term of the small (non dimensional) amptitude ε,
getting

R0(ct+ L0)−R0(ct− L0) = 2 , (3.30)

R1(ct+ L0)−R1(ct− L0) = −L0 sin

(
q

2πct

L0

)
[R′0(ct+ L0) +R′0(ct− L0)] .

(3.31)

The general solution reads [28]

R(ct) =
ct

L0

+ ε(−1)q+1

[
ct

L0

sin

(
q

2πct

L0

)
− z

L0

sin

(
q

2πz

L0

)]
(3.32)

where q is an integer number that allows us to distinguish the “semi-resonant”
case (q = 1), when no exponential amplification of the energy density is obtained,
from the “resonant cases” (q ≥ 2), when T00 exponentially increases [29]. Then, z
is a position inside the hole z ∈ [0, L0], that we can write in terms of t as

z = ct− pL0 (3.33)

with p =
1

2
int

[
ct

L0

]
or p =

1

2
int

[
ct

L0

+ 1

]
, for

ct

L0

even or odd, respectively.

This naive perturbative solution to the dynamical Casimir effect does not sat-
isfies the correct boundary conditions, so it is neccesary to split the solution

R(ct) = Rs(ct) +Rnp(ct) . (3.34)

We now write the explicit expression for Rs(ct) and Rnp(ct), while a more technical
discussion is postponed to the Appendix C

Rs(ct) =
ct

L0

− 2

πq
Im

ln

 1 + ξ + (1− ξ) exp
(

iq 2πct
L0

)
−(1 + ξ) + (1− ξ) exp

(
−iq 2πct

L0

)
 , (3.35)

or, using the relation, tan−1 (x) =
1

2i
ln

(
x− i

x+ i

)

Rs(ct) =
ct

L0

− 1

πq
tan−1

 sin
(
q 2πct
L0

)
1+ξ
1−ξ + cos

(
q 2πct
L0

)
 , (3.36)
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and

Rnp(ct) = (−1)q
εz

L0

sin

(
q

2πz

L0

) 2ξ

1 + ξ2 + (1− ξ2) cos
(
q 2πz
L0

)
 , (3.37)

where 0 ≤ z ≤ L0 has been defined previously, while

ξ = exp

[
(−1)q+1q2πεct

L0

]
. (3.38)

For the short time limit, so when ct� L0

ε
, these functions result

Rs(ct) ≈
ct

L0

− (−1)q
εct

L0

sin

(
q

2πct

L0

)
, (3.39)

Rnp(ct) ≈ (−1)q
εz

L0

sin

(
q

2πz

L0

)
, (3.40)

which lead to the perturbative solution (3.32).

Proof. Let us start from Rs. First of all, we say that cos

(
q

2πct

L0

)
≈ 1. Then, the

argument of the arctangent becomes

sin
(
q 2πct
L0

)
1+ξ
1−ξ + 1

=
sin
(
q 2πct
L0

)
(1− ξ)

1 + ξ + 1− ξ
,

and now, expanding in series

ξ = exp

[
(−1)q+1q2πεct

L0

]
≈ 1 +

(−1)q+1q2πεct

L0

it is easy to obtain

Rs(ct) ≈
ct

L0

− 1

πq
tan−1

[
(−1)qqπε

ct

L0

sin

(
q

2πct

L0

)]
≈ ct

L0

− (−1)q
εct

L0

sin

(
q

2πct

L0

)
.

In second place, if we consider the same approximation for cos
(
q 2πct
L0

)
and for ξ,

the result of Rnp is straightforward.
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For the long time limit ct� L0

ε
, Rnp is negligible, but we prove this statement

after having discussed the behaviour of Rs. The function Rs has a first term, linear
in time, and a second one, that for late times oscillates.

Let us calculate the first derivative of this function, namely

R′s(ct) =
2ξ

L0

 1

1 + ξ2 + (1− ξ2) cos
(
q 2πct
L0

)
 , (3.41)

excluding a negligible term.

Proof.

R′s(ct) =
1

L0

− 1

qπ

1 +
sin2

(
q 2πct
L0

)
[
1+ξ
1−ξ + cos

(
q 2πct
L0

)]2

−1

1[
1+ξ
1−ξ + cos

(
q 2πct
L0

)]2×
×

{
q2π

L0

cos2
(
q

2πct

L0

)
+
q2π

L0

(1 + ξ)

(1− ξ)
cos

(
q

2πct

L0

)
− sin

(
q

2πct

L0

)
×

×
[
ξ′(1− ξ) + ξ′(1 + ξ)

(1− ξ)2
− q2π

L0

sin

(
q

2πct

L0

)]}
=

=
1

L0

− 1

qπ

1[(
1 + ξ

1− ξ

)2

+ 2
(1 + ξ)

(1− ξ)
cos

(
q

2πct

L0

)
+ 1

]×

×
{
q2πct

L0

+
q2πct

L0

(1 + ξ)

(1− ξ)
cos

(
q

2πct

L0

)
− 2ξ′

(1− ξ)2
sin

(
q

2πct

L0

)}
=

=
1

L0

− 1

qπ

q2π

L0

[
1 + ξ2 − 2ξ + (1− ξ2) cos

(
q

2πct

L0

)]
− 2ξ′ sin

(
q

2πct

L0

)
2 + 2ξ2 + 2(1− ξ2) cos

(
q 2πct
L0

) .

We are ready to express ξ′ as the derivative of (3.38) with respect to its argument
ct,

ξ′ =
(−1)q+1q2π

L0

ε exp

[
(−1)q+1q2πεct

L0

]
=

(−1)q+1q2π

L0

εξ ,
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and substitute it in the demonstration, so that

R′s(ct) =
1

L0

−
1 + ξ2 − 2ξ + (1− ξ2) cos

(
q 2πct
L0

)
L0

[
1 + ξ2 + (1− ξ2) cos

(
q 2πct
L0

)]+

−
4(−1)q+1εξ sin

(
q 2πct
L0

)
L0

[
1 + ξ2 + (1− ξ2) cos

(
q 2πct
L0

)] =

=
1

L0

 2ξ + 4(−1)qεξ sin
(
q 2πct
L0

)
[
1 + ξ2 + (1− ξ2) cos

(
q 2πct
L0

)]
 =

=
2ξ

L0

[
1 + ξ2 + (1− ξ2) cos

(
q 2πct
L0

)] [1 + 2(−1)qε sin

(
q

2πct

L0

)]
.

In the final equation (3.41), we eliminate the last term.

Since
dξ

d(ct)
=

(−1)q+1q2π

L0

εξ, we could differentiate the function Rs, with respect

to its argument, considering ξ as a constant. So, the first derivative would result

R′s(ct) =
2ξ

L0

 1

1 + ξ2 + (1− ξ2) cos
(
q 2πct
L0

)
 , (3.42)

as in the general case.

Proof. Using again the relation (3.36), we have only to calculate the derivative

R′s(ct) =
1

L0

− 1

qπ

1 +
sin2

(
q 2πct
L0

)
[
1+ξ
1−ξ + cos

(
q 2πct
L0

)]2

−1

q
2π

L0

1 + 1+ξ
1−ξ cos

(
q 2πct
L0

)
[
1+ξ
1−ξ + cos

(
q 2πct
L0

)]2 =

=
1

L0

− 2

L0

1 + 1+ξ
1−ξ cos

(
q 2πct
L0

)
(

1+ξ
1−ξ

)2
+ 2

(
1+ξ
1−ξ

)
cos
(
q 2πct
L0

)
+ 1

=

=
1

L0

1−
1− 2ξ + ξ2 + (1− ξ2) cos

(
q 2πct
L0

)
1 + ξ2 + (1− ξ2) cos

(
q 2πct
L0

)
 =

=
2ξ

L0

 1

1 + ξ2 + (1− ξ2) cos
(
q 2πct
L0

)
 .
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Now we are ready to analyze the function Rnp. Again, if we consider that ξ is
a constant when we derive with respect to its argument ct, then we can express
Rnp in terms of the first derivative of Rs, as follows

Rnp = (−1)qεz sin

(
q

2πct

L0

)
R′s(ct) , (3.43)

since trigonometric functions sine and cosine, computed in q
2πz

L0

, are equivalent to

these same functions evaluated in q
2πct

L0

. In fact, reminding (3.33), this conclusion

is immediate thanks to the periodicity of these trigonometric functions.
Consequently, Rnp is a correction of ε-order to the second term of (3.36).

Anyway, we can write the density of energy by means of (3.16), substituting
the latter equation for R′s(ct) found in (3.41)

T00 = − ~cπ

12L2
0

1[
ξ + ξ−1 − (ξ − ξ−1) cos

(
q 2πct
L0

)]2 , (3.44)

that substituting the definition (3.38) of ξ, become

T00 = − ~cπ

24L2
0

{
1[

cosh
(

(−1)q+1q2πε(ct+x)
L0

)
− sinh

(
(−1)q+1q2πε(ct+x)

L0

)
cos
(
q 2π(ct+x)

L0

)]2+

+
1[

cosh
(

(−1)q+1q2πε(ct−x)
L0

)
− sinh

(
(−1)q+1q2πε(ct−x)

L0

)
cos
(
q 2π(ct−x)

L0

)]2
}
.

(3.45)

3.2.1 Another particular law

However, it is possible to obtain other exact solutions for some resonant trajecto-
ries.

If we consider, in particular, the following law of motion for the right moving
boundary [36],

L(t) = L0 +
L0

2π

{
sin−1

[
sin θ cos

(
2πct

L0

)]
− θ
}
, t ≥ 0 , (3.46)

where ε determines the amptitude of the oscillations, and it appear in θ, that is

defined θ = tan−1
(
επ

L0

)
. This law leads to the exact expression for R(t)
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R(2nL0 + χ) = 2n+
1

2
− 1

π
tan−1

[
cot

(
πχ

L0

)
− 2nεπ

L0

]
, (3.47)

where n ≥ 1 is any positive integer and χ ∈ (−L0, L0] is a spatial variable.

When
ε

L0

is a small parameter,

L(t) = L0 − ε sin2

(
πct

L0

)
. (3.48)

Proof. In the approximation
ε

L0

� 1 we have that

sin θ ≈ θ ≈ επ

L0

,

sin−1
[
π
ε

L0

cos

(
2πct

L0

)]
≈ π

ε

L0

cos

(
2πct

L0

)
,

so, consequently,

L(t) = L0 +
ε

2
cos

(
2πct

L0

)
− ε

2
=

= L0 − ε
1− cos

(
2πct
L0

)
2

= L0 − ε sin2

(
πct

L0

)
,

that prove the previous equation.

This particular solution has the advantage that is valid at an arbitrary time,
so we have not split the function R(ct), as already done for purely harmonic
oscillations.

Using the exact solution for R(ct) (3.47), we find

f(2nL0 + χ) = ~c

{
π

12L2
0

− π

16L2
0D

2
n(χ)

+
πε

6L2
0

δ(χ− L0)

}
, (3.49)

defining Dn(ξ)

Dn(ξ) = α + β sin

(
2πχ

L0

)
+ γ cos

(
2πχ

L0

)
, (3.50)

with α = 1 + 2

(
nε

L0

)2

, β = −2
nε

L0

, γ = −2

(
nε

L0

)2

.

The δ-function term, which appeared also for the law of motion (3.26) because
of the discontinuity of R′(ct), is due to the initial wall velocity, that accelerates
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rapidly at t = 0. This term is not relevant in the resonant evolution of the system,
so we shall not discuss it further and we will not consider anymore the singularity
in this section.

We are only interested in the Casimir term of the density of energy, so, accord-
ing to the last of (3.29), we need the first derivative of R in order to calculate T00,
as expressed in (3.16). This way, the result is

T00 = − ~cπ

48L2
0

{
1[

1− 2nεπ

L0

sin

(
2π

ct+ x

L0

)
+

4n2ε2π2

L2
0

sin2

(
π

ct+ x

L0

)]2+

+
1[

1− 2nεπ

L0

sin

(
2π

ct− x
L0

)
+

4n2ε2π2

L2
0

sin2

(
π

ct− x
L0

)]2
}
. (3.51)

We can also decide to reject terms O

((
ε

L0

)4
)

, so that we can write

T00 = − ~cπ

48L2
0

 1[
1− 2nεπ

L0
sin
(

2π ct+x
L0

)]2 +
1[

1− 2nεπ
L0

sin
(

2π ct−x
L0

)]2
 , (3.52)

or, with some more calculation,

T00 = − ~cπ

12L2
0

1[
1− 2nεπ

L0

sin

(
2π

ct+ x

L0

)]2 [
1− 2nεπ

L0

sin

(
2π

ct− x
L0

)]2×
×

{
1− 4nπ

ε

L0

sin

(
2π

ct

L0

)
cos

(
2π

x

L0

)
+

+ 4π2n2 ε
2

L2
0

[
sin2

(
2π

ct

L0

)
cos2

(
2π

x

L0

)
+ cos2

(
2π

ct

L0

)
sin2

(
2π

x

L0

)]}
.

(3.53)

Proof. Let us start chaging variable, with the imposition 2nL0 − χ = ct± x.
so we find

R(2nL0 + χ) = R(ct± x) =

= 2n+
1

2
− 1

π
tan−1

[
cot

(
π(ct± x)

L0

− 2nπ

)
− 2nεπ

L0

]
=

= 2n+
1

2
− 1

π
tan−1

[
cot

(
π(ct± x)

L0

)
− 2nεπ

L0

]
.
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Now, we calculate the first derivative, with respect to the argument

R′(ct± x) =
1

L0

· 1

sin2

(
π

ct± x
L0

) · 1

1 +

[
cot

(
π

ct± x
L0

)
− 2nεπ

L0

]2 =

=
1

L0

· 1

sin2

(
π

ct± x
L0

)
+

[
cos

(
π

ct± x
L0

)
− 2nεπ

L0

sin

(
π

ct± x
L0

)]2 =

=
1

L0

· 1

1− 4nεπ

L0

sin

(
π

ct± x
L0

)
cos

(
π

ct± x
L0

)
+

4n2ε2π2

L2
0

sin2

(
π

ct± x
L0

) =

=
1

L0

· 1

1− 2nεπ

L0

sin

(
2π

ct± x
L0

)
+

4n2ε2π2

L2
0

sin2

(
π

ct± x
L0

) .

We can recover the static limit for
ε

L0

→ 0, and the result is T00 = − ~cπ

24L2
0

, as

we expect.
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Chapter 4

A retarded approach

In a one-dimensional hole delimited by the interval [0, L] we write a wave function
vanishing at the boundary

ψn(t, x) = sin
(πnx
L

)
, (4.1)

where the frequency ωn must satisfy

ωn =
cnπ

L
(4.2)

with n ∈ N.
We put this expression for the frequency in the definition of energy

En =
~ω
2

=
~cnπ

2L
, (4.3)

and we obtain the Casimir energy

ECas =
~
2

∞∑
n=1

ωn =
~cπ

2

∞∑
n=1

n = − 1

24

~cπ

L
, (4.4)

as already has been seen previously.
The differentiation of this latter expression for Casimir Energy brings to

dECas =
~cπ

24L2
dL , (4.5)

that definitely gives the Casimir force F = −dECas
dL

FCas = − ~cπ

24L2
. (4.6)
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What if the right border is bonded to a spring?
If the border is moving, of course something is going to change.

It seems reasonable to think that the solution of the equation will be given by
an effective distance Leff (t), and we make the following hypothesis

Leff (t) = L

(
t− L(t)

c

)
. (4.7)

In this model, we consider a photon travelling from the left boundary (L = 0),
to the right one. It has to travel for

c(t− t0) = L(t) ⇒ t0 = t− L(t)

c
.

Thus, in the expression of the force, we replaced L(t) with L(t0), using the retarded
distance (4.7).
We write the delayed Casimir force

FCas = − ~cπ

24L2

(
t− L(t)

c

) . (4.8)

4.1 The Casimir energy

Casimir energy can be found analitically, so that comes true the following non
trivial implication

FCas = − ~cπ

24L2

(
t− L(t)

c

) =⇒ VCas =
~cπ

24L

(
t− L(t)

c

) (4.9)

Proof.

VCas =

∫
FCasdL = −~cπ

24

∫ dL

dt
dt

L2

(
t− L(t)

c

) = −~cπ

24

∫
L−2

(
t− L(t)

c

)
L̇(t) dt

We now operate a change of variable calling

α(t) = t− L(t)

c
, (4.10)
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so that

L̇(t)

c
= 1− α̇(t) and dt =

dα

1− L̇(t)

c

=
dα

α̇
.

Let’s continue

VCas = −~cπ

24

∫
c(1− α̇)L−2(α)

α̇
dα = −~c2π

24

{∫
1

α̇L2(α)
dα−

∫
1

L2(α)
dα

}
.

Now it is easy to see that

dα = dt− dL

c
⇒ 1

c

dL

dα
=

dt

dα
− 1 ⇒ dt

dα
=

1

α̇
=

1

c

dL

dα
+ 1 .

so, substituting
1

α̇
=

dL

dα
+ 1 in the first integral, we find

VCas =
~c2π

24

{
−
∫

dL(α)

cL2(α)
−
∫

1

L2(α)
dα +

∫
1

L2(α)
dα

}
=

= −~cπ

24

∫
dL(α)

L2(α)
=

~cπ

24

1

L(α)
=

~cπ

24

1

L
(
t− L(t)

c

) ,
that prove (4.9)

We can also check that if we compute the spatial derivative of the potential,
we come back to the expression of the force.

Proof.

dVCas
dL

=
~cπ

24

− c

L2

(
t− L(t)

c

)
(−1

c

)
,

that turns right since FCas = −dVCas
dL

.

So, our hypothesis catches some features of the Casimir energy, for example, it
is analytically well-defined). Anyway, we will conclude that this approach is not
exactly correct.

Following this approach, we will analize the numerical results for the implica-
tion expressed in (4.9) in the next Chapter.
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4.2 Right boundary with uniform velocity

We wrote the retarded lenght as L

(
t− L(t)

c

)
. We now check that approach for

the simplest law: while holding the left border, consider the right one moving with
a constant velocity, so, as described by (3.18), the law of motion is

L(t) = L0 + vt . (4.11)

We can immediatly compute that the law of motion does not change when |v| � c,
so β � 1 i.e.

L

(
t− L(t)

c

)
= (L0 + vt)

(
1− v

c

)
. (4.12)

Proof. In a few steps, it is easy to verify

L

(
t− L(t)

c

)
= L0 + v

(
t− L0 + vt

c

)
= L0 + v

(
t
(

1− v

c

)
− L0

c

)
=

= L0

(
1− v

c

)
+ vt

(
1− v

c

)
= (L0 + vt)

(
1− v

c

)
,

as written above.

We want to evaluate, from a point x ∈ [0, L(t)], the detection of a signal
bounced on L(t), the right plate, at the time t = t1, while when the right boundary
is in L(t) the signal is discovered in x, such that

L(t1)− x
c

= t− t1 =⇒ L(t1) = x+ c(t− t1) , (4.13)

as we can perceive from Figure 4.1.

Figure 4.1: A displayed description of the delay.

Now, since
L(t1) = L0 + vt1 , (4.14)

it is trivial to find

t1 =
x+ ct− L0

c + v
, (4.15)
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that, put again in (4.14), gives the result

L(t1) =
L0c

c + v
+

vct

c + v
+

vx

c + v
. (4.16)

We now use this latter expression for the distance in order to calculate the density
of energy in the same way as the force, because this is a one-dimensional model.
So using the identity

L(t1) = L

(
t− L(t)

c

)
(4.17)

obtaining the following expression

T00 = − ~cπ

24L2(t1)
= −~cπ

24

(c + v)2

(L0c + vct+ vx)2
, (4.18)

that we can write also in the following manner

T00 = − ~π
24cL2

0

(c + v)2(
1 + αt+

αx

c

)2 , (4.19)

or, expliciting β = v
c,

T00 = − ~cπ

24L2
0

(1 + β)2(
1 +

β

L0

(ct+ x)

)2 . (4.20)

Now, if we operate the limit β → 0, we recover the static result

lim
β→0

= − ~cπ

24L2
0

(1 + β)2(
1 +

β

L0

(ct+ x)

)2 = − ~cπ

24L2
0

. (4.21)

We can note that the (4.20) is not exactly the same as (3.24).
First of all, in the previous case we have two terms, one depending on ct+ x and
one depending ct− x, while here only the the previous dependence appeares.

Then, the constants are not the same. In fact, imposing our hypothesis of

retarded approach, we are not able to recover
β2

ln2

(
1 + β

1− β

) with such a naive

approach.
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4.3 Right oscillating boundary

We can solve the equation (4.13) for our retarded model for “slow time”, thus

when
επct

L0

� 1 because the equation

x+ ct− ct1 = L0 + L0ε sin

(
2πct1
L0

)
(4.22)

in this approximation, turns out to be,

x+ ct− ct1 = L0 + ε2πct1 , (4.23)

that in few steps carries the result

ct1 =
x+ ct− L0

1 + 2πε
. (4.24)

As was already shown for the previous moving boundary, we substitute again
this latter expression in the law of motion (3.26), obtaining

L(t1) = L0

{
1 + ε sin

[
2π

1 + 2πε

(
x− L0 + ct

L0

)]}
. (4.25)

Imposing again L

(
t− L(t)

c

)
= L(t1), we find, using the (4.8), the expression

for the density of energy

T00 = − ~cπ

24L2
0

1{
1 + ε sin

[
2π

1 + 2πε

(
x− L0 + ct

L0

)]}2 , (4.26)

or, alternatively,

T00 = − ~cπ

24L2
0

{
1 + ε sin

(
2π

1 + 2πε

x+ ct

L0

)
cos

(
2π

1 + 2πε

)
+

− ε cos

(
2π

1 + 2πε

x+ ct

L0

)
sin

(
2π

1 + 2πε

)}−2
.

If we evaluate the limit for ε → 0, we recover, from these equivalent latter
expressions, the static density of energy

lim
ε→0

T00 = − ~cπ

24L2
0

. (4.27)
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4.3.1 Resonant law

We can also compute the same procedure with (3.48), imposing (4.13) even in this
case, it is easy to find

x+ ct− ct1 = L0 − ε sin2

(
πct1
L0

)
, (4.28)

that we approximate

x+ ct− ct1 = L0 − ε
π2c2t21
L2
0

. (4.29)

We want to solve this equation for t1, that we write

ε
π2

L2
0

c2t21 + ct1 + L0 − x− ct = 0 , (4.30)

and it leads to the two different solutions

t∗1 =
ct+ x− L0

c
and t∗∗1 =

L2
0

π2cε
− (+ct+ x− L0) =

L2
0

π2cε
− t∗1 . (4.31)

Proof. The (4.30) is solvable by the simply evaluation of the ∆

∆ = c2
[
1− 4π2 ε

L0

+ 4π2 ε

L2
0

(ct+ x)

]
.

Now, if we consider

√
∆ = c

√
1− 4π2

ε

L0

+ 4π2
ε

L2
0

(ct+ x) ≈ c

[
1 +

1

2

(
−4π2 ε

L0

+ 4π2 ε

L2
0

(ct+ x)

)]
= c

[
1− 2π2 ε

L0

+ 2π2 ε

L2
0

(ct+ x)

]
,

the solutions are trivial

t∗1 =

−1 + 1− 2π2 ε

L0

+ 2π2 ε

L2
0

(ct+ x)

2π2c
ε

L2
0

=
ct+ x− L0

c
, (4.32)

t∗∗1 =

−1− 1 + 2π2 ε

L0

− 2π2 ε

L2
0

(ct+ x)

2π2c
ε

L2
0

=
L2
0

π2cε
− (ct+ x− L0)

c
. (4.33)
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Differently than the previous models, now we have two solutions. We proceed
computing L(t∗1) and L(t∗∗1 ), and superposing these two distances in the expression
for the density of energy.
Firstly, we have

L(t∗1) = L0 − ε sin2

(
π

ct+ x− L0

L0

)
= L0 − ε sin2

(
π

ct+ x

L0

)
(4.34)

and

L(t∗∗1 ) = L0 − ε sin2

(
L0

πε
− π ct+ x

L0

+ π

)
, (4.35)

so we are now able to calculate the density of energy, that results

T00 = −~cπ

48

{
1

L2(t∗1)
+

1

L2(t∗∗1 )

}
=

= −~cπ

48


1[

L0 − ε sin2

(
π

ct+ x

L0

)] +
1

L0 − ε sin2

(
L0

πε
− π ct+ x

L0

+ π

)
 .

(4.36)

Obviously, calculating the lim
ε→0

T00 = − ~cπ

24L2
0

, as in the static case.

We could have considered the more general law of motion in case of resonating
oscillating boundary. In fact, we can also solve (3.46) and we will find two solutions
for this, too. In fact,

x+ ct− ct1 = L0 +
L0

2π
sin−1

[
sin θ cos

(
2πct1
L0

)
− θ
]
, (4.37)

so, imposing the delay, we find, in a few steps, the relation

cos

(
2π

ct1
L0

)[
sin θ − sin

(
2π

ct+ x

L0

)]
+ sin

(
2π

ct1
L0

)
cos

(
2π

ct+ x

L0

)
− θ = 0 .

(4.38)
To solve the (4.38) we have to operate the following change of variable

γ = tan

(
π

ct1
L0

)
that allows the substitutions

cos

(
2π

ct1
L0

)
=

1− γ2

1 + γ2
, and sin

(
2π

ct1
L0

)
=

2γ

1 + γ2
.
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So, we are able to solve the polynomial equation in γ,[
sin

(
2π

ct+ x

L0

)
− sinθ − θ

]
γ2 + 2 cos

(
2π

ct+ x

L0

)
γ+

+ sin θ − sin

(
2π

ct+ x

L0

)
− θ = 0 , (4.39)

that has two solutions, slightly more complicated than the previous ones

γ± =

− cos
(

2π ct+x
L0

)
±
√

1 + sin2 θ − θ2 + 2 sin θ sin
(

2π ct
L0

)
sin
(

2π ct+x
L0

)
− sin θ − θ

, (4.40)

and the two solutions for the time t1 are

t±1 =
L0

πc
tan−1 (γ±) =

=
L0

πc
tan−1

− cos
(

2π ct+x
L0

)
±
√

1 + sin2 θ − θ2 + 2 sin θ sin
(

2π ct
L0

)
sin
(

2π ct+x
L0

)
− sin θ − θ

 . (4.41)

At this point, we are able to write the expressione for the retarded position L(t±1 )

L(t+1 ) = L0 +
L0

2π
sin−1

{
sin θ

[
2 sin2 θ − 2 + 2θ2 + 2θ sin θ − 2θ sin

(
2π

ct+ x

L0

)
+

− 4 sin θ sin

(
2π

ct+ x

L0

)
− sin2 θ cos

(
2π

ct+ x

L0

)
+ θ2 cos

(
2π

ct+ x

L0

)
+

− 2 sin θ sin

(
2π

ct+ x

L0

)
cos

(
2π

ct+ x

L0

)]
×

×

[
2 + 2 sin2 θ + 2θ sin θ − 2θ sin

(
2π

ct+ x

L0

)
+ 2 cos

(
2π

ct+ x

L0

)
+

+ sin2 θ cos

(
2π

ct+ x

L0

)
− θ2 cos

(
2π

ct+ x

L0

)
+

+ 2 sin θ sin

(
2π

ct+ x

L0

)
cos

(
2π

ct+ x

L0

)]−1
− θ

}
, (4.42)
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and

L(t−1 ) = L0 +
L0

2π
sin−1

{
sin θ

[
2θ2 − 2 + 2θ sin θ + 2 sin2

(
2π

ct+ x

L0

)
+

− 4 sin θ sin

(
2π

ct+ x

L0

)
− 2θ sin

(
2π

ct+ x

L0

)
+ cos

(
2π

ct+ x

L0

)
+

+ sin2 θ cos

(
2π

ct+ x

L0

)
− θ2 cos

(
2π

ct+ x

L0

)
+

+ 2 sin θ sin

(
2π

ct+ x

L0

)
cos

(
2π

ct+ x

L0

)]
×

×

[
2 + 2 sin2 θ + 2θ sin θ − 2θ sin

(
2π

ct+ x

L0

)
− cos

(
2π

ct+ x

L0

)
+

− sin2 θ cos

(
2π

ct+ x

L0

)
+ θ2 cos

(
2π

ct+ x

L0

)
+

− 2 sin θ sin

(
2π

ct+ x

L0

)
cos

(
2π

ct+ x

L0

)]−1
− θ

}
, (4.43)

and we finally find

T00 = −~cπ

48

{
1

L2(t+1 )
+

1

L2(t−1 )

}
. (4.44)

Even in this case, as in every previous case, there is a limit that leads to the

static solution, and it is lim
ε→0

T00 = − ~cπ

24L2
0

.

4.4 Final remarks on the retarded approach

As we have already noted for the linear motion of the right boundary, even in the
case of the oscillating boundary the results are not exactly the same.

In the simplest case, when right boundary moves with constant velocity, we
have the same dependence from t and x, but the constants are not in accordance.
In the case when the boundary oscillates, does not coincide neither the constants,
nor the t and x dependence.
Thus, we make another observation about the first case. The second one is influ-
enced by a large number of approximation, in both exact and delayed cases.

As was anticipated, following our approach, we have always only term depend-
ing on ct + x, while in Chapter 3 we find terms with both, ct + x and ct − x
dependence.
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This lack could be due to the fact that we consider only the detection of photons
coming from the right boundary, so all the regressive waves. We can easily ex-
pected that the extra term considers the photons coming from the left mirror, too,
including so the progressive waves.

This kind of remark can improve our expression of T00, adding the second
term, but we are not definitively able to give the correct result, because this naive
imposition of the delay, even if recover the static case in an appropriate limit, can
not describe the physics inside a hole if one border is moving.
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Chapter 5

A self-consistent law of motion

Finally, we write the law of motion of a relativistic harmonic oscillator, adding
a term that contain the self-consistent Casimir force with the imposition of the
delay, and the result is

ML̈(t)√
1− L̇2

c2

+Mω2
0 (L(t)− L0) = − ~cπ

24L2
(
t− L(t)

c

) , (5.1)

where M is the mass and ω0 = 2πν0, where ν0 is the frequency, but we will also
refer to ω0 calling it frequency.

Formally, this equation is not so well-defined, it would be stricter multiplying
the Casimir delayed term for Heaviside theta function, so the expression

ML̈(t)√
1− L̇2

c2

+Mω2
0 (L(t)− L0) = − ~cπ

24L2
(
t− L(t)

c

)θ(t− L(t)

c

)
, (5.2)

is more complete than (5.1) because if the signal is going to come without delay,
the main equation is a relativistic harmonic oscillator, without any other term

ML̈(t)√
1− L̇2

c2

+Mω2
0 (L(t)− L0) = 0 . (5.3)

5.1 Solutions of the equation

For solving the equation (5.1) in numerical way it is worthwhile to consider the
approximation

1√
1− L̇2

c2

∼ 1 +
1

2

L̇2

c2
, (5.4)
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that is a physical consequence of the fact that the speed of the boundary is much

smaller compared with the speed the light
L̇2

c2
� 1, as said in [23]. So, we now

have to solve

ML̈(t)

(
1 +

1

2

L̇2

c2

)
+Mω2

0 (L(t)− L0) = − ~cπ

24L2
(
t− L(t)

c

) . (5.5)

In order to write a consistent algorithm, we have to approximate the derivatives
of our function as follows [37]

L(i+ 1)− L(i− 1)

2∆t
= L̇(ti) +O(∆t2) ,

L(i+ 1)− 2L(i) + L(i− 1)

∆t2
= L̈(ti) +O(∆t2) , (5.6)

where i is the integer index for discretized time, and ∆t is the minimum step of the
time axis, so that ti = i·∆t. Adding two boundary conditions, it is straightforward
to find the solution of a second order differential equation.

It is interesting to consider before the equation

ML̈(t) +Mω2
0 (L(t)− L0) = − ~cπ

24L2
(
t− L(t)

c

) , (5.7)

where the left hand side (LHS) finds out to be an harmonic oscillator.
In both cases, L(i+1) depends by L in previous “slices” of time, i.e. L(i), L(i−1)

and L(j), with j = i− L(i)

c∆t
for the Casimir delayed term.

Harmonic oscillator is a simple case because, imposing (5.6), the (5.7) turns out
to be an elementary equation immediatly solvable for L(i + 1). The solution of
this equation is plotted in Figure 5.1.

Coming back to (5.5) and replacing continue-time with discrete-time whereby
(5.6), we find a third grade equation for L(i + 1), which has only one acceptable
solution that carry out a sensible correction to the equation (5.7). We can exami-
nate different plots of this solution in dependence of the free parametres, such as
the mass M and the self-consistent pulsation ω0.
For example, if M ∼ 100 kg 6, we obtain that the Casimir term is almost negligible
and the right boundary follows a nearly harmonic motion, as shown in Figure 5.2.

6We put the value of M exactly equal to 1, but, in general, the important thing is the order
of magnitude.
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Figure 5.1: Position of the right boundary in function of time, without Casimir term.

Figure 5.2: Position of the right boundary in function of time, M = 1 kg and ω0 =
103Hz.

A different result is found if the value of the mass is very small, for example we
take M = 10−9 kg, we can see from picture Figure 5.3 that the amptitude of the
position decreases as function of time, and, from the Figure 5.4 (that is equivalent
to Figure 5.3, but for a longer time), we can easily guess that the steady position
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for a long time is the initial position, L0 = 100nm in this case.

Figure 5.3: Position of the right boundary in function of time, M = 10−9 kg and
ω0 = 103Hz.

Figure 5.4: Position of the right boundary in function of time, M = 10−9 kg and
ω0 = 103Hz.

Moreover, keeping the case of unitary mass, if we change a few the inital
condition, we obtain a solution with the same behaviour of (3.26), pictured in
Figure 3.1. We can see this similarity in Figure 5.5.
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Figure 5.5: Position of the right boundary in function of time, with suitable boundary
conditions, lead back to a known issue.

5.2 Casimir energy calculated numerically

Now, we obviously want to calculate the energy.
Proceeding via numerical way, so integrating stp-by-step through the formula

E(i) = ~cπ
L(i+ 1)− L(i)

24L2(j)
, (5.8)

where j = i− L(i)

c∆t
.

In this case, again, we show two different, but this time, being M -independent, the
interesting variable is the frequency ω0. In fact for ω0 = 103Hz we have the trend
illustrated in Figure 5.6, rapidly vanishing to zero, while for different incresing
values, such as ω0 = 106Hz, a resonance effect come in and the energy behaviour
has several changes, dispayed in Figure 5.7.

Then, we can evaluate the energy with the equation (4.9)

VCas =
~cπ

24L

(
t− L(t)

c

) (5.9)

and using the position found in numerical way in the previous section.
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Figure 5.6: Numerical Casimir energy when ω0 = 103Hz.

Figure 5.7: Numerical Casimir energy when ω0 = 106Hz.

Even in this case, we show two plots for different values of ω0 = 103Hz, in Fig-
ure 5.8, and ω0 = 106Hz, in Figure 5.9, in order to compare numerical solutions
and analytical solutions.
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Figure 5.8: Analytical Casimir retarded energy for ω0 = 103Hz.

Figure 5.9: Analytical Casimir retarded energy for ω0 = 106Hz.

It is remarkable the similarity between the results. In fact, setting ω0 = 103Hz,
we see graphically the similar behaviour between Figure 5.8 and the previous
Figure 5.6.
But, if we set ω0 = 106Hz, we get a resonance effect, as shown in Figure 5.9, and
also amenable to Figure 5.7.
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Despite of a similar trend, there is an important difference. We can note that
the analytical results present one more order of magnitude than the numerical.

Another interesting thing is that, if we substitute the relation (3.26) as the
position in the equation for VCas in (4.9), reported also in (5.9), we find a similar
behaviour, as reported in Figure 5.10, where the energy oscillates, but with a
different frequency.

Figure 5.10: Analytical Casimir energy with position L(t) = L0

[
1 + ε sin

(
2π

L0
ct

)]
.

5.3 About the self-consistent solution

In this subsection, we would deduce an expression for the self-consistent frequncy.
In fact, in (5.1) we suppose the term linked to frequency to be linear with respect
to L(t). Anyway it could not be true.

We try to gain the behaviour of this term, useful for us, as the difference

between the kinetic term
L̈(t)√
1− L̇2

c2

and the Casimir term, expressed as the density

of energy T00(t, x), evaluated in x = L(t).

This is not interesting for the linear constant velocity motion, because the
kinetic term vanishes. In fact L̇ = v does not contain time dependence and
consequently L̈ = 0.

For the oscillating law of motion, it is convenient to consider the exact resonat-
ing law (3.46).
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L̈(t)√
1− L̇2

c2

= − 2πc2 sin θ

L0

√
1− θ2 − sin2 θ + 2θ sin θ cos

(
2πct
L0

)×

×

cos

(
2πct

L0

)
+ sin2

(
2πct

L0

) sin θ cos
(

2πct
L0

)
− θ

1−
(

sin θ cos
(

2πct
L0

)
− θ
)2

 .

(5.10)

The 00-component of the energy-momentum tensor is the expression (3.51).
As was already mentioned before, we consider the energy of the oscillating mirror,
so we consider T00 at the instant t in the position L(t).
Then, declaring the mass of the moving boundary M , we are able to write the
difference

M
L̈(t)√
1− L̇2

c2

− T00(t, L(t)) =

= − 2Mπc2 sin θ

L0

√
1− θ2 − sin2 θ + 2θ sin θ cos

(
2πct
L0

)×

×

cos

(
2πct

L0

)
+ sin2

(
2πct

L0

) sin θ cos
(

2πct
L0

)
− θ

1−
(

sin θ cos
(

2πct
L0

)
− θ
)2

+

+
~cπ

48L2
0

{
1[

1− 2nεπ

L0

sin

(
2π

ct+ L(t)

L0

)
+

4n2ε2π2

L2
0

sin2

(
π

ct+ L(t)

L0

)]2+

+
1[

1− 2nεπ

L0

sin

(
2π

ct− L(t)

L0

)
+

4n2ε2π2

L2
0

sin2

(
π

ct− L(t)

L0

)]2
}
. (5.11)

We want now to highlight the dependence from the position L(t), so we have
to invert the equation (3.46) in order to write ct in function of L(t). The result is

ct =
L0

2π
cos−1

sin

(
2π
L(t)− L0

L0

)
+ θ

sin θ

 =
L0

2π
cos−1

sin

(
2π
L(t)

L0

)
+ θ

sin θ

 ,

(5.12)



60 CHAPTER 5. A SELF-CONSISTENT LAW OF MOTION

that put in the previous equation gives the following kinetic term

ML̈(t)√
1− L̇2

c2

= − 2Mπc2

L0 sin θ

1

cos2
(

2πL(t)

L0

)√
1 + θ2 − sin2 θ + 2θ sin

(
2πL(t)

L0

)×

×

{
1− θ2 + θ sin θ + sin

(
2πL(t)

L0

)
(sin θ − θ)+

− θ sin θ sin2

(
2πL(t)

L0

)
− sin θ sin3

(
2πL(t)

L0

)}
, (5.13)

and the Casimir term

T00 = − ~cπ

48L2
0

{[
1− 2nεπ

L0

sin

cos−1

sin
(

2πL(t)
L0

)
+ θ

sin θ

+ 2π
L(t)

L0

+

+
4n2ε2π2

L2
0

sin2

1

2
cos−1

sin
(

2πL(t)
L0

)
+ θ

sin θ

+ π
L(t)

L0

]−2+
[

1− 2nεπ

L0

sin

cos−1

sin
(

2πL(t)
L0

)
+ θ

sin θ

− 2π
L(t)

L0

+

+
4n2ε2π2

L2
0

sin2

1

2
cos−1

sin
(

2πL(t)
L0

)
+ θ

sin θ

− πL(t)

L0

]−2} . (5.14)

Proof. The inversion of (3.46) is straightforward, in fact the following statements
are equivalent

L(t) = L0 +
L0

2π

{
sin−1

[
sin θ cos

(
2πct

L0

)]
− θ
}
,

sin

(
2π
L(t)− L0

L0

)
= sin θ cos

(
2π

ct

L0

)
− θ ,

cos

(
2π

ct

L0

)
=

sin

(
2π
L(t)− L0

L0

)
+ θ

sin θ
, (5.15)

ct =
L0

2π
cos−1

sin

(
2π
L(t)− L0

L0

)
+ θ

sin θ

 , (5.16)
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where we can also write

sin

(
2π
L(t)− L0

L0

)
= sin

(
2π
L(t)

L0

)
. (5.17)

In the kinetic term, the easiest substitution in directly the (5.15), and its exact
consequence

sin2

(
2π

ct

L0

)
= 1−

[
sin

(
2π
L(t)− L0

L0

)
− θ
]2

sin2 θ
, (5.18)

while in the Casimir term we substitute the (5.16).

We have now a force F , expressed in function of a distance L. We can plot
the behaviour of this force, given by the difference of (5.13) and (5.14), at the
changing of the free parametres.

We can not consider all values of L, because the the law of motion used (3.46)
and its inversion (5.16) have inverse trigonometric functions, which have a limited
domain [−1, 1]. The conclusion is that we obtain acceptable values only if the
position is near L0.

We fixed L0 = 10−7m, ε = 10−10m, n = 2, and we have estimated the force, in
function of the position, for different values of the mass M .
In particular, from Figure 5.11, we can see what happened when the kinetic term
is much greater than T00. The force is almost linear, getting close to L0.

Figure 5.11: The force with negligible Casimir term.
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Then, there is a damping that changes the previous regime. When the order

of magnitude of T00 (t, L(t)) becomes comparable with
ML̈(t)√

1− L̇2

c2

, we obtain the

result shown in Figure 5.12.

Figure 5.12: The force when order of magnitude of kinetic and Casimir contributions
are comparable.

Figure 5.13: The force with negligible kinetic term.
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This force, gradually stabilize,as in Figure 5.13, at the decreasing of the mass,
when the leading term is the Casimir one. In this case, we can note that the
behaviour is no more linear, but parabolic.

Finally, we can conclude that the force, due to self-interaction of the right
boundary, is not linear when the Casimir term takes over, according to this model.
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Chapter 6

Conclusions

The Casimir effect represents one of the most interesting manifestations of the
vacuum.

The stationary case has already been widely studied, and we noted, in Chapter
2, that it obviously depends on the boundary conditions. Static models are also
the simplest ones, because we are able to evaluate the energy density by means of
the regularization procedures.

Then, in Chapter 3, we considered the same vacuum effect, with nonstationary
boundary conditions. In particular, in our one dimensional model, we took the
left boundary constrained in the origin, while the right one was moving according
to different laws of motion.
When the wall was in a uniform motion we could calculate the energy density,
that is the variable we are interested in. When the wall oscillated, we were not
able to calculate it exactly, but we did some considerations which led us to an
approximated expression for the energy density.

Thus, in Chapter 4, we tried to impose the delay condition, intuitively caused
by the motion of the boundary. In the case of a uniform motion with constant
velocity, the qualitative behaviour of the time and spatial variables t and x was
the same as in the formal calculation, with the appropriate considerations. Unfor-
tunately, we were not able to recover exactly the same constant, so this approach
is not as rigorous as the first one.
This retarded approach was even less precise in the case with the oscillating bound-
ary, because we had to use an approximation. The resulting expression for the
energy density is very difficult to compare with the expression found previously
with the scalar field approach.
Therefore, we have found that our simple retarded approach could give a quali-
tative behaviour of the solution in the simplest case, but we did not manage to
recover the exact solution.

In Chapter 5, we tried to describe the motion of the moving boundary due

65
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to its self-interaction with the vacuum. We first wrote the law of a harmonic
oscillator, adding a term of the Casimir force. We had several free parametres, but
we considered, in particular, how the position of the moving wall and the Casimir
energy changed, for different values of the mass of the boundary. Numerical results,
for both position and energy, were in accordance with the analytical procedure.
Then, we studied the force of this boundary, linked to its self-frequency, calculating
the difference between the kinetic term and the Casimir term. The results were
interesting. In fact, when the order of magnitude of the mass was so big to make the
Casimir term negligible, then the behaviour near the boundary was almost linear,
as we expected. Taking smaller values of the mass, until the kinetic term and the
Casimir term become comparable, we found that the force was no more linear in
dependence of the position, but it had a parabolic behaviour in our configuration.

In conclusion, vacuum fluctuations can be qualitatively described with the
imposition of a delay, but it hardly can give exact results.
We can also conclude that the force, due to self-interaction of a moving boundary,
changes its regime in presence of these vacuum fluctuations, and it has no more
linear dependence on the position.



Appendix A

Series of frequency cut-off
regularization

Demonstration of the value of convergence
We can prove the (2.19), namely

N∑
n=1

αne−αn =
αe−αN

[
eα(N+1) +N − eα(N + 1)

]
(eα − 1)2

, (A.1)

proceeding by induction.
First of all we check the result in the case N = 1, so on the the left-hand side

S1 = αe−α, while on the right-hand side we have

S1 =
αe−α

[
e2α + 1− 2eα

]
(eα − 1)2

=
αe−α (eα − 1)2

(eα − 1)2
,

and it is true.
Check also for N = 2. Taking into account the left-hand side of the main

equation we have

S2 = αe−α + 2αe−2α = αe−α
(
1 + 2e−α

)
,

so we control that the same expression appears in the right-hand side

S2 =
αe−2α

[
e3α + 2− 3eα

]
(eα − 1)2

=
αe−2α

(eα − 1)2
[
eα
(
e2α − 1

)
− 2 (eα − 1)

]
=

=
αe−α

(eα − 1)

[
eα − 1 + 2e−α (eα − 1)

]
= αe−α

(
1 + 2e−α

)
,

and it is verified, too.
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Supposing now to be true k = N − 1, then we check the correctness for k = N .
Therefore we want to verify that

SN = SN−1 + αNe−αN =
αe−αN

[
eα(N+1) +N − eα(N + 1)

]
(eα − 1)2

, (A.2)

so let’s compute

SN−1 + αNe−αN =
αe−α(N−1)

[
eαN +N − 1−Neα

]
(eα − 1)2

+ αNe−αN =

=
αe−αN

(eα − 1)2
[
eα
(
eαN +N − 1− eαN

)
+Ne2α +N − 2Neα

]
=

=
αe−αN

(eα − 1)2
[
eα(N+1) −Neα − eα +N

]
=

=
αe−αN

(eα − 1)2
[
eα(N+1) +N − eα(N + 1)

]
.

In conclusion, we find that the (A.2) is true, and, consequentially, the (2.19) is
finally proved.
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Analytical continuation of the
Riemann Zeta function

The Riemann ζ-function is defined

ζ(s) =
∞∑
n=1

1

ns
. (B.1)

We can write the following equalities

ζ(s) =
∞∑
n=1

1

Γ(s)

∫ ∞
0

dt e−ntts−1 =
1

Γ(s)

∫ ∞
0

dt ts−1
∞∑
n=1

e−nt =

=
1

Γ(s)

∫ ∞
0

dt ts−1
e−t

1− e−t
.

Now, expanding the exponential, we find

ζ(s) =
1

Γ(s)

∫ ∞
0

dt ts−1
e−t

1−
(

1− t+
t2

2
− t3

6
+ . . .

) =

=
1

Γ(s)

∫ ∞
0

dt ts−1
e−t

t− t2

2
+
t3

6

=
1

Γ(s)

∫ ∞
0

dt e−t
ts−2

1−
(
t

2
− t2

6

) =

=
1

Γ(s)

∫ ∞
0

dt e−tts−2
(

1 +
t

2
− t2

6
+
t2

4
+ . . .

)
=

=
1

Γ(s)

∫ ∞
0

dt e−tts−2
(

1 +
t

2
− t2

12

)
=

=
1

Γ(s)

[
Γ(s− 1) +

1

2
Γ(s) +

1

12
Γ(s+ 1)

]
,
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that turns out to be, using the relation Γ(s+ 1) = sΓ(s),

ζ(s) =
1

s+ 1
+

1

2
+

s

12
.

We are interested in the case s = −1, so that we have

ζ(−1) =
∞∑
n=1

n = − 1

12
.

We can also note, in this case, that the terms of the expansion that we rejected
contains a multiplication for the factor (s + 1), that vanish for s = −1, so this
result is exact.
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Perturbative solution of DCE

As introducted in Section 3.2, we proceed with a perturbative expansion of R(ct),
namely

R(ct) = R0(ct) + εR1(ct) , (C.1)

where ε is the small amptitude. Terms of the same order follow the relations

R0(ct+ L0)−R0(ct− L0) = 2 , (C.2)

R1(ct+ L0)−R1(ct− L0) = −L0 sin

(
q

2πct

L0

)
[R′0(ct+ L0) +R′0(ct− L0)] ,

(C.3)

as already written.
The general solution of (C.2) is

R0(ct) = r +
ct

L0

+
∞∑
n=1

[
Xn cos

(
n

2πct

L0

)
+ Yn sin

(
n

2πct

L0

)]
, (C.4)

where r, Xn and Yn are constants that we determine thanks to the boundary
condition.

If we put this latter solution of R0(ct) into the equation for the first order
perturbation (C.3), we get

− 1

2
[R1(ct+ L0)−R1(ct− L0)] = sin

(
q

2πct

L0

)
+
π

2

∞∑
n=1

n(−1)n×

×

{
Xn

[
cos

(
(q + n)

2πct

L0

)
− cos

(
(q − n)

2πct

L0

)]
+

+ Yn

[
sin

(
(q + n)

2πct

L0

)
+ sin

(
(q − n)

2πct

L0

)]}
,
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whose solution reads

R1(ct) = (−1)q+1 ct

L0

{
sin

(
q

2πct

L0

)
+
π

2

∞∑
n=1

n×

×

(
Xn

[
cos

(
(q + n)

2πct

L0

)
− cos

(
(q − n)

2πct

L0

)]
+

+ Yn

[
sin

(
(q + n)

2πct

L0

)
+ sin

(
(q − n)

2πct

L0

)])}
+ g(ct) , (C.5)

with an arbitrary periodic function g(ct). If we consider only the short time limit,
ε ct
L0

< 1, the the boundary condition is satysfied by R0(ct), so we need g(ct) in
sucj the way that R1(ct) = 0.
Therefore, our general solution takes place for r = Xn = Yn = 0, and it is the
result in (3.32), namely

R(ct) =
ct

L0

+ ε(−1)q+1

[
ct

L0

sin

(
q

2πct

L0

)
− z

L0

sin

(
q

2πz

L0

)]
. (C.6)

We want to go beyond the short time limit.
We introduce an arbitrary time τ and split the time in t = t + τ − τ . The
perturbative solution is can be written in the same form as already seen, where new
parameters τ -depedent r(cτ), Xn(cτ) and Yn(cτ) replace the previous constants r,
Xn and Yn, respectively.

R(ct) = r(cτ) +
c(t− τ)

L0

+
∞∑
n=1

[
Xn(cτ) cos

(
n

2πct

L0

)
+ Yn(cτ) sin

(
n

2πct

L0

)]
+

+ ε(−1)q+1 c(t− τ)

L0

{
sin

(
q

2πct

L0

)
+
π

2

∞∑
n=1

n

(
Xn(cτ)

[
cos

(
(q + n)

2πct

L0

)
+

− cos

(
(q − n)

2πct

L0

)]
+ Yn(cτ)

[
sin

(
(q + n)

2πct

L0

)
+ sin

(
(q − n)

2πct

L0

)])}
+

+ g(ct, cτ) +O
(
ε2
)
,

where it is interesting to note that g(ct, cτ) is no more a periodic function.

Imposing the RG equation (
∂R

∂(cτ)

)
ct

= 0 (C.7)
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leads, in our case, to three independent equations

∂r(cτ)

∂(cτ)
=

1

L0

+O
(
ε2
)
, (C.8)

∂Xn(cτ)

∂(cτ)
= ε

π(−1)q+1

2L0

[
|n− q|X|n−q| + (n+ q)Xn+q

]
+O

(
ε2
)
, (C.9)

∂Yn(cτ)

∂(cτ)
= ε

(−1)q+1

L0

[
δnq +

π

2

(
|n− q|Y|n−q| − (n+ q)Yn+q

)]
+O

(
ε2
)
. (C.10)

Calling τ̃ = τ
επ(−1)q+1

2L0

, the equations (C.9) and (C.10) can be written in the

form

∂X̃n

∂(cτ̃)
= (n− q)Xn−q + (n+ q)X̃n+q +O

(
ε2
)
, (C.11)

∂Yn(cτ)

∂(cτ)
=

2

π
δnq + (n− q)Ỹn−q − (n+ q)Ỹn+q +O

(
ε2
)
. (C.12)

The solution of (C.8) is not complicated, r(cτ) =
cτ

L0

+κ, where κ is a constant,

that vanishes ∀t imposing our boundary conditions. Thanks to inital conditions
r(0) = X̃n(0) = Ỹn(0) = 0, too. In particular, even X̃n(ct) = 0 for all t.
The non-vanishing Ỹn terms are recovered for n = qm, with m ∈ N, such that
Ỹn<0 = 0 (which means that the coefficients Ỹn’s are equal to the orginal Yn’s) and

Ỹqm =
1

πqm
tanhm (qτ̃) .

Now, setting t = τ , the RG-improved solution is found. It results

R(ct) =
ct

L0

+
∞∑
j=1

Yqj(ct) sin

(
qj

2πct

L0

)
+ εg(ct, ct) . (C.13)

The non-periodic function g(ct, ct) can be easily evaluated, once defined

ξ = exp

[
(−1)q+1q2πεct

L0

]
,

g(ct, ct) = (−1)q
εz

L0

sin

(
q

2πz

L0

) 2ξ

1 + ξ2 + (1− ξ2) cos
(
q 2πz
L0

)
 , (C.14)

that obviously corresponds to (3.37).
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Finally, the solution reads

R(ct) =
ct

L0

− 2

πq
Im

ln

 1 + ξ + (1− ξ) exp
(

iq 2πct
L0

)
−(1 + ξ) + (1− ξ) exp

(
−iq 2πct

L0

)
+

+ (−1)q
εz

L0

sin

(
q

2πz

L0

) 2ξ

1 + ξ2 + (1− ξ2) cos
(
q 2πz
L0

)
 , (C.15)

that is simply R(ct) = Rs(ct) +Rnp(ct).
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[10] J. M. Lévy-Leblond - On the nature of quantons - Science and Education (2003)
495-502 .

[11] B. Schutz - A first course in general relativity - Second Edition - Cambridge Uni-
versity Press (2009).

[12] A. Pais - Subtle is the Lord. The Science and the Life of Albert Einstein - Oxford
University Press (2005) 19-20 .

[13] R. Loudon - The Quantum Theory of Light - Third Edition - Oxford University
Press (2000).

75

http://pdg.lbl.gov/


76 BIBLIOGRAPHY

[14] D. Dalvit, P. Milonni, D. Roberts, F. da Rosa - Casimir Physics - Springer (2011).

[15] U. Mohideen and Anushree Roy - Precision Measurement of the Casimir Force from
0.1 to 0.9 µm - Phys. Rev. Lett. 81, 4549 (1998).

[16] T. H. Havelock - Some Dynamical Illustrations of the Pressure of radiation and of
Adiabatic Invariance - Phil. Mag. 47, 754-771 (1924).

[17] E. L. Nicolai - On a Dynamical Illustration of the Pressure of Radiation - Phil.
Mag. 49, 171-177 (1925).

[18] V. Moretti - Local zeta function techniques versus point splitting procedure: A
Few rigorous results - Commun. Math. Phys. 201, 327-363, arXiv:gr-qc/9805091v3
(1999).

[19] G. F. Carrier - The spaghetti problem - Am. Math. Monthly 56, 669-672 (1949).

[20] M. Razavy, J. Terning - Quantum radiation in a one-dimensional cavity with moving
boundaries - Phys. Rev. D 31, 307-313 (1985).

[21] G. T. Moore - Quantum Theory of the Electromagnetic Field in a Variable-Lenght
One Dimensional Cavity - Jour. Math. Phys. 11 (1970) 2679-2691.

[22] S. A. Fulling, P. C. W. Davies - Radiation from a Moving Mirror in Two Dimen-
sional Space-Time: Conformal Anomaly - Proc. R. Soc. London A, 348 (1976)
393-414.

[23] M. Bordag, U. Mohideen, V. M. Mostepanenko - New Developments in the Casimir
Effect - Phys. Rept. 353, 1-205, arXiv:quant-ph/0106045v1 (2001).

[24] M. Bordag, G. L. Klimchitskaya, U. Mohideen, V. M. Mostepanenko - Advances in
the Casimir Effect - Oxford University Press (2009).

[25] M. Bordag - The Casimir Effect 50 Years Later - World Scientific (1999).
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